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Abstract

The improvement of the technology during the recent years is such that the
amount of data available for a given application is countinuously increasing.
The larger the amount of data, the more important is to provide a graphi-
cal description of these data, which gives an intuitive representation of the
phenomenon of interest. As a conseguence, the importance of these so-called
Graphical models has rapidly grown in the recent years in different areas of
science and engeneering.
This thesis proposes an identification procedure for periodic, Gaussian, sta-
tionary reciprocal processes, under the assumption that the conditional depen-
dence relations among the manifest (or observed) variables are mainly due to
a limited number of latent (or hidden) variables. The identification procedure
combines the sparse plus low-rank decomposition of the inverse covariance ma-
trix of the process and the maximum entropy solution for the block-circulant
band extension problem recently proposed in the literature.
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1 Introduction

In this Chapter we will introduce the main topics addressed by this thesis. We will
briefly review the problems and the motivations that have led to this work and we give
an overview of the current state-of-the-art. Finally, we will present the contributions and
the organization of the thesis.

The great improvement of the technology in the recent years has led to the frenetic increas-
ing of the number of available data in many important domains such as system biology,
social networks, econometrics etc. If this huge amount of data can be modeled in terms of
realizations of a Gaussian stochastic process then, under suitable assumptions, a graphi-
cal model explaining these data can be provided. This graphical representation allows a
better understanding of the phenomenon but it could be still very complicated because
of the extremely high number of data. In order to reduce the “graphical complexity”
of the model, it is assumed that the observed variables are mainly correlated through a
relatively small number of latent (or hidden) variables, see [7], [8], [9]. The corresponding
graphical model is composed by a two-layer graphical structure: the upper layer contains
the hidden variables and the bottom layer the observed variables. Such models re called
latent-variable graphical models or sparse plus low-rank graphical models. The hope is that
the presence of the few (with respect to the observed variables) extra nodes in the hidden
layer allows a drastic reduction of edges in the observed layer (sparse layer). As a conse-
quence, the interpretation of this large amount of data is drastically simplified. Moreover,
this structure may improve scalability and efficiency of the identification procedure.
When the signal of interest is defined in a finite time interval (or space interval) it may be
naturally modeled with a reciprocal process. Reciprocal processes have been introduced
at the beginning of the last century and they are actually a generalization of Markov pro-
cesses since their dynamics is completely specified by their values at the boundary [11].
Under suitable assumptions, these processes can be extended by periodicity on the whole
integer line and it turns out that their maximum likelihood estimate leads to a covariance
extension problem for circulant covariance matrices, as showed in [12] (see also [13] where
the circulant covariance extension problem is linked with the Burg’s spectral estimation
method [14]). In the same paper, it has been shown that the maximum entropy principle
leads to a complete solution of this problem which is actually the acausal counterpart of
the autoregressive process. The latter is the solution of the classical covariance extension
problem for positive-definite Toeplitz matrices, widely studied in literature.

Contributions and outline of the thesis

In this thesis we develop an identification procedure for latent-variable graphical models
associated to reciprocal, Gaussian periodic stationary processes. This procedure combines
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1 Introduction

the essential steps of the solution of the block-circulant band extension problem presented
in [12] and the autoregressive system identification procedure for latent-variable graphical
models presented in [7]. In this case the peculiarity is that, in addition to our reciprocal
process, we have also the (static) latent components thus, the sparse plus low-rank de-
composition of the inverse covariance matrix of the process has to be embedded in the
optimization problem that follows from the maximum entropy principle.

The thesis is organized as follows. In Chapter 2 we set the notation that will be used
throughout the thesis. Due to their importance in this work, particular attention will
be dedicated to (symmetric) block-circulant matrices for which we will recall some basics
results. In Chapter 3 we will review some mathematical notions and results about the
Gaussian distribution, Hilbert spaces of random variables with finite second-moment and
convex optimization. Chapter 4 will be dedicated to a review of the fundamental ingre-
dients involved in our problem: maximum entropy problems and (Gaussian) graphical
models. More precisely, we will briefly mention classical maximum entropy problems and
we will focus with more detail on those that are particularly interesting for our case, in
order to give an introduction of what we will do in the next chapters. In Chapter 5, after a
presentation of periodic, stationary processes, we will derive a model for periodic, station-
ary reciprocal processes. In Chapter 6 we will construct a latent-variable graphical model
for a periodic, Gaussian, stationary reciprocal process assuming that the latent component
is static and we will derive and solve the corresponding identification paradigm. Chapter
7 basically specializes what has been presented in Chapter 6 for a particular choice of the
structure of the matrices involved in the sparse plus low-rank decomposition of the con-
centration matrix of the process. Finally, in Chapter 8 we draw some final considerations
and we describe possible future extension of this work.
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2 Notation

Here we introduce the general notation and terminology used throughout the thesis. Addi-
tional nomenclature will be introduced, if needed, at the beginning or within the following
Chapters. The table below reports the basic symbols in order to fix the notation that we
will use from now on.

∅ empty set

N set of natural numbers {0, 1, 2, 3, . . . }

Z ring of integers {. . . ,−2,−1, 0, 1, 2, . . . }

R field of real numbers

Rp×q set of p× q matrices

Sn set of n× n symmetric matrices

A⊗B Kronecker product between matrix A and matrix B

〈· , ·〉Q inner product on the inner product space Q

‖x‖1 `1-norm of vector x defined as ‖x‖1 :=
∑
i |xi|

‖x‖∞ `∞-norm of vector x defined as ‖x‖∞ := supi |xi|

‖A‖ Frobenious norm of matrix A defined as ‖A‖ = tr(A>A)

Qc complement of set Q

Q+ set of all positive definite matrices contained in Q

In n× n identity matrix

ImN m×m block identity matrix of dimension mN ×mN

(A)ij element in position (i, j) in matrix A

A> transpose of matrix A

A−1 inverse of matrix A

tr(A) trace of matrix A

ker(A) kernel of matrix A

det(A) determinant of matrix A

E[·] mathematical expectation

3



2 Notation

Note that, the space Rp×q is equipped with the usual inner product 〈P,Q〉 = tr(P>Q).

2.1 Circulant matrices

Here we introduce the notation and give some preliminary results concerning block-
circulant matrices. We start by the definition of block-circulant matrix.

Definition 1. A block-circulant matrix C with N bloks of dimension m × m is a block-
Toeplitz matrix whose columns block (or equivalently rows block) are shifted cyclically,
i.e.

C =


C0 CN−1 · · · C1
C1 C0 · · · C2
... . . . . . . ...

CN−1 · · · C1 C0


where Ck ∈ Rm×m, k = 0, . . . , N − 1.

From the definition it is apparent that a block-circulant matrix is completely specified by
its first block-column, thus it can be denoted as

C = circ{C0, C1, . . . , CN−1}.

It is useful to introduce the circulant shift matrix

U :=


0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . ...
0 0 0 . . . 1
1 0 0 . . . 0

 ∈ RN×N , (2.1)

such that every block-circulant matrix C can be written as

C =
N−1∑
k=0

U−k ⊗ Ck.

A very important role will be played by the symbol of the block-circulant matrix C namely,
the m×m pseudo-polynomial defined as

C(ζ) =
N−1∑
k=0

Ck ζ
−k. (2.2)

Harmonic analysis on ZN

Let ζk = ej
2π
N
k be the k-th root of unity, k = 0, . . . , N − 1. Consider the sequence of

m × m matrices G0, . . . , GN−1, and assume to extend it by periodicity over the whole
integer line Z. Accordingly Gk = Gk+N , and there is no loss of generality in thinking that
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2.1 Circulant matrices

this sequence is defined on the discrete circle group ZN := {1, 2, . . . , N} with arithmetics
mod N1. It is well known that the discrete Fourier transform (DFT) of the sequence

Ĝ(ζ) =
N−1∑
k=0

Gk ζ
−k (2.3)

has period N namely. In other words, it is naturally defined on the (discrete) unit circle
TN := {ζ0, ζ1, . . . , ζN−1}. Then, the sequence {Gk} can be recovered through the inverse
DFT

Gk = 1
N

N−1∑
j=0

Ĝ(ζj) ζjk, k = 0, . . . , N − 1. (2.4)

We recall the Plancherel’s Theorem for the discrete time Fourier transform, a crucial result
in Fourier analysis.

Theorem 1. Let {Fk}, {Gk} be two finite sequences of m×m matrices and let F̂ (ζ) and
Ĝ(ζ) be the corresponding discrete time Fourier transforms defined for ζ ∈ TN . Then

〈F,G〉 :=
N−1∑
k=0

FkG
>
k = 1

N

N−1∑
k=0

F (ζk)G∗(ζk) =:
〈
F̂ , Ĝ

〉
namely, the DFT is an isometry between the two spaces involved.

Defining the vectors

Ĝ := 1√
N


Ĝ(ζ0)
Ĝ(ζ1)

...
Ĝ(ζN−1)

 , G̃ :=


G0
G1
...

GN−1

 ,
relations (2.3) and (2.4) can be rewritten in matrix form as

Ĝ = F G̃, G̃ = F∗ Ĝ,

respectively, where F is the Fourier block-matrix

F = 1√
N


ζ−0·0Im ζ−0·1Im . . . ζ−0·(N−1)Im
ζ−1·0Im ζ−1·1Im . . . ζ−1·(N−1)Im

...
... . . . ...

ζ−(N−1)·0Im ζ−(N−1)·1Im . . . ζ−(N−1)·(N−1)Im

 . (2.5)

It is very easy to see that F is a unitary matrix (FF∗ = F∗F = I) and that F = F ⊗ Im
where

F = 1√
N


ζ−0·0 ζ−0·1 . . . ζ−0·(N−1)

ζ−1·0 ζ−1·1 . . . ζ−1·(N−1)

...
... . . . ...

ζ−(N−1)·0 ζ−(N−1)·1 . . . ζ−(N−1)·(N−1)

 (2.6)

is the usual m×m Fourier matrix. The following result is a generalization of the fact that
circulant matrices are diagonalized by the Fourier matrix in the case of block-circulant
matrices. The proof generalizes what one can prove in the case of scalar-entries matrices
(see e.g. [1] p.649).

1Hence N + h = h so that N plays the role of the zero element.

5



2 Notation

Lemma 1. Let C be a block-circulant matrix with symbol C(ζ) defined by (2.2). Then

C = F∗diag
{
C(ζ0), C(ζ1), . . . , C(ζN−1)

}
F, (2.7)

where F is the mN ×mN unitary matrix (2.5).

Proof. Let us first prove that

FU−1F ∗ = diag{1, ζ−1, ζ−2, . . . , ζ−N+1} =: D, (2.8)

where U is the m×m circulant-shift matrix. By direct computation

(F ∗DF )hk = 1
N

N−1∑
`=0

ζ`(h−1)ζ−`ζ−`(k−1) = 1
N

N−1∑
`=0

(
ζh−k−1

)`
,

hence, (F ∗DF )hk = 1 if h− k − 1 = αN , for some α ∈ Z, while

(F ∗DF )hk = 1
N

1− (ζh−k−1)N

1− ζh−k−1 = 0

otherwise. We conclude that F ∗DF = U−1 and (2.8) is proved. The remaining of the
proof follows directly by the properties of the Kronecker product.

FCF∗ = F
(
N−1∑
k=0

U−k ⊗ Ck

)
F∗ =

N−1∑
k=0

F(U−k ⊗ Ck)F∗

where, for each k = 0, 1, . . . N − 1,

F(U−k ⊗ Ck)F∗ = (F ⊗ Im)(U−k ⊗ Ck)(F ∗ ⊗ Im)
= (FU−k ⊗ Ck)(F ∗ ⊗ Im)
= FU−kF ∗ ⊗ Ck
= Dk ⊗ Ck

by (2.8). Finally

FCF∗ =
N−1∑
k=0

Dk ⊗ Ck = diag
{
C(ζ0), C(ζ1), . . . , C(ζN−1)

}
,

which concludes the proof.

2.1.1 Symmetric block-circulant matrices

Particularly important in this work will be the vector space C of the N × N symmetric,
block-circulant matrices with blocks of dimensionm×m. As long as we consider symmetric
matrices it is useful to distinguish the case of N even from the case of N odd, because the
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2.1 Circulant matrices

two cases lead to slightly different results. Accordingly, the general element C ∈ C will
have the structure

C =



C0 C>1 · · · C>N
2 −1 C>N

2
CN

2 −1 · · · C1

C1 C0
. . . . . . . . . ...

... . . . C>1 · · · CN
2 −1

CN
2 −1 · · · C1

. . . . . . . . . C>N
2

CN
2

. . . . . . C0
. . . C>N

2 −1

C>N
2 −1

. . . · · · . . . C1
. . . C>1

...
... . . . ... . . . . . . C>1
C>1 · · · C>N

2 −1 CN
2

CN
2 −1 · · · C1 C0



∈ RmN×mN

if N is even while it will be

C =



C0 C>1 · · · C>N−1
2

CN−1
2
· · · C1

C1 C0 · · · · · · . . . . . . ...
... C1

. . . · · · · · · . . . CN−1
2

CN−1
2

... . . . C0 C>1 · · · C>N−1
2

C>N−1
2

· · · · · · C1
. . . · · ·

...
... . . . . . . ... . . . . . . C>1
C>1 · · · C>N−1

2
CN−1

2
· · · C1 C0



∈ RmN×mN ,

if N is odd. Using the circulant shift matrix (2.1) each C ∈ C can be written in the form

C =
N−1∑
k=0

U−k ⊗ Ck, where Ck =


C>N−k for k >

N

2 , if N is even,

C>N−k for k >
N − 1

2 , if N is odd.

We endow the vector space C with the inner product 〈C,D〉C = tr(C>D). We are also
interested in the subspace B ⊂ C of symmetric, banded block-circulant matrices of band-

7



2 Notation

width n, with N > 2n, containing all the matrices B of the form

B =



B0 B>1 · · · B>n 0 · · · 0 Bn · · · B1

B1 B0 · · · · · · B>n 0 · · · 0 . . . ...
... . . . . . . . . . . . . Bn

Bn
. . . . . . 0 0

0 . . . B0 B>n
. . . ...

... . . . . . . . . . . . . 0

0 0 Bn
. . . B>n

B>n
. . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . B>1
B>1 · · · B>n 0 · · · 0 Bn · · · B1 B0



.

Using the cyclic-shift matrix (2.1), we can equivalently rewrite the subspace B as

B :=

B ∈ C : B =
n∑

k=−n
U−k ⊗Bk, B−k = B>k

 .
With B̄ we denote the subset of C containing matrices with support that is complementary
with respect to the support of the matrices in B namely, an arbitrary B̄ ∈ B̄ has the
following structure

B̄ =



0 · · · 0 B̄>n+1 · · · B̄n+1 0 · · · 0
... 0 · · · . . . B̄>n+1 · · · B̄n+1

. . . ...

0 . . . 0 . . . ... . . . 0

B̄n+1
. . . . . . . . . B̄>n+1 B̄n+1

... . . . . . . 0 0 . . . ...

B̄>n+1
. . . 0 . . . . . . B̄>n+1

0 . . . B̄n+1
. . . . . . 0

... . . . . . . ... . . . 0 · · · 0
...

0 · · · 0 B̄>n+1 · · · B̄n+1 0 · · · 0



.

Since block-circulant matrices are completely characterized by their first column-blocks,
it is useful to introduce here the set M, containing block-matrices of dimension m×mN ,
defined in the following way: if N is even

M :=
{
M ∈ Rm×mN : M = [M0 . . . MN−1], Mi ∈ Rm×m, M0 = M>0 , Mi = M>N−i for i >

N

2

}
,

otherwise, if N is odd

M :=
{
M ∈ Rm×mN : M = [M0 . . . MN−1], Mi ∈ Rm×m, M0 = M>0 , Mi = M>N−i for i >

N − 1
2

}
.

