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Abstract

This thesis aims at studying the Asymmetric Multi-Processing architecture
on the NXP’s i.MX 6SoloX SABRE board, featuring a i.MX 6SoloX proces-
sor that couples an ARM Cortex-A9 core and an ARM Cortex-M4 core. As
a tangible application of the exploitability and of the potential employment
of such an heterogeneous architecture, the prospect of using the board as a
quadcopter’s on-board flight control system is illustrated. A demo applica-
tion is implemented for the board running MQX RTOS on the Cortex-M4
and Linux on the Cortex-A9, in which the MCU collects data from an IMU,
calculates the board’s orientation and sends data to the MPU for visualiza-
tion.
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Chapter 1

Introduction

1.1 Asymmetric Multiprocessing

As the need for computational performance keeps growing it’s becoming
more common for embedded systems to include more than one CPU, to
keep pace with increasingly demanding applications, such as those for real-
time processing of media streams. Multicore processors meet the need for
higher performances, speed and better power consumption, thus increasing
the potential for embedded devices that are all growing in complexity. Two
main options are available to handle the cooperation between multiple cores:
symmetric multiprocessing mode (SMP) and asymmetric multipro-
cessing mode (AMP). The choice relies on the level of parallelism required
by the application and on how easily the tasks can be distributed within the
cores.

In SMP mode a single OS manages all the cores simultaneously. The par-
allelism in the application is extracted by the single OS, which dynamically
schedules tasks across all cores while allowing full utilization of them. It
is also responsible for handling the sharing of all resources and the inter-
communication between the cores.

With AMP mode separate OS images can reside in memory; each core may
or may not run an OS and may have a different architecture. AMP can be
homogeneous or heterogeneus: in the first case each core runs the same OS,
while in the latter each core runs a different OS (or a different version of the
same one). Resource sharing between different OSs running simultaneously
has to be managed more carefully than in SMP mode and a proper inter-
core communication protocol has to be implemented, in order for the cores
to communicate transparently between each other.

An interesting usage for AMP is possible, where one core runs a real-time OS
(such as FreeRTOS or NXP’s MQX) and handles all the computationally-
demanding operations, while another core runs a Linux OS and manages
the higher-level applications. Another scenario may include a Linux OS
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alongside a wireless-oriented distribution such as OpenWRT.
An AMP environment allows also to make the best of multiple cores with
different architectures optimized for specific activities, like having a MCU for
real-time tasks and a MPU managing the UI. The ability for an embedded
system to run on AMP mode highly increases the potential of the board and
allows to fully exploit its capabilities.
The aim of this thesis is to study the asymmetric multiprocessing on the
NXP’s i.MX 6SoloX SABRE board. The board is equipped with a i.MX
6SoloX processor, which couples a Cortex-A9 core with a Cortex-M4 core.
For the purpose of this thesis the A9 core runs Linux, while MQX RTOS is
booted on the M4 core.

1.2 Drone navigation system

The capability to run real-time tasks on one core alongside a Linux OS on
another core is the strongest feature of an asymmetric multiprocessing envi-
ronment. To study and test the inter-core communication and to illustrate
the potential of this heterogeneous approach, the i.MX 6SoloX board has
been used as a quadcopter stabilization system.
In order for a drone to be balanced, all sensors of the Inertial Measurement
Unit (IMU) are polled and the collected data are used to determine the
body’s attitude and orientation. Several approaches for sensor data fusing
have been proposed, among which the complementary filter, the Kalman
filter and the Mahony&Madgwick filter. As a representative example of
the cooperation between the two cores, the i.MX 6SoloX SABRE board
has been used to test and compare two algorithms for data fusing. In the
developed application the M4 core is used to poll the sensors and determine
the board’s orientation. The results are then sent to the A9 core, responsible
for visualization. The board is already equipped with a magnetometer and
an accelerometer, while a compatible gyroscope module has been connected
externally through the PCI-Express interface.
This solution combines the functional indipendence of a microcontroller,
handling low-latency operations with real-time constraints (such as sensor
polling and data fusing), with the flexibilty and the processing power of a
MPU, supervising all higher level operations. Thus an asymmetric approach
can improve the efficiency and the potentiality of a drone control system,
compared with the traditional single-core configuration commonly used for
quadcopters.
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Chapter 2

Linux Kernel

Linux is the first free Unix-like operating system. Born as a student project,
it has grown to become one of the most popular and loved operating system
worldwide.
The history of Linux can be traced back to Minix, a simple non-free UNIX-
based operating system. In 1991 Linus Torvalds, a young finnish student
at the University of Helsinki, started to develop his own kernel, inspired
by Minix and driven by the need of an less-limited OS while being unable
to afford one. He started by developing drivers and hard-drive access and
soon he had a first kernel version ready to be tested. Meanwhile the GNU
Project was launched by Richard Stallman, with the intent of developing a
free Unix-compatible OS called GNU. By 1991 most of the components of
the system (an assembler, a C compiler, an editor and other Unix utilities)
were ready, except for the kernel.
The Linux kernel developed by Torvalds was afterwards combined with the
GNU underlying system to create a fully operational and free operating
system. The Linux OS was released under the open source GPL licence,
that enabled anyone to freely download and edit the source code. After
that Linux kept drawing attention from a growing group of programmers
and enthusiasts all over the world, that volounteered to debug, develop and
improve the source code.
One of the earliest debate on Linux kernel was the one between Torvalds
and Tanenbaum (Minix’s creator), regarding Torvald’s choice of designing it
as a monolithic kernel[1]. In a monolithic kernel the whole operating system
is a binary file (containing process management, memory management, file
system, etc.) that runs in reserved RAM kernel space. This model differs
from the microkernel architecture used by Minix, in which most of the OS
runs as separate processes principally in user-space.
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2.1 Kernel Source Structure

All latest kernel versions are available and downloadable for free from the
Linux Kernel Archives at https://www.kernel.org/. The kernel sources have
a simple numbering system. The first number denotes the kernel version; it’s
the least frequently changed number and it’s incremented only when major
changes regarding the concept and the code of the kernel occur. The second
number indicates the major revision of the kernel version. Originally an
even number denoted a stable release whereas an odd number indicated an
unstable development release, but this convention has been dropped since
the 2.6 release. The third number indicates the minor revision of the kernel
and it’s updated when new features or new drivers are added. The fourth
number indicates further security patches or bug fixes.
Being one of the most flexible and adaptable operating system, the Linux
kernel includes over 20 million lines of code and the structure of the source
files can be rather confusing to look at as a first step[10]. All source files are
accurately organized in a tree structure and each supported architecture has
its own subdirectory, containing the architecture-specific kernel code. The
kernel can be tweaked and built for a wide range of different environments,
allowing the user to customize every aspect of a Linux distribution. An
understanding of the structure of the source tree provides a good starting
point for porting the kernel on a new device. The root of the source tree is
organized in subdirectories as follows[7]:

• arch: this directory contains one subdirectory per supported architec-
ture, containing all of the architecture-specific kernel code.

• block: this directory contains code for block device drivers (block de-
vices exchange data in blocks, unlike character devices which exchange
data in single bytes).

• crypto: this directory contains the source code for several encryption
algorithms, such as the SHA1 secure hash algorithm and the AES
cipher algorithm.

• Documentation: this directory contains documentation files in txt
format. A large number of documents can be generated from the code
and compiled in various formats (e.g. html documentation can be gen-
erated by running $ make htmldocs from the kernel source directory)1.

• drivers: it includes all Linux device drivers source code. The di-
rectory is further divided in subdirectories, one for each device type
(e.g. subfolder drivers/char is for character device drivers, drivers/
bluetooth is for bluetooth device drivers, etc.).

1Up-to-date documentation is also available at
https://www.kernel.org/doc/Documentation/
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• firmware: this directory contains firmware images from old device
drivers, prior to the introduction of the request firmware() func-
tion. This function allows to obtain the image from user-space and
it’s currently considered the proper solution to deal with firmwares.

• fs: contains all the code to handle supported filesystems. The direc-
tory includes one subdirectory for each filesystem (e.g. fat filesystem’s
code is in the fs/fat subfolder).

• include: this directory represents the global header space and it con-
tains all header files defining the interfaces between components of the
kernel and between kernel and user space. The include files needed for
a specific architecture are contained in the arch/*/include folder.

• init: this directory contains the kernel initialization code.

• ipc: contains the code that handles the communication layer between
the kernel and processes (i.e. Inter-Process Communication).

• kernel: this directory contains the main kernel code. For instance,
the subdirectory kernel/locking includes the code for semaphores
and mutexes.

• lib: directory containing the code for kernel’s library.

• mm: contains the code for memory management (e.g. code for page
allocation and workingset detection).

• net: this folder contains the code for network protocols (e.g. protocols
for ethernet, ipv6, bluetooth, etc.).

• samples: collects the code for examples and started (but unfinished)
modules. This directory is a good starting point for everyone who
wants to help developing useful features not yet fully implemented.

• scripts: this folder contains the scripts needed to configure and build
the kernel.

• security: contains the code implementing the kernel’s security mod-
ules.

• sound: this directory contains the sound/audio cards driver’s code.

• tools: contains various tools interacting with the kernel. It includes,
for instance, the code for Lguest, a minimal hypervisor that allows to
experiment with virtualization.

• usr: this is the directory where compiled kernels are placed when the
building process is complete.
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• virt: contains the code for virtualization (i.e. providing the capability
to run multiple operating systems at once).

Understanding this top level structuring of the source folder helps navigating
the tree when looking for the code that implements specific features. For the
purpose of this thesis, the following folders have been a matter of concern
as well2:

• $KERNEL_ROOT/arch/arm/boot: after the kernel has been successfully
built, the compiled binary image is put in this folder. Kernel images
generated by the build process are either uncompressed Image files,
compressed self-extracting zImage files, or uImage files (i.e. including
an U-Boot wrapper). The compressed format is usually preferred,
since decompressing is much faster than reading from external memory.

• $KERNEL_ROOT/arch/arm/boot/dts: this folder contains the device
tree data files. The device tree is a data structure for describing hard-
ware, in a way that is readable by an operating system. Rather than
hard coding the details of a device, the OS reads the hardware topology
from the device tree file provided at boot time. The device tree was
originally created by the Open Firmware3, as a method to exchange
data between Open Firmware and the OS. The DT support was then
introducted in Linux in 2005 for all powerpc architectures, regardless
of whether or not they used Open Firmware. The DT structure was
then condensed in the Flattened Device Tree (FDT) representation: a
binary blob that can be passed to the kernel without requiring an Open
Firmware implementation. Later, the FDT infrastructure was adopted
for all the other mainline architectures (arm, microblaze, mips, pow-
erpc, sparc, and x86) as well. All device tree source files, include files
and compiled blobs are located in this source folder.

Changes to the kernel sources are distributed in the form of patch files, as
generated by the diff command[2]. This saves from downloading whole
source trees whenever a new update is available; applying a patch to the
previous mainline kernel is much faster than downloading the latest tree
from scratch. Anyone can contribute and several mailing lists are available
to discuss proposed kernel patches4. All submitted patches are reviewed
by kernel developers and must be accepted by Linus Torvalds before being
integrated in the mainline. In order for Torvalds and the other reviewers

2Since the work is focused on an ARM-based board, this description refers to the ARM
architecture

3Open Firmware is an hardware technology by Sun Microsystems, used to develop
firmware independent from the operating system.

