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Optimization of digital signal processing routines

for high speed coherent transmissions
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Un framework di simulazione per sistemi ottici coerenti implementa varie routines per

digital signal processors necessarie per correggere distorsioni quali dispersione cromat-

ica, dispersione dei modi di polarizzazione, perdite dipendenti dalla polarizzazione e

rumore di fase. In questa tesi vengono studiati alcuni di questi moduli e, basandosi sulla

comprensione del relativo principio di funzionamento, un’ottimizzazione viene eseguita

per ridurre il loro tempo di esecuzione. Il processo di ottimizzazione prevede di miglio-

rare il codice degli algoritmi, riducendo il numero complessivo di accessi alla memoria

e introducendo funzioni realizzate con un linguaggio di programmazione di più basso

livello. Dopo la fase di ottimizzazione vengono valutate le prestazioni delle routines per

misurare il miglioramento dei tempi di esecuzione e verificare il corretto funzionamento

dei nuovi codici.
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Chapter 1

Introduction

1.1 Optical Communications

Every year an incredible amount of information is exchanged all around the world. In

2014 slightly more than 108 TBytes were exchanged, according to Cisco [1] and the

predictions state that the world is finally entering the Zettabyte (1021 Byte) era. This

enormous flow of data is possible only thanks to the huge bandwidth provided by optical

fibers of increasing quality and to decades of researches in telecommunication systems

that resulted in efficient transmitters and receivers. However, the continuous increase in

the total capacity need, due to the rapid development of bandwidth-hungry applications

still spurs research in this field and motivate researcher all around the globe to improve

and reach further goals.

The optical communications field is the branch of telecommunications that studies how

to properly implement a transmission system based on optical fibers, so it includes how

to efficiently generate and modulate optical signals, how to transmit and how to properly

receive them in order to recover the transmitted information.

1.1.1 Brief history of optical communications

Research and development related to optical fibers communication systems was initi-

ated in the early 1970s. Such systems worked by implementing an Intensity Modulation

- Direct Detection (IM·DD) scheme, consisting of an intensity modulated laser detected

by a photodiode, which was independent of both randomly variating phase and state

1
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of polarization (SOP) of the incoming signal. During that period also another scheme,

called coherent receiver, was proposed where a local oscillator on receiver side was inter-

fered with the input signal to extract both intensity and phase information. Coherent

receivers can be realized both with homodyne and heterodyne schemes, but in both

cases the output signals are highly sensitive to random variations in phase and SOP and

so their configurations are much more complicated than the ones of IM·DD systems [2].

Due to this higher complexity, coherent receivers were mostly ignored during the so-

called first era of optical communications, dated from 1977 to 1997 [3].

During these years the first optical communication link was deployed in Japan by using

a multimode fiber as channel and a laser tuned at 850 nm. This system was short-lived

due to the advantages in capacity and range provided by singlemode fibers and by the

improvements in laser technology that manage to realize reliable sources tuned around

1300 nm. In the late 1980s the firsts Erbium Doped Fiber Amplifiers (EDFAs) were

developed, opening the way for completely optical long-haul systems and Wavelength

Division Multiplexing (WDM) techniques. However these advances were not sufficient

to realize a huge improvement in optical communication systems due to the very high

dispersion of Standard Single Mode Fibers (SSMF). Due to chromatic dispersion the

maximum reach at that time was around 60 km for a 10 Gb/s bitrate. Around 1990

the first Dispersion Shifted Fiber (DSF) was developed in order to solve the issue of

chromatic dispersion, allowing 10 Gb/s systems over many thousands kilometers, but

DSFs were vulnerable to non-linear effects (in particular Four Wave Mixing (FWM)),

and so they could not be used to implement WDM. To avoid these issues, around 1993,

the Bell labs start engineering the dispersion profile of fibers obtaining fibers with neg-

ative dispersion coefficient. By concatenating fibers with opposite sign of dispersion

it was possible to compensate the distortions over huge distances without incurring in

non-linear effects and so the old systems started to get dismissed. It was around 1997-98

that Pirelli, Ciena, Alcatel and Lucent 40 Gb/s Dense-WDM systems start to become

commercially available and a second era, called the ”Dispersion managed era” started.

The second era last approximately up to 2009 when EDFAs ran out of bandwidth due to

a WDM scheme with 80 carrier wavelengths operating at 40 Gb/s. In order to increase

system capacity to meet the global need it was then necessary to adopt more advanced

modulation formats, like Quadrature Phase Shift Keying (QPSK) that could still be

received without phase information, or M-ary Quadrature Amplitude Modulation (M-

QAM) which instead require a coherent detection. Thanks to coherent receivers the
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optical signal can be linearly converted in digital signals containing both phase and am-

plitude information allowing the use of Application Specific Integrated Circuits (ASICs)

to correct in an very cheap and effective way a wide variety of impairments, included an

arbitrary amount of chromatic dispersion [3].

1.1.2 Optical communication systems

An optical communication system is a communication system that use electromagnetic

radiation in the spectrum of visible or infrared light to carry information. It can be

separated, in first analysis, in three main blocks:

• Transmitter: This block includes the sources of the optical signal, usually lasers

with a very narrow linewidth, the pre-compensating Digital Signal Processor (DSP)

blocks, used to introduce specific distortions that will be compensated during the

propagation of the signal, the modulators that modulate the optical carrier in

accord with the input data, the pulse shaping module to shape the pulse in a

way suitable for transmission and the coding module that performs some coding

over the data and implements error correction algorithms (usually Forward Error

Correction (FEC)).

• Channel: The channel consists in the various spans of optical fibers used to

realize the link between transmitter and receiver. The single span usually includes

also an amplifier (EDFA) and a patch of Dispersion Compensating Fiber (DCF)

with adequate dispersion coefficient to regenerate as much as possible the optical

signal. Lately, thanks to improved DSPs on receiver side, the DCF can be avoided

since it is possible to correct, in the electrical domain, an almost arbitrary amount

of chromatic dispersion. This allows to reduce the number of amplifiers required

along the link thus reducing the correlated Optical Signal to Noise Ratio (OSNR)

penalty.

• Receiver: The scheme implemented by the receiver can be more or less complex,

depending on the modulation imposed by the transmitter, but at the moment the

principals commercially available alternatives are the direct detection (DD) and

the coherent detection. DD is much more easier to realize, it is very cost-efficient,

but does not allow to recover the phase information of the optical signal so only
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intensity modulations like M-PAM, and with some more complexity QPSK, can be

used. Coherent receivers are more complex and power consuming, but allow to lin-

early map both amplitude and phase components of the optical signal into digital

ones, thus allowing the use of more spectrally efficient modulations formats. After

the detection, usually, a cascade of DSPs can be found trying to correct a wide

variety of impairments like Chromatic Dispersion (CD), Polarization Mode Dis-

persion (PMD) and Polatization Demultiplexing (PD) (for systems implementing

Polatization Division Multiplexing (PDM)), timing recovery, carrier phase recov-

ery, and so on. Finally the decoder retrieves the transmitted data and eventually

corrects errors.

1.2 Objectives of the thesis

High speed optical fibers transmissions of advanced signal modulations, like PDM-QPSK

or PDM-16QAM, are enabled by coherent detection technology. The transmitted data

can be recovered with a coherent receiver where impairments induced by fiber transmis-

sion are mitigated by specifically developed digital signal processing (DSP) algorithms.

These algorithms form a demodulation routine which is normally employed in an offline

processing mode in the research environment. However, in order to evaluate the trans-

mission performances in a “quasi-real time” mode, particularly for research activities

investigating fast changing effects in the optical fibers transmissions, the DSP routine

will require speed optimization, so that fast signal demodulation and evaluation become

possible.

In this thesis some MATLAB-based DSP routines in a complete simulation platform for

PMD-16QAM coherent transmissions, consisting of CD compensation, adaptive equal-

izer, carrier phase recovery and Bit Error Rate (BER) counter will be analyzed. Then,

based on the understanding of the algorithms, DSP routine optimization with different

possible ways to speed up the process (algorithm code optimization and code compiling)

will be performed. Once the optimization is done, the performance of each step of the

routine will be evaluated.
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1.3 Thesis outline

The thesis will initially provide a complete theoretical background regarding state-of-

the-art coherent receivers structure, with a particular focus on the latest mainstream

DSPs algorithms. The decoder module of the receiver will be neglected because it is

beyond the scope of this thesis.

The following chapter will focus on the Equalizer module, starting from a more detailed

explanation of its purpose and by a complete analysis of the algorithm implemented.

The chapter will continue with the proposed changes introduced and a description of

the results obtained.

The thesis will continue with the analysis of the Carrier Phase Recovery module, once

again by starting from explaining purpose and algorithm implemented and by continuing

with the proposed changes and corresponding results.

Finally the last chapter will conclude the thesis and in the appendix it will be possible to

find a small guide to optimization in MATLAB and to the use and realization of MEX

files.



Chapter 2

State of the art

2.1 Coherent transmitters

To develop methods for meeting the ever-increasing bandwidth demand multi-level mod-

ulation optical coherent systems, which implements coherent transmitters and receivers,

are required. Such devices were adapted from the radio frequency counterparts and

implement Digital Signal Processors (DSPs) to realize useful corrections on the signal

to help compensating propagation impairments. A general scheme for commercially-

available coherent transmitters is shown in Figure (2.1).

The usuals DSPs of a coherent transmitter include functions like Nyquist spectral shap-

ing, signal pre-distortion/compensation, coding and Forward Error Correction (FEC)

schemes [2], however these arguments are beyond the scope of this thesis and the atten-

tion will be focused on coherent receivers.

Figure 2.1: General scheme of a coherent transmitter.

6
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Figure 2.2: General subsystems of a coherent receiver. The optical Front-End digi-
talizes the electric field of the optical signal in input, the Digital Demodulator correct
the distortions and convert the digital samples into symbols of the constellation A and

finally the outer receiver decodes the symbols and recover the bit stream.

2.2 Coherent Receivers

Coherent detection was experimentally demonstrated as early as 1973 [4], but at that

time complexity issues in tracking phase and polarization hindered the development of

such receivers. In actuals digital coherent receivers these problems are dealt with in the

electrical domain, by implementing adequate DSP algorithms, resulting in a dramatic

reduction of the overall complexity [5].

Since coherent detection allows to map the entire electric field of the optical signal,

within the receiver bandwidth, into the electrical domain the use of DSPs, together with

fast enough electronic [6], allows also a drastic increase of the receiver sensibility.

A coherent receiver can be decomposed in three general subsystems [6] as shown in

Figure (2.2):

• Optical Front-End and ADCs: The components that map, as linearly as pos-

sible, the optical field into discrete-time quantized signals at a particular sampling

rate. Usually more than 1 sample per symbol is taken;

• Digital Demodulator: It corrects the distortions related to propagation impair-

ments and non-idealities of the devices. Then it converts the digital samples into

a valid sequence of symbols of the constellation at the symbol rate, i.e. exactly

one sample per symbol;

• Outer Receiver: It Includes error correction and those functionalities which

allow an optimal decoding. The output is the received bit stream.

The first two points form the Inner Receiver and their objective is to produce a ”synchro-

nized channel” which is as close as possible to the information theoretic communication
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Figure 2.3: Schematic of a phase and polarization diverse receiver. Es,x, Es,y and
Elo are the electric fields associated to the two polarizations x and y and to the local

oscillator respectively.

channel [6]. Since the analysis of the outer receiver is beyond the scopes of this thesis,

the attention will be focused on the inner one.

2.2.1 Optical Front-End

The usual phase and polarization-diverse scheme for the optical front-end of a coherent

receiver is shown in Figure (2.3), where the inputs are optical signals and the outputs

are electric ones. One of the most important rules that an optical Front-End must

follow is that the architecture chosen to implement the receiver must have no influence

on the subsequent DSPs [5]. The electric field of the input optical signal enters a

polarization beam splitter which divide the x and y polarization components into two

different branches. Standard SMFs used for long-distance telecommunication links are

not polarization-maintaining, so the state of polarization of the optical signal is randomly

changed during the propagation. The electric fields in output of the polarization beam

splitter are then a combination of the original polarized transmitted components and

in order to recover the original data, signal equalization is required. This topic will be

discussed in a more detailed way in section 2.2.5.

Most of the commercially available coherent receivers to date implement homodyne

schemes instead of heterodyne ones to recover in-phase and quadrature components

because, due to the huge bandwidth associated to optical carriers, it is much easier to deal

with baseband signals instead of intermediate frequency ones. To perform the recovery

then a local laser source, called Local Oscillator (LO), is used where its frequency must

be roughly equal to the one of the optical carrier [7]. It is not necessary usually to

perfectly match the carrier frequency of the input optical field and of the LO, since
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corrections can be applied later on in the electrical domain, by using adequate DSP

algorithms.

The LO signal is splitted and combined with the x and y polarized components of the

input electric field using a 90◦ hybrid coupler which is a 6-port, 2-input and 4-output,

passive device [6, 8]. The 8 output ports of the hybrid couplers are then connected to

four balanced photodiodes which manage to extract the following analog continuous-

time signals:


i1

i2

i3

i4

 =
2

5


Re(ExE

∗
lo)

Im(ExE
∗
lo)

Re(EyE
∗
lo)

Im(ExE
∗
lo)

+
1

10


2|Ex|2 + 2|Elo|2

4|Ex|2 + |Elo|2

2|Ey|2 + 2|Elo|2

4|Ey|2 + |Elo|2

 (2.1)

where Ex, Ey and Elo are the complex electric fields of the input optical signal.

By using a DC block device and ensuring that the local oscillator to the signal ratio is

significantly larger than the signal to noise ratio it is possible to minimize the influence

of the second term and successfully extract electric signals proportional to the in-phase

and quadrature components of the received optical one [5, 6].

After the optical to electrical conversion it is necessary to convert the analog signals

into a set of digital ones by using Analog to Digital Converters (ADC). These devices

can be considered as made up of two subsystems: a sampler which samples the signals

in time and produce discrete-time analog output signals and a quantizer which convert

these signals into a finite set of values determined by the bit resolution of the ADC. The

sampling rate of the ADC is a critical parameter, but there are various possible choices

including flash ADCs, flash with track and hold, and time interleaved ADCs which

provide trade-offs between performances and costs or power efficiency. The most used is

the time interleaved [9]. The ADC usually samples with a number of samples per symbol

non integer but greater than one to exploit as much as possible the available bandwidth

and preserve the signals information. In such case a proper decimation operation result

necessary before equalization.

To date, the highest electrical sampling rate for a commercially-available ADC is 92

GS/s [10], however almost no systems implement such ADCs due to power consumption

limitation. For a 100 Gbps (PDM-BPSK) or 400 Gbps (PDM-QPSK) channel in a

WDM grid is more convenient to implement a proper number of power efficient 56
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Figure 2.4: Complete logical scheme of a coherent receiver with all digital demodu-
lator’s modules listed

GS/s ADCs [10] and eventually increase the effective sampling rate with techniques

like time interleaving or digital bandwidth interleaving. Recent optical front-ends in

coherent receivers can reach sampling rates up to 160 GS/s or 240 GS/s thanks to these

techniques [11].

2.2.2 Deskew and Orthonormalization

After the four ADCs the digitalized samples enter the digital demodulator subsystem

which complete logical scheme can be seen in Figure (2.4).

The first module of the digital demodulator perform two different operations called

deskew and orthonormalization in order to compensate for all the non-idealities intro-

duced by the optical front-end, thus desynchronization, responsivity variations in the

photodiodes and imperfections in the 90◦ hybrids [5].

Due to different physical branches lengths for the x and y polarization components of

the optical signal, the samples streams can be disaligned of tens of samples. Deskew

routines compensate for this path length mismatch, but usually a fractional delay, i.e.

same position samples of the two polarization components do not start at the very same
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moment due to a time difference smaller than a sampling period, still remains.