8



2.1 Circulant matrices

The corresponding scalar product is 〈M,N〉M = tr(MN>), in particular

〈M,N〉M = tr(M0N0) + tr(MN
2
N>N

2
) + 2

N
2 −1∑
j=1

tr(MjN
>
j ), if N even,

〈M,N〉M = tr(M0N0) + 2
N−1

2∑
j=1

tr(MjN
>
j ), if N odd.

Notice that, for any M ∈ M it corresponds a unique (symmetric) block-circulant matrix
M = circ{[M0 . . . MN−1]}, and viceversa. Accordingly, M and C are isomorphic. Finally,
we introduce the subspace MB of M, which contains all the banded block-matrices that
belongs to M, that is

MB :=
{
M ∈M : M = [M0 M1 . . . Mn 0 . . . 0 M>n . . . M>1 ]

}
.

The subspace MB inherits the inner product defined in space M. In particular, for any
M,N ∈MB we have

〈M,N〉M = tr(M0N0) + 2
n∑
j=1

tr(MjN
>
j ).

9



2 Notation
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3 Mathematical preliminaries

In this Chapter we review the main mathematical tools used throughout this thesis. More
precisely, we will recall some basic facts on Gaussian random vectors and some results
concerning Hilbert spaces of random variables with finite second moments. Finally we
will summarize the main notions and results of convex optimization which will be used in
the remainder of the thesis.

3.1 Gaussian random vectors

In this Section we review some basic facts on Gaussian random vectors that will be used
in the next chapters. We state just the result we will need, the proofs can be easily found
in any book that includes this topic.

Definition 2. We say that the random vector z ∈ Rn is a standard Gaussian random vector
if its components {zi}ni=1 are independent, identically distributed (i.i.d.) random variables
with zero mean and unit variance, shortly N(0, 1). The random vector x ∈ Rn is said to be
a Gaussian random vector if it can be represented as an affine combination of a standard
Gaussian random vector,

x = A z + µ,

for some: k ∈ N, standard Gaussian random vector z ∈ Rk, matrix A ∈ Rn×k and
vector µ ∈ Rn. In this case we will write x ∼ N(µ,Σ) where µ is the mean vector and
Σ := AA> ≥ 0 is the covariance matrix of x.

From now on we will assume without loss of generality that µ = 0 and Σ > 0. Then, if
x ∼ N(0,Σ) it admits probability density

p(x) = 1√
(2π)n det(Σ)

exp
{
−1

2 x
>Σ−1x

}
, x ∈ Rn.

Suppose now to partition the Gaussian random vector x ∈ Rn into two components

x =
[
x1
x2

]
, x1 ∈ Rp, x2 ∈ Rq,

where p + q = n. Then, its covariance matrix Σ and its concentration matrix K := Σ−1

can be partitioned accordingly

Σ =
[
Σ11 Σ12
Σ21 Σ22

]
, K =

[
K11 K12
K21 K22

]
.

It is well known that x1 ∼ N(0,Σ11) and x2 ∼ N(0,Σ22) being both vectors linear combi-
nations of x. At this point, the following Lemma will be useful.

11



3 Mathematical preliminaries

Lemma 2. Let X ∈ Rn×n be a non-singular, block-matrix partitioned as follows

X =
[
A B
C D

]
,

where A ∈ Rp×p and D ∈ Rq×q. Then, the determinant of X can be factorized as
detX = (detD)(detS) where

S := A−BD−1C

is the Schur complement of D in X. Moreover,

X−1 =
[
A B
C D

]−1

=
[

S−1 −S−1G
−FS−1 D−1 + FS−1G

]
,

where F = D−1C and G = BD−1.

See e.g. [5] for a proof of this fact. The following Proposition is a consequence of the
previous Lemma and it will be used in the following chapters.

Proposition 1. Let x ∼ N(0,Σ) where x and Σ are partitioned as above. Then, the
conditional distribution of x1 given x2 = x2 is N(0,Σ1|2) where

Σ1|2 := Σ11 − Σ12 Σ−1
22 Σ21 (3.1)

The proof exploits the formula for the conditional probability density between two random
vectors and the previous Lemma applied to the matrix Σ so that we can write

K−1
11 = Σ11 − Σ12 Σ−1

22 Σ21. (3.2)

See e.g. [3], Appendix C, for the complete proof.

3.2 Hilbert space of second order random variables

This Section is dedicated to recall some facts about Hilbert spaces of zero-mean random
variables with finite second-order moments.

Random variables which have finite second moments are commonly called second order
random variables. Throughout this thesis we work in the wide-sense setting of second-
order, zero-mean random variables. It is well known that the set of real or complex-valued
second-order random variables defined on the same probability space is an Hilbert space
H equipped with the inner product

〈x,y〉H = E[xy], ∀x,y ∈ H.

Since we are considering an Hilbert space, the concept of orthogonality makes sense. We
say that two random variables x,y ∈ H are orthogonal if E[xy] = 0 in which case we will
write x ⊥ y. Orthogonality of two random vectors x = [x1, . . .xn]> and y = [y1, . . .yn]>,

12



3.2 Hilbert space of second order random variables

whose components belong to H, will be understood as component-wise uncorrelation,
namely

x ⊥ y ⇐⇒ E[xy>] = 0.
Let Ê[·|·] be the symbol that denotes the orthogonal projection (conditional expectation
in the Gaussian case) onto the subspaces spanned by a family of finite variance random
variables listed in the second argument.

Definition 3. Let X,Y,Z be subspaces of zero-mean second-order random variables in a
certain common ambient Hilbert space H. Then X and Y are said to be conditionally
orthogonal, given Z, and it can be denoted by X ⊥ Y | Z, if(

x− Ê[x | Z]
)
⊥
(
y − Ê[y | Z]

)
∀x ∈ X, ∀y ∈ Y, (3.3)

or equivalently if

〈x− Ê[x | Z], y − Ê[y | Z]〉H = 0 ∀x ∈ X, ∀y ∈ Y.

It will be useful the following fact about orthogonal projections in the second-order sta-
tionary processes framework. The proof can be found in [2], see also [11].

Proposition 2. The following statements are equivalent.

i) X ⊥ Y | Z

ii) (X ∨ Z) ⊥ Y | Z

iii) Ê[y | X ∨ Z] = Ê[y | Z], for all y ∈ Y

where A ∨B denotes the closure of A + B = {a + b | a ∈ A, b ∈ B}.

Proof. The equivalence between i) and ii) follows from the definition. Indeed, starting
from ii)
〈x+z−Ê[x+z | Z], y−Ê[y | Z]〉H = 〈x+z, y−Ê[y | Z]〉H = 0, ∀x ∈ X, y ∈ Y, z ∈ Z,

since Ê[x + z | Z] ∈ Z and y − Ê[y | Z] ⊥ Z, meaning that ii) is equivalent to y − Ê[y |
Z] ⊥ X ∨ Z. Then,

〈x+ z, y − Ê[y | Z]〉H = 〈x− Ê[x | Z] + Ê[x | Z] + z, y − Ê[y | Z]〉H
= 〈x− Ê[x | Z], y − Ê[y | Z]〉H
= 0,

because z+Ê[x | Z] ∈ Z. We have just proved that ii) is equivalent to y−Ê[y | Z] ⊥ X∨Z,
that is

Ê[y−Ê[y | Z] | X∨Z] = 0 ⇐⇒ Ê[y | X∨Z] = Ê[Ê[y | Z] | X∨Z] = Ê[y | Z], ∀y ∈ Y,

which proves the equivalence between ii) and iii).

Conditional orthogonality is the same as conditional uncorrelatedness (and, hence, condi-
tional independence) in the Gaussian case. When X,Y,Z are generated by finite-dimensional
random vectors, condition (5.4) can equivalently be rewritten in terms of generating vec-
tors, which we shall normally do in the following.

13



3 Mathematical preliminaries

3.3 Elements of convex analysis

In this Section we will introduce the basic notions used in convex optimization. Then,
we will face the rank minimization problem and the problem of inducing sparsity in the
solution of an optimization problem, in the simplest possible settings. Finally, we will give
a general picture with the main facts on Lagrange duality theory in optimization. The
material presented in this section is mainly taken from [4] and [18].

3.4 Optimization problems

Consider the problem of finding x ∈ Rn that minimizes the objective function f0 : Rn →
R : x 7→ f0(x), among all x satisfying some constraints. In other words, consider the
following optimization problem

min
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p,

(3.4a)
(3.4b)

where we have m equality constraints (3.4a) and p inequality constraints (3.4b). We
consider by default minimization problems because each maximization problem can be
view as the minimization of the opposite of its objective function subject to the same
constraints. The set of x ∈ Rn on which all the functions are defined,

D =
(
m⋂
i=0

dom fi

)
∩
( p⋂
i=0

domhi

)
,

is called domain of the optimization problem (3.4).

Definition 4. A point x ∈ D is feasible for the optimization problem (3.4) if it satisfies the
constraints (3.4a) and (3.4b). Problem (3.4) is said to be feasible if there exists at lest one
feasible point in D, infeasible otherwise.

The optimal point of (3.4) is defined as

po := inf {f0(x) : fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

Notice that po can be ±∞. In particular, if there are feasible points {xk}k so that f0(xk)
tends to −∞ as xk → ∞ then po = −∞ and the problem (3.4) is said to be unbounded
below. We say that xo is an optimal point for Problem (3.4) if xo ∈ D and f0(xo) = po.

3.4.1 Convex optimization problems

A convex optimization problem is an optimization problem of the form

min
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
a>i x = bi, i = 1, . . . , p.

(3.5a)
(3.5b)

14



3.5 Rank minimization problem

With respect to the general optimization problem (3.4), the convex optimization Problem
(3.5) has three additional requirements:

- the objective function f0 must be convex,

- the inequality constraints functions f1, . . . , fm must be convex,

- the equality constraints functions hi(x) = a>i x− bi must be affine.

The feasible set of the problem is the intersection of the domain of the problem

D =
m⋂
i=0

dom fi,

which is a convex set (because fi, i = 1, . . . ,m are convex), with m convex sets {x :
fi(x) ≤ 0} and p hyperplanes {x : a>i x = bi}, thus it is convex.

3.5 Rank minimization problem

In this Section we will try to give an intuitive explanation behind the choice of the reg-
ularizers we will make in Section 6.2.2. More precisely, we want to show in the simplest
possible settings, why the minimization of the trace and the minimization of the `1-norm
induce, respectively, low-rank and sparsity on the solution. What showed in this Section
can be also viewed as an example of application of the concepts we have introduced in the
previous Section. We refer the interested reader to [18], from which is taken the material
presented here.

Definition 5. Let K be a convex set. The convex envelope of f : K → R is the largest
convex function g(·) such that g(x) ≤ f(x) for all x ∈ K.

The definition only says that, among all convex functions, the convex envelope g of a
function f is the one that is the closest to f pointwise. A pictorial representation of this
fact is given in Figure 3.1.

f(x)

g(x)

Figure 3.1: Explanation of the definition of convex envelope g of a function f .

Consider the following optimization problem

argmin
X∈Rm×n

rank(X)

subject to X ∈ K,
(3.6)

15



3 Mathematical preliminaries

where K is the convex set representing the constraints. This is not a convex optimization
problem because the objective function rank(X) is not convex in X. In this situation,
we can minimize the convex envelope of the rank(·) function which is actually a convex
function and thus it may be minimized efficiently. The minimum of the convex envelope
provides a lower-bound on the true minimum.

Theorem 2. Let XM := {X ∈ Rm×n : ‖X‖ ≤ M} be the set of matrices with bounded
norm. Then the convex envelope of the function f(X) = rank(X) is

g(X) = 1
M
‖X‖∗ = 1

M

min{m,n}∑
i=1

σi(X), (3.7)

namely, the nuclear norm ‖X‖∗ of X, up to a constant. In particular, if X is symmetric
and positive semi-definite, the convex envelope of the rank function is g(X) = tr(X), up
to a constant.

Note that the nuclear norm is the tightest convex lower-bound approximation for the rank
function over the set XM thus, the problem

argmin
X∈Rm×n

‖X‖∗

subject to X ∈ K,
(3.8)

yields the tightest global lower-bound on rank(X) over K. In the following we give an
intuitive explanation of what we have said so far. Introducing the indicator function of
the positive real line

I+(x) :=
{

1 if x > 0,
0 if x ≤ 0,

we can rewrite the rank of a matrix X ∈ Rm×n as the sum of its singular values greater
than zero

rank(X) =
min{m,n}∑

i=1
I+(σi(X)) (3.9)

The simplest way to understand why this approximation works is to consider the scalar case
n = m = 1. In this case the only singular value ofX is σ(X) = |X| and rank(X) = I+(|X|),
which are depicted in Figure 3.2.

X

σ(X)

I+(σ(X))
1

−1 1

Figure 3.2: The functions σ(X) and rank(X) in the scalar example.

The Figure suggests that the convex envelope of the rank over the set of matrices with
norm bounded by M may be obtained by replacing each I+(σi(X)) term in (3.9) by
1/M σi(X). This procedure leads precisely to the general result (3.7).
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3.5 Rank minimization problem

3.5.1 Cardinality minimization problem

The cardinality minimization problem is the problem of minimizing the number of non-zero
components of a vector x ∈ Rn and it can be seen as a special instance of rank minimization
problem when the matrix X is diagonal X = diag{x1, . . . , xn} where xi, i = 1, . . . , n are
the components of the vector x. In other words we want to find the sparsest vector in a
convex set K:

argmin
x∈Rn

card(x)

subject to x ∈ K.
(3.10)

In this case, it can be proven that the `1-norm of x, is the convex envelope of card(x)
over the set of the vectors with bounded infinity norm {x ∈ Rn : ‖x‖∞ ≤ 1}. Exploiting
the same reasoning used for the rank minimization problem in the previous Section, we
can conclude that the `1-norm minimization encourages sparsity on the solution, in fact
the `1-norm represents the best convex approximation of the cardinality of a vector over a
suitable set. The intuitive idea behind this result is that the `1-norm is a sharp-cornered
norm. Consider the following least-squares problem

argmin
θ∈Θ

‖y − Φ θ‖2

subject to
p∑
i=1
|θi| ≤ t,

(3.11)

and suppose that p = 2. With reference to Figure 3.3, the `1-norm constraint |θ1|+|θ2| ≤ t
describes the blue diamond, the red ellipses are the level-curves of the objective function
and θ̂ is the solution of the unconstrained least-squares problem.

θ1

θ2

θ̂

•

Figure 3.3: Objective function contours and constraints set for the least-squares problem
considered above with p = 2.

The solution of problem (3.11) is the first point where the elliptical level-curves hit the
constraints region. If the meeting point, i.e. the solution, occurs at a corner then it has
one parameter θi = 0. When p > 2 the diamond becomes a rhomboid and it has more
corners, that is, more sparse the estimated parameter vector will be.
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3 Mathematical preliminaries

3.6 Lagrange duality

Consider the general optimization problem (3.4) with domain D, we do not need to assume
convexity. We define the Lagrangian L : D×Rm×Rp → R associated with Problem (3.4)
as

L(x, λ, ν) = f0(x) +
m∑
i=1

λi fi(x) +
p∑
i=1

νi hi(x)

where λi ≥ 0 is the Lagrange multiplier associated to the i-th inequality constraint fi(x) ≤
0, νi is the Lagrange multiplier associated to the i-th equality constraint hi(x) = 0 and

λ =

λ1
...
λm

 ∈ Rm, ν =

ν1
...
νp

 ∈ Rp,

are the Lagrange multipliers vectors. The Lagrange dual function g : Rm × Rp → R
associated to Problem (3.4) is defined as

g(λ, ν) = inf
x∈D

L(x, λ, ν).

Remark 1. Being a point-wise infimum of a family of affine functions of (λ, ν) it is always
concave even when the Problem (3.4) is not convex.

Clearly, if the Lagrangian is unbounded below in x, g(λ, ν) = −∞. The following Propo-
sition states a simple but fundamental result.

Proposition 3. The dual function g yields a lower bound on the optimal value po of Problem
(3.4). In fact, for any λ ∈ Rm, λ ≥ 0, and any ν ∈ Rp we have

g(λ, ν) ≤ po, (3.12)

where the inequalities have to be understood component-wise.

