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Problem description

Mobile manipulators, which consist of an autonomous mobile platform and one or more
manipulators, have attracted much interest, because of their extended workspace, with re-
spect to conventional, fixed base manipulators. When they carry heavy payloads, e.g. in
intralogistic tasks, move over irregular terrains or get sudden external disturbances, they
may experience postural instabilities. The underlying idea for controlling the stability of
such systems, follows the model of humans and other animals, which are intrinsically dy-
namically stable. However in the literature, there are some criteria which can be effectively
used for the tip-over stability measure of both, legged robots and mobile manipulators.

In this work several parts of a robot stability analysis have to be treated on the ex-
ample of a mobile manipulator developed in the RRRU laboratory, composed by Adept
Lynx™mobile platform and gomTec Roberta P80.800 manipulator. Hence, the focus of
this treatment lies on finding a stability monitor methodology, in order to identify and
forbid critical movements of the center of mass of the system, mainly related to the motion
of the manipulator and excessive payload. Information regarding the manipulator such
as direct and inverse kinematics and dynamics equations are given by previous work. A
tip-over avoidance methodology will be employed on the control of the system, taking the
combined dynamics of platform, manipulator and payload into account. The final method-
ology, will be evaluated on defined use cases and then, a possible stability enhancement
strategy, according with the available data, will conclude the work.



Tasks

• Literature research regarding manipulator dynamics and tip-over avoidance for mo-
bile platforms

• Derivation of the combined dynamics for platform, manipulator and external loads
• Development of a tip-over avoidance methodology
• Verification and validation of all proposed methods through simulations and exper-

iments on the real system

Related literature

• On the dynamic tip-over stability of wheeled mobile manipulators [1]
• Tip-Over Stability of Omni-Directional Mobile Robot [2]
• A New Measure of Tipover Stability Margin for Mobile Manipulators [3]

Supervision: Mr M.Sc. Oliver Kotz Period of time: 10.10.2016–31.06.2017
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Abstract

This thesis deals with a tip-over analysis for mobile manipulators, considering the pro-
totype developed by the Regensburg Robotics Research Unit (RRRU), composed of the
differentially driven Adept Lynx autonomous platform, and the lightweight robot gomTec
Roberta P80.800. This work will set the basis for realizing intelligent applications, by
taking care of the robot safe state.

Hence, a stability monitoring feature is going to be suggested, that yields a stability
measure, evaluated before the motion starts on the wished trajectory to perform, in a way
that the user can be alerted before the tip-over occurrence. In order to accomplish this, a
model based strategy is necessary to be applied in advance, on simulations of the mobile
platform behavior.

Because of the restricted available information about the Roberta dynamic parameters, the
Moment-Height Stability measure is the applicable algorithm taken into account, that let
us design a stability measure based on the manipulator base reaction forces (base wrench),
considered as interaction forces, between the upper Roberta robot and the Adept Lynx at
its base. Therefore, figuring out a solution for the base wrench dynamics for the mobile
manipulator in study, is the main challenge of this work. For this reason, parts of previous
work performed in the RRRU, in particular the identified dynamic model of the Roberta
P80.800, are adapted to obtain a reliable formulation for the base wrench, avoiding a
complete identification procedure.
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1 Introduction

Mobile machines equipped with manipulator arms and controlled by on-board human
operators, are commonplace systems for example in the construction, mining, and forestry
industries. When these systems exert large forces, move heavy payloads, or operate over
very uneven or sloped terrain, tip-over instabilities may occur which endanger the operator,
risk damaging the machine, and reduce productivity. To reduce this risk, a supervisory
control was introduced in mobile manipulator systems, so the safety and productivity of
these mobile manipulators could be improved by automatic detection and prevention of
tip-over instabilities.

In the same way, a similar issue comes out for a different class of robots. Mobile ma-
nipulators, which generically consist of an autonomous mobile platform and one or more
manipulators, have attracted much interest along the years, because of their extended
workspace, with respect to conventional, fixed base manipulators. Such systems are used
in different kind of fields such as fire fighting, dismantling bombs, toxic waste cleanup,
transportation of nuclear materials, and similar applications proposed by the nuclear, mil-
itary and aerospace industries. An example of application of these systems is the Pioneer
robot, depicted in Figure 1.1(a), donated to Ukraine from the US government, after the
nuclear disaster in Chernobyl. The Pioneer is a remotely controlled robot which captured
images of the interior of the sarcophagus, that engineers have used to create a 3D model
of the reactor, in order to inspect the structural damage within a dangerous environ-
ment. When such systems carry heavy payloads, e.g. in intra-logistic tasks, move over
irregular terrains or get sudden external disturbances, as we said, they would also ben-
efit by a monitoring of the tip-over occurrence, as long as they may experience postural
instabilities. Therefore, estimation and evaluation of the stability, with appropriate easy-
computed measure throughout these systems motion, is needed, though it might represent
a challenging task.

(a) Pioneer mobile robot. (b) New ABB Roberta prototype.

Figure 1.1: Mobile robot and manipulator example.
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1 Introduction

Figure 1.2: Mobile manipulator developed by RRRU.

1.1 Problem Description

The work that follows is under the supervision of the Regensburg Robotics Research
Unit (RRRU), which is part of the Ostbayerische Technische Hochschule Regensburg and
works in different fields of the robotics such as robot development and control, intelligent
robot applications, mobile robotics, as well as Human-Machine-Interaction, teleoperation
systems and image processing. RRRU works on the development of a mobile manipulator
which is composed by the Lightweight robot system gomTec Roberta P80.800 included
with its mounting base, and the autonomous mobile platform Adept Lynx. The overall
system is depicted in Figure 1.2.

The Adept Lynx platform is a general-purpose mobile robot platform, self-guided and self-
charging, designed to carry loads while working around people. The platform combines
hardware and software, to provide an intelligent mobile platform to transport e specific
payload structure. The Lightweight robot system gomTec Roberta P80.800, is a 6 degrees
of freedom manipulator which is able to lift up to 8 kg. Two early releases of this manipu-
lator, the Roberta P80.800 and P120.1200, became property of the RRRU in 2015, before
the gomTec GmbH was bought by the ABB Group and the sale has been stopped. From
ABB in the next future, the robot system Roberta will be likely redesigned with a slightly
changed equipment, like the prototype shown in Figure 1.1(b).

This work is developed on the example of the first gomTec Roberta P80.800, combined with
the Adept Lynx platform previously described, and it is in close relation with two previous
works made by M. Stapf [4] and O. Kotz [5]. Their work concerned the derivation of a
solution for the inverse kinematics, of the direct robot kinematics, and to find a dynamic

2



1.2 State of the Art

model for the Roberta, with the purpose to design a self-developed control cabinet for
it.

As we mentioned, mobile platforms can be adopted in a large variety of applications,
and in very different environments, which means that several variables can affect on their
assigned task. The most important regards the kind of movements performed by the
platform, which could involve heavy linear accelerations, or curves that generate angular
acceleration, dangerous for the sideways stability. Here, the stability state of the platform,
can also be corrupted by external agents, specially in the case of outdoor environment that
can involve atmospheric agents, as well as cases with irregular/sloping terrains. For this
reason, we restrict the treatment in the most likely application, that is supposed to be in
an indoor environment, with a flat and regular terrain, where we aim to start considering
both platform and manipulator moving along a trajectory. Afterward during the work, we
can eventually decide the case to put the majority of the effort.

1.2 State of the Art

Because of the huge variety of mobile robots, multi-legged robots and human-driven ve-
hicles, that have been developed through the years, for multiple kind of applications, the
tip-over problem became more and more articulated to study. Tip-over occurrence analy-
sis is a topic widely investigated in order to avoid tip-over in automatic systems, as well as
for providing human operators with an indication of proximity to tip-over. A consistent
part of the literature considers environments with uphills or uneven surfaces, where the
mobile manipulators are employed for rescue tasks in unstructured terrains [6], however,
considering applications in flat and regular terrains, several stability analysis stragies have
been designed.

A possible approach is illustrated by M. J. A. Safar in 2012 [7] where the tip-over analysis
is performed on holonomic omnidirectional mobile robots, with active dual-wheel caster
assemblies, by estimating the tipping direction. The authors proposed a separated study
for the upper and the lower subsystem reaction forces, putting the focus on their interac-
tion. On this purpose, the problem of determining the wheel reaction forces through the
Newton and Euler equations of the dynamics, had a solution thanks to the combination
of two platforms with three wheels each.

Zero Moment Point (ZMP) stability criterion, was firstly applied by Huang and Sugano in
1996 [8] to avoid overturning of a mobile manipulator, and was also used by Nikhade for
omni-directional mobile robots [2]. The criterion is based on comparing the most stable
point of the platform with the ZMP, which is defined as the point on the floor under the
moving platform, where the resultant moment due to external forces is zero.

An alternative criterion called Force-Angle margin measure, also used by M. J. A. Safar
[7], was presented by Papadopoulos and Rey in 2000 [9] and it is based on the minimum
angle between resultant force exerted to the mobile base and the normal of tipover axes,
and more recently, a measure called MHS criterion, based on stabilizing and destabilizing
moments exerted to the mobile base, has been proposed by Moosavian and Alipour in [1].
All these mentioned criteria have been compared on a mobile manipulator by K. Alipour
[10] through experiments, where the performance in terms of prediction of the exact time
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of instability occurrence, has been evaluated.

However, a further step ahead, as the authors in [11] and [12] did for mobile manipulators,
is exploiting the fact that the stability of such systems, can be improved by the system
itself, by designing a motion that can take the robot to a more stable configuration. In
this way it is possible to perform a tip-over stability enhancement, maintaining the center
of gravity inside the footprint. On this purpose, Wang [13] enhanced the performance
of vehicles under critical driving situations, by optimally controlling the front and rear
steering angles and the yaw moment.

In the case that we also want to design a control for the combined system, a coupled
dynamic model that considers both the two subsystems dynamics is necessary. For this,
the Lagrangian and the Newton-Euler formulation are the common practice, and their
equivalence is proven in [14] with an application on a differential mobile platform, and in
[15] with an application on a robotic arm manipulator.

Whether the dynamic parameters of the platform and manipulator are provided, we re-
mark that the Lagrangian formulation can provide an easy and compact solution for a
full coupled dynamics. As presented in [16], Papadopoulos and Poulakakis adopted this
formulation to develop a dynamic model suitable for path planning tasks, explaining how
to include the non-holonomic constraint in the equation of the dynamics.

At the same time, when the dynamics of the overall system is partially unknown, the
Newton-Euler method can result more versatile. In fact, a manipulator mounted on a
moving platform, generates reaction forces and moments at its base, which represent the
effect that it has on the platform dynamics, that therefore affects the stability of the
overall system. This approach split up the mobile manipulator, letting study the stability
of a platform with external forces applied, as done by A. Moosavian in [17] and Grotjahn
[18].

1.3 Goal of the Work

In order to clarify a goal for this work, we make a starting differentiation, by identifying
two possible application scenarios. The first one, consists of a case where we do not have
access to the motion of the system, so we cannot take counteractions such as change the
trajectory. In this hypothetic scenario, a stability measure can come in help by stopping
the system, or just alerting the user whether the system configuration is getting critical. A
second application case, can be when we have access to the motion of the system. In this
case, among multiple trajectories, the one that offers the better stability can be chosen,
or in addition, counteractions like applying a specific trajectory that enhance the overall
stability, can be performed.

For the goal of this work, we would like to start from the first simpler application case
presented, where we aim to develop a methodology to forbid critical movements, which
can be employed as external feature in the system. Therefore, as a first approach to the
problem, we want to design a strategy that, from a given desired trajectory to perform,
can provide an evaluation of the stability state of the system, along the time. In this
way it is possible to predict when the system is moving toward an unstable configuration,
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letting the user either stop or rearrange the entire motion. Under this intuitive idea, a
possible offline evaluation stability solution can be achieved.

1.4 Structure of this Thesis

Since the system in study in composed of two different kind of robots, this thesis face the
kinematics and the dynamics for both of them separately. In Chapter 2 the kinematics
of the Roberta P80.800 is introduced, recalling from previous work [4] all the elements
that are needed for the current work, and giving mathematic tools necessary for the
comprehension. Next the kinematics of the Adept Lynx platform is treated, offering a
first Cartesian geometric modeling, putting the focus on the non-holonomic constraint,
that plays an important role in the platform dynamic modeling. Then, an additional
geometric description in polar coordinates is given, which is useful for the Newtonian
dynamic modeling of the platform.

Next, the dynamics in Chapter 3 is presented first for the Roberta, where the main goal
is to compute the manipulator base wrench, through the Newton-Euler approach. An
initial formulation of the base wrench is found, linear w.r.t. the identified base parame-
ter set, therefore, the error between this first formulation, and the correct Newton-Euler
expression is presented and explained. Consequently, knowledge from the parameter esti-
mation theory, is exploited to adjust the base wrench initial formulation, in order to get
a more reliable expression. In this chapter, is also presented a possible solution for the
control of the platform, that takes into account the dynamic effects of a possible mounted
manipulator.

In Chapter 4 experiments are performed through a force-torque sensor, to provide an esti-
mate of the unknown grouped base parameters and consequently to validate the adjusted
base wrench formulation, by comparison with the collected force and torque measure-
ments. Afterward additional data is collected by running different trajectories for the
manipulator, with the purpose of cross validating the results obtained previously.

After having found a reliable base wrench formulation, Chapter 5 can finally introduce
the proposed stability measure algorithm, whose results are shown for simple trajectories
examples, and a final offline tip-over evaluation, is proposed as a first solution of the
problem of this work.

Chapter 6 an overview of the results obtained is given, followed by suggestions for future
work.
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2 Kinematics

In the Robotics field, whether we want to control a robotic system, we wish to have
the best possible knowledge about it, in order to let it perform a specific task. Thus,
is crucial to find an accurate kinematic modeling, which is the study of the motion of
mechanical systems without considering the forces that affect the motion. On this purpose
the forward kinematics provides a relationship between the joint positions, that allow the
robotic system to move, and the linear and angular velocity of the robotic system in
Cartesian space. Many applications also require the knowledge of the inverse kinematic
model, which provides the opposite relationship, that is velocities of the robotic system in
function of the joint angles. In this chapter, the kinematics is treated for both platform
and manipulator separately, which set the basis for the rest of the work.

2.1 Kinematics of a Serial Link Manipulator

In this section, the kinematics for the Roberta P80.800 is presented, which gives the
relationship between the joint velocities and the corresponding end-effector linear and
angular velocity. This mapping is described by a geometric Jacobian, a matrix which
depends on the manipulator configuration, which constitutes one of the most important
tools for manipulator characterization, useful for instance to describe the mapping between
forces applied to the end-effector and resulting torques at the joints.

2.1.1 Transformation of Frames and Vectors

The description of the kinematics as well as the dynamics for a serial link manipulator,
requires to express vectors that refer to a certain reference frame, with respect to another
one. The reason under this comes from the fact that some quantities referring to different
frames, often need to be expressed with respect to an unified coordinate system, specially
when they are linked to each other through recursive formulas. On this purpose, here
we recall some useful concepts from the theory of the transformation matrices reported
in [19]. Let us consider an arbitrary point p in a Cartesian coordinate system Sj. This
point can be located by the vector pointing from the origin of Sj to the point itself, that
is jp = [jpx, jpy, jpz]>. This vector can be expressed by using the so called homogeneous
coordinates

jph =
[
jpx, jpy, jpz, 1

]>
, (2.1)

where jpx, jpy and jpz are the coordinates of the point along the corresponding axes of
Sj, and the fourth entry, usually set to 1, denotes the scaling factor for these coordinates.
We define iAj ∈ R3×3 as the rotation matrix of frame Sj with respect to frame Si, which
basically contains the description of the frame Sj in terms of components of its unit vectors
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Figure 2.1: Transformation of a point. Figure from [4].

formulated w.r.t. frame Si. Therefore vector jp can be described in coordinates of another
frame Si through the following linear relationship

iph = iT j
jph, (2.2)

where we remark that the points iph and jph are written in homogeneous coordinates, see
Fig. 2.1. Therefore we define

iT j =
[
iAj

ipj
01×3 1

]
(2.3)

as the homogeneous transformation matrix, which describes the relative position and ori-
entation of frame Sj w.r.t. frame Si, and ipj the vector that expresses the location of the
origin of frame Sj w.r.t. frame Si.