4A list of the main kernel mailing lists is available at http://vger.kernel.org/vger-
lists.html
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to be able to read and comment the submitted changes using standard e-
mail tools, all patches must be issued as plain text files. It is advisable to
use Git to create patches since the output file fullfills most of the format
requirements as it is.
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2.2 Yocto

With Linux becoming increasingly popular on embedded devices and the
variety of commercial and non-commercial distros available, the industry
needed a common build system and core technology. The Yocto project,
born to fullfill this need, provides an open-source infrastructure to help de-
velopers create a custom distribution for any hardware architecture. Yocto
is not itself a Linux distribution, it is a set of tools and components that al-
lows to create ad-hoc distributions for specific devices. It provides a powerful
customization architecture that allows to choose all aspects of the system,
such as graphic subsystems, visualization middleware and services. Yocto
supports all major embedded architectures (x86, x86-64, ARM,PPC, MIPS)
and changing the target is as easy as changing a line in the configuration
file. The project includes:

• A complete Linux OS, equipped with a validated set of packages
(toolchain, kernel, user space). The included package versions are
known to work well together, accurately selected to be up-to-date while
ensuring robustness. Releases are distributed every 6 months, includ-
ing the latest stable kernel, toolchain and package versions.

• A set of BSPs for the supported architectures, supplied and man-
tained by Yocto. Commercial linux vendors, OSVs, silicon suppliers,
and board vendors may supply other BSPs, to add support for other
architectures. A Board Support Package (BSP) is a collection of in-
formation that defines how to support a particular hardware device,
set of devices, or hardware platform. It includes information about:
hardware features present on the device, kernel configuration and ad-
ditional hardware drivers or software components required.

• Support for target-device software developers through Yocto ADT
(Application Developer Tools), including Eclipse plug-ins, the Quick
EMUlator (QEMU, useful to simulate target hardware) and several
user-space tools (e.g. for application profiling or latency measure-
ments).

• Full documentation and strong supporting community.

Moreover, the Yocto Project hosts other projects and resources specifi-
cally intended for facilitating development with Linux on embedded devices.
These include the Poky build system, the Autobuilder automated build and
test system and the Embedded GLIBC library (i.e. a variant of the GNU C
Library, designed to work well on embedded systems).

One of the benefits of choosing Yocto over other build systems, based on
makefiles or shell scripts, is that it automates the source fetching process
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Figure 2.1: Basic process to create a new Yocto recipe.

from different upstream sources or from local project repositories. Another
strong point is that it makes easy to update packages, by using recipes.
A recipe is a file containing information about a single package such as the
location from which to download source, source patches (if needed), how to
compile the source code and how to wrap the output (Fig. 2.1).
Yocto allows to build a whole Linux system in about an hour, therefore it
is a helpful starting point for developers. In the preparatory phase of this
study, Yocto has been used to quickly create a basic Linux distribution for
the AMBER board, to become familiar with the build system and to test
the board features. The basic steps to get started with Yocto are here briefly
described5:

• Set up the Linux host system with the right packages. Most Linux

5A detailed quick-start guide is available at
http://www.yoctoproject.org/docs/latest/yocto-project-qs/yocto-project-qs.html.
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Figure 2.2: Layers of the Yocto project.

distributions are supported; the distro used in this case is Linux Mint
17.2.

• Download a Yocto release and add the BSP layers if needed, by editing
the conf/bblayers.conf file.

• Edit the conf/local.conf file and set build parameters to fully utilize
the host machine’s resources.

• Initialize the build environment by sourcing the oe-init-build-env script.
The script defines the OpenEmbedded build environment on the host.

• Run Bitbake, the task executor and scheduler used by the OpenEm-
bedded6 build system to create the Linux image. The bitbake com-
mand is followed by the OS image for the target. A lot of different
choices are available, based on the desired features: from lightweight
minimal images allowing the device just to boot, to more complex
images including graphic interface and applications.

When the building is done, the following images are located in the deploy
folder:

• A .sdcard image, that can be flashed as-is on an SD Card. It already
includes the kernel, the bootloader and a filesystem. Once flashed, the
card is ready to be plugged in the board for booting.

• The rootfs ext3 filesystem image

• The Linuk kernel image (uImage format)

• U-Boot bootloader images, both for SD Card and NAND Flash.

6The Yocto Project uses a build host based on the OpenEmbedded (OE) project,
which includes the BitBake tool, to create complete Linux images. The BitBake and OE
components are combined together to form the Poky build host.

10



• SPL images, both for SD Card and NAND Flash. The SPL (Secondary
Program Loader) is a small binary that fits in the SRAM, used to load
the main U-Boot into the system RAM.

• Other filesystem images, such as UBIFS and NFS.

The user can either flash the complete .sdcard image, that automatically
takes care of partitioning, or manually partition the card and flash images
separately. In both cases any image can be flashed to the SD Card with the
dd Unix shell command, by specifying the proper operands (e.g. data block
size and starting data block number).

11



2.3 U-Boot Bootloader

U-Boot is a multi-platform, open-source, universal bootloader with support
for loading and managing boot images, such as the Linux kernel. U-Boot
provides a combination of bootloader, system firmware and features such as
booting from IDE or SCSI disk, booting from flash memories and via net-
work. These aspects, along with the support for several platforms (including
68k, ARM, AVR32, Blackfin, MicroBlaze, MIPS, Nios, SuperH, PPC and
x86), makes U-Boot the most flexible and the most widely used bootloader
for embedded systems.
On most desktop and server systems, information on hardware devices’ con-
figuration, interrupt routing specifics and other information needed by the
Linux OS are provided by extensive system firmwares such as BIOS, UEFI
or OpenFirmware. Embedded systems usually don’t have such detailed
firmwares and need to perform these tasks through the bootloader. As
a consequence, on embedded devices U-Boot is preferred over more desk-
top/server oriented bootloaders such as GRUB or LILO. The main features
of U-Boot are the following:

• Network download via TFTP, BOOTP, DHCP, NFS protocols

• Serial download via terminal emulation program, such as Kermit or
Minicom. S-record and binary formats are supported.

• Flash memory management: copy, erase, protect, cramfs, jffs2

• Support for CFI NOR-Flash and NAND-Flash

• Various memory utilities (e,g. copy, dump. crc, check, mtest)

• Support for IDE, SATA, USB mass storage devices

• Boot from disk: raw block, ext2, fat, reiserfs

• Interactive shell: choice of simple shell or ”busybox” shell with many
scripting features.

U-boot provides a powerful command line interface, accessible through a
terminal emulator connected to the target board’s serial port, and a large
set of commands. User configuration is handled by means of environment
variables, which can be saved to flash memory. Command scripts can be
saved in environment variables as well and launched by the run command.
This highly interactive and programmable approach makes U-Boot a useful
tool for initial development and debugging on the board, as well as handling
the loading of the kernel image7.

7Extensive documentation for U-Boot is available at
http://www.denx.de/wiki/DULG/Manual
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Figure 2.3: Front image of the Amber board.

2.4 Preliminary work on AMBER board

To become familiar with U-Boot, the Linux Kernel and development tools,
some preparatory work has been done on the Amber board (Fig.2.3). Amber
(Advanced Mother Board for Embedded systems pRototyping) is an open
platform, designed to be a scalable and flexible general purpose test board
for any IoT activity. The board can be easily customized, by changing
both communication modules and processor. Amber can natively host all
Variscite SoMs (System On Module) among the MX6 and SOLO/DUAL
family. The board used for testing is equipped with a VAR-SOM-MX6
module with a quad-core Cortex-A9.

The Amber board can be connected to a PC through the USB serial port.
Interaction with the board can be handled through serial communication
softwares. Two open-source alternatives for Linux have been tested:

• Minicom: menu-driven serial communication program. Minicom can
be launched on a terminal by typing:
$ sudo minicom -D /dev/ttyXXX

replacing /dev/ttyXXX with the name of the serial device. The device
number can be identified by checking the kernel messages with the unix
command:
$ dmesg

• C-Kermit: C-Kermit is a portable Scriptable Network and Serial
Communication Software for Unix, similar to Minicom. C-Kermit can
be launched by typing:
$ kermit -l /dev/ttyXXX

replacing /dev/ttyXXX with the name of the serial device. Image
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or file transfering over serial port by using Minicom sometimes failes;
C-Kermit has been verified to be more robust on that.

In both cases, in order to successfully interact with the board, the baud rate
and the flow control have to be set.

The activity on the Amber board included:

• Booting Linux on the board, by using a Yocto-based image (Fido
release) including U-Boot, Linux 3.14 Kernel and Yocto filesystem.
Variscite provides patches to extend the framework to support i.MX6
System On Modules8.

• U-Boot recompilation and feature-testing

• Linux 4.1.13 Kernel porting

While U-Boot and the Linux kernel have been recompiled, the Yocto ext3
rootfs has been kept as filesystem.

U-Boot and the Linux Kernel have been build by using the Linaro toolchain.
In order to cross-compile for the arm architecture the following shell envi-
ronment variables must be set:

$ export PATH=/opt/linaro/gcc-linaro-4.9-2015.02-3-x86 64 arm-linux-gnueabihf/bin

$ export ARCH=arm

$ export CROSS COMPILE=arm-linux-gnueabihf-

Where /opt/linaro is the folder where the toolchain source have been ex-
tracted.

2.4.1 U-Boot testing

Compilation

Board vendors and processor manufacturers may supply U-Boot customized
images. Three main repositories hosts U-Boot source code suitable for the
Amber board’s hardware: the repository of Variscite (i.e. the SoM manu-
facturer), the repository of Freescale (i.e. the SoC manufacturer) and the
repository of Freescale’s community. Here Variscite’s repository has been
chosen. Here are the steps taken to build and run U-Boot on the board:

• Checkout of the latest repository branch:
$ git clone https://github.com/varigit/uboot-imx.git

8Instructions on how to patch Yocto to support the SoM
are available at: http://variwiki.com/index.php?title=VAR-SOM-
MX6 Yocto Fido R2 Build Yocto release
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Figure 2.4: U-Boot prompt screen.

• U-Boot cross-compilation for arm-based device:
$ cd uboot-imx/

$ export ARCH=arm

$ export CROSS COMPILE=arm-linux-gnueabihf-

$ make mrproper

• SD-Card image building:
$ make mx6var som sd config

$ make

• SD-Card (/dev/sdxxx) flashing:
$ sudo dd if=SPL of=/dev/sdxxx bs=1K seek=1; sync

$ sudo dd if=u-boot.img of=/dev/sdxxx bs=1K seek=69; sync NB: the sync
command is essential to commit buffer cache to memory.

The U-Boot prompt can be accessed by pressing a key right before the
kernel is loaded, to stop the booting process and interact with the bootloader
(Fig.2.4).

Demo testing

U-Boot allows to dynamically load standalone applications and run them
directly in the environment provided by the bootloader. Standalone ap-
plications can use some resources of U-Boot such as console I/O functions
or interrupt services and they are designed to work out-of-the-box on dif-
ferent architectures (see $UBOOT_ROOTDIR/doc/README.standalone). Two
demos are provided and automatically compiled with U-boot: the Hello
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world application will print the arguments provided by the user on the
console, while the CPM timer application will generate an interruption
every second (this last one is designed to work only on MPC8xx CPUs).
Sources and generated binaries of the demos can be found in the folder
$UBOOT_ROOTDIR/examples/standalone/.

Trying to run the Hello world app as it is on the Amber board will cause
a bootloader freeze, due to some inconsistencies in the configuration files
for the ARM architecture. By investigating the configuration files two main
discrepancies have been found: the first one is relative to the register holding
the pointer to the jump table for exported functions and the second one is
relative to start and load addresses for the standalone applications.