The proof is very simple and can be found in [4], pp. 216. Of course the dual function
gives a non-trivial lower-bound to po only when the pair (λ, ν) is dual feasible, i.e. λ ≥ 0
and (λ, ν) ∈ dom g so that g(λ, ν) > −∞.

3.6.1 The Lagrange dual problem

As we have just seen in (3.12), the Lagrange dual function gives a lower-bound on the
optimal value po of the optimization problem (3.4). This lower-bound clearly depends on
(λ, ν), λ ≥ 0 so the natural question is: what is the best lower-bound that can be obtained
from the Lagrange dual function varying (λ, ν) ∈ Rm × Rp, λ ≥ 0? The question leads to
the following optimization problem called Lagrange dual problem associated to Problem
(3.4)

max
(λ,ν)∈Rm×Rp

g(λ, ν)

subject to λ ≥ 0
(3.13)

Accordingly, Problem (3.4) is often called primal problem. If λo, νo are optimal for the
dual problem, they are often called optimal Lagrange multipliers.
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3.6 Lagrange duality

Remark 2. The dual problem (3.13) is a convex optimization problem whether or not the
primal problem (3.4) is convex. Indeed, (3.13) is a maximization of a concave function
(see Remark 1) under a convex constraint.

Let do := g(λo, νo) be the optimal value of the Lagrange dual problem, i.e. the best lower-
bound on po that can be obtained from the Lagrange dual function. Since (3.12) holds for
any λ ∈ Rm, λ ≥ 0, and for any ν ∈ Rp, it must be true also for (λo, νo), namely

do ≤ po, (3.14)

and this property is called weak-duality. In particular, if po = −∞ (primal unbounded
below) it must be that do = −∞ (dual infeasible) and conversely, if do = +∞ (dual
unbounded above) it must be po = +∞ (primal infeasible). The difference po − do ≥ 0
is called duality gap of the original problem.The inequality (3.14) can be used to find a
lower bound for the optimal value of the primal problem when this is difficult to solve it.
Indeed, the dual problem is always convex and in many cases it can be solved efficiently.

3.6.2 Strong duality

We say that there is strong duality between the primal problem (3.4) and its dual (3.13)
when the duality gap is zero, i.e. do = po. Suppose that strong duality holds and let

po = f0(xo), do = g(λo, νo).

Then,

f0(xo) = g(λo, νo) = inf
x∈D

{
f0(x) +

m∑
i=1

λoi fi(x) +
p∑
i=1

νoi hi(x)
}

≤ f0(xo) +
m∑
i=1

λoi fi(xo) +
p∑
i=1

νoi hi(xo)

≤ f0(xo),
where the last inequality follows from the fact that λo ≥ 0 and hi(xo) = 0, i = 1, . . . , p.
Therefore, the inequalities are in fact equalities, and in particular we have that

inf
x∈D

{
f0(x) +

m∑
i=1

λoi fi(x) +
p∑
i=1

νoi hi(x)
}

= f0(xo) +
m∑
i=1

λoi fi(xo) +
p∑
i=1

νoi hi(xo).

By definition of the Lagrangian function this means that

inf
x∈D

L(x, λo, νo) = L(xo, λo, νo),

namely, under strong duality, if xo is optimum for the primal problem (3.4), then xo
minimizes L(x, λo, νo) over x ∈ D. Of course, the Lagrangian can have other minimizers,
in general: xo is simply a minimizer.

Remark 3 (Solving the primal via the dual). We have just seen that if strong duality holds
and a dual solution (λo, νo) exists, then any optimal point xo is also a minimizer of
L(x, λo, νo). This fact sometimes allows to compute a primal optimal solution from a
dual optimal solution. More precisely, suppose that we have strong duality and a dual
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optimal (λo, νo) is known. If the minimizer of L(x, λo, νo) is unique and primal feasible,
then it must be the primal optimal. If it is not primal feasible, then no primal optimal
point exists, i.e. we can conclude that the primal optimum is not attained. Of course,
this observation is interesting when the dual problem is easier to solve than the primal
problem.

Slater’s conditions. In the case of convex optimization problems, sufficient conditions for
strong duality can be established. Consider the convex optimization problem

min
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
Ax = b,

where we recall that fi, i = 1, . . . ,m, are convex functions and the domain D of the
problem is convex. Assume that D has a non-empty interior, i.e. intD 6= ∅. If there exists
x ∈ intD such that

fi(x) < 0, i = 1, . . . ,m
Ax = b

(3.15)

and the problem is convex, then strong duality holds between the problem and its dual.
Conditions (3.15) are called Slater’s conditions. If some of the inequality functions are
affine, let’s say the first k functions, f1, . . . , fk, then strong duality holds if the following
(weaker) refined Slater’s conditions hold

fi(x) ≤ 0, i = 1, . . . , k
fi(x) < 0, i = k + 1, . . . ,m
Ax = b.

(3.16)
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4 Foundations

The purpose of this Chapter is to present the main ingredients behind the problem of
the identification of a sparse plus low-rank graphical model for a discrete-time, periodic,
Gaussian reciprocal process addressed in this thesis. First of all, we will briefly review
the historical development of maximum entropy problems by emphasizing some of those
that are particularly relevant. Given their importance in our problem, we will review in
more detail Dempster’s covariance selection method and the classical covariance extension
problem widely studied in literature. We will see that these two problems are strictly
connected each other. Next, we summarize the bases of the theory of graphical models
for Gaussian stochastic processes which are of fundamental importance in the remainder
of this thesis.

4.1 Maximum entropy problems

There is an endless literature concerning maximum entropy problems, see e.g. [14], [16],
[15], [17] and references therein. In the following we recall three important classic maxi-
mum entropy problems by reviewing in more detail Dempster’s covariance selection prob-
lem and the covariance extension problem. As it will be clear in a moment, all the
maximum entropy problems consist in the maximization of an entropic functional (not
necessarely the entropy) under linear constraints. The material presented in this Section
is for the most taken from [17].

First of all we mention the Boltzmann’s loaded dice problem (1877) because this is, for
the best of our knowledge, the first maximum entropy problem in the history but still,
it capture the essence of all the maximum entropy problems. In his paper Boltzmann
refers to molecules, microstates, macrostates and so on but, roughly speaking, the essence
of this problem is gathered in the following question: among a given set of probability
distributions, which is the one that can be realized in more ways? Or, in other words,
which is the most probable one? It turns out that solving this problem is equivalent (un-
der mild assumptions) to find the probability distribution, called Boltzmann distribution,
that maximizes the entropy. We refer the interested reader to [17] and its references for
more details.
Other important maximum entropy problems have been considered in the history (e.g.
Schrödinger’s bridges). Among those problem it is particularly useful to review the Demp-
ster’s covariance selection method and the covariance extension problem because in the
following (see Chapter 6) we will use a generalization of those problems for the case of
block-circulant covariance matrices.
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4.1.1 Dempster’s covariance selection method

Back in 1972, in the seminal paper [16], A. P. Dempster introduced a general method
for completing a partially specified covariance matrix. Formally, the problem can be
formulated as follows. Consider a zero-mean, multivariate Gaussian distribution with
density

p(x) = (2π)−
n
2 det(Σ)−

1
2 exp

{
−1

2 x
>Σ−1x

}
, x ∈ Rn. (4.1)

Suppose that the elements {σij : 1 ≤ i ≤ j ≤ n, (i, j) ∈ Ī} have been specified, where
σij := (Σ)ij and Ī is a set of pairs (i, j) that always contains the main diagonal, i.e.
{(i, j) : i = j, i = 1, . . . , n} ⊆ Ī. At this point, the covariance selection problem boils
down in the following question: how should Σ be completed in a simple way? At first
look, in order to have a model with low-complexity, one can think to set the unspecified
elements of Σ equal to zero. Even if this choice would lead to a positive definite completion
(which is not true in general), it is not the best choice. Indeed, it is apparent from p(x)
that the natural parameters of the model are not the entries of Σ but the elements σij
of the concentration matrix Σ−1. For this reason, Dempster resorts to a form of the
Principle of Parsimony in parametric model fitting: set to zero all the elements σij of Σ−1

for 1 ≤ i ≤ j ≤ n, (i, j) /∈ Ī.

Definition 6. A positive definite completion Σ̂ of Σ is called Dempster’s Completion if

σ̂ij = (Σ̂−1)ij = 0, ∀ (i, j) ∈ Ī.

Of course, this choice seems less natural than setting all the unspecified elements of Σ
equal to zero however, it has considerable advantages compared to the latter, see [16].
The existence of a symmetric, positive definite completion of Σ is not always guaranteed
but, if it does exist, the following fundamental result can be established [16].

Proposition 4. Assume that a symmetric, positive definite completion of Σ exists. Then
there exists a unique Dempster’s completion Σo. This completion maximizes the (differ-
ential) entropy

H(p) =
∫
Rn

p(x) log p(x) dx = 1
2 log(det Σ) + 1

2n(1 + log(2π)) (4.2)

among all zero-mean, Gaussian distributions whose covariances have the prescribed ele-
ments {σij : 1 ≤ i ≤ j ≤ n, (i, j) ∈ Ī}.

This Theorem basically says that the Dempster’s completion solves a maximum entropy
problem, namely, the maximization of an entropic functional (in this case precisely the
entropy) under linear constraints. In order to see this, let ek, k = 1, . . . , n, be the k-th
vector of the canonical basis of Rn. Then, the covariance completion problem formalizes
in the following optimization problem

argmax
Σ∈S+

n

log(det Σ)

subject to e>i Σ ej = σij , ∀ (i, j) ∈ Ī,

(4.3)
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where S+
n is the set of positive definite n × n matrices. We will show how to solve this

problem by resorting to Lagrange duality theory. The Lagrangian function for this problem
is

L(Σ,Λ) = J(Σ)−
∑

(i,j)∈Ī

λij σij ,

where Λ is the vector containing the Lagrange multipliers λij for all (i, j) ∈ Ī, and

J(Σ) := log(det Σ) +
∑

(i,j)∈Ī

λij e
>
i Σ ej

= log(det Σ) +
∑

(i,j)∈Ī

λij tr(eje>i Σ).

Notice that, minimizing L over S+
n , is equivalent to minimize J(Σ) over S+

n which is a
strictly concave function of Σ. Let J′(Σo, δΣ) be the first variation of J in direction
δΣ ∈ Sn computed in Σo. Accordingly, necessary and sufficient condition for Σo to be the
minimum of L over S+

n is that

J′(Σo, δΣ) = tr(Σ−1
o δΣ) +

∑
(i,j)∈Ī

λij tr(eje>i δΣ) = 0, ∀ δΣ ∈ Sn.

This condition is satisfied if and only if

Σ−1
o =

∑
(i,j)∈Ī

λij eje
>
i ,

namely, if and only if Σo is a Dempster’s completion of Σ. Finally, it is worth noting that,
besides symmetry and positive definiteness, we are not requiring further properties for the
matrix completion we are looking for.

4.1.2 The covariance extension problem

Depending on the nature of the process we are studying, a number of interesting alternative
formulations of the Dempster’s covariance selection problem have been considered. In this
class of problems we want to find a covariance matrix Σ that, besides being symmetric and
positive definite, enjoys further properties such as having a (block) Toeplitz structure, if the
covariance matrix originates from a stationary time series, or having a (block) Toeplitz and
circulant structure if we are considering a stationary process (vector) on the discrete circle.
Concerning the first case, here we consider the so-called covariance extension problem, or
Burg’s maximum entropy covariance extension problem, introduced by J. Burg in 1967
while it was working on spectral estimation from geophysical data [14]. More precisely,
in the following we consider the multivariate covariance extension problem which readily
follows from the scalar version introduced by Burg.

Let y := {y(t), t ∈ Z} be a Rm-valued, zero-mean, Gaussian, stationary purely non-
deterministic process of full-rank. Under these assumption the process admits power
spectral density

Φy :=
+∞∑

k=−∞
Σk e

jθk,
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where θ ∈ (0, 2π) and

Σk = E[y(t+ k) y(t)>], Σ−k = Σ>k ,

are the covariance lags of the process y, for any k ∈ Z. Note that Φy is a positive definite
function, Fourier transform of the sequence {Σk}, k ∈ Z. At this point we can formulate
the following matrix completion problem.

Problem 1 (Covariance extension problem). Given n+1 initial data matrices C0, C1, . . . , Cn,
complete it with a sequence Σn+1, Σn+2, . . . in such a way that the Fourier transform of
the extended (infinite) sequence is a power spectral density.

Remark 4. The initial matrices C0, C1, . . . , Cn are not known in practice. On the other
hand, given a finite-length realization y(1), . . . , y(N), y(t) ∈ Rm, of the process y, an
estimate of the k-th lag Ck with k = 0, . . . , n is given by

Ck = 1
N

N∑
t=k

y(t) y(t− k)>, k = 0, 1, . . . , n. (4.4)

It is well known that n should be such that n � N in order to have sufficiently reliable
estimates.

In other words we want to find the stationary process having spectral density that matches
the first n covariance lags. Burg suggested the following approach based on the maximiza-
tion of entropy: choose Σn+1, Σn+2, . . . maximizing the entropy rate of the process. The
solution corresponds to an autoregressive (AR) process of the form

ŷ(t) =
n−1∑
k=0

Aok ŷ(t− k) + w(t),

where w is a zero-mean, Gaussian noise with covariance matrix Σw. The parameters
Ao0, . . . , A

o
n−1 and Σw are such that the first n covariance lags are matched. Accordingly,

the solution of the problem consists in a constrained maximization of an entropic func-
tional, the entropy rate of the process, under linear constraints, i.e. the first n covariance
lags have to match the estimated ones. We refer to [14] for the complete discussion of this
problem. The solution proposed by Burg perfectly reconciles with Dempster’s covariance
selection method once observed that, searching the infinite sequence that gives a certain
power spectrum is equivalent to search a completion that leads to an infinite block-Toeplitz
covariance matrix whose first block-row is completely specified by this infinite sequence.
In this setting, Proposition 4 reads as follows.

Proposition 5. Assume feasibility of the covariance extension problem. Among all covari-
ance extensions of the data C0, . . . , Cn, there exists a unique extension whose inverse-
matrix block-entries are zero in all the positions complementary to those where the ele-
ments of the covariance are assigned. This extension corresponds to the Gaussian distri-
bution with maximum entropy.

In Chapter 6 we will consider in detail a re-parametrization of the same problem for the
stationary reciprocal processes on the discrete circle, introduced in Chapter 5, in that case
Σ has a block-circulant Toeplitz structure.
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4.2 Elements of theory of graphical models

Graphical (interaction) models have their origins in several scientific areas such as statis-
tical physics and genetics. Their popularity is increased a lot in the recent years because
of their capability of giving a pictorial explanation of the underlying relations between
the interesting quantities in a certain application. During the recent years customized
graphical models have been developed for different applications, in particular, in this the-
sis we will deal with latent-variable graphical models for Gaussian stochastic processes
which have been studied, for instance, in [7], [9] and in [10] for fMRI (functional Magnetic
Resonance Imaging) applications. In the following we consider only random variables or
random vectors that admit probability density. This Section basically follows the book [3]
to which we refer the interested reader.

4.2.1 Basic notions of graph theory

Here we give some basic notions on graph theory in order to fix the notation and termi-
nology which will be used in the next subsection.

Consider a graph G = (V, E) where V , with cardinality |V | = n, is the vertex set and
E ⊆ V × V is the set of edges. First of all, given A ⊆ V , it is useful to introduce the
following subsets of V

- the boundary of A, denoted as bd(A), is the set of vertices in V \A that are neighbours
to vertices in A;

- the closure of A is defined as cl(A) := A ∪ bd(A).

In order to simplify the notation, if A = {α}, we will write cl(α) in place of cl({α}) and
bd(α) in place of bd({α}).

Definition 7. A path of length n from a vertex α to a vertex β is a sequence α =
α0, α1, . . . , αn = β of distinct vertices such that (αi−1, αi) ∈ E for all i = 1, . . . , n.
If there is a path from α to β we say that α leads to β and we write α 7→ β.