We also report that any rotation matrix A is orthogonal, and it yields the property
A−1 = A>, so the inverse of iT j is given by

iT−1
j = jT i =

[
iA>j −iA>j ipj
01×3 1

]
. (2.4)

Last useful property that we mention regard the homogeneous transformation matrices,
is that they can be combined by multiplication. In fact let us assume to have multiple
frames Sn, n = 1, . . . , k where each consecutive transformation between these frames is
defined w.r.t. the previous frame. Thus, the overall transformation matrix is given by

0T k = 0T 1
1T 2 . . .

k−1T k. (2.5)

2.1.2 Direct Kinematic Model

At this point, a geometric model of the manipulator can be derived whether we describe
frames and vectors in terms of homogeneous coordinate transformation. The geometric
model would describe the current position and orientation of the end-effector of a manip-
ulator, as function of its joint angles as

0T e = 0T e(q1, q2, q3, q4, q5, q6) = 0T e(q), (2.6)

8



2.1 Kinematics of a Serial Link Manipulator

where q ∈ R6×1 contains the joint space coordinates, i.e. the angle of each joint. We
observe that just by placing a reference frame in every joint of the manipulator, Eq. (2.6)
can be easily determined by applying the multiplication in (2.5), as it has been done by
M. Stapf [4].

Modified Denavit-Hartenberg Convention

The modeling of robots in a systematic and automatic way requires an adequate method
for the description of their structure. Shortly denoted with DH, the standard Denavit-
Hartenberg convention gives a systematic method to define the relative position and ori-
entation of two consecutive links. It is a well known approach to describe such systems in
the robotics field, which provides an intuitive way to determine the two frames attached
to the two links and to compute the coordinate transformations between them, through
homogeneous transformation matrix. Though Denavit-Hartenberg is the most popular
method to accurately describe serial structures composed of a sequence of n+ 1 links and
n joints, sometimes it can still present ambiguities. Hence, a modified DH version has been
preferred to the conventional one, for the fact that it gives a unified description for all
the mechanical articulated systems with a minimum number of parameters, and it comes
with some useful properties of linearity which will be useful in the rest of the work. This
modified convention has been defined in the literature and has been used in this work for
the computation of the dynamic model of the Roberta P.80.800 with the Newton-Euler
formulation and for the computation of the base reaction forces, at the manipulator base.
The main difference to the original DH convention, is the placing of the coordinate sys-
tems, while frame Si in DH convention is placed on the on the common joint axis of link i
and link i+ 1, it is now placed along the axis of joint i which connects link i− 1 with link
i. This provides a simpler description of manipulator dynamics compared to the classic
DH convention.

Assuming that the links are perfectly rigid and ideal, with no backlash and no elasticity,
and the joints are either revolute or prismatic, the links are numbered such that link 0
constitutes the base of the manipulator and link n the terminal link. Then, the modified
DH convention specifies how the frame Si on each link i, has to be assigned. For further
information, refer to the work in [4], where the author also derived the Table 2.1, that
reveals the modified DH parameters for the Roberta P80.800 manipulator, which were
used to create all the transformation matrices in the current work. The distances denoted
by di and ri can be found in Fig. 2.2.

Table 2.1: Modified DH Parameter P80.800
i αi(rad) di(mm) ∆qi(rad) ri(mm)
1 0 0 0 −185
2 π

2 0 −π
2 0

3 0 380 0 0
4 π

2 0 π 420
5 π

2 0 π 0
6 π

2 0 0 0
7 0 0 0 177 + 141
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Figure 2.2: Frames according to modified Denavit-Hartenberg convention, q = 0 [4].

We assume all the links numbered such that the base of the robot is considered frame 0
and the terminal link is numbered 6 in case of the Roberta P80.800 manipulator. The
end-effector is given a separate coordinate system denoted Se, see Figure 2.2.

Skew-Symmetric matrix

Here we provide an algebraic tool which will be useful for the rest of the work. Every cross
product between two arbitrary vectors m and n ∈ R3 defined as

m× n =

mx

my

mz

×
nxny
nz

 (2.7)
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2.1 Kinematics of a Serial Link Manipulator

admits a linear representation through the so called skew-symmetric matrix, defined by
the components of the vector m such that

m̂ =

 0 −mz my

mz 0 −mx

−my mx 0

 . (2.8)

This algebraic operation is often used whenever there is the necessity to explicate in a
linear form, an expression which involves cross products. The interested reader can verify
that the following equation holds

m× n = m̂ · n .

2.1.3 Recursive Computation of Link Velocities

Although the kinematic modeling of the Roberta has already been addressed by Matthias
Stapf in [4], we recall the following computation of the link velocities of the Roberta,
needed in the dynamics chapter.

These link velocities can be calculated with knowledge of the position and orientation of
every frame Si w.r.t the base frame. By exploiting the serial architecture of the Roberta
P80.800, a recursive symbolic formulation from the base to the end-effector frame can be
easily derived, following the formulas in [19].

iωi
1−iv

1−i

1−iω1−i

iv
i

i
link1−i

lin
k

1−iS

iS

Figure 2.3: Augmented velocities of link i− 1 and i [4].

Consider a frame Si−1 with known translational velocity i−1vi−1 and rotational velocity
i−1ωi−1, both expressed with respect to the frame Si−1, see Fig. 2.3. Defining i−1pi as the
vector connecting the origins of Si−1 and Si w.r.t. Si−1, the translational and rotational
velocity of frame Si w.r.t. frame Si−1 can be computed with the following

i−1vi =i−1 vi−1 +i−1 ωi−1 ×i−1 pi (2.9)

that can be rewritten exploiting the cross-product property a × b = −b × a . Thus we
obtain

i−1vi =i−1 vi−1 −i−1 pi ×i−1 ωi−1 (2.10)
i−1ωi =i−1 ωi−1. (2.11)
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With the help of the rotation matrix iAi−1 we can express the previous quantities with
respect to the frame Si through

ivi = iAi−1
i−1vi (2.12)

iωi = iAi−1
i−1ωi. (2.13)

Consequently both (2.12) and (2.13) can be written in the following compact form

i
vi = iTi−1

i−1
vi−1 (2.14)

where

i
vi =

[
ivxi

ivyi
ivzi

iωxi
iωyi

iωzi
]>

(2.15)

is the vector of spatial velocities, and iTi−1 is the so-called screw transformation matrix
defined as

iTi−1 =
[
iAi−1 −iAi−1

i−1p̂i
03×3

iAi−1

]
. (2.16)

We remark that in Eq. (2.16), i−1p̂i is the skew-symmetric matrix, that allows the cross
product in (2.10) to be rewritten as −i−1p̂i ·i−1ωi−1, according with (2.8). Here we observe
that if joint i is revolute, the overall angular velocity iωi is imposed by the rotation q̇i of
the drive unit. Hence the spatial velocity of frame Si is obtained with

i
vi = iTi−1

i−1
vi−1 + i

aiq̇i (2.17)

where

i
ai = [0 0 0 0 0 1]> (2.18)

denotes the rotation of the driving unit along axis zi according to the modified DH con-
vention. From (2.17), the spatial link velocities can be computed recursively as a function
of q with initial condition 0

v0 = 0 in case of a fixed manipulator base.

2.1.4 Inverse Kinematic Model

Despite the inverse kinematic problem is not a topic of this work, for completeness we
mention that a solution for the inverse kinematic problem, which find joint angles that
lead to a desired Cartesian pose

q = f(0T des
6 ),

has been found by Oliver Kotz in his work [5], where the solution is presented and explained
in detail.
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2.2 Kinematics of a Differential Mobile Platform

2.2 Kinematics of a Differential Mobile Platform

The kinematic modeling of a mobile platform can refer to model the relationship between
the linear and angular velocity of the platform and its control variables, that are the
wheels velocities. Mobile manipulators can be built on different kind of mobile platform
designs, that differ by the drive mechanism employed. The most commonly available
mobile platforms use either a car-like drive, which is a tricycle design where the driving
front wheel is also used for steering, or a differential drive which employs two independently
driven wheels with a common axis, and casters that add stability to the mobile platform.
Further information about other driving configurations can be found in [19]. In this
work, the employed mobile platform uses a two-wheel differential-drive, composed by two
independent drive wheels and four passive wheels, known as casters, two in the front and
two in the rear. Fig. 2.4 shows the described wheel configuration and three platform

(a) Lynx Platform picture - Copyright Adept.

CMl
Fl

G
P

F

r

b

(b) Platform lengths and points of interest.

Figure 2.4: Adept Lynx Autonomous Intelligent Vehicle.

points of interest, named as P the point which lies in the common axis between the two
wheels, equidistant from both of them, G the point which identifies the platform center of
mass and F, which will identify the payload reference frame.

2.2.1 Adept Lynx Autonomous Mobile Platform

Before going into deep with the kinematics, the platform taken into account in this work
is going to be introduced. The Adept Lynx is a general-purpose autonomous intelligent
mobile platform, see Fig. 2.4(a), designed to carry payload structures up to 60 kg while
working around people, in any wheelchair-accessible environment. Autonomous and intel-
ligent are referred to the fact that it is self-guided and self-charging, with an automated
docking station, and it has the ability to know its position within a workspace, and to
navigate safely and autonomously to any accessible destination, continuously and without
human intervention. Such platform is a good candidate for this work, and it has been
chosen thanks to the fact that just by providing a final position and orientation, it will
be able to control itself by taking care of the entire motion on the terrain. Its primary
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2 Kinematics

guidance uses a safety scanning laser to navigate, comparing the laser readings to a digital
map stored on the platform. The laser is backed up by two front and two rear-facing sonar
pairs, a front sensing bumper, and a gyroscope mounted on the internal Lynx core. The
platform is a two-wheel differential-drive vehicle, with two passive casters in the front and
in the rear, and two independent drive wheels. Its solid wheels are at the mid-line of the
platform, so that the platform can turn in place.

200

47 697

°35

°55

437
4.179

5.434

8.614

499

372

Figure 2.5: Platform dimensions in mm.

Payload integration

As it has been mentioned already, the Lynx platform can be customized with a payload
structure attached to the top of it, represented by the gomTec Roberta P80.800 in this
work. Mobility and navigation needed, as well as power and I/O connections between the
platform and the payload structure are provided, in a way that both platform and payload
can work together.

The main factors to consider in including a payload structure are the size, weight, center of
gravity of the payload structure, and power requirements. An increased payload structure
weight will decrease the vehicle run-time, and the stability of the combined system can
get critical, specially in cases where the Lynx platform is equipped with a robotic arm,
which can lift items off-center from the Lynx platform.

Platform Stability Considerations

On this purpose, the manufacturer provided further information, which is crucial at the
point when we integrated a payload, and we need to take care about the steadiness of the
platform. An heavy payload structure, with most of its weight concentrated just above the
Lynx platform, will be much more stable than the same weight payload structure in which
the weight is either off-center or high above the top of the platform. In order to avoid
dangerous configurations, the payload structure must be kept no wider and no longer than
the Lynx platform dimensions in Figure 2.5. It is also recommendable to keep it higher
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2.2 Kinematics of a Differential Mobile Platform

than the top of the Lynx platform, in order to avoid that any of the platform’s sensors,
e.g. scanning lasers, get blocked. Stability conditions are also highly influenced by the
center of gravity of the payload, see Fig. 2.6, which should be kept centered on the Lynx
platform, and as close as possible to the platform top to obtain the best stability; specially
when crossing thresholds or irregularities in the floor.

Wheel
Axis

Wheel
Axis

CG

CG

CG

Rear

Front

3.345

697

6.4998.249

5.16

5.16

7.188

Figure 2.6: Center of Gravity of the platform without payload structure. Units in mm.

2.2.2 Cartesian Geometric Modeling

For controlling the pose of the platform in the free space, we need to describe its position
and orientation in the two-dimensional environment. Referring to Fig. 2.7 we first define
two different coordinate frames:

• World Reference Frame Sw, is commonly known in the literature as the inertial
reference frame. This coordinate system is a global frame which is fixed in the
environment in which the platform moves in.

• Platform Reference Frame Sp, the local base frame attached to the platform point
P, and thus moving with it.

At this stage is important to define the mapping between these two frames. The position
of any point on the moving robot defined in the Platform Frame, can also be described
with respect to the World Frame through the following rotation matrix

wAp =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 . (2.19)

More details regarding the rotation matrices theory can be found in [19]. Now, letting
wp and pp be the coordinates of a given point in the World and in the Platform Frame

15



2 Kinematics

respectively, the following relations hold
wp = wAp

pp (2.20)
pp = (wAp)> wp . (2.21)

Having placed two coordinate systems, we can now describe the absolute position and
orientation of the platform, in the World Frame. Fig. 2.7 shows that the platform is

wS wx

wy

ϕ

pS

lϑ̇

rϑ̇

px
py

Figure 2.7: Global and local reference frames.

moving in the free space by rotating its two independent wheels, so we identify ϑ̇l and
ϑ̇r respectively angular velocities of the left and right wheel, as the variables that can
be exploited to control the platform. Then, in order to properly describe the platform
kinematics and the non-holonomic constraint, we define the following vector containing
five generalized coordinates

w = [xF, yF, ϕ, ϑl, ϑr] , (2.22)

where we added three coordinates that describe respectively the position of the platform
in the World Frame, identified with point F and the orientation of the platform.

In this work, we choose point F to identify the platform position, even though point P is
generally the easiest choice, for the fact that this will help us to keep track of the payload
position, which is attached on the platform. We also highlight the fact that the caster
wheels are passive, so they can be ignored during the kinematic modeling.

Forward Kinematics

The aim of the forward kinematics in the case of mobile platform, is to derive a relationship
between its control variables, ϑl and ϑr, and the platform linear and angular velocities
in the World Frame. Now, under the assumption of low vehicle speeds, we get a pure
rolling motion where each wheel maintains one contact point with the ground, without
any sideways slipping. Denoting with vpr and vpl the linear velocities of the contact points
of the left and right active wheel, in the Platform frame, the pure rolling motion implies

vpr = rϑ̇r (2.23)
vpl = rϑ̇l , (2.24)

which means that the angular velocity of the wheel has to be equivalent to the linear
velocity of the corresponding contact point. In this way, see [19], from ϑ̇l and ϑ̇r, we can
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2.2 Kinematics of a Differential Mobile Platform

obtain the linear and angular velocity for the platform point P, where we denote with r
the wheels radius and with b the platform width, as stated in Fig. 2.4(b).

vP = r

2(ϑ̇r + ϑ̇l) (2.25)

ωP = r

b
(ϑ̇r − ϑ̇l) (2.26)

Now, through ϕ, angle between the two frames, we can describe these quantities with
respect to the World frame

ẋP = vP cosϕ = r

2 ϑ̇r cosϕ+ r

2 ϑ̇l cosϕ (2.27)

ẏP = vP sinϕ = r

2 ϑ̇r sinϕ+ r

2 ϑ̇l sinϕ (2.28)

ϕ̇ = ωP = r

b
(ϑ̇r − ϑ̇l) . (2.29)

As we mentioned, point F is the one of interest, so defining lF as the distance between
point P and F, we obtain

xF = xP + lF cosϕ (2.30)
yF = yP + lF sinϕ . (2.31)

Through time differentiation, we obtain the velocity of point F, with respect to the World
Frame, as function of ẋP and ẏP. By substituting ẋP and ẏP we obtain

ẋF = ẋP − lFϕ̇ sinϕ = r

b
( b2 cosϕ+ lF sinϕ)ϑ̇l + r

b
( b2 cosϕ− lF sinϕ)ϑ̇r (2.32)

ẏF = ẏP + lFϕ̇ cosϕ = r

b
( b2 sinϕ− lF cosϕ)ϑ̇l + r

b
( b2 sinϕ+ lF cosϕ)ϑ̇r (2.33)

which leads to the following platform forward kinematic model
ẋF
ẏF
ϕ̇

ϑ̇l
ϑ̇r

 =



r
b
( b2 cosϕ+ lF sinϕ) r

b
( b2 cosϕ− lF sinϕ)

r
b
( b2 sinϕ− lF cosϕ) r

b
( b2 sinϕ+ lF cosϕ)

− r
b

r
b

1 0
0 1


[
ϑ̇l
ϑ̇r

]
. (2.34)

where we define ξ(w) as the mapping matrix for the forward kinematics in Eq. (2.34).