In order to correct the remaining fractional delay it is necessary to implement a retiming

algorithm, but the position of this block in the logical scheme of the coherent receiver is

still subject to discussions. C. Fludger et al. [5, 12] suggest to insert this block before the

dispersion equalization module, while S. Savory [6] and M. Kuschnerov [7] implement

it after the compensation. The main reasons for the difference in position is related

to performance requirements and limitations. The simulation setup used in the second

part of this thesis implements the retiming module after dispersion compensation and

a reason for this choice is provided by Kuschnerov [7] which specifies that if dispersion

compensation is done before of the timing recovery block, the subsequent algorithm can

remains identical for compensated and uncompensated links with similar residual dis-

persion requirements.

After deskew it is necessary to compensate the non-idealities of the optical front-end,

especially non perfect orthogonalization of the hybrid 90◦ couplers and the non flat fre-

quency response of the balanced photodiodes. Some algorithms have been proposed so

far, but the most implemented are the Gram-Schmidt and the Löwdin ones [6]. The

Gram-Schmidt algorithm creates a set of mutually orthogonal vectors, taking the first

vector as a reference against which all subsequent vectors are orthogonalized. As a

result the first output vector is equal to the input one, while the others can be very

different thus resulting in an increased impact of quantization noise for the displaced

components. The Löwdin algorithm try instead to generate orthogonal vectors which

are, in a least-mean squares sense, closest to the original ones. The complexity of this

algorithm is slightly greater than the previous one, but it manage to reduces the impact

of quantization noise. To date, most of the commercially-available systems implements

without significant issues the Gram-Schmidt algorithm, but simulations for very high

performances systems are slowly moving to other algorithms [13].

To provide an example of how the DSPs of a coherent receiver act over a signal, in

each of the following section a graphical representation of the discussed module output

signal will be shown. The transmitted signal in this simulation carries a PDM-16QAM

modulation, as can be seen in Figure (2.5), at a carrier wavelength of 1550 nm with a

symbol rate of 50 GBaud and an imposed OSNR of 40 dB. The channel simulated is

80 km long and it is followed by a single EDFA to compensate for channel loss. The

output signal of the coherent front-end for one of the polarization components after

desked and orthonormalization operations is shown in Figure (2.6). As can be seen the
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received signal is completely different from the transmitted one and no useful data can

be extracted at this stage.

2.2.3 Chromatic Dispersion Compensation

One of the key distinguishing features of a digital coherent receiver is its ability to com-

pensate for transmission impairments, in particular Chromatic Dispersion (CD) and

Polarization Modes Dispersion (PMD) [14, 15], thanks to the linear map between opti-

cal and electical domain performed by the optical front-end.

While in principle equalization can be realized in one subsystem [12, 16], it is generally

beneficial to partition the problem into static and dynamic equalization [5–7, 17].

In case of single subsystem CD, PMD and Polatization Dependant Losses (PDL) are

compensated all together and it is possible to use Decison-Feedback Equalizers (DFE),

Viterbi equalizers (which perform better than DFEs) [16] or a system of 4 Finite Impulse

Response (FIR) adaptive filters arranged in a butterfly structure [12]. In this case the
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coefficients of the filters can be updated with various techniques which will be discussed

in more detail in section 2.2.4.

For diverse equalization there are two possible ways to deal with chromatic dispersion.

The first one implement an adaptive FIR filter which coefficients can be estimated both

using a blind estimation, for example using Godard’s Constant Modulus Algorithm

(CMA) [18], or with data-aided estimation by transmitting periodically a known train-

ing sequence [7]. The pros of blind estimation are that there is no overhead and that it

works well with short-memory channels while the cons are that the adaptation length

increases with channel memory and it is not possible to guarantee the convergence of the

coefficients. With data-aided estimation a fast convergence is guaranteed but there is a

significant overhead and time-varying effects may influence the lowest repetition rate of

the training sequence. To date, blind estimation is preferred since the variation of the

CD impulse response is not fast and convergence can be guarantee even for long filters

by taking precautions [7].
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The complexity of the filter, expressed as the number of complex multiplication required

to perform compensation, depends on its design, but it can be shown that frequency-

domain equalizers behave better for high values of dispersion[5, 7].

To date no systems implement adaptive filters for chromatic dispersion compensation,

since it is more convenient to realize static filters which length and coefficients are de-

cided upon the theoretical CD-related impulse response of the fiber [5, 6] windowed by

an adequate window (for example the Kaiser window [17]). Since the chromatic dis-

persion impulse response is slowly time varying, the coefficients of the static filter must

be occasionally updated, but due to the slow variation of the dispersion coefficient the

related complexity is negligible. With this technique in 2007, up to 100000 ps/nm of

chromatic dispersion was compensated after a length of around 6400 km for a transmis-

sion at 42 Gbit/s using PM-QPSK [17] while to date, principally thanks to improved

electronics and DSPs speed, an almost arbitrary amount of CD can be compensated for

any modulation format [19]. The number of taps of the filter can be optimized [5] by

accepting a small Q-factor penalty or by allowing an higher complexity of the algorithm,

as proposed by Y. Liu et al. [19].

Another type of equalization that can be performed together with CD compensation

is non-linear compensation which accounts also for non-linear impairments. The im-

plementation of such filters however are quite challenging and are still open research

fields [6].

The results of CD compensation over the received signal is shown in Figure (2.7). As can

be seen the symbols are less spread, but overall the signal is still completely corrupted.

2.2.4 Timing Recovery

The main objective of the timing recovery block is to remove the intrasymbol desyn-

chronization between the two polarization components and, eventually, to create output

signals with a single sample per symbol. One of the most important problems is that in a

digital coherent receiver the ADCs clock rates, defined as 1/Ts,i, i = 1, .., 4 with Ts,i the

sampling periods, are not perfectly the same and moreover they are not directly related

to 1/T with T symbol period. It is important to highlight this problem because while it

is possible to build extremely accurate clocks to match the rates, small time differences

will always be present and, in the long run, they would cause dangerous errors called
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cycle slips [20]. The term cycle slips is overloaded in the coherent optical communica-

tions field since it is commonly used to define both errors related to a desynchronization

of the data streams and errors related to wrong carrier phase estimation as will be seen

in section 2.2.6.

Both non-data-aided [21] and data-aided [22] algorithms can be employed, but often to

avoid overhead the non-data-aided ones are preferred. Over the time a lot of possible

algorithms were proposed, depending on the modulation and on the requirements of the

system. For basic modulations (PAM, BPKS, QPSK) algorithms that try to maximize

the squared modulus of the interpolated signal were proposed [6, 20, 23] while, for higher

order modulations the ”filter and square” algorithm could be used [12, 24]. The algo-

rithms used presently to perform timing recovery are not changed much with respect

to the older ones [25], and they all are based on the Gardner algorithm [21] or on the

Godard one [26]. For high performances systems there are also slightly more precise

but more complex and power consuming schemes that require an interpolation to four

samples per symbol [7].
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Another aspect that is important in the design of the timing recovery block is the residual

dispersion tolerance. This tolerance depends on the algorithm implemented, but usually

even for robust algorithms an high residual dispersion results in worse estimates. To

reduce the impact of dispersion on the timing recovery phase it is possible to apply a

filter before the timing error detector [7], however it is more convenient to realize a more

performing CD compensation block than implementing the filter here.

The graphical representation of the output signal after timing recovery is shown in Fig-

ure (2.8). As can be seen no major differences with the previous figures are visible,

since a few more significant impairments are still corrupting the symbols. However after

timing recovery the distribution of the received symbols is no more uniform and some

shapes, whose geometry depends on the modulation applied, start to become visible.
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Figure 2.9: Butterfly structured equalizer with 4 FIR filters used to compensate
polarization impairments.

2.2.5 Equalizer

Standard telecommunications fibers are not polarization maintaining, so even if the sig-

nal is transmitted over two orthogonal linear polarization states, usually defined x and y

components, the received polarization states are still orthogonal, but unknown. Neglect-

ing in first approximation non-linear effects, the optical channel can be described by a

2x2 rotation matrix called Jones matrix, which is unitary if also Polarization Dependant

Losses (PDL) are neglected.

The main objective of the polarization impairments compensation block is to estimate

the Jones matrix, inverting it and equalize the system (compensating for PDL, if consid-

ered and PMD) however, since the effects of PMD are rapidly time-varying, principally

due to variations in environmental conditions (like temperature, pressure, humidity, etc.)

which cause stresses over the fiber, the estimation must be done continuously with a suf-

ficiently fast adaptive estimator.

Linear equalizers are not sufficient to properly solve these impairments, so structure

derived from wireless MIMO receivers were researched and, to date, butterfly structured

equalizers composed of 4 different FIR filters, Figure (2.9) are used.

The length of the filters influence the tolerance of the equalizer with respect to the im-

pairments that it has to correct [12], but it has consequences in the adaptation speed:

filters with too many coefficients cannot update at an high enough speed and this de-

grades the performances of the equalizer [5].

The algorithms that can be used to update the coefficients of the filters depends on the
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modulation used. For constant modulus modulations, like m-PSK, CMA derived from

Godard’s work[18] can be used [5, 6, 17], while for higher order modulation Radiant

Directed Equalizers (RDE) are more adequate [6, 27]. In both cases however there are

some considerations that must be done before implementing the algorithm, which regard

the initial tap weights and the convergence conditions. To assure convergence a training

sequence can be used, but as usual this results in an undesired overhead so, often, blind

optimization is performed by using a CMA algorithm to initialize in a proper way the

tap weights and successively a more precise and fast DD-LMS that would have issues in

converging if not well initialized [6]. Another way to guarantee a good convergence is

to perform a proper number of iterations over the same block of data. In this case, at

the beginning of each iteration except for the first, the coefficients must be initialized

by assigning them the value they had at the end of the previous iteration.

Given that the equalizer is unconstrained with respect to its outputs, it is possible for it

to converge on the same output, corresponding to the Jones matrix becoming singular.

This can be avoided by monitoring the estimated Jones matrix determinant such that if

it begins to approach 0 then the equalizer is reinizialized with different tap weights [5].

Another important aspect is the power consumption of the equalizer: it can be shown

that up to 50% of the power required by the equalizer can be saved with appropriate

implementations of the algorithm and just a slight penalty in the performance. This ap-

proach however put a significant constraint over the residual CD of the input signal [28].

The graphical representation of the output signal after polarization effects equalization

is shown in Figure (2.10) where it can be finally seen that the symbols are laying on the

circles characteristic of QAM modulations. Now all the noise induced by polarization

related impairments is gone, and the only issue still to be compensated is phase noise.

2.2.6 Carrier Phase Recovery

The last operation that, to date, is usually performed in a commercial available coherent

receiver is the so called Carrier Phase Recovery. The impairments that this block tries

to compensate are related to the residual frequency offset between the transmitter laser

and the LO, and the phase noise due to a non-null linewidth of the lasers. In the context

of DSPs techniques for digital receivers the two impairments estimations are often sepa-

rate. Compensating the frequency offset before moving to the phase noise improves the

performances of the system since it reduces the overall amount of phase that the phase
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Figure 2.10: Graphical representation of one of the polarization components of the
received signal after equalization.

recovery block has to track. Moreover many phase recovery algorithms are unbiased

only for zero frequency offset.

As said in section 2.2.1, the output frequency of the local oscillator should be equal to

the one of the optical carrier, but it is not uncommon to have residual frequency offset

due to non-idealities and different environmental conditions between transmitter and

receiver lasers. The result of the frequency offset is a progressive liner rotation of the

phase of the received symbols that will results in cycle slips if not compensated. After the

compensation of the linear frequency offset, the remaining phase-noise is due principally

to the non null linewidth of the transmitter and local lasers. A non-null linewidth results

in a random time-varying phase at receiver side that must be estimated and removed

from the received streams of data to keep the symbols aligned with the constellation.

Historically many solutions to estimate carrier phase were implemented. In the begin-

ning of coherent detection Phase Locked Loops (PLL) [15, 29] were applied, which are

independent on the modulation format but are not very tolerant to delays. Successively

it was demonstrated that slightly more complex feedforward and feedback techniques
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could be implemented with better performances and tolerances [30–35]. Some of the

algorithms proposed are based on the Viterbi and Viterbi estimators [36] and utilize the

knowledge of the constellation to perform N-th power operation on the received data.

The result of this non linear operation is a modulation-free stream of symbols that al-

lows the computation of the time-varying phase noise and the consequent compensation.

These algorithms can be improved by implementing a weighting function which depends

on the ratio of the AWGN to the laser phase noise [32], but even if their performances

are quite good it is hard to efficiently implement these algorithms from an hardware

point of view. Viceversa, a different approach consists in implementing the so called

”barycenter algorithm” which is a particularly hardware-efficient phase estimator [37],

but with worse performances with respect to the previous solutions. When more ad-

vanced modulation formats are used the requirements on the laser linewidth becomes

increasingly stringent, however advanced but mor complex decision-directed PPLs allow

large linewidths (∼1 MHz) to be tracked with a sufficient precision [27].

To date, many blind algorithms are still used, like the Viterbi and Viterbi and the ad-

vanced DD-PLL, but new approaches are being investigated like a modified version of

the CMA algorithm [21, 38] which provides both low complexity and high performances.

Also DD-LMS algorithms are implemented sometimes, but due to their low reliability

when they start in blind mode of operation it is necessary to implement also an initial

training mode that is detrimental to the performances of the receiver [38]. Finally, re-

cently also hardware-efficient blind digital feedforward carrier recovery algorithm [39]

are being implemented, since they provide precise and linewidth tolerant estimations

even for higer order modulations like 16, 64 or 256-QAM.

If the estimation of the carrier phase is not good enough the residual phase noise may

cause a cycle slip. If a cycle slip occurs at receiver side the consequences can be catas-

trophic since, if no precautions are taken, all the following symbols will be decoded

wrongly. There are two possible ways to deal with this problem. The first is to avoid

cycle slips by reducing as much as possible the laser linewidth to a value behind the

tolerance of the algorithm. To date the tolerance of the algorithms implemented are in

the order of MHz, and the linewidths of state-of-the-art lasers are around few hundred

of kHz [6, 32]. The second possibility is to use differential encoding to reduce to one the

number of symbols decoded wrongly due to a cycle slip.

The graphical representation of the output signal after carrier phase recovery is shown

in Figure (2.11) where it can be seen the output constellation. The signal is still slightly
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noisy, but the information associated to the signal, usually protected with FEC algo-

rithm and codes, can be recovered perfectly without any major issue.

2.2.7 Other impairments: EEPN and Nonlinearities

To date coherent receivers can compensate almost arbitrary amounts of impairments like

CD, PMD and phase noise, but they are still far to be perfect. In particular commonly

used high speed DSPs schemes and DWDM are experiencing different impairments that

were not significant problems up to few years ago, like Equalization Enanched Phase

Noise (EEPN) and non-linear phenomena. Both these phenomena are beyond the scope

of this thesis, so they will just be introduced, without entering into details

Recently it was observed that the received symbols in uncompensated coherent optical

links, even after DSPs equalization, remained influenced by unexpected noise, that was

defined Equalization Enhanced Phase Noise [40]. Various studies, for different mod-

ulations on receiver carrier recovery and adaptive equalizers, have been performed to
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evaluate the effects of such impairment and the results shown that the phenomenon

is not present in the case of channel with ideal dispersion compensation in the optical

domain. Some possible schemes have been proposed so far to attenuate such effect [41],

but they are still under intense research.

Optical fibers are non linear channels so, when the power of the input signal is too

high, the power of the output one is no more linear with the input. In particular Four

Wave Mixing, Self Phase Modulation, Raman Scattering and Brillouin Scattering are

the most common phenomena and, except for some particular applications, they are

undesired during propagation. The practical consequence of nonlinearities over an opti-

cal transmission is a limit to the maximum achievable spectral efficiency [42] which will

result in a very dangerous capacity crunch in the near future if no countermeasures are

taken. To solve this issue Spacial Division Multiplexing (SDM) [43] and transmission

based on the results of the Nonlinear Fourier Transform (NFT) [44] are very active

research fields. SDM tries to increase the capacity of the channel by realizing fibers with

more cores or with a single core large enough to allow the propagation of more than 1

mode (the so called Few Mode Fibers (FMF)). The transmissions based on NFT instead

try to assign information to solitons in order to easily mitigate non-linear impairments

on receiver side. As said before, both field are undergoing intense research and to date

it is possible to find various papers and books addressing them.
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Equalizer

3.1 Theoretic background

Before starting the analysis of the optimization process on the Equalizer script, it is

important to understand the physics behind the impairments that the module has to

correct and how this knowledge can be applied. In the next paragraphs the theory

behind polarization related phenomena will be briefly, but properly, discussed and the

theoretical approach to the problem, proposed by P. J. Winzer et Al. [27], will be

analyzed.