The sequence of steps to fix them and to be able to successfully run the Hello
world app on the Amber board is here described. The description refers to
U-boot 2013.10 (branch imx v2013.10 v4 on the Variscite repository).

Loading the Hello World app The binary file of the demo apps on U-
Boot can be loaded dynamically on a specific address and with a specified
baudrate with the prompt command loadb [ off ] [ baud ]. Once the
app has been loaded at the specified address on memory it can be started
with the prompt command go addr [arg ...], where ”arg” are the func-
tion’s arguments. These are the commands to correctly load and run the
Hello world demo app using C-Kermit:

$ loadb

$ CTRL+c

$ send UBOOT\_ ROOTDIR/examples/standalone/hello\_ world.bin

$ connect

$ go 12000000 Hello world!}

The Hello world demo contains calls to the printf U-Boot function. U-Boot
functions need to be exported in order to be used in standalone applications;
all exported functions are listed in the $UBOOT_PKG/include/_exports.h

file.

The functions are exported by U-Boot via a jump table and the pointer
to that jump table is machine-dependent. According to the definition in
$UBOOT_PKG/arch/arm/include/asm/global_data.h, the dedicated regis-
ter that holds the pointer to the jump table on ARM is r9.

Setting the right register for the pointer to the jump table In the
application folder, along with the sources and the compiled binaries of the
demos, there is a stubs.c file that define some crucial macros for exported
functions. Each macro defines, for each architecture, the register holding the
pointer to the jump table and sets the offset corresponding to the exported
function in the table. In particular, for the ARM architecture:
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stubs.c

/*

* r8 holds the pointer to the global_data , ip is a

call -clobbered

* register

*/

#define EXPORT_FUNC(x) \

asm volatile ( \

" .globl " #x "\n" \

#x ":\n" \

" ldr ip , [r8, %0]\n" \

" ldr pc , [ip, %1]\n" \

: : "i"( offsetof(gd_t, jt)), "i"(XF_ ## x *

sizeof(void *)) : "ip");

The first ldr instruction identifies the position of the jump table containing
all the addresses for the exported functions within the global data section,
while the second ldr instruction identifies the specific function to jump to
within the jump table. For example, a printf call will be resolved by the
compiler in:

.globl printf

printf:

ldr ip , [r8, \#84]

ldr pc , [ip , \#20]

The stubs.c file refers to r8 as the register holding the pointer to the jump
table, although the proper register for the ARM architecture should be r9 as
described earlier. In order for the processor to jump to the proper function,
r9 needs to be set instead of r8 in the macro definition.

Setting the right addresses for the standalone application The de-
fault load and start addresses of the applications for ARM-based devices
are specified in the $UBOOT\_ROOTDIR/arch/arm/config.mk file. The de-
fault load address is: CONFIG STANDALONE LOAD ADDR = 0x0c100000. Even
if 0x0c100000 is set as the default address, calling loadb on the U-Boot
prompt will return 0x12000000 as the default load and start address:

VAR_SOM_MX6 on Amber board (sd)> loadb

## Ready for binary (kermit) download to 0x12000000 at 115200

bps...

## Total Size = 0x0000024e = 590 Bytes

## Start Addr = 0x12000000

The address 0x12000000 is configured in
$UBOOT_ROOTDIR/include/configs/mx6var_common.h as:

#define CONFIG LOADADDR 0x12000000
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This inconsistency between the load address used by loadb command and
the load address set by the standalone application’s linker cause bad mem-
ory accesses. Setting CONFIG STANDALONE LOAD ADDR = 0x12000000 in the
$UBOOT\_ROOTDIR/arch/arm/config.mk allows the Hello World application
to run successfully.

A patch, applicable with the patch Unix command, has been developed to
automatically fix the issues described earlier.

2.4.2 Linux 4.1.13 Kernel Porting

The porting of the Linux 4.1.13 Kernel on the Amber board has been realized
using the existing porting of the Linux 3.14.38 Kernel by Variscite as a
starting point. Variscite’s custom version of the Linux 3.14.38 Kernel has
been developed as a branch of the official Freescale’s Linux 3.14.38 Kernel,
adding support for various SoM such as VAR-SOM-MX6, VAR-SOM-SOLO
and DART-iMX6. At the time when the porting was done, the latest Kernel
released by Variscite was 3.14.38 and the latest vanilla kernel available was
4.1.13. The decision on working on the latest release, and therefore to realize
the porting, has been made to ensure a more stable starting base and to
benefit from the performance and power efficiency improvements of the 4.1
Kernel.

The Vanilla 4.1 Kernel (i.e. the Linux kernel without additional patches)
already integrates the support for Freescale’s iMX6 processor, only the com-
patibility for the SoM needs to be added. The Amber on which the porting
has been realized features the VAR-SOM-MX6; the steps to port the Kernel
on Amber boards equipped with a different Variscite SoM are analogous to
the ones described.

The comparison between Variscite’s 3.14 kernel and Freescale’s 3.14 kernel
(i.e. the branch from which Variscite’s kernel has been developed from),
gives a hint on the changes that have to be made in order to support the
VAR-SOM-MX6 on the latest 4.1 kernel . The changes on the Variscite’s
kernel have been analyzed by running the diff Unix command against
Freescale’s kernel. diff analyzes two files and prints the lines that are dif-
ferent: essentially, it outputs a set of instructions for how to change one file
in order to make it identical to the second file. It can be run recursively, to
compare sub-directories as well. The major changes have been replicated on
the new 4.1 Vanilla Kernel, while some minor changes have been neglected
as not relevant to the purpose of the thesis.

Kernel configuration

Since the kernel offers several features and supports a lot of different hard-
wares, configuration is a required step before building it. The Linux ker-
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nel configuration is located in the file: $KERNEL_ROOT/usr/src/linux/

.config. It is not recommended to edit this file directly but to use one
of these commands:

• make config goes through each option and starts a character-based
questions and answer session

• make menuconfig starts a terminal-oriented configuration tool

• make xconfig starts a X-based configuration tool

Kernel configuration is controlled by configuration options, which are pre-
fixed by CONFIG in the form CONFIG FEATURE. An option will either indicate
some driver is built into the kernel (=y), will be built as a module (=m) or
is not selected. The unselected state can either be indicated by a line start-
ing with ”#” (e.g. "# CONFIG SCSI is not set”) or by the absence of the
relevant line from the .config file. To get off and running quickly it’s also
possible to use default configuration files (.defconfig extension), located
in the $KERNEL\_ROOT/arch/<target-architecture>/config/ folder.
The default configuration file for the VAR-SOM-MX6 module has been di-
rectly ported from the Variscite Linux 3.14.38 Kernel. None of the Kernel
options has been modified except for the CONFIG PROC DEVICETREE flag,
which has been enabled in order to allow device tree debugging after boot-
ing. The defconfig file is located in $KERNEL_ROOT/arch/arm/configs/imx_

v7_var_defconfig.

Porting Device Tree files

Device Tree data files specific for the VAR-SOM-MX6 module are located in
the $KERNEL_ROOT/arch/arm/boot/dts folder of the Variscite Kernel. All
.dts and .dtsi files regarding the module must be included in order for the
hardware of the SoM to be correctly detected at boot. The following files
have been ported to the 4.1.13 Vanilla Kernel:

• $KERNEL_ROOT/arch/arm/boot/dts/imx6qdl-var-som.dtsi device
tree source include file has been added to the 4.1 Kernel. The file con-
tains references to the hdmi audio, hdmi cec, hdmi core, hdmi video

devices, which have been unified in a single hdmi device in the latest
4.1 Kernel. Therefore all references to those nodes have been changed
accordingly in the .dtsi file. The label for the flexcan device has been
changed in the latest Kernel release, so all references to that device
have been corrected as well.

• $KERNEL_ROOT/arch/arm/boot/dts/imx6q-var-som.dts device tree
source file has been copied among the Kernel 4.1 .dts files. It includes
the imx6qdl-var-som.dtsi file and encompasses the description of
all physical devices on the VAR-SOM-MX6 module.
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• $KERNEL_ROOT/arch/arm/boot/dts/imx6q.dtsi and $KERNEL_ROOT/

arch/arm/boot/dts/imx6dl.dtsi have been modified. A label has
been added to the cpu@0 device, in order for the references on the
imx6qdl-var-som.dtsi file to be satisfied. In fact this file makes use
of the label to add two properties regarding voltage supplies for the
device.

• $KERNEL_ROOT/arch/arm/boot/dts/Makefile has been modified to
add a make rule to build the dtb for the board.

Making the audio codec work

The VAR-SOM-MX6 features the Texas Instrument’s TLV320AIC3106 low
power stereo audio codec, to process analog audio signals. In order for the
codec to be recognized, the following changes have to be made:

• $KERNEL_ROOT/sound/soc/fsl/imx-tlv320aic3x.c codec driver has
been copied in the same folder of the 4.1 Kernel. The $KERNEL_ROOT/

sound/soc/fsl/ folder groups all the Freescale SoC drivers.

• $KERNEL_ROOT/sound/soc/fsl/Makefile has been consequently mod-
ified, to indicate that the added codec driver source file has to be built.

• $KERNEL_ROOT/sound/soc/fsl/Kconfig file has been modified to add
a new kernel configuration option to support SoC audio with the
tlv320aic3x codec (including the description for the option itself).

Making Wi-Fi and Bluetooth work

The VAR-SOM-MX6 includes the Texas Instruments’ WL183xMOD WiL-
ink, a module for both Wi-Fi and Bluetooth support. The driver source file
for the module added by Variscite in the 3.14 Kernel has been ported to the
4.1 Kernel as follows:

• $KERNEL_ROOT/drivers/misc/ti-st/tty_hci.c driver has been
copied in the same folder of the latest Kernel.

• A rule to build the driver source file just added has been added to
$KERNEL_ROOT/drivers/misc/ti-st/Makefile.

• A new kernel configuration option to support the WiLink module has
been added to the $KERNEL_ROOT/drivers/misc/ti-st/Kconfig file.

• $KERNEL_ROOT/drivers/bluetooth/btwilink.c has been modified,
according to some changes apported by Variscite in the old 3.14 Kernel.
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Build and test the Kernel

The kernel has been built with the Linaro toolchain as follows:

$ export ARCH=arm

$ export CROSS_COMPILE=arm -linux -gnueabihf -

$ make -j6 LOADADDR =0x10008000 uImage

$ make -j6 LOADADDR =0x10008000 modules

$ make -j6 dtbs

The kernel image and the device tree blob are then copied to the SD-Card
and modules are installed:

$ sudo make ARCH=arm modules \_ install

INSTALL \_MOD\_PATH=/ media/rootfs/

$ cp arch/arm/boot/zImage /media/laura/BOT\_ varsomi/

$ cp arch/arm/boot/dts/imx6q-var -som.dtb /media/BOT\_ varsomi/

Once the board is booted from the SD and the kernel is loaded, it’s possible
to change the current console loglevel (to be able to see all debug printed
messages) by typing on the kernel prompt:
$ echo 8 > /proc/sys/kernel/printk

The patch for the 4.1 Kernel, including all changes made so far, has been
generated with the git diff command. At the time of writing, the latest
stable vanilla kernel is 4.4.6. The patch has been tested and verified to be
working on this latest version as well.
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Chapter 3

NXP i.MX 6SoloX SABRE
board

Once familiar with the build tools and the kernel development environment,
the work was focused on the NXP i.MX 6SoloX SABRE (Smart Appli-
cation Blueprint for Rapid Engineering) board (Fig.3.1). The reason for
choosing this board relies on its heterogeneous asymmetric architecture: the
board features the i.MX 6SoloX processor, which couples a Cortex-M4 and
a Cortex-A9 in a single chip. The hybrid MPU/MCU system-on-chip de-
sign allows to run advanced operating systems (e.g. Linux, Android) while
providing realtime responsiveness.