On this purpose, we remark that in most of the applications, specially within the path
planning topic, the autonomous platform is asked either to follow a desired path or to reach
a specific destination in the free space, identified through a specific reference system; e.g.
the Adept Lynx platform employed in this work, which asks for a Cartesian pose in a two
dimensional map. Hence, fulfill these tasks can result awkward and problematic whether
we control the velocities of the wheels, since they don’t keep any information about the
absolute pose of the platform on the ground. Therefore this situation demand for a crucial
geometric relationship between the coupled motion of the two driving wheels, and the
Cartesian pose of the platform, identified with position and orientation in the space.
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Another alternative form can be obtained by representing the platform velocities in terms
of the linear and angular velocities in the Platform Frame. From Eq. (2.27)-(2.29) and
(2.32)-(2.33) we obtain

pẋF
pẏF
ϕ̇

 =

cosϕ −lF sinϕ
sinϕ lF cosϕ

0 1

 [vP
ωP

]
. (2.35)

2.2.3 Non-Holonomic Constraint

An important role in this work is covered by the non-holonomic constraint which is in-
volved in the motion of the Adept Lynx platform, and generally arises from rolling contacts
between two or more rigid bodies. Examples of mechanical systems that involve rolling
contacts include wheeled vehicles such as conventional automobiles, unconventional ac-
tively coordinated robotic systems such as planetary rovers, manipulators grasping an
object and legged locomotion systems. Wheeled mobile robots are typical examples of
mechanical systems with non-holonomic constraints, where the rolling contact is main-
tained passively through external forces such as gravitational forces. As we will see in the
Dynamics chapter, such systems have often highly nonlinear dynamics, and are more com-
plex to study with respect to the holonomic ones, for the fact that they present constraints
which cannot be violated.

Now, considering a differential-drive mobile robot, its motion is characterized by two non-
holonomic constraint equations, which are obtained by the assumptions of pure rolling
motion and no sideways slipping (see [20] and [21]). The pure rolling motion, represents
the fact that each wheel maintains a one contact point with the ground and there is no
slipping of the wheel in its longitudinal axis. This assumption has already been introduced,
and it implies the constraints in Eq. (2.23) and (2.24).

At this point we denote with [wẋpr,
wẏpr,

wżpr]> the coordinate vector, in the World frame,
of vpr in Eq. (2.23), that we express w.r.t. the Platform frame by applying the rotation
matrix wA−1

p . Thus, doing the same for vpl, and considering just the longitudinal xp-
component of both the transformed vectors, the rolling constraint equations in (2.23) and
(2.24) can be formulated as follows

wẋpr cosϕ+ wẏpr sinϕ = rϑ̇r (2.36)
wẋpl cosϕ+ wẏpl sinϕ = rϑ̇l . (2.37)

Observe that for the right wheel contact point, it holds

wẋpr = ẋP + b/2 · ϕ̇ cosϕ (2.38)
wẏpr = ẏP + b/2 · ϕ̇ sinϕ , (2.39)

where ẋP and ẏP are defined in (2.27) and (2.28). Similarly for the left wheel contact
point, we have

wẋpl = ẋP − b/2 · ϕ̇ cosϕ (2.40)
wẏpl = ẏP − b/2 · ϕ̇ sinϕ . (2.41)
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2.2 Kinematics of a Differential Mobile Platform

Now using (2.32)-(2.33) and (2.38)-(2.41), we can express the velocities of the contact
points in Eq. (2.36) and (2.37) as function of components of w, where we algebraically
obtain

ẋF cosϕ+ ẏF sinϕ+ b/2 · ϕ̇ = rϑ̇r (2.42)
ẋF cosϕ+ ẏF sinϕ− b/2 · ϕ̇ = rϑ̇l . (2.43)

At the same time, no sideways slipping constraint simply means that the robot point P
cannot move sideward, which implies, in the Platform frame

pẏP = 0 . (2.44)

Recalling that [ẋP, ẏP, żP]> is the coordinate vector of P in the World frame, we express
this vector w.r.t. the Platform frame, by applying the rotation matrix wA−1

p . Hence,
taking the second component, we have expressed Eq. (2.44) with

−ẋP sinϕ+ ẏP cosϕ = 0 . (2.45)

At the same time, substituting ẋP and ẏP through (2.32) and (2.33), we obtain a constraint
for point F, that is

ẋF sinϕ− ẏF cosϕ+ ϕ̇lF = 0 . (2.46)

Roughly speaking, the last constraint says that the lateral velocity of the platform point
F is only due to the rotation of the platform. Eq. (2.46) is a non-holonomic constraint,
and it can be proven that it cannot be integrated analytically.

Having ẇ =
[
ẋF, ẏF, ϕ̇, ϑ̇l, ϑ̇r

]
, finally the three constraints can be written in the

form Λ(w)ẇ = 0 where

Λ(w) =

sinϕ − cosϕ lF 0 0
cosϕ sinϕ b/2 0 −r
cosϕ sinϕ −b/2 −r 0

 . (2.47)

It is straightforward to verify that this matrix satisfies Λ(w)ξ(w) = 0, that is equivalent
to

ξ>(w)Λ>(w) = 0 , (2.48)

where ξ(w) has been defined in Eq. (2.34). This property plays a crucial role in the
dynamic modeling, and it will be viewed more in detail in the next chapters.

2.2.4 Polar Geometric Modeling

At the same time, here we want to mention an alternative way to model the kinematics,
which set the basis for the Newton-Euler dynamics approach, for the platform, that will be
explained in the dynamics chapter. Therefore, we initially define the quantities shown in
Fig. 2.8, where (vu, vw) are the velocities of the platform center of gravity G, respectively
the longitudinal velocity, and the lateral velocity. Similarly we define (au, aw) as the
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Figure 2.8: Platform with parameters for polar modeling.

longitudinal and lateral accelerations of G. We remark that vp in Eq. (2.25) has the same
meaning as vu here, where we change the notation for highlight its difference with vw.

Following the approach used by the authors in [14], we describe the platform center of
mass G in polar coordinates, w.r.t the World reference frame. This is represented by the
complex vector

p̂G = ρejϕ . (2.49)

Then differentiating the center of gravity position vector with respect to the time, we
obtain velocity and acceleration of G in the World frame, that are

˙̂pG = [ρ̇] ejϕ + [ρϕ̇] ej(ϕ+π
2 ) (2.50)

¨̂pG =
[
ρ̈− ρϕ̇2

]
ejϕ + [2ρ̇ϕ̇+ ρϕ̈] ej(ϕ+π

2 ) (2.51)

where we have also obtained an expression for the radial and tangential velocities (vu, vw)
and accelerations (au, aw), that result

vu = ρ̇ (2.52)
vw = ρϕ̇ (2.53)
au = ρ̈− ρϕ̇2 (2.54)
aw = 2ρ̇ϕ̇+ ρϕ̈ . (2.55)

Therefore, writing these expressions in platform radial and tangential velocity terms, we
obtain an expression for the longitudinal and lateral platform accelerations

au = v̇u − vwϕ̇ (2.56)
aw = v̇w − vuϕ̇ . (2.57)

In addition, assuming a pure rolling motion in the longitudinal direction, and no sliding in
the lateral direction, we can derive the non-holonomic constraint, by imposing the velocity
of point P w.r.t. the local platform frame, equal to zero. Similarly in what has been done
for obtaining (2.46), we obtain

vw = −lCMϕ̇ , (2.58)
in a way that the lateral velocity of G, is only due to the rotation of the platform, where the
length lCM is the distance between the platform point P and its center of mass, referring
to Fig. 2.4(b). Finally, through the polar coordinates, we have obtained an expression
for the longitudinal and lateral platform accelerations as well as for the non-holonomic
constraint, that will be helpful in the dynamic modeling of the platform.
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3 Dynamics

As well as the kinematics, the study of the dynamics is important and has to be accurate
in order to be able, for instance, to design a control strategy for the robotic system in
study, which is one of the main purposes in the robotics. So generally, the dynamic model
yields an accurate representation of the behavior of the system, when it interacts with
its external environment. This is useful, for example, to provide motion simulations that
allow control algorithms to be tested without using a physically available system, as well
as they provide useful information for designing joints, transmissions and actuators.

The literature usually provides two main approaches to deal with the dynamics, the La-
grangian and the Newton-Euler formulation, that will be discussed in this chapter. The
first method is conceptually simple and systematic, based on the Lagrange formulation,
which concerns the kinetic and potential energies, and the second method, based on the
Newton and Euler dynamic equations, yields the model in a recursive and generally in a
computationally more efficient form.
In this chapter, the dynamics for the Roberta P80.800 is derived in order to compute the
reaction forces of the manipulator at its base, and techniques of parameter identification
are introduced to improve its accuracy.

3.1 Transformation of Force and Torque

Since forces and torques in the work that follows, need to be adjusted and transformed
w.r.t. a specific reference frame, e.g. the readings from a sensor, it is worth recalling their
behavior when the transformation matrices have to deal with them.

We recall that a free vector, e.g. the velocity vector, refers to a vector that may be
positioned anywhere in space without loss or change of meaning, provided that magnitude
and direction are preserved. Observe that if we have a moment vector jµ that is known in
terms of Sj, then we calculate the same moment in terms of frame Si with iµ = iAj

jµ.

Unlike the free vectors, the force vector is sensitive to the origins of the reference frames
and every time it gets translated, it also generates a moment. In order to derive a compact
form to transform force and moment, we define the generalized force-torque vector which
contains linear components of force f = [fx, fy, fz]> and moment µ = [µx, µy, µz]> as

f =
[
f
µ

]
∈ R6×1. (3.1)

Thus, a force-torque vector can be transformed from frame Sj to frame Si through the
following linear relationship

if = iXj
jf . (3.2)
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3 Dynamics

So we denote iXj as the force-torque transformation defined as

iXj =
[

iAj 03×3
iSj · iAj

iAj

]
, (3.3)

where iAj represents the rotation matrix of frame Sj w.r.t. frame Si and iSj is the
skew-symmetric matrix

iSj =

 0 −ipzj ipyj
ipzj 0 −ipxj
−ipyj ipxj 0


from (2.8), defined by the components of the translation vector ipj =

[
ipxj ,

ipyj ,
ipzj
]>

de-
scribing the origin of frame Sj with respect to frame Si.

3.2 Dynamic Parameters of a Rigid Body

Here we define some quantities needed to compute the dynamic model, that are identified
as standard dynamic link parameters.

• In Fig. 3.1 are shown the translational and rotational velocity, respectively ivi and
iωi already computed in (2.12) and (2.13), with respect to the frame Si.

isi

iωi

iv
i

iS

iLink

Figure 3.1: Link i moving in space [4].

• iJ i ∈ R3×3 is the symmetric inertial tensor w.r.t. frame Si, known as second moment
of inertia, defined as

iJ i =

Jxx,i Jxy,i Jxz,i
Jxy,i Jyy,i Jyz,i
Jxz,i Jyz,i Jzz,i

 . (3.4)

Since we want to describe all the quantities w.r.t. the origin of the link frame Si, we
remark that it is computed according to the Steiner’s Theorem such that

iJ i = iJG,i −mi
iŝi

iŝi , (3.5)

where iJG,i ∈ R3×3 denotes the inertia tensor about the center of mass, mi is the link
mass, isi denotes the vector from the link frame origin to the link center of mass,
see Fig. 3.1 and iŝi is the corresponding skew-symmetric matrix equivalent to the
cross-product, introduced in (2.8).
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3.3 Dynamics for the Roberta P80.800

• The product of link mass and vector pointing to the center of gravity also known as
first moment of inertia, is defined as

mi
isi =

[
mi

isxi mi
isyi mi

iszi
]>

, (3.6)

and it is shortly denoted with msi = [msx,i msy,i msz,i]>.

• Finally the link mass is denoted with mi, and the rotor inertia with Jd,i.

Thus, for each link i, we can group all these quantities in a vector κstd,i ∈ R11×1 that
contains all the dynamic link parameters, also known as inertial parameters

κstd,i = [Jxx,i Jxy,i Jxz,i Jyy,i Jyx,i Jzz,i msx,i msy,i msz,i mi Jd,i]> . (3.7)

3.3 Dynamics for the Roberta P80.800

In this work, the goal of the dynamics is to describe the forces and moments that act at
the base of the manipulator, which set the basis for evaluate the stability of the platform
and the mounted Roberta. In this section, the Newton-Euler formulation is exploited to
derive the equations of motion for the Roberta P.80.800, that carries an expression for the
reaction forces and moments at the manipulator base.

3.3.1 Newton-Euler Formulation

The Newton-Euler formulation yields the dynamic model in a recursive form, which is
computationally more efficient since it exploits the typically open structure of the manip-
ulator kinematic chain. Several implementations of this algorithm have been performed,
e.g. in [22] where all the formulation was based on the computation of forces and moments
acting on the center of mass of each link. This leads to a dynamic model that consists in
a non-linear function in the inertial parameters, which is a tough drawback for example in
the dynamic parameter identification. Therefore, the Newton-Euler algorithm rearranged
by Khalil in [23] is taken into account hereafter, where forces and moments are computed
with respect to the origin of frame Si attached to joint i, instead of the center of mass, so
that the final model results linear in the identifiable parameters.

From basic theory of mechanics, referring to the 6-DoF Roberta P80.800 in study, described
with the modified DH convention (Fig. 2.2), we can compute the external forces and
corresponding generated moments on link i about the origin of frame Si, generally known
as wrench, through the Newton-Euler equations

F i = miv̇i + ω̇i ×msi + ωi × (ωi ×msi) (3.8)
M i = J iω̇i + ωi × (J iωi) +msi × v̇i . (3.9)
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Figure 3.2: Forces and moments on link i.

Forward Recursion

For computing (3.8) and (3.9), the linear and angular velocities here shortly denoted with
vi and ωi, are computed with

vi = vi−1 + ωi−1 × i−1pi + σ̄iq̇iai (3.10)
ωi = ωi−1 + σ̄iq̇iai , (3.11)

where σ̄i = 1 − σi and σi = 0 if the joint is revolute, like every joint of the Roberta
P80.800, and σi = 1 if the joint is prismatic. Differentiating equations (3.10) and (3.11)
with respect to time, it gives

v̇i = v̇i−1 + ω̇i−1 × i−1pi + ωi−1 × (ω̇i−1 × i−1pi) + σi(q̈iai + 2ωi−1 × q̇iai) (3.12)
ω̇i = ω̇i−1 + σ̄i(q̈iai + ωi−1 × q̇iai) , (3.13)

where the initial conditions for a robot with a fixed base are ω0 = 0, ω̇0 = 0 and v̇0 =
0.