3.1.1 Theory of polarization-related phenomena

Ideal single-mode optical fibers are geometrically symmetric media, with perfectly round

core, no external forces acting on them and experiencing the same environmental con-

ditions, i.e. temperature, humidity, pressure, etc., along all the length. Under these

hypotheses, the two orthogonally polarized modes composing the fundamental LP0,1

mode propagate in the same electromagnetic environment with the same frequency-

dependent propagation constant.

Unfortunately none of these hypotheses holds in reality and standard SMFs are char-

acterized by an elliptic core with position-dependent random oriented axes (usually the

axes’ directions of two consecutive sections of a fiber can be considered uncorrelated

after some hundreds of meters) and with internal and external forces acting on the core.

The principal consequence of such non-idealities is that the two orthogonally polarized

23
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modes see different electromagnetic structures with different propagation constants caus-

ing coupling and distortions. This phenomenon is called Polarization Modes Dispersion

(PMD) and is one of the most researched and famous impairments of optical fibers. The

most problematic issues related to PMD are that it is random and rapidly time varying:

any event or phenomenon that effect the electromagnetic structure of the fiber, thus

for example any localized change in environmental conditions, change the propagation

constants seen by the two polarization components.

Another impairment related to polarization appears when optical systems with a large

variety of non ideal optoelectronic devices, like the usual undersea optical links, are con-

sidered. These non-idealities result generally in a lot of different issues, but in particular

if the behaviour of the devices is polarization-dependent the orthogonally polarized com-

ponents of the signal can experience Polarization Dependent Losses (PDLs) [45]. It is

not possible to consider separately PMD and PDL since, in first analysis, the PMD

distribution is altered by the PDL [46–48].

The combination of PMD and PDL can be described mathematically with the so called

Jones matrix which must be estimated and inverted at receiver side to equalize the

transmitted signal. Since the matrix is time varying, an adaptive method must be

implemented as will be seen in the next paragraph.

3.1.2 Proposed algorithm

The algorithm proposed by P. J. Winzer et Al. [27] is blind, in order to avoid ineffi-

cient overhead, and based on the lattice filter whose structure is visible in Figure (2.9).

The filters implemented are FIR with transfer functions Hxx(f), Hyx(f), Hyx(f) and

Hyy(f) and a number of taps equal to N . The taps can be fractionally spaced, which

mean that the filters can deal with symbols represented by more than 1 sample. The

proposed implementation can be split into two consecutive steps: the first regarding

the preconvergence scheme, realized with a Constant Modulus Algorithm (CMA), and

a second which includes a more accurate training of the coefficients and a more precise

equalization thanks to a Multi Modulus Algorithm (MMA).

When a blind algorithm is implemented the first thing that must be taken into consider-

ation is how to properly initialize the filter coefficients because naive setups can lead to

worse performances. In the case described in the paper this issue is dealt with by using

a CMA scheme to properly train the coefficients and thanks to this choice it is possible
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to use the most easy setup for the initial filter coefficients which is:

H =


I, for n = 0, n ∈ (−(N − 1)/2, (N − 1)/2) ;

0, otherwise;

(3.1)

where

H =

Hxx Hxy

Hyx Hyy

 (3.2)

is the matrix of the transfer functions of the FIR filters which are vectors of N elements,

N is supposed odd without any loss of generality, I is the 2x2 identity matrix and 0 is

the 2x2 null matrix. Obviously if prior knowledge allows to setup the initial coefficients

to more appropriate values it is convenient to do it.

The CMA is a well-proven blind filter adaptation algorithm that is commonly used

because it is simple, robust and works independent of carrier frequency and phase which

are still not available at this stage. It works by minimizing the time-averaged error:

〈εCMA,pol〉 = 〈R2 − |si,pol|2〉 (3.3)

where pol ∈ (x, y), R is the radius of a circle in the complex plane, si are the equalized

symbols at time index i, one per polarization, defined as:

si = Hi · [ xi yi ]T (3.4)

and xi, yi are N elements long vectors representing the corrupted input samples at time

instant i.

The radius R is a constant value for the CMA algorithm and this works optimally for

modulations like PSKs which have the symbols spread in the complex plane over a single

ring. For QAM constellations instead, which are generally composed of multiple rings,

it is not possible to reduce to zero the error in Equation (3.3) but its minimization

allows to compact the output symbols and yelds sufficient preconergence of the filters

coefficients to apply a subsequent less robust, but more performing MMA.

The minimization of the error in Equation (3.3) is done by updating the coefficients
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according to the following rules derived from a gradient analysis:

hkpol,x → hk + µεCMA,polx
∗
i−ksi,pol

hkpol,y → hk + µεCMA,poly
∗
i−ksi,pol

(3.5)

where hkpol,x and hkpol,y stand for either hkxx, h
k
xy, h

k
yx or hkyy and denote the kth filter

tap of anyone of the four FIR filters, pol ∈ (x, y), and µ is a convergence parameter.

If the modulation of the signal requires to switch to the phase-independent MMA af-

ter CMA preconvergence the constant R must be substituted with a vector of radii

R = {R0, . . . RK} with a number of elements equal to the number of rings of the

modulation. The error equation becomes then:

〈εMMA,pol〉 = 〈R2
k,i − |si,pol|2〉 (3.6)

where Rk,i represent the selected ring (k ∈ (0, . . . ,K)) for the ith time instant. How to

select the most convenient ring for a particular symbol is an issue that will be discussed

in the practical implementation section, since there are various possible way to do it, and

it is of no interest from a theoretic point of view. Except for substituting Equation (3.3)

with (3.6) in the update rule (3.5), the algorithm remains the same.

3.2 Practical implementation

All the algorithms that will be considered from now on are part of the Robochameleon

project, which is a coding framework and component library for simulation and exper-

imental analysis of optical communication systems. The framework was designed to

facilitate sharing code between researchers by articulating some standard methods and

syntax for signal representation and function calls. Robochameleon is a project started

and administered by the Danmarks Tekniske Universitet (DTU) but it is open to con-

tributions from other groups, including the one in Acreo Swedish ICT AB [49].

Given the theoretic analysis realized in the previous section, the equalizer module must:

• Perform equalization;

• Compute errors;

• Update coefficients.
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Moreover, to make the code more robust and adaptable in agreement with the guidelines

of Robochameleon, some useful generalizations can be implemented, like:

• Matrix implementation of the convergence parameter;

• Arbitrary initialization of the FIR filters coefficients.

3.2.1 Original code

To properly describe the implementation of the core section of the module it is convenient

to split the code in separate fragments, starting from the generalizations implemented

to make the code more robust. In this way it is possible to introduce in the right order

all the elements required to understand the code.

The first lines that will be analyzed are the ones related to the convergence coefficient:

% Read the input parameter mu and creates a well -formatted 2x2 matrix based

% on in.

mu = input_param.mu;

if isscalar(mu)

5 mu = repmat(mu ,[2 2]);

elseif isvector(mu) && numel(mu)==2

mu = [mu(1) mu(2) ;...

mu(2) mu(1)];

elseif ismatrix(mu) && size(mu)== 1*[2 2]

10 else

error(’Incorrect input_param.mu.’);

end

As can be seen the convergence coefficient is passed to the module thanks to the field

mu inside of the structure input param. This structure contains a number of fields equal

to the number of input parameters required to run the code and they can be scalars,

vectors, matrices or strings. To avoid bugs or unexpected behaviors it is important to

always verify the correctness of the data and to eventually report an error. It is moreover

important to follow the Robochameleon guidelines and properly comment the code to

realize a well-formatted documentation, since this will allow a possible user to know in

advance how to setup correctly the module. In the fragments of the code published in

this chapter almost all comments are removed, because they will be redundant with this
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text and they will reduce the readability of the code.

The valid inputs for the mu parameter are:

• Scalar: In this case the resulting 2x2 matrix will be realized by setting each

element of the matrix to the input value;

• 2x1 matrix: In this case the two coefficients in input will represent respectively

the convergence parameters of the main diagonal and of the anti diagonal of the

resulting 2x2 matrix.

• 2x2 matrix: In this case the resulting 2x2 matrix is equal to the input matrix.

As can be seen in the code no modifications are applied to mu in this case, which

keeps the original values.

If the input is not valid an error is printed and the run of the module is aborted.

% Read the input parameter H_init and create a four vectors structure which

% contains the initial coefficients of the filter based on it.

H.xx = zeros(input_param.taps ,N+1);

H.xy = zeros(input_param.taps ,N+1);

5 H.yx = zeros(input_param.taps ,N+1);

H.yy = zeros(input_param.taps ,N+1);

H_init = zeros(2,2, input_param.taps);

sz_H = size(input_param.H_init);

if isfloat(input_param.H_init) && isfinite(input_param.H_init)

10 if isequal(sz_H ,[1 1])

H_init(:,:,ceil(( input_param.taps +1)/2)) = diag([ input_param.H_init

input_param.H_init ]);

elseif isequal(sz_H ,[2 1]) || isequal(sz_H ,[1 2])

H_init(:,:,ceil(( input_param.taps +1)/2)) = diag(input_param.H_init);

elseif isequal(sz_H ,[2 2])

15 H_init(:,:,ceil(( input_param.taps +1)/2)) = input_param.H_init;

elseif isequal(sz_H ,[2 2 input_param.taps])

H_init = input_param.H_init;

else

error(’H_init size is incorrect ’);

20 end

else

error(’H_init can only be numeric matrix ’);

end

H.xx(:,1) = squeeze(H_init (1,1,:));

25 H.xy(:,1) = squeeze(H_init (1,2,:));

H.yx(:,1) = squeeze(H_init (2,1,:));

H.yy(:,1) = squeeze(H_init (2,2,:));
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As can be seen the parameters that are required this time are the number of coefficients

of the FIR filters taps, the number of symbols to equalize N and the matrix containing

the initial values of the FIR filters coefficients H init. Based on the number of symbols

to equalize and on the number of taps per filter it is possible to define a structure with 4

fields, one for each filter, which will contains the progressively updated filters coefficients.

After memory allocation it is necessary to read the input parameter H init and properly

initialize the filters coefficients. The input parameter must be a finite value numerical

variable of the types listed below, otherwise an error will be reported:

• Scalar: In this case all coefficients are initialized to 0 except for h0xx and h0yy which

are set to the same input value.

• 2x1 Matrix: Also in this case all coefficients are initialized to 0 except for h0xx

and h0yy which are respectively set to the values of the 2x1 input matrix.

• 2x2 Matrix: In this case all coefficients are initialized to 0 except for h0xx, h0xy,

h0yx and h0yy which are respectively set to the values of the 2x2 input matrix.

• 2x2xtaps Matrix: All coefficients are set to the corresponding values of the

2x2xtaps input matrix.

As for the convergence coefficient, if the size of the matrix does not fit the previous cases

then an error is reported and the run is aborted.

At the end of the code it is possible to see how the initialized coefficients are inserted

into the first block of the filter coefficients structure that will be used from now on to

perform equalization and errors computation. The squeeze function is necessary to re-

move the extra dimensions of the matrix H init.

The following fragment of code contains all the instructions of the main cycle, where the

fundamental operations of the equalizer module are performed and also some features

that were not discussed in the original paper have been included:

% The main section of the algorithm implements equalization , errors

% computation and update of the coefficients. It inclused also a cycle to

% perform multiple iterations over the same data and checks to avoid bad

% convergence of the coefficients. The code also realize the

5 % preconvergence of the coefficients with a CMA before switching to a MMA.
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for iter =1: input_param.iter

if iter >1

H.xx(:,1) = H.xx(:,end);

10 H.yx(:,1) = H.yx(:,end);

if input_param.h_ortho ||any(strcmpi(input_param.h_ortho ,{’none’,’conv’}))

H.xy(:,1) = H.xy(:,end);

H.yy(:,1) = H.yy(:,end);

elseif ~input_param.h_ortho ||any(strcmpi(input_param.h_ortho ,{’iter’,’

iter+conv’}))

15 H.xy(:,1) = -conj(H.yx(:,end));

H.yy(:,1) = conj(H.xx(:,end));

else

error(’Bad eq h_ortho type’);

end

20 end

[Ex ,~] = buffer(Ein.x,input_param.taps ,input_param.taps -input_param.Nss ,’

nodelay ’);

[Ey ,~] = buffer(Ein.y,input_param.taps ,input_param.taps -input_param.Nss ,’

nodelay ’);

25 for n=1:N

progress(n,N);

Ex_est(n) = sum(H.xx(:,n).*Ex(:,n) + H.xy(:,n).*Ey(:,n));

Ey_est(n) = sum(H.yx(:,n).*Ex(:,n) + H.yy(:,n).*Ey(:,n));

if it >1 || n>input_param.conv

30 A = abs(Ex_est(n));

[~,i] = min(abs(R-A) ,[],1);

err_x(n) = R(i)^2 - A^2;

A = abs(Ey_est(n));

[~,i] = min(abs(R-A) ,[],1);

35 err_y(n) = R(i)^2 - A^2;

else

err_x(n) = 1 - abs(Ex_est(n))^2;

err_y(n) = 1 - abs(Ey_est(n))^2;

end

40 H.xx(:,n+1) = H.xx(:,n)+mu(1)*err_x(n)*Ex_est(n)*conj(Ex(:,n));

H.yx(:,n+1) = H.yx(:,n)+mu(2)*err_y(n)*Ey_est(n)*conj(Ex(:,n));

if n== input_param.conv && any(strcmpi(input_param.h_ortho ,{’conv’ ’iter+

conv’}))

H.xy(:,n+1) = -conj(H.yx(:,n+1));

H.yy(:,n+1) = conj(H.xx(:,n+1));

45 else

H.xy(:,n+1) = H.xy(:,n)+mu(3)*err_x(n)*Ex_est(n)*conj(Ey(:,n));

H.yy(:,n+1) = H.yy(:,n)+mu(4)*err_y(n)*Ey_est(n)*conj(Ey(:,n));

end

end

50 end
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if any(isnan(Ex_est)) || any(isnan(Ey_est))

error(’Equalizer FIR filter taps did not converge.’)

end

The first thing that must be considered is the presence of some new input parameters, in

particular iter which must be a finite integer scalar value and represents the number of

iteration the algorithm must do, h ortho which must be a string and it is used to specify

if forced orthogonalization of the filters coefficients is required or not, Nss which must be

a finite integer scalar value representing the number of samples per symbol after timing

recovery and conv which must be a finite integer scalar value representing the number

of symbols that must be used for coefficients preconvergence. Moreover there is a new

structure in this fragment of code called Ein which represent the input signal (after

Deskew, Orthonormalization, Chromatic Dispersion compensation and timing recovery)

with all its characteristics.

The algorithm implemented starts with a cycle that allows to iterate the code for a

number of times specified by the input parameter iter. This is the first feature im-

plemented in the code that was not originally proposed in the reference paper, but it

allows for an increase of the performance of the module at the cost of an increased time

consumption. At the beginning of each new iteration, first excluded, the coefficients in

the last position of the structure H are copied in the first position as to reinitialize the

filters. These values are not perfectly correct for the first symbols, since the state of

polarization change in time, but they are significantly closer to the ideal ones, so CMA

preconvergence is no longer necessary. This results in a decent equalization also for the

first symbols, eventually reducing the overall number of errors. In the code proposed is

it possible to see that the reinitialization of the filters coefficients includes also a check

for forced coefficient orthogonalization.