Figure 3.1: Front view of the i.MX 6SoloX SABRE board.
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Figure 3.2: Block diagram of the i.MX 6SoloX processor.

3.1 i.MX 6SoloX Processor

As said before, the i.MX6 SoloX processor has two cores: one ARM Cortex-
A9 (1 GHz with 512 KB L2 cache) and one ARM Cortex-M4 (200 MHz with
16 KB instruction and data caches). The Cortex-A family of processors pro-
vides a range of solutions for devices that feature a rich operating system
such as Linux or Android. The Cortex-A9, based on the ARMv7-A architec-
ture, is a popular choice in smartphones, low-cost handsets, tablets, digital
TV and applications enabling the IoT (Internet Of Things). The Cortex-M4
is built on the ARMv7-M architecture and includes instructions specifically
optimized to handle DSP (Digital Signal Processing) algorithms. It has also
the option to get single precision FPU (floating point unit). Therefore, the
Cortex-M4 is a better choice (in terms of performance and power consump-
tion) for applications involving floating point math, in comparison to the
other processors of the Cortex-M series. This comes in handy in the case of
this study since the developed application manipulates sensor data, which
are usually delivered as floating points to ensure accuracy. Moreover, IMU
data fusing algorithms outputs floating point data as well.

Developing an application that uses both cores requires handling the inter-
core communication and deciding which core is responsible for each device,
since both can access peripheral blocks on the processor. Safe access to
the SoC resources (peripherals, shared memory) is ensured by a Resource
Domain Controller (RDC); if a peripheral is assigned to one core, the other
one won’t try to access it. The belonging of a device’s control to one core or
the other can be specified by enabling/disabling the peripheral in the device
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tree file.
The Cortex-A9 is the primary core and booting i.MX 6SoloX requires U-
Boot (or another bootloader) to be present. As a primary core, the Cortex-
A9 is responsible for loading the bootloader, initiating the Cortex-M4
firmware and launching the M4. Once the Cortex-A9 is up and running,
the Cortex-M4 can be brought up either by the U-Boot command m4boot

or after the Cortex-A9 starts loading the Linux kernel. The Cortex-M4
does not have a boot ROM, so in either case the application code and the
firmware have to be made available to the M4 as a unified binary image via
on-board QSPI flash. The Cortex-M4 is brought up by the Cortex-A9 by a
reset following the standard M4 start-up process of booting from a vector
table at address zero. Once it’s up, the Cortex-M4 can interact with most
of the on-board peripherals.
Communication between the cores is possible, by exchanging messages
through buffers in shared memory space; a multi-core communication so-
lution will be described in the next section.
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3.2 MQX RTOS

MQX (Message Queue Executive) is a proprietary Real Time operating
system distributed by NXP, designed for uniprocessor, multiprocessor, and
distributed-processor embedded real-time systems. The RTOS is integrated
with a full range of leading 32-bit embedded processors (including Cortex-
M4) and natively includes the commonly used device drivers. Crucial por-
tions of the OS (e.g. context switching and interrupt handling) are opti-
mized for NXP architectures. The boot sequence have been optimized as
well, to guarantee minimum delay time between the hardware reset and the
application startup.

MQX is based on a microkernel architecture and it’s designed to take as little
space as possible, accordingly to memory constraints of embedded systems,
thus leaving more space to the applications. The OS can be configured to
occupy as little as 6 KB of ROM, including kernel, interrupts, semaphores,
queues and memory manager.

Real-time constraints are satisfied by priority-based preemptive scheduling;
this ensure that deadlines of high-priority threads are consistently met, ir-
respective of the number of competing threads. MQX RTOS allows three
task-scheduling policies: FIFO (which is the default one), Round Robin and
explicit scheduling through task queues. A combination of the three is also
possible, by setting the policy for each task separately.

The RTOS provides a run-time library of functions (with complete API),
which can be used to realize real-time multitasking applications. Among
others, there are MCC (Multi-Core Communication) functions that imple-
ment a simple message passing protocol, allowing communication between
tasks running on the same CPU or on different processors.

The key features of MQX are the high degree of personalization and scalable
size. The highly customizable design is achieved by adopting a component-
based approach. MQX consists of a set of core (mandatory) and optional
components. Functions of core components are the only ones called by the
RTOS itself and can be called by applications as well. Furthermore, appli-
cations can be extended by adding additional components. In the diagram
of Fig.3.3 core components are represented in the inner circle, while optional
components are in the outer circle. Components are linked only if required,
to keep the system as minimal, light and fast as possible. The version of
MQX used is 4.1.0 (the latest available release at the time of the thesis
development).

3.2.1 MQX source structure

Full source code for MQX RTOS and communication stacks is available with
a commercial-friendly license, that enables developers to edit the sources but
to distribute only the resulting binary code. The structure of the source code
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Figure 3.3: Overview of core and optional MQX components.

is rather simple and it’s here described:

• build: this folder contains the build project for all supported toolchains.

• config: this folder holds the configuration files for the OS. Compile-
time configuration options for each supported board are in the config/
<board>/user\_config.h subfolder.

• doc: this folder contains complete documentation for the RTOS, in-
cluding exhaustive explanation of the MCC library.

• lib: this folder contains the built libraries for the target, in the corre-
sponding subfolder lib/<board>. Built libraries for debug mode (in
which compiler optimization are set low to simplify debugging) and
for release mode (in which compiler optimization are maximum) are
respectively in the lib/<board>/debug and lib/<board>/release

folders.

• mcc: this directory contains the source code for MCC libraries and
related examples.

• mqx: this directory contains the source code for the MQX kernel.
The mqx/examples folder holds useful examples.

• tools: contains additional tools, such as U-Boot images.

MQX for the SABRE board can be built with the Linaro toolchain. Spe-
cific scripts to ease the building process are available in the $MQX_ROOTDIR/

build/<board>/make folder.
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3.2.2 MCC - MultiCore Communication

The communication between MQX applications running on the M4 core and
Linux applications running on the A9 core is enabled by the MCC (Multi-
Core Communication) subsystem. MCC provides a software mechanism to
exchange messages between tasks running either on the same core or on
different cores in a heterogeneous AMP environment, by using shared RAM
and interrupts. The MCC subsystem is designed to be lightweight and fast
and all settings (e.g. buffer sizes, number of buffers and maximum number of
endpoints) are configurable by the user at build time. It also provides a set of
well-documented API functions that allows different send/receive modalities,
including copy-less mechanisms1. The working principles of MCC are briefly
described below.

Endpoints User applications communicate with each other by sending
messages to endpoints, which are receive buffer queues in shared RAM.
Similarly to the IP protocol each endpoint is addressed by a triplet:

• Core: number of the core within the processor (i.e. in the i.MX
6SoloX processor the Cortex-A9 is core 0 while the Cortex-M4 is core
1).

• Node: arbitrary number associated to each user process involved in
MCC.
NB: MQX has only one node.

• Port: arbitrary value up to a configurable maximum (except for the
port 0, which is reserved).

Unlike the IP protocol, there is no procedure to find out the [core, node,
port] triplet since it’s part of the user’s system design and implementation.
Here’s an example of pseudo-code for the endpoint creation on both sides:

Linux side

mcc_create_endpoint ([0,0,1], 1) //Cortex -A9 is core 0.

Linux will send on [1,0,2] and receive on [0,0,1].

MQX side

mcc_create_endpoint ([1,0,2], 2) //Cortex -M4 is core 1.

MQX is arbitrarly set to be node 0, receiving on

port 2.

1 A complete documentation (including API reference) for MCC is available at
http://cache.freescale.com/files/32bit/doc/user guide/MQX MCC User Guide.pdf
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Send Receive

Copy mode: data is copied from
the sending application’s buffer to
the MCC buffer in the shared mem-
ory.

Copy mode: data is copied from
the MCC buffer in shared memory
to the receiving application’s buffer.

Copy-less mode: a pointer to the
pre-allocated MCC buffer in shared
memory is provided to the sending
application. The MCC buffer is di-
rectly filled with the data to be sent.
The message is then sent to the des-
tination endpoint.

Copy-less mode: a pointer to the
MCC buffer containing the received
data is provided to the receiving ap-
plication. Received data is directly
read from shared memory. Finally,
MCC buffer is released.

Table 3.1: MCC send/receive options.

Buffer management Data is transferred between endpoints in fixed size
buffers, allocated in one common buffer pool in shared RAM. All buffers in
the pool are allocated in the initialization step.

The API supports both send/receive with and without copy. In the first
case data is copied from the user application to the buffer and viceversa,
respectively in the sending and receiving phase. In the latter case, a pointer
to the MCC buffer is provided to the application, both during sending and
receiving. If copy-less send/receive mechanism is used, the user must release
the MCC buffer once the operation is complete. Table 3.1 summarizes the
available send/receive options.

Example of a data transfer between Cortex-A9 and Cortex-M4:

Linux side

mcc_send([0,0,1], [1,0,2], "hello", 5, 50) //A message

"hello" of 5 bytes is sent (with copy) from core 0

to core 1. A timeout of 50 milliseconds is set , to

wait for a free buffer .\\

mcc_recv_copy(&src_ep , [0,0,1], &buf , sizeof(buf),

length , 0xffffffff) //Core 0 receives from endpoint

’&src_ep ’. The received message of ’length ’ bytes is

stored in ’&buf ’ of size ’sizeof(buf)’. The last

parameter indicates to wait forever (blocking call).

MQX side

mcc_recv_nocopy (&src_ep , [1,0,2], &buf_p, length ,

0xffffffff)//Core 1 waits (forever) for a message of

’length ’ bytes , coming from endpoint ’&src_ep ’. Data

is directly read from MCC buffer pointed by

’&buf\_p’.\\

mcc_send([1,0,2], [0,0,1], "hello", 5, 50) //A message
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"hello" of 5 bytes is sent from core 1 to core 0,

with a timeout of 50 milliseconds.

Shared RAM Shared RAM contains, along with buffers for transferring
data between endpoints, internal buffer management data structures such
as endpoint and signal queue head and tail pointers. All accesses to the
shared memory are synchronized by hardware semaphores. The maximum
number of endpoints, the number of data buffers and their size in bytes can
be adjusted in the $MQX_ROOT/mcc/source/include/mcc_config.h header
file.

Signaling Signaling between communicating endpoints is implemented
through interrupts. An interrupt is sent from one core to the other in either
one of the following cases:

• A buffer has been queued to an endpoint on the interrupted core

• A buffer has been freed by the interrupting core

Each core has its own signal queue and each signal indicates the type of
interrupt. The maximum number of outstanding signals queued and waiting
to be processed can be configured in the mcc_config.h file.

