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Summary

The focus of this work is discussing the realization of space based experiments
testing quantum mechanics, specifically quantum optics. Firstly, the theoretical
aspects of quantum optics relevant to the dissertation will be laid out, particu-
larly the physics behind Mach-Zehnder interferometers with input states given
by pulsed lasers. The state of the art of the experimental advancement on the
topic of delayed-choice interferometric measurements with photons will be pre-
sented, along with the theoretical framework at play. The reasons why it is
relevant to realize space based versions of such experiments will be discussed,
and an example of an experiment measuring interference fringes of an inter-
ferometer composed by an earthbound and satellite part will be given. The
presentation of said experiment will be mainly focused on a relativistic effect
due to the relative speed between Earth and the satellite. The main exper-
imental work which this thesis is based on is the experimental realization of
the earthbound part of another possible interferometric experiment that can be
realized with methods similar to the one previously discussed. The full Earth-
satellite realization of this experimental scheme could set a new record on the
distance to which delayed-choice schemes have been experimentally realized.
The last chapter will be dedicated to the discussion of general relativistic effects
on Earth-satellite experiments, in the case of two different setups. One of those
is essentially the ground-space implementation of the interferometer realized in
the laboratory, while the other represents a different possibility that could in
principle measure gravitational redshift to single photons to greater extent.



Sommario

Il filo conduttore di questo lavoro & la discussione della realizzazione di es-
perimenti di meccanica quantistica, nello specifico ottica quantistica, basati su
distanze fornite da satelliti. Inizialmente verranno presentati gli aspetti teorici
dell’ottica quantistica, in particolare la fisica degli interferometri di tipo Mach-
Zehnder nel caso in cui gli stati quantistici iniziali siano dati da laser impulsati.
Lo stato dell’arte sperimentale per quello che riguarda misure interferometriche
di tipo delayed-choice verra presentato, insieme ai concetti teorici necessari per
la discussione. Si discutera poi la ragione per la quale realizzare esperimenti di
questo tipo e rilevante dal punto di vista sperimentale, e verra dato un esem-
pio di una misura di tipo interferometrico realizzata tramite un interferometro
composto da una parte a terra e una su satellite. La parte sperimentale prin-
cipale di questo lavoro consiste nella realizzazione in laboratorio di un interfer-
ometro che potrebbe andare a costutuire la parte terrestre di un esperimento
di tipo delayed-choice, possibilimente realizzabile tramite metodi simili a quelli
dell’esperimento discusso precedentemente. La realizzazione Terra-satellite di
tale esperimento costituirebbe un record di distanza per misure di tipo delayed-
choice. L’ultimo capitolo & dedicato alla discussione di effetti gravitazionali che
potrebbero influenzare misure interferometriche Terra-spazio, per due specifici
schemi sperimentali. Il primo ¢ essenzialmente la realizzazione Terra-spazio
dell’interferometro realizzato in laboratorio in questo lavoro, mentre il secondo
¢ uno schema che potrebbe in principio misurare ad un ordine di grandezza
superiore il redshift gravitazionale su singolo fotone.



1 Basic review of quantum optics

1.1 Encoding information with photons

The most basic example of classical unit of information is the bit, which can take
only two values. Bits can be represented by any double valued set, depending
on the context: 1/0, true/false, on/off, etc. The most straightforward notation
is arguably the set {0, 1}, since in this case it is particularly obvious what the
outcome of simple binary operations between bits is (e.g. multiplication). Any
2-state physical system can be used as an implementation of a bit. Needless
to say, persistent multi-bit systems, along with the possibility of performing
automated operations on them, is what brought about modern computing.

The quantum analougous of the bit is the qubit, representing the simplest
example of unit of quantum information. Physical implementations of qubits are
quantum 2-degrees of freedom systems, which obey a set of rules very different
from classical ones. The qubit is fundamentally different from the classical case
because of the superposition principle of quantum states. qubits are typically
represented in Dirac’s notation, with the 2 orthonormal base vectors labeled as
|0) and |1). Quantum states lie on complex Hilbert spaces modulo global phase
and normalization; as a result, the smallest non-trivial Hilbert space that can
be used to encode quantum information must be an infinite space of dimension
2, rather than just the discrete space with only two values for the classical bit.
There is an infinity of states that are physically acceptable indeed, the states
spanned by the base vectors. A two dimensional Hilbert space can be physically
thought of —and physically realized— in many different ways, for example with
two spin % particles, or the polarization of two photons. A single qubit is given
in general by the superposition of the two base states [1)) = «a|0) + 8]1), where
the coefficients are complex numbers, and the state 1) is normalized so that
lal® + ||8]*> = 1. Furthermore, multiplication by a global phase is irrelevant,
so two qubits that differ by a global phase are physically equivalent because
they give rise to the same probabilities. The probability that a measurement
in the {|0),|1)} base reveals the system to be in either one of the base states
is respectively HaZH for |0) and HBQH for |1). Right after the measurement the
state will be either |0) or |1), according to the the projection axiom of Quantum
Mechanics.

A geometrical representation of the 1-qubit pure state space is the so-called
Bloch sphere: because any two-level pure quantum state can be parametrized
as

) = cos0/20) + e’ sinf/2 1) (1)

with ¢ € [0,2x],0 € [0, 7], it is natural to use the vector

sin @ cos ¢
sin 6 sin ¢ (2)
cosf

to represent all the possibile states of a qubit. For example, we can label
three orthonormal bases borriwing the notation from quantum optics, where it
is customary to set



Table 1: the most common states represented with Jones notation
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the horizontal (H) and vertical (V) polarization states are the two orthog-
onal states that we previously labeled |0) and |1), and the qubit now has a
clear physical meaning as the polarization of a photon. The Bloch vector spans
a sphere in 3 dimensions with unit radius, where the orthonormal vectors be-
longing to the three standard bases representing linearly (horizontal/vertical,
and diagonal) and circularly polarized base states {|H),|V)}, {|+),|—)} and
{|L),|R)} lie along the three different axes x,y,z. With this representation,
antipodal points represent orthogonal vectors.

1.2 Jones representation for states and optical elements

Since the Hilbert state we are dealing with is 2-dimensional, instead of the bra-
ket notation one can use the standard vector notation defined in a two dimen-
sional complex space. This is particularly useful because various manipulations
on qubits can then be represented by 2 by 2 matrices, and many computations
are completely analogous to the classical case of polarized light. This is called
the Jones matrix representation [22]. In this section we will list some of the
more useful optical elements and their description with this formalism, along
with their action on some polarization states as an example. Later on we will
discuss more implementations of the quantum bit on photons that are not based
on polarization and see how some other optical elements act on these different
degrees of freedom that can be used to encode a qubit. Since Jones represen-
tation is purely formal, the methods developed can be extended to the latter
cases.

1.2.1 Linear Polarizer

A linear polarizer is used to prepare a state with specific linear polarization
defined by the optical axis of the polarizer. Upon crossing the polarizer, the
photons’ polarization will be parallel to the optical axis. So, for example, when



the axis lies along the horizontal plane, then the matrix associated with the
polarizer will be a matrix that always outputs linearly polarized states

MPH:(}) 8) (5)

so that the output state after the application of the polarizer will be hori-
zontally polarized regardless of the input state

Mpy [¢) = |H) (6)

Similarly, a polarizer with optical axis along the vertical polarization axis is

associated with the matrix
0 0
MPV = < 0 1 ) (7)

thus

Mp, [¢) = V) (8)

Typically, a linear polarizer can be rotated at will, so that any linearly
polarized state can be created. The matrix associated with a linear polarizer
rotated by an arbitrary angle x with respect to the horizontal axis is

2 .

COS COS Y SIn

Mp, = ( X X ) (9)
cos x sin x sin”

indeed, taking a generic linear polarization vector (3 ) , and applying the
polarizer matrix, we get

Mp, ( v ) = (zcosx + ysin ) ( cos X ) (10)

Y sin y

which is always parallel to the polarization axis of the polarizer.

1.2.2 Waveplates

Waveplates are slices of birifrangent material constructed in such a way that
the amount of birifrangence allows to accomplish a certain manipulation on
the relative phase of the photons’ polarization state. Practical uses are mainly
rotation of the polarization axis and linear/circular conversion. They have a
fast and a slow axis, perpendicular to each other and to the surface of the
plate. When light travels perpendicularly through the plate, the polarization
component parallel to the slow axis travels at slower phase velocity than its
perpendicular component (which in turn is parallel to the fast axis), inducing a
relative phase between the polarization components. Two very useful waveplates
are the half-wave plate and the quarter-wave plate. The former introduces a 7
phase, while the latter introduces a 7/2 phase.



1.2.3 Half-wave plate (HWP)

The Jones matrix of a A/2-wave plate with the fast axis oriented at angle 6 with
respect to the z axis is

cos20  sin260
M)‘/Q(e) - < sin20 — cos 20 ) (11)

Which is a rotation matrix of an angle 26. Suppose light has a linear po-
larization vector at an angle a with respect to the xz-axis. After crossing the
waveplate, the new vector will be at a the new angle 20 — . The \/2 waveplate
flips linear polarizations to the other side of the optical axis. For example, a
typical procedure is to keep the axis at a w/4 angle with respect to the incident
polarization, resulting in a final polarization state which is orthogonal to the
initial one.

1.2.4 Quarter-wave plate (QW P)

For a A/4 wave plate with fast axis at an angle 6 with respect to the z-axis we
have the following matrix
cos?f +isin?@ (1 —4)sinfcosh
M = 12
»/a(0) ( (1—i)sinfcosf sin?6 +icos?h (12)

Quarter-wave plates are usually employed to turn linear polarization into
circular, and vice-versa. This is accomplished by placing the fast axis at a 7/4
angle with respect to the polarization axis of impinging linearly polarized light.
For example, if the incident light is diagonally polarized in the |+) state, and
the plate is parallel to the z-axis, the explicit computation yields

(5D

which is the circularly polarized state |L).

1.3 Path-encoding

Another way to realize a qubit with photons is the so called path-qubit. Instead
of using polarization to encode information, one can use the photon’s path inside
a quantum system. For example, when a photon can only travel through two
different routes inside a system —path a and path b—, the qubit can be still
represented as a state in a 2-dimensional Hilbert space

¢ =ala)+5]b) (14)

This is obviously just a relabeling of the orthonormal base {|0), |1)}, in order
make it clear which physical implementation we are considering. The simplest
optical elements that physically manipulate the spatial modes of a photon are
phase shifters and beam splitters.

10



1.3.1 Beam splitter (BS)

A beam splitter can be thought of as an element with two input ports and two
output ports (figure 1). The ideal BS is lossless, i.e. no photons are absorbed
inside it. A very simple beam splitter is a half-silvered mirror placed at a 45
degrees angle with incident photons, so that they can be either transmitted
(photons keeps travelling in the same direction), or reflected at a 90 degrees
angle (the photons’ path is changed).

Figure 1: Schematic representation of the action of a beam splitter. Input modes
are labeled by a and b, while output modes are labeled by a’ and ¥'.

Regardless of the specific implementation, as long as there are 2 input and
2 output ports, the input photons can be associated to the paths a and b, and
similarly o’ and b’ will label the output spatial modes. Using the column vector
representation, the action of the beam splitter on an input state is a matrix
M that maps input vectors into output vectors. We associate (§) to a and d’,
and (9) to b and b’. Naming the matrix elements with the following scheme
makes sense from a physical point of view (r stands for reflection and ¢ for

transmission):
t o
(r ) (15)

indeed when the input photon comes from a, the output is the vector rep-
resenting a transmission and reflection rate (%) and similarly for the photon
crossing the BS from the other port we get (7, ). Note that the rates are com-
plex, because the space we are dealing with is complex and so must be any
general operator defined on it. If the beam splitter behaves the same way re-
gardless of the port (symmetric beam splitter), the trasmission and reflection

rates have to be the same, hence the first simplification.

w1 )



In order to preserve probability this matrix must be unitary: MMT = I.
Solving the resulting set of equations yields

_in [ cosf isin@

M=e <isin0 cos 6 ) (17)

We can drop the multiplying phase since it affect states by an overall phase,

which is irrelevant. In the 50:50 special case |r| = ||, the matrix associated
with a 50:50 symmetric beam splitter is given by

500

1.4 Mach-Zehnder interferometer

In this section an explicit example of quantum mechanical complementarity is
analyzed: the Mach-Zehnder interferometers (MZI). MZIs can be used to ob-
serve the wave and particle like behavior of photons, as a convenient alternative
to the famous double slit experiment. The following calculation shows how a
single photon interacts with itself, allowing for interference fringes to appear. A
MZI is represented in figure 2.

The initial state is given by a single photon that enters the interferometer
through either one of the 2 ports of the first BS, hence the initial state will be
either |a) or |b) — and not a general superposition. Here we will choose port a.
After the first BS, the bottom arm is labeled with a, and the top one is labeled
with b. A phase shifter is placed on the top path, introducing a relative phase
 between the two states, and the two paths are recombined by a last BS. The
unitary operator associated with the interferometer must be obtained with a
combination of the two matrices describing the BS (B) and the phase shifter
(P)

-
P=(y ) (20)

The quantum mechanical realization of the whole interferometer is then the
operator BPB. Applying this operator to the initial state |a) = ({) we get the

final state
1/1 i\ (1 0 1 i\ (1) _ . e [cos¥
2 (z 1) (0 ew> (z 1) (o) e <sm§> (21)

The detectors placed after the interferometer observe photons with the prob-
abilities

1{]a)||* = cos®
1([B)|* = sin®

(22)

CIENNIES

(23)

i.e. interference fringes are observed by varying continuously the phase .
The MZI (specifically the parameter ¢) can be adjusted so that the measured

12
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Figure 2: A Mach-Zehnder interferometer with a phase shifter on one of the two
arms.

probabilities are

1{la)* =0 (24)
I(wl6)]* = 1 (25)

Which corresponds to the idealized case where the length difference between
the two arms is identical (or that the phase introduced is an integer multiple
of 2m). Interference of light is usually thought of as arising from the wave-like
behavior of photons.