The length of the vector of input samples required to equalize a symbol is determined

by taps, the number of coefficients of the filters. Since each symbol is sampled with

Nss samples the vector of input values for consecutive symbols must progressively move

on by skipping the first Nss samples. The computation of the correct vector of input

values, in the fragment of code shown, is performed thanks to the function buffer which

returns a matrix with a number of columns equal to taps and a number of rows equal

to the number of symbols to equalize. Thanks to this matrix it is then enough to select

one by one all the columns and apply the equalization algorithm to each of them.
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After all these operations it is finally possible to begin the real equalization: each it-

eration of the cycle equalize one symbol, compute the corresponding error and update

the filters coefficients. Since the system must deal with PDM signals all the operations

must be performed both for the x and y components, starting from the operations in line

28-29 which correspond to Equation (3.4). The following lines compute the errors both

for CMA and MMA cases (Equations (3.3) and (3.6)). In the first case the radius of the

constellation is set to 1 by default, since the signal was normalized before, while in the

second case it is necessary to select the most appropriate radius in the vector R. There

are various alternatives to perform such selection and the one implemented search for

the radius closest to the modulus of the symbol. This decision rule is extremely simple

and works properly only if the equalization is good enough to allow a proper distinction

between different rings. In the code under exam this is guaranteed by the CMA precon-

vergence. Finally the coefficients are updated following Equation (3.5) and eventually

orthogonalized at the end of the CMA preconvergence to ensure a correct behaviour of

the equalizer.

3.3 Optimization and results

Based on the work of Robert Sedgewick [50], it is possible to define software optimization

as the process of modifying a software system to make some aspects of it work more

efficiently or use fewer resources. In most of the cases the parameter used to compare

efficiencies is the number of accesses to the memory, also because there is a direct

correlation between this value and the run time of the module, as well as the global

amount of memory used.

Reducing the definition above to the optimization of MATLAB scripts, there are usually

two ways to perform it:

• Memory access optimization;

• MEX optimization.

The first point focus on proper definition and handling of variables and vectorization,

which are means to reduce the number of accesses to the memory by exploiting the

working principles of MATLAB. The second point instead differs slightly from the usual
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optimization since it focuses on the capability of MATLAB to handle precompiled rou-

tines as if they are built-in functions. These routines usually do not decrease the number

of accesses to the memory, nor the amount of memory used, but due to pre-compilation

they reduce significantly the run time.

While a proper description of both these ways of optimization can be found in the ap-

pendix A, the physical changes made to script will be analyzed in details in the following

two paragraphs, considering as parameter to optimize the run time of the single module.

It is important to specify that the absolute value of the run time carries very little in-

formation, since it depends strongly on the version of MATLAB used, on the hardware

of the computer and a lot of other local factors. A parameter that can then be used to

express the improvements in the efficiency of the code is the Optimization Factor OF

defined as

OF =
Torig
Topt

− 1 (3.7)

where Topt is the run time after optimization, and Torig is the original run time of the

routine under exam which can be obtained by running the Profiler module provided by

MATLAB or with a proper use of the functions tic and toc.

The analysis of the OF parameter provides the following information:

• If −1 < OF < 0: The run time of the module after optimization is greater than

the original one. It is convenient to keep the original code;

• OF = 0: There are no differences between the two scripts;

• OF > 0: The optimized code works better than the original code and the larger

the OF , the better the optimization. If the OF is constant with respect to the

variable used to compute the performances than the two scripts share the same

limiting behaviour (maybe with different coefficients which are however not explic-

itly visible in the big O notation), while if the OF increases than also the limiting

behaviour of the script has changed.
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3.3.1 Memory access optimization

Differently from before, where it was necessary to split the code in order to introduce

properly the various parameters and explain the single features of the module, to un-

derstand better how memory access optimization was performed it is more convenient

now to keep the listed whole:

% The following code inludes all the modifications done to perform memory

% access optimization

param_numberOfTaps=obj.NumberOfTaps;

5

param_Ex = buffer(Ein.x,param_numberOfTaps ,param_numberOfTaps -obj.Nss ,’nodelay ’);

param_Ey = buffer(Ein.y,param_numberOfTaps ,param_numberOfTaps -obj.Nss ,’nodelay ’);

if isscalar(obj.mu)

10 param_mu = repmat(obj.mu ,[2 2]);

elseif isvector(obj.mu) && numel(obj.mu)==2

param_mu = [obj.mu(1) obj.mu(2) ;...

obj.mu(2) obj.mu(1)];

elseif ismatrix(obj.mu) && size(obj.mu)==1*[2 2]

15 param_mu=obj.mu;

end

sz_H = size(obj.H_init);

param_H_init = zeros(2,2, param_numberOfTaps);

20 if isfloat(obj.H_init) && isfinite(obj.H_init)

if isequal(sz_H ,[1 1])

param_H_init (:,:,ceil(( param_numberOfTaps +1)/2)) = diag([obj.H_init obj.

H_init ]);

elseif isequal(sz_H ,[2 1]) || isequal(sz_H ,[1 2])

param_H_init (:,:,ceil(( param_numberOfTaps +1)/2)) = diag(obj.H_init);

25 elseif isequal(sz_H ,[2 2])

param_H_init (:,:,ceil(( param_numberOfTaps +1)/2)) = obj.H_init;

elseif isequal(sz_H ,[2 2 Ntaps])

param_H_init = obj.H_init;

end

30 end

N = floor((Ein.L-param_numberOfTaps)/obj.Nss +1);

Hxx(:,1) = squeeze(param_H_init (1,1,:));

Hyx(:,1) = squeeze(param_H_init (1,2,:));

35 Hxy(:,1) = squeeze(param_H_init (2,1,:));

Hyy(:,1) = squeeze(param_H_init (2,2,:));

cExx=param_mu (1)*conj(param_Ex);
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cEyx=param_mu (2)*conj(param_Ex);

cExy=param_mu (3)*conj(param_Ey);

40 cEyy=param_mu (4)*conj(param_Ey);

%% CMA / MMA

for it=1: Niter

robolog ([’Iteration ’ num2str(it)], ’NFO’)

45 if it >1

Hxx(:,1) = Hxx(:,end);

Hyx(:,1) = Hyx(:,end);

Hxy(:,1) = Hxy(:,end);

Hyy(:,1) = Hyy(:,end);

50 end

for n=1:N

Ex_est(n) = sum(Hxx(:,n).* param_Ex(:,n) + Hxy(:,n).* param_Ey(:,n));

Ey_est(n) = sum(Hyx(:,n).* param_Ex(:,n) + Hyy(:,n).* param_Ey(:,n));

55

if ~MMA_FLAG && n>Nconv_length , MMA_FLAG=true; end

if MMA_FLAG

A = abs(Ex_est(n));

[~,i] = min(abs(param_R -A) ,[],1);

60 err_x(n) = R2(i) - A^2;

A = abs(Ey_est(n));

[~,i] = min(abs(param_R -A) ,[],1);

err_y(n) = R2(i) - A^2;

else

65 err_x(n) = 1 - abs(Ex_est(n))^2;

err_y(n) = 1 - abs(Ey_est(n))^2;

end

Hxx(:,n+1) = Hxx(:,n)+err_x(n)*Ex_est(n)*cExx(:,n);

70 Hyx(:,n+1) = Hyx(:,n)+err_y(n)*Ey_est(n)*cEyx(:,n);

if n== Nconv_length && any(strcmpi(obj.h_ortho ,{’conv’ ’iter+conv’}))

Hxy(:,n+1) = -conj(Hyx(:,n+1));

Hyy(:,n+1) = conj(Hxx(:,n+1));

75 else

Hxy(:,n+1) = Hxy(:,n)+err_x(n)*Ex_est(n)*cExy(:,n);

Hyy(:,n+1) = Hyy(:,n)+err_y(n)*Ey_est(n)*cEyy(:,n);

end

end

80 end

if any(isnan(Ex_est)) || any(isnan(Ey_est))

error(’Equalizer FIR filter taps did not converge.’)

end
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The first thing that can be seen is that almost all the variables’ name have changed,

following the principle of the Robochameleon project regarding the readability of the

code. Now almost all the parameters required for equalization are local variables which

name start with the prefix param . They are all defined as column vectors, as suggested

in Appendix A, and they are faster to access than the fields of a structure allowing for

a small, but not negligible, time saving. Another change is related to the structure con-

taining the input parameters: differently from before the object constructor now assigns

the input parameters to the corresponding properties of the object and this allows both

an increased robustness of the code and the possibility of setting up default values for

some of the parameters. Thanks to this change it was possible to remove the check for

the correctness of the input data from the initialization of param mu and param H init

and even if this resulted in no major change for the run time the readability of the

code is improved. The last thing about variables that is important to highlight is that

some of the parameters are not defined as local variables but accessed directly as object

properties because they are not called many times and it would take longer to actually

create a new variable and initialize it.

Moving from variables to code optimization, it is possible to see that the buffering oper-

ation was moved outside the iteration cycle, since the input data are the same for each

iteration and it is enough to compute them once for all. According to the MATLAB

profiler, moreover, this function was one of the most time consuming, after equalization

and coefficients update, so this change resulted in a significant amount of time saved.

Outside of the cycles also four new variables were defined, called cExx, cEyx, cExy and

cEyy, which accounts for the multiplication of the convergence parameter times the in-

put data. Thanks to the buffer operation both parameters are independent of iterations

and symbols position, so it is possible to compute also this multiplication once for all,

thus saving time.

Inside the first cycle, accounting for different iterations, the reinitialization of the co-

efficient was simplified by removing the checks for forced orthogonalization. The main

reason behind forced coefficients orthogonalization is to avoid the coefficients of the fil-

ters to converge on the same polarization component during the initial stages of the

algorithm. After forcing this change in the coefficients this problem is solved, but the

equalization errors for the symbols equalized right after usually become very high. It is

pointless then to force coefficients orthogonalization more than once or in the advanced

stages of the algorithm, since it is enough to do it right after CMA preconvergence. In
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such a way the following cycles and iterations can smooth the increased errors and guar-

antee a very accurate equalization for all symbols. Inside the second cycle, accounting

for symbols equalization, only the coefficients update instructions were changed, imple-

menting the pre-computed variables cExx, cEyx, cExy and cEyy. With this last change

the memory access optimization part was concluded and it was possible to move on by

performing parameter optimization.

The parameters that can be optimized are:

• the number of coefficients in the filters;

• the number of symbols used for CMA preconvergence;

• the value of the convergence parameter µ;

• the number of iterations.

It is not possible to find general optimal values for these parameters, since they depend on

the characteristics of the input data streams which themselves depend on the behaviour

of the channel, on the residual tolerances of the previous modules and so on, but it

is convenient to make some trial simulations to find appropriate values and save time.

Hypothetically it should also be possible to introduce some controls and functions in

order to automatically estimate and setup the best values for the parameters above, but

the increased run time of the module do not justify the slight performances improvement.

3.3.2 MEX Optimization

As discussed in Appendix A, a possible way to optimize a MATLAB script is the use

of MEX files. The language choose in this thesis to realize these files is C++ since it is

very powerful and fast. Once again it is convenient to keep the listed whole in order to

better understand how it works.

#include <mex.h>

int indexofSmallestElement(double* array , int size){

5 int index = 0;

for(int i = 1; i < size; i++) {
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if(array[i] < array[index])

index = i;

}

10 return index;

}

void mexFunction(int nlhs , mxArray *plhs[], int nrhs , const mxArray *prhs []) {

15 const int *dim_Ex ,*dim_Ey , *dim_mu , *dim_H;

double *Ex_re ,*Ex_im ,*Ey_re ,*Ey_im;

double *ris_Ex_re ,*ris_Ex_im ,*ris_Ey_re ,*ris_Ey_im ,*err_Ex ,* err_Ey;

double *mu;

double *H_xx_re ,*H_xx_im ,*H_yx_re ,*H_yx_im ,*H_xy_re ,*H_xy_im ,*H_yy_re ,*

H_yy_im;

20 double *H_xx_re_init ,* H_xx_im_init ,* H_yx_re_init ,* H_yx_im_init ,* H_xy_re_init

,* H_xy_im_init ,* H_yy_re_init ,* H_yy_im_init;

double *cExx_re ,*cExx_im , *cEyx_re , *cEyx_im , *cExy_re ,*cExy_im , *cEyy_re , *

cEyy_im;

double *R;

double *diff;

int h_ortho_read;

25 int Niter;

int MMA_FLAG ,CMA_conv;

int ad_mu_FLAG;

int row ,col ,radii ,h_ortho_length;

double A;

30 int i_min;

dim_Ex = mxGetDimensions(prhs [0]);

row = mxGetN(prhs [0]);

col = mxGetM(prhs [0]);

35 dim_Ey = mxGetDimensions(prhs [1]);

dim_mu = mxGetDimensions(prhs [2]);

dim_H = mxGetDimensions(prhs [3]);

radii = mxGetM(prhs [9]);

h_ortho_length = mxGetN(prhs [11]);

40

if (( dim_Ex [1] != dim_Ey [1]) || (dim_Ex [0] != dim_Ey [0])) mexErrMsgTxt("The

length of the arrays are different");

if (dim_mu [1] != 2 && dim_mu [0] != 2) mexErrMsgTxt("Mu must be a 2x2 matrix");

plhs [0] = mxCreateDoubleMatrix(row , 1, mxCOMPLEX);

45 plhs [1] = mxCreateDoubleMatrix(row , 1, mxCOMPLEX);

plhs [2] = mxCreateDoubleMatrix(row+1, 1, mxREAL);

plhs [3] = mxCreateDoubleMatrix(row+1, 1, mxREAL);

Ex_re = (double *) mxGetData(prhs [0]);

50 Ey_re = (double *) mxGetData(prhs [1]);
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Ex_im = (double *) mxGetImagData(prhs [0]);

Ey_im = (double *) mxGetImagData(prhs [1]);

mu = (double *) mxGetData(prhs [2]);

55

H_xx_re_init = (double *) mxGetData(prhs [3]);

H_xx_im_init = (double *) mxGetImagData(prhs [3]);

H_yx_re_init = (double *) mxGetData(prhs [4]);

H_yx_im_init = (double *) mxGetImagData(prhs [4]);

60 H_xy_re_init = (double *) mxGetData(prhs [5]);

H_xy_im_init = (double *) mxGetImagData(prhs [5]);

H_yy_re_init = (double *) mxGetData(prhs [6]);

H_yy_im_init = (double *) mxGetImagData(prhs [6]);

65 Niter = (int) mxGetScalar(prhs [7]);

MMA_FLAG = 0;

CMA_conv = (int) mxGetScalar(prhs [8]);

70 R = (double *) mxGetData(prhs [9]);

ad_mu_FLAG = (int) mxGetScalar(prhs [10]);

h_ortho_read = (int) mxGetScalar(prhs [11]);

75

ris_Ex_re= mxGetPr(plhs [0]);

ris_Ey_re= mxGetPr(plhs [1]);

ris_Ex_im= mxGetPi(plhs [0]);

ris_Ey_im= mxGetPi(plhs [1]);

80 cExx_re =( double *) mxMalloc(row*col*sizeof(double));

cEyx_re =( double *) mxMalloc(row*col*sizeof(double));

cExy_re =( double *) mxMalloc(row*col*sizeof(double));

cEyy_re =( double *) mxMalloc(row*col*sizeof(double));

cExx_im =( double *) mxMalloc(row*col*sizeof(double));

85 cEyx_im =( double *) mxMalloc(row*col*sizeof(double));

cExy_im =( double *) mxMalloc(row*col*sizeof(double));

cEyy_im =( double *) mxMalloc(row*col*sizeof(double));

err_Ex= mxGetPr(plhs [2]);

err_Ey= mxGetPr(plhs [3]);

90 H_xx_re = (double *) mxMalloc ((row +1)*col*sizeof(double));

H_xx_im = (double *) mxMalloc ((row +1)*col*sizeof(double));

H_yx_re = (double *) mxMalloc ((row +1)*col*sizeof(double));

H_yx_im = (double *) mxMalloc ((row +1)*col*sizeof(double));

H_xy_re = (double *) mxMalloc ((row +1)*col*sizeof(double));

95 H_xy_im = (double *) mxMalloc ((row +1)*col*sizeof(double));

H_yy_re = (double *) mxMalloc ((row +1)*col*sizeof(double));

H_yy_im = (double *) mxMalloc ((row +1)*col*sizeof(double));

diff = (double *) mxMalloc(radii*sizeof(double));
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100 for (int j=0;j<col*row;j++){

cExx_re[j]=mu[0]* Ex_re[j];

cExx_im[j]=mu[0]*( - Ex_im[j]);

cEyx_re[j]=mu[2]* Ex_re[j];

cEyx_im[j]=mu[2]*( - Ex_im[j]);