If both α 7→ β and β 7→ α thus we say that α and β are connected and we write α 
 β.
Clearly
 is an equivalence relation and the corresponding equivalence classes [α], where

β ∈ [α] ⇐⇒ α
 β,

are the connected components of G. If α ∈ A ⊆ V , the symbol [α]A denotes the connected
components of α in GA := (A, EA) where the edges set EA := E ∩ (A × A) is obtained
from G by keeping only the edges with both endpoints in A.

Definition 8. A subset C ⊆ V is said to be an (α, β)-separator if all paths from α to β
intersect C. Hence, in an undirected graph, C is an (α, β)-separator if and only if

[α]V \C 6= [β]V \C .

We say that the subset C separates A from B if it is an (α, β)-separator for every α ∈ A
and every β ∈ B.
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Roughly speaking, C separates A from B if the removal of C from the graph, separates
A and B into two distinct connected components GA and GB. The following example
illustrates the concepts we have just introduced.

Example 1. Consider the graph G = (V, E) with n = |V | = 7 vertices, depicted in Figure
4.1.

a

b

c

d e

f

g

Figure 4.1: Example of a graph with 7 vertices.

If we pick for instance D = {d} we have that bd(D) = bd(d) = {c, e, f, g} and cl(D) =
cl(d) = {d}∪ bd(d). Moreover, notice that a 7→ c because a, b, c is a path from a to c and
also that f 7→ b through the path f, d, g, b. The same reasoning can be applied to see
that also c 7→ a and b 7→ f . Finally, we can say that C = {d, g} separates A = {a, b, c}
and B = {f, e} into the two distinct connected components GA and GB depicted in Figure
4.2.

a

b

c

e

f

Figure 4.2: The two connected components of the graph depicted in Figure 4.1 for the
above choice of A and B.

In this example we have considered some directed edges only for explaining all the defi-
nitions given above. It is worth to pointing out that in the remaining of this thesis only
undirected graphs will be considered.

4.2.2 Conditional independence and Markov properties

In this subsection we introduce the crucial concept of conditional independence between
two random variables and we state the Markov properties of a graphical model associated
to a family of random variables. These concepts are of fundamental importance in this
thesis because, roughly speaking, they are precisely the tools that tell us how to construct
a graphical model for a certain random vector. We start with a definition.

Definition 9. Let P be a probability measure and let x, y, z be three random variables
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4.2 Elements of theory of graphical models

with joint probability density pxyz(x, y, z). We say that x is conditionally independent of
y given z, and we write x ⊥⊥ y | z, when

pxy|z(x, y | z) = px|z(x | z) py|z(y | z),

almost surely with respect to the probability measure P.

Markov properties. Let G = (V, E) be an undirected graph. Consider a collection of
random variables {xα}α∈V taking values in the probability spaces {Xα}α∈V . If A ⊆ V we
let

XA := ×α∈AXα

be the cartesian product of the probability spaces {Xα}α∈A and further, we define X :=
XV . Accordingly, the collection of random variables xA := {xα}α∈A is defined on the
probability space XA. Adopting the short-hand notation

A ⊥⊥ B | C for xA ⊥⊥ xB | xC ,

a probability measure P on X is said to obey

(P) the pairwise Markov property, relative to G, if for any pair (α, β) of non-adjacent
vertices

α ⊥⊥ β | V \ {α, β};

(L) the local Markov property, relative to G, if for any vertex α ∈ V

α ⊥⊥ {V \ cl(α)} | bd(α);

namely, every random variable is conditional independent from the remaining, given
its neighbors;

(G) the global Markov property, relative to G, if for any triple (A, B, S) of disjoint subsets
of V such that S separates A from B in G,

A ⊥⊥ B | S.

Example 2. In order to illustrate the three properties justly stated, consider the undirected
graph G = (V, E) depicted in Figure 4.3.

a

b

c

d e

f

g

Figure 4.3

The pairwise Markov property simply says that any non-adjacent pair of random variables
are conditionally independent given the remaining. For example, we have

a ⊥⊥ d | {b, c, e, f, g} or g ⊥⊥ f | {a, b, c, d, e}.
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The local Markov property means instead that every random variable is conditional inde-
pendent from the remaining, given its neighbors. For instance,

d ⊥⊥ {a, g} | {b, c, e, f} or e ⊥⊥ {a, b, c} | {d, f, g}.

The global Markov property requires to look to separating sets in the graph, such as
{b, c}, {d, f, g} or {b, d, f}. Examples can be

a ⊥⊥ e | {b, d, f} or b ⊥⊥ f | {c, d, g}.

Notice that the Global Markov property (G) is very important because it gives a general
criterion for deciding when two groups of variables areA andB are conditional independent
given a third group of variables S. It can be proven that, see [3] Proposition 3.4. on pp.
33, for any undirected graph G and any probability distribution on X,

(G) =⇒ (L) =⇒ (P),

but much more is true: it can be shown that if P admits a positive and continuous density
with respect to a product measure µ, the Markov properties are all equivalent namely,

(G) ⇐⇒ (L) ⇐⇒ (P),

see [3], on pp. 34.

4.2.3 Gaussian graphical models

The graphical interaction models for the multivariate Gaussian distribution are called
Gaussian graphical models or covariance selection models. It will be clear very soon that
this models are strongly connected with the Dempster’s covariance selection method pre-
sented in the previous Section.

Let G = (V, E) be an undirected graph with, |V | = n, E ⊆ V ×V . Consider a zero-mean,
Gaussian random vector x ∼ N(0,Σ) taking values in Rn, where Σ = Σ> > 0 so that
the concentration matrix K := Σ−1 is well defined. Conditional independence for the
multivariate Gaussian distribution is simply reflected in the concentration matrix of the
distribution through zero entries. This fact is formalized in the following Proposition.

Proposition 6. Let x ∼ N(0,Σ) and G = (V, E) as above. Then, for any α, β ∈ V with
α 6= β it holds that

xα ⊥⊥ xβ | {xγ}γ 6=α,β ⇐⇒ kαβ = 0,

where kij := (K)ij is the element in position (i, j) in the concentration matrix of x, for
any i, j ∈ V .

Proof. Consider the 2× 2 matrix

K{α,β} =
[
kαα kαβ
kαβ kββ

]
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extracted from K. Comparing equations (3.1) and (3.2) it is apparent that K{α,β} is the
concentration matrix of the vector x{α,β} given the random vector xV \{α,β} composed by
the remaining random variables in x. The covariance matrix of this conditional distribution
is therefore equal to

Σα,β|V \{α,β} = K−1
{α,β} = 1

detK{α,β}

[
kββ −kαβ
−kαβ kαα

]

from which follows that xα ⊥⊥ xβ | {xγ}γ 6=α,β if and only if kαβ = 0.

Thus, the Gaussian graphical model for a random vector x with graph G is given by
assuming that x follows a multivariate Gaussian distribution which obeys the undirected
pairwise Markov property (P) with respect to G. If we denote as S+(G) the set of positive
definite, symmetric matrices A satisfying

(i, j) /∈ E =⇒ (A)ij = 0,

then, in the light of Proposition 6, the Gaussian graphical model for x can be compactly
described as

x ∼ N(0,Σ), Σ−1 ∈ S+(G).

In this case x is a collection of Gaussian random variables {xi, i = 1, . . . , n} defined on the
same probability space (Ω,A,P), that admits a positive and continuous joint probability
density

p(x) = (2π)−
n
2 det(Σ)−

1
2 exp

{
−1

2 x
>Σ−1x

}
, x ∈ Rn.

Accordingly, the Markov properties for the graph G associated to x are all equivalent
and thus the pairwise Markov property coincides with the local and the global Markov
property.
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5 Periodic reciprocal processes

In the first Section of this Chapter we present conditions under which a wide-sense sta-
tionary process defined on a finite interval [1, N ] ⊆ Z can be extended by periodicity over
the whole integer line Z. The second Section is devoted to the introduction of a class
of random processes on a finite-interval which are a natural generalization of reciprocal
processes: a characterization of such processes in terms of the sparsity pattern of their con-
centration matrix is also provided. Finally, we show how their dynamics can be described
by a generalization of the classical autoregressive (AR) model. The material presented
in this Chapter is mainly taken from [12] and [11]. In particular we refer to [12] for the
omitted proofs of the results presented in this Chapter.

5.1 Stationary processes on a finite interval

A m-dimensional stochastic process on a finite interval [1, N ], is just an ordered collection
of (zero-mean) m-dimensional random vectors y := {y(k), k = 1, 2, . . . , N} which will
be written as a column vector with N , m-dimensional components. We say that y is
stationary if the covariances E[y(k)y(j)>] depend only on the difference of the arguments,
namely

E[y(k)y(j)>] = Σk−j , k, j = 1, . . . , N. (5.1)
In that case the covariance matrix of y has a symmetric block-Toeplitz structure

Σy := E[yy>] =


Σ0 Σ>1 . . . Σ>N−1
Σ1 Σ0 Σ>1 . . .
... . . . . . . . . .

ΣN−1 . . . Σ1 Σ0

 . (5.2)

Processes y which have a positive definite covariance matrix Σy are called full-rank pro-
cesses. In the following we assume to deal with full-rank processes. Consider now a
stationary process ỹ on the integer line Z, which is periodic of period T , i.e.

ỹ(k + nT ) = ỹ(k) almost surely, ∀n ∈ Z.

We can think of ỹ as a process indexed on the discrete circle group ZT := {1, 2, . . . , T}
with arithmetic modT . Clearly, its covariance function Σ̃y must also be periodic of period
T , namely Σ̃k+T = Σ̃k for all k ∈ Z. Hence, we may also see the covariance sequence as a
function on the discrete group Z̃T := {0, . . . , T −1} with arithmetic modT . The following
Proposition states a more stronger result.

Proposition 7. A (second-order) stochastic process y on [1, T ] is the restriction to the
interval [1, T ] of a wide-sense stationary periodic process ỹ of period T defined on Z, if
and only if its covariance matrix Σy is symmetric block-circulant.
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5 Periodic reciprocal processes

Remark 5. The periodic extension to the whole line Z of deterministic signals originally
given on a finite interval [1, T ] is a common device in (deterministic) signal processing.
This simple periodic extension does, however, not preserve the structure of a stationary
random process since the covariance of a periodically extended process will not be, in
general, symmetric block-circulant, as stated by the previous Proposition. It is easy to
see that the fact that Σy is symmetric block circulant is equivalent to the fact that the
sequence of covariance lags Σ̃k, k = 0, . . . , T − 1, of the extended process ỹ is symmetric
with respect to the midpoint of the interval [1, T ].

In many applications to signal and image processing, the signals under study naturally
live on a finite interval of time (or space) variable and modeling them as functions defined
on the whole line appears just as an artifice introduced in order to use the standard tools
of (causal) time-invariant systems and harmonic analysis on the line. It may indeed be
more logical to describe these data as stationary processes y defined on a finite-interval
[1, T ]. The covariance function, say Σy, of such a process will be a symmetric positive
definite block-Toeplitz matrix which has in general no block-circulant structure. It is
however always possible to extend the covariance function of y to a larger interval so as
to make it center-symmetric. This can be achieved by simply letting ΣT+τ = Σ>T−1−τ for
τ = 0, . . . , T − 1. In this way Σy is extended to a symmetric block-circulant matrix Σ̃y
of dimension (2T − 1)× (2T − 1). This operation does not necessarily preserve positivity.
Positivity of a symmetric, block-circulant extension, however, can always be guaranteed
provided the extension is done on a suitably large interval.
The original process y can then be seen as the restriction to the interval [1, T ] of an
extended process, say ỹ, with symmetric block-circulant covariance matrix Σ̃y, which
lives on an interval [1, N ] of length N ≥ 2T − 1. Since the extended covariance is, in
any case, completely determined by the entries of the original covariance matrix Σy, any
statistical estimate thereof can be computed from the variables of the original process y in
the interval [1, T ] (or from their sample values). Hence, there is no need to know what the
random vectors {ỹ(k); k = T + 1, . . . , N} look like. Indeed, as soon as we are given the
covariance of the process y defined on [1, T ], even if we may not ever see (sample values
of) the "external" random vectors {ỹ(k); k = T + 1, . . . , N}, we would in any case have a
completely determined second-order description (covariance function) of ỹ. In this sense,
one can think of any stationary process y given on a finite interval [1, T ] as the restriction
to [1, T ] of a wide-sense stationary periodic process, ỹ, of period N ≥ 2T − 1, defined on
the whole integer line Z. This process naturally live on the discrete circle ZN . Hence,
dealing in our future study with the periodic extension ỹ, instead of the original process
y, will entail no loss of generality.

5.2 AR-type reciprocal processes

In this Section we describe a class of random processes on a finite-interval which are natural
generalization of the reciprocal processes. In a sense, they are an acausal "symmetric"
generalization of autoregressive (AR) processes on the integer line.

Let y be a zero-mean m-dimensional stationary process on [1, N ] and let Σy denotes its
mN × mN symmetric, block-circulant covariance matrix, so that y may be seen as a
process on the discrete circle ZN . As we said above, we may imagine that the matrix Σy
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was obtained by extending a positive block-Toeplitz matrix as (5.2) to make it symmetric
block-circulant. Then [1, N ] will have to be identified with an enlarged interval on which
y is the periodic extension of some underlying stationary process defined in a smaller
interval.
Let n be a natural number such that N > 2n ≥ 0 (it will always be assumed in the
following). We introduce the notation

y[t−n,t) :=

y(t− n)
...

y(t− 1)

 , y(t,t+n] :=

y(t+ 1)
...

y(y + n)

 ,
where sums t − k and t + k are to be understood modulo N . Consider a subinterval
(t1, t2) ⊂ [1, N ] where (t1, t2) := {t : t1 < t < t2} and (t1, t2)c denotes the complementary
set in [1, N ].

Definition 10. A reciprocal process of order n on [1, N ] is characterized by the property
that the random variables of the process in the interval (t1, t2) are conditionally orthogonal
to the random variables in the exterior, (t1, t2)c, given the 2n boundary values y(t1−n,t1]
and y[t2,t2+n).

Equivalently, it must hold that

Ê
[
y(t1,t2) | y(s), s ∈ (t1, t2)c

]
= Ê

[
y(t1,t2) | y(t1−n,t1] ∨ y[t2,t2+n)

]
for t1, t2 ∈ [1, N ]. To see this, simply apply Proposition 2, with X = [1, t1−n]∪ [t2 +n,N ],
Y = (t1, t2), Z = (t1− n, t1]∨ [t2, t2 + n) so that X∨Z = (t1, t2)c. In particular, we should
have

Ê [y(t) | y(s), s 6= t] = Ê
[
y(t) | y[t−n,t) ∨ y(t,t+n]

]
for t ∈ [1, N ], where the estimation error

d(t) := y(t)− Ê
[
y(t) | y[t−n,t) ∨ y(t,t+n]

]
, t ∈ [1, N ], (5.3)

must clearly be orthogonal to all random variables {y(s), s 6= t}, that is

E[y(t)d(s)>] = ∆ δts, t, s ∈ [1, N ], (5.4)

where δ is the Kronecker delta and ∆ is a square matrix (its meaning will be clear in a
moment). Since d(t+ k) is a linear combination of the components of the random vector
y[t+k−n,t+k+n], it follows from (5.4) that both d(t+ k) and d(t− k) are orthogonal to d(t)
as soon as k > n. Hence, the process {d(t)} has correlation bandwidth n, i.e.

E[d(t+ k)d(t)>] = 0 for n < |k| < N − n, k ∈ [0, N − 1]. (5.5)

It follows from (5.3) that a reciprocal process of order n on [1, N ], can always be described
by a linear double-sided recursion of the form

n∑
k=−n

Ak y(t− k) = d(t), t ∈ [1, N ], (5.6)

where Ak are m×m matrices, in general dependent on t, with A0 = Im, and d is a process
of correlation bandwidth n called conjugate process of y, orthogonal to y in the sense of
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(5.4). From (5.4) it follows that E[d(t)d(t)>] = ∆, and hence, ∆ is the covariance matrix
of d(t), symmetric and positive semi-definite. It can be proven that if y is stationary,
the matrices {Ak} in the representation (5.6) do not depend on t, moreover, if y is full-
rank, they are uniquely determined by the covariance lags of the process up to order 2n.
Equation (5.6) requires the specification of the boundary values, specified by the following
Theorem.