Particle behavior can e recovered with a simple modification to the setup,
that is, the second beam splitter is removed. In this case the probabilities must
be computed using the operator BP, yielding

Al o 2)6)-El) e

with probabilities % and % In this instance a somewhat naive reasoning
applies: whenever the top detector clicks, it must mean that the photon, as a
particle, has been transmitted by the BS, while a click on the other detector
corresponds to a reflection at the BS. By placing or removing the second beam
splitter one can choose whether to observe interference (wave-like behavior) or

to know which path the photon has taken (particle-like behavior).

13



1.5 Time-bin encoding

The last physical implementation of the qubit that will be listed here is time-bin
encoding. If Mach-Zehnder type of interferometer has two arms with different
length, the photon will not take the same time to travel through the arms.
The photons exit the interferometer on a superposition of states with either
early of late travelling time. Measuring the time of arrival at the detector one
understands which path the photon has covered. Once again we adapt the
notation according to the physical implementation of the system, writing S for
short and L for long

¢ =alS)+BIL) (27)

where the usual rules apply to this qubit. The problem of how to practically
implement operators on this type of states will be a physical one, much like
the case where the matrix for the beam splitter was derived. Later on a more
detailed, less idealized description of time-bin qubits will be presented, because
they play a crucial role in this work.

1.6 Multiple degrees of freedom

Some optical elements can act on more that one degree of freedom. For example,
a polarizing beam splitter (PBS) is a prism that separates a light beam in two
different spatial modes, typically two perpendicular rays exiting the PBS, with
defined polarizations. Such a device transmits the horizontal component of the
polarization towards the spatial mode labeled a’, and reflects the vertical one
towards the perpendicular direction &’. As a result, a normalized input state
coming from port a [¢) = a|a) |H) + f]a) |V) will be transformed by the PBS
as

Mpps |¢) = aMpsr|a) |H) + BMps,rla) V) = ald') |H) +i8 V') [V) (28)

where Mpg 1 is the operator associated to a beam splitter with » = 0 and
t = 1, that is, a beam splitter that only transmits, whereas Mpg g is the operator
representing an all-reflecting beam splitter. This is an example of manipulation
of both the polarization and the spatial modes of light at the same time.

1.7 Basic principles of lasers

Lasers are used as a standard photon source for any of the experiments that are
going to be discussed during this work, and are of fundamental importance for
quantum optics. A LASER (acronym: light amplification by stimulated light
emission) is a coherent and focused photon beam. The first laser was built in
1960 by Theodore H. Maiman at Hughes Laboratories, borrowing the theoretical
framework from Charles Hard Townes and Arthur Leonard Schawlow. In this
chapter we briefly sketch the base mechanism at play in laser theory.

The primary elements of a laser are the gain medium, which is where the
light amplification occurs, and two mirrors called the output coupler and high
reflector. The output coupler is partially reflective, and it is where the beam will
come out of if certain conditions are satisfied. These two reflectors make sure

14



that light bounces back and forth between them, passing each time through the
gain medium which amplifies the light every time. Amplification is quantified
by the gain coefficient v(w) defined by (the following discussion is based on [12])

i’
2 ) (29)
with z direction of propagation, w angular frequency, and I optical inten-
sity. A laser will work as long as amplification in the gain medium is sufficient
to balance out the losses accumulated during the round a round trip. The
gain medium is a population of atoms with different excitation states, so that
absorption, spontaneous emission or stimulated emission occur. This kind of
phoenomenology can be treated with the use of Einstein coefficients, which as-
signs different rates to different atomic transitions. For example, in a two-level
population, if an atomic transition occurs between an excited level with energy
F5 and the ground state with energy F4, a photon is emitted with angular
frequency w = EZgEl. This process is called spontaneous emission, and the
emission rate Ag; (with obvious meaning of the subscript) will govern the rate
of change over time of the number of atoms that populate the second level No
with the following relation

% = —A21N2 (30)
While the number of the atoms at energy level 1 is not affected by sponta-
neous emission since they are at the ground state. The absorption process, on
the other hand, is not spontaneous: if one wants to quantify absorption with a
constant rate, as in B{, for atoms that are excited from level 1 to level 2, an
energy density u(w) must be included in the treatment. The argument of the
energy density is w bacause atoms are excited only if the energy is exactly hw.
The rate of absorption of atoms populating the first excitation level, with this
definitions, is

dNy
dt
There is a last process that occurs when considering this type of system:
stimulated emission. In stimulated emission, an incoming photon triggers both
downward emission and upwards absorption. This type of mechanism also must
depend on the energy density. The corresponding coefficient is Bg] and the rate
equation is

= —BY, Nju(w) (31)

dN,

dt
A purely quantum computation shows that, for stimulated emission, the
emitted photons are in phase with the incoming photons that triggered the tran-
sition in the first place. Note that Einstein’s coefficients are not independent.
Einstein found the relation between them by assuming thermal equilibrium,
thus black body radiation is assumed for the energy density u(w), and the rate

— —B§ Nau(w) (32)

of change of the population numbers is constant dé\th = 0. The number ratio is
given by the Boltzmann’s law
Ny g2 __ne
— = ==¢ BT 33
N o (33)

15



while the energy density at angular frequency w is

hw3 1

ulw) = Tea

(34)

where T is the temperature, kg the Boltzmann’s constant, and g; is the
degeneracy of level . For 30, 31 and 32 to hold for all temperatures, the
following relations between Einstein’s coefficients must hold:

91B1, = 92B3) (35)
th

Even though the last two equation were obtained with the assumption of
thermal equilibrium, they are actually true in general, since it can be shown
that the coefficients are intrinsic proprerties of the atom, rather than just global
properties of an ensemble at thermal equilibrium. As far as lasers are concerned,
in order for the gain medium to amplify we need that

B$ Nau(w) > BYhNyu(w) (37)

meaning that the stimulated emission rate is greater than the absorption
rate. The gain medium then increases the number of propagating photons at
each passage, resulting in amplification of the beam. Substituting the relation
between the coefficients,

Ny > gﬁ]\ﬁ (38)
9

But at thermal equilibrium 33 must be satisfied, making it impossibile for
this last relation to hold. A laser must therefore be operated at non-thermal
equilibrium conditions, usually achieved by means of externally injecting en-
ergy into the system. These conditions are called population inversion. The
population-inversion density is defined as

AN =N, — 2N, (39)

It can be shown that under a population inversion AN, the gain is given by

)\2
© 4n2t

with A vacuum wavelength, n refractive index of the gain medium, 7 = A2—11
is radiative lifetime of the upper level Fs, and F(w) the spectral amplitude of
the wavefunction. The spectral amplitude will be among the main conceptual
points of the next section; for now we just point out that F(w) is a normal-
ized distribution describing the real shape of the wavepacket as opposed to the
idealized version of a photon having perfectly defined energy Aw. A positive in-
version represents a system where the number of excited atoms is greater than
the number of atoms at the ground state. The last relation, coupled with 29,
shows that for positive population inversions the beam is amplified, while nega-
tive AN results in attenuation. Positive AN cannot be obtained with a simple

5 ANF(w) (40)
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two-level system, so lasers are always based off a gain medium with more than
two energy levels. On a 4 level system, where Fy < Ey < E3 < E4 atoms are
pumped from the ground state to level 4. These states quickly decay to level 3,
so that a population inversion beween levels 2 and 3 is created. The spontaneous
decay Ey — E; must be sufficiently fast so as to prevent atoms accumulating at
level 2, which would destroy the population inversion. Atoms can be pumped
either optically, (for example with a flash lamp or another laser), or electrically.

The population inversion is proportional to the pumping rate R which is in
turn proportional to the power of the energy source used to pump the laser.
For small R, the gain increases linearly with it. When the pumping rate is high
enough, the laser threshold is reached, that is, the gain is enough to actually
output laser light out of the output reflector. This is also where population
inversion does not increase anymore with the the pumping ratio. This threshold
gain Ryp is the minimum gain level required for the laser to operate, and is
determined by factors such as length of the gain medium, reflection rates of the
two mirrors, and losses due to scattering and absorption inside the cavity. Once
R > Run, all power is converted to intensity of the output laser light.

1.7.1 Laser modes

Laser beams are a great example of directional light. The divergence of a laser
beam is quantified in terms of the transverse mode structure. Transverse modes
are distinguished by the order of the Hermite polynomials which they depend on.
The electromagnetic field associated with a cross section of a laser propagating
on the z axis (the propagation direction is parallel to the cavity axis), is

Emn :Eon(\/x/w)Hn(\/y/w)efm21:r2y2 (41)

where the integers m and n label different order Hermite polynomials. For
m,n = 0 the multiplying factors Hy are simply given by the constant 1, and the
transverse shape of the beam (g is a 2-dimensional gaussian centered around
(z,y) = 0. This is the familiar shape of “normal” lasers as commonly seen in the
real world, and it is the mode with smallest divergence of all. The parameter w
describes the width of beam, and is called beam spot size. In general, the beam
is a superposition of an arbitrary number of such modes, which all contribute
to the shape of the cross section of the ray of light.

The longitudinal mode structure of the beam is linked to the description of
the cavity as a one-dimensional system: two mirrors placed in front of each
other, with electromagnetic field oscillating strictly on the z axis. The electrical
field is zero on the two reflectors, and the field inside the cavity is therefore a
standing wave, where

e

Winode = l——— 42

e NeavLcav ( )

represents the harmonics allowed inside the cavities, with [ integer, m¢q.

refractive index of the cavity and L4, length of the cavity. The separation
between two modes is at least

mc
AWmode T — (43)

ncav LCU.’U
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These separations as well as the spectral amplitude of the excitation energies
of the atoms inside the cavity determine the spectrum of emission of the laser.
If the width of the spectral amplitude of the cavity is smaller than the first
harmonic, the laser will only output one mode. On the other hand, a broad
frequency profile might allow it for some of the modes to be within the spectrum
of the cavity, as often is the case. This does not necessarily mean that every
resonating mode will actually add up to the output laser beam, because these
oscillations still have to make it to the gain threshold: not every mode can
trigger a gain value high enough to support lasing. When many modes compose
the output light, we have a multi-mode laser, that needs to be supplied enough
power to ensure that all the modes that fall within the spectral amplitude are
above the laser threshold. A laser is single mode otherwise. Single mode can be
obtained, for example, by introducing a frequency selective loss inside the cavity.
In a multi mode laser, the relative optical phases between the modes are random.
When different modes have a fixed phase difference, the laser is said to be mode
locked. In a laser that is not phase locked, every longitudinal mode oscillates
independently. Interference effects happen thanks to phase difference, but they
are averaged out since these are random. As a result the cavity acts as many
different lasers emitting light at slightly different frequencies. When all modes
operate with a phase that has a definite relationship with every other mode,
the output is rather different. This can be seen by analyzing the output from
a temporal point of view via Fourier transform. In short, the fixed relationship
between the modes allows for the light in the cavity to be modeled as a succession
of single pulses that are emitted every time the output reflector is hit. Since
the travel time in the cavity i8 2.4y Leav /¢, laser light will be a regular train
of pulses separated in time. Mode-locking is the only way to obtain very short
pulse duration, in the order of picoseconds, or even femtoseconds.

1.8 Brief review of second quantization

The formalism adopted up until now is very useful for developing a basic un-
derstanding of idealized interferometers. However, the second quantization for-
malism is much more useful to deal with larger Hilbert spaces and non idealized
models of photons, as in the case of laser pulses. Here we briefly introduce a
more complete quantum description of the electromagnetic field and see how
this is useful to better describe laser light and interferometers.

The potential vector of a polarized monochromatic wave is classically given
by

A(r,t) = sﬁaﬁ(t)eik'r + s*ﬁa*ﬁ(t)efik'r (44)

Where a’s time dependence from ¢ is simply a(t) = ae~**, a being a time in-
dependent complex coefficient, w the angular frequency and k is the wave vector,
and the dispersion relation for light in vacuum holds: w = ¢|k]| (¢ is the speed
of light). The indices of the polarization vectors are chosen p = 41, labeling
left and right handed polarization ! = f%(er +iey) and 7! = - (e, —iey),
where x and y refer to the polarization vectors in cartesian coordinates.