105 cExy_re[j]=mu[1]* Ey_re[j];

cExy_im[j]=mu[1]*( - Ey_im[j]);

cEyy_re[j]=mu[3]* Ey_re[j];

cEyy_im[j]=mu[3]*( - Ey_im[j]);

}

110

for (int j=0;j<col;j++){

H_xx_re[j]= H_xx_re_init[j];

H_yx_re[j]= H_yx_re_init[j];

H_xy_re[j]= H_xy_re_init[j];

115 H_yy_re[j]= H_yy_re_init[j];

H_xx_im[j]= H_xx_im_init[j];

H_yx_im[j]= H_yx_im_init[j];

H_xy_im[j]= H_xy_im_init[j];

H_yy_im[j]= H_yy_im_init[j];

120 }

for (int it=0; it<Niter; it++){

for (int j=0;j<row;j++){

ris_Ex_re[j]=0;

125 ris_Ex_im[j]=0;

ris_Ey_re[j]=0;

ris_Ey_im[j]=0;

}

if (it >0){

130 for (int j=0;j<col; j++){

H_xx_re[j]= H_xx_re [(row)*col+j];

H_xx_im[j]= H_xx_im [(row)*col+j];

H_yx_re[j]= H_yx_re [(row)*col+j];

H_yx_im[j]= H_yx_im [(row)*col+j];

135 H_xy_re[j]= H_xy_re [(row)*col+j];

H_xy_im[j]= H_xy_im [(row)*col+j];

H_yy_re[j]= H_yy_re [(row)*col+j];

H_yy_im[j]= H_yy_im [(row)*col+j];

}

140 }

for (int n_sym =0; n_sym <row; n_sym ++){

for (int taps =0; taps <col; taps ++){

ris_Ex_re[n_sym ]+=( H_xx_re[n_sym*col+taps]*Ex_re[n_sym*col+taps]-

H_xx_im[n_sym*col+taps]* Ex_im[n_sym*col+taps])+( H_xy_re[n_sym*col+taps]*

Ey_re[n_sym*col+taps]-H_xy_im[n_sym*col+taps]* Ey_im[n_sym*col+taps]);
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145 ris_Ey_re[n_sym ]+=( H_yx_re[n_sym*col+taps]*Ex_re[n_sym*col+taps]-

H_yx_im[n_sym*col+taps]* Ex_im[n_sym*col+taps])+( H_yy_re[n_sym*col+taps]*

Ey_re[n_sym*col+taps]-H_yy_im[n_sym*col+taps]* Ey_im[n_sym*col+taps]);

ris_Ex_im[n_sym ]+=( H_xx_im[n_sym*col+taps]*Ex_re[n_sym*col+taps]+

H_xx_re[n_sym*col+taps]* Ex_im[n_sym*col+taps])+( H_xy_im[n_sym*col+taps]*

Ey_re[n_sym*col+taps]+ H_xy_re[n_sym*col+taps]* Ey_im[n_sym*col+taps]);

ris_Ey_im[n_sym ]+=( H_yx_im[n_sym*col+taps]*Ex_re[n_sym*col+taps]+

H_yx_re[n_sym*col+taps]* Ex_im[n_sym*col+taps])+( H_yy_im[n_sym*col+taps]*

Ey_re[n_sym*col+taps]+ H_yy_re[n_sym*col+taps]* Ey_im[n_sym*col+taps]);

}

if (it==0 && n_sym == CMA_conv){MMA_FLAG =1;}

150 if (MMA_FLAG){

A=pow(pow(ris_Ex_re[n_sym],2)+pow(ris_Ex_im[n_sym],2) ,0.5);

for (int j=0;j<radii;j++){

diff[j]=abs(R[j]-A);

}

155 i_min=indexofSmallestElement(diff , radii);

err_Ex[n_sym]=pow(R[i_min],2)-pow(A,2);

A=pow(pow(ris_Ey_re[n_sym],2)+pow(ris_Ey_im[n_sym],2) ,0.5);

for (int j=0;j<radii;j++){

160 diff[j]=abs(R[j]-A);

}

i_min=indexofSmallestElement(diff , radii);

err_Ey[n_sym]=pow(R[i_min],2)-pow(A,2);

}

165 else {

A=pow(ris_Ex_re[n_sym],2)+pow(ris_Ex_im[n_sym],2);

err_Ex[n_sym]=1-A;

A=pow(ris_Ey_re[n_sym],2)+pow(ris_Ey_im[n_sym],2);

err_Ey[n_sym]=1-A;

170 }

if (it==1 && n_sym == CMA_conv && h_ortho_read){

for (int taps =0; taps <col; taps ++){

H_xx_re [( n_sym +1)*col+taps]= H_xx_re[n_sym*col+taps];

175 H_xx_im [( n_sym +1)*col+taps]= H_xx_im[n_sym*col+taps];

H_yx_re [( n_sym +1)*col+taps]= H_yx_re[n_sym*col+taps];

H_yx_im [( n_sym +1)*col+taps]= H_yx_im[n_sym*col+taps];

H_xy_re [( n_sym +1)*col+taps]= H_yx_re[n_sym*col+taps];

H_xy_im [( n_sym +1)*col+taps]=-H_yx_im[n_sym*col+taps];

180 H_yy_re [( n_sym +1)*col+taps]= H_xx_re[n_sym*col+taps];

H_yy_im [( n_sym +1)*col+taps]=-H_xx_im[n_sym*col+taps];

}

mexPrintf("ORTHOGONALIZATION APPLIED\n");

}

185 else{

for (int taps =0; taps <col; taps ++){
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H_xx_re [( n_sym +1)*col+taps]= H_xx_re[n_sym*col+taps]+ err_Ex[

n_sym ]*( ris_Ex_re[n_sym]* cExx_re[n_sym*col+taps]-ris_Ex_im[n_sym]* cExx_im[

n_sym*col+taps]);

H_xx_im [( n_sym +1)*col+taps]= H_xx_im[n_sym*col+taps]+ err_Ex[

n_sym ]*( ris_Ex_im[n_sym]* cExx_re[n_sym*col+taps]+ ris_Ex_re[n_sym]* cExx_im[

n_sym*col+taps]);

H_yx_re [( n_sym +1)*col+taps]= H_yx_re[n_sym*col+taps]+ err_Ey[

n_sym ]*( ris_Ey_re[n_sym]* cEyx_re[n_sym*col+taps]-ris_Ey_im[n_sym]* cEyx_im[

n_sym*col+taps]);

190 H_yx_im [( n_sym +1)*col+taps]= H_yx_im[n_sym*col+taps]+ err_Ey[

n_sym ]*( ris_Ey_im[n_sym]* cEyx_re[n_sym*col+taps]+ ris_Ey_re[n_sym]* cEyx_im[

n_sym*col+taps]);

H_xy_re [( n_sym +1)*col+taps]= H_xy_re[n_sym*col+taps]+ err_Ex[

n_sym ]*( ris_Ex_re[n_sym]* cExy_re[n_sym*col+taps]-ris_Ex_im[n_sym]* cExy_im[

n_sym*col+taps]);

H_xy_im [( n_sym +1)*col+taps]= H_xy_im[n_sym*col+taps]+ err_Ex[

n_sym ]*( ris_Ex_im[n_sym]* cExy_re[n_sym*col+taps]+ ris_Ex_re[n_sym]* cExy_im[

n_sym*col+taps]);

H_yy_re [( n_sym +1)*col+taps]= H_yy_re[n_sym*col+taps]+ err_Ey[

n_sym ]*( ris_Ey_re[n_sym]* cEyy_re[n_sym*col+taps]-ris_Ey_im[n_sym]* cEyy_im[

n_sym*col+taps]);

H_yy_im [( n_sym +1)*col+taps]= H_yy_im[n_sym*col+taps]+ err_Ey[

n_sym ]*( ris_Ey_im[n_sym]* cEyy_re[n_sym*col+taps]+ ris_Ey_re[n_sym]* cEyy_im[

n_sym*col+taps]);

195 }

}

}

}

mxSetData(plhs[0], ris_Ex_re);

200 mxSetImagData(plhs[0], ris_Ex_im);

mxSetData(plhs[1], ris_Ey_re);

mxSetImagData(plhs[1], ris_Ey_im);

mxSetM(plhs[0],row);

mxSetN(plhs [0] ,1);

205 mxSetM(plhs[1],row);

mxSetN(plhs [1] ,1);

mxSetData(plhs[2], err_Ex);

mxSetData(plhs[3], err_Ey);

mxSetM(plhs[2],row+1);

210 mxSetM(plhs[3],row+1);

mxSetN(plhs [2] ,1);

mxSetN(plhs [3] ,1);

mexPrintf("Outputs and errors assigned - Equalization complete\n");

return;

215 }
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To avoid pointless wastes of memory, only the fundamental library mex.h was included,

partially limiting the capability of the code to deal with strings and complex math-

ematics. Both these problems however are dealt with by implementing manually the

complex multiplication and exponentiation operations and by checking the string values

in MATLAB before calling the function.

As can be seen, the two cycles previously realized in MATLAB are here written in C++

without any semantic change. The only main difference is that here real and imaginary

part of input symbols, output symbols ad filters coefficients are separated into different

vectors of double.

To deal with MEX files properly a significant number of instructions before and after the

real routine are necessary, principally to allocate the memory required for the correct

execution of the script and to make the output results available to MATLAB. It is also

important to pay attention to memory leaks and segmentation faults which can create

a lot of problems within complete simulations or practical experiments. A complete

description of both these problems can be found in Appendix A.

The following few lines show the main cycle of the equalizer after MEX optimization:

%Main cycle of the equalizer after the MEX optimization

if strcmp(obj.h_ortho ,’iter’)

obj.h_ortho =1;

5 else

obj.h_ortho =0;

end

[Exout , Eyout , err_x , err_y]= EqualizerMEX(param_Ex ,param_Ey ,param_mu ,squeeze(

param_H_init (1,1,:)),squeeze(param_H_init (2,1,:)),squeeze(param_H_init

(1,2,:)),squeeze(param_H_init (2,2,:)),obj.iter ,obj.conv_length ,param_R ,obj.

adaptive_mu ,obj.h_ortho);

As can be seen there are no more cycles and everything is performed by the MEX

function. To avoid the use of strings the parameter h ortho has been converted in a

boolean flag passed to the script as a normal input parameter.
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3.3.3 Overall results

The results of optimization, computed with the aid of the MATLAB profiler, can be

found in Figure (3.1). As can be seen the behaviour of the module in all three cases is

linear with respect to the signal length, showing that the asymptotic behaviour of the

script has not changed with optimization. This can also be seen by computing the Opti-

mization Factor with the formula reported in Equation (3.7) for different signal lengths,

obtaining the results reported in Table (3.1).

It is possible to see that except for some small variations between the OFs the values

Signal length [bit] 215 216 217 218 219 220

Memory Access Optimization 0.54 0.40 0.41 0.43 0.43 0.43

MEX script 14.56 14.98 13.11 16.90 14.07 11.87

Table 3.1: Optimization Factors for the equalizer module

Signal length [MSymbols]
0 0.2 0.4 0.6 0.8 1.0

T
im

e 
[s

]
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Figure 3.1: Time comparison between original script, memory access optimized script
and MEX realized script.
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Original Code Memory Access Optimization MEX script

0 0.44 14.25

Table 3.2: Average optimization factors for the equalizer module

OSNR [dB]
20 22 24 26 28 30 32 34

B
E

R

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 errors threshold

No optimization - x
No optimization - y
Memory Access Optimization - x
Memory Access Optimization - y
MEX optimization - x
MEX optimization - y

Figure 3.2: Performances of the equalizer module after various step of optimization.

remains almost the same for all lengths. The OFs for the MEX script has a larger vari-

ance with respect to the memory access optimization case principally due to enhancing

effect that Equation (3.7) has on the small random variations in the time required to call

the function and build the running environment. The most important thing to remark,

however, is that on average the memory access optimization has a marginal effect on

the run time, as can be seen in the values reported in Table (3.2), while the passage to

MEX scripts allows for a significant improvement.

The most important thing to verify after optimization is if the performances of the mod-

ule have changed with respect to the original script. This can be checked by running

a proper number of repeated simulations to obtain some statistically meaningful data.

In the case proposed a signal with length of 218 bit is modulated at a baud rate of
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50 GSymbol/s with a 16 QAM scheme, transmitted over a dispersive 80 km-long chan-

nel, followed by an EDFA with noise figure of 5 dB and resampled, on receiver side, with

2 sample/symbol. The channel is considered linear, with a first order chromatic disper-

sion coefficient equal to 17 ps/(ns km) and a PMD coefficient equal to 0.08 ps/
√
km.

The simulations are done by varying the OSNR of the transmitted signal in the range

from 20 to 34 dB with a step of 2 dB. For each value of OSNR the simulations are

repeated 5 times and the averaged results are shown in Figure (3.2). As can be seen

the performances of the equalizer have not changed with optimization and the curves

are almost completely overlapped. Due to the finite length of the data and to the rela-

tively small number of repetitions of the simulation, for high values of OSNR it is fairly

hard to get errors in the transmission. The statistical description of the errors for these

values of OSNR is then not accurate and this results in an increased variance. Due to

all these reasons a threshold line is added in correspondence to the BER measured after

100 errors, to graphically show the data interval that can be considered meaningful.
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Carrier Phase Recovery

4.1 Theoretic background

Before analyzing the algorithms implemented and the optimizations performed on the

Carrier Phase Recovery (CPR) module, it is convenient to highlight and understand

the impairments that must be corrected as well as their causes. As introduced in Sec-

tion 2.2.6 the CPR module has to compensate for two principal phenomena, frequency

offset and phase noise, which will be theoretically analyzed in the following sections.

Successively the work of T. Pfau et al. [39] on the developing of an hardware efficient

scheme for CPR will be analyzed and finally the process of optimization of the algorithm

implemented will be shown.

4.1.1 Frequency offset

To understand the causes and the effects of frequency offset it is necessary to introduce

more in details the working principle of a phase diverse intradyne receiver [2]. To sim-

plify the explanation it is convenient initially to consider a configuration without phase

diversity, where there is no polarization demultiplexing and the states of polarization

of the received signal and of the local oscillator are aligned thanks to a polarization

controller. The graphical scheme is shown in Figure (4.1).

It is possible to describe the complex electric field of the transmitted optical signal as:

Es(t) = As(t)e
jωst (4.1)

47
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Figure 4.1: Configuration of a simplified coherent receiver.

where As(t) is the complex amplitude and ωs is the transmitting laser angular frequency.

Similarly the complex electric filed of the continuous wave LO can be written as:

El(t) = Ale
jωlt (4.2)

where Al is the constant complex amplitude and ωl is the LO angular frequency.

The powers of the two waves can be defined as:

Ps(t) = k |As(t)|2 /2,

Pl = k |Al|2 /2.
(4.3)

where the constant k = Seff
ζ represent the ratio between the effective beam area and

the impedance of the free space.

The two waves are then coupled and detected with a balanced photodiode that allows to

suppress the DC component and maximize the beat between the signal and the LO. The

key is to use a coupler which split the powers 50/50 on the two outputs while introducing

a 180◦ phase shift to either the signal or the LO electric field. The output fields from

the coupler can be written as:

E1(t) =
1√
2

(Es(t) + El)

E2(t) =
1√
2

(Es(t)− El)
(4.4)

which generate the following photocurrents on the photodiodes realizing the balanced

photodiode:

I1(t) =
R

2

[
Ps(t) + Pl + 2

√
Ps(t)Pl cos {ωIF t+ θs(t) + θl(t)}

]
I2(t) =

R

2

[
Ps(t) + Pl − 2

√
Ps(t)Pl cos {ωIF t+ θs(t) + θl(t)}

] (4.5)
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Figure 4.2: Effects of linear frequency offset on the received signal

with ωIF = |ωs − ωl| defined as residual intermediate frequency, θs(t) and θl(t) time

varying phases respectively of the transmitted signal and LO and R responsivity of the

photodiodes.