Theorem 3. A stationary reciprocal process y of order n on ZN satisfies a linear, constant-
coefficients difference equation of the type (5.6), associated to the 2n cyclic boundary
conditions

y(k) = y(N + k), k = −n+ 1, . . . , n. (5.7)

The model can be rewritten in matrix form as

A y = d (5.8)

where A is the N -block banded circulant matrix of bandwidth n

A := circ{I, A1, . . . , An, 0, . . . , 0, A−n, . . . , A−1}

and y and d are understood as

y :=

 y(1)
...

y(N)

 , d :=

 d(1)
...

d(N)

 .
If the process is full rank this description is unique.

Proposition 8. A stationary reciprocal process y is full rank if and only if the covariance
matrix ∆ of the conjugate process d is positive definite.

Proof. Suppose ∆ > 0. Multiplying both members of (5.8) from the right by y> and
taking the expectations, in virtue of the orthogonality relation (5.4), we get

A Σy = AE[yy>] = E[dy>] = diag{∆, . . . ,∆}. (5.9)

Thus, ∆ > 0 implies that the square matrices A and Σy are invertible which, combined
with the positive semidefinitness of Σy, implies Σy > 0. Conversely, suppose now that ∆
in only positive semi-definite. This implies that there exists a ∈ Rm, a 6= 0, such that

E[a>d(t)d(t)>a] = 0

almost surely, that is such that a>d(t) = 0 almost surely. This means that the scalar com-
ponents of d(t) are linearly dependent, which, by (5.6), implies that y(t−n), . . . , y(t), . . . ,
y(t + n) are linearly dependent. Thus, Σy must be singular, which contradicts the as-
sumption Σy > 0.

By (5.9) we can express the inverse of Σy as

My := Σ−1
y = diag{∆−1, . . . ,∆−1}A
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so that My is symmetric block-circulant and positive definite, being the inverse of a matrix
with the same properties. Furthermore, Mk := ∆−1Ak, k = −n, . . . , n and M0 = ∆−1,
must form a center-symmetric sequence of bandwidth n, i.e.

M−k = M>k , k = 1, . . . , n.

If we normalize the conjugate process by setting

e(t) := ∆−1d(t)

so that Var{e(t)} = ∆−1, model (5.6) can be rewritten as

n∑
k=−n

Mk y(t− k) = e(t), t ∈ ZN ,

for which the orthogonality relation (5.4) is replaced by

E[ye>] = ImN . (5.10)

By the normalization of (5.8), our reciprocal process y satisfies the linear equation

My y = e (5.11)

which implicitly includes the cyclic boundary conditions (5.7). Multiplying this equality
from the right by e> and taking expectations on both members we get My E[ye>] = E[ee>]
which, in force of (5.10), yields

Var{e} = My,

thus My is actually the covariance matrix of the normalized conjugate process e. So we
see that the inverse of the covariance matrix of a full-rank stationary reciprocal process
of order n, must be a banded block-circulant matrix of bandwidth n. The following result
states that this is in fact a fundamental characterization of a stationary reciprocal process
of order n namely, also the inverse statement holds: to an autoregressive model of the form
(5.6) associated to the proper cyclic boundary conditions, determines uniquely a process
y which is stationary and reciprocal of order n.

Theorem 4. A non-singular mN ×mN -dimensional matrix Σy is the covariance matrix
of a reciprocal process of order n on the discrete group ZN if and only if its inverse is a
positive definite symmetric block-circulant matrix which is banded of bandwidth n.

Note that the second-order statistics of both y and e are encapsulated in the covariance
matrix My. In other words, the whole autoregressive model of y is defined in terms of
the matrix My. Accordingly, the problem of identify a model for the periodic reciprocal
process y can be formulate as follows.

Problem 2. Given the observations of the reciprocal process y of (known) order n, estimate
the parameters (M0, M1, . . . , Mn) of the banded inverse of the covariance matrix Σy.

This Problem will be address in Section 6.2 in order to introduce the classical block-
circulant band extension problem.
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6 Sparse plus low-rank identification

In this Chapter we introduce latent-variable graphical models for zero-mean, Gaussian,
periodic reciprocal processes of order n, and we derive a procedure for the identification
of such models. This procedure involves an optimization problem which is a regularized
version of the maximum entropy dual problem that solves the block-circulant band ex-
tension problem and it is used to estimate a sparse plus low-rank decomposition of the
concentration matrix of the process. The latter is basically a generalization of the Demp-
ster’s covariance extension problem presented in Section 4.1.1 and exploits the particular
structure of the problem: according to Theorem 4 in Chapter 5, the concentration matrix
of the process is a symmetric, banded block-circulant matrix of bandwidth n. It is worth
noting that the derivation of the model as well as the identification paradigm follow the
one presented in [7].

6.1 Problem set-up

In this Section we lay the foundations for the identification procedure that will be devel-
oped in the sequel. In particular, we will introduce the assumptions needed in order to
develop a sparse plus low-rank graphical model for the process we are considering and
we will give some preliminary results that we will use in the solution of the optimization
problem.

Let y := {y(k), k = 1, . . . , N} be a real-valued, Gaussian, zero-mean, m-dimensional sta-
tionary reciprocal process of order n, defined on a finite interval [1, N ], with N > 2n. It is
worth noting that y is extended to the whole integer line Z as a periodic stationary process
with period N , i.e. such that y(t + kN) = y(t) almost surely, where k ∈ N. Moreover,
y may be seen as a process defined on the discrete circle group ZN := {1, 2, . . . , N} with
arithmetic mod N . In what follows, for simplicity we assume that N is an even number.

Remark 6. The corresponding results for N odd are very similar and their derivations
follow the same line of what we will do for N even, having in mind the small differences
in the notation highlighted in Chapter 2.

If we consider only the interval [1, N ] we can write the process as column vector with N ,
m-dimensional components:

y :=

 y(1)
...

y(N)

 ∈ RmN , where y(k) =

y1(k)
...

ym(k)

 ∈ Rm.

It is also useful to define the j-th component of the process y as the RN -valued vector
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yj := [yj(1) . . . yj(N)]>, obtained by stacking all the j-th components of the process for
each time k = 1, . . . , N . Let Σy > 0 denotes the mN ×mN covariance matrix of y. By
assumption, the process y is a reciprocal process of order n on the discrete group ZN
hence, by Theorem 4, My = Σ−1

y must belong to B namely,

My =



M0 M>1 · · · M>n 0 · · · 0 Mn · · · M1

M1 M0 · · · · · · M>n 0 · · · 0 . . . ...
... . . . . . . . . . . . . Mn

Mn
. . . . . . 0 0

0 . . . M0 M>n
. . . ...

... . . . . . . . . . . . . 0

0 0 Mn
. . . M>n

M>n
. . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . M>1
M>1 · · · M>n 0 · · · 0 Mn · · · M1 M0



. (6.1)

Now we start with the construction of the latent-variable graphical model. Suppose that
we can only observe the manifest (i.e. accessible to observations) process y and consider
a relatively small number l of latent (i.e. hidden, not accessible to observations) variables
x := [x1, . . . ,xl]>, which cannot be observed, such that z := [y> x>]> is a Gaussian
random vector.

Remark 7. These latent variables can be seen either as variables that are actually present
in the system we are observing but we cannot measure them or as fictitious variables
introduced in order to explain as best as possible the interactions between the components
of y using the smallest possible number of variables. Both point of views make sense.
In any case, notice that the latent variables xi, i = 1, . . . , l, are just random variables,
therefore they do not introduce any dynamics.

According with the previous assumptions, the covariance matrix of vector z can be parti-
tioned as follows

Σz := E[zz>] =

Σy Σyx

Σ>yx Σx

 ∈ R(mN+l)×(mN+l).

By partitioning the corresponding inverse as

Σ−1
z =

 S A

A> R


and applying the Schur complement (see Section 3.1), we obtain the relation

Σy = (S− L)−1 , (6.2)

where S is the concentration matrix of the process y conditioned on x, and L is defined
as L := A R−1 A>. We assume that S ∈ C is a positive definite matrix while L ∈ C is a
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6.1 Problem set-up

positive semi-definite matrix, that is

S =



S0 S>1 · · · S>N
2
· · · S1

S1 S0 · · · · · · . . . ...
... S1 · · · · · · · · · S>N

2

SN
2
· · · . . . S0 · · ·

...
... . . . . . . S>1
S>1 · · · SN

2
· · · S1 S0


, L =



L0 L>1 · · · L>N
2
· · · L1

L1 L0 · · · · · · . . . ...
... L1 · · · · · · · · · L>N

2

LN
2
· · · . . . L0 · · ·

...
... . . . . . . L>1
L>1 · · · LN

2
· · · L1 L0


,

so that My ∈ B. Notice that we did not assume any banded structure for S and L, we
will see that we will get Σy banded of bandwidth n anyway. In Chapter 7 we consider a
particular instance of this setting, i.e. we choose both S and L to be banded matrices of
bandwidth n in order to ensure that My ∈ B. Of course, this is only one choice. In fact, it
is an admissible choice because there are examples in which the optimization problem we
are going to set-up for the estimation of S and L admits a solution under this setting.

6.1.1 Latent-variable graphical models

As explained in Chapter 4 (see Section 4.2.3) it is possible to associate a graph to the
Gaussian random vector z whose edges are determined by the conditional dependence
relations among the components of z. We assume that l is sufficiently small (in particular
l� mN) and that conditional dependence relations among the observed variables yi, i =
1, . . . ,m, are mostly through this limited number of latent variables, for any time. Since
S contains the conditional dependence relations among the observed variables given the
latent variables (see Section 4.2.3), the latter assumption implies that S will be a sparse
matrix. The fact that we assume that l is small implies instead that L will be a low-rank
matrix whose rank coincides with the number of latent variables l. It is now clear why,
under the present assumptions, we will refer to equation (6.2) as sparse plus low-rank
decomposition of the inverse covariance matrix (concentration matrix) of the process y.
Moreover, we assume that the blocks S0, S1, . . . , S

>
1 of matrix S have common support

Ω ⊆ {(i, j) : i, j = 1, . . . , m} namely,

(Sk)ij = (Sk)ji = 0, k = 0, . . . , N/2, ∀ (i, j) ∈ Ωc. (6.3)

It is worth noting that the common support Ω always contains the pairs (i, i), i = 1, . . . ,m,
as in the Dempster’s problem. This of course make sense because conditional independence
is not defined between one variable and itself and thus Ωc in (6.3) cannot contain the pairs
(i, j) with i = j.

Remark 8. In order to clarify the whole picture, it may be useful for the reader to have
a rough but clear graphical interpretation of the assumptions we have stated so far. In
the light of what we have seen in Section 4.2, our assumptions already hint how the graph
associated to the graphical model of the vector z will look like. First of all, since S is
sparse, we will have very few edges between the nodes representing the components of y,
i.e. y1, . . . , ym. Moreover, the fact that we have assumed that the Sks have common
support means that we do not have an edge between the nodes yi and yj , i 6= j, if and
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6 Sparse plus low-rank identification

only if the components yi(k) and yj(k) are conditional independent, given the remaining
components of z, at any time k. To be very clear, since the process is periodic of period
N , it suffices to restrict our attention for k = 0, 1, . . . , N/2 and if for some k we have
that yi(k) and yj(k) become conditional dependent, then we will have an edge between
yi and yj . Finally, the nodes representing the latent components in the graph will be very
few with respect to the nodes concerning the observed variables because we have assumed
that the number of latent variables l must be small with respect to the number of the
observed variables.

According to the characterization of the conditional independence of the components of
z in terms of concentration matrix of the conditioned process y|x given by Proposition 6,
(6.3) is equivalent to

E
[
yi(t1)yj(t2) | yh(s), h 6= i, j, s = 1, . . . , N, yi(s1), s1 6= t1, yj(s2), s2 6= t2, x

]
= 0,

(6.4)
for any t1, t2 ∈ [1, N ] and for any pair (i, j) ∈ Ωc. This condition is equivalent to

E
[
yi(t1)yj(t2) | yh(s), h 6= i, j, s = 1, . . . , N, x

]
= 0, ∀ t1, t2 ∈ [1, N ], ∀ (i, j) ∈ Ωc,

(6.5)
which reflects the fact that the random variables {yi(s1),yj(s2), s1 6= t1, s2 6= t2} do
not play any role in conditioning yi(t1) · yj(t2) for any t1, t2 ∈ [1, N ] and for any pair
(i, j) ∈ Ωc. To see this, define the set

A(i, j, t1, t2) :=
{
yh(s), h 6= i, j, s = 1, . . . , N, yi(s1), s1 6= t1, yj(s2), s2 6= t2, x

}
and notice that

A(i, j, t1, t2) = Ã(i, j, t1, t2) ∪ Ā(i, j)
where

Ã(i, j, t1, t2) :=
{
yi(s1), s1 6= t1, yj(s2), s2 6= t2, x

}
,

Ā(i, j) := {yh(s), h 6= i, j, s = 1, . . . , N, x} .
According with these definitions equation (6.4) can be rewritten as

E
[
yi(t1)yj(t2) | A(i, j, t1, t2)

]
= E

[
yi(t1)yj(t2) | Ã(i, j, t1, t2), Ā(i, j)

]
= 0, (6.6)

for any t1, t2 ∈ [1, N ] and for all (i, j) ∈ Ωc. Observe now that the quantities at the
left-hand side of (6.5) are contained in the matrix

V := E
[[

yi
yj

]
[y>i y>j ]>

∣∣∣∣ yh, h 6= i, j, x
]

= E
[[

yi
yj

]
[y>i y>j ]>

∣∣∣∣ Ā(i, j)
]

which is the 2× 2 block matrix

V =



∗ · · · ∗ E[yi(1)yj(1) | Ā(i, j)] · · · E[yi(1)yj(N) | Ā(i, j)]
...

. . .
...

...
. . .

...

∗ . . . ∗ E[yi(N)yj(1) | Ā(i, j)] · · · E[yi(N)yj(N) | Ā(i, j)]

E[yj(1)yi(1) | Ā(i, j)] · · · E[yj(1)yi(N) | Ā(i, j)] ∗ · · · ∗
...

. . .
...

...
. . .

...

E[yj(N)yi(1) | Ā(i, j)] · · · E[yj(N)yi(N) | Ā(i, j)] ∗ · · · ∗


.
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It is clear by its definition that V is the covariance matrix of the random vector [y>i y>j ]>
conditioned on {yh, h 6= i, j, x}, which is still a Gaussian random vector. As explained in
Chapter 4, the entry in position (h, k) in the concentration matrix of a Gaussian random
vector describes the dependence relation between the components h an k of the random
vector, conditioned on the other components, hence

K := V−1 =

 K11 K12

K>12 K22


where

K12 =


E[yi(1)yj(1) | Ā(i, j), Ã(i, j, 1, 1)] · · · E[yi(1)yj(N) | Ā(i, j), Ã(i, j, 1, N)]

... . . . ...
E[yi(N)yj(1) | Ā(i, j), Ã(i, j,N, 1)] · · · E[yi(N)yj(N) | Ā(i, j), Ã(i, j,N,N)]



=


E[yi(1)yj(1) | A(i, j, 1, 1)] · · · E[yi(1)yj(N) | A(i, j, 1, N)]

... . . . ...
E[yi(N)yj(1) | A(i, j,N, 1)] · · · E[yi(N)yj(N) | A(i, j,N,N)]



=

 (S0)ij · · · (SN−1)ij
... . . . ...