The expression above represents the vector potential associated to a single
mode of a monochromatic electromagnetic field. The whole field is retrieved

either summing or integrating over the wave vectors k, and on the two polar-
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izations. When only considering a single mode, the following notation can be
used

A(r,t) = a(t)e ®Te 4 c.c. (45)

where c.c. is the complex conjugate. One can rescale the fourier coefficients
a to get the classical Hamiltonian associated with this vector potential in more
convenient units

1
H= Ehw(a*a—I—aa*) (46)

This is a classical harmonic oscillator. We quantize it by promoting the clas-
sical amplitudes a to operators satisfying the following commutation relations

[a,a’] =1 (47)
[a,a] =0 (48)
[aT,aT} =0 (49)

The Hamiltionian for the quantum harmonic oscillator is

H = hw(a'a +1/2) (50)

with orthonormal eigenstates |n) and eigenvalues F,, = (hw(n + 1/2)). The
normalized eigenstates are generated by means of operating with the a! operator
on the normalized vacuum state |0)

my = @ oy (51)
V!

This is because the eigenvectors satisfy

aln) = viln - 1) (52)
a'ln)y =vVn+1|n+1) (53)

hence their name annihilation and creation operators. Acting on a state
with a creation operator “creates” a photon by changing the state from n to
n+ 1 photons, as opposed to the annihilation operator (a) that “annihilates” a
photon.

The usual way to label a mode is by polarization and wave vector. However,
for the example of the beam splitter, one can label the different modes based
on spatial information. Let us generalize the beam splitter case to a generic
object that we will call “linear multiport” [36] that has N input modes and N
output modes. A port is not necessarily a different physical path: as long as a
mode can be distinguished from the others by any physical property (e.g. energy,
polarization, entry/exit time etc.), we can associate a creation/annihilation type
of operator. We use a; for input modes, and b; for output modes. States with
multiple modes and number of photons are |n; ...n;...ny), and define a space
that is called Fock space. Linear optics deals with linear multiports, meaning
that the outputs are a linear transformation of the inputs given by a matrix S;;
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N
bi = ZSijaj (54)
j=1
Or, using vector notation,

b = Sa (55)

If we want the total photon number to be conserved by the action of the
multiport, S must be unitary; indeed

afa=b'b=als"Sa (56)

implying
StS =1 (57)

Here we used the fact that the operator afa gives the total number of photons
on a generic state. The commutation relations for a set of modes must reflect
the fact that the modes are independent, so that a; and b; operators must satisfy

[ai, a” = 0;j (58)

all the other possibile independent commutators between these operators
being equal to zero. One can verify with simple algebra that this set of equations,
combined with 54 and the unitariety of S, implies

[bi,bﬂ _y (60)

and 0 for all other independent cases.

So far we have developed a description of the multiport in the so called
Heisenberg picture. This framework is already useful to calculate the mean
value of some observables, such as the number operator. Let us consider the
example of the 50:50 symmetric beam splitter derived before with 2 input and 2
output ports. We already have the matrix operator associated with it. Suppose
that we are interested in the mean value of the output photons on the second
port when the state of one of the input ports, say, input port number 1, is |n),
while at the other port the state is |m). The mean value we are looking for is

(nm|blby [nm) (62)

Using 54, and the commutation rules between the operators, we get
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(nm] (Stia] + Sipab)(S1iar + Si2as) [nm) = (63)

= (nm| S1187,alay + S12855akas |nm) = (64)
% (nm| alay +i(—i)alay |nm) = (65)

% (nm| alay + abas [nm) = (66)

= (67)

(68)

where products between orthogonal states have been omitted. A completely
analogous computation yields the same result for (nm| b;bg |nm). Indeed total
photon number is conserved by the multiport, as expected.

On the other hand, the Heisenberg picture does not provide a simple way to
compute probabilities, for example the probability to measure a given number of
photons in a given output mode. Indeed in this picture the states are fixed, and
the operators evolve according to 54. We will need to translate this formalism
to the Schroedinger picture, that is, operators are fixed and states evolve. As
soon as we know how to compute the evolution of a state, then the transition
probabilities are computed via

Passt = [(@gin|tn)|? (69)

where [¢7;,) and |i)p) are the two states we are interested in. This quantity
represents the probability that the final state is found to be |¢£;5,), given that the
initial state, before crossing the multiport, is |t,). |¢3) is the state after crossing
the multiport. In the Schroedinger picture states are not constant. Whenever a
state undergoes an evolution (for example the photon passes through an optical
element) we must compute the resulting state via the time evolution operator

[0) = U |tha) (70)

with U unitary operator that provides the evolution of states in the Schrodinger
picture. In quantum mechanics, switching between different pictures is a sym-
metry (i.e. probabilities are conserved) since adopting a different formal de-
scription of a system cannot possibly affect physics. In the case we are dealing
with, the states of the Heisenberg picture are exactly the initial states of the
multiport |1,). Mean values for a generic operators on a given state |iy) are
computed via

(A)y, = (] Altw) = (| UTAU |ta) (71)

where the last equation is the mean value of the operator UTAU on the
Heisenberg states [1,). This gives us the transformation law for states and
operators when changing from the two pictures

Apg =UTAgU (72)
W) = U [vs) (73)

21



Because we can build up all states by means of creation and annihilation
operators, it is natural to see how the transformation law 54 applies to these
operators in the new picture.

N

a; = b; = ZSijaj = UTQZU (74)
i=1
N

al = bl = ZSfja;r- =Utdlu (75)
i=1

Let us consider the simple case where we evolve a single mode state with an
arbitrary number of photons n on the I-th mode, and zero elsewhere. Applying
the evolution operator to 51,

(af)"
[Yo) = U [a) = Ulm) =U o 10) (76)
multiplying the identity UTU before the ket
(a])™
[y) = U—=U"U |0) (77)

vV nl!

Since the multiport is lossles, the application of the evolution operator to
the vacuum state cannot create photons. In general, U |0) = e'*|0). This is a
global phase that will not interfere with the probability calculations, so it can
be omitted

Tyng i ny
jwn) =g jgy - W™

vV nl! vV nl!

to find out the inverse transformation law Ua'UT, we first multiply 75 by Sy

and sum over ¢, use the fact that S is unitary and subsequently apply U from
left and U from right.

0) (78)

UlalU = Sl (79)
J
= Z SilUTa;rU = Z S;}Sila;r- = Z@la; = a;r (80)
7 1] J
= UalTUT = Z Sila;r (81)

using this into 78 we get

,SzlaT ™
) = Za )y (52)
nl!
this result is easily generalized to states with different modes populated with
different photon numbers, since a; and a; commute for ¢ # j. For example, with

2 populated ports k and [
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By (S gy
|wb> — (Zz Szk 7,) (Zz S'Ll z) |0> (83)

nk! nl!

Picking the scattering matrix associated with the beam splitter, with initial
state |10), using the rules above,

|mwi%d+mMm (84)

The probability amplitudes of detecting a photon exiting respectively through
port 1 and 2 is

1

1= (10[45) = —= (0 ar(a] + iab) [0) = —= (0] ara] 0) = (85)

S

1
V2
p2 = (01y) = —— (0] az(al + ial) |0) =

2

ol asat 10y = L
ﬂ<0|22|0> 7 (86)

the probabilities are found via square module, and are 1/2 and 1/2 as ex-
pected

>
-5l

1.9 Modeling real laser pulses

Second quantization gives rise to an arbitrary large (possibily infinite) number
of modes for the electromagnetic field, but we restricted the discussion to a
finite set of creation and annihilation operators associated to a finite subset of
excitations where a photon is identified with a mode of the electromagnetic field.
As aresult we re-labeled the modes with a finite number of indices i, =1,..., N
forgetting the fact that they were labeled by the wave vector in the first place.
From now on we focus on photons propagating in one dimension, so that the
modes will be defined by angular frequency and direction of propagation, instead
of a three-dimensional vector.

The first noticeable deviation of the previous description, from more experi-
ment oriented approaches, is the complete independence of the excitations from
time and frequency. Forgetting all about the frequency, that is, assuming that
a single mode will always consistently be associated to a specific known energy,
is a simplification that does indeed suffice to describe the basic physics behind
interferometers. However, in many experimental applications a less idealized
description is needed; in fact, the typical light source never emits light consis-
tently at the same energy. In these cases, the light emission process occurs over
a limited time span, consequently giving rise to an energy uncertainty, meaning
that light is emitted with an angular frequency distribution, rather than a single
w. The specific shape depends on the physical process employed for light cre-
ation. More often than not, the frequency profile of photons will be modeled as
a pulse peaked around a certain value of w. While many different distributions
for wavepackets may exist, here we will focus on gaussian peaks because they
are customarily associated with pulsed lasers.

This improved picture maintains the previous concept of optical mode la-
beled by a finite number of indices, while on the other hand adds a countinuous
degree of freedom to every creation/annihilation operator that takes into ac-
count the energy distribution of a photon. The creation operator associated
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with a photon centered around time ¢ with a complex frequency distribution
F(w), in the optical mode i is [25]

ot = [ dwF(@al (w
" /OdFUZ() (87)

and similarly for the annihilation operator. F'(w) is the spectral amplitude of
the wave packet, and a'(w) is the continuous mode creation operator. Assuming
that F(w) is normalized, the continuous frequency annihilation and creation
operators must satisfy the commutation relations

[ai(w), al(W)] = 8(w — w')dy; (88)
Let us choose a Gaussian shaped pulse passing for the spatial origin at time

to. The spectral amplitude is
. (w—wq)?
Fy(w) = (2mo?) /e i mwnto =58 (89)
and wy is the central frequency (¢ = 1 from here on). We are interested in
computing the commutator of two modes peaked around two different times.
We can do so by extending the integration range to [—oo, +0c]. This is possible
whenever 0 < wy (small bandwidth approximation). Using 88, and integrating,

the result is

_ (tg—tp)?

|:ai,t1 s a;)t2:| = 5ije 2rg (90)

Where we dropped the F' subscript from the operators because Gaussian
distribution with fixed width and central frequency is implied, and we label
the creation operator with the peak time instead. We define 0~! = 7, as the
coherence time. The separation between two wavepackets is controlled by two
factors: the time separation of the pulses and the coherence time, that is, the
width of the Gaussian. Specifically, if to —t; > 7, the pulses can be considered
well separated and consequently their related operators commute. Therefore,
the states al’tl |0) and az_’tz |0) are orthogonal.

Because we extended the Hilbert space to an infinite space, operators must
be generalized because they not only depend on the discrete indices i, but also
on the ws. All sums appearing in the section above must be replaced with a
mixed sum and integration operator. In general,

Uay(w)U' =3 / do S0 )y () 91
—~ Jo
j
For frequency independent operators the above becomes
Ual(w)U' =" Sjial (w) (92)
J
and the transformation law for a; s

UULZTFUT = Z Sji/o dwF(w)a;(w) = ZSjia;’F (93)
J J
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It is possibile to define operators that act on the time degree of freedom.
We use a time label again since we once more fix the spectral amplitude to
a Gaussian peaked around some time t3. A time shift applied on a creation
operator must give another creation operator peaked around a new value to+At,
hence

a;to - a"]iL,to+Ato (94)

This is the case where every single discrete mode i is affected by the time
shift. One can verify that this effect is obtained by applying to the continuous
creation operator a;[ (w) the unitary operator S(w) = §;;¢/(@w0)Ato,

(oo} oo
ooy = [ dwem 20 ) alw) = [ dP e ranal@) = ol
(95)
If every mode is shifted by a different time, the operator will be S;; =
6ijei(“’_“0mti, where At; are the different delays associated to the different
optical modes.

1.10 Mach-Zehnder interferometer with time degree of
freedom

With this new formalism introduced, it is natural to go ahead and check how,
for example, a simple system such as the Mach-Zehnder interferometer as seen
from the previous sections is affected by taking into account this new model of a
photon. As a first consideration, it is useful to emphasize that even though the
formalism introduced so far is based on the frequency spectrum of the wavepack-
ets, one can always switch to a time-based description of the photon via Fourier
transform, since time is the conjugate variable to frequency. With this in mind,
we can carry out the calculation in whatever variables we deem appropriate and
Fourier transform (being careful to preserve normalization) to get a description
that is easy to read from a temporal perspective.