The output of the balanced photodiode is given by:

I(t) = I1(t)− I2(t) = 2R
√
Ps(t)Pl · cos {ωIF t+ θsig(t)− θl(t)} (4.6)

where Pl is a constant and the phases includes only the random time-varying phase

noises which will be discusses in the following sections.

It is important to specify that the photocurrent given by Equation (4.6) is proportional

to
√
Pl so, as the LO power increases a gain for the photocurrent can be obtained. The

signal level can then be enhanced to overwhelm the thermal noise of the receiver obtain-

ing an SNR, at receiver side, approaching the quantum-noise limit.
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Figure 4.3: Example of the phase noise for a DFB laser with linewidth of approxi-
matively 1 MHz

Considering now also the phase diversity avoided before, relations similar to Equa-

tion (4.6) can be found for both in-phase and quadrature components:

II(t) = R
√
Ps(t)Pl · cos {ωIF t+ θsig(t)− θl(t)}

IQ(t) = R
√
Ps(t)Pl · sin {ωIF t+ θsig(t)− θl(t)}

(4.7)

Homodyne receivers are such that ωIF = 0, which means that the transmitter and the

LO lasers are both centered at the same frequency. Unfortunately this is not possible in

reality, principally due to unavoidable non-idealities or environmental conditions, so ωIF

usually results relatively small (in the MHz band) but different from 0 and the receiver

scheme takes the name of Intradyne.

The results of the residual ωIF can be seen in Figure (4.2) where, at successive time

instants, the received symbols move linearly along the unitary circle.
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Figure 4.4: Effects of phase noise on the received signal

4.1.2 Phase noise

In this section only single-frequency lasers, where essentially all power is in a single

resonator mode, will be considered since these are the ones used to date in high speed

coherent optical systems.

A single-frequency laser will not exhibit a perfect sinusoidal oscillation of the electric

field at its outputs due to fluctuations of the power and variations of the optical phase

[51, 52]. The variations of the optical phase can be quantified with a very complicate

phase noise Power Spectral Density (PSD) having units of [rad2/Hz].

The fundamental origin of phase noise is quantum noise, in particular due to sponta-

neous emission of the gain medium into the resonator modes, but also optical losses can

contribute to it. In addition, there can be influences due to vibrations of the cavity

mirrors or to temperature fluctuations and, in many cases, there is also a coupling of

intensity noise to phase noise due to the nonlinearities of the active medium. All these

things cause a finite value of the linewidth of the laser, which is defined as the width of

the main peak in the power spectral density of the optical field.
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Figure 4.5: Feedforward carrier recovery using B test phase values ϕb

An example of the overall behaviour of the phase noise for a common Distributed Feedback

(DFB) laser is shown in Figure (4.3) where it is possible to see a strong, low frequency,

noise component which dominates the behaviour, overlapped with a small but rapidly

changing one. Essentially the linewidth is determined by low-frequency noise which is

the main component that must be eliminated. The effect of the phase noise on the

received symbols can be seen in Figure (4.4) where also a little component of intensity

noise is visible.

4.1.3 Proposed algorithm

The algorithm that is going to be presented here is based on the work of Timo Pfau

et al. [39]. It presents a digital feedforward recovery algorithm for arbitrary M-QAM

constellations in an intradyne coherent optical receiver. The principal advantages of the

algorithm proposed are that it does not contain any feedback loop, which makes it highly

tolerant against laser phase noise, and that it is possible to realize it in an hardware

efficient way.

The block diagram of the proposed carrier recovery module is shown in Figure (4.5) and

a more detailed structure of the test phase block is shown in Figure (4.6). In order to

properly describe how the algorithm works, perfect timing recovery and equalization are

assumed.

To recover the carrier phase in a pure feedforward approach the received signal in output
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Figure 4.6: Insight of the test phase block for the feedforward carrier recovery diagram

from the equalizer Yk is rotated by B test carrier phase angles ϕb with:

ϕb =
b

B
· π

2
, b ∈ {0, 1, . . . , B − 1} . (4.8)

All rotated symbols are fed into a decision circuit and the squared distance:

|dk,b|2 =
∣∣Ykejϕb −

⌊
Yke

jϕb
⌋
D

∣∣2 (4.9)

to the closest constellation point
⌊
Yke

jϕb
⌋
D

= X̂k,b is calculated in the complex plane.

In order to remove noise distortions, the distances of 2N + 1 consecutive test symbols

rotated by the same carrier phase angle φB are summed up:

sk,b =

N∑
n=−N

|dk−n,b|2 . (4.10)

The optimum value of the filter half width N depends on the laser linewidth times sym-

bol rate product. Heuristically it is possible to show that N = 6, . . . , 10 are all fairly

good choices. After filtering, the optimum phase angles is determined by searching the

minimum sum of distance values.

The proposed feedforward carrier recovery algorithm is optimized for square QAM con-

stellations, which are the more common, but it can be generalized for arbitrary ones:

if the constellation diagram is rotationally symmetric by the angle γ then ϕb must be

selected as:

ϕb =
b

B
· γ, b ∈ {0, 1, . . . , B − 1} . (4.11)

For constellations without rotational symmetry γ = 2π must be used.

If polarization division multiplexing is applied, there are two possibilities to implement

the carrier recovery: one is to use two separate carrier recoveries for each polarization,
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while the second is to have a common carrier recovery for both polarizations. To realize

the second option Equation (4.10) must be modified as follows:

sk,b =

2∑
p=1

N∑
n=−N

|dp,k−n,b|2 . (4.12)

where p is the index of the polarization component. Because twice as much data are

available to determine the carrier phase angle, N can be halved, increasing the phase

noise tolerance roughly by a factor of 2.

As can be deduced from what stated so far, no hypotheses or requirements have been

made regarding the modules preceding the CPR, so the proposed algorithm is compatible

with any kind of equalizer, CDC module, and timing recovery algorithm. In the last

sections of the paper published by Pfau is it possible to find a complete description

about how to hardware efficiently implement this algorithm, but since this is out of the

scope of the thesis it will not be reported here.

4.2 Practical implementation

Considering the theoretical analysis done in the previous section, the CPR module must

• Rotate the symbol and identify the closest constellation point;

• Compute the squared distance;

• Filter 2N + 1 symbols to remove noise distortions;

• Determine the phase angle by searching for the minimum output of the filter.

It is important to highlight that in the CPR algorithm proposed the linear frequency

offset was not discussed. This is because the algorithm does not discriminate between the

linear and the randomly time-varying phase noise and try to equalize them as a whole.

It is definitely convenient however to remove the linear offset beforehand if possible,

because this will reduce the total amount of phase the algorithm has to track, increasing

the overall performances and robustness.
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4.2.1 Original code

As in the previous chapter, to introduce the original code it is convenient to split it into

smaller sections and analyze separately the operations implemented. Once again, the

comments are removed from the listed instructions to improve the readability of the code.

% Read the input parameters to initialize the variables.

constellation = input_param.constellation;

R = uniquetol(abs(constellation), 1e-8);

B = input_param.test_angles;

5 b = (0:B-1) ’;

Gamma = pi/2;

phi_b = (b/(B-1))*Gamma -pi/4;

N = input_param.N;

The first section refers to the initialization of the variables described in the theoretical

analysis. The fundamental ones, i.e. the constellation pattern, B and N are read from

the structure input param and from them the different test angles ϕb are computed ac-

cording to Equation (4.8). In this implementation an angle of π/4 is subtracted to the

angles to center them around 0.

The parameters B and N must be finite integer values, while constellation is a vector

of finite complex numbers with dimensions 1 by M or M by 1. Since in the original

code no controls on the input data were performed, if wrong variable types are used the

simulation will crash without providing useful information about the error. This results

in an increased difficulty in backtracking the issue and it is against the programming

paradigms of Robochameleon.

The following section deals with linear frequency offset estimation and removal.

% Perform frequency offset estimation and compensation

f = (0: size(Ein.x,1) -1) ’/Fb;

[Ex_fr ,freq_off] = CPR.FOC(Ein.x,R,Fb);

5 Ey_fr = Ein.y.*exp(-2i*pi*f*freq_off);

...

function [Eout ,est_f_off ]= FOC(Ein ,R,Fb)

10

C13 = zeros(N,1);



Chapter 4. Carrier Phase Recovery 56

Ph_rot = exp(1i*pi/4);

Ph_rec = exp(-1i*pi/4);

15 Ein_rot = Ein*Ph_rot;

N = size(Ein_rot ,1);

T = 1/Fb;

f = (0:N-1) ’/Fb;

for n=1:N

20 A = abs(Ein_rot(n));

[~,i] = min(abs(R-A) ,[],1);

if i==1 || i==3

C13(n) = Ein_rot(n);

end

25 end

% Select non -zero indices

ind1 = find(C13);

% Class 1 and 3 symbols

Sym_13 = C13(ind1);

30 % 4-fold and phase tracking

Theta_est = angle (( Sym_13 ./abs(Sym_13)).^4);

Theta_est = unwrap(Theta_est)/4;

% frequency offset estimation and recovery compensation

Theta_est_shift = circshift(Theta_est ,1);

35 ind_shift = circshift(ind1 ,1);

delt_Theta = Theta_est (2:end)-Theta_est_shift (2:end);

delt_ind = ind1 (2: end)-ind_shift (2:end);

Average_delta_Theta = mean(delt_Theta ./ delt_ind);

est_f_off = Average_delta_Theta /(2*pi*T);

40 print_str = ’ o Estimated frequency offset is %0.0f MHz\n’;

fprintf(print_str ,est_f_off /1e6);

Eout = Ein_rot .*exp(-2i*pi*f*est_f_off)*Ph_rec;

end

As for the equalizer also for the Carrier Phase Recovery module the structure Ein

contains the input signals of both polarizations and all the corresponding characteris-

tics. The frequency estimation function was developed to deal with QPSK modulations

(4-QAM) and exploit the 4-fold ambiguity of the QAM modulations. Unfortunately,

however, this method does not work with higher order modulations and it was basically

useless since, to date, the lowest order modulation under research is the 16-QAM. Due

to this no further analysis of this fragment of code will be performed.

The following fragment of code regards the main cycle of the CPR module, including all

the principal operations introduced at the beginning of Section 4.2.
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% Main cycle of the Carrier Phase Recovery Module. It estimates the phase

% noise and remove it.

% Test phase multiplication

5 Ex_fr = Ex_fr.’;

Ey_fr = Ey_fr.’;

X = exp(1i*phi_b)*Ex_fr;

Y = exp(1i*phi_b)*Ey_fr;

10 % preliminary decision

dx = zeros(B,length(X));

dy = zeros(B,length(Y));

for k = 1: length(X)

[dx(:,k) ,~] = min(bsxfun(@minus ,constellation ,X(:,k).’));

15 [dy(:,k) ,~] = min(bsxfun(@minus ,constellation ,Y(:,k).’));

end

dx = (abs(dx)).^2;

dy = (abs(dy)).^2;

% Averaging filtering and select correct phase

20 switch input_param.type

case ’joint’

dx = dx ’;

dy = dy ’;

dxy = reshape ([dx(:) dy(:)]’, 2*size(dx ,1) ,[]) ’;

25 s = zeros(B,length(dx) -2*N);

for k = 2*N+1:2: length(dxy) -2*N

s(:,round(k/2)-N) = sum(dxy(:,k-2*N:k+2*N+1) ,2);

end

[~,indb]= min(s);

30 case ’separate ’

sx = zeros(B,length(dx) -2*N-1);

sy = zeros(B,length(dy) -2*N-1);

for k = N+1:1: length(dx)-N-1

sx(:,k-N) = sum(dx(:,k-N:k+N+1) ,2);

35 sy(:,k-N) = sum(dy(:,k-N:k+N+1) ,2);

end

[~,indbx ]= min(sx);

[~,indby ]= min(sy);

end

40 % Unwrap and phase recovery

switch input_param.type

case ’joint’

Theta_est = -unwrap(phi_b(indb)*4)/4;

pn_plot(Theta_est);

45 Ex_fr = Ex_fr (:);

Ey_fr = Ey_fr (:);

Ex_fr = Ex_fr(N+1:end -N);
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Ey_fr = Ey_fr(N+1:end -N);

Ex_cpr = Ex_fr.*exp(-1i*Theta_est);

50 Ey_cpr = Ey_fr.*exp(-1i*Theta_est);

case ’separate ’

Theta_est_x = -unwrap(phi_b(indbx)*4) /4;

Theta_est_y = -unwrap(phi_b(indby)*4) /4;

Ex_fr = Ex_fr (:);

55 Ey_fr = Ey_fr (:);

Ex_fr = Ex_fr(N+1:end -N-1);

Ey_fr = Ey_fr(N+1:end -N-1);

Ex_cpr = Ex_fr.*exp(-1i*Theta_est_x);

Ey_cpr = Ey_fr.*exp(-1i*Theta_est_y);

60 end

The first few lines account for the multiplication of the incoming symbols for the different

test angles. Since the operation is between 1 by B matrices (the results of the exponential

operations with the vector phi b as input) time N by 1 matrices (the variables Ex fr and

Ey fr), with B number of test angles and N number of symbols received, the outputs

X and Y are N by B matrices.

The following lines show a cycle which compute the minimum distances between the

symbols rotated by the different test angles and the points of the constellations. The

function bsxfun apply the @minus operation (which is the normal subtraction) between

the elements of the two matrices in input: constellation and X or Y. The reason because

bsxfun is used is that the two matrices do not have the same dimensions nor the same

number of elements and it will be extremely inefficient, from a run-time point of view, to

implement such operation with cycles. This function instead resize properly one of the

input matrix (by making copies of it) to adapt the dimensions and perform the required

action with efficient matrix operations. With the min functions only the minimum

distances for each test angle are stored in the vectors dx and dy which are squared, as

described in the theoretical algorithm, right after the end of the cycle. This cycle is

extremely time consuming, even if each iteration is performed with only efficient matrix

operations.

After the computation of the squared distances for each test angle and symbol, the noise

distortion filtering operation is performed in different ways depending on the information

available. If the field input param.type is set to joint the code filters together both

polarization components, otherwise if it is set to separate the components are filtered

separately. A value of this field different from the two proposed will result in an error,
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once again uncontrolled. Except for the different way of initializing the required vectors,

for each test angle 2N + 1 consecutive distances stored in the vectors dx and dy are

summed and only the index of the test phase which result in the minimum sum is stored

inside indbx and indby. The output of this section of the code is then a N by 1 vector

containing the indexes of the test angle best estimating the phase noise.

To perform carrier phase recovery, indbx and indby are used to recreate the phase

behaviour in time. To smooth variation of phase greater than ±2π, the function unwrap

is used. Finally the phase noise is removed by multiplying the received noisy symbols

times the opposite of the estimated phase.

4.3 Optimization and results

Also for this module it is possible to perform Memory Access optimization and MEX

optimization to improve the performances. In the following paragraphs these processes

will be analyzed and the results, including the OFs (Equation (3.7)), will be shown.

4.3.1 Memory access optimization

The author of the original code of this module had already performed Memory Access

optimization so, only a small improvement could be done to reduce the memory con-

sumption.

%Read the input parameters to initialize the variables.

constellation = input_param.constellation;

R = uniquetol(abs(constellation), 1e-8);

B = input_param.test_angles;

5 b = (0:B-1) ’;

Gamma = pi/2;

phi_b = (b/(B-1))*Gamma -pi/4;

N = input_param.N;

rotated_constellation=constellation *(exp(-1i*phi_b).’);

10

...

for k = 1: length(Ex_fr)

[dx(:,k) ,~] = min(bsxfun(@minus ,rotated_constellation ,Ex_fr(k)));

15 [dy(:,k) ,~] = min(bsxfun(@minus ,rotaded_constellation ,Ey_fr(k)));

end
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In the original code the received symbols were rotated and then compared with the

constellation to identify the closest points. The matrix resulting from the rotation of the

symbols was N by B, with N number of symbols received and B number of test angles.

Since N can become really large during a simulation the memory consumed was usually

extremely significant. To optimize the usage of memory it is then possible to exploit

the features of the bsxfun function: since it is able to compute the euclidean distance

between symbols and constellation points both if the symbols or the constellation is

rotated, it is convenient to rotate the latter since the resulting matrix will be M by B,

with M number of points in the constellation, which is always much smaller than a N

by B one. This operation unfortunately does not reduce the run time of the simulation,

since the number of distances that the script has to compute remains the same, but it

is still an improvement from an optimization point of view.