3.2.3 MCC pingpong demo application

The pingpong demo application is a simple demo that exemplify the com-
munication between two endpoints on different cores. In the example, one
endpoint is created on the Cortex-A9 core and the other one on the Cortex-
M4 core. The application consists of two communicating tasks, a sender
on the Cortex-A9 and a receiver on the Cortex-M4. Two initial steps are
required on both communication ends: MCC subsystem initialization and
MCC version verification (the major version number of the library must be
the same on both cores) . Endpoints are then created on each core, by initial-
izing the proper [core, node, port] triplet. The sender task sends a message
to the responder, containing an int counter value. The responder task reads
the received data, increments the counter and sends the result back to the
sender. The two tasks keep exchanging messages in a loop fashion. The
schema in Fig.3.4 illustrates the demo’s flow of execution.

The MQX application runs on the M4 core, therefore only the responder
task is active. The A9 core is responsible for implementing and running
the sender task. The code to initialize the mcc communication and launch
the main task from Linux on the A9 is located in $KERNEL_ROOT/drivers/

char/imx_amp/imx_mcc_test.c. The Linux driver will be discussed later
in the Kernel porting section.
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Figure 3.4: Ping-pong demo application.
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3.2.4 Firmware and demo compilation

The MQX firmware and the demo application are built together in a single
image, that must be copied in QSPI flash in order for the Cortex-M4 to
execute it at boot. Scripts to facilitate the compilation of applications are
provided. The building process results in a ELF file that includes both
MQX firmware and the application. The file can be converted to a binary
file ready to be flashed, by using the Linaro toolchain:

$ TOOLCHAIN_ROOTDIR/bin/arm -none -eabi -objcopy \

./gcc_arm/ram_release/pingpong_example_imx6sx_sdb_m4

.elf \

-O binary m4_app.bin

The binary file can then be transferred on the SD-card and copied in the
QSPI flash by the bootloader.

32



3.3 Working on the i.MX 6SoloX SABRE
board

The work on the SABRE board has been built around the 4.1.13 Linux kernel
and MQX 4.1.0 (which were the latest versions at the time of developing
this thesis). The steps to port all necessary libraries, to boot the Linux
kernel and to test the inter-communication between the two cores of the
i.MX 6SoloX processor are here described.

3.3.1 Linux 4.1.13 Kernel on the SABRE board

Support for the i.MX 6SoloX SABRE board is already included in the official
Linux 4.1.13 Kernel release. However, the latest vanilla kernel lacks support
for the MCC subsystem, even though the proper libraries were included
in the older 3.14.38 release. The latest release also does not include some
relevant adjustments on the board’s device tree file, required to boot the
M4 core alongside the A9 core and ensure a peaceful coexistance of the
two. The MCC libraries, their dependencies and the required device tree
modifications have been integrated in the 4.1.13 kernel.

As with the previous case with the Amber board, a patch for the 4.1.13
Kernel that includes all changes made has been created with the git diff

command.

Kernel configuration

The default kernel configuration file used to build for the SABRE board
is $KERNEL_ROOT/arch/arm/config/imx_v6_v7_defconfig. The following
flags have been enabled:

• IMX MCC TEST: this flag enables the support for the MCC ping pong
test.

• IMX SEMA4: needed by the IMX MCC TEST flag.

• INV MPU6050 IIO: this flag enables the support for the Invensense
MPU6050 sensor, a gyroscope/accelerometer combo device. The de-
vice, together with the integrated MAG3110 sensor, has been used as
IMU (Inertial Measurement Unit) and its functioning will be described
on the next chapter.

Device Tree

As said before, both the A9 and the M4 core might have access to peripheral
blocks in the processor. The decision on which core holds control on a
specific device affects the device tree file, used by Linux during the drivers’
initialization. A separate dts file has been added to allow the two cores to
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boot simultaneously, and some additional devices have been added on the
main board’s dts:

• The imx6sx-sdb.dts file has been edited to add support for the PCI
EXPRESS interface and for the I2C3 bus. These additions are re-
quired for the kernel to recognize and correctly initialize the GY-87
board, which contains the MPU6050 sensor. The GY-87 module has
been connected to the SABRE board through the PCIe slot and com-
munication takes place over the I2C3 bus. The correct device driver
initialization has been observed from within the Linux kernel, to check
whether the GY-87 was correctly switching on and working. These ad-
ditions on the device tree have been made only to quickly check for
the correct functioning of the module; control is then handed over the
M4 core as explained on the next point.

• The imx6sx-sdb-m4.dts file has been added. The file includes the
main imx6sx-sdb file, but it disables some peripherals conflicting with
the Cortex-M4 core. Among others, the I2C3 device has been disabled
since sensors’ polling will be ultimately managed by the M4 core and
not by the A9 core. The user is free to choose whether to use only the
A9 core, thus using the imx6sx-sdb dtb, or both the A9 and M4, by
using the imx6sx-sdb-m4 dtb.

MCC libraries

The following files have been ported from the old 3.14.38 kernel to the latest
release:

• MCC header files The following files contain all shared function dec-
larations and macro definitions for the MCC subsystem and they have
been copied to the $KERNEL_ROOT/include/linux folder: imx_sema4.
h, mcc_api.h, mcc_common.h, mcc_config_linux.h, mcc_imx6sx.h,
mcc_linux.h.

• MCC source files The following source files contain the implemen-
tation of the MCC core functions and APIs and they have been copied
in the $KERNEL_ROOT/arch/arm/mach-imx/ folder: mcc_api.c, mcc_
common.c,mcc_config.h,mcc_imx6sx.c, mcc_linux.c. The mach-imx
subdirectory contains all source code for cpus of the i.MX family.

• MCC auxiliary files The mu.c source file, containing auxiliary func-
tions required for the multi-core communication, has been copied to
the $KERNEL_ROOT/arch/arm/mach-imx/ folder. The following files,
contained in the same folder, have been modified to add additional
functions needed by the MCC subsystem: clk-imx6sx.c, common.h,
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gpc.c. The added functions mainly concern the M4 core manage-
ment and status monitoring (e.g. check if M4 is sleeping, set the bus
frequency).

• Makefile The $KERNEL_ROOT/arch/arm/mach-imx/Makefile has been
edited: rules to compile the newly added files have been added.

AMP driver porting

The MCC ping pong demo application can be tested through a character de-
vice driver, that exchanges messages with the M4 core and prints the result
on the screen. A character device driver for this purpose is included within
the Linux 3.14.38 kernel files, in the $KERNEL_ROOT/drivers/char/imx_amp
folder. The directory contains the source code for the ping pong demo, the
source code for the MCC tty demo (i.e. same as the ping pong applica-
tion, with terminal interface) and the source code for the imx sema4 driver
(i.e. mutex implementation used by the MCC subsystem). The Makefile

to build the source code and the Kconfig file to add the proper kernel con-
figuration options are included in the folder as well. These drivers have
been ported to the 4.1 Kernel, by copying the entire imx_amp folder and by
adjusting the following files:

• $KERNEL_ROOT/drivers/char/Makefile: a rule to build the imx_amp

subfolder has been added.

• $KERNEL_ROOT/drivers/char/Kconfig: an instruction has been added
to source the imx_amp/Kconfig file.

In particular, the imx_mcc_test.c file contains the implementation of the
sender task, responsible for initiating the communication with the responder
task on the M4 core in the ping pong demo. The code has been used as a
starting point to develop the character device driver for the sensors’ data
receiving and visualization, as will be described in the next chapter.

3.3.2 Inter-core communication testing

The output of both A9 core and M4 core can be analyzed by connecting the
board to the PC through the J-16 Debug port (see Fig.3.1) and by using
Kermit (or any other serial communication software). When connecting to
the board, two tty devices are shown: the first one handles serial communi-
cation with the A9 core, the second one manages the serial communication
with the M4 core. By opening one instance of Kermit for each tty device,
its possible to interact with both cores independently.

35



U-Boot configuration

In order to boot the M4 core along with the primary core, some U-Boot
environment variables need to be updated. First of all the dtb file to be
used by Linux need to be changed to the imx6sx-sdb-m4.dtb. Then, the
name of the M4 application file has to be set. Finally, the boot command
has to be edited to allow the M4 core to be booted right before the A9 core.
The following commands show how to properly set the U-Boot environment:

=> setenv fdt_file imx6sx -sdb -m4.dtb

=> setenv m4image m4_app.bin

=> setenv mmcargs "${ mmcargs} uart_from_osc"

=> setenv bootcmd "run m4boot ;${ bootcmd }"

=> saveenv

The following commands copy the Cortex-M4 application from the SD-Card
to the QSPI flash and eventually boot the board:

=> run update_m4_from_sd

=> boot

Ping-pong demo testing

As soon as the last U-Boot command is entered, the Cortex-M4 application
is loaded and the Linux kernel is simultaneously booted in the Cortex-A9
core. A message is printed on the M4 serial console, suggesting that the
demo can be started by pressing ”S” once the A9 peer is ready (Fig.3.5)
Once the Linux boot process on the A9 core finishes, the ping-pong sender
task can be started by writing in the file descriptor of the character device
that handles the multi-core communication. In fact, the function responsible
for initializing MCC and starting the sender task is triggered whenever the
user-space writes something in the pingpong en file (sysfs is used in the
character device driver as interface with the user-space). This can be done
by typing the following command on the A9 serial console (after logging in
as root):
$ echo 1 > /sys/bus/platform/drivers/imx6sx-mcc-test/mcctest.15/pingpong en

Once the sender task is running and the demo application on the M4 is
started, the two tasks begin to exchange data and log messages are printed
on both consoles. The endpoint on the A9 (sender task) receives data from
the [1,0,2] endpoint on the M4 (Fig.3.6), whereas the endpoint on the M4
(responder task) receives data from the [0,0,1] endpoint on the A9 (Fig.3.7).

While the communication is active, the red led lights on the board associated
respectively to the M4 and the A9 are both blinking, showing that both cores
are up and running (Fig.3.8).
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Figure 3.5: Ping-pong demo application on Cortex-M4.

Figure 3.6: Sender task on Cortex-A9.
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Figure 3.7: Receiver task on Cortex-M4.

Figure 3.8: Led lights on the board showing that both cores are running.

38



Chapter 4

Application in a drone
navigation system

Unmanned Aerial Vehicles Over the last few years there have been a
significant growth in the manufacture and sales of Unmanned Aerial Vehicles
(UAV), often reffered to as drones, quadcopters or multicopters. This new
breed of radio controlled vehicles is rapidly gaining in popularity and has
applications in the military, civil and commercial fields.

Military use of drones mainly involves the ISR field (i.e. Intelligence, Sur-
vaillance, Reconaissance). By being lightweight and flexible, quadcopters
are excellent ISR assets that can wirelessly transmit critical live video and
data from multiple sensors directly to a ground control unit. The versatility,
the ease of use and the broad variety of models, ranging from minimal low
cost solutions to fully equipped high-end options, makes drones affordable
and interesting from a civilian perspective too. The quadcopter has a simple
structure with very few moving parts and it’s relatively easy to assemble.
In its simplest form it is made up by four motors and four propellers on a
lightweight frame (usually in light wood, carbon fibre or fibreglass) equipped
with a small control board connected to a Lipo battery. Various experimen-
tations and the improvement over the years of microprocessors, batteries
and accelerometer/gyroscope technologies have led to a wide spectre of de-
signs and variations with different amounts of arms, including tricopters,
hexacopters and octocopters.

IMU The control board is equipped with an embedded stabilization sys-
tem, made up of sensor components that generates information about the
different mechanical phenomenon involving the drone, such as acceleration,
tilt, orientation in space, angular velocity, pitch and rotation. A device that
hosts multiple types of sensors is reffered to as an Inertial Measurement Unit
(IMU). An IMU measures accelerations, rotation rates and possibly earth’s
magnetic field to determine the quadcopter’s orientation. Usually the term
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Figure 4.1: Diagram illustrating a quadcopter’s flight control system.