Let us consider the unbalanced Mach-Zehnder interferometer represented in
figure 3. Since light takes more time to travel through the longer arm, the effect
is to introduce a delay At = 2Al/c to the photon taking the longer course,
with Al length of the unbalancement. There is an additional time delay Atg
affecting both routes to the same extent, due to the photon travel time across
the horizontal portion of the arms, which is the same length for both routes.
This delay will therefore contribute as a global phase according to 94. Let us
write down the matrices associated to the beam splitters and to the time delays

1 /1 1
o=l 1) o
1 0
Ppy = (0 ei(wwo)At) (97)
—i(w—w 1 0
o=} <98>

The scattering matrix of this setup is
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Figure 3: An unbalanced Mach-Zehnder interferometer

1 .. _e—i(w—wo)At 4 q i(e—ilw—w)At | |
BPpay, PaeB = 56 i(w wo)At()( ( )

Z'(efi(wfwg)At + 1) +67i(w7wg)At -1
(99)
If we want to compute the probability amplitudes, we should perform the
calculation in the Schroedinger picture. As an initial state we will choose a
distribution peaked at time ¢ at the input 1 of the first beam splitter

¥a) = al ,|0) (100)

and carry out the calculation in a similar fashion as the completely discrete
case

lihp) = U [ha) = Uay ¢ |0) = Uay U |0)

/dwF(w)toe_i(“_WO)Ato [(—e‘i(“_“o)m + l)aJ{ (w)+

N

File (@08 1 1)al(w))] o) =

1

= 3 [ @R [ral) i) o+ O

2

+1 /dwF(UJ)t+Ato+At {—al(w) +ia;(w))} 0) =

\]

Lot i ol ol
= §(a1,t0+At0 T O1 g Atg4AL T 102 44 Agy T m2,t+At0+At) 0)

Suppose that we observe the output photons at the output port 1. The
transition probability is obtained by choosing as the final state a photon with

26



exactly energy w exiting port 1. Similar reasoning is applied when we shift the
interest to the second port. For port one,

[$rin:) = a(w)] |0) (102)
and the probability amplitude we get is

1 . .
(Y pin, [tp) = 3 (0] a1 (w) (ah+At0+At + w;t+AtO+At - a];,t-&-Ato + Za;tJrAt(,) 0)
1
= 5 0] [ dar@) (F@)hsanal@) - F@ i ransamd @) 0

=5 01 [ @ (F@ iy an, [0l @)] = F@ligsansar [ar@).al@)]) 0

- %/dw’ (F(w)tgraty0(w —w) = F(W)iotatg+atd (W' — w))
= % (F(w)tgraty — F(w)tgratorat) = P1(w)

(103)

The annihilation operators on the left-hand side commutes with the creation
operators associated to a different optical mode (2 in this case), so that after the
commutation we can apply it to the vacuum and get zero. Such manipulations
have been omitted in the calculation above. For the other output state |¢f;,) =
al(w) |0, the probability amplitude is computed bracketing the state with a
photon in the second spatial mode. After an analogous computation, the end
result is

Wrinaltn) = 5 (F@)iyrar, + F@hgranra) =val) (104

These are the probability amplitudes associated with the 2 exits of the in-
terferometer. For future reference, we write down the action of the MZI on the
spectral amplitudes as

Yhos = 5 (B = 02 (w), ) (105)
Yoz > 5 (B + 020, ) (106)

Taking the Fourier transformation is much more insightful: because experi-
mentally we measure the arrival time of the output photons, it makes sense to
display the distribution as a function of the observation time. Here we use the
convention for the Fourier transform f(t) = \/% J dwe™* f(w) to make sure that
if the gaussian spectral amplitudes F;,(w) are normalized, so are their Fourier
transforms.
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b (w) = %(%Uz)q/zx (efi(wfwo)(tOJrAto) _ efi(wfwo)(tOJrAtoJrAt)) eJ“’;:zW

1/4
1 2 —tg—Atg\2 . t—to—Atg— 2 X
N 5 (7”—2) (67(%) _ e—zwoAtef(w) )ewo(t—to—Ato) = 1/11(15)
c
(107)

() = %’(%02)71/4 (efi(wfwo)(tOJrAto) n efi(wfwo)(toJrAtoJrAt)) e

. 1/4
2 —tg—Atg\2 . t—tg—Atg— 2 .
3 (w) (e (70" miendt (SRR glunli—to-t0) =y (1)
c
(108)

We have then derived the action of the interferometer on the Fourier trans-
form of the initial spectral amplitude 89 before crossing the interferometer.
Explicitly, the transform of the initial amplitude is

2 1/4 . t—tg—Atg 2
F(t) = <> giwo(t=to=Ato) e~ () (109)

2
TTE

and the action of the interferometer as seen from the two ports is respectively

F(t) 5 F(t — Ato) ~ F(t — Aty — A) (110)
F(t) = %(F(t — Ato) + F(t — Atg — At)) (111)

The probability amplitudes depending on time are the sums of two Gaussians
peaked around the two “classical expected arrival times” tgsport = t + Atg, and
tiong = t + Atg + At, representing the travel time of two classical particles
moving at the speed of light travelling through the shorter and longer arm of
the interferometer. Furthermore, a phase difference wyAt between the two peaks
is present, and it is explicitly linked to the path difference At. A more obvious
feature of these amplitudes is that for sufficiently large ¢, they both vanish, since
a single photon is created at a definite time ¢y before the interferometer, and
we cannot expect it to take an arbitrarily long time to travel through it.

Let us adopt a more compact notation and define

T=t—ty— Aty (112)

The probabilities of detecting a photon at time 7 are

2 1 2 1/2 o( )2 g(T=At)2 T A2 2
|’QZ)1(T)| = — () (67 (;) + e ( e ) —267( e )e*(?c) COS(woAt>

4 \ w72
(113)
1/ 2 \Y? . a A .
o (7)[* = 1 <7T72) (6_2(5)2 1 e 2T 4 0o (R ()7 s (woAt)
(114)
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Figure 4: The probabilities at both ports are displayed when 7, > At.

The last term on both amplitudes gives rise to interference thanks to the
cosine. Whether this interference is detectable or not depends on the ratio of
the coherence time and the time shift At, as will become obvious in the following
calculation. Integrating over time to get the total detection probabilities yields

1 N

3 (1 - 6_% e cos(woAt)> (115)

p1 = / dr | (1))

00 9 1 142
D2 :/ drle(7)]” = 3 (1 +e * 7 cos(woAt)> (116)
— 00

Which is a common result in interferometry. Also, the probabilities add up
to one, as expected. The term multiplying the cosine is customarily referred
to as wisibility (), while the argument of the cosine is the phase (¢). The
visibility is a positive parameter always less than one, and is often given in
terms of percentage.

If At > 7., probability amplitudes become % regardless of the phase and
photons bear “which path” information. Indeed, much like in the classical
analogous of this experiment, we know that if the photon took longer to travel
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through the interferometer it must have taken the longer path, and similarly for
the earlier time/shorter path.

Ultimately, adding the time degree of freedom, and using a “properly” set
interferometer, we can destroy interference. When 7. > At interference with
maximum visibility is observed, and the phase is controlled by the path dif-
ference between the possibile routes of the interferometer. Time resolution is
completely lost, and time can no longer be employed as a distinguishing factor
for the photon state. Figure 4 represents the probabilities at the two ports in
this limit.

p1 = sin? <w°2At> (117)

At
P = cos? <w02 ) (118)

the phase can be arranged, for example, to make only one of the detectors
after the ports click. Note that if 7. < At, the states al |0) and aL_At |0) are
orthogonal:

A2

(0l aral 5, 10) = (0] [ar,ai+m] 0)=¢ "% ~0 (119)

where the commutator is computed via 90.

1.10.1 Measuring interference on time-bin encoded qubits

We already anticipated how the temporal degree of freedom can be used to
encode qubits, and the treatment above is necessary to understand how an
unbalanced Mach Zehnder interferometer can be employed as a simple tool to
create such qubits. On a setup where this interferometer is used, one typically
looks at either one of the two exits. Restricting the treatment to one of the ports
means that mode indices can be omitted, and the state should be renormalized.
Equation 101 tells us that from port 1 of the interferometer the state is

1
9) = 750y a0y ~ Gt 20220 0) = 1) = |L) (120)

while, for port 2

[9) = 501,00, + Gtgagrar) 0) = 1S) + |L) (121)

Where S denotes the shorter path, and L the longer one. For this states
to qualify as a genuine qubits, the ratio % must be chosen sufficiently large
to assume the two base states orthogonal tclpon exiting the interferometer, so
that the photon does not interfere with itself, as seen in the previous section.
This assumption will be implied throughout this whole work, unless otherwise
stated. The qubits after respectively port 1 and 2 have a m and 0 phase. A
general phase « is obtained by adding a phase shifter on one of the two arms of
the interferometer (here we choose the long arm, hence the matrix is ( (1) e'?“ ).
The scattering matrix of the interferometer taking into account the additional
phase becomes
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SN SN

Figure 5: Two Mach Zehnder interferometers in series. Each one adds an ad-
justable phase a and § to the quantum state. The detector is placed at port T
after the second interferometer. Dashed lines represent the part of signal that
we discard in this treatment.

1 i VAL _efi(wfwo)At+ia +1 ,L'(efi(wfwo)AtJria + 1)
BPptyPai P B = 5@ (w—wo)Atg (i(e—i(w—wo)At+ia +1) te—ilw—wo)Attia _ 1
(122)
thus, out of port 1
1 f io 1 1 2o
¥) = E(atowo —¢€ at0+At0+At) 0) = *2(|S> — e |L)) (123)
while
1, 4 ia 1 1 ia
) = E(atoJrAtg + e n,,+a0) [0) = ﬁ(|5> +e|L)) (124)

for port 2. These are phase encoded qubits. One way to observe quantum
mechanical interference from this kind of qubits is, for example, to use the output
states as an input to a second interferometer with the same properties of this first
one, but with a different phase g. If the first pulse enters the second unbalanced
interferometer at time ¢1, the delayed pulse enters at ¢; + At. Reinstating the
mode indices on the initial state to avoid confusion,

14 o T T
[ve) = U |¢a) = Uﬁ(aul —e"%ay 4, 42,)U 10) =
1 i i ; t i
=—(Uay, U —e"“Ua U )|0) =
\/i ( 1,t1 1,t1+A ) | > (125)

1 , ,
_ i o 1 b iat
N 2\@(“% —e"ayy g ity Hi€ayy ot

i(atp) 1

_ BT _ B 1 - i(a+B) 1
eray o TE A1 4, —oar — 1€ Ao 4 Ay T 1€ a2,t1+2At) |0)
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a neater form is obtained writing the port specific result

‘IL - iaa11+At - eiﬂaLJrAt + ei(a+6)aj§.1+2At) |0> (126)

[Vp,1) = % (

7 . . .
|Vp,2) = ‘2\@ (ail + ewta:trl—&-At - ezﬁaiﬁm - el(a+ﬁ)a;+2At) 0) (127)
Once more we want to work with the amplitudes on the temporal domain.
The probability amplitude associated with the above states can be computed

with the same procedure as before, bracketing the states above with (0] a(w)
and Fourier transforming what is obtained.

V() = 2—;5 [F(t— 1) — e F(t — t, — Af)+ .

—€PF(t—t; — Ab)) + Dt — ¢, — 2At)} 10)

1

Ya(t) = [F(t—t) +e“F(t —t; — At)+

2v2 (129)
—ePE{t—t; — At) — TPt —t) — 2At)] 0)

A quicker approach to the calculation is noting that we have derived the
action of the interferometer 111, so we can directly apply it to the amplitude
Yo(t) = %(F(t —t1)+ F(t—t1 — At)), ¥o(t) being the amplitude associated to

the state %(a;,tl — e"""a;tﬁm) |0). In fact, this will be the standard approach
to this type of computation henceforth, the first reason being calculation ease.
However, there is a second reason to prefer working directly with amplitudes
rather than creation operators on the vacuum. Indeed, having a look for example
at equation 120, one notices that the phase depending on the path length does
not appear in our state, as opposed to equation 108. In fact, the pase difference
e~ oAt ig hidden in the notation — namely on the At subscript on the creation
operator. When working with amplitudes, we can readily read this phase off
the explicit form of the amplitutes instead.

Once again it is convenient to work with time shifted coordinates 7 = ¢t —
t1. The amplitudes, modulo a global phase that does not interfere with the
probabilities, are the following

U2\ 1 e (292 auar _(z=anye

(130)
_p—ila—B) g—iwo At —(TZAL)? _,r_eiﬂe—?iAe*(iT_im)z}
: 1/4
7 2 . T2 ) T—At\2
¢2(T) - () |:67wé6_(;) + efzwoAte—( = +
2v2 \n7¢ (131)

. . _T—Aty2 o oA (T—2At2
_efz(afﬂ)efzwoAte ( = ) _62,6’6 22Ae (== ):|

The computation of the square module becomes much easier remembering
that we are in the 7. < At approximation. This means that any overlapping
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Figure 6: Probabilities at different phase values. Note how the two which-path
peaks are not affected when changing the phase.

T T—At T—At T—2A¢ - r—2At
terms of the form e~ (%) e~ ("= f)z, e (e (00 and e~ (F) e ()

are zero. The probability densities are

1/ 2\ ., N A _

8 \ n72
(132)
2 1 2 1/2 _2(L)2 —2( 7-72At)2 _Q(T—At)2 .o fx— ﬁ
[Pa(T)]” = 3 <7T7'c2) e </ +e c + 4e c / sin —5
(133)

The first two terms are non interfering terms that integrated yield a to-
tal probability of i to both amplitudes. As a result, there always is a total
probability of % that interference is not measured by this setup. The reason is
that the photon can take 4 total paths to travel across this double umbalanced
interferometer.
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short - short

short - long
e long - short

e long - long

The first and the last possibile routes are indeed distinguishable with a time
measurement. We have which-path information. On the other hand, from a
temporal standpoint, a measurement happening when the photon takes one
of the two remaining possibile courses cannot tell us whether the photon has
crossed the short arm of the first interferometer and the long arm of the second
or vice-versa, hence interference is measured. Schematically, keeping in mind
the representation of the amplitudes for different values of the phase shown in
figure 6

e short - short «— first peak, which-path

short - long <— central peak, interference
e long - short «— central peak, interference
e long - long +— last peak, which-path

For completeness, one might want to compute the total probabilities ob-
served at the two ports.