Another thing that can be done to reduce the run time of the module is to minimize the

number of test angles B. This reduction however cannot be done indiscriminately, since

the performances of the module must be maintained.

4.3.2 MEX Optimization

The following code represent the manually written C++ script which compute the eu-

clidean distances between the points and the rotated constellation, identifies the mini-

mum one and operate the noise distortion filtering operation.

#include <mex.h>

double minElement(double* array , int size)

{

5 double ris=array [0];

for(int i = 1; i < size; i++)

{

if(array[i] < ris)

ris = array[i];

10 }

return ris;

}

int indexofSmallestElement(double* array , int size)

15 {

int index = 0;
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for(int i = 1; i < size; i++)

{

20 if(array[i] < array[index])

index = i;

}

return index;

25 }

void mexFunction(int nlhs , mxArray *plhs[], int nrhs , const mxArray *prhs []) {

// Variables definitions

30 const double M_PI=atan(( float)1.0) *4;

double *Ex_re ,*Ex_im ,*Ey_re ,*Ey_im;

double *Const_re ,*Const_im ,*cConst_re ,* cConst_im;

double *ris_Ex ,* ris_Ey;

int N,N_test_angles ,M,N_avg ,joint_FLAG;

35 double *x_dist ,*y_dist ,*x_mins ,* y_mins;

double *phi_b;

double gamma;

double *reshaped ,*sx ,*sy ,*tempx ,*tempy ,*indbx ,*indby;

40 // Variables initialization

Ex_re = (double *) mxGetData(prhs [0]);

Ey_re = (double *) mxGetData(prhs [1]);

Ex_im = (double *) mxGetImagData(prhs [0]);

Ey_im = (double *) mxGetImagData(prhs [1]);

45

N=mxGetM(prhs [0]);

Const_re = (double *) mxGetData(prhs [2]);

Const_im = (double *) mxGetImagData(prhs [2]);

50 M = (int) mxGetM(prhs [2]);

N_test_angles = (int) mxGetScalar(prhs [3]);

gamma = (double) mxGetScalar(prhs [4]);

N_avg = (int) mxGetScalar(prhs [5]);

joint_FLAG = (int) mxGetScalar(prhs [6]);

55

// Memory allocation

plhs [0] = mxCreateDoubleMatrix(N_test_angles , N, mxREAL);

plhs [1] = mxCreateDoubleMatrix(N_test_angles , N, mxREAL);

plhs [2] = mxCreateDoubleMatrix (1, (N-2* N_avg) -1, mxREAL);

60 plhs [3] = mxCreateDoubleMatrix (1, (N-2* N_avg) -1, mxREAL);

ris_Ex=mxGetPr(plhs [0]);

ris_Ey=mxGetPr(plhs [1]);



Chapter 4. Carrier Phase Recovery 62

65 x_dist = (double *) mxMalloc(M*sizeof(double));

y_dist = (double *) mxMalloc(M*sizeof(double));

x_mins = (double *) mxMalloc(N_test_angles*sizeof(double));

y_mins = (double *) mxMalloc(N_test_angles*sizeof(double));

cConst_re = (double *) mxMalloc(N_test_angles*M*sizeof(double));

70 cConst_im = (double *) mxMalloc(N_test_angles*M*sizeof(double));

phi_b = (double *) mxMalloc(N_test_angles*sizeof(double));

reshaped = (double *) mxMalloc (2*N*N_test_angles*sizeof(double));

sx = (double *) mxMalloc(N_test_angles *(N-2*N_avg -1)*sizeof(double));

tempx = (double *) mxMalloc(N_test_angles*sizeof(double));

75 sy = (double *) mxMalloc(N_test_angles *(N-2*N_avg -1)*sizeof(double));

tempy = (double *) mxMalloc(N_test_angles*sizeof(double));

indbx = mxGetPr(plhs [2]);

indby = mxGetPr(plhs [3]);

80 // computing test angles

for (int j=0; j<N_test_angles;j++){

phi_b[j] = -M_PI/4 + (gamma)*j/( N_test_angles -1);

}

85 // computing useful matrix

for (int j=0;j<N_test_angles;j++){

for (int i=0; i<M;i++){

cConst_re[M*j+i]= Const_re[i]*cos(-phi_b[j])-Const_im[i]*sin(-phi_b[j

]);

cConst_im[M*j+i]= Const_re[i]*sin(-phi_b[j])+Const_im[i]*cos(-phi_b[j

]);

90 }

}

// initializing matrix

for (int j=0; j<N-2* N_avg; j++) {

95 indbx[j]=0;

indby[j]=0;

}

// computing distances

100 for (int sym=0; sym <N; sym ++){

for (int t_ang =0;t_ang <N_test_angles;t_ang ++){

for (int j=0;j<M;j++){

x_dist[j]=pow(Ex_re[sym]-cConst_re[M*t_ang+j],2)+pow(Ex_im[sym]-

cConst_im[M*t_ang+j],2);

y_dist[j]=pow(Ey_re[sym]-cConst_re[M*t_ang+j],2)+pow(Ey_im[sym]-

cConst_im[M*t_ang+j],2);

105 }

ris_Ex[sym*N_test_angles+t_ang]= minElement(x_dist ,M);

ris_Ey[sym*N_test_angles+t_ang]= minElement(y_dist ,M);

}
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}

110

if (joint_FLAG) {

for (int sym=0; sym <2*N; sym +=2){

for (int j=0;j<N_test_angles;j++){

reshaped[sym*N_test_angles+j]= ris_Ex [(sym/2)*N_test_angles+j];

115 reshaped [(sym+1)*N_test_angles+j]= ris_Ey [(sym/2)*N_test_angles+j

];

}

}

for (int sym=2* N_avg; sym <(2*N-2* N_avg); sym +=2){

for (int i=0;i<4* N_avg +2;i++){

120 for (int j=0;j<N_test_angles;j++){

sx[(sym/2-N_avg)*N_test_angles+j]+= reshaped [(sym -2* N_avg+i)*

N_test_angles+j];

}

}

for (int j=0;j<N_test_angles;j++){

125 tempx[j]=sx[(sym/2-N_avg)*N_test_angles+j];

}

indbx[(sym/2-N_avg)]=( double) indexofSmallestElement(tempx ,

N_test_angles)+1;

}

}

130 else {

for (int sym=N_avg; sym <(N-N_avg) -1; sym ++){

for (int i=0;i<2* N_avg +2;i++){

for (int j=0;j<N_test_angles;j++){

sx[(sym -N_avg)*N_test_angles+j]+= ris_Ex [(sym -N_avg+i)*

N_test_angles+j];

135 sy[(sym -N_avg)*N_test_angles+j]+= ris_Ey [(sym -N_avg+i)*

N_test_angles+j];

}

}

for (int j=0;j<N_test_angles;j++){

tempx[j]=sx[(sym -N_avg)*N_test_angles+j];

140 tempy[j]=sy[(sym -N_avg)*N_test_angles+j];

}

indbx[(sym -N_avg)]=( double) indexofSmallestElement(tempx ,

N_test_angles)+1;

indby[(sym -N_avg)]=( double) indexofSmallestElement(tempy ,

N_test_angles)+1;

}

145 }

// Setting the outputs

mxSetData(plhs[0], ris_Ex);

mxSetData(plhs[1], ris_Ey);
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150 mxSetData(plhs[2], indbx);

mxSetData(plhs[3], indby);

mxSetM(plhs[0], N_test_angles);

mxSetN(plhs[0],N);

mxSetM(plhs[1], N_test_angles);

155 mxSetN(plhs[1],N);

mxSetM(plhs [2] ,1);

mxSetN(plhs [2],(N-2* N_avg) -1);

mxSetM(plhs [3] ,1);

mxSetN(plhs [3],(N-2* N_avg) -1);

160 }

Like for the Equalizer module only the mex.h library was included, to improve time

performances. The libraries for complex operation could have been included to simplify

the code, but since it is possible to implement the algorithms without them, efficiency

was preferred. To deal with the two possible types of noise distortion filtering, instead

of dealing with string operations which would require the inclusion of string libraries,

a conversion from string to boolean was performed in MATLAB and the flag was then

passed as input parameter to the MEX function.

Since a lot of variables were required to implement the code without the use of external

libraries, a lot of instructions to allocate memory and initialize variables were required.

The following lines shows the call of the MEX function inside the MATLAB script.

% Main cycle of the Carrier Phase Recovery Module after MEX optimization

if strcmpi(input_param.type ,’joint ’)

type_FLAG =1;

else

5 type_FLAG =0;

end

[dx ,dy,indbx ,indby ]= BPS_MEX(Ex_fr ,Ey_fr ,Constellation ,B,Gamma ,N,type_FLAG);

10 if type_FLAG

Theta_est = -unwrap(phi_b(indbx)*4)/4;

Ex_fr = Ex_fr(N+1:end -N-1);

Ey_fr = Ey_fr(N+1:end -N-1);

Ex_cpr = Ex_fr.*exp(-1i*Theta_est);

15 Ey_cpr = Ey_fr.*exp(-1i*Theta_est);

else

Theta_est_x = -unwrap(phi_b(indbx)*4) /4;

Theta_est_y = -unwrap(phi_b(indby)*4) /4;

Ex_fr = Ex_fr (:);

20 Ey_fr = Ey_fr (:);
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Ex_fr = Ex_fr(N+1:end -N-1);

Ey_fr = Ey_fr(N+1:end -N-1);

Ex_cpr = Ex_fr.*exp(-1i*Theta_est_x);

Ey_cpr = Ey_fr.*exp(-1i*Theta_est_y);

25 end

As can be seen the initial instructions convert the field type inside input param into a

boolean variable called type FLAG which is then passed in input at the MEX function.

The outputs of the MEX function are then used to estimate the phase noise which is

then unwrapped and removed from the received symbols. The unwrapping operation is

performed outside the MEX script because there are no inefficient cycles and it does not

influence significantly the run time of the module. Moreover manual implementation of

the unwrap function in the C++ script resulted less efficient than the version offered by

MATLAB.
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Figure 4.7: Time comparison between original script and MEX realized script.
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Figure 4.8: Performances of the CPR module before and after MEX optimization.

Signal length [bit] 215 216 217 218 219 220

MEX script 7.58 7.66 7.72 7.78 7.95 8.08

Table 4.1: Optimization Factors for the Carrier Phase Recovery module

4.3.3 Overall results

The results of optimization, computed with the aid of the MATLAB profiler, can be

found in Figure (4.7). As can be seen this time memory access optimization is not in-

cluded since there were no improvements in the run time.

It is graphically visible that both the original script and the MEX optimized one share

the same limiting behaviour, with a run time growing linearly with respect to the signal

length. This conclusion is confirmed by looking at the Optimization Factors computed

in Table (4.1). Even if not as significant as for the equalizer, as can be seen comparing

Table (3.2) with Table (4.2), MEX optimization for the Carrier Phase Recovery module

has managed to improve significantly the time performances. The reason of this reduced

OF is that most of the operations required to implement the algorithm were performed
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Original Code MEX script

0 7.84

Table 4.2: Average optimization factors for the Carrier Phase Recovery module

using matrix operations, which are extremely efficient in MATLAB from a runtime point

of view. However, since they were inside a cycle, the MEX script still provide large im-

provements.

After optimization, as for the equalizer module, it is important to verify if the per-

formances of the module have changed with respect to the original script. To do so

the same setup used for the equalizer module is recalled and the results are shown in

Figure (4.8). As can be seen after MEX optimization the performances remain are not

worsened, since the BER curves are overlapped.



Chapter 5

Conclusions

5.1 Overview

In the first chapters of this thesis the structure and general behaviour of optical coherent

receivers were analyzed. The schemes used to implement each single block of the digital

demodulator were discussed, with a particular focus in latest proposed and researched

algorithms.

Successively, in Appendix A, MATLAB optimization was introduced and analyzed in

details, showing the significant improvements it can provide to scripts. In particular

both MATLAB code optimization and optimization with MEX scripts were introduced

and examples of their potentialities were shown.

The optimization of the scripts implementing the modules of an optical coherent receiver

was discussed in the Chapters 3 and 4. Chapter 3 introduced the Equalizer module, the

theory of the polarization related impairments it has to correct and the original algo-

rithm implemented to deal with them. Successively it described the optimization process

and discussed the obtained results. Chapter 4 introduced the Carrier Phase Recovery

module, the theory behind phase noise sources and the original algorithm implemented

to attenuate their effects. Successively it described the optimization process and dis-

cussed the optained results.

In both this chapters the optimization process performed allowed for a significant reduc-

tion of the run time of the modules while maintaining the same performances. Quasi real

time analysis of a coherent transmission system is possible thanks to these improvements

in the time efficiency of the algorithms.

68
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5.2 Final analysis of the results

Before optimization it was not possible to run experiments in real time with coherent

optical transmissions implementing 16-QAM or higher order modulations, which are

the ones undergoing strong research to date. The data were transmitted, stored right

after detection and digitalization and analyzed successively offline. Of course there are

significant consequent drawbacks in this setup since, for example, to see the results of

a simple change in a transmission parameter it is necessary to reinitialize the system,

retransmit all the data and reanalyze all the received symbols.

The run time of a complete simulation was burdened in particular by the equalizer and

the CPR modules. Together they accounted for around 1/3rd of the whole simulation

time so, considering that a complete setup includes tens of modules, it is possible to see

why they were the simulation bottleneck.

Thanks to optimization, in particular thanks to the realization of MEX scripts, the run

time of the equalizer module was reduced of around 14 times while the run time of the

CPR one was reduced of around 7 times. The direct consequence of such improvements

is that the overall run time for a simulation is no longer burdened by those two modules,

allowing for quasi real time analysis.

The improvement in the efficiency of the codes implemented in the two modules of the

coherent receiver allowed not only a reduction of the run time for simulations inside the

framework of Robochameleon, but also advantages in real experiments. Moreover, also

transmission systems different from optical ones can benefit from these improvements,

like for example wireless channels.

5.3 Future works

Numerous improvements can be realized to further increase the efficiency of the code

and reduce the run time of the DSPs. A possible way is to convert in MEX scripts all

the cycles of the modules realizing a coherent transmission system in Robochameleon,

while another can be to further optimize the MEX script already realized, reducing the

amount of memory allocated and the overall number of accesses to the memory.

Another thing that must be considered is that optimization will be required continuously

in the future since new and more efficient ideas and models to correct the transmission
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impairments are being developed. Significant efforts are put in this research field and,

for example, during the course of this project new possible ways to implement both

the equalizer and the CPR module were proposed by the Ph.D. students in the Acreo’s

Optical Transmissions group.

5.3.1 Equalizer and Timing Recovery

The timing recovery module try to remove the intrasymbol desynchronization between

the two polarization components and create output signals with a single sample per

symbol. The algorithms implemented to date in coherent optical systems are based on

the Gardener or the Godard one, which are extremely efficient for BPSK modulations,

but requires the reception of very long sequence of symbols to work properly for higher

order modulations. However the effects of a bad timing recovery are directly visible in

the errors computed by the equalizer module.

A newly proposed algorithms try to perform timing recovery together with equalization

using a feedback structure: a sufficiently short sequence of received symbols is used to

perform timing recovery. They are then passed to the lattice filter used to perform

equalization and the corresponding errors are computed. These errors are used to up-

date the equalizer filters coefficients and are then passed to the timing recovery module

which use them to improve the estimation.

The preliminary results of such a scheme show an extreme increase in the performances,

but also an higher run time. Thanks to the optimization of the equalizer module per-

formed in this thesis the time efficiency can be improved but a MEX script, including

the whole feedback scheme, can probably perform even better.

5.3.2 Carrier Phase Recovery

Also for the CPR module various improvements are being tested, in particular to in-

crease the phase noise tolerance. The first change proposed consists in the run of two

consecutive blind phase search algorithms, with the first used to estimate and remove

the offset frequency ωIF and the second used to estimate and remove the randomly

time-varying phase noise. It is evident that the performances of this scheme are higher

than the ones of the algorithm proposed in the Chapter 4, but the run time is doubled.