(SN−1)ji · · · (S0)ij

 .
By (6.3) we have clearly that K12 = 0 and thus V−1 is a block diagonal matrix. Accord-
ingly, also V must be a block-diagonal matrix which means that

E
[
yi(t1)yj(t2) | yh(s), h 6= i, j, s = 1, . . . , N, x

]
= 0, ∀ t1, t2 ∈ [1, N ], ∀ (i, j) ∈ Ωc,

as we wanted to show. Such conditional independence relations define a graphical model
for the Gaussian random vector z which is referred to as latent-variable graphical model.
The latter admits a two-layers structure where

Nodes. The nodes in the upper layer represent the latent random variables x1, . . . , xl,
while in the bottom layer we have the nodes corresponding to the observed variables.
Differently from the classical case, each node in the bottom layer does not represent a
random variable yi but represents a vector yi, including all the i-th components for each
time.

Edges. The edges are defined by the conditional dependence relationships between the
components of the vector z. If we look at the edges in terms of the information they are
carrying we have the following distinction

- an edge between two latent random variables, let’s say xh and xk, is a scalar quantity
described by the element in position (h, k) of the sub-matrix R of Σ−1

z .

- an edge between a latent variable xk and an observed vector yj carries a vectorial
information and it is described by theN elements of Σ−1

z contained in columnmN+k
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6 Sparse plus low-rank identification

in rows j, j + (N − 1), j + 2(N − 1), . . . , j + m(N − 1), as can be easily seen by
writing explicitly the vector z. Clearly, if all of this numbers are zero, we do not
have such an edge.

- an edge between two observed vectors yi and yj , i 6= j, contains a matrix information
related to the conditional dependence relations between the components {yi(k)}k
and {yj(h)}h. According to the characterization of conditional independence, such
an edge is described by the quantities

E
[
yi(t1)yj(t2) | yh(s), h 6= i, j, s = 1, . . . , N, x

]
for any t1, t2 ∈ [1, N ] and for i, j = 1, . . . ,m, all contained in the sub-matrix S of
Σ−1

z . However, given the circulant structure of S, without loss of generality, this
matrix information can be represented by the vector[

(S0)ij (S1)ij . . . (SN
2 −1)ij (SN

2
)ij (SN

2 −1)ji . . . (S1)ji
]
.

Notice that, the graphical model of the process z is completely determined by the concen-
tration matrix Σ−1

z , as we have seen.

Example 3. Consider the case in which N = 2, m = 7, l = 2 latent variable, and suppose
that the graphical model associated to the vector z is the one depicted in Figure 6.1.

y1 y2 y3 y4 y5 y6 y7

x1 x2

Figure 6.1: Example of a latent-variable graphical model: x1, x2 are the latent-variables
and y1,y2, . . . ,y7 are the manifest variables.

In this case, the concentration matrix of vector z will have the following structure

Σ−1
z =

 S A

A> R

 =



S0 S>1

S1 S0
∗

∗
r11 0

0 r22


where S0 and S1 are 7 × 7 matrices. In particular, r12 = 0 because we have no edge
between x1 and x2. Moreover, the presence of the edge between y2 and y4 implies that at
least one between (S0)24 and (S1)24 is different from zero, while the presence of an edge
between y5 and y6 means that at least one between (S0)56 and (S1)56 is different from
zero. In other words, Ω = {(i, i) : i = 1, . . . , 7} ∪ {(2, 4), (5, 6)} because the diagonal
elements of S0 and S1 have to be specified.
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Some useful operators

We introduce now the linear operator C : M→ C defined as follows

C(A) = circ{[A0 . . . AN−1]} =



A0 A>1 · · · A>N
2
· · · A1

A1 A0 · · · · · · . . . ...
... A1 · · · · · · · · · A>N

2

AN
2
· · · · · · A0 · · ·

...
... . . . . . . A>1
A>1 · · · AN

2
· · · A1 A0


=

N−1∑
k=0

U−k ⊗Ak,

where we recall that A0 = A>0 and Ak = A>N−k for k > N/2. Notice that, by defining the
matrix IM ∈M as

IM := [Im 0 . . . 0],

we have that C(IM) = ImN where we recall that

ImN =



Im 0 · · · 0 0
0 Im 0 · · · 0
... · · · Im · · ·

...
... . . . 0 . . . ...
0 0 · · · 0 Im


is the mN × mN block identity matrix. Moreover, using Theorem 1 and Lemma 1 we
show that the inner product in C is equivalent (up to a constant) to the inner product in
M as stated by the following Proposition.

Proposition 9. Consider two symmetric sequences A,B ∈M and let

A(ζ) =
N−1∑
k=0

Ak ζ
−k, Ak = A>N−k for k > N

2 ,

B(ζ) =
N−1∑
k=0

Bk ζ
−k, Bk = B>N−k for k > N

2 ,

the corresponding discrete-time Fourier transforms, i.e. their symbols evaluated at ζ ∈ TN .
Let A := C(A) and B := C(B) be the corresponding symmetric, block-circulant matrices.
Then,

〈A,B〉C = N 〈A,B〉M .

Proof. By Theorem 1, we have

〈A, B〉M = tr
N−1∑
k=0

AkB
>
k = 1

N
tr
N−1∑
j=0

A(ζj)B(ζj),
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6 Sparse plus low-rank identification

and therefore

〈A, B〉M = 1
N

tr



A(ζ0)

A(ζ1)
. . .

A(ζN−1)



B(ζ0)

B(ζ1)
. . .

B(ζN−1)




= 1
N

tr

F∗


A(ζ0)

A(ζ1)
. . .

A(ζN−1)

FF∗


B(ζ0)

B(ζ1)
. . .

B(ζN−1)

F

 .
Finally, by Lemma 1

〈A, B〉M = 1
N

tr(A B) = 1
N
〈A,B〉C .

The previous Proposition allows the straightforward computation of the adjoint operator
of C. We know that

〈C(A),B〉C = N 〈A,B〉M .

On the other hand, let C∗ : C→M be the adjoint operator of C so that

〈C(A),B〉C = 〈A,C∗(B)〉M , ∀A ∈M, B ∈ C.

By simply comparing the previous two expressions, we conclude that

C∗(B) = N B, ∀B ∈M. (6.7)

It is useful to introduce also the projection operator PB : M→MB, defined for a generic
symmetric sequence A ∈M as

PB(A) := [PB(A0) PB(A1) . . . PB(AN−1)]

where for the generic matrix Ak ∈ Rm×m, k = 0, . . . , N − 1,

PB(Ak) :=
{
Ak, for k ∈ B

0, otherwise

and B := [0, n] ∪ [N − n, N − 1] is the subset of [0, N − 1] containing the indexes of the
non-zero blocks in the banded structure. In particular, we have

PB(A) = PB([A0 . . . An An+1 . . . AN
2
. . . A>n+1 A

>
n . . . A>1 ])

= [A0 . . . An 0 . . . 0 . . . 0 A>n . . . A>1 ],

that is, PB(A) maps A ∈M onto its corresponding banded sequence in MB. Accordingly,
we denote with PB(A) the symmetric, block-circulant matrix associated to the projection
PB(A), that is PB(A) := C(PB(A)). Finally, we observe that PB is a self-adjoint operator,
namely

〈PB(A), B〉M = 〈A,PB(B)〉M
for any A,B ∈M.
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6.2 The sparse plus low-rank block-circulant band extension problem

6.2 The sparse plus low-rank block-circulant band extension
problem

In this Section, Problem 2 is rephrased in terms of a matrix extension problem for block-
circulant covariance matrices, i.e. the classical block-circulant band extension problem. The
latter is a generalization of the covariance extension Problem 1 that takes into account
the symmetric, block-circulant structure of the covariance matrix of the process y and the
fact that its inverse must be symmetric, block-circulant, banded of bandwidth n, being y a
periodic, stationary reciprocal process of order n. Once we have done that, we will see that
the optimization problem for the estimation of the sparse and the low-rank component of
the inverse covariance is a straightforward re-parametrization of the block-circulant band
extension dual problem plus some regularization terms introduced in order to enforce
sparsity and low-rank in the respective matrices.

6.2.1 The block-circulant band extension problem

The derivation of the problem basically follows the one in [12], Section IV. Consider the
process y as before and suppose that a finite length realization of the process in one period
is available y(1), . . . , y(N) so that we estimate the covariance lags C0, C1, . . . , Cn as

Ck = 1
N

N∑
t=k

y(t) y(t− k)>, k = 0, 1, . . . , n,

where now n is the order of the reciprocal process y. By exploiting maximum likelihood
arguments one can prove that the identification Problem 2 is equivalent to the following
matrix completion problem, see [12].

Problem 3 (Block-circulant band extension problem). Given n+1 initial datam×mmatrices
C0, C1, . . . , Cn, complete them with a sequence Σn+1, Σn+2, . . . , ΣN−1, in such a way
to form a symmetric, positive definite block-circulant matrix Σy with a block-circulant
banded inverse of bandwidth n (6.1).

According to Proposition 5, the solution of block-circulant band extension problem boils
down in the maximization of the differential entropy (4.2), i.e. in a constrained optimiza-
tion problem, very similar to the one we have consider in Section 4.1.1. Formally, let
C ∈MB defined as

C := [C0 C1 . . . Cn 0 . . . 0 C>n . . . C>1 ],

and let Σ ∈M,

Σ := [Σ0 Σ1 . . . Σn Σn+1 . . . ΣN
2
. . . Σ>n+1 Σ>n . . . Σ>1 ],

such that C(Σ) = Σy. Consider now the following Gaussian maximum entropy problem
on the discrete circle ZN which is equivalent to the one considered in [12] (see also [13]
where this problem is retrieved using Burg’s technique for maximum entropy spectral
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6 Sparse plus low-rank identification

estimation):

argmax
Σ∈M

log det C(Σ)

subject to C(Σ) > 0
PBc(Σ− C) = 0.

(6.8)

Recalling the definition of the operator C and the definition of the space M, saying that
Σ ∈ M and C(Σ) > 0 is equivalent to restrict our attention to the symmetric, block-
circulant matrices C(Σ). Moreover, by linearity of PB,

PB(Σ− C) = [Σ0 − C0 Σ1 − C1 . . . Σn − Cn 0 . . . 0 . . . 0 Σ>n − C>n . . . Σ>1 − C>1 ],

thus the constraint PB(Σ − C) = 0 means only that the covariance lags Σ0, Σ1, . . . , Σn

have to match the estimated ones C0, C1, . . . , Cn. Notice that we are not imposing that
the inverse of the solution of (6.8) should have a banded structure: whenever the solution
exists, this property will be automatically guaranteed [12]. Concerning the feasibility of
Problem (6.8), here we say only that having the matrix

Tn :=


C0 C>1 · · · C>n

C1 C0
. . . ...

...
... . . . C>1

Cn · · · · · · C0


positive definite is a necessary condition for the existence of Σ solving problem (6.8). In
general it turns out that, under such necessary condition, feasibility holds for N large
enough, see Theorem 5.1. in [12]. In order to solve problem (6.8) we follow the same line
we have followed in Section 4.1.1 for Dempster’s problem, i.e. we exploit Lagrange duality
theory. The Lagrangian function for the problem is

L(Σ, X̄) = log det C(Σ)−
〈
PB(X̄),Σ

〉
M

+
〈
PB(X̄), C

〉
M

where X̄ ∈M is the Lagrange multiplier. Defining X ∈M as

X := 1
N
· PB(X̄) = 1

N
· [X̄0 X̄1 . . . X̄n 0 . . . 0 . . . 0 X̄>n . . . X̄>1 ],

such that X = C(X) > 0, we can re-parametrize the Lagrangian as

L(Σ, X) = log det C(Σ)−N 〈X, Σ〉M +N 〈X, C〉M .

By Proposition 9 we can now rewrite the Lagrangian with respect to the corresponding
circulant matrices X = C(X), Σ = C(Σ) and C = C(C)

L(Σ,X) = log det Σ− 〈X, Σ〉C + 〈X, C〉C
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where C ∈ B is the symmetric, banded block-circulant matrix of bandwidth n

C =



C0 C>1 · · · C>n 0 · · · 0 Cn · · · C1

C1 C0 · · · · · · C>n 0 · · · 0 . . . ...
... . . . . . . . . . . . . Cn

Cn
. . . . . . 0 0

0 . . . C0 C>n
. . . ...

... . . . . . . . . . . . . 0

0 0 Cn
. . . C>n

C>n
. . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . C>1
C>1 · · · C>n 0 · · · 0 Cn · · · C1 C0



,

containing the covariance lags estimated from the data, and X ∈ B has the same struc-
ture.

Remark 9. Notice that Tn is a principal sub-matrix of matrix C, thus a necessary condition
for Tn to be positive definite, i.e. for the feasibility of problem (6.8), is that C is positive
definite.

The minimum of the Lagrangian over the cone C+ is given by setting its directional
derivative L′ in direction δΣ equal to zero, for any direction δΣ ∈ C namely,

L′(Σ,X; δΣ) = tr(Σ−1δΣ)− tr(X δΣ) = 0, ∀ δΣ ∈ C. (6.9)

Condition (6.9) must be satisfied in particular when

δΣ = Σ−1 −X ∈ C,

hence it holds if and only if Σ = Σo := X−1. Substituting this value in the Lagrangian
we get

L(Σo,X, X̄) = log det X−1 + 〈X, C〉C +
〈
X, X−1

〉
C
.

Since the last term is constant with respect to X, the dual problem of Problem (6.8) can
be formulated as follows

argmin
X∈C

− log det X + 〈X, C〉C

subject to X > 0
X ∈ B.

(6.10)

In the next Section we will solve a regularized version of this dual problem in which X is
understood as the sparse plus low-rank decomposition (6.2) of the concentration matrix
of the process y.

6.2.2 Sparse plus low-rank optimization problem

In this Section we set-up and solve an optimization problem for the estimation of the sparse
plus low-rank decomposition of the concentration matrix Σy starting from Problem (6.10)
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6 Sparse plus low-rank identification

retrieved in the previous Section. Concerning the non-reciprocal and non-periodic case, a
similar identification procedure has been developed, see [7] and [9].

Regularizers. In order to induce sparsity on S ∈ M and S ∈ C respectively, inspired by
[6] (see also [7]), we propose the following regularizer

h∞(S) =
∑
k>h

max
{
|(S0)hk|, 2 max

j=1,...,N2
|(Sj)hk|, 2 max

j=1,...,N2
|(Sj)kh|

}
,

h∞(S) =
∑
k>h

max
{
|(S0)hk|, 2 max

j=1,...,N2
|(Sj)hk|, 2 max

j=1,...,N2
|(Sj)kh|

}
.

Basically, this is a generalization of the `∞-norm used to induce sparsity on vectors.
Concerning the low-rank regolarization it is well known that for a symmetric, positive semi-
definite matrix L, the trace is the convex envelope of the rank function. For this reason
we will use the trace function as low-rank regularizer. See Section 3.5 for a motivation for
the choice of these regularizers.

The following optimization problem for the estimation of the sparse plus low-rank com-
ponents of the concentration matrix Σ−1

y now directly follows from (6.10) by setting
Σ−1

y = S− L, with L ≥ 0, and by adding the regularizers just introduced:

argmin
S,L∈C

− log det(S− L) + tr(C(S− L)) + λS h∞(S) + λL tr(L)

subject to S− L > 0, L ≥ 0
S− L ∈ B

(6.11)

where λL, λS > 0 are two regularization parameters. Since S,L ∈ C, we can rewrite them
as

S =
N−1∑
k=0

U−k ⊗ Sk, Sk = S>N−k for k >
N

2 ,

L =
N−1∑
k=0

U−k ⊗ Lk, Lk = L>N−k for k >
N

2 ,

therefore we can re-parametrize the problem in terms of the symmetric sequences S,L ∈
M,

S = [S0 . . . SN−1], L = [L0 . . . LN−1],

in order to have a smaller number of parameters involved in the optimization problem.
Indeed, in this way we are considering only the first row of the symmetric, block-circulant
matrices involved in the problem instead of the complete matrices and this means that we
have less parameters to be optimized. Introducing the new variable X := S− L, and the
associated sequence X = S − L ∈M, problem (6.11) becomes

argmin
X,L∈M

− log det(C(X)) + 〈C, C(X)〉C + λS h∞(X + L) + λL tr(C(L))

subject to C(X) > 0, C(L) ≥ 0
PBc(X) = 0

(6.12)
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6.2 The sparse plus low-rank block-circulant band extension problem

which is equivalent to the problem

argmin
X,L,Y ∈M

− log det(C(X)) + 〈C, C(X)〉C + λS h∞(Y ) + λL tr(C(L))

subject to C(X) > 0, C(L) ≥ 0
PBc(X) = 0, Y = X + L.