IMU refers to a sensor that incorporates a tri-axis accelerometer and a tri-
axis gyroscope; the term MARG (Magnetic, Angular Rate, and Gravity)
refers to a sensor device that includes also a tri-axis magnetometer. An
IMU alone can measure the body’s attitude relative to the direction of grav-
ity; MARG systems, also known as AHRS (Attitude and Heading Reference
Systems) can measure the attitude relative to both the direction of gravity
and the earth’s magnetic field, thus computing a complete and more precise
evaluation. The control board continuously takes readings from the IMU,
decodes the commands coming from the pilot, processes the information
and computes the PID values to control the motors’ speed and mantain the
body’s balance. A quadcopter’s flight controller system is shown in Fig.4.1;
the output signals generated by the control board are fed to the ESCs (i.e.
Electronic Speed Controller), that provide signals to the motors.

Three sensors are at the root of a drone’s control and autonomous flight: the
accelerometer, which measures acceleration and tilt, the gyroscope, which
measures angular velocity and orientation and the magnetometer, which
measures gravitational forces (Fig.4.2).

Figure 4.2: Common sensors used in a IMU.
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The control software is responsible for:

• Balancing the drone by using IMU sensor’s data

• Interpreting the pilot’s commands and converting them in signals for
the motors

• Verifying the correct functioning of the components

• Sending data to the ground control station

The integration of data coming from the different sensor sources is known as
multisensor data fusing and it is a wide ranging subject with many areas
of application[9]. Several approaches have been proposed, among which the
Madgwick algorithm and the Mahony algorithm that will be described later.

Flight control board A flight controller for a multi-rotor UAV is usually
made up of a microcontroller, sensors and input/output pins. The micro-
controller either runs an RTOS or some low-level code with interrupts to
guarantee low latency on critical sections of the code, such as IMU data
gathering and PID running.

Even if the most common tendency so far is to use a single microcontroller
unit, multiprocessor solutions are recently being taken into consideration.
Furthermore, there has been growing interest in the use of Linux SoCs as
flight control boards[8]. Running Linux on a drone highly improves its capa-
bility to run autonomous operations and higher-level computations. More-
over, involving Linux opens up to new possibilities for ground-to-drone com-
munication, by allowing wireless control over SSH instead of traditional
radio-control. The drawback of using a SoC running an OS such as Linux is
that it needs to be properly tweaked and optimized to ensure that real-time
needs of critical operations are consistently met. Linux can be turned into
a real-time system by applying the PREEMPT RT patch, that removes all
unbounded latencies from the kernel. An heterogeneous asymmetric mul-
tiprocessing approach combines the best of both microcontroller and mi-
croprocessor solutions, by joining a MCU for dealing with low-latency tasks
(e.g. IMU interfacing, PID management, interpreting manual flight controls)
and a MPU for higher-level tasks (e.g. navigation, computer vision, send-
ing data to the ground station) (Fig.4.3). Having the two combined on the
same chip highly increases the drone’s ability of running fully autonomous
tasks. Finally, splitting the tasks across multiple dedicated cores and del-
egating all repetitive operations to a microcontroller running an RTOS is
indeed a much powerful and appealing solution if compared to the use of
patched Linux alone. Inter-core communication completes the picture by
enabling cooperation and message exchanging between the cores. The aim
of this thesis is to study the possibility to use the i.MX 6SoloX SABRE
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Figure 4.3: Diagram of a quadcopter’s flight system involving both a MCU
and a MPU.
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Figure 4.4: Illustration of roll, pitch and yaw rotations.

as a flight control board and to prove the exploitability of its asymmetric
multi-processing architecture from a drone-oriented perspective.

Quadcopter’s dynamics The dynamics of a UAV, assumed as a rigid
body, can be described either through the Euler parametrization or by means
of quaternions. Although Euler angles are more intuitive and easier to de-
velop and visualize, quaternions represent a more efficient method for air-
craft dynamics modelling since the orientation in space can be characterized
by a single rotation around an axis.

Euler angles Euler angles provide a way to describe the 3D orientation
of a body using a combination of three rotations about different axes: yaw,
pitch and roll (Fig.4.4)[6].
Multiple coordinate frames are used to describe the orientation of the sen-
sor. The Euler parametrization suffers from a phenomenon called “gimbal
lock”, which prevents the orientation of the body to be uniquely represented
by Euler angles in certain circumstances. In fact when the pitch angle ap-
proaches 90 degrees (i.e. when the body is vertical) the movement of the
sensor caused by yaw and roll is exactly the same. Therefore, one degree of
freedom is lost and it is impossible to determine unambiguously the body’s
orientation (Fig.4.5).

Quaternions Quaternions provide an alternative method that avoids gim-
bal lock and allows better performance in numerical implementation. A
quaternion is a four-dimensional complex number, composed of a real part
and three imaginary parts and it can be used to represent any rotation in
3D space. A quaternion can be formalized as:

q = s + xi + yj + zk s, x, y, z ∈ R

43



Figure 4.5: Body’s position in which gimbal lock occurs.

Figure 4.6: Inertial frame and body frame.

where
i2 = j2 = k2 = ijk = −1

and
ij = k jk = i ki = j

ji = −k kj = −i ik = −j

A quaternion represents the rotation from a Earth-fixed reference coordinate
frame, the so-called “inertial frame”, to the “body frame” aligned with the
sensor (Fig.4.6). Even if this representation is less intuitive, one rotation
is enough to describe the body’s orientation, unlike with Euler representa-
tion. The first element of a quaternion is the “scalar part” and specifies the
amount of rotation that should be performed. The other elements represent
a vector about which rotation should be performed. Both sensor fusing algo-
rithms described below use quaternions to determine the drones orientation
relative to the reference coordinate frame.
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4.1 Mahony’s algorithm

The purpose of an orientation filter is to optimally join gyroscope, accelerom-
eter and magnetometer measurements to estimate a body’s orientation.
Robert Mahony theorized a solution to obtain good estimates from low-cost
IMUs, affected by high noise levels and distortion[3]. The complementary
filter proposed by Mahony addresses the problem of merging gyroscope and
accelerometer data, in spite of the different nature of the rotation rate vec-
tor and the acceleration vector. It is also an alternative to the non-linear
Kalman filters, that are more power-demanding and therefore less suitable
for small low-cost UAVs. The idea behind Mahony’s approach is to cor-
rect the rotation rate vector, computed from the gyro data, by an amount
determined by a Proportional-Integral controller. The correction vector is
calculated by means of the previously estimated attitude and acceleration.
The main steps of the algorithms can be simplified as:

• compute the rotation rate vector and the acceleration vector, by gath-
ering data respectively from the gyroscope and the accelerometer.

• compute the gravity vector, starting from the current orientation es-
timation

• calculate the error vector

• calculate the rotation rate correction, by using the previous attitude
estimation and acceleration vector

• apply the correction and recalculate the rotation rate vector

• integrate the rate of change to evaluate the orientation

• repeat the procedure

Mahony’s filter, originally evolving on the special orthogonal group SO(3),
has been implemented in quaternion form by Sebastian Madgwick.
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4.2 Madgwick’s algorithm

Madgwick presented an alternative solution that also employs a quaternion
representation of orientation and that can be applied to both IMU and
MARG sensor devices[5]. The algorithm first computes the orientation from
angular rate, measured by the gyroscope, then it computes orientation from
gravity and earth’s magnetic field, measured respectively by the magne-
tometer and the accelerometer. By fusing the two computed quaternions,
an estimated orientation of the body’s frame relative to the inertial frame
is obtained.
Starting from the tri-axis gyroscope output, that measures the angular rate
about the x,y and z axes of the sensor frame, the quaternion derivative that
represents the rate of change of orientation of the inertial frame relative to
the sensor frame can be computed. The quaternion describing the orienta-
tion of the inertial frame relative to the sensor’s frame can be obtained by
numerically integrating the quaternion derivative and by taking into account
the previous estimate of orientation. The tri-axis accelerometer outputs the
magnitude and the direction of the field of gravity in the sensor frame, com-
bined with linear accelerations caused by the motion of the sensor. The
tri-axis magnetometer outputs the magnitude and direction of the earth’s
magnetic field in the sensor frame, together with the local magnetic field
and distortions. The measurement of the earth’s magnetic field alone do
not provide a unique evaluation of the orientation of the sensor. The mea-
sures, along with the reference directions of both fields, must be combined
to obtain a unique solution. Finally, the estimated orientation of the sensor
is obtained by merging the orientation measures computed so far.
The presence of ferromagnetic elements in proximity of the magnetometer
can affect the earth’s magnetic field measure. Madgwick’s algorithm includes
a normalization step to compensate for magnetic distortion. An orientation
filter must also account for gyroscope zero bias drifting, due to temperature
variations and motion. In Madgwick’s approach, based on the filter theorized
by Mahony, gyroscope bias drift is balanced through the integral feedback
of the error in the rate of change of orientation.
The open source code for Madgwick’s implementation of Mahony’s comple-
mentary filter in C is available and downloadable for free1.

1The code is hosted at http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
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4.3 Demo application overview

A demo application for the i.MX 6SoloX SABRE has been developed to
prove the usability of the board as a flight control system. The application
consists of a MQX application running on the Cortex-M4 and a Linux user-
space application running on the Cortex-A9; inter-core communication is
handled by the MCC subsystem. The application on the Cortex-M4 side
polls the IMU sensor and feeds the data to the Mahony and Madgwick filters.
Samples of the quaternions obtained are then periodically sent to the Cortex-
A9 for visualization. A second task on the M4 application, distinct from the
one polling the sensors, keeps track of the elapsed time and periodically sends
an average evaluation of the quaternions obtained so far to the Cortex-A9.
The Linux counterpart on the Cortex-A9 is responsible for receiving the
messages from the Cortex-M4 and displaying the results.
Ideally the Cortex-M4 would use the information on the sensor’s orientation
expressed by the quaternions to keep the quadcopter stable and balanced (by
interpreting manual flight commands and by sending signal to a PID con-
trolling the motors), whereas the Cortex-A9 would use data in higher-level
programs for navigation, send corrections back to the M4 and wirelessly send
data to the ground station for visualization. The demo partially implements
this approach and shows a possible method for exploiting the asymmetric
architecture of the board.
The developing of the application involved the following aspects:

• Writing the MQX driver for the MPU6050 sensor

• Integrating the Mahony and Madgwick filter implementations

• Using MCC for inter-core communication

• Writing a character device driver in Linux kernel space

• Writing a Linux user space application interfacing with the character
device

Fig.4.7 illustrates the structure of the application on both M4 and A9 side.
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Figure 4.7: Structure of the demo application.
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4.4 MQX application

The MQX application on the Cortex-M4 side is responsible for gathering
data from sensors, applying the orientation filters to obtain the quaternions
and sending periodic updates to the Cortex-A9, along with occasional statis-
tics (e.g. the mean of the quaternions obtained so far). In the hypothesis
of using the board as a flight control system integrated in a quadcopter, the
board would be connected to a PID controlling the motors. In this scenario,
the Cortex-M4 handles the drone’s stabilization and therefore needs samples
from the sensors as frequently as possible, in order to continuously evaluate
the orientation and keep it balanced. The MPU can process the received
data for further analysis on the orientation or it can graphically visualize the
drone’s attitude. In both cases the Cortex-A9 doesn’t need to get all single
data acquisitions; receiving periodic samples is enough for the purpose. The
average of quaternion values can be received with a lower rate too and it
can be used, for example, as input for autonomous navigation algorithms.