A different way to implement the CPR module then can use once again a feedback
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scheme where the results of the phase noise estimation are also used to estimate and

remove the offset frequency. This last algorithm however is still under research but it

seems very promising.



Appendix A

Code Optimization in MATLAB

MATLAB R© is a high-level language for scientific and engineering computation devel-

oped by MathWorks R©1 [53]. It is a matrix-based language with built-in graphics and

a vast library of pre-built toolboxes which allow an easy implementation and setup of

algorithms and simulations. To date, according to the MathWorks website, millions

of engineers and scientists worldwide use MATLAB to analyze and design the systems

and products transforming our world. MATLAB is in automobile active safety systems,

interplanetary spacecraft, health monitoring devices, smart power grids, and LTE cel-

lular networks. It is used for machine learning, signal processing, image processing,

computer vision, communications, computational finance, control design, robotics, and

much more.

By its very nature, MATLAB is an interpreted language. The main advantage for the

users is that an interpreted language makes scripts implementation and debug easier,

since it allows for step-by-step analyses of the codes, but it also reduces the performances

from a run time point of view, since interpreted languages are slower than compiled ones

like C or C++. If this drawback becomes critical, due to very heavy and time consuming

simulations or high-speed oriented scripts, it is necessary to invest some time performing

code optimization, removing all possible sources of time waste from the code.

In the following sections code optimization will be thoroughly discussed, starting from

MATLAB code optimization and then moving to MEX files.

1From now on the R© symbols will be omitted to improve readability
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A.1 MATLAB scripts optimization

When MATLAB scripts have to deal with large amount of data or they must simulate

high-speed routines, one of the most critical parameter to evaluate the performances

of the codes is the run time. MATLAB is an interpreted language, which mean that

during execution each line of a script is read, translated into a set of machine language

instructions and executed singularly, without any control on what has happened before

or what will happen after. Differently, compiled languages like C or C++ before the

execution of the script require a tool called compiler to translate and optimize the whole

code into an efficient machine language set of routines and instructions. Only then they

run the program. In the great majority of cases the time performances of a compiled

code are much greater then those of interpreted language.

To improve the efficiency and the performances of the scripts, MATLAB implements,

and eventually allows to define as will be discussed in the MEX files section, interpreted

instructions linked to pre-compiled and extremely optimized routines. In such a way,

even if the whole script will be inevitably slower than its completely compiled version,

the run times difference will not be so great. The problem that remains to be solved is

how to realize MATLAB scripts which time-performances remains limited by only the

intrinsic characteristics of the language and not by improper algorithm implementations.

There are two possible ways to verify the results of optimization or just to check the time

required for running a particular instruction or function. The first uses a very useful

tool provided by MATLAB called Profiler which is executed automatically by running

a script with the Run and Time command. The profiler output is a window with

information about the elapsed time of all the functions used, the number of times they

were called, etc. Unfortunately the profiler cannot be used for continuous simulations

(for example a script that continuously receives data and elaborates them), so in those

particular cases it can be useful to exploit the functions tic and toc which respectively

start and stop a virtual stopwatch based on the internal timer of the computer. By

inserting tic before the lines that must be executed, is it possible to use toc right after

them to obtain the value of the elapsed time. Since all the toc functions refer to the

instant when the tic one was called, it is also possible to use more consecutive toc without

any loss of information.

MATLAB code optimization can be split in two principal procedures: Memory access
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optimization and vectorization. Both these procedures will be analyzed in the following

paragraphs.

A.1.1 Memory access optimization

Memory access optimization in MATLAB consist of three different points:

• Memory allocation;

• Column vectors;

• In-place operations.

The MATLAB language does not require the user to declare the types and sizes of vari-

ables before using them. It is thus possible to increase the size of an array merely by
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writing into a position with index larger than the actual size. This approach is conve-

nient for quick prototyping of code, but each time it is done, MATLAB must allocate

memory for a new larger array and then copy the existing data into it. Scripts that

repeat this procedure in a loop are slow and inefficient. A graphical example of the

effects of memory allocation on the run time is shown in Figure (A.1). Some cautions

must be taken when analyzing run times figures: the absolute values of the run times

carry very little information, since they depend on the hardware of the computer used,

on the instantaneous load of the CPU and on several other local factors, nevertheless it

is meaningful to observe the changes in the behaviour of different curves or, in the case

under exam, the difference between the slopes.

Modern CPUs use a fast cache to reduce the average time taken to access main memory.

Scripts achieves maximum cache efficiency when they traverse monotonically increasing

memory locations and, since MATLAB stores matrix columns in monotonically increas-

ing memory locations, processing data column-wise results in maximum cache efficiency.

The effect of accessing column vector instead of row ones is shown in Figure (A.2). As
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can be seen the time optimization here is not significant as in memory allocation opti-

mization, but nevertheless the improvement is not negligible.

In MATLAB it is easy to inadvertently make copies of variables or data. For a large data

set this operation uses a lot of memory, and the allocation and copying of memory can

itself be time-consuming so, to avoid creating new variables that are modified versions

of the existing ones, is it possible to use in-place operations where the input variables

can be used as the container for the output data. This capability is available with

element-wise operators (such as .*, +), some MATLAB functions (such as sin and sqrt),

and handmade M-functions. To create a function M-file that can be called in-place, the

output argument must match the size and the type of one of the input arguments. The

ability to call functions in-place is available only when the function itself is called from

a function M-file and not from a script. The results of in-place operations against defi-

nition of new variables is shown in Figure (A.3). Once again this kind of optimization

allows to decrease the run time only of a small fraction, but considering also the amount

of memory saved, it is still convenient to perform it.
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A.1.2 Vectorization

According to the MathWorks documentation [54], since MATLAB is optimized for oper-

ations involving matrices and vectors it is possible to define vectorization as the process

of revising loop-based, scalar-oriented code to use MATLAB matrix and vector opera-

tions. Vectorizing the code is worthwhile for several reasons:

• Appearance: Vectorized mathematical code appears more like the mathematical

expressions found in textbooks, making the code easier to understand.

• Less Error Prone: Without loops, vectorized code is often shorter. Fewer lines

of code mean fewer opportunities to introduce programming errors.

• Performance: Vectorized code often runs much faster than the corresponding

code containing loops.
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There are several functions in MATLAB designed to improve the performances of the

code by vectorization, the complete list is available on the online documentation [54], so

the first thing to do while optimizing a script should be to verify if some of them can

be used. To provide an example of the effects of this kind of optimization the result

of a script which compute the sine function of a variable length vector with a cycle or,

after vectorization, with a single matrix operation are shown in Figure (A.4). As can

be seen, even in this extremely trivial situation the efficiency of the code is significantly

increased, thus saving a lot of time.

Unfortunately not all cycles can be vectorized, like cycles which require the outputs of

an earlier iteration to compute the current ones, so other ways must be explored to save

time and increase the efficiency.

A.2 MEX files

As said before, MATLAB allows to define interpreted instructions linked to precompiled

scripts realized in other languages, like C, C++ or Fortran, to allow optimization also for

code fragments where it is not possible to avoid cycles. From now on the thesis will focus

on scripts realized in C++, since it is extremely powerful, well documented and well-

known, which make the scripts easier to modify, eventually, at a later time. Both C and

Fortran are very powerful and old languages, but even if in the MATLAB documentations

it is possible to find all the related instructions, they will not be considered here.

There are two possible ways to create MEX files. The first is to use the C++ coder

application, already built-in in MATLAB, which converts semi-automatically MATLAB

M-functions in MEX scripts, otherwise it is possible to write manually the C++ script

and then compile it into MEX code by using the command mex scriptName.cpp .

The compiled output file depends on the architecture of the CPU of the computer and

on the compiler used. Usually scripts compiled on 32-bit CPU or 64-bit CPU are not

mutually compatibles, so it can be useful to generate two version of the same script to

guarantee a proper behaviour in any situation. The effects of using different compilers

to compile the same script are usually visible only from a performance point of view,

with more complex (and usually licensed and expensive) compilers performing better

than standard ones.
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LAB function or with a MEX function realized with the C++ coder.

A.2.1 MATLAB Coder

The MATLAB coder is a built-in application that allows to create MEX files starting

from MATLAB M-functions [55]. It helps in optimizing the run time of the scripts, but

can also be used to realize standalone executables to prototype algorithms.

MATLAB Coder implements features which help in preparing the MATLAB algorithm

for code generation by analyzing the MATLAB code and proposing data type and sizes

for your inputs. It can be possible to ensure that the algorithm is ready for code

generation by generating a MEX function that wraps the compiled code for execution

back within MATLAB. MATLAB Coder produces a report that identifies any errors

required to be fix so it is possible to iterate between fixing errors and regenerating a

MEX function until everything end correctly. Unfortunately the proposed data type and

sizes for the variables are not always correct or available, so in those cases it is necessary

to manually setup them.

To deal with any possible type of variables of any size, the code generated by the compiler
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Figure A.6: Time required to compute a complex operation with a MATLAB function
or with a MEX function realized with the C++ coder.

includes a huge number of functions and controls. This usually is very inefficient and

reduce significantly the improvements provided by compiling the code. Moreover not all

functions and tools available while programming with the MATLAB language have a

precompiled counterpart in C++ and this usually results very annoying, since it requires

to modify the MATLAB code or to implement manually all the required operations

reducing once again the performances and the efficiency of the script.

A particularly powerful feature of the MATLAB coder is the Embedded Coder which

allows to further optimize code efficiency and customize the generated code. Embedded

Coder generates code for supported embedded processors, on-target rapid prototyping

boards, and microprocessors used in mass production. It extends MATLAB Coder by

providing configuration options and advanced optimizations for fine-grained control of

the generated code’s functions, files, and data. Embedded Coder improves code efficiency

and facilitates integration with legacy code, data types, and calibration parameters used

in production.

An example of the results that is possible to obtain with the MATLAB coder is shown
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in Figure (A.5). The operation implemented in this example is a sinusoidal function

using the value obtained in the previous iteration to compute the actual one. Since

there is no real computational complexity in such an example the improvement is not

so significant, but still it provides a good insight of the potentiality and on the defects

of the coder: to compute with a single general MEX script the run times for a variable

input vector length it was necessary to define manually, in the setup of the coder, the

input vector as unbounded. Since there is no direct translation for unbounded vectors in

C++, the MEX script must include functions to deal with it and this results in a drop

of efficiency. Another example is shown in Figure(A.6) where this time a more complex

operation was performed, with quadratic asymptotic behaviour and more accesses to

memory. This time the increase in efficiency is more significant and graphically explain

why it is convenient to use MEX scripts to optimize code.

A.2.2 Handmade MEX files

MEX files realized with the C++ coder provides an easy way to increase the time

performances of MATLAB scripts in case of non vectorizable cycles. The coder output

files, however, are not properly optimized themselves, due to inefficient but necessary

checks and functions used to guarantee the required generality of the scripts. A possible

solution to remove these inefficiencies is to write manually the C++ scripts.

According to the MathWorks documentation [56] to write a C/C++ script compilable

into a MEX file it is required to have:

• A compiler supported by MATLAB;

• The C/C++ Matrix Library API and the C MEX Library API functions;

• The MEX build script.

To realize the C++ script it is necessary to use a gateway routine, acting as an entry

point for MATLAB, which must be called mexFunction. The function must be of the

type void and his complete signature is:

void mexFunction(int nlhs, mxArray *plhs[ ], int nrhs, const mxArray *prhs[ ]) {

· · ·

}.
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It is possible to notice the presence of 4 input parameters, 2 pointers to arrays and two

integer parameters representing the number of elements of each pointer. The pointer

*plhs[ ] represent the array of output arguments, while *prhs[ ] represent the array

of input arguments. The names of the parameters can not be changed, otherwise the

compiler will return an error.

The arrays used to access input and output parameters are of the type mxArray which

is the fundamental type underlying MATLAB data. To perform operations like reading

or writing into such vectors it is required to use the functions provided by the Matrix

library and the MEX library.

A.2.2.1 Data reading

Before reading or writing into the input or output vectors it is formally suggested to

verify the number of elements in input or output from the function and their type in

order, eventually, to return a proper error message. While these checks may be useful

during debug or in the initial stages of implementation, in an operative context focused

on optimization they may become useless: it is very common to realize ad hoc scripts

which execute an extremely specific operation with well know and unchanging types of

input and output data.

To actually read data from the input vector *prhs[ ] different functions must be used

depending on the type of the input data. For accessing a scalar input in position i

mxGetScalar(prhs[i]) can be used, while for matrices mxGetPr(prhs[i]) and

mxGetPi(prhs[i]) return respectively pointers to real and imaginary parts of the input

in position i. To retrieve information about the size of the input it is possible to exploit

the function mxGetDimensions(prhs[i]) which return an array of dimensions, or the

functions mxGetN(prhs[i]) and mxGetM(prhs[i]) to obtain the scalars representing the

number of rows and cols. Since the return type of these functions is size t a cast is

eventually necessary to convert them to integer precision.

A.2.2.2 Memory allocation and data writing

It is not possible to directly insert a variable inside the output vector *plhs[ ] because

MEX scripts require the allocation of memory beforehand to avoid segmentation faults.
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Figure A.7: Memory used by MATLAB for scripts with and without memory leaks

The proper procedure to link output variables is to first create a memory slot of appro-

priate dimension in the position i of the output vector with the instruction mxCreate-

DoubleMatrix(nRows, nCols, mxType) where nRows and nCols represent the dimension

of the output slot that must be allocated and mxType specify the type of data (mxREAL

or mxCOMPLEX ) that must be stored inside. Once the memory has been allocated, it

is possible to obtain pointers to the corresponding real and eventually imaginary part

with the instructions out Re=mxGetPr(plhs[i]) and out Im=mxGetPi(plhs[i]). Any kind

of modifications can then be applied to the contents of the two pointers and finally it is

possible to use the instructions mxSetPr(plhs[i],out Re) and mxSetPi(plhs[i],out Im) to

make the data available to MATLAB at the end of the MEX function’s run.

A.2.2.3 Principal issues

While writing C++ scripts compilable into MEX files it is possible to incur in principally

two hard to troubleshoot issues:
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LAB function, with a MEX function realized with the C++ coder and a MEX function

realized from an handmade C++ script.

• Segmentation violations;

• Memory Leaks.

Segmentation violation is an annoying issue that happens when the MEX file attempt to

access protected, read-only, or unallocated memory. These types of programming errors

can be difficult to track down and solve since segmentation violations do not always

occur at the same point as the logical errors that cause them. If a program writes data

to an unintended section of memory, an error might not occur until the program reads

and interprets the corrupted data. Therefore, a segmentation violation can occur after

the MEX file finishes executing.

When a MEX file returns control to MATLAB it returns the results of its computations

in the output vector *plhs[ ]. MATLAB automatically destroys any mxArray created

by the MEX file that is not in the output vector and moreover it frees any memory that

was allocated in the MEX file using the mxCalloc, mxMalloc, or mxRealloc functions. In
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general, MathWorks recommends to realize MEX-file functions that destroy their own

temporary arrays and free their own dynamically allocated memory [57] since it is more

efficient to perform this cleanup in the source MEX-file than to rely on the automatic

mechanism.

It is possible to define memory leaks as the situations where some memory is allocated by

a MEX script and never freed afterwards. Consecutive iterations of such script result in

a continuous increase of the memory used by MATLAB, as can be seen in Figure (A.7),

and while it is easy to identify the presence of memory leaks, to track down the causes

may prove difficult.

A.2.2.4 Optimization results

To graphically understand why it is useful to write manually C++ script compilable

into MEX file instead of using the C++ coder, it is possible to realize manually the
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C++ scripts for the same operations performed in section A.2.1 and to compare the

resulting run times. The Figures (A.8) and (A.9) reports the same data as Figures

(A.5) and (A.6) including the run time of the handmade MEX files. As can be seen

in both cases there are significant improvements, especially for the simpler operation

case, Figure (A.8), where the absence of useless checks and functions allows a strong

increase in efficiency. For the more complex operation, Figure (A.9, the improvement in

efficiency is more marginal since the run times for the MEX routines is dominated by

the computational complexity of the function which is the same for both cases.
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