D1 :/7md7|¢1(7)|2:i+%c0s2 <a25> (134)
po = - drly () = i + %sin2 <‘“ ; ﬂ) (135)
(136)

In practise, in an experiment where the focus is to observe interference, one
just integrates around the central peak, meaning that the % terms are often
forgotten about and the total probability one refers to is just

p1 = cos® (a ; B) (137)
Py = sin? (O‘ 3 5) (138)
(139)

This is possibile because there is no risk of ambiguity: which path events
always happen away from the central interfering peak, provided that the coher-
ence time is small enough compared to At. In conclusion, interference takes
place at the central peak, with a phase that is modulated by the phase shifters
of the two interferometers. Furthermore, the visibility is one.
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1.10.2 Double unbalanced interferometer with different unbalance-
ments

Here we assumed that the interferometers introduce the same delay on the longer
arms. The more general case represented in figure 7 can be handled much in
the same way as the previous one. Notation-wise, we still use a At = [/c
time shift for the initial interferometer, while we use At’ = 1’/c for the second
interferometer. [ and [’ are the length differences between longer and shorter
arms respectively inside the first and the second unbalanced interferometers. We
assume that both timeshifts are comparable in magnitude, and both are much
larger than the coherence time. We also use the shorter notation 7 =t —¢; and
factor away any global time-shifts (like Atg), since those do not contribute to
probabilities.
The second interferometer acts on the input state F(7) — e?“F(1 — At) as

«

/6 At — At

e e

Figure 7: Two Mach Zehnder interferometers in series, with different unbal-
ancements (greatly exaggerated in the figure). The setup is the same as the one
considered before, except for the unbalancements.

1
V2

1 . , ,
(F(T) — " F(1 — At) — P F(1 — AU) + T F(r — At — A

(F(r) — e"“F(T — At)) —
Wi )

—

(140)

when observed at the first port, and

2V2
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at the second port. Explicitly, modulo a global phase,

1 o\ . A
wl(T) - <> |:€_Za€7("7c)2 _ e—zwoAtef( TCA 2+

2v2 \n7¢ (142)
_emila=p) giwo At ,—(T52E)? eiﬁe—i(AH—At’)e*(iT_Afc_At/)2]
valr) = < ) ~(F)? 4 gt — (R
e (143)
—1(a [’3) —iwo At — (==

Te

. T— At )2 75 —1(At+At) (T*Athtl)2i|

The corresponding probability amplitudes are computed with the same as-
sumptions as the previous case, and are given by

2 1 2 1/2 —o(Z)? Q(M) _o(T=Aty2 72(7——At/)2
()P = (g ) [0 e 2R 2T 2RO

2
AN

T e T e e (wo(At — At) + (a — ﬂ))}
(144)
1/2 /
[a(r)]* = 3 <22) {6_2(%)2 p(IAEAL)? +e 2T 2
8\ 7m7g

T—At\2 _ T—=At/\2
)2 —(

cos (wo (At — At) + (a — 5))}
(145)

The first two terms of both equations correspond to which path measure-
ments — two gaussian peaks situated respectively before (7 = 0) and after
(1 = At + At’) the interfering part of the output wavepackets. Our interest
lies in the middle part of the distribution, so that is what we are going to in-
tegrate over all times. The probability of finding a photon on the central peak
is

p1 = / drly (1) = % (1 +e —3 53 = ) cos (wo (At — At) + (a — B)))

o (146)
p= [ artial = 1 (1= cosenlar - 80+ a - 9)
(147)

This is an expression that has already been discussed: in short, we have inter-
ference with visibility less than 1. In general, an arm length difference between
two unbalanced arms of the interferometers intrinsically degrades visibility. If
one wants ¥V = 1, then the arms’ lengths, while being both sufficiently larger
than c7.., must be chosen such that | —!’ < c7.. In the case where At — At > 7.,
interference is lost.

Intuitively, the loss of visibility occurs because crossing the short-long and
long-short paths does not take the same time anymore: in mixed situations,
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some path information can now be extracted from the experiment. This is
because, even in the case where the two time shifts are only slightly different in
length, if the photon takes longer than AHTM to get to the detector, there is a
larger chance that it travelled through the long arm of the interferometer with
greater unbalancement, and vice-versa.

1.11 Basic review of the density operator formalism

When in quantum mechanics a state is a statistical ensemble of pure states, it is
said to be a mixed state. The representation of this type of state is usually done
via density operators. The state of the quantum system is a statistical mixture
of an arbitrary number of pure states |¢;), ¢ € [1,...,n], with positive coeffients
p; such that Z?zl p; = 1. A matrix called density matriz or density operator
can be used to give a full desctiption of this ensemble, instead of the ket state
formalism applied to pure states. The density operator for this system is

p= Zpi i) (| = Zpil)i (148)

Here the terms density operator and density matrix are used interchangeably.
Hower, we note that the term density matriz makes sense only after one has
defined an orthonormal basis |p,) , where ¢ = 1,..., N so that the matrix
elements can be computed as

Pmn = <‘Pm‘ P |‘Pn> (149)
note that the following hold

pl=p (150)
trp=1 (151)
(152)

and p is positive semi-definite. With this formalism, mean values are com-
puted via traces: if O is an observable, then its mean value when the state of
the system is given by |¢) is

(), = tr(4p) (153)

For pure states, p; = 1, and p; = 0 for j # 7, and the density operator is

just |[¢) (|. When considering Hilbert spaces of dimension 2, that is, a qubit as

introduced before, the density matrix provides a description that is equivalent

to the Bloch sphere when considering only pure states, but also extends the
formalism to mixed states. Let us parametrize the density matrix as

_I+S
T2

where [ is the 2 by 2 identity. Since p must be hermitian, we have the
following parametrization for the S matrix

0 1 0 —2 1 0
er(l 0>+'ry(z. 0 )+rz(0 _1>roo' (155)
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the matrices o; are the well known Pauli matrices. o is a vector of where
each entry is one of these matrices, while (ry,7y,7.) is a real vector |r| < 1
describing a point inside the unit ball in three dimensions. The equal sign holds
for pure states, so that they are described by the unit sphere. When r < 1, the
S matrix describes a mixed state instead.

1.12 Visibility and Predictability

Wavelike behavior is associated with inteference patterns, while particle-like
behavior comes up anytime it is possibile to reconstruct with certainty the route
that the quantum particle has undertaken, when a path-qubit is considered. An
important result by Englert [11] introduced a concrete bound that quantifies
quantum mechanical duality in a clear way. Precise definitions of fringe visibility
and distinguishability were proposed, and, as it turns out, mixed situations
where visibility and path distinguishability are not perfect satisfy a very specific
inequality, along wth the ideal cases where distinguishability or visibility are
perfect.

A Mach-Zehnder interferometer composed by a beam splitter and a beam
merger is considered. The two alternative paths are labeled by quantum num-
bers 1,—1, that is, the eigenvalues of the Pauli matrix ¢,. The beam merger
(BM) has the same function of the beam splitter in the MZI: it recombines the
rays after they travel through the two different arms. Furthermore, a different
phase is applied to the different arms of the interferometer. Using the density
matrix formalism, the BM and the BS are represented as acting on the density
matrix p as

jus

p— e 1% pelioy (156)
and the phase shifter is represented by

—ifo,

p—e pe'5 o (157)

As an input state, a general mixed state is taken:
i _ I+ri-o
2

the interferometer, after the beam merger that recombines the rays, outputs
the final state pf

(158)

f_]I—i—rf-a
N 2

where, if (75, ry,7.) is the Bloch vector associated with the initial state, then

(159)

—r,
ryg=| rycosp+r,sing (160)
Ty Sin @ — 1, Cos

represents the final state. For example, taking the pure state corresponding
to rjgy = (0,0,1) as an input, the output state is (0,sin¢,cos(¢)), and the
relative frequency of, say, measuring the value —1 rather than 1, is given by
the operator %(1 —0,). Probabilities are computed via the density matrix
formalism with
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p=tr|za-0s] (161)

therefore, the probability that the detector corresponding to the path labeled
—1 clicks, when the input state is given by the Bloch vector 7)qy, is

1
Py = 5 (1 + cos ) = cos® (%) (162)

that is, the usual pure state interference pattern with maximum visibility.
When a general mixed state is used as an input, the above is generalized as

(1—rysing + 1, cosy) (163)

N |

The quantity

Vo = ,/7“5 + 72 (164)

is defined as the a priori fringe visibility. The predictability of the system is
a quantity that is associated to how well the experimenter can predict whether
the quantum particle will take one route with respect to the other. For example,
in a Mach-Zender interferometer without the second beam splitter before the
detectors, we have minimal predictability, since the two probabilities associated
with the two paths are w; = % and w_ = 1. Here, we define P = |w; —w_|[,
so that it will be 0 for fully unpredictable outcomes, and 1 when we know that
only one of the two detectors will click. For the system considered here,

1 1
wi = tr {2 (liaw)pf} = 5(1F7s) (165)
so that

P=r, (166)

For example, in the specific case of r|g), we have a 0 predictability. Because of
this definition, a relation between a priori visibility and predictability is derived
when noting that for a Bloch vector |r| < 1 [14]

Vi+Pi<1 (167)

where the equal sign holds for pure states. Predictability can be measured
with which-way detectors inside the interferometer, for example, by placing two
detectors on the two arms right after the first beam splitter. The total initial
state of the system will be described by p? = pégpr, where @ refers to the
quantum particle and D to the detectors. The which-path detectors evolve
according to

pp = UsppUs (168)

Where the plus sign holds when the quantum particle crosses the +1 path,
while the minus sign when the path is —1. These which-path detectors are a
part of the quantum system. Symmetric interferometers with maximal a priori
fringe visibility are described by,
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re =0 (169)
r,4iry, =e (170)

Englert found that this states evolve inside the system coupled with which-
path detectors as

Ty — 0 (171)
T, +ir, — —e 1P 0C (172)

where C is a complex contrast factor depending only on the degrees of free-
dom of the detector

C =trp U ppUy] (173)

and the visibility is taken as V = |C|. For the final state of the detectors, one
must trace out the degrees of freedom relative to the quantum particles, which
turns out to be

1 1
pp’ T30 (1)

2

In quantum mechanics, distinguishability between two states can be given
in terms of the norm of their difference. Using the density matrix formalism, in
this particular case,

1 1
pp = trg ol = §UipDU, + §UjrpDU+ =

1
D= EtrD|pJ5—pB’ (175)

With these definitions for visibility and distinguishability, Englert proved
that

D+ V2 <1 (176)
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2 Locality and Hidden Variable Theories

2.1 Introduction

Let us consider two spatially separated observers, Alice and Bob, performing
spin measurements on the singlet state of a system composed by a couple of spin
% particles (A and B). More specifically, the observer measures the value of the
projection of the spin operator along a chosen axis. Suppose that Alice is the
first to perform such a measurement: quantum theory predicts that regardless of
the direction of the axis along which Alice choses to measure the spin of particle
A, if Bob measures B along the same direction, he will obtain with certainty
the opposite value of what Alice got. As soon as Alice measures A, she can
infer with certainty Bob’s spin value along the direction she chose to measure,
provided that Bob will indeed perform a measurement along the same direction.

When considering the classical counterpart of this experiment no difficulties
arise, as at the moment of separation the information about A and B is carried
along the paths of the particles, and a classical measurement just draws this
information out of the system. However, when A and B are two electrons in
the singlet state, that is, a quantum mechanical system, their spin value along
a certain direction is not defined until it is measured. When Alice performs a
spin measurement, she does not “find out” the spin of the other particle, rather,
she knows what Bob’s measurement would yield if perfomed as described above.
The two measurements are said to be correlated.

When assuming that the two observers are separated enough, it is very
clear that quantum mechanics is in stark contrast with locality, as explained
as follows. The notion of locality can be summarized by stating that, in a
local theory, physical processes cannot have instantaneous consequences on some
other parts of the system (this will be formalized in the next section). Quantum
mechanics seems to imply that when Alice measures the spin of her particle, the
fact that she performed a measurement would have to propagate instantly over
to Bob’s system, so that Bob’s results will show correlations accordingly. This
must happen regardless of his spatial separation with respect to Alice, because
Alice can choose the settings of her measuring apparatus while the particle is in
flight, and so can Bob, well after the particles initially separated (here we are
still making the assumption that regardless what the observers do with their
settings, they agree to always end up with their measurement axis aligned). The
paradoxical nature of the system here described lies in the fact that quantum
mechanics, taken as-is, appears to be a non-local theory. This result is Bohm’s
reformulation of the Einstein-Podolski-Rosen (EPR) paradox [10].

Because correlation seems to logically suggest that some sort of information
is shared by the components of a system, one could suggest that this correlation
between the two particles A and B is consequence of some sort of underlying
interaction, over which the experimenters have no control over and/or knowledge
of. At this stage, no particular request is made on this hidden interaction.
EPR, after presenting the paradox, concluded that quantum mechanics must
be incomplete (where complete has a specific meaning as defined in the famous
paper), and that completing quantum mechanics with the addition of a hidden-
variable theory would remove the paradox. Namely, they suggested that the
problem might be fixed by the introduction of a set of hidden variables shared
by both particles at the moment of separation and conjectured that if locality
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were to be restored in quantum mechanics, it would be by means of a local
hidden-variable theory. This means that, similarly to the classical case, some
hidden information on the particles is indeed carried along their trajectories,
and this fact is just not described by quantum mechanics.

In this chapter, the concept of hidden-variable theory will be treated with
a mathematical approach, and a widely accepted definition of locality will be
given. These two tools will be sufficient to show that regardless of whether quan-
tum mechanics is a hidden variable theory or not, it cannot be local, contrary
to the EPR conjecture.