Backward Recursion

Here for each link i s.t. i = n, . . . , 1, we write the Newton-Euler equations at the origin of
frame Si as follows

F i = fi − fi+1 +M ig − fei (3.14)
M i = µi − µi+1 − ipi+1 × fi+1 + isi ×M ig − µei , (3.15)

where fei and µei, represent the force and moment exerted by link i on the environment,
whose value is assumed to be known. We observe that the contribution of the gravity in
Eq. (3.14) and (3.15) can be taken into account by setting up the initial linear acceleration
as v̇0 = −g. Therefore we can obtain the expression for the force exerted on link i by link
i− 1 and the moment about Si exerted on link i by link i− 1 through

fi = F i + fi+1 + fei (3.16)
µi = M i + µi+1 + ipi+1 × fi + µei , (3.17)

if we initialize the backward recursion by fn+1 = 0 and µn+1 = 0. At this point, the joint
torque τ i can be obtained by projecting either fi or µi on the joint axis, depending on the
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3.3 Dynamics for the Roberta P80.800

prismatic or revolute nature of the joint. We can also consider the friction forces and the
rotor inertia by a common model such that

τ i = (σifi + σiµi)>ai + Jd,iq̈i + Fcisign(q̇i) + Fvisign(q̇i) . (3.18)

Practical form of the Newton-Euler algorithm

Observe that J i and msi are constants when referred to their own link coordinates.
From this, by referring the velocities, accelerations, forces and moments to the local link
coordinate system, the forward recursion can be computed in this more efficient form, for
i = 1, . . . , n:

iωi−1 = iAi−1
i−1ωi−1 (3.19)

iωi = iωi−1 + σ̄iq̇i
i
ai (3.20)

iω̇i = d

dt

(
iωi

)
= iAi−1

i−1ω̇i−1 + σ̄i(q̈iai + iωi−1 × q̇iai) (3.21)
iv̇i = iA0

0v̇i (3.22)
= iAi−1(i−1v̇i−1 + i−1U i−1

i−1pi) + σi(q̈iai + 2iωi−1 × q̇iai) (3.23)
iF i = M i

iv̇i + iU imsi (3.24)
iM i = iJ i

iω̇i + iωi × (iJ iiωi) +msi × iv̇i (3.25)
iU i = i ˆ̇ωi + iω̂i

iω̂i , (3.26)

where, for a stationary base, the initial conditions are such that

ω0 = 0 (3.27)
ω̇0 = 0 (3.28)
v̇0 = −g . (3.29)

Therefore, the backward recursive equations, for i = n, . . . , 1 gives

ifi = iF i + ifi+1 + ifei (3.30)
i−1fi = i−1Ai

ifi (3.31)
iµi = iM i + iAi+1

i+1µi+1 + ipi+1 × ifi+1 + iµei , (3.32)

which finally bring useful information for finding the base wrench. From these last equa-
tions it is also possible to derive the joint torque, that is

τ i = (σiifi + σ̄i
iµi)>ai + Jd,iq̈i + Fcisign(q̇i) + Fvisign(q̇i) . (3.33)

This practical form of the algorithm can be easily implemented for a general serial robot,
and it has a computational complexity of O(n), which means that the number of operations
is linear in the number of degrees of freedom. Here we also want to remark that the number
of operations required, is even more reduced whether we use a formulation based on the
base inertial parameters, that we are going to introduce in the next sections.
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3.3.2 Moving Base Manipulator

The practical form of the Newton-Euler algorithm that we just reported, provides a for-
mulation for the base wrench, for the case of a static base manipulator. On this purpose,
we are also interested in consider the case of a moving base manipulator, that can happen
for example when it is mounted on a mobile base, that is our study case.
In this eventuality, the motion of the platform plays a relevant role on the base reactions
forces, therefore we need to include all the dynamic effects that the platform exerts on the
manipulator, within the dynamics equations. These effects can be included in te manipula-
tor, by implementing the Newton-Euler recursions with the proper initial conditions stated
in (3.27)-(3.29), that have to be set taking the platform linear and angular velocities.

3.3.3 Inverse Dynamics Linear in the Base Parameters

Though in Eq. (3.33) we have obtained an expression for the inverse dynamics of a 6-DoF
serial link manipulator, this formulation cannot be applied to the Roberta P80.800 for
the fact that parameters like link masses and inertias needed for the computation, are
unknown.

In the work of M. Stapf [4] an expression for the equations of the inverse dynamics as a
linear function of the inertial parameters, has been found for the Roberta P80.800 through
the Lagrangian formalism, such that

τ = M(q)q̈ +C(q, q̇)q̇ + g(q) = W std(q, q̇, q̈)κstd , (3.34)

where M (q) ∈ R6×6 denotes the mass matrix of inertia, C(q) ∈ R6×6 the matrix of
Coriolis and centrifugal forces, g(q) ∈ R6×1 the vector of torques induced by gravity, so
τ ∈ R6×1 contains the remaining joint torques to change the state of the system (see [4]).
As we can see, Eq. (3.34) is linear w.r.t. κstd ∈ R66×1 that denotes the vector of all
dynamic parameters

κstd =
[
κ>std,1 κ>std,2 . . . κ>std,6

]>
, (3.35)

whileW std(q, q̇, q̈) ∈ R6×66 denotes the matrix of inverse dynamics. At this point, see [4],
it can be algebraically proven that not every dynamic parameter bring its contribution
on the equation of the inverse kinematics. This reasonably means that there is no way
to identify these parameters, and just a smaller subset can be identified uniquely from
measured data. Under this fact, Eq. (3.34) can be rewritten as

τ = W (q, q̇, q̈)κ , (3.36)

where κ ∈ R40 represents the base inertial parameters, derived by Stapf in Tab. 3.3, that
is the minimum set of parameters needed to compute the dynamics, deduced by eliminat-
ing from κstd the ones that have no effect on the dynamic model and by grouping some
others, in order to get the computations more efficient.
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3.3 Dynamics for the Roberta P80.800

3.3.4 Base Wrench

From the Newton-Euler formulation we can now derive an expression for the reaction forces
at the base of the manipulator. If we identify the platform as the link 0, by applying
Eq. (3.30) and (3.32) for i = n, . . . , 1 we can compute 1f1, force exerted on link 1 by
the platform, and 1µ1, which is the moment about frame S1 exerted on link 1 by the
platform.

According with the transformations of force and torque, we can describe these quantities
w.r.t. the frame S0, therefore Eq. (3.2) becomes 0f = 0X1

1f , which gives

fw =
[

0f1
0µ1

]
=
[

0A1 03×3
0S1 · 0A1

0A1

] [
1f1
1µ1

]
. (3.37)

Finally we have obtained an expression for the reaction force and moment at the platform
base. Observe that from Eq. (3.37), the force-torque that the manipulator exerts on the
platform is given by

fEx,Man = −fw. (3.38)

3.3.5 Base Wrench Dynamics Verification

The expression of the manipulator base wrench, previously formulated through the Newton-
Euler approach, can be verified in this section. In fact, we recall that this expression is
computed through forces and moment in Eq. (3.30)-(3.32), that are also involved in the
dynamic model.

Observe that the force in Eq. (3.31) is involved in the expression of the moment in Eq.
(3.32), which is further involved in the manipulator dynamic model in Eq. (3.33), if
computed for the case of the 6 revolute joint Roberta. This means that if we are able to
verify the computed dynamic model, we implicitly verify the forces and moments that also
compose the base wrench formulation in (3.37).

On this purpose, we recall that in the work of M. Stapf [4], a dynamic model for the Roberta
P80.800 has been derived through the Lagrangian formulation. Therefore, implementing
in MATLAB the practical form of the Newton-Euler algorithm presented previously, it has
been verified the equivalence between the Newtonian dynamic model and the Lagrangian
one provided by M. Stapf in its work (Eq. (3.34)), where the friction coefficients have
been neglected. As a result of this, for the reason previously mentioned, we verify the
computed expression for the base wrench.

3.3.6 Linear Expressions for the Base Wrench

Although Eq. (3.37) provides the needed expression for the base wrench, acting on frame
S0, we remind the fact that this recursive computation cannot be performed due to the fact
that some dynamic parameters have not been identified. For the same reason, M. Stapf
in [4] addressed his work in identifying the base parameters, that could let the dynamic
equations be computed, thanks to the relationship reported in (3.36), which is linear w.r.t.
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κ. Consequently, the easiest way to compute the base wrench, would be to exploit the
base parameters already identified by Stapf, taking inspiration from the work made in [18]
by Grotjahn and Heimann, finding a relationship like

fw = W ∗(q, q̇, q̈)κ . (3.39)

On this purpose, is not possible to numerically evaluate the Roberta base wrench through
a relationship like Eq. (3.39), e.g. for the fact that it depends on parameters that are out
of the base parameter set κ, which have been neglected by the authors in [18]. Anyways
in this work, through κf we are able to compute an expression f̂w ≈ fw s.t.

f̂w = W f (q, q̇, q̈)κf , (3.40)

which represents the formulation of the base wrench that we are able to compute numer-
ically, and provides an approximation of the desired fw. Here W f (q, q̇, q̈) ∈ R6×41 and
κf ∈ R41 different from κ, is denoted as wrench parameter set. At this point it is worthy
to better clarify the differences between these two parameter sets.

1. κf contains five new parameters w.r.t. κ, that are grouped in a subset κw shown in
Table 3.1. This means that fw is function of some parameters that have not been
identified yet, which is a disadvantage that makes our base wrench computation
more complex to derive.

Table 3.1: Additional base inertial parameters in κf .
Wrench Parameter κw Standard parameter κstd

JxzR,1 Jxz,1
JyzR,1 Jyz,1
msxR,1 msx,1
msR msy,1 −msz,2 −msz,3
mR m1 +m2 +m3 +m4 +m5 +m6

2. From Eq. (3.30) - (3.33) it is straightforward to understand that the Jd,is, inertia of
the i-th rotor that appears in the base parameter set, is involved in the computation
of the torque, but it does not play any role in the forces and moments acting on each
link. This means that κf has to be free of all the Jd,i terms.

On the considerations made previously, κf has been arranged in Table 3.4 where, putting
the focus on the grouped parameters JzzR,1 and JzzR,2, we can observe that they still
contain respectively Jd,1 and Jd,2, despite what has just been said. Here unfortunately, to
get rid of these parameters, we would need to identify their value. As a result, comparing
the symbolic base wrench computed in (3.37) through the Newton-Euler formulation, with
its expression linear in the wrench parameters (3.40), we obtain the following systematic
error ε ∈ R6×1 shown in Tab. 3.2, computed through

ε(Jd,1, Jd,2) = fw − f̂w = fw −W f (q, q̇, q̈)κf . (3.41)
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Table 3.2: Symbolic error for every wrench component, computed through (3.41).
Error Component εi Symbolic Error

ε1 0
ε2 0
ε3 0
ε4 −Jd,2 (q̈2 sin q1 + q̇1q̇2 cos q1)
ε5 Jd,2 (q̈2 cos q1 − q̇1q̇2 sin q1)
ε6 −Jd,1q̈1

+

−

wf ε

fκ)q̈,q̇,q(fW=wf̂

Figure 3.3: Derivation of ε.

Here we can observe that the error is due to the mentioned undesired presence of Jd,1 and
Jd,2, in the wrench parameter set. Summarizing, in this section we introduced two sources
of uncertainty that are:

• κw parameters actively involved in fw, but not identified, so not involved when we
numerically evaluate f̂w,

• a systematic error due to the presence of Jd,1 and Jd,2, whose value is unknown.

To conclude, as soon as we can estimate all these non identified parameters above men-
tioned, we can get rid of the two sources of error, obtaining a consistent formulation for
f̂w.

3.4 Theory of Parameter Identification

Whenever in a mathematical model, play a role one or more parameters whose value is
unknown and not directly measurable, the theory of parameters identification comes in
help, providing algebraic tools for estimating such parameters from measured data.

Let κ ∈ Rr contain the r parameters of interest and x ∈ RN be the vector of the known
excitation for the N measurements. The system output can be modeled through

yk = gk(xk,κ) + nk , k = 1, . . . , N (3.42)

that can also be stacked in vectors in the form

y = g(x,κ) + n , (3.43)

where n is a random vector with an unknown probability distribution. We assume xks
deterministic, while y is not known exactly since the noise n is not known. Therefore the
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estimated system output ŷ results for an estimated parameter set κ̂ as

ŷ = g(x, κ̂) + n̂ . (3.44)

The goal of the theory of parameter estimation is to find a parameter set κ̂ which gives
the optimal system output ŷ that has to be as close as possible to the real output of the
system y. Further information regarding the topic, can be found in [24].

Therefore, once we have obtained an estimation ŷ, the step next is to evaluate the goodness
of the estimates performed. A first easy evaluation, can be done comparing the plots of
the measurement y with the ones of the estimate ŷ, that gives a rough and qualitative
outcome. On the other side, several numeric evaluations of the estimation error can be
easily applied, in particular we mention the sum of squares due to error SSE, defined as

SSE = [y − ŷ]>W [y − ŷ] =
N∑
i=1

W i,i(yi − ŷi)
2 , (3.45)

with W ∈ RN×N optional positive definite diagonal weighting matrix. From this, it can
be derived the mean squared error MSE

MSE = SSE

M
, (3.46)

where M is the residual degree of freedom, defined as M = N − r, that depends on the
number of measurement points N and on the fitting parameters r. A further evaluation
can be done through the root mean squared error RMSE, also known as standard error of
the regression, that is

RMSE =
√
MSE . (3.47)

3.4.1 Least Squares Method

The literature presents several approaches for the parameter identification, based on the
estimation error, rather than giving the observation y more likely a posteriori. In this
section is presented the least squares method, which has been used in this work. Consider
the generic stacked model

y1
y2
...
yN


︸ ︷︷ ︸
ỹN

=


g1(x1,κ)
g2(x2,κ)

...
gN(xN ,κ)


︸ ︷︷ ︸
g̃N (xN ,κ)

+σ


v1
v2
...
vN


︸ ︷︷ ︸
ṽN

. (3.48)

Let us assume that κ are the parameters to estimate which are unknown, as well as
σ2 ∈ R+, and v is a random vector with zero mean and positive definite variance matrix
R with an unknown distribution. We also assume that xks are deterministic.
Assume for one moment that κ and xks are given and yks are not given. From (3.48), the
prediction error for the estimation and the measured values is given by

εk(κ) = ỹk − g̃k(xk,κ) , (3.49)
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3.4 Theory of Parameter Identification

where an estimate of κ is given by minimizing the fit term
N∑
k=1
ε2
k = ε(κ)>ε(κ) , (3.50)

where we did not consider the R variance matrix of v. Now considering the case with
R = diag{r1, . . . , rN} positive definite, it can be proven (see [24]) that the minimization
problem in Eq. (3.50) for the general case with R taken in an arbitrary structure, is
equivalent to

κ̂LS(ỹN) = argmin
κ̂

1
σ2ε(κ̂)>R−1ε(κ̂) , (3.51)

that is called the Weighted Least-Squares (LS) estimator.

3.4.2 LS Estimator for Linear Models

In the model theory, the linearity is an important property, in particular is wished in
the parameter identification topic, for the fact that often provides in a computationally
convenient way, compact form solutions for the minimization problems, like the one dealt
in the LS method. We now consider a linear model at sample k, with m system inputs
xk ∈ Rm, and n system outputs yk ∈ Rn like

yk = W k(xk)κ+ σvk , (3.52)

withW k(xk) ∈ Rn×r regressor, κ ∈ Rr, vk ∈ Rn random vector with unknown probability
distribution and σ s.t. σ2 ∈ R+. Now observe that Eq. (3.52) represents a linear equation
in r unknown parameters, which yields a solution once we provide N ≥ r equations in
the same parameter vector κ. In other words this means that, in order to have enough
information, we need to collect N ≥ r measures of yk resulting from N independent input
excitations xk. Thus we can collect N measurement such that

y1
y2
...
yN


︸ ︷︷ ︸
ỹN

=


W 1(x1)
W 2(x2)

...
WN(xN)


︸ ︷︷ ︸
W̃ N (xN )

κ+ σ


v1
v2
...
vN


︸ ︷︷ ︸
ṽN

(3.53)

where ỹN ∈ Rn·N , ṽN ∈ Rn·N random vector with zero mean and R variance matrix,
W̃N ∈ Rn·N×r, xN ∈ Rm·N and κ ∈ Rr. Therefore, the parameter identification problem
in the case of linear models, is reduced to find the solution of a system of a n·N linear inde-
pendent equations, where according to (3.53) it has to be n·N = r and rank(W̃N)(xN)=r.
The vector κ̂∗ that best fits the measurement values should be estimated, hence the error
vector of the estimation and the measured values is defined as

ε = ỹ − W̃ (x)κ̂ , (3.54)

where we omitted the subscript N . Therefore, in this case Eq. (3.51) gives

κ̂LS(ỹ) = argmin
κ̂

1
σ2ε(κ̂)>R−1ε(κ̂) , (3.55)
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where we observe that the minimization in Eq. (3.55) is equivalent to

κ̂LS(ỹ) = argmin
κ̂

ε(κ̂)>R−1ε(κ̂) = argmin
κ̂

ψLS . (3.56)

At this point, in order to find the minimum, the gradient of ψLS with respect to κ, has to
be equal to zero, so

dψLS(κ̂)
dκ̂

∣∣∣∣∣
κ̂ = κ̂∗

= d
dκ̂

(
(ỹ − W̃ κ̂)>(ỹ − W̃ κ̂)

)
(3.57)

= −2W̃>
ỹ + 2W̃>

W̃ κ̂ = 0 . (3.58)

Furthermore, the second order derivative
d2ψLS(κ̂)
dκ̂dκ̂>

= 2W̃>
W̃ , (3.59)

has to be positively definite in the neighborhood of the solution. In this way ψLS is a convex
function in κ, and the local minimum found by imposing the gradient equal to zero, is
also a global minimum. Finally, from (3.58), under the assumption of rank(W̃>

W̃ ) = r
we can obtain

κ̂LS(ỹ) =
(
W̃
>
R−1W̃

)−1
W̃
>
R−1ỹ (3.60)

that represents the Weighted Least-Squares (LS) estimator for linear models.