(6.13)

(6.14)
(6.15)

Now we show that problem (6.12) admits a solution by exploiting duality theory.

Remark 10. Notice that, since the objective function (6.13) is convex and the operators C
and PB are linear, Problem (6.12) is a convex optimization problem. Moreover, Problem
(6.12) is strictly feasible, for instance, pick X = IM and L = IM. Hence, Slater’s condition
holds and the duality gap between (6.12) and its dual is equal to zero (see Chapter 3)
namely, we have strong duality for (6.12) and its dual. As a consequence, we can try to
solve the primal problem (6.12) by solving its dual.

Dual problem solution

We address the previous constrained optimization problem using the Lagrange multipliers
theory.

1. The Lagrangian function for this problem is
L(X,L, Y,V, Z̄, W̄ ) =− log det(C(X)) + 〈C, C(X)〉C + λS h∞(Y ) + λL tr(C(L))

− 〈V, C(L)〉C +
〈
Z̄,X + L− Y

〉
M

+
〈
W̄ , PBc(X)

〉
M

where V ∈ C, V ≥ 0, while Z̄, W̄ ∈M. Exploiting the fact that PB is a self-adjoint oper-
ator we can equivalently parametrize the Lagrangian function in terms of the multipliers
W := 1/N · PBc(W̄ ) and Z = 1/N · Z̄. The resulting Lagrangian is

L(X,L, Y,V, Z,W ) =− log det(C(X)) + 〈C, C(X)〉C + λS h∞(Y ) + λL tr(C(L))
− 〈V, C(L)〉C +N 〈Z,X + L− Y 〉M +N 〈W, X〉M .

Remark 11. ObviouslyW ∈M but we highlight the fact that it is a sparse matrix, indeed,
explicitly we have

W = 1
N
· PBc(W̄ ) = 1

N
· [0 . . . 0 W̄n+1 . . . W̄N

2
. . . W̄>n+1 0 . . . 0].

Thus, by definition of C, the corresponding symmetric, block-circulant matrix W := C(W )
has complementary support with respect to the one of a banded matrix with bandwidth
n, i.e. W ∈ B̄.

We can rearrange the Lagrangian function as follows in order to highlight that it depends
separately from X, Y and L
L(X,L, Y,V, Z,W ) =− log det(C(X)) + 〈C, C(X)〉C + λS h∞(Y ) + 〈λLImN ,C(L)〉C

− 〈V, C(L)〉C +N 〈Z,X + L− Y 〉M +N 〈W, X〉M
= − log det(C(X)) + 〈C, C(X)〉C +N 〈Z, X〉M +N 〈W, X〉M
+ 〈λLImN −V, C(L)〉C +N 〈Z, L〉M + λS h∞(Y )−N 〈Z, Y 〉M
= − log det(C(X)) + 〈C, C(X)〉C +N 〈Z +W, X〉M
+ 〈C∗(λLImN −V) +NZ, L〉M + λS h∞(Y )−N 〈Z, Y 〉M .
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6 Sparse plus low-rank identification

2. The second step is the unconstrained minimization of L. The only term that depends
on Y is λS h∞(Y )−N 〈Z, Y 〉M which is bounded below if and only if

diag(Zj) = 0, j = 0, . . . , N/2

2 |(Z0)kh|+
1
2 |(ZN

2
)kh|+

1
2 |(ZN

2
)hk|+

N/2−1∑
j=1

|(Zj)kh|+ |(Zj)hk| ≤
λS
N
, k > h

(6.16)

(6.17)

in which case the infimum is zero. To see this, recall that

〈Z, Y 〉M = tr(Z0Y0) + tr(ZN
2
Y >N

2
) + 2

N/2−1∑
j=1

tr(ZjY >j ) (6.18)

where each term is given by the usual explicit expression of the trace of the product of
two matrices

tr(ZjY >j ) =
m∑
h=1

(Zj)hh(Yj)hh +
∑
k>h

(Zj)kh(Yj)kh + (Zj)hk(Yj)hk. (6.19)

By substituting (6.19) in (6.18), under condition (6.16), we get

〈Z, Y 〉M =
∑
k>h

[
2 (Z0)kh(Y0)kh + (ZN

2
)kh(YN

2
)kh + (ZN

2
)hk(YN

2
)hk

+ 2
N/2−1∑
j=1

(Zj)kh(Yj)kh + (Zj)hk(Yj)hk
] (6.20)

where we have exploited the fact that h∞ does not depend by the diagonal entries of Y
and that 〈Z, Y 〉M is bounded below with respect to the diagonal entries of Y if and only
if (6.16) holds true, in which case the minimum with respect to such entries is precisely
(6.20). Now it remains minimize over the off-diagonal entries of Y . By substituting to
each element in the summation its absolute value we obtain

〈Z, Y 〉M ≤
∑
k>h

[(
2 |(Z0)kh|+

1
2 |(ZN

2
)kh|+

1
2 |(ZN

2
)hk|

)
max

{
|(Y0)hk, 2|(YN

2
)kh|, 2|(YN

2
)hk|

}

+ max
j=1,...,N2 −1

{ 2|(Yj)kh|, 2|(Yj)hk|}
N/2−1∑
j=1

|(Zj)kh|+ |(Zj)hk|
]

≤
∑
k>h

max
{
|(Y0)hk|, 2 max

j=1,...,N2
|(Yj)kh|, 2 max

j=1,...,N2
|(Yj)hk|

}
·

[
2 |(Z0)kh|+

1
2 |(ZN

2
)kh|+

1
2 |(ZN

2
)hk|+

N/2−1∑
j=1

|(Zj)kh|+ |(Zj)hk|
]
.

Finally, we have that

λS h∞(Y )−N 〈Z, Y 〉M ≥
∑
k>h

max
{
|(Y0)kh|, 2 max

j=1,...,N2
|(Yj)kh|, 2 max

j=1,...,N2
|(Yj)hk|

}
·

[
λS −N

(
2|(Z0)kh|+

1
2 |(ZN

2
)kh|+

1
2 |(ZN

2
)hk|+

N/2−1∑
j=1

|(Zj)kh|+ |(Zj)hk|
)]
.
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6.2 The sparse plus low-rank block-circulant band extension problem

It is immediate to see that the minimization over the off-diagonal entries of Y is bounded
below only if (6.17) holds, in that case the minimum is zero. Hence

inf
Y

L =


− log det(C(X)) + 〈C, C(X)〉C +N 〈Z +W, X〉M if (6.16), (6.17) hold,
+ 〈C∗(λLImN −V) +NZ, L〉M

−∞ otherwise.

The only term that depends on L is 〈C∗(λLImN −V) +NZ, L〉M, which is linear in L,
and therefore it is bounded below only if it is identically zero, i.e.

C∗(λLImN −V) +NZ = 0. (6.21)

In this case, clearly, the minimum is zero. Accordingly,

inf
Y,L

L =


− log det(C(X)) + 〈C, C(X)〉C +N 〈Z +W,X〉M if (6.16), (6.17), (6.21) hold,

−∞ otherwise

The remaining terms only depend on X. According to Proposition 9, if (6.16), (6.17),
(6.21) hold we can rewrite the infimum of the Lagrangian function as

L̄(X) := inf
Y,L

L = − log det(X) + 〈C, X〉C + 〈Z + W,X〉C ,

where X = C(X), Z = C(Z) and W = C(W ), according to the definition of the operator
C. The function L̄ is strictly convex over the cone of the symmetric, positive definite,
block-circulant matrices C+, in fact it is the sum of a strictly convex function and a linear
function of X. Assuming a priori that the solution lies in the interior of the cone (we have
to check that a posteriori, i.e. once we have found the solution), a necessary and sufficient
condition for Xo to be a minimum point for L̄(X) is that its first Gateaux derivative L̄′

computed at X = Xo is equal to zero in every direction δX namely,

L̄′(Xo; δX) = 0, ∀ δX ∈ C.

Remark 12. Notice that we do not require that δX is positive definite, it is sufficient that
it is symmetric, block-circulant. In fact, any point Xo in the interior of the cone has a
whole neighborhood in the interior of the cone and thus Xo + εδX belongs to the interior
of the cone, for ε sufficiently small.

The Gateaux derivative of L̄ at Xo in direction δX is

L̄′(Xo; δX) = − tr(X−1
o δX) + 〈C, δX〉C + 〈Z + W, δX〉C

= tr
[(
−X−1

o + C + Z + W
)
δX
]
.

Assuming that Z ∈ C and W ∈ B̄, are s.t.

C + Z + W > 0, (6.22)

the directional derivative of L̄ at Xo is equal to zero in any direction δX ∈ C if and only
if

Xo = C(Xo) = (C + Z + W)−1 . (6.23)
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6 Sparse plus low-rank identification

Finally, we have that

inf
Y,L,X

L =


log det (C + Z + W) +mN if (6.16), (6.17), (6.21), (6.22) hold,

−∞ otherwise,

3. The last step is to choose the multipliers so that the constraints (6.14) and (6.15) are
satisfied. In order to do that, we solve the dual problem:

argmax
W∈B̄,Z∈C

V(W,Z) +mN

subject to (6.16), (6.17), (6.21), (6.22)
(6.24)

where we have defined
V(W,Z) := log det (C + Z + W) .

Observe now that using the explicit form (6.7) of the adjoint operator C, constraint (6.21)
can be written as V = λLIM + Z. Thus, recalling that V ≥ 0 and exploiting the linearity
of C, the constraint become

λLImN + Z = V ≥ 0.

Accordingly, the dual problem takes the form

argmax
W,Z∈C

V(W,Z) +mN

subject to W ∈ B̄

(6.16), (6.17)
λLImN + Z ≥ 0
C + Z + W > 0.

(6.25)

Proposition 10. Under the above assumptions, Problem (6.25) admits a unique solution.

Proof. The optimization problem (6.25) is feasible (it is sufficient to pick W = 0 and
Z = 0 for instance)1 namely, there exist W̄, Z̄ ∈ C satisfying the constraints and such
that ∣∣∣log det

(
C + Z̄ + W̄

)
+mN

∣∣∣ <∞.
Let’s introduce the set

K̄ :=
{

Z ∈ C

∣∣∣∣ (6.16), (6.17), λLImN + Z ≥ 0
}

which is a closed and convex subset of C. Accordingly, the above problem is equivalent to
maximize V(W,Z) over the set

K :=
{

(W,Z) ∈ C× K̄

∣∣∣∣C + Z + W > 0, W ∈ B̄, V(W,Z) ≥ V(W̄, Z̄)
}

indeed, we can get rid of the (W,Z) for which V(W̄, Z̄) ≥ V(W,Z) because obviously
they cannot be solutions. We want to show that K is compact, i.e. closed and bounded

1Recall that C is assumed to be a positive definite matrix, see Remark 9.
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6.2 The sparse plus low-rank block-circulant band extension problem

(since we are working in finite dimension). In order to prove that K is bounded, let{
(W(k),Z(k))

}
k∈Z

be a sequence of elements in K. Suppose that ‖Z(k)‖C →∞ as k →∞.
This implies that at least one eigenvalue of Z(k) goes to infinity in absolute value. Indeed,
since Z(k) is symmetric,

‖Z(k)‖2C =
〈
Z(k), Z(k)

〉
C

=
mN∑
i=1

λ2
i

where λi, i = 1, . . . ,mN , are the eigenvalues of the matrix Z(k) counted with their multi-
plicity. Moreover, since Z(k) ∈ K̄ we have that diag(Z(k)

0 ) = 0, thus

tr(Z(k)) =
mN∑
i=1

λi = N tr(Z(k)
0 ) = 0,

hence, Z(k) must have at least one eigenvalue that goes to −∞. However, this is not
possible because the fact that Z(k) ∈ K̄ implies also that Z(k) must satisfy the inequality

λLImN + Z(k) ≥ 0

where λLImN is a constant matrix. We conclude that ‖Z(k)‖C < ∞. In order to show
that also ‖W(k)‖C is bounded, we recall that if a matrix A is positive definite, then all its
principal sub-matrices must be positive definite. Suppose that ‖W(k)‖C →∞ as k →∞,
and recall that W(k) ∈ B̄ thus, in particular, w(k)

ii := (W(k))ii = 0. Then there exists an
element w(k)

ij of W(k) with i 6= j, so that |w(k)
ij | → ∞ as k → ∞. In order to simplify the

notation in the remaining of the proof define

A := C + Z + W

and consider the 2× 2 sub-matrix

A(k)[i, j] :=

cii + z
(k)
ii + w

(k)
ii cij + z

(k)
ij + w

(k)
ij

cij + z
(k)
ij + w

(k)
ij cjj + z

(k)
jj + w

(k)
jj

 =

 cii + z
(k)
ii cij + z

(k)
ij + w

(k)
ij

cij + z
(k)
ij + w

(k)
ij cjj + z

(k)
jj


extracted from

A(k) = C + Z(k) + W(k).

We get that

det(A(k)[i, j]) =
(
cii + z

(k)
ii

) (
cjj + z

(k)
jj

)
−
(
cij + z

(k)
ij + w

(k)
ij

)2

thus, since C is fixed and ‖Z(k)‖C <∞ as k →∞, we have that det(A(k)[i, j])→ −∞ as
k →∞. Accordingly, A(k)[i, j] and thus A(k) cannot be positive definite as k →∞ which
leads to a contradiction because (W(k),Z(k)) ∈ K for any k ∈ Z. We conclude that also
‖W(k)‖C <∞.
Now we show that K is closed. In doing this, denote with ∂K the boundary of K. Since
K̄ is a closed subset of C, ∂K is at most the set of elements (W,Z) such that A is positive
semidefinite and singular. Since

lim
(W,Z)→∂K

V(W,Z) = lim
(W,Z)→∂K

log det A = −∞,
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6 Sparse plus low-rank identification

and the inequality V(W,Z) ≥ V(W̄, Z̄) must hold, we conclude that ∂K is an empty set,
i.e. K is closed. By what we have just proven, K is compact. Since V(W,Z) is continuous
over K, it follows from Weierstrass’ Theorem that V(W,Z) admits maximum point in K,
namely, problem (6.25) admits a solution. Finally, since V(W,Z) is strictly concave on K

we conclude that the optimal solution (Wo,Zo) is unique.

Proposition 11. Under the above assumptions, Problem (6.12) admits a solution (Xo, Lo).

Proof. The strong duality between problems (6.12) and (6.25) (see Remark 10) and the
existence of a unique optimum (Wo,Zo) for the dual problem (6.25), imply that there
exists a unique Xo ∈M so that

Xo = C(Xo) = (C + Zo + Wo)−1

which solves the primal problem (6.12). It remains to show that there exists an Lo ∈ M

solution of problem (6.12) with respect to L. More precisely, in view of (6.12) we have to
show that there exists Lo that solves the optimization problem

argmin
L∈M

λS h∞(Xo + L) + λL tr(C(L))

subject to C(L) ≥ 0.
(6.26)

Notice that the objective function in (6.26) is continuous. Since L = 0 is a feasible point,
the problem is equivalent to find L ∈M that minimizes λS h∞(Xo+L) +λL tr(C(L)) over

Q :=
{
L ∈M

∣∣∣∣C(L) ≥ 0, λS h∞(Xo + L) + λL tr(C(L)) ≤ λS h∞(Xo)
}
.

It is easy to see that Q is a closed and bounded (therefore compact) subset of M, thus by
Weierstrass’ Theorem, problem (6.26) admits a solution Lo. At this point we can conclude
that the primal problem (6.12) admits a solution (Xo, Lo).