2.2 Locality condition

Suppose that two spatially separated experimenters, Alice and Bob, perform
measurements on two systems produced by a common source. The observers
are free to choose what kind of measurement they want to perform on their
system, and we label x the set of experimental settings chosen by Alice, and y
the settings chosen by Bob. The possible outcomes for x and y are respectively
labeled as a and b. For example, in the specific case described in the previous
section, x and y are the two unit vectors denoting the direction along which the
spin of two electrons in the singlet state is measured. In quantum mechanics,
the outcomes of such a measurement are given by the eigenvalues of the matrices
x - o, and y - o, where the components of the o vector are the Pauli matrices
o; (which the spin operator along the x unit vector g”x - o is proportional to),
hence a = +1, b = +1. For the time being, there is no need to restrict ourselves
to this specific case.

Generally, a complete set of possible outcomes is associated to a probability
distribution, which in turn depends on the experimental settings « and y. The
outcomes a and b could be correlated, meaning that the probability p(ablzy) is
not generally factorizable as p(a|x)p(bly). What we expect (and very reasonably,
demand) from a local theory is that if there is any correlation between the
measured values, it must be due to an interaction that happened in the past
when the two system were in contact. As a consequence of this assumption,
we can expand our notation by using a set of variables A that fully take into
account the correlations caused by the past interactions. Indeed, there must
be a distance where the two particles cannot interact anymore, at the very
least when Alice and Bob are spacelike separated. From Alice’s point of view,
the probability distribution associated to her experiment can only depend on
her experimental setup x and on the past variables )\, and conversely, Bob’s
probability density depends on y and A. In a local theory, Alice’s measurements
cannot be affected by the experimental choices ¥y made by Bob, and the same
must apply to Bob. As a result, a couple of outcomes is described by

a(z; N) (177)
b(y; A) (178)

because the two distributions are

plalz; ) (179)
p(bly; A) (180)
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Since by definition we factored out all correlations into the past variables A,
the total probabiliy is now factorizable with respect to the uncorrelated variables
describing the experimental settings

p(ablzy; A) = p(alz; \)p(bly; A) (181)

This reasoning in no way implies that the variables A are under control, or
even possible to know; after all, this is what a hidden variable theory implies.
Interaction between the systems can be arbitrarily complex: the locality request
181 holds as long as the two systems stop interacting at some point, which is
the case when the observers are sufficiently separated (we assume space-like
separation from now on).

The actual value of the As can vary for every run of the experiment, and we
describe this by associating a normalized probability distribution g(\) to the
past variables, where we made the assumption that ¢ does not depend on x and
1y, since the experimental adjustments made by the observer cannot possibly
have an influence on the source. The experimental distributions measured by
Alice and Bob after many runs of the experiment are then

pWMw:/MpMmMMMM (182)

where we can see that this description does indeed result in a correlated
probability distribution, from the observers’ standpoint. The product ab is
defined as the correlation, and takes the form

Eww=/wmﬂmwwmm (183)

A hidden variable theory is local when this equality holds (a detailed deriva-
tion of all of this formalism can be found in [3]). We could also take as alternative
definitions 182 or 181. With this definition in mind, it is possible to investigate
whether the correlations of quantum mechanics satisfy this condition. The short
answer is no: in fact, Bell, in 1964 [4] demonstrated that local hidden variables
theories cannot reproduce the correlations of quantum mechanics.

2.3 CHSH inequality

Here is presented the derivation of an inequality that holds for any local hidden-
variable theory, in the specific case where the two sets of outcomes for the
measurements, yet again performed by two experimenters Alice and Bob, are

a=+1=b (184)

We stress that, while the result that will follow is of major interest when
applied to the two spin % system, at this stage the specific system (quantum
mechanical or not) that is considered does not matter: the following derivation
should hold regardless for any local theory as long as 184 holds.

Suppose that the complete description of the initial state is given by the
set of hidden variables A via the normalized probability density ¢(A) as defined
in the section above. Alice’s set of outcomes depends on her local variables
x, because of locality, as well as on the hidden variables A shared with Bob,
whereas Bob’s results depend on y and yet the same set of hidden variables
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A. The experimental settings of one of the experimenters does not affect the
measurement of the other one. If the experimental outcomes are correlated, the
reason for the correlation is all contained in the hidden variables, which in turn
are local. The full dependence of the outcomes from the different variables are

a(x;A) ==£1, b(y; ) = £1 (185)

Because the theory is assumed to be local, the correlations are defined as in
183.

These few premises by themselves suffice to derive a very powerful restriction
on the correlations. Having said that, it is possibile introduce a more general
hypothesis that takes into account experimental difficulties, so that an inequality
that can be effectively used in actual, non idealized experiments, can be derived.

In practice, measurements never have perfect efficiency. Here we use a termi-
nology associated with detectors for definiteness, but other measuring systems
can be thought of (since we are dealing with an abstract system). For example,
one of the two detectors may sometimes fail to register an event. When this
is the case, we’ll count a or/and b as 0. One can then supplement the theory
by adding a new set of hidden variables p and v, so that a = a(z; An) and
b = b(y; A\v) that take into account these experimental problems. In essence,
the new variables are the ones responsible for the bad clicks on the detectors.
These new sets of variables might not be under control, but because they only
depend on the instruments, they must be local themselves, meaning that y and
v have to be independent of b and a, respectively. As a result

la(z; Aw)| <1, [b(y; Av)] <1 (186)

from now we will refer to the experimental values obtained after many iter-
ations of the experiment without changing the settings, so that the outcomes
can be integrated over the set of hidden variables related to the two detectors,
and the averaged out values are

alwi ) = [ dis aai ) (187)

b(z; \) = /dv b(x; \v) (188)
It follows that 186 keeps holding for these, that is,

a| <1,

b <1 (189)

and the correlations relative to these averaged out experimental outcomes
become

B(w.y) = [ dXa(h) alas ) B(u: ) (190)

If 2/ and ¢y’ are two alternative experimental settings to z and y, we can
write

E(z,y) — E(z,y') = /d>\ g(N) [a(z; A) b(y; A) —a(z; A) b(y's M) (191)
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Adding and subtracting the same quantity we get

E(z,y) - B(z,y) = / dX q(A) a(e: N) B(y: A) [L % a2’ ) By A+

(192)
=[x a0 atw ) B (1% aw's ) B )
using the triangle identity
Ba,y) - B |<‘/m ) 8o ) 1 0 ) 6050+
(193)
][ 03 a0 ate ) B0/ (1 a0 2) 500
the absolute values can be rearranged in the following way
B(.y) ~ EG@)] < [ dh a0y Jaei) By V)] 11+ a0 50|+

+ [ a3 a0 falw ) Bly's )] (1% a(w's3) 5w )
(194)

using 189, the last expression is less then or equal to

/d>\ g(A) [1£a(x’sA) b(y's V)] + /d)\ g(\) [T a2’ A) by A)] - (195)

and so is |E(z,y) — E(z,y’)|. The absolute values have been dropped be-
cause the integrands are non negative anyway. Integrating the density functions
we find

/d)\ qg(\) a(z’; \) b(y'; \) + /d)\ g(\) a(z’; \) bly; \) +2 (196)
in conclusion,

|E(z,y) — E(z,y")| <2+ (E(2,y') + E(2",y)) (197)
which we can write in the neater and more common version
This is a generalization of the result first derived by CHSH [21]:

|E(z,y) — E(z,y")| <2- E@,y) - E(@',y) (199)

Commonly referred to as the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity. When a theory is local, and its observables take the values 186, then 197, 198
and 199 hold. J.S. Bell [4] was the first to derive this result for the specific case
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of hundred-percent efficiency detectors, and showed that, in quantum mechan-
ics, it is possible to choose a suitable set of measurement variables z and y in
such a way that the inequality is violated. In other words, even supposing that
quantum mechanics turned out to be a hidden variable theory, locality would
not be restored by introducing a set of hidden variables, much to Einstein’s
disappointment.

2.4 Bell’s theorem

Let us go back to the two spin % example, with the system prepared so that
the electrons are created at a point in space, and scatter in opposite directions
towards Alice and Bob’s detectors. These detectors perform spin measurement
along an arbitrary axis. The spin operator along an arbitrary direction is x - o
(we forget the % factor for consistency with the notation used) for Alice, with x
unit vector. Similarly, Bob’s spin operator is y - o. Pauli matrices are given by

(D) (i) (38)

so that the eigenvalues of the spin operator are +1, that is, the set of out-
comes is the same as in the derivation above. As previosly anticipated, quantum
mechanics is not a local hidden variable theory. To show this, it is sufficient to
find an example of the violation of one of the inequalities derived in the previous
section. Correlations are computed according to quantum theory as

Ex,y)=((c-x)(c-y)=—x-y (201)
one of the inequalities above becomes, in quantum theory,
B=|=xy+xy[Fx ¥y +xy (202)

If u and v are two orthonormal vectors, by choosing the experimental settings
as

x = (203)

x' = (204)
Y="75 (205)
y'=_2"Y (206)

and picking the inequality with the plus sign, we get

B=2V2>2 (207)

Hence the quantum mechanical correlation cannot be reproduced by a local
hidden variable theory.
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2.5 Quantum Entanglement

Quantum mechanical formalism describes a multipartite system composed by
distinguishable particles as the tensor product of a number of subsystems H; >
lpi) [17]; as a result, in general, the total Hilbert space is H = ®7_{H;. A pure
state state of this type of system is described as

vy = Y Cirin

1)--0in

Pir) ® - ® |wi,,) (208)

|1} is entangled when it is not decomposable as the product of the states
belonging to the individual subsystems H;, that is,

) # 1) ® - @ pn) s [0i) € Hi (209)

When a state can be written as such a product is said to be separable in-
stead. The simplest example of an entangled basis for a Hilbert space is found
considering a bipartite system where the dimension of both Hilbert spaces is 2.
A common example is a system composed by two polarization encoded photons.
In this case, H; ® Ho is spanned by the 4 Bell states

vty = \%um V)= |V) | H)) (210)
©%) = (1) [y + [V) [V)) (211)

V2

which also maximally violate the CHSH equality.

When taking into account actual experimental scenarios, a more realistic
description of quantum states is given by mixed states, described by the density
matrix formalism discussed previously. A mixed state is separable when

p=>> pipi®- @ pl, (212)
i
and is entangled otherwise.

2.6 Quantum entanglement and Bell inequalities

Let us focus on the two dimensional system of the two observers Alice and
Bob. Quantum mechanical measurements performed by Alice and Bob can be
characterised by a set of positive operator valued measure (POVM) elements
M, and My, acting respectively on Alice’s and Bob’s Hilbert spaces H 4 and
Hp. The number of POVM elements is D, and it needs not to be the same as
the dimension of the Hilbert space. A POVM defined on Alice’s subspace must
satisfy the following

Ma|w >0 (213)

D
Z Ma\x =1Ia (214)

a=1
Ma\zMa’hﬁ = daa’ alz (215)
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and same applies to My,. By tracing these operators over a state described
by some density matrix, one obtains the probability of the measurements. For
example if the state is given by the density matrix pap,

p(ab|xy) =tr ((Ma|x & Mb|y)pAB) (216)

If the two dimensional system is separable, states can be described with

pap =Y _pips @ plp (217)

7

and the probability above becomes

p(ablzy) = tr (ZpiMalfcpil ® Mb|yp§9> =

7

= Zpi tr(Ma|Ipf4) tr(Mb\yp%) = (218)
= Zpip(alw; i)p(bly; i)

which is of the local form, only with a sum in place of the integral in 182.
Because separable states all exhibit local behavior, violation of Bell inequalities
must necessarily be a property of entangled states. The specific relation between
non-local behavior and entanglement, however, is a very complex problem, es-
pecially for mixed states and higher dimensional spaces. For pure states, it was
shown that the above relation can be reversed, so that any pure entangled state
admits a set of local measurements that violate a Bell inequality. The proof has
been derived for a bipartite system on two-dimensional Hilbert spaces by Ca-
passo, Fortunato, and Selleri [7], and by Gisin and Home and Selleri [13, 16] for
bipartite states of arbitrary Hilbert space dimension. When considering mixed
states, the problem becomes much harder to treat, and it is beyond the scope
of this work anyway. Nevertheless, we note an interesting result by Werner [40],
who found a class of mixed entangled states which admit a local hidden variable
description for any local measurement.
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3 Delayed-choice experiments

3.1 Wheeler’s delayed-choice gedanken experiment

The delayed-choice gedanken experiment is arguably the most effective way to
highlight the puzzling nature of quantum mechanics, and how some naive inter-
pretations of the physical processes must be abandoned. A modern formulation
was given by Wheeler [41], although other earlier versions that address essen-
tially the same problem can be found in literature. Wheeler proposed the scheme
represented in figure 8, based on a Mach-Zehnder interferometer.

s A w

|
[ g
N Tr-.. DELAYED T
- 2b CHOICE:
L % 5SIN OR OUT ~ o]
- -
- .

_—B]
7——J

WHICH BOTH

ROUTE ? ROUTES?
18
A

Figure 8: The original scheme proposed by Wheeler. Picture taken from [41].
The setup is a MZI, where the option of removing the last beam splitter is
considered. Half silvered mirrors are %S , while A and B are mirrors.