3.5 Base Wrench Adjustment

After having introduced useful elements of the Parameter Identification topic in section
3.4, we want to exploit the reported results for adjust the formulation of the base wrench
f̂w, trying to improve it in multiple steps.

3.5.1 Systematic Error Compensation

In order to improve the approximation of the base wrench in (3.40), we first aim to get rid
of the symbolic systematic error shown in Tab. 3.2. This error comes from the fact that
we tried to fit the base parameter set, built for the inverse dynamics, into the computation
of the base reaction forces, which led to the undesired presence of Jd,1 and Jd,2 in it.
On this purpose, we make an initial assumption. Since we have κf = κ ∪ κw, here we
build a new parameter set κf∗ ∈ R41 assuming that all the parameters of κf within κw,
that correspond to the entries 1, 2, 4, 5, 6 of Table (3.4), are equal to zero.

As a consequence of this assumption, we now symbolically compute ˆfw∗ = W f (q, q̇, q̈)κf∗,
so Eq. (3.41) now becomes

ε(Jd,1, Jd,2,κ
w) = fw − ˆfw∗ = fw −W f (q, q̇, q̈)κf∗ (3.61)

= ε1(Jd,1, Jd,2) + ε2(κw) . (3.62)

where now comes out a new symbolic term of error ε2(κw), due to the fact that we are
now neglecting all the unknown parameters in κw. We observe that:
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3.5 Base Wrench Adjustment

• Eq. (3.61) represents the symbolic error between the desired formulation of the base
wrench, which is not numerically computable, and its computable approximation

ˆfw∗. Furthermore, giving a specific trajectory (q, q̇, q̈), if we take fw as readings
from a force-torque sensor, now denoted with f̃w, and ˆfw∗ from numeric simulations,
this error becomes ε̃ and it is measurable.

• As we are ignoring for the moment all the unknown parameters of κw, despite its
symbolic description also includes terms of κw, this computed error ε̃ can just be
modeled as

ε1(Jd,1, Jd,2) = f̃w − ˆfw∗ (3.63)
= f̃w −W f (q, q̇, q̈)κf∗ = −W J(q, q̇, q̈)κJ ,

where κJ = [Jd,1, Jd,2]>, and W J ∈ R6×2 consists in the over contribution of Jd,1

and Jd,2 in the formulation of ˆfw∗ in Eq. (3.40). As we expect, it is made by the
columns 3 and 11 of the matrixW f (q, q̇, q̈) that are the coefficients which multiply
the entries in κf∗, that contain Jd,1 and Jd,2 in a linear form.

ε1(Jd,1, Jd,2) = −
[
W f,3, W f,11

]
κJ

=



0 0
0 0
0 0
0 − (q̈2 sin q1 + q̇1q̇2 cos q1)
0 − (q̇1q̇2 sin q1 − q̈2 cos q1)
−q̈1 0


[
Jd,1
Jd,2

]
. (3.64)

Therefore, the underlying idea is first to identify the parameters Jd,1 and Jd,2 from the
computed error ε̃, then evaluate the symbolic error ε1(Jd,1, Jd,2) at each instant time, and
from Eq. (3.63), adjusting ˆfw∗ s.t.

f̄w = ˆfw∗ + ε1(Ĵd,1, Ĵd,2) . (3.65)

The followed approach is depicted in the block scheme in Fig. 3.4. The block Σ1 estimates
the parameters Jd,1 and Jd,2 from the measured error ε̃, and Σ2 evaluates the symbolic
error (3.63) in the estimated parameters Ĵd,1 and Ĵd,2. This compensation term obtained,

+

−

wf̃ )2,dĴ,1,dĴ(1ε

wf̄

+
+

1Σ 2Σ
2,dĴ,1,dĴε̃

∗fκ)q̈,q̇,q(fW=∗wfˆ

Figure 3.4: Systematic error adjustment scheme.

is further summed to the initial formulation of the base wrench ˆfw∗, giving a new f̄w,
base wrench without the contribution of the first two rotors inertia. As we mentioned, the
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3 Dynamics

block Σ1 takes advantage of the fact that the parameters to identify, appear in a linear
form within the symbolic expression of the error ε(Jd,1, Jd,2).

Therefore, whether we can collect N measurements of the error ε̃, we can obtain a model
according with Eq. (3.53), and through an LS estimator (3.60), we can obtain

κ̂J
LS(ε̃) =

(
W>

JR
−1W J

)−1
W>

JR
−1ε̃ . (3.66)

This equation provides the required estimates Ĵd,1 and Ĵd,2, where we can assumeR = I3×3.
Here we highlight the fact that this compensation error still offers a rough improvement,
for the fact that in modeling the measured error ε̃, the symbolic component ε2(κw) in
(3.62) was not considered.

3.5.2 Estimation of the Non Identified Parameters

In section 3.5.1 the systematic error has been dealt starting from the assumption that all
the non identified parameters were equal to zero. This led the symbolic error to be written
as in Eq. (3.62), although in the compensation part, the all error was considered due to
the presence of parameters Jd,1 and Jd,2.
Now, for a consistent formulation of the base wrench, a more accurate modeling of the
error is needed, which has also to consider the missing contribution of the κw parameter
set, fully according with (3.61)-(3.62). In this part, we want to exploit the parameter

+

−

wf̃

wκ̂

wf̄fκ)q̈,q̇,q(fW

+
+

1Σ 2Σ
ε̃

∗fκ)q̈,q̇,q(fW=∗wfˆ

3Σ
)wκ̂(2ε

+
+

)Jκ̂(1εJκ̂

Figure 3.5: Non identified parameters contribution is now taken into account.

identification knowledge to estimate the non identified parameters in κw, in order to be
able to compensate also their contribution. As we aim to identify at the same time
parameters that have a different nature, we want to employ an unified approach in order
to take care of the combined effects of either κw and κJ parameter set. Thus, according
with (3.52), we build a linear model of type

ε̃k = W ext
k (xk)κext + σvk , (3.67)

where the parameter vector κext is extended to contain all the parameters to identify,
respectively the first two rotor inertias and the components of κw, that results

κext = [Jd,1, Jd,2, JxzR,1, JyzR,1, msxR,1, msR, mR]> . (3.68)
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3.6 Adept Lynx Dynamics

Consequently, this mixed form for the parameter vector leads the regressor to be

W ext
k =

[
W J,k(q, q̇, q̈), W w,k(q, q̇, q̈)

]
, (3.69)

where:

• W J ∈ R6×2 is defined in (3.64);

• W w ∈ R6×5 is composed from the columns of the matrixW f (q, q̇, q̈), that multiply
the parameters in κw, s.t.

W w =
[
W f,1 W f,2 W f,4 W f,5 W f,6

]
, (3.70)

and this represents the missing contribution of the non identified parameters in the formu-
lation of fw. Consequently, collecting N stacked models (3.67), through an LS estimator
(3.60) we obtain

κ̂ext(ε̃) =
(
W ext>R−1W ext

)−1
W ext>R−1ε̃ , (3.71)

which represents the estimate of the parameters in κext. AssumingR = I3×3, the combined
missing contribution can now be compensated following the block scheme in Fig. 3.5,
obtaining

f̄w = ˆfw∗ + ε1(κ̂J) + ε2(κ̂w) . (3.72)

3.6 Adept Lynx Dynamics

Although controlling the Adept Lynx platform is not a goal of this work, in this section
we want to show how to derive a dynamic model for a differentially driven platform.
The dynamics of this kind of platforms is highly nonlinear, and include non-holonomic
constraints mentioned in Section 2.2.3, which make difficult their modeling and analysis.
First the Lagrangian formulation is presented, next the Newton-Euler approach is proposed
in the case that we want to integrate the platform with an external manipulator, in order
to involve its effects into the platform dynamics.

3.7 Lagrangian Approach

However, is common practice in the literature, to introduce the motion constraint into
the dynamic equations, using the additional Lagrange multipliers; on this purpose, we
follow the approach presented in [14]. Recalling that a vector of generalized coordinates
w = [xF, yF, ϕ, ϑl, ϑr]> has been introduced in (2.22) to identify the platform pose,
now we want to introduce another vector

qplat = [q1, q2]> , (3.73)

that is the joint space vector, composed by the minimal set of variables that let the system
be described, which now considers as q1 and q2, respectively the previous ϑl and ϑr, that
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3 Dynamics

are the left and right wheel angles. At this point assuming that mass and moment of
inertia of both, casters and the driving wheels, are negligible, we can easily employ the
Lagrangian formulation, writing down the Lagrange equation s.t.

L = 1
2mp(ẋ2

G + ẏ2
G) + 1

2Jpϕ̇
2 . (3.74)

Here we define with mp the platform mass and with Jp the platform moment of iner-
tia w.r.t. the axis perpendicular to the ground, that intersects the platform center of
mass. Next we derive the cartesian velocities of the center of mass ẋG and ẏG, by time
differentiation from the following geometric relationships, referred to Fig. 2.4(b)

xG = xF − lF · cos(ϕ) (3.75)
yG = yF − lF · sin(ϕ) . (3.76)

Once we substitute the derived ẋG and ẏG into (3.74), we obtain an expression of type
L(ẇ) function of the generalized coordinates. Therefore, we are now able to compute the
constrained dynamics through

d

dt

∂L

∂ẇ
− ∂L

∂w
+ Λ>(w)λ−ψ = 0 , (3.77)

where λ is the Lagrange multiplier that introduces the non-holonomic constraint defined in
(2.47) and ψ is the external force. Observe that here, the constraint forces are responsible
for not allowing the wheels to slip sideways. Hence from (3.77), the motion equations can
be obtained in the form

M (w)ẅ + V (w, ẇ) = E(w)τ −Λ>(w)λ , (3.78)

whereM (w) ∈ R5×5 is the inertia matrix, V (w) ∈ R5 is the vector of velocity dependent
forces, τ ∈ R2 is the torque vector, E(w) ∈ R5×2 is the input transformation matrix.
Observe that from (2.34), it holds

ẇ = ξ(w)q̇plat(t) , (3.79)

therefore from (3.79) we can obtain an expression for ẅ that can be substituted in (3.78).
Then, premultiplicating it by ξ> we can obtain the equivalent motion equations model

ξ>
(
Mξq̈plat(t) +Mξ̇q̇plat(t) + V

)
= ξ>Eτ − ξ>Λ>λ , (3.80)

where now, exploiting the property in Eq. (2.48), the constraint term disappears, and the
constrained dynamics can be reformulated as

M ?q̈plat + V ? = E?τ . (3.81)

These new quantities are such that M ? = ξ>Mξ ∈ R2×2 is the reduced mass matrix,
always symmetric positively definite since ξ is full rank, V ? = ξ>

(
Mξ̇q̇plat + V

)
∈ R2,

and E? = ξ>E = I2×2 since the torque vector in (3.78) and (3.81) is kept with the same
dimensions. Letting γ and δ be

γ = r2

4b2

(
−4mpl

2
F − 8lCMmplF +mpb

2 + 4Jp
)

(3.82)

δ = r2

4b2

(
4mpl

2
F + 8lCMmplF +mpb

2 − 4Jp
)

(3.83)
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3.8 Newton-Euler Based Approach

the computed matrices result

M ∗ =
[
γ δ
δ γ

]
(3.84)

V ∗ =
[
mprϕ̇

2b [lFr(q̇1 − q̇2) + lCMr(q̇1 + q̇2) + (lF + lCM)bϕ̇]
mprϕ̇

2b [lFr(q̇1 − q̇2)− lCMr(q̇1 + q̇2) + (lF + lCM)bϕ̇]

]
. (3.85)

Finally observe that summing and subtracting the two components of the model in (3.81),
we can also rewrite the dynamics equations as function of the linear and the angular
velocities of the platform, defined in Eq. (2.25) and (2.26), obtaining

mpv̇p +mplCMϕ̇
2 = (τ1 + τ2)

r
(3.86)(

mpl
2
CM + Jp

)
ϕ̈−mpvpϕ̇lCM = (τ2 − τ1) b

2r . (3.87)

3.7.1 Payload Integration

In the previous section we have seen that applying the Lagrangian method we can de-
rive the dynamics for a differentially driven mobile platform, in terms of wheel actuator
torques. This formulation provides a systematic approach which is also helpful whether
we want to integrate a payload on the top of the platform. This is the case taken into ac-
count from Papadopoulos [16], where applying the same method we can obtain an unified
coupled dynamic model, which also considers the manipulator dynamic effects. In this
case, the problem needs to be rearranged such that the joint space vector and the vec-
tor of generalized coordinates, are extended to contain also the manipulator joint angles,
therefore Λ becomes

Λ(q) = [sinϕ − cosϕ lF 0 0]> , (3.88)

and the Lagrangian equation in (3.74) needs to be extended to contain also the kinetic
and potential energy of the manipulator links.

At this point we highlight the fact that, in order to follow this approach, we need to
have the values of the inertia of the manipulator links, that might be unknown. If this
happens, the Lagrangian formulation is not applicable, therefore an alternative method is
proposed afterwards, to include the manipulator dynamic effects in the dynamic model of
the platform, based on the Newton-Euler approach.

3.8 Newton-Euler Based Approach

Let us assume to have a manipulator attached on the platform point F, whose interaction
with the platform is modeled through Ff ∈ R6, wrench exerted on F given w.r.t. frame SF
in Fig. 3.6(b). Here, we first transform this wrench w.r.t. point G, through the following
transformation

Gf = GXF
Ff . (3.89)
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Now, once we define the components of the new wrench vector as

Gf =
[

Gfx,
Gfy,

Gfz,
Gµx,

Gµy,
Gµz

]>
, (3.90)

we can apply the Newton Euler formulation, that is based on the application of the Newton
and Euler equations of the dynamics, where now, the underlying idea is to involve also
the components of the external wrench exerted.

wS wx

wy
ϕ

G
P

Fwa,wv

wlF

wrF

urF

ulF

ua,uv

S

(a) Platform with model parameters.
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(b) Platform with frames and lengths.

Figure 3.6: Lynx platform parameters and frames for Newtonian dynamic modeling.