MQX guarantees for real-time responsiveness and the sensors’ polling phase
has been kept as straightforward as possible: raw data is read directly from
sensors over I2C without interrupts. As said before, the typical sensors of
an inertial measurement unit are a gyroscope, an accelerometer and, op-
tionally, a magnetometer. The i.MX 6SoloX SABRE board encompasses
the MAG3110 sensor, a tri-axis magnetic sensor that features a standard
I2C serial interface. The board natively includes an accelerometer sensor
as well (the MMA8451q) but doesn’t have a gyroscope. The GY-87 IMU
board has been chosen instead. The breakout board features the MPU6050
sensor, that includes a 3-axis gyroscope and a 3-axis accelerometer. MQX
already includes the driver for the MAG3110; the driver for the MPU6050
has been developed separately, as described below.

4.4.1 The MAG3110 sensor

The MAG3110 is a low-power digital 3D magnetic sensor. It measures the
components of the local magnetic field, the sum of the geomagnetic field
and the magnetic field created by components on the circuit board. The
sensor features a standard I2C serial interface output and smart embedded
functions. Being the i.MX 6SoloX SABRE supported by MQX and being
the MAG3110 integrated on the board, the RTOS already includes the driver
and a demo application testing the sensor functionalities. The $MQX_ROOT/

mqx/source/io/sensor/mag3110 folder contains the driver’s source code,
structured as follows:

• mag3110_reg.h: header file containing macro definitions for all
MAG3110 registers

• mag3110_prv.h: header file containing private struct definitions

49



• mag3110_basic.h and mag3110_basic.c: declaration and implemen-
tation of basic IO functions, such as single register read/write, sensor
initialization/de-initialization and slave address setting.

• mag3110_fun.h and mag3110_fun.h: declaration and implementation
of functional level IO functions, such as sensor status retrieval, data
acquisition and sensor operating mode setting.

An example application that shows how to work with the MAG3110 com-
ponent and how to use API functions is included in the $MQX_ROOT/mqx/

examples/sensor/mag3110 folder. This demo has been run on the board
to verify the correct functioning of the magnetometer and the source code
has been used as reference for the MPU6050 driver development.

4.4.2 The MPU6050 sensor

The GY-87 is a common 10 degree of freedom IMU board (Fig.4.8), featuring
the Invensense MPU6050 motion sensor module, the HMC5883L three-axis
magnetic field module and the BMP180 barometer pressure sensor. All
sensors support I2C connectivity. The MPU6050, in particular, combines a
3-axis gyroscope ranging from +250 to 2000 ◦/s with a 3-axis accelerometer
with range from ±2g to ±16g.

Figure 4.8: Front and back view of the GY-87 IMU board.

By observing the PCI-Express connector pin-out table on the i.MX 6SoloX
SABRE board’s datasheet, the pin numbers for 3.3V voltage, ground, I2C
clock and data have been individuated. The GY-87 module has been sol-
dered to a prototyping PCIe extender board, according to the pin numbers
previously detected on the SABRE board. The extender has then been con-
nected to the SABRE board through the PCI-Express socket. The correct
functioning of the GY-87 module has been tested by booting Linux on the
SABRE and verifying on the kernel log the proper sensor’s detection and
initialization.
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MPU6050 MQX driver

The MQX driver for the MPU6050 sensor has been developed from scratch,
by using the existing drivers for Arduino2 and for ERIKA RTOS as reference.
The MQX driver’s code has been structured in the wake of the MAG3110
driver:

• mpu6050_reg.h: header file containing macro definitions for all sen-
sor’s registers.

• mpu6050_prv.h: header file containing a private struct definition. The
struct here defined collects the MPU6050’s device information, limited
to a I2C device handler pointer and the slave address.

• mpu6050_basic.h and mag3110_basic.c: declaration and definition
of basic IO functions, such as single register read/write, sensor’s
initialization/de-initialization, slave address setting. A function for
writing a single bit has been added, to semplify bit flag operations on
certain registers.

• mag6050_fun.h and mag6050_fun.h: declaration and definition of
higher-level IO functions, such as gyroscope’s and accelerometer’s range
setting and data reading.

By observing the MPU6050 datasheet and register map, the relevant regis-
ters for the initialization of the device and for data acquisition have been
identified. The device’s initialization phase involves enabling bit flags of spe-
cific registers to execute the following actions: resetting the sensor, switching
on the sensor, setting the gyroscope on “continuous update” mode (i.e. the
sample rate divider is set to zero, in order to get data at the gyroscope’s
maximum output rate), disabling interrupts.

4.4.3 Main task

The MQX demo application consists of two asynchronous tasks. The main
task is responsible for collecting data from the sensors, aggregating and fus-
ing data through the orientation filters and sending samples of the computed
quaternions to the Cortex-A9 core. The main task also notifies the other
task whenever a new sample of quaternions has been computed. The flow
of execution of the main task is here described.

Main task initialization The task must be listed in the specific
TASK TEMPLATE STRUCT structure, along with required initialization param-
eters. The main task is declared as an auto-start task, meaning that it is

2The MPU6050 driver for Arduino is available at http://www.control.aau.dk/ jdn/e-
du/doc/datasheets/MPU6050/
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created as soon as MQX starts. Task priority, stack size, name of the task,
creation parameter and time slice are also set in the template.

I2C driver initialization The I2C driver is initialized and the file de-
scriptor for the I2C device is opened. The microcontroller is set as the I2C
master, whereas the sensors are the slaves (Fig.4.9). The file descriptor of
the I2C device is passed as a parameter to the functions responsible for the
sensors’ initialization.

Figure 4.9: Overview of the I2C bus.

MAG3110 and MPU6050 initialization Both devices are initialized,
according to the drivers’ init functions. MPU6050 initialization struct sets
the device’s slave address only, while MAG3110 init struct includes also
some additional settings such the sample rate, the sample ratio, the burst
read mode.

MCC initialization The MCC subsystem is initialized and two endpoints
are created: the first one is used by the main task, the latter is used by
the statistics task (described later). The two endpoints are used to send
respectively quaternion samples and statistics to the Cortex-A9 core; they
share the same core number and node but they use different ports.

Data acquisition Once the initialization phase is complete, the statistics
task is created and the MAG3110 and MPU6050 sensor are constantly polled
in a loop. If the TIME DEBUG option is enabled, the polling time of each sensor
is measured and printed on the console for debugging (Fig.4.10). Polling
time measurements have been verified to be consistent with what expected
from a real-time system getting raw data from the sensors. The average
time to get data from the magnetometer is approximately of 2 ms, while the
average time to get the data from gyroscope and accelerometer together is
approximately of 10 ms.
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Mahony’s and Madgwick’s filter The C source code for both Ma-
hony’s and Madgwick’s algorithm has been integrated within the applica-
tion’s folder. The open-source code provided by Madgwick is already opti-
mised to reduce the number of arithmetic operations and therefore to suit
low power and low cost hardware.

Sensors’ measurements are fed to the Mahony’s and Madgwick’s filters,
which output the quaternions currently representing the sensor’s orienta-
tion. The quaternion values are printed on the console, for debugging
and for later consistency checking with the data received by the Cortex-A9
(Fig.4.10). Quaternion values computed by the two filters are very similar
and they change consistently with the motion of the sensor. The Madg-
wick’s algorithm takes up more memory space and requires more arithmetic
operations, due to the magnetic distortion and gyroscope’s bias drift com-
pensation features[5]. However, the algorithm’s overhead doesn’t affects the
overall performance of the application.

Figure 4.10: Example of data samples printed on the M4 console.

The quaternion values are stored in two matrices, for further processing
from the statistics task. Whenever a new pair of quaternions is stored in
the matrices, the main task sends an event to the statistics task. MQX im-
plements events as optional components and provide simple APIs to employ
them for task synchronizing and conveying simple information in form of
bit-state changes.

Sending data to Cortex-A9 The main task periodically sends updates
to the Cortex-A9 core through the MCC subsystem; the sending frequency
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is set to 1 update every 10 acquisitions but it can be adjusted according to
needs. The quaternion’s components are computed by the orientation filters
as floating point numbers. Not all processors include a FPU and, in general,
it is not recommended to deal with floating point calculations within the
kernel space. To avoid declaring floating points in the Linux device driver
receiving the data from the Cortex-M4, the quaternion values have been
stored as unsigned 32-bit integers by using the union C data type. This
special data type allows to store different data types in the same memory
location, providing an efficient way of using a same location for multiple
purposes. Therefore, the C structure that represents the message to be sent
consists of eight unsigned 32-bit integers, each representing a component of
the quaternions computed by the two orientation filters. The message is sent
to the proper endpoint on the Cortex-A9; a specific option in the header file
of the application specifies whether to use non-copy send mode or copy send
mode.

4.4.4 Statistics task

The statistics task is responsible for keeping track of the Cortex-M4 up-
time, calculating the average quaternion values in a certain time window
and sending information to the Cortex-A9. The functioning of the task is
here described.

Statistics task initialization The statistics task is listed in the
TASK TEMPLATE STRUCT structure, along with the main task. The statistics
task is created by the main task previous to starting the data acquisition,
so it’s not declared as an auto-start task. All the task characteristics are set
in the template as well.

Event loop The statistics task waits for a certain event bit in a specific
event group to be enabled. In order to do so, it sets up an event group
and it waits in a spin loop for the main task to set the event bit. As
described before, the main task notifies the statistics task whenever a new
pair of quaternions is calculated and stored, by opening the connection to
the event group and setting the event bit. The statistics task uses an integer
counter to keep track of the number of events received.

Time tracking and average calculation Everytime that the statistics
task receives a specified number of events (frequency can be easily changed),
the elapsed time since the Cortex-M4 started is measured. The average value
of the quaternions computed so far, stored in the specific matrices, is also
calculated.
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Sending data to Cortex-A9 The statistics are then sent to the Cortex-
A9 through the MCC subsystem. Each message contains the elapsed time
(seconds and milliseconds) and the quaternions’ components, stored as un-
signed 32-bit integers.
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4.5 Linux application

A character device driver and a user space application have been developed
to handle the MCC communication on the Linux side and visualize the data
received from the Cortex-M4.

4.5.1 Sysfs

Sysfs is a virtual ram-based file system, used to export system information
from the kernel space to the user space for specific devices[4]. It is part of
the kernel infrastructure and it provides a clean, well-documented program-
ming interface. By providing virtual files, sysfs makes information about
kernel sub-systems, hardware devices and device drivers accessible to the
user space. The filesystem provides two interfaces: a kernel interface to ex-
port the kernel objects, their attributes and the relationships between them
and a user interface to view and manipulate these items. User space pro-
grams can also send values to the kernel subsystem through sysfs, to control
the internal settings. The hierarchical structure of the filesystem follows the
internal organization of kernel data structures.

A relation between the kernel constructs and their external user space repre-
sentation exists: kernel objects are mapped to directories, object attributes
are mapped to regular files and object relationships are mapped to symbolic
links. The core components of sysfs are here described.

Kobjects Sysfs is intrinsecally tied to the kobject abstraction. A kobject
(kernel object) is an object of type struct kobject. For each kernel object
registered within the system, a directory is created in sysfs. The directory
exposes internal object hierarchies to the user space. Kobjects have a name,
which corresponds to the name of the folders matching that object in sysfs, a
reference count, incremented whenever a kernel module refers to that object,
and a parent pointer, that allows the object to be arranged in a hierarchical
structure.