With reference to figure 8, a half silvered mirror (beam splitter) may or may
not be placed on the right-hand side, before the exit of the interferometer. This
allows the experimenter to choose which kind of experiment he wants to perform,
namely if he wants to highlight the wave-like or particle-like nature of quantum
mechanics. Indeed —assuming 100% efficiency for the detectors— in absence of
the beam splitter the detectors click with equal probability, providing which-
path information. When a beam splitter identical to the first one is positioned
as shown in figure 8, the path difference can be chosen so that the phase of the
interferometer is a multiple integer of the photon wavelength, so that only one
detector will click and the maximum of interference is obtained.

Wheeler proposed to choose whether the second beam splitter is placed or
not after the photon crossed the first beam splitter, so that the experimental
settings are chosen when the photons are already inside the interferometer,
where the physical processes are supposed to take place. Because standard
quantum mechanics does not distinguish between a situation where the last BS
is inserted with a delay, or was alredy there in the first place, this scheme would
rule out the “naive” interpretation that the photon travels one or both routes
according to whether the second mirror is in place or not. This is challenging
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because, if we insist on describing the photon as behaving as a wave or a particle,
according to the kind of measurement that is perfomed, Wheeler’s scheme would
imply that by acting on the last beam splitter, it is possibile to modify properties
of the photon that have already been decided in the past. In Wheeler’s words,

Thus one decides the photon shall have come by one route or by
both routes after it has already done its travel.

A particularly interesting version of the experiment is one where the interfer-
ometer is large enough to make sure that there is space-like separation between
the entry of the photon in the MZI and the experimenter’s choice to keep or
remove the second beam splitter. When this is the case, one can safely assume
that, even if there is some sort of way for the photon to acquire the informa-
tion regarding the status of the second mirror, it could not be relativistically
causal, which is a typical behavior of non local theories. In the following, exper-
imental adaptations of Wheeler’s gedanken experiment, with varying degrees of
faithfulness to the original scheme will be briefly outilned, some of which are
very recent. Wheeler’s hypothesis is experimentally confirmed in all of these
experiments. However, some variants of the gedanken-experiment itself will be
discussed first.

3.2 Quantum erasure

Scully and Driihl [35, 34] proposed a very interesting variant of the Wheeler’s
delayed-choice experiment, introducing the concept of a quantum “erasure”.
This proposal was made with the intention of suggesting a real world imple-
mentation of Wheeler’s proposal, but later gained its place as a kind of delayed-
choice experiment in its own right. A quantum eraser is a device (more precisely,
a physical process) that can act on an quantum system by “erasing” which path
or interference information. The delayed-choice operational mode is then ob-
tained by controlling the timing of the erasure event, as described as follows.

The system that was proposed originally is a pair of atoms located at two
sites (1 and 2). These atoms are pumped by a faint light pulse, which excites
them one at a time. Photons are observed at a detector and, depending on
the energetic configuration of the atoms, the detectors can show an interfering
or non interfering pattern. Figure 9(a) is a representation of the system; the
two interfering (or not) photons are v; and 2. Three systems were considered.
When the two atoms have only two energy levels as in 9(b), light pulses I3
impinge on the atoms, realizing the energy transition from the ground state
to the highest energy (b — a). The system subsequently emits photons (v)
associated to the a — b de-excitation, which is the same for both atoms. In
other words, the state of the system is given by

[6)1 16)5 (I71) + |72)) (219)

Because the states |y1) and |2) are not orthogonal, the square module will
feature an interference term. In this setup the experimenter has no way to know
which of the two atoms has emitted the v photon, interference is observed when
the photons are both detected on the screen.

Which-path information can be registered if, as in figure 9(c) the two atoms
have three energy levels. Atoms are excited by the resonant light I; as before,
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Figure 9: The three different atomic configurations considered proposed by
Scully and Driihl. Picture taken from [35]

but after the ¢ — a transition, atoms de excite to the b energy level. In ket
notation

[0)1 [€)g (1) + 1€}y [0) [72) (220)

And the products (b|c); and (b|c), in the square module are zero because
|b) and |c) are orthogonal, so that there is no interfering term on the detection
probability. Since after the emission the atoms are now in two different states,
namely, one at the ground state ¢ and the other at level b, distinguishability is
obtained and the experimenter knows which one of the two atoms has emitted
the v photon, and consequently obtains which-path information.

The system in figure 9(d) is the one where the quantum eraser is imple-
mented. Light pulses I are also pumped along [; on the system. This additional
light 5 is resonant as well, but with a different transition b — ¥’, as represented
in the figure. The second light source is assumed to always trigger this second
transition. Furthermore, the b’ is strongly coupled to the ground state c, so
that the b’ — ¢ transition fast. The photon associated with the new transition
is ¢, while ~ still refers to the photon emitted by a — b. The whole transition
of an atom is then described by ¢ — a — b — ' — c¢. The final state of both
atoms is ¢ so that the internal states of the atoms do not provide which-path
information anymore. However, the final state of the system comprises a “sig-
nal” photon ~y, which will interfere or not depending on how the experimenter
makes measurements on the “information carrying” photon ¢. It was shown,
on the same paper, that the which-path information is inherited by the ¢ pho-
ton, so that the system as it is now will exhibit which-path behavior regardless

o1



whether the information is experimentally retrieved from ¢ or not. However,
and this is where the “erasure” happens, if a measurement that does not inform
the observer about the spatial origin of the ¢ photon is performed (hence erases
this information), which-path information is lost and interference is restored at
the screen.

Rather than discussing the actual implementation proposal for this system
(we will see a more modern take on the experiment later), we emphasize how all
this lends itself to a delayed-choice mode: the system is split in two parts, the
actual signal, that might show fringes or a non interfering pattern, and, at the
same time, a separate part that allows the experimenter to observe quantum
mechanical complementarity over the first part of the system. Scully and Driihl
themselves proposed to combine this scheme with the delayed-choice paradigm
by erasing the information after the photons have been registeres at the detector.

3.3 Entanglement swapping

A very relevant example of the combination of Bell measurements and the
delayed-choice paradigm is delayed-choice entanglement swapping. Much like
in the wave/particle case, quantum mechanical systems can present separabil-
ity /entanglement duality. Two pairs of polarization entangled photons 1&2 and
3&4 are produced from different sources. Suppose that the initial state is the
product of two antisymmetric Bell states

[¥) = |\I/7>12 |\Iji>34 (221)

|¥~),, represents the Bell state %UHV) — |V H)) relative to the first pair,
and similarly for the second product state. In entanglement swapping three
observers are considered: Alice, Bob, and Victor. Each generated pair sends
one photon to Victor so that he can detect two photons simultaneously, and the
remaining two photons are sent respectively to Alice and Bob. The scheme is

e 1 — Alice
e 4 — Bob
e 2&3 — Victor

Even though the photons recieved by Alice and Bob belong to two different
pairs to begin with, this scheme allows for Victor to have an impact on the cor-
relations between 1 and 4 or, more specifically, entanglement can be “swapped”
from the two original pairs to the 2&3 and 1&4 pairs.

Since Victor recieves two photons at once, the quantum system over which
he perfoms measurements is two dimensional. As a result, he can choose to
perform measurements with respect to an entangled or separable base. In the
former case Victor makes a Bell-state measurement (BSM) while the latter base
choice is separable-state measurement (SSM). Let us assume that Alice and
Bob, as well as Victor, can freely choose their measurement base. As a first
scenario we consider that Victor chooses the separable base

{[H)y [H) g, [H)3 Vg, [V [V s Vg [H)g} (222)
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In Victor’s system, each of these polarization states has % probability. When
a measurement projects the state in either of those four states, the photons
detected at Alice and Bob are projected accordingly to

[H)y [H) s [H)y (V) VD V), (V) [HD, (223)

with § probability (for example, if Victor measures |H) |H) then Alice must
be in the |V) state and Bob too, etc). With this basis choice, Alice and Bob’s
results are not correlated. Nevertheless, The initial state can also be written as

1
) = 9 (|\Ij+>14 {\Ij+>23 o ’\P >14 ’\Ij >23 - |(I);r4> ’(I)+>23 — P )14 ‘(I) >23)
(224)
This algebric manipulation shows how Alice and Bob correlations behave
when Victors is performing measurement on the alternative, entangled, base

{|\:[l+>237 \P_>23’ |<I)+>23’|(I)_>23} (225)

Specifically, each one of Victor’s results still have a probability of i, but
they project Alice and Bob’s state to the entangled states

|w) &) (226)

meaning that a perfect correlation between two photons (1 and 4), that were
created from independent sources, is created without having them directly inter-
act. Entanglement passed from the 1&2, 3&4 configuration, to 1&4,2&3. This
is a very baffling and counter intuitive aspect of quantum mechanical behavior,
interesting in its own right. Still, Peres suggested [28] that a delayed-choice
scheme could be employed on top of this already curious protocol by having
Victor’s measurement happen after Bob and Alice’s detections. Having Victors
measurements change Alice and Bob correlation well after their respective pho-
tons have been registered as events at the detector adds a new level of “quantum
counterintuitiveness” to the phoenomenon.

Furthermore, this scheme shows a less obvious complementary behavior
than just wave/particle, that is, separability /entanglement. The delayed-choice
paradigm, applied to which-path/interference behavior emphasizes how para-
doxical conclusions are found if one accepts the description where a photon is
either wave or particle, and behaves accordingly. The delayed-choice version of
the entanglement swapping protocol, similarly, allows for a similar paradox to
surface when entanglement or separability are assumed to be properties that
the quantum system has.

14’|\I/7>14’ 14’|(I)7>14

3.4 Experimental realizations of different delayed-choice
schemes

Having discussed various elaborations of the delayed-choice gedanken experi-
ments, it is important to emphasize that all the proposed schemes imply, more
or less explicitly, that some requirements are met. These requirements can be
summarized as

53



e the choice is free, or random

As long as the choice is predetermined, we cannot rule out that photons
already have all the informations they need to behave as either a particle
or a wave, given some delayed-choice experimental setup.

e the emission event and the choice are space-like separated

The timing of the choice should be made in such a way that it must be
impossibile for a light-speed signal starting at the choice event to send
information back to the photon, so that the latter can adjust its behavior
(particle or wave like) accordingly. In other words, there cannot be any
causal relation between the entry of the photon into the interferometer and
the choice, hence the two events must be space-like separated. Also space-
like separated must be the the choice and interference detection events. It
might seem like a given that this should not constitute a problem because
photons travel at light-speed, but actual experiments can introduce delays
of various nature on the path of the photon, not to mention that there
might be some uncertainty on the choice time. Further complications are
due to the fact that there always is a time delay between the choice and its
physical realization on the system (like inserting a BS, detecting a photon,
etc.). This is actually a very non trivial problem on some experiments.

e the experiment is perfomed with single photons.

Semi-classical theory of light does not clash with Wheeler’s scheme, be-
cause light is seen propagating as a classical wave at all times, and only
acts as a particle on the detectors. Furthermore, both detectors are con-
tinuously “clicking”, so that the effect is not purely quantum mechanical.

While failing to meet one of the three requirements does not mean that
an experiment is not worth doing, simultaneously satisfying all three of those
is certainly very appealing. In the following discussion of some experimental
realizations, it should be clear how much effort has been dedicated by various
experimental groups to recreate said conditions.

3.4.1 Wheeler’s delayed-choice experiments

Wheeler’s delayed-choice gedanken experiment was first realized experimentally
by [2], [15]. Hellmuth and collaborators used a Mach-Zehnder interferometer
where the light source was an attenuated picosecond laser emitting on average
less than 0.2 photons per pulse, that were delayed by two 5m glass fibers. The
setup is represented in figure 10. The decision whether to extract which path
information or to observe interference was made by means of opening or closing
a shutter (a combination of a polarizer and a Pockels cell) placed on the upper
arm of the interferometer. When the shutter was closed, only the photons
travelling through the lower arm of the MZI could reach the photomultipliers at
the end, thus revealing which-path information —the experimenter knows that
they could only have passed through the lower arm. Keeping the shutter open,
both arms were available routes, and the interference pattern was revealed. The
20ns delay provided by the glass fibers allowed for a delayed-choice operating
mode, where the shutter was opened only after the photons crossed the beam
splitter. This experiment did not use single photons and the the shutter could
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only be opened. This means that only particle like behavior was tested, and no
random choice could be made.
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Figure 10: Sketch of the experimental setup used by Hellmuth and colleagues.
When the shutter composed of POL+PC is “closed”, the photons travel through
the lower arm. Picture taken from [15]

An early realization of a delayed-choice experiment using single photon states
can be found in [2]. The mechanism exploited for the production of single photon
pairs was spontaneous parametric down conversion (SPDC) in a LiIOj3 crystal.
SPDC is now the standard method to generate pairs of entangled photons.
Figure 11 is a representation of the experimental scheme: one of the photons,
which are both linearly polarized, acts as a trigger for a Pockels cell placed
inside a Sagnac interferometer, where the relative phase of the interfering signal
is governed by tilting one of the mirrors inside the interferometer. The other
photon is the signal that may exibit wave or particle like behavior. Delayed-
choice conditions were realized by delaying the signal photon with respect to
the activation of the cell by using an optical fiber.
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Figure 11: The setup used by Baldzuhn and colleagues. Picture taken from [2]

The activation time of the Pockels was controlled via electronic delays in
order to activate the cell when the signal photon was already inside the interfer-
ometer. Furthermore, a second delaying element (a 10 meters long monomode
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fiber) is added to the signal photon to compensate for the switching time of the
Pockels cell. When the PC is not activated, the interferometer should exhibit
which-path behavior, while its (delayed) activation can rotate the polarization
of the signal photon in such a way that interference is obtained. This exper-
iment did not provide space-like separation between the choice event and the
entrance of the photon in the interferometer.