In Fig. 3.6(a), we denote as Ful and Fur the longitudinal force exerted on the vehicle,
by the left and right wheel respectively, and as Fwl and Fwr the exerted lateral forces.
Furthermore referring to Fig. 3.6(b), we set lG = lCM + lF and we assume that the masses
of all the wheels are negligible. Now, taking Jp the platform moment of inertia, w.r.t.
the axis perpendicular to the ground that intersects the platform center of mass, the
Newton-Euler equations result

mpau = Ful + Fur + Gfx (3.91)
mpaw = Fwl − Fwr + Gf (3.92)

Jpϕ̈ = (Fur − Ful)
b

2 + (Fwl − Fwr)lCM + Gfy · lG + Gµz , (3.93)

referring to a rotation about point G. Observe that the components of the external wrench
applied in F have been taken into account through a force-torque transformation, that
transforms the wrench from frame SF to frame SG. Now, considering the kinematic rela-
tionships that have been derived in Section 2.2.4 through polar coordinates, we substitute
the (2.56) (2.57) in the previous equations, obtaining

v̇u = Ful + Fur + Gfx
mp

+ vwϕ̇ (3.94)

v̇w = Fwl − Fwr + Gfy
mp

− vuϕ̇ (3.95)

ϕ̈ = 1
Jp

[
(Fur − Ful)

b

2 + (Fwl − Fwr)lCM + Gfy · lG + Gµz

]
, (3.96)

where we recall that all the kinematic quantities refer to Fig.3.6(a). Therefore, we now
include the non-holonomic constraint by substituting (2.58) in (3.94) and (3.95), and
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combining with (3.96), we obtain

v̇u = Ful + Fur + Gfx
mp

− lCMϕ̇
2 (3.97)

ϕ̈ = 1
Jp +mpl2CM

[
(Fur − Ful)

b

2 + Gfy · lF + Gµz + lCMmpvuϕ̇

]
, (3.98)

that is the constrained platform dynamics, described with the longitudinal and angular
acceleration of the platform. At this point, exploiting the physical relationship between
longitudinal force exerted by the wheel and torque applied to it, from (3.97) and (3.98),
we can write the dynamics showing the wheel actuator torques that results

mpau +mplCMϕ̇
2 − Gfx = (τl + τr)

r
(3.99)(

mpl
2
CM + Jp

)
ϕ̈−mpvuϕ̇lCM − Gµz − Gfy · lF = (τr − τl) b

2r . (3.100)

Finally, we have obtained a dynamic model for the platform, where the dynamic contri-
bution of the manipulator has been considered, treated as external force.

Observe that whether we assume the wrench components to be zero, the Newton-Euler
based model in (3.99) and (3.100), is equivalent to the Lagrangian one, obtained in (3.86)
and (3.87) without the assumption of external payload.
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Table 3.3: Base inertial parameter of Roberta P80.800, from [4].
Base Parameter κ Standard parameter κstd

JzzR,1 Jd,1 + Jyy,2 + Jyy,3 + Jzz,1 + d2
3 (m3 +m4 +m5 +m6)

JxxR,2 Jxx,2 − Jyy,2 − d2
3 (m3 +m4 +m5 +m6)

JxyR,2 Jxy,2
JxzR,2 Jxz,2 −msz,3 d3
JyzR,2 Jyz,2

JzzR,2 Jd,2 + Jzz,2 + d2
3 (m3 +m4 +m5 +m6)

msxR,2 msx,2 + d3 (m3 +m4 +m5 +m6)
msyR,2 msy,2

JxxR,3 Jxx,3 − Jyy,3 + Jyy,4 + 2msz,4 r4 + r2
4 (m4 +m5 +m6)

JxyR,3 Jxy,3
JxzR,3 Jxz,3
JyzR,3 Jyz,3

JzzR,3 Jyy,4 + Jzz,3 + 2msz,4 r4 + r2
4 (m4 +m5 +m6)

msxR,3 msx,3
msyR,3 msy,3 −msz,4 − r4 (m4 +m5 +m6)
JdR,3 Jd,3
JxxR,4 Jxx,4 − Jyy,4 + Jyy,5
JxyR,4 Jxy,4
JxzR,4 Jxz,4
JyzR,4 Jyz,4
JzzR,4 Jyy,5 + Jzz,4
msxR,4 msx,4
msyR,4 msy,4 −msz,5
JdR,4 Jd,4
JxxR,5 Jxx,5 − Jyy,5 + Jyy,6
JxyR,5 Jxy,5
JxzR,5 Jxz,5
JyzR,5 Jyz,5
JzzR,5 Jyy,6 + Jzz,5
msxR,5 msx,5
msyR,5 msy,5 −msz,6
JdR,5 Jd,5
JxxR,6 Jxx,6 − Jyy,6
JxyR,6 Jxy,6
JxzR,6 Jxz,6
JyzR,6 Jyz,6
JzzR,6 Jzz,6
msxR,6 msx,6
msyR,6 msy,6
JdR,6 Jd,6
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3.8 Newton-Euler Based Approach

Table 3.4: Wrench inertial parameter of Roberta P80.800

Entry Wrench Parameter κf Standard parameter κstd

1 JxzR,1 Jxz,1
2 JyzR,1 Jyz,1

3 JzzR,1 Jd,1 + Jyy,2 + Jyy,3 + Jzz,1 + d2
3 (m3 +m4 +m5 +m6)

4 msxR,1 msx,1
5 msR msy,1 −msz,2 −msz,3
6 mR m1 +m2 +m3 +m4 +m5 +m6

7 JxxR,2 Jxx,2 − Jyy,2 − d2
3 (m3 +m4 +m5 +m6)

8 JxyR,2 Jxy,2
9 JxzR,2 Jxz,2 −msz,3 d3
10 JyzR,2 Jyz,2

11 JzzR,2 Jd,2 + Jzz,2 + d2
3 (m3 +m4 +m5 +m6)

12 msxR,2 msx,2 + d3 (m3 +m4 +m5 +m6)
13 msyR,2 msy,2

14 JxxR,3 Jxx,3 − Jyy,3 + Jyy,4 + 2msz,4 r4 + r2
4 (m4 +m5 +m6)

15 JxyR,3 Jxy,3
16 JxzR,3 Jxz,3
17 JyzR,3 Jyz,3

18 JzzR,3 Jyy,4 + Jzz,3 + 2msz,4 r4 + r2
4 (m4 +m5 +m6)

19 msxR,3 msx,3
20 msyR,3 msy,3 −msz,4 − r4 (m4 +m5 +m6)
21 JxxR,4 Jxx,4 − Jyy,4 + Jyy,5
22 JxyR,4 Jxy,4
23 JxzR,4 Jxz,4
24 JyzR,4 Jyz,4
25 JzzR,4 Jyy,5 + Jzz,4
26 msxR,4 msx,4
27 msyR,4 msy,4 −msz,5
28 JxxR,5 Jxx,5 − Jyy,5 + Jyy,6
29 JxyR,5 Jxy,5
30 JxzR,5 Jxz,5
31 JyzR,5 Jyz,5
32 JzzR,5 Jyy,6 + Jzz,5
33 msxR,5 msx,5
34 msyR,5 msy,5 −msz,6
35 JxxR,6 Jxx,6 − Jyy,6
36 JxyR,6 Jxy,6
37 JxzR,6 Jxz,6
38 JyzR,6 Jyz,6
39 JzzR,6 Jzz,6
40 msxR,6 msx,6
41 msyR,6 msy,6
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4 Base Wrench Validation

In this chapter we are going to show the results obtained following the base wrench adjust-
ment steps, explained in Section 3.5. We recall that, since the real formulation in (3.37) is
not numerically computable, the only way to approximate the base wrench is to adapt the
base parameters that have been identified for the inverse dynamics, as explained in Section
3.3. For this reason, several formulations of the base wrench are simulated and compared
with the measurements coming from the readings of a 6-axes force-torque sensor, placed
underneath the Roberta P80.800 base.

The validation idea is to let the Roberta P80.800 perform a specific movement, by providing
a desired velocity profile to its end-effector, and then collect N base wrench measurements
f̃w. Therefore N simulations f̂w of the base wrench are performed on the same velocity
profile, and they are compared with the N real recorded measurements.

1f
1µ

wf̂
Simulation

)desq̈,desq̇,desq(

)actq̈,actq̇,actq(

wf̃+

Offset

−FTSExt senf

0Xs

sΣ

simf

Figure 4.1: Base wrench validation scheme.

4.1 Preliminary Transformations

In order to be compared, the sensor measurements as well as the simulations need a
preliminary transformation, to refer to an unified reference frame. Fig. 4.1 shows the base
wrench validation scheme adopted.

First of all, since the force-torque sensor is affected by an instrumental offset that disturbs
the sensor outputs, N force-torque measurements are collected with the sensor unloaded,
without the Roberta on it. Therefore, we denote with Offset the mean value among the
N recorded offset measurements, and this value has to be subtracted to every force-torque
measurement.

At this point, a desired trajectory is given to the Roberta P80.800, whose end-effector
movements affect the force-torque sensor at its bottom. Then, the sensor data FTSExt
can be collected and set free of the Offset, so we now obtain a base wrench measurement
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4 Base Wrench Validation

f sen = [fsen,µsen]> that refer to the frame Ss, as Fig. 4.2 shows. On the other side, the

0x

0z

sx

0y

02 mt.0

800.Roberta P80

Force Torque Sensor

senµ
senf

simf

simµ

sy

sz

Figure 4.2: Base wrench simulations and measurements, w.r.t. their reference frame.

simulations are run on the actual trajectory, which is the real joint trajectory performed
by the Roberta, giving an expression of f sim = [fsim,µsim]> that refer to the frame S0.
According with Fig. 4.1, two more steps are needed to compare these quantities.

• Σs block, provides to flip the sign of the measurement such that

f̃w = −f sen . (4.1)

• Then, a force-torque transformation is applied to move the fsim and µsim, simulated
force and torque, from S0 to Ss, that results

f̂w = sf̂w = sX0f sim . (4.2)

where sX0 denotes the force-torque transformation from S0 to Ss, which refers that
S0 is rotated of a -π clockwise angle w.r.t xs-axis, and it is traslated through the
translation vector sp0 = [0, 0, 0.02m]>.

After these two steps, the quantities f̃w and f̂w are ready to be compared, as shown in
Fig. 4.1 .

4.2 Optimal trajectory

For validating the base wrench simulations as well as the adjustment formulation, an
arbitrary desired trajectory for the joints, needs to be given to the Roberta P80.800. Since
the adjustment formulation also includes the parameter identification of the unknown κw,
we aim to use among all the trajectories, the optimal one that can better excite all the
parameters in κf , and consequently the ones in the unknown parameter set. This optimal
trajectory is periodic, and consists of fourier series signals given to each of the manipulator
axes, and it is provided from previous work done in [4] and [5]. Hence, once we identify
the parameters and validate the approach using the optimal trajectory, we also consider
different trajectories, in order to cross validate the formulation.
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4.3 Base Parameter Set Results

4.3 Base Parameter Set Results

First of all, we want to show the results that the formulationW f (q, q̇, q̈)κf∗ gives through
κf∗ parameter set, which means adopting the base wrench parameters of the inverse dy-
namics, and neglecting the non identified parameters in κw, as well as and the rotors
inertia contributions Jd,i for i = 3, 4, 5, 6.

As a result, this formulation yields a symbolic error computed in (3.61)-(3.62), which is
reported in Table 4.1, where, for each error component, the dependencies on the parameters
in κw and on the inertias Jd,1 and Jd,2 are highlighted. Here some initial considerations

Table 4.1: Symbolic error for every wrench component, computed w.r.t. (3.61)-(3.62).
Here the gis refer to a generic function.

Error Component εi Symbolic Error

ε1 g1(msxR,1,msR)
ε2 g2(msxR,1,msR)
ε3 −9.81 ·mR
ε4 g4 (JxzR,1, JyzR,1,msxR,1,msR)− Jd,2 (q̈2 sin q1 + q̇1q̇2 cos q1)
ε5 g5 (JxzR,1, JyzR,1,msxR,1,msR) + Jd,2 (q̈2 cos q1 − q̇1q̇2 sin q1)
ε6 −Jd,1q̈1

can be done.

• Comparing to the force simulations, the moment simulations are more approximated,
for the fact that they also include the terms of error coming from the inertias Jd,1
and Jd,2.

• The error of the moment components, depends on the inertia through an acceleration
term, in a way that it gets higher for high q̈1 q̈2 accelerations.

• The magnitude of each error component depends on the magnitude of its dependen-
cies, that are unknown so far.

Therefore, applying the validation scheme in Fig. 4.1, we obtain f sim through

f sim = W f (q, q̇, q̈)κf∗ . (4.3)

Hence, by applying the preliminary transformations in Sec. 4.1 , we can obtain the mea-
sured f̃w and the simulated f̂w, whose forces and moments components are compared
respectively in Fig. 4.3 and 4.4.
From the simulation results, we can notice the presence of noise, that highly affect the base
wrench measurements. Despite this undesired element, for every component of the base
wrench, we can see that the simulations are consistent with the trend of the measurements,
in particular from Fig. 4.3 and 4.4 it comes out:

• a big offset in the force along the z-component. Furthermore, taking a look on Tab.
4.1, this error is supposed to be proportional to mR, which is, from Tab. 3.1, the
sum of all the link masses. We can conclude that we cannot get rid of this error, as
long as this parameter is unknown.
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4 Base Wrench Validation

• A relevant error that concerns the measured and simulated moment in the z-component.
Here one more time, Tab. 4.1 models this error as a linear dependency on Jd,1 through
the acceleration q̈1. Similarly, to compensate this error, the rotor inertia parameter
needs to be identified.

After this evaluation of the first approach, we can conclude that the parameter set κf∗,
that contains the entries from the original identified set κ, provides a good base wrench
formulation for the applications that do not require accuracy along the z-axis. Other-
wise, in order to get a better base wrench formulation, we need to involve a parameter
identification procedure.
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Figure 4.3: Base wrench force components, simulated with known parameters in κ, are
compared with the measurements. The plot shows 5 periods.

4.4 Results with the Systematic Error Compensation

From a symbolic evaluation, as well as from an evaluation of the outcomes provided by
the κf∗ parameter set, a parameter identification is needed to improve the formulation of
the base wrench. Similarly in what has been done in the previous section, we aim to apply
the validation scheme in Fig. 4.1, taking f sim as the f̄w obtained in Section 3.5.1.
As we expected from Tab. 4.1, by compensating the systematic error, we can improve the
components of the base wrench moment. Fig. 4.5 shows the outcomes of the systematic
error compensation on the moment, and as a result of this, we now have that all the error
between measurements and simulations is a consequence of the missing κw parameter set
contribution.
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Figure 4.4: Base wrench moment components, simulated with known parameters in κ, are
compared with the measurements. The plot shows 5 periods.
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Figure 4.5: Base wrench moment components, simulated with the ε1 error compensation
in (3.65), are compared with the measurements. The plot shows 5 periods.
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4.5 Results with the Parameter Identification

As a result of the application of the first systematic error compensation, we now have that
all the error between measurements and simulations is supposed to be modeled as a con-
sequence of the κw. Therefore, here we want to model the error as a missing contribution
of κw, as well as an over contribution from the inertia Jd,1 and Jd,1.
Then, the overall error compensation explained in Section 3.5.2, can be implemented by
taking the f sim in Fig. 4.1 as f̄w from formula (3.72), that is the outcome of the approach
shown in Fig. 3.5. If we stick to this Figure, the block Σ1 performs the parameter identifi-
cation from 10 periods of the optimal trajectory taken, and provides the outcomes shown
in Tab. 4.2.
Here we observe that the negative value of the parameter Jd,2, which represents an inertia,
does not have a proper physical meaning. In the light of this fact, we point out that this
is the outcome of a refitting procedure, that involves the identification of a parameter,
whose value has already been identified in a grouped form (see entry 11 of Table 3.4).
Therefore, such procedure of adjustment of the base wrench formulation, is convenient
in order to rearrange the base wrench simulations, but it might not provide physically
reliable outcomes.

Table 4.2: Additional base inertial parameters in κext.
Wrench Parameter κext Dynamic Parameter Identified Value

JdR,1 Jd,1 4.063
JdR,2 Jd,2 −1.155
JxzR,1 Jxz,1 1.139
JyzR,1 Jyz,1 0.701
msxR,1 msx,1 −0.588
msR msy,1 −msz,2 −msz,3 −0.314
mR m1+m2+m3+m4+m5+m6 23.157

The results of the overall adjustment formulation are shown in in Fig. 4.6 and 4.7. These
plots show how the identified wrench parameters can improve the simulations, by compar-
ison with the measurements. Comparing Fig. 4.6 with Fig. 4.3, we can easily see a crucial
improvement regarding the third component of the force, thanks to the identification of
the wrench parameter mR. Despite the third component of the force, it is quite hard to
evaluate the impact of the identified parameters on the simulations. Thus we define the
quantities

εin = f̃w − f̂w = f̃w − sX0f̄
w (4.4)

εfin = f̃w − f̂w = f̃w − sX0
ˆfw∗ , (4.5)

plotted in Fig. 4.8 and 4.9, that are respectively, the initial error between the initial base
wrench formulation, derived with the κ parameters, and the measurements, and the final
error between the compensated formulation and measurements. Now, for each component
of the wrench, we perform a numeric evaluation of the error through the RMSE error,
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4.5 Results with the Parameter Identification

explained in (3.47) using the formulas

SSE = ε>ε , (4.6)

RMSE =
√
SSE

M
. (4.7)

Summarizing, through Eq. (4.6)-(4.7) we compute the standard error of the regression,
on εin and εfin, obtaining RMSEin and RMSEfin.