54
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In this Chapter we will basically retrace what we have done in the previous Chapter in the
particular case in which both S and L are assumed symmetric, block-circulant, banded of
bandwidth n. This is a special case of the scenario considered in the previous Chapter but
it is worth studying it mainly for two reasons. First of all, with respect to the general choice
S, L ∈ C, with this choice we will have less parameters to be optimized in the identification
procedure, which improves the efficiency of the identification algorithm. Moreover, it may
be a consequence of a particular dynamics assumed for the latent component. Finally, it
is worth noting that this is the equivalent choice done in [7] for the identification of sparse
plus low-rank AR processes. These motivations will be better explained throughout the
Chapter.

Let us consider the same set-up of the previous Chapter: the observed process y is a
real-valued, Gaussian, zero-mean, m-dimensional, stationary reciprocal process of order
n, defined on a finite interval [1, N ] with N > 2n, and extended by periodicity over the
whole integer line Z. The latent component x = [x1 . . . xl]> is a zero-mean Gaussian
random vector with values in Rl with l� mN . As explained in the previous Chapter, the
concentration matrix of the observed process can be expressed by its sparse plus low-rank
decomposition

Σy = (S− L)−1, (7.1)

where S ∈ C is a positive definite matrix while L ∈ C is a positive semi-definite matrix. In
particular, to ensure that Σ−1

y will be symmetric, block-circulant, banded of bandwidth
n, here we choose both S and L to be symmetric, block-circulant, banded of bandwidth
n, i.e. S, L ∈ B.

Remark 13. Of course, also in this case, all the assumptions made in the previous Chapter
make S to be a sparse matrix and L to be a low-rank matrix. Consequently, the graphical
model described by (7.1) will be a latent-variable graphical model, as in Chapter 6. Recall
that S is the concentration matrix of the conditioned process y|x. Accordingly, combining
the characterization of conditional independence we have given in Section 4.2 (Proposition
6) and Theorem 4, the assumption S ∈ B is equivalent to assume that the conditioned
process y|x is a stationary, Gaussian reciprocal process of order n, periodic of period N .

7.1 Sparse plus low-rank optimization problem

In this Section we will rewrite and solve, in the particular case of S, L ∈ B, the op-
timization problem we have derived in the general setting of S, L ∈ C in the previous
Chapter.
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7 A particular decomposition choice

The optimization problem for the estimation of the sparse plus low-rank components of
the concentration matrix Σ−1

y directly follows from (6.10) by adding the regularizers:

argmin
S,L∈B

− log det(S− L) + tr(C(S− L)) + λS h̄∞(S) + λL tr(L)

subject to S− L > 0, L ≥ 0.
(7.2)

where λL, λS > 0 are two regularization parameters. As expected, we have obtained just
a simplified version of Problem (6.11), without the constraint S−L ∈ B. Since S,L ∈ B,
we can rewrite them as

S =
n∑

k=−n
U−k ⊗ Sk, S−k = S>k ,

L =
n∑

k=−n
U−k ⊗ Lk, L−k = L>k ,

thus, the problem can be rewritten in terms of the symmetric sequences S,L ∈MB,

S = [S0 S1 . . . Sn 0 . . . 0 S>n . . . S>1 ], L = [L0 L1 . . . Ln 0 . . . 0 L>n . . . L>1 ],

in order to have a smaller number of parameters involved in the optimization problem.

Remark 14. Notice that here we have even less parameters than in the previous case,
indeed here we have also Sk = Lk = 0 for k = n + 1, . . . , N/2 and the same for the
corresponding transposes.

Introducing the new variable X := S− L, and the associated sequence X = S − L ∈MB,
problem (7.2) becomes

argmin
X,L∈MB

− log det(C(X)) + 〈C, C(X)〉C + λS h∞(X + L) + λL tr(C(L))

subject to C(X) > 0, C(L) ≥ 0,
(7.3)

which is equivalent to the problem

argmin
X∈M

L,Y ∈MB

− log det(C(X)) + 〈C, C(X)〉C + λS h∞(Y ) + λL tr(C(L))

subject to C(X) > 0, C(L) ≥ 0
Y = X + L.

(7.4)

By following a similar reasoning carried out in Remark 10 we conclude that Problem (7.3)
is strictly feasible and Slater’s condition holds for it and its dual. As a consequence, we
can try to solve the primal problem (7.3) by solving its dual.

Dual problem solution

We address the previous constrained optimization problem using the Lagrange multipliers
theory.

56



7.1 Sparse plus low-rank optimization problem

1. The Lagrangian function for this problem is

L(X,L, Y,V, Z̄) =− log det(C(X)) + 〈C, C(X)〉C + λS h∞(Y ) + λL tr(C(L))

− 〈V, C(L)〉C +
〈
Z̄,X + L− Y

〉
M

where V ∈ B, V ≥ 0, while Z̄ ∈M. The same computations done in the previous Chapter
allow to reparametrize the Lagrangian in terms of the multiplier Z := 1/N · Z̄ and to
separate the terms depending on X, Y and L

L(X,L, Y,V, Z) = = − log det(C(X)) + 〈C, C(X)〉C +N 〈Z, X〉M
+ 〈C∗(λLImN −V) +NZ, L〉M + λS h∞(Y )−N 〈Z, Y 〉M .

2. The second step is the unconstrained minimization of L. The only term that depends
on Y is λS h∞(Y )−N 〈Z, Y 〉M which is bounded below if and only if

diag(Zj) = 0, j = 0, . . . , n

2|(Z0)kh|+
n∑
j=1
|(Zj)kh|+ |(Zj)hk| ≤

λS
N
, k > h

(7.5)

(7.6)

in which case the infimum is zero. It is worth noting, since Y ∈ MB, even if Z is not
banded, the constraints (7.5) and (7.6), only involves the first n+ 1 blocks of Z. Hence

inf
Y

L =


− log det(C(X)) + 〈C, C(X)〉C +N 〈Z, X〉M if (7.5), (7.6) hold,
+ 〈C∗(λLImN −V) +NZ, L〉M

−∞ otherwise.

The only term that depends on L is 〈C∗(λLImN −V) +NZ, L〉M. Recalling that L, V ∈
MB, by exploiting the linearity of the projection operator PB, we have that

〈C∗(λLImN −V) +NZ, L〉M = N 〈λLIM − V + PB(Z), L〉M

which is linear in L, and therefore it is bounded below if and only if

C∗(λLImN −V) +N PB(Z) = 0. (7.7)

In this case, clearly, the minimum is zero. Accordingly,

inf
Y,L

L =


− log det(C(X)) + 〈C, C(X)〉C +N 〈Z,X〉M if (7.5), (7.6), (7.7) hold,

−∞ otherwise

The remaining terms only depend on X. According to Proposition 9, if (7.5), (7.6), (7.7)
hold we can rewrite the infimum of the Lagrangian function as

L̄(X) := inf
Y,L

L = − log det(X) + 〈C, X〉C + 〈Z,X〉C ,

where X = C(X) and Z = C(Z), according to the definition of the operator C. For the
minimization with respect to X, we proceed as in Chapter 6. The function L̄ is a strictly
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7 A particular decomposition choice

convex function of X over the cone of the symmetric, positive definite, banded block-
circulant matrices C+. Assuming a priori that the solution lies in the interior of the cone
(we have to check that a posteriori, i.e. once we have found the solution), a necessary
and sufficient condition for Xo to be a minimum point for L̄(X) is that its first Gateaux
derivative computed at X = Xo is equal to zero in every direction δX namely,

L̄′(Xo; δX) = 0, ∀ δX ∈ C.

As explained before, there is no need for δX ∈ C to be positive definite. The Gateaux
derivative of L̄ at Xo in direction δX is in this case

L̄′(Xo; δX) = tr
[(
−X−1

o + C + Z
)
δX
]
.

Assuming that Z ∈ C is s.t.
C + Z > 0, (7.8)

the directional derivative of L̄ at Xo is equal to zero in any direction δX ∈ C if and only
if

Xo = C(Xo) = (C + Z)−1 . (7.9)
Finally, we have that

inf
Y,L,X

L =


log det (C + Z) +mN if (7.5), (7.6), (7.7), (7.8) hold,

−∞ otherwise,

3. The last step is to choose the multipliers so that the constraints (7.4) are satisfied. In
order to do that, we solve the dual problem:

argmax
Z∈C

V(Z) +mN

subject to (7.5), (7.6), (7.7), (7.8)
(7.10)

where we have defined
V(Z) := log det (C + Z) .

Observe now that using the explicit form (6.7) of the adjoint operator C, constraint (7.7)
can be written as V = λLIM + PB(Z). Thus, recalling that V ≥ 0 and exploiting the
linearity of C, the constraint become

λLImN + PB(Z) = V ≥ 0.

Accordingly, the dual problem takes the form

argmax
Z∈C

V(Z) +mN

subject to (7.5), (7.6)
λLImN + PB(Z) ≥ 0
C + Z > 0.

(7.11)

Since we are considering a particular case of the one studied in the previous Chapter,
according to Proposition 10 we can say that problem (7.11) admits a solution. For the
same reason, Proposition 11 ensures instead that Problem (7.3) admits a solution. Indeed,
the proofs of these two results in this settings can be obtained by slightly adjusting the
proofs of Proposition 10 and Proposition 11 presented in the previous Chapter.
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7.1 Sparse plus low-rank optimization problem

Remark 15. At first sight, the choice S, L ∈ B may appear too ambitious, i.e. it may
seems that we are requiring to much to hope that the optimization problem admits a
solution. However, examples in which the problem admits a solution (S,L) can be built
thus also in this sense this seems a reasonable choice.
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7 A particular decomposition choice
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8 Conclusions

In this thesis, an identification procedure for a latent-variable graphical model associated
to a stationary, Gaussian, zero-mean, periodic reciprocal process has been proposed.

Such a procedure basically concerns an optimization problem that follows from the max-
imum entropy principle. In order to explain more clearly why we have chosen such ap-
proach, in Chapter 4, Section 4.1, we have presented some classical maximum entropy
problems, by given particular emphasis to the Dempster’s covariance selection problem
and the covariance extension problem: these are the two starting points of our reasoning.
It was also pointed out that the two problems are slightly different versions of the same
problem. In Section 4.2 we have explained how to associate a graphical model to a random
vector and, in particular, to a Gaussian random vector. More precisely, with Proposition
6, we have given the fundamental characterization of conditional independence in terms of
concentration matrix of the random vector, which was crucial throughout the thesis. We
have preferred to explain these fundamental ingredients in the simplest possible settings
in order to ensure a better understanding of these tools.

In Chapter 5, we have introduced stationary processes defined on a finite interval (of time
or space) and then Gaussian, periodic reciprocal processes of order n have been presented.
Moreover, we have reported the derivation of a model for such processes showing that their
dynamics can be modeled by a generalized autoregressive model. Finally, a fundamental
characterization of these processes in terms of their concentration matrix was given by
Theorem 4.

Chapter 6 contains the original contributions of this work. First of all, the problem was
setted-up by defining the observed process and the latent-component modeling our data
and consequently, the sparse plus-low rank decomposition of the covariance matrix of the
observed process was introduced. In complete generality, both the sparse and the low-rank
component were assumed to be only symmetric, block-circulant: no banded structure was
assumed. Then, we have provided a detailed explanation of the construction of a latent-
variable graphical model for the process. In order to introduce the optimization problem of
our identification procedure, in Section 6.2.1, the block-circulant band extension problem
recently proposed in the literature was introduced, as a sequel of the basic maximum
entropy problems presented in the previous Chapter and was re-written according to our
notation. Together with the sparse plus low-rank identification procedure available in
the literature, this allowed to easily introduce our starting optimization problem for the
estimation of the sparse and the low-rank components of the concentration matrix of the
reciprocal process: it became apparent that it was only a re-parametrization, according to
the sparse plus low-rank decomposition of the concentration matrix of the process, of the
classical block-circulant band extension problem, plus some regularization terms. At this
point, exploiting the Lagrange duality theory we have showed that the problem admits a
solution.
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8 Conclusions

Finally, in Chapter 7, we have retraced what we have done in Chapter 6 for a particular
choice of the sparse plus low-rank components of the concentration matrix of the process:
both the matrices have been chosen to have a banded, block-circulant structure. The main
motivations behind this choice were explained and all the steps required by the solution
developed in Chapter 6 have been particularized according with this choice.

8.1 Future work

There are a number of different points that may deserve to be investigated. Firstly,
one can approximate the continuous-time, non-reciprocal case results with these discrete-
time, reciprocal settings. This will imply to study the goodness of the approximation
and, if the approximation is sufficiently good, we will gain scalability of the identification
algorithm because of all the peculiar properties (circularity, banded structure) induced by
our settings that are not present in the classic case. Secondly, the intuition tells us that
the banded, block-circulant structure of the sparse and the low-rank components must
be a consequence of the additional assumption that the latent-component is a periodic,
reciprocal process, just like the observed process. It would be interesting to prove this
fact and to understand if the choice of working with banded sparse and low-rank matrices
implies the preclusion of some solutions with respect to the general case addressed in
Chapter 6.

62



Bibliography

[1] E. Fornasini, Appunti di teoria dei sistemi. Libreria progetto, 2013.

[2] A. G. Lindquist and G. Picci, Linear stochastic systems: a geometric approach to mod-
eling, estimation and identification. Ser. contemporary mathematics, Berlin, Germany:
Springer, 2015.

[3] S. Lauritzen, Graphical models. Oxford, U.K.: Oxford university press, 1996.

[4] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, U.K.: Cambridge
university press, 2004.

[5] R. Horn and C. Johnson, Matrix analysis. Cambridge, U.K.: Cambridge university
press, 1990.

[6] J. Songsiri and L. Vandenberghe, "Topology selection in graphical models of autore-
gressive processes". J. Mach. Lear. Res., Vol. 11, pp. 2671-2705, 2010.

[7] M. Zorzi and R. Sepulchre, "AR-identification of latent-variable graphical models".
IEEE Trans. Aut. Control, Vol. 61, No. 9, pp. 2327-2340, September 2016.

[8] M. Zorzi and A. Chiuso, "Sparse plus Low-rank network identification: A nonparamet-
ric approach". Automatica, Vol. 53, No. 2, pp. 355-366, 2017.

[9] V. Chandrasekaran, P. Parillo and A. Willsky, "Latent variable graphical model se-
lection via convex optimization". Annal. Statist. (with discussion), Vol. 40, no. 4, pp.
1935-2013, April 2010.

[10] R. Liegeois, B. Mishra, M. Zorzi and R. Sepulchre, “Sparse plus low-rank autoregres-
sive identification in neuroimaging time series”. IEEE CDC, 2015.

[11] J. A. Sand, “Four papers in stochastic realization theory”. PhD thesis, Dept. of Math.,
Royal Institute of Technology (KTH), Stockholm, Sweden, 1994.

[12] F. P. Carli, A. Ferrante, M. Pavon and G. Picci, “A maximum entropy solution of
the covariance extension problem for reciprocal processes”. IEEE Trans. Aut. Control,
Vol. 56, No. 9, pp. 1999-2012, September 2011.

[13] A. G. Lindquist and G. Picci, “The circulant rational covariance extension prob-
lem: a complete solution”. IEEE Trans. Aut. Control, Vol. 58, No. 11, pp. 2848-2861,
November 2013.

63



Bibliography

[14] J. Burg, “Maximum entropy spectral analysis”. Ph.D. dissertation, Stanford Univ.,
Dept. of Geophysics, Stanford, CA, 1975.

[15] J. Burg, D. Luenberger, and D. Wenger, “Estimation of structured covariance matri-
ces,” Proc. IEEE, vol. 70, pp. 963–974, 1982.

[16] A. P. Dempster, “Covariance selection,” Biometrics, vol. 28, pp. 157–175, 1972.

[17] M. Pavon and A. Ferrante, "On the geometry of maximum entropy problems", SIAM
Review, Vol. 55-3: 415-439, Sept. 2013.

[18] M.Fazel, "Matrix rank minimization with applications". Ph.D. dissertation, Stanford
Univ., Dept. of electrical eng., Stanford, CA, 2002.

64