Attributes and groups Attributes of kernel objects are exposed in form
of regular files in the filesystem. Sysfs maps file read/write operations to
functions defined for the attributes, providing the user space a way to inter-
act with kernel space and read/write kernel attributes. To ensure that the
exported information is as easily accessible as possible, it is recommended to
create attributes in form of simple ASCII text files. Each attribute should
consist of only one value per file or, at most of an array of homogeneous
values.

When declaring an attribute, the show() and store() functions must be
specified. Each read operation on a file is forwarded to the show() method
of the corresponding attribute, whereas every write operation on the file is
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mapped to the store() attribute’s method. These functions usually consist
of only three parameters: an object, an attribute and a buffer. When a file
is opened, sysfs allocates a buffer for transferring data from kernel space to
user space. Whenever a read is invoked, the buffer is passed to the show()

function, which fills it up with the formatted data. Data is then copied from
the buffer to user space. When a write operation is invoked, the user space
data is copied to the kernel buffer. The buffer and its size are then passed
to the store() method, which parses the data.

The driver model facilitates the definition of device attributes by defining
the following helper:

#define DEVICE_ATTR(_name , _mode , _show , _store) \

struct device_attribute dev_attr _##_ name = __ATTR(_name ,

_mode , _show , _store)

The mode field refers to the type of permission associated with the attribute
(e.g. S IWUSR simbolizes the write permission, S IRUSR stands for the read
permission).

If a kernel object has multiple attributes, they can be gathered in an array.
The attribute group interface simplifies handling multiple attributes, by
adding/removing the whole set instead of the functions for each individual
item.

Notify user space If a user space process is waiting for updates on a
certain file, it needs to be notified by the kernel space whenever the data
for the attribute changes. The sysfs notify() call releases all pending
processes waiting for changes on a file of interest. The user space program
can indicate which attributes it’s interest in and block in a poll() call,
until it’s notified by the kernel. The call must be explicitly made by any
subsystem implementing a pollable attribute, otherwise sysfs has no way of
knowing when the value of a specific attribute has changed.

4.5.2 Kernel-space character device driver

The character device interfacing with the MCC subsystem is classified as a
platform device. The platform category encompasses all those devices that
are not inheritably discoverable by the CPU, thus appearing as autonomous
entities in the system. The platform interface provides a way for the present
hardware to be recognized by the kernel. A virtual platform bus groups
all devices under a common bus and allows them to be discovered. Drivers
of platform devices must register themselves as such with the platform bus
code. The platform driver follows the standard driver model convention, in
which discovery is handled outside the driver, and the driver itself provides
probe() and remove() functions. Driver registration is done by way of a
platform driver structure, that must include at minimum the probe()
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and remove() functions. The driver must also specify a name in the driver

field, to provide a way for the platform bus driver to actually bind the device
to its driver.
The probe() function gets a platform device pointer as argument, de-
scribing the characteristics of the device to be allocated, and registers it.
In the developed driver, the function is also responsible for initializing the
MCC subsystem and creating the group of attributes that will be exposed to
the user space via sysfs. The sysfs attribute group is removed in the driver’s
remove() function.
The driver has been developed by using the one for the MCC pingpong demo
as reference. The device’s main task is to collect the messages coming from
the Cortex-M4 endpoints and make them accessible to the user-space. The
driver’s workload is distributed among the following functions:

• Initialization function: the function creates two endpoints, one for
each of the sending endpoints on the Cortex-M4 counterpart and ini-
tializes the necessary data structures (e.g. FIFO message queues).

• Data receiving functions: two functions are responsible for receiv-
ing the incoming messages containing respectively the quaternion up-
date values and the statistics on the elapsed time together with the
average quaternion values. Each function have a FIFO queue available,
in which messages can be progressively pushed as they are received.
Every time that a message is received and queued, the user space is
notified so it can read and visualize the data. Congruence on the or-
der in which messages are received and later displayed by the user
application is ensured by the FIFO policy of the message queues.

• Data reading functions: two functions are responsible for returning
the message’s content to the user space: one function retrieves the up-
date messages coming from the main task, the other retrieves statistics
messages coming from the statistics task. Whenever one of this two
functions is called, a message is popped from the proper FIFO queue
and the content is formatted and copied on a provided buffer. The
content of the buffer is then copied to user space.

• De-initialization function: when called, the function destroys the
endpoints.

Interaction between kernel space and user space is handled through the /sys
filesystem. The device driver developed creates a single kernel object, with
six attributes (i.e. one directory in the filesystem, containing six files):

• trigger init (Write-only): used by the user space to express the will
to initiate the MCC communication. Whenever the user space pro-
gram writes a value on the file, the initialization function is triggered
(i.e. MCC is initialized and the endpoints are created).
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• trigger read and trigger read stats (Write-only): used by the
user space to trigger the data receiving functions (respectively for up-
date and statistics messages). When a value is written on the file,
the driver starts receiving incoming messages and pushing them in the
FIFO queues. Whenever a new message is received by the data re-
ceiving functions, a call to sysfs notify() is made to inform the user
space that new data is available.

• orientation data and stat data (Read-only): attributes represent-
ing the received data. When a read operation is invoked on these files,
the driver pops the respective message from the queue and passes the
formatted content to the user space.

• trigger close (Write-only): by writing a value on this file, the user
triggers the function responsible for closing the communication and
destroying the endpoints.

The driver’s code has been copied in the $KERNEL_ROOT/drivers/char/

imx_amp/ folder, along with the device driver for the pingpong MCC demo.
The Makefile and Kconfig files have been edited, to allow the driver’s
code to be compiled. The proper functioning of the device can be tested
by using the shell commands cat and echo respectively to read and write
a value on the sysfs files. The files for platform devices are located in the
/sys/bus/platform/devices/<name-of-the-device> folder.

4.5.3 User-space application

The user space application is responsible for accessing the sysfs files and
for displaying the quaternion and statistics values received from the Cortex-
M4 core. The application interacts with the platform driver in kernel space
via sysfs, to collect and display the data. The application consists of three
asynchronous threads: the main thread coordinating all the tasks, a thread
initiating the reception of update messages and a thread initiating the re-
ception of statistics messages. The application’s workflow is here described.

Initialization Initially, all necessary data structures are initialized, in-
cluding the buffers in which data is copied from kernel space when a read
operation on a file occurs. The MCC subsystem is then initialized and end-
points are created, by opening the trigger init file and by writing a “1”
value on it. As said before, this action triggers the device’s initialization
function. The orientation data and stat data files are also opened and
a dummy-read operation is invoked on both files. The reason for these pre-
liminary read operations, apparently useless as previous to the actual data
reception, will be clarified below.
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Message receiving Two asynchronous threads are then started. The
first one starts the reception of update messages by writing on the proper
file, while the second one starts the reception of statistics messages. From
now on, messages sent by the Cortex-M4 core are received by the Cortex-A9
endpoints.

File polling Concurrently with the starting of the two asynchronous
threads, the main thread starts polling the orientation data and
stat data files. The poll() function waits for one or more file descrip-
tors to become ready to perform I/O operations. Each file descriptor to be
monitored is specified in a specific pollfd structure. The structure specifies
an event field as an input parameter, containing a bit mask that specifies
the events the program is interested in for the respective file descriptor.
The structure includes also a revents field as an output parameter, which
is filled in by the kernel with the events that actually occur (e.g. a POLLPRI

value indicates that there is urgent data to read). This field allows to dis-
tinguish which file has changed within the observed set. Any newly opened
file is considered changed; the previous dummy-reads of the files of inter-
est makes the poll() function to block until actual data is received. Any
sysfs notify() call from kernel space releases the poll() function, mean-
ing that a new message has been received.

When the polling function returns, the file in which a POLLPRI event oc-
curred is read and data is displayed on the console. As said before, quater-
nion floating point values are sent in form of unsigned 32-bit integers; the
values are converted back to floating point data before displaying them on
the console. The union C datatype allows to convert between the binary
representations of integers and float, avoiding the possible loss of precision
of casting.

De-initialization When all data has been received, endpoints on the
Cortex-A9 are destroyed by calling the driver’s de-initialization function.
This is achieved by writing on the dedicated trigger close file.

The quaternion and time values are printed on both the A9 and M4 consoles,
to allow consistency check between the transmitted and received data.

4.5.4 Application usage and testing

Once the MQX application has been compiled, the binary file is transferred
on the SD-Card and it’s copied to the flash memory. The MQX application
is executed on the Cortex-M4 as soon as the board is switched on. After
the sensors’ initialization is completed the application hangs, waiting for the
user to signal whenever the A9 peer is ready (Fig.4.11).
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Figure 4.11: Demo screen on Cortex-M4 startup.

On the Cortex-A9 side when the kernel finishes loading and the prompt
is shown, the user space application’s binary can be launched. The MCC
subsystem is initialized and endpoints are created. A message is printed on
the console to notify the user that the application is ready to receive data
(Fig.4.12).

Figure 4.12: User space application’s start-up screen.
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Figure 4.13: Example of data received by the Cortex-A9.

Data acquisition and transferring over MCC can then be initiated, by typing
“S” on the Cortex-M4 prompt. Sensor data acquisition is started, quater-
nions are calculated and messages are sent from the M4 endpoints. As
soon as messages are received on the Cortex-A9, the content is displayed
on the screen (Fig.4.13). Statistics messages are framed by # symbols to
be recognized from the update messages, which occur more frequently. The
computed values are shown on both sides and they can be compared, to
verify the conformity between sent and received data.
Fig.4.14 shows the correspondence between an update message sent by the
M4 core and the relative message received by the A9 core.
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Figure 4.14: Cortex-M4 console screen (on top) and Cortex-A9 console
screen (on bottom). A sent message and the correspondent received message
are highlighted.
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Chapter 5

Conclusions and future
developments

The results obtained by running the application on the i.MX 6SoloX SABRE
board illustrate the prospect of adopting an asymmetric architecture as the
core infrastructure for a quadcopter’s on-board flight control system. The
intrinsic heterogeneity of an AMP system satisfies the need for both real-time
responsiveness and processing power, while fully exploiting the potential of
microcontroller and microprocessor architectures.

Nowadays, predictions about the future of drones tend to focus on the ca-
pability of executing fully autonomous tasks and performing more and more
complex operations. Executing MQX and Linux side by side allows to run
sophisticated algorithms and take advantage of the standard Linux features
without affecting the drone’s stabilization and maneuvering.

MQX RTOS has proven to be a valid choice for efficiently handling sen-
sor data and implementing data fusing algorithms. The upside of using
the RTOS on an asymmetric environment is the availability of simple and
well-documented multi core communication libraries. The developed demo
application shows that inter-core communication works seamlessly and that
it’s possible to exchange messages of different nature and size, carrying all
kind of useful information on the drone’s state.

The implemented application lays the foundations for a future integration
of the board with the drone’s infrastructure, by adding a propulsion system
(including motors, propellers, ESCs and battery). Moreover, the user-space
application favors the implementation of more complex algorithms on the
Linux side. Computed quaternion data is made available to user space, thus
encouraging the buildup of the current application and the processing of the
available information for more sophisticated purposes, besides plain visu-
alization. Potential high-level applications that could employ the available
data on the drone’s orientation include: tracking and plotting of the drone’s
position and orientation, running more advanced AHRS algorithms to cor-
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rect the drone’s attitude, using the indication on the drone’s direction for
autonomous navigation, performing computer vision tasks.
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