Table 4.3: RMSE values, for each wrench component, with and without the compensation.
fx fy fz µx µy µz

RMSEin 12.237 14.171 227.978 8.603 8.475 10.180
RMSEfin 12.379 14.198 10.349 11.682 9.464 1.960
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Figure 4.6: Base wrench force components, simulated with the overall error compensation
in (3.72), are compared with the measurements. The plot shows 5 periods.

Now comparing the results shown in Table 4.3, the following considerations regarding the
validity of the adopted approach, can be done.

• RMSE values show a qualitative measure of the goodness of the results. In fact this
factor is highly sensitive to the noise of the measurements, as it can be seen from
Section 3.4.

• The main improvements are obtained in the computation of the components along
the z-axis. Indeed, the error for these components gets a relevant diminution after
the compensation.
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Figure 4.7: Base wrench moment components, simulated with the overall error compensa-
tion in (3.72), are compared with the measurements. The plot shows 5 periods.
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Figure 4.8: Comparison between errors εin and εfin, depicted in half of a period.
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Figure 4.9: Comparison between errors εin and εfin, depicted in half of a period.

• The first two components of force and moment, do not get any improvement, showing
that these quantities already have a reliable trend, after the first non compensated
base wrench formulation.

4.6 Cross Validation on Different Trajectories

Likewise as it has been done in Section 4.5, where the impact of the identified parameters
is evaluated on a specific trajectory, the cross validation can be performed following the
same evaluation criteria, by running a different trajectory instead of the optimal one. On
this purpose we adopt three trajectories that are:

• Dynamics excitation trajectory (dyn) is designed for optimally exciting the inertia
parameters. This trajectory is the one adopted by Stapf [4] for the identification of
the base inertia parameters κ.

• Demo Red Box movement (red) is part of a demonstration program that has been
presented several times with this robot. It consists of linear and point to point
movements, and it is an interesting trajectory, because it includes the most dynamic
movement that occurs in the real applications.

• PTP and LIN movement (PL), let the robot moves repeatedly between three points
with varied velocities, where some movements are performed as joint space point to
point (PTP) movements and some are linear (LIN) movements in Cartesian space.
This trajectory is not really employed in common applications.
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Table 4.4: RMSE values for each component of the base wrench, of the three trajectories.
fx fy fz µx µy µz

RMSEdyn
in 14.278 14.186 215.249 7.818 9.016 12.675

RMSEdyn
fin 14.305 14.300 17.415 10.341 11.138 2.207

RMSEred
in 3.073 3.478 219.145 3.560 4.495 1.409

RMSEred
fin 3.062 3.470 8.624 5.427 5.419 0.443

RMSEPL
in 5.046 4.200 216.223 4.968 5.360 1.859

RMSEPL
fin 5.053 4.200 11.743 6.233 4.811 0.686

Here, looking at the RMSE values of red and PL trajectories, we can notice that they have
a pretty small values in comparison with the dyn and the optimal trajectories in Tab. 4.3.
Here we recall the fact that the error of the moment depends on the identified inertias
through the acceleration q̈1 and q̈2. In this way the trajectories with smaller acceleration
for the first two joints, have a smaller error to compensate, which means that the moment
simulation can be satisfying even with a low accuracy of the identified parameters. In
order to verify this, the position and the acceleration for the optimal trajectory and for
the PTP and LIN, are plotted for each joint in Fig. 4.10 and 4.11. The figures show, as
we expected, that q̈1 and q̈2 of the optimal trajectory have a bigger magnitude comparing
with the ones of the PTP and LIN, which are equal to zero for half of the entire trajectory.
Consequently, PTP and LIN gives the better results.

Furthermore, for every trajectory, the RMSE error is computed for each component of
the base wrench, and the results are shown in Table 4.4. Here, the same conclusions as
in Section 4.5 can be deduced for each of the tested trajectory. In particular, comparing
Tab. 4.4 of the cross correlation with Tab. 4.3, we observe that for each of the cross
validation trajectory, the RMSE of the third component of the wrench has a greater
magnitude w.r.t. the one of the other components. Furthermore plotting the results for
the case of Demo Red Box trajectory, see Fig. 4.12 and 4.13, we can notice that the third
component of the simulated force, seems to be affected by an offset. At this point, even
though the mean of the offset is about the 3.7% of the measurements mean, this error
might represent a weakness in the adjustment procedure that we performed, based on
the optimal trajectory. On this purpose the recorded measurement data contains all the
necessary to apply future improving measures as in [4], e.g. time domain averaging and
estimation of the measurement noise, that have not been performed in this work for time
reasons.

Concluding, the simple parameter identification performed to identify the κw parameter
set might not have the best accuracy, however this represents the best estimate of the
base wrench, starting with the already existing information about the dynamics of the
Roberta, and avoiding a new parameter identification work, that would have needed a
longer time. Therefore, for what is needed for the rest of this work, the plots show that
the results obtained after the adjustment procedure, are enough consistent with the trend
of the measurements, so despite this margin of uncertainty, we decide to keep this base
wrench formulation as reliable information for our next work topic.
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Figure 4.10: Actual position and acceleration of the Roberta joints, under the optimal
trajectory: 5 periods are shown.
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Figure 4.11: Actual position and acceleration of the Roberta joints, under the PTP and
LIN. The entire trajectory is shown.
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Figure 4.12: Wrench force components, simulated on Demo Red Box trajectory with error
compensation in (3.72), are compared with the measures. 5 periods are shown.
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Figure 4.13: Wrench moment components, simulated on Demo Red Box trajectory with
error compensation in (3.72), are compared with the measures. 5 periods are
shown.
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5 Tip-Over Analysis

For the final goal of evaluating dangerous configurations of the system, we have to face
the problem that some information regarding the Roberta are unknown. In the previous
chapters, the kinematics and the dynamics have been introduced for the robotic system
in study, composed by two different components that are a 6-DoF manipulator and an
autonomous mobile platform. In particular it has been found a formulation for the base
wrench, considered reliable for our purpose. Hence, the underlying idea is to adopt the
moment height stability measure (MHS), that is going to be introduced afterwards, which
let us exploit this information extracted from the Roberta.

5.1 Moment-Height Stability Measure Introduction

The MHS measure has been chosen for this work for an important point that makes
possible the initial idea of using the derived base wrench, that is to treat the system as
an assembly of two separate subsystems. For the fact that needed information about the
Roberta links is missing, this property is crucial to let us perform the stability analysis,
without deriving a proper coupled model. Therefore, the insight here is to split up the
mobile platform in the Roberta P80.800, the upper subsystem, and a lower subsystem,
composed by the Adept Lynx platform and the Roberta control cabinet, with dimensions in
Fig. 5.2(a), mounted on it, in a way that the base wrench reaction forces act as interaction
forces between the two subsystems, as in Fig. 5.1.

0z

f̂
µ̂

platH

0x

371 m

372 m

Figure 5.1: Upper and lower subsystems with the interaction forces.
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Figure 5.2: Lower subsystem reference frames.

5.1.1 Geometric Model

Before starting the stability analysis, we recall that the Adept Lynx platform in use, is
equipped with 2 active wheels and 4 casters, whose ideal contact points with the ground
represents the vertices pi of a convex polygon, which represents the so called support
boundary polygon, depicted in Fig. 5.2(b).

For the analysis that is going to be performed, it is useful to name the polygon vertices
from p1 to p6 in clockwise direction, and to place a reference frame Spi in correspondence
of each vertex pi, whose xpi-axis points towards the next vertex pi+1 and the other axes
ypi and zpi are chosen to complete a right-handed frame (see Fig. 5.2(b)). A further
right-handed reference frame Sb is placed on the top of the upper subsystem, with xb-axis
pointing toward the front of the platform and with origin assumed to represent the point,
where the Roberta P80.800 is attached. Then, we denote ei as the edge between points
pi and pi+1 such that

ei = pi+1 − pi , i = 1, 2, . . . , 5 (5.1)
e6 = p1 − p6 . (5.2)

For each edge of the support polygon, we define the unit vector âi with the same origin
and direction of the corresponding xpi axis, such that

âi = pi+1 − pi
||pi+1 − pi||

= ei
||ei||

, i = 1, 2, . . . , 5 (5.3)

ân = p1 − p6
||p1 − p6||

= e6

||e6||
, (5.4)

in a way that all the unit vectors make a clockwise closed loop.

Now, we highlight the fact that in studying the stability of mobile manipulators, multiple
factors have to be taken into account, e.g. height of the system center of gravity, velocity
of the platform, accelerations of both platform and links of the manipulator, mass moment
of inertia of the mobile base, interaction forces and torques between the manipulator end-
effector and the environment, and the amount of load transferred by the manipulator on the
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platform. Assuming that the wheels do not slip during the motion, and that the platform
drives in a flat terrain, a tip-over occurs when the vehicle rotates about one of the support
pattern edges, called tip-over axis. At the same time, when the platform experiences
sudden change in its direction e.g. due to uneven ground conditions, the tip-over occurs
about some combination of support pattern edges. Therefore, the MHS measure presented
in [1] defines a criterion based on the stabilizing and destabilizing moments for both cases,
where the yaw instability is not considered as unstable pose for the system, unlike in the
car dynamics.

Therefore, as mentioned, the mass moment of inertia of the mobile base, also counts in
the attitude of the platform to tip-over w.r.t. a certain axis. Hence, with the initial
assumption of uniform mass distribution, the mass moment of inertia of the entire lower
subsystem, has been computed with the help of a CAD-software, respect to each edge ei
of the support polygon, taking the corresponding xpi in Fig. 5.2(b) as reference. Results
are shown in Tab. 5.1.

Table 5.1: Inertia values Ipi,x with respect to xpi-axes.
Ip1,x Ip2,x Ip3,x Ip4,x Ip5,x Ip6,x

Inertia (kg m2) 14.894 13.338 13.025 14.332 13.045 13.361

5.2 MHS Algorithm for a Stationary Base

At this point, we can first perform an analysis on the stability of the system, by testing
the MHS measure for a stationary platform and a moving manipulator with no load.

Therefore in the case of a static base, all forces and torques exerted to the base body due
to manipulator motion, gravitational and inertia forces, described in the Sb frame, are
considered by taking the transformation of the base wrench obtained in Section 4. In this
way the effect of manipulator arm is fully substituted by a wrench whose origin is point
F, that here is assumed to be in correspondance of the base frame origin.
So first we need to extract force and torque exerted on the base, and this can be done by
taking the base wrench f̄w computed in (3.72), which is a reaction force computed with
respect to frame S0, and consequently

• flip the sign according with (3.38), in a way that we can obtain the wrench exerted
by the manipulator on the platform, w.r.t. S0;

• apply the force-torque transformation to describe it w.r.t. Sb,
bf = bf sim = bX0f sim . (5.5)

Here we observe that the simplest choice is to mount the Roberta in a way that its
frame S0 has the same origin as the frame Sb, with both the x-axes pointing in the
same direction, that is the platform front. Assuming that, we obtain

bX0 =
[

bA0 03×3
bS0 · bA0

bA0

]
=
[

bA0 03×3
03×3

bA0

]
, (5.6)
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where forces and moments are simply rotated of a π counter-clockwise angle, see
Fig. 5.2(a).

Therefore a geometric description of the boundary polygon is given, providing first the
coordinates of the six vertices of the support polygon of the platform, where the wheel
contact points lay, described w.r.t. the base frame fixed in (0,0,0), that are in the following
Table.

Table 5.2: Coord. of the vertices of the support polygon, w.r.t. Sb frame. Units in mm.
p1 p2 p3 p4 p5 p6

xb-coordinate -222.62 -222.62 0 203.17 203.17 0
yb-coordinate -151.16 151.16 196.64 102.45 -102.45 -196.64
zb-coordinate -743 -743 -743 -743 -743 -743

Then, after computing edges and unit vectors through (5.1) and (5.3), we have all the
needed elements to implement the algorithm.

1. From (5.5) we have that the total force and moment exerted on the base frame are
represented by bf =

[
bf, bµ

]
∈ R6×1. Then, the moment of this wrench about the

vertices of the support polygon can be found through

M vi = −pi × bf + bµ, i = 1, 2, . . . , 6 , (5.7)

whereM vi indicates the moment about pi, i-th vertex of support polygon. Here we
also want to involve the lower subsystem mass contribution, thus we obtain

M vi = −pp ×

 0
0

−mpg

− pc ×

 0
0

−mcg

− pi × bf + bµ , (5.8)

where pp and pc are the vectors pointing from the origin of frame Sp, respectively
to the platform and to the cabinet center of gravity, mp=60 kg and mc=20.58 kg
are the platform and cabinet masses assumed to be uniform in their volume, and g
represents the gravity acceleration term.

2. These moments about the vertices, can now be projected about their edge, through
the following scalar product applied on the corresponding unit vector

M i = M vi · âi , i = 1, 2, . . . , 6 . (5.9)

3. We finally have all the elements to compute the dynamic MHS measure α, by con-
sidering the most critical case that is

α = min{αi} , (5.10)

where αi, is the so called dynamic stability margin about the i-th edge, such that

αi = (Ipi,x)βiM i, i = 1, 2, . . . , 6 . (5.11)
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Here Ipi,x is the base moment of inertia in Tab. 5.1, and βi is taken as

βi =

+1, if M i > 0
−1, otherwise.

Observe that the MHS measure α, does not take into account the height of the whole
system center of gravity, therefore this measure could still be improved, through direct
incorporation of the height of the manipulator center of mass, as given in [1]. Unfortunately
in our work, we cannot directly estimate this manipulator parameter, consequently we
improve the MHS measure by adding a normalization s.t.

α̂ = min{αi}
αnom

, (5.12)

where α̂, is now the normalized dynamic stability margin, and αnom refers to a specific
nominal value. Observe that taking αnom as the α corresponding to the most stable
configuration of a specific trajectory, α̂ will vary between zero and one. Another choice
would be to αnom as the one of the starting configuration, in a way that the stability
measure will be weighted on it. Note that this proposed normalized measure, yields a
relative stability state, that does not specify an absolute value. On this purpose, additional
considerations can be done.

• Observe that the inner product in Eq. (5.9) implies that when αi is positive, the
moment about the i-th edge is stabilizing, otherwise it is negative when the moment
is destabilizing.

• As we mentioned, the MHS measure incorporates the mass moment of inertia of
the moving base. For a stable case, the higher the Ivi results, the more secure the
system stability will be, so βi has to be considered equal to 1. Otherwise, in case of
destabilizing moment, an higher Ipi causes a slower tip over, according with taking
βi = -1 in Eq. (5.11).

• If α, that is the minimum of the αi’s, is positive, the system is stable. The zero value
of α represents the critical dynamic stability, and negative values of α notices that
the system goes to instability.

5.3 MHS Algorithm for a Moving Base

As we mentioned, the MHS algorithm has just been addressed for the case of stationary
platform, so in this section, we want to clarify how to include the case where also the
platform is moving. In fact, this algorithm can be extended to the general dynamic case,
if we add the dynamic effects of the moving platform, to the external applied wrench. On
this purpose, this can be done by formulating the manipulator base wrench, done in Eq.
(3.37) for the case of stationary base, taking the initial conditions in (3.27)-(3.28) equal
to the platform angular velocity and acceleration. This case is not going to be discussed
in this work.
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5.4 MHS Verification

In order to verify the results of this method, we implement the algorithm with the software
MATLAB, and we run it with the given geometric description of the lower subsystem,
that is the platform and the Roberta control cabinet. The underlying idea is to follow the
approach in Section 5.2, and run simple trajectories on the Roberta, in order to be able
to expect what the result of the MHS algorithm has to be, in advance, and qualitatively
determine the goodness of the method.

px
0x0z

5e6e
1e 4e

pz

Figure 5.3: [Roberta from configuration q=0, rotate itself in clockwise direction.