A Wheeler experiment implementing at the same time single photon states,
random choice and space-like separation between the choice event and the entry
event was realized by Jacques and colleagues [18, 19], by means of a 48 meter
long interferometer, corresponding to a delay of about 160ns. This experiment
is arguably the most faithful to the original scheme proposed by Wheeler. The
choice was randomly made by controlling a fast electo-optical modulator (EOM)
operating at two voltages. These two voltages give the two different which-path
and interfering configuration of the interferometer, and are randomly chosen
by means of a quantum random number generator (QRNG) based on the noise
of a white light beam. The base scheme is the same as a the Mach-Zehnder
interferometer considered by Wheeler, but polarizing beam splitters were used
instead of half silvered mirrors. This means that which-path information or
interference is measured with polarization measurements, rather than using the
position of the detector that clicked, as in Wheeler’s proposal. The last beam
splitter is actually composed by a combination of a half-wave plate, a polarizing
beam splitter (PBS), an EOM connected to the QRNG oriented at m/8 with
respect to the incoming polarizations, and a Wollaston prism, used to sepa-
rate the polarization into two different orthogonal components directed at two
detectors. Depending on the voltage randomly supplied from the QRNG, the
EOM can either mix the polarizations (acting as a half-wave plate) and show
interference, or leave them untouched, providing which path information. Single
photon emission and random choice are triggered by two synchronized signals:
the operation of the QRNG itself is electronically delayed by 80ns, plus an ad-
ditional delay of 40ns needed to drive the EOM. The random number generator
is placed at the output port of the interferometer, so that the photon enters the
future light cone of the choice event only when it is about halfway through the
interferometer, which is after it passed the first PBS.

3.4.2 Quantum erasure experiments

Delayed-choice of wave or particle like behavior can also be observed in quantum
erasure experiments. A first example of this is [23], based on the work of Scully
[34]. A schematic layout is shown in figure 12. When a pair of photons is
generated in the region at the right of the slits by means of a S-Barium borate
crystal (via type-I SPDC), one photon propagates to the left passing either
through slit A or B. At the same time the other photon is scattered in the
opposite direction towards a moving detector. After passing through A (B)
the photon crosses the beam splitter BSA (BSB) and is reflected to either the
top (bottom) detector or the beam splitter in the middle (BSM) with equal
probability. If BSA or BSB click, wich path information is known: the photon
came from either A or B. The detector on the right acts accordingly, showing
the typical particle pattern. If the two detectors in the middle click instead,
wich path information is erased, and Dy presents the interference pattern. The
choice happens at the first beam splitter that the photon propagating to the
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Figure 12: Layout of the experiment performed by Kim et al. Photons propa-
gating to the left can either pass through slit A or B, while the other photon
belonging to the pair is sent to the moving detector on the right. Image from
[23]

left encounters (BSA or BSB). The experiment was set so that the distance
from the crystal and the beam splitters was 2.3 m longer than the distance from
the crystal to the detector on the right so as to establish that the choice at the
beam splitter is actually made after the measurement on Dg. This setup does
not provide space-like separation between the choice and the measurement.
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information Mirror
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Figure 13: Schematics of the more recent experiment performed by Ma et al.
with space-like separation achieved. The right-hand side represents detectors
with a 144km separation from the source S. Image taken from [26]

Complete space-like separation between the quantum erasure and all rele-
vant interference events was obtained by Ma and colleagues in 2013 [26]. The
layout of the quantum eraser is fairly different from [23], see figure 13. The
choice was implemented by choosing a polarization basis for the measure. Pho-
ton pairs are created with entanglement between the polarization and path
degrees of freedom. The “system” photon is sent to the interferometer, while
the “environment” photon is the which-path information carrier, and is sent to
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a polarization analyzer well separated spatially from the interferometer. Be-
cause polarization and path are entangled, the environment photon carries path
information that can be extracted with a measurement in an appropriate po-
larization base. If, however, the polarization of this photon is measured on
a different base, this information is lost. This experiment has been done by
the same group in various spatial configurations. The laboratories in Vienna
provided a 55 meter long optical fiber, while in a later realization a free-space
link was used in the Canary Island from La Palma and Tenerife reaching the
remarkable distance of 144km.

3.4.3 Entanglement swapping experiments

Delayed entanglement swapping has also been investigated, and confirmed, ex-
perimentally. The first experimental work on entanglement swapping was real-
ized by [20], but did not implement neither space-like separation nor freedom
of choice at Victor. Victor’s measurement was delayed by about 50ns with two
optical fibers through which photons 2 and 3 traveled (the scheme of the experi-
ment is essentially the same of the theoretical discussion in the previous section,
so we use the same terminology). Alice’s and Bob’s detectors were placed side
by side, and detected the photons 1 and 4 about 20ns after the emission of the
double pair. The separation between them and Victor was about 2.5, about
8ns. Victor’s measurement was in the time-like future of Alice and Bob’s. A
free-choice system was not implemented, and only Bell state measurements were
performed.

An more complete experimental proof was performed in [27]. Random choice
between BSM and SSM was made by means of a quantum random number
generator. The delay at Victor was obtained using a 104m long optical fiber.
The decision and detection events at Victor were only in the time-like future of
Alice and Bob.

58



4 Taking the delayed-choice scheme to space

4.1 Introduction

Quantum mechanics has been extensively tested within regimes bounded by
the distances available on Earth. While many aspects of quantum mechanics
(fortunately) do not require experiments involving large distances, in some cases
being able to increase the spatial dimension of the quantum system is necessary
to highlight phenomena that may or may not come into play only at larger scales.
The experimental efforts discussed in the previous chapter should underline this
necessity. Although the focus of the dicussion has been mainly delayed-choice
type experiments, many aspects of fundamental quantum mechanical behavior
has yet to be tested over large distance scales.

One of the main reasons why there is much interest dedicated to this kind
of large scale quantum experiments (as discussed for example in [33, 32]) is
that, over large scale, relativistic effects — both Special and General — are to be
taken into consideration. So far, a delayed-choice scheme has never been tested
under such conditions, although space-like separation has been indeed reached
in some of the experiments above. It is clear that establishing experiments into
space using satellites would allow to probe fundamental quantum mechanics on
unprecedented scales. A starting point for this new generation of experiments is
low Earth orbit, but in the future one can reasonably expect that distance scales
might be pushed even further. Among the fields that would certainly benefit
from satellite based experiments is the study of quantum entanglement and Bell
tests [9], where spacelike separated events are often mandatory. Furthermore,
we already showed that the delayed-choice paradigm and quantum entanglement
often go hand-in-hand. In general, distances in the order of 1000km would make
it substantially easier for an experimental setup to achieve spacelike separation.

In any case, quantum mechanical tests in space are not by any means limited
to delayed-choice (which nevertheless is the focus of this work). For example,
under certain conditions, reference frames in relative motion can affect entan-
gled states by modifying the polarization correlations [29]. Special relativistic
effects also include phase shifts induced on single photon superposition states
(as we will see), that could in principle be measured when the the velocities
are those provided by LEO satellites. Earthbound experiments performed with
static detectors managed to reach separations as large as 144km for quantum
communication experiments, which is about how far as it is currently feasible
on Earth. How entangled systems behave when in relative motion has been
investigated as well [24]. However, this has been achieved with much smaller
systems (55m) than static experiments. Furthermore, it has been argued [32]
that speeds nearer light speed are needed to to draw more reliable conclusions
about relativistic effects, and unfortunately detector speeds in earthbound ex-
periments cannot exceed 10~%¢ [37]. The speeds and distances accessible to
space based tests can also shed light on the quantum mechanical paradoxes
that arise from the various interpretations of the collapse of the wave function,
specifically in the case where two reference frames disagree on who measured
first. The needed spatial separation and relative velocity can easily be achieved
using satellites.

On a more technological standpoint, it is well worth noting that lately a
lot of effort has been made to envisage space based quantum key distribution
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(QKD) protocols, which heavily rely on quantum entanglement. While quantum
encrypted communication on the ground is possible, the distances that can be
reached are limited, due to the intrinsic losses of optical fibers. If QKD protocols
are realized with satellites, the services can be extended to global scale [5].
Clearly, to realize a fully functioning QKD protocol based in space, one must
first explore all the possible complications that might affect the protocol, such
as the ones mentioned earlier.

Here we present a first effort to measure an overwhelmingly well established
quantum phoenomenon: photon interference at a single photon. This test has
been performed by the Quantum Future group from Padova at the Matera
Laser Ranging Observatory [39]. Good visibility for quantum interference as
been achieved, and in this chapter a quick review of how this has been done
will be presented. In addition, we will give particular emphasis on a special
relativist effect that affects the wavepackets. The possibility of measuring inter-
ference over an Earth-satellite system, makes the possibility of a delayed-choice
experiment very concrete, so that the later part of this chapter will be dedi-
cated to a possibile delayed-choice scheme which borrows many aspects from
the following.

Another crucial test for our purposes that has been been performed, by the
same group, is the experimental proof that photon polarization is preserved over
satellite distances [38], because in the final setup we will be using the photons’
polarization degree of freedom, as well as time.

4.2 Overview of the MLRO experiment

The assumption that quantum superposition of states is preserved over long
distances when propagating under idealized conditions might seem as a safe
bet, but an actual test of this presents many difficulties at hand. Here we will
briefly outline such test, performed at the Matera Laser Ranging Observatory,
of the Italian Space Agency.

Interference was measured with a two-way type of interferometer that makes
use of temporal mode superpositions. We will see that besides the various
techical difficulties that can arise when using such a complex experimental setup,
an interesting theoretical aspect that needs to be taken care of will come up.
Namely, the satellite velocity introduces a relative phase to the wavefunction of
the interfering photon. The next section will be dedicated to the derivation on
this effect. Here we present a short overview of the experiment.

The interferometer is a two-way setup: a system composed by a single un-
balanced Mach-Zehnder interferometer and a mirror. The mirror reflects the
photons, that enter the interferometer once more on their way back. The tem-
poral modes are superimposed during the second crossing, and interference is
observed at one of the two ports. However, in this case, the mirrors where the
photons are reflected back towards Earth are mounted on satellites in orbit.
Although we will sometimes refer to these with the term “mirror”, the satellites
actually mount retroreflectors. Contrary to a planar mirror, a retroreflector al-
ways reflects elecromagnetic radiation with an angle that is the opposite of the
angle of incidence. This is of unvaluable importance, since it means that we
do not have to concern ourselves with the angle of the satellite. These kind of
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satellites have been launched into orbit, for geodynamical studies, from as early
as 1976 (LAGEOS-1).

Input light is a strong laser, with a repetition rate of 100M H z, which is
subsequently attenuated to get a mean photon number per pulse, at the reciev-
ing telescope, of the order of 1073, thus obtaining single photon interference.
Different satellites have been employed in this experiment, and single photon
interference has been measured with visibilities up to 67%. The satellites used
to perform the interference measurements are: Ajisai (1600 to 2500 km), Stella
(1100 to 1500 km), and Beacon-C (1200 to 1500 km).

Retroreflector

/N

Figure 14: Schematic representation of the experimental setup. A MZI on earth
is combined with sending-back retroreflectors which are mounted on satellites
in orbit.

Schematically, the time-bin encoded state undergoes the following transfor-
mations

e the first passage through the interferometer creates a superposition of the
state that crossed the longer (|L)) and shorter path (|S)) path, and we
transmit the output of port 1 to a satellite (hence the minus sign due to
double reflection at the beam splitters)

_ b
V2

e a relative phase is aquired by the state during the time of flight, before
re-entering the MZI. In first approximation, the relative phase is due to
the motion of the satellite. Specifically, if the wavefunction is seen as
two wavepackets temporally separated by At, as in the introductory sec-
tions, one can estimate that in first approximation, the phase shift is
v~ ZF(2Az), with Az is the distance by which the satellite has travelled
during the At time interval.

¥) (IL) = 15)) (227)
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e the photon crosses the interferometer once again. The beam splitter in-
troduces two new possible routes, and the base for the total Hilbert space
describing all the possible spatial modes is given by

[¥') = —= (L) = 7[S)) (228)

(L)L), [S)1S) s [S) [L) | L) |9)} (229)

Interference is observed at the second port, hence the global ¢ factor due
to two single reflections inside the MZI

") = %(|L> (1) +18)) = e [8) (IL) +15))) = (230)
= %(|L> L) + L) |S) — e |S)|L) — e [S) [S)) = (231)

the qubit is time encoded, so that we distinguish states with time mea-
surement. As far as time measurements are concerned, |S) |L) and |L) |S)
are the same state, since a time measurement cannot tell apart the two
possibilities shorter first - longer last, and vice versa.

e three distinguishable states are obtained, corresponding to the 3 different
travel times S — S, L — L and S — L. Transition probabilities with the
states |S)|S) and |L) |L) give  and %, while the transition probability
with the remaining state |L) |.S) are modulated by the phase

(LS = sin®(3) (232)

The phase v is due to the relative speed between satellite and ground, which
varies along the trajectory. As a result, the intereference pattern will not be
constant over time. In the next section we will see a more careful model of
the experiment, and we will see that the simple model sketched above can