5.4.1 Roberta Clockwise Rotation

First of all, we recall that we make the assumption that the frame Sp of the lower sub-
system, is in correspondence of the origin of manipulator frame S0. At this point, an
intuitive verification would be to give an arbitrary rotation to the Roberta in its home
configuration q = 0, in Fig. 5.3, in order to expect the Roberta to generate destabilizing
moments along every edge of the boundary polygon, in a sequence.

Under this idea, we design a fifth order polynomial trajectory, from 0 to π rad, to give to
q1, first joint of the Roberta, which is useful to avoid high accelerations at the beginning
and at the end of the motion. Therefore, a 0.1 s simulation of the compensated base
wrench of the Roberta is run, actuating the first joint with the designed trajectory and
keeping the other joints stationary. Next, the MHS measure is applied at each instant
time, on the simulated base wrench, providing the normalized stability measure computed
with (5.12), where the nominal weighting value is taken as the α of the first configuration
of the system, so that all the next configurations will be compared to it. Fig. 5.4 shows
the results of the applied algorithm, where the time instants of interest have been labeled
with ti, for i = 1, . . . , 7. From the simulation, results that the system is stable for the
first time interval, enclosed between 0 and t1, where the nominal stability measure gives
positive values. Therefore, after t1 s, the stability measure becomes negative, the system
is considered to be unstable, and the information about the tip-over axis, respect to which
the tip-over is occurring, is provided by the tip-over edge ei, depicted in figure within the
corresponding time interval. As we expected, all the edges have been considered critical in
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Figure 5.4: Evaluated stability measure along the time, applied on the Roberta base
wrench simulations, with simulation time 0.1 s. Tip-over edges are shown
when the system is unstable.
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Figure 5.5: Evaluated stability measure, applied on the Roberta base wrench simulations,
with different simulation time. Tip-over edges are omitted.

a clockwise loop, during the motion of the Roberta, as a result of the trajectory applied.
At the end of the trajectory, after t7 s the stability measure evaluates again the system as
stable, as a consequence of the progressive diminution of the deceleration.

A further verification can be applied by operating on the acceleration/deceleration of the
actuated joint q1. On this purpose, we expect that decreasing the velocity and consequently
the acceleration, through which the motion is performed, the system will result more stable.
Therefore, additional simulations have been performed by increasing the simulation time,
that let the fifth order polynomial trajectory, design the motion with lower acceleration
values .

The results are shown in Fig. 5.5 for simulation time of 0.2, 0.5 and 1 s, that bring
meaningful results for the applied method. The normalized stability measure, has been
computed with nominal weighting term, taken as the α of the first configuration of the
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system. Here, for simulation time of 0.2 s, at each instant time, the stability measure
is grater if compared to the previous one. The case of a 0.5 s simulation time bring the
system to be in the critical dynamic stability for almost all the motion performed and
finally the case of 1 s, shows that the system is stable for most of the time, with the
exception of the middle of the trajectory, when the joint acceleration is at its maximum,
that the stablity measure is at the border of the threshold.

Therefore, as we expected, the longer is the simulation time, the lower is the acceleration
of the motion and as a consequence, the more stable result the overall movement.

5.5 Application on Demo-RedBox Trajectory

In this section we want to apply the MHS algorithm in order to evaluate the stability of
the system in study, with a stationary platform and the Roberta moving on a realistic
trajectory. For doing this, we choose the Demo Red Box trajectory used in Sec. 4.6 for
cross-validating the base wrench formulation, that provides a series of movements that
such manipulators are used to perform. Hence similarly, we run the Roberta base wrench
simulation on this trajectory, and we next apply the MHS algorithm on the outcomes.
Here we point out that the nominal stability measure in Eq. (5.12), has been taken as the
one of the most stable configuration of the running trajectory, in a way that all the other
configurations are compared w.r.t. it. Fig. 5.6 shows the stability measure computed along
the time. Summarizing, the stability measure evaluates the criticality of the movement

0 20 40 60 80 100

0.4

0.6

0.8

1

α̂

Time / s

Figure 5.6: Evaluated stability measure applied on the Roberta base wrench simulations,
performed on Demo Red Box trajectory.

performed by the Roberta, from produced forces and moments at its base, which act on
the lower subsystem as external wrench. In this case of Demo Red Box trajectory, these
wrenches computed along the time, are not enough to let the MHS measure set the system
as unstable. These conclusion set the basis for a proposed offline tip-over evaluation, that
is presented in 5.6.
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5.6 Offline Tip-over Evaluation

At this point of the work, we can sum up all the elements treated in the previous chapters,
to propose a complete model-based tip-over avoidance method, for the mobile manipulator
in study. For a given trajectory to the mobile manipulator, this proposed offline analysis
aims to evaluate the system safety, by simulating its stability in advance, showing the
trend of the stability measure along the time, and alerting the user whether a tip-over can
occur, similarly in what has been done in Section 5.4 for the case of a static base.
In the specific, we propose to plan a trajectory to the overall system by separating the
one for the Adept Lynx platform, to the one for the Roberta P80.800 (differently from the
literature). In this case we can estimate angular velocity and acceleration of the platform,
as addressed in Section 3.6, and evaluate an expression for the Roberta base wrench, that
takes into account the motion of the Roberta, as well as the platform dynamic effects of
the platform, see Section 3.3.2. On this purpose we recall that in the formulation of the
base wrench, can also be considered an external payload, which can be integrated in the
case of gripping/lifting tasks. Consequently, the MHS measure can be applied to the base
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.Dynamics Sim

.Dynamics Sim

800.Roberta P80 MHS Measure

Evaluation
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Tipover
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ie
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plat
desq
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System

Figure 5.7: Proposed offline tip-over evaluation.

wrench simulation, an a trend of the stability measure can be provided, that can notice an
eventual instability occurrence, furthermore in this case, the critical edge respect to which
the tip-over is about to occur. At the end the user can evaluate the risk, and decide in
case, how to rearrange the overall trajectory of the system.
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6 Conclusions and Future Perspectives

This thesis treated several topics needed to deal with a stability analysis for a mobile
manipulator, built with available components in the RRRU Lab, that are the gomTec
Roberta P.80.800, and the Adept Lynx autonomous mobile platform. This thesis aims to
contribute to the intentions of the RRRU, to design safety measures in order to monitor
the moving system, avoiding possible tip-over. For its development, results coming from
previous work [4] [5], done with the purpose of developing a control cabinet for the Roberta,
have been exploited.

Starting to consider the most general case of application, that is both platform and ma-
nipulator in motion, only restricting the environment to be an indoor and flat terrain,
literature also offers several options for creating an unified dynamic model for the control,
carrying simple examples of 2 active wheels platforms and 2-DoF manipulators with a
fully provided dynamic parameters description. In these cases, the control is designed for
actuating the two wheels of the platform as well as the two joints of the manipulator,
that lead to a dynamic model written w.r.t. 4 variables. Anyway, since the Adept Lynx
platform does not allow to apply a direct control to its single active wheel, a combined
control scheme cannot be realized with the software interfaces available at the moment, so
we decided to employ a separate control for both the Roberta manipulator and the Lynx
platform. In addition, since the Roberta dynamic parameters (3.7) are not provided from
the manufacturer, we could not follow the common Lagrangian formulation, that the liter-
ature proposes for obtaining a full coupled dynamic model. Therefore, the underlying idea
was to exploit the available work in [4], which provides the dynamic parameters, identified
in a grouped form (base parameter set).

Thus, because of this lack of knowledge about the Roberta, the focus was on finding a
stability algorithm that could avoid this missing information, but could rather exploit the
previous work done. At this point, we decided to split up the system in study in two subsys-
tems, analyzing the interaction forces between them. In the specific, the Moment-Height
Stability measure (MHS) proposes to model this interaction forces, as the manipulator
reaction force and moment acting on its base (base wrench), yielding a stability measure
based on the projection of this base wrench, on the platform support polygon.

As a consequence, the challenge of this work was trying to formulate an expression for the
manipulator base wrench, using the unique available information regarding the Roberta
dynamics, that is the link dynamic parameters in the grouped form. Here, the authors in
[18] showed that exploiting the identified dynamic model of a similar 6 revolute joints ma-
nipulator, is possible to write the base wrench in a linear form w.r.t. the base parameters.
However, despite the results of the authors, a certain amount of time was spent in order
to conclude that, for computing the base wrench in the same way, some rearrangements
are needed to exploit the previous work. In particular, few base parameters that affect
the base wrench, neglected by the authors, do not appear in the identified base parameter
set.
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Hence at this point, another topic of this work needed to be treated, which was to find the
best possible formulation for the base wrench, in order to be able to get ahead into the final
goal. On this purpose we point out that to obtain a thorough base wrench formulation,
a complete parameter estimation work would have been necessary. Therefore, because of
time reasons and for the fact that a parameter estimation regarding the Roberta dynamics
had already been done, we accorded that trying to rearrange the base parameter set from
[4], represented the best trade-off between reaching the thesis goal and evaluating the
base wrench with an acceptable accuracy. Then, elements of parameter identification
theory have been exploited for obtaining an estimate of the unknown grouped dynamic
parameters, and a formulation of the base wrench was obtained. Next, such formulation
has been validated through experiments that brought satisfying results, even though the
cross validation remarked that the identification could still be improved.

After having achieved this topic, we could proceed with the stability evaluation for the
motion of the mobile manipulator, through the mentioned MHS measure. By simulating
the base wrench for simple trajectories, the stability criterion was verified for the case
of a static platform and unloaded Roberta, by bringing meaningful results. This final
method could not be validated, for time reasons and for the fact that the RRRU is still
not equipped with the safety measures, necessary to hold the system in case of experiments
failure.

Concluding, because of this unexpected problems occurred, this approach could not be
validated, so we propose some steps for additional improvements, in a future development.
First of all, similarly in how it has been done in this work, we propose to formulate a base
wrench expression which also considers effects of a moving base, as explained in 3.3.2 and
an additional payload. Even though the results show that the model represents the real
system, with an accuracy considered reliable, for what this base wrench is used in this
work, the parameter identification still has potential for improvements, e.g. by applying
the mentioned improving measures stated in [4].

The offline tip-over evaluation, proposed in Section 5.6, was a first interpretation in what
the goal of this thesis could represent, and is supposed to be the first useful tool, that
let the system in study to be monitored during the motion. Furthermore, the next step
could be to implement and test this proposed evaluation, and next, to develop an online
stability analysis, to be employed effectively during the motion of the system.
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A Cross Correlation Plots
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Figure A.1: Base wrench force components, simulated on the Dynamics excitation trajec-
tory with the overall error compensation in (3.72), are compared with the
measurements. The plot shows 5 periods.
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Figure A.2: Base wrench moment components, simulated on the Dynamics excitation tra-
jectory with the overall error compensation in (3.72), are compared with the
measurements. The plot shows 5 periods.
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Figure A.3: Base wrench force components, simulated on the PTP and LIN movement
with the overall error compensation in (3.72), are compared with the mea-
surements. The plot shows the entire trajectory.

V



A Cross Correlation Plots

0 10 20 30 40 50
t / s

-40

-20

0

µ
1
/
N
m

Meas

New Sim

0 10 20 30 40 50
t / s

0

20

40

µ
2
/
N
m

Meas

New Sim

0 10 20 30 40 50
t / s

-5

0

5

µ
3
/
N
m

Meas

New Sim

Figure A.4: Base wrench moment components, simulated on the PTP and LIN move-
ment with the overall error compensation in (3.72), are compared with the
measurements. The plot shows the entire trajectory.
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B Lower Subsystem Mass Integration in (5.8)

In this section, we want to point out the meaning of Eq. (5.8), where we included the lower
subsystem mass within the wrench moment, about the vertices of the support polygon.

From [19], for a rigid body of mass m subject to gravitational force and to active and or
reaction forces f1, . . . fn, concentrated respectively at points p1, . . . ,pn, the resultant of the
external forces f and the resultant moment µΩ with respect to a pole Ω are

f = mg +
n∑
i=1

fi (B.1)

µΩ = mg × (pΩ − pC) +
n∑
i=1

fi × (pΩ − pi) , (B.2)

where pΩ is the coordinate vector of pole Ω and pC is the coordinate vector of the rigid
body center of mass. In the case when f and µΩ are known and we want to compute
the resultant moment with respect to a point Ω′ different than Ω, the following relation
holds

µΩ′ = µΩ + f× (pΩ′ − pΩ) (B.3)

that is in accord with the force-torque transformation in Eq.(3.2).

In the light of this, we want to apply this result to a simplified case, where a control cabinet
of mass mc is mounted on a wheeled platform of mass mp, where we ignore the mass of
the wheels. Here we denote with p1, . . . ,pn the wheel contact points of the platform
and we assume that a known force and moment are applied in the base frame Sb origin,
respectively f′ and µ′. Thus, from (B.1), we obtain the resultant of the external forces

f = (mp +mc)g + f′ (B.4)

and similarly from (B.2) we obtain the resultant moment µp1 with respect to pole p1

µp1 = mpg ×
(
p1 − pp

)
+mcg × (p1 − pc) + f′ × p1 + µ′ . (B.5)

where pp and pc are the vectors, describing respectively the platform and cabinet center
of mass w.r.t. frame Sb. Repeating this procedure for p1, . . . ,pn at the end we have
obtained the resultant of the external force and moment, w.r.t. each contact point of the
platform.

Now observe that if we make the hypothesis that platform and cabinet center of mass and
the origin of frame Sb lay on the same vertical axis, orthogonal w.r.t. the ground, Eq.
(B.5) results equivalent to

µp1 = (mp +mc)g + f′ × p1 + µ′ . (B.6)
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C Base Principle of MHS Measure

In this section we aim to show the base principle of the MHS measure. We consider
the example in Figure C.1, composed by a control cabinet mounted on a wheeled mobile
platform, with the assumption that the corresponding center of masses lay on the zb-axis.

bx
by

Al

Bl

′f

gpm

gcm

Cl

1p

bz

2p

4p

Bl

Figure C.1: Acting forces, lengths, and base reference frame of the example.

Here we assume to have a simple example of a generic vertical reaction force applied at
the origin of the base frame, that is f′ =

[
0, 0, f ′z

]>
. From the formulas in Eq. (B.4)

and (B.5) and the quantities in Fig. C.1, we have that the resultant forces and moment
applied to point p1 are

f =

 0
0

−(mp +mc)g

+

 0
0
f ′z

 , (C.1)

µp1 =

 0
0

−mpg

×
 lA
−lB
−hp

+

 0
0

−mcg

×
 lA
−lB
−hc

+

 0
0
f ′z

×
 lA
−lB
−hb

 (C.2)

=

 (f ′z − (mp +mc)g)lB
(f ′z − (mp +mc)g)lA

0

 . (C.3)

where we denote with hp and hc, respectively the height of the platform and the cabinet
center of gravity, and with hb the height of the base frame.
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C Base Principle of MHS Measure

Now we obtained the three components of the transformed moment. Observe that the
applied moment is equal to zero, when the following equations are fulfilled

f ′z = (mp +mc)g · lB (C.4)
f ′z = (mp +mc)g · lA , (C.5)

that represent the critical stability condition for the system, when the reaction force
balance the gravitational force of the overall involved mass. Furthermore, observe that
whether we have f ′z > (mp + mc)g · lB a positive moment w.r.t. the xb -axis is applied,
and similarly when we have f ′z > (mp +mc)g · lA we obtain a positive moment w.r.t. the
yb -axis, that represents the case of tip-over occurrence. Same conclusions can be done for
point p2 that yields

µp2 =

 (f ′z − (mp +mc)g)lB
(−f ′z + (mp +mc)g)lC

0

 , (C.6)

and for all the other points of contact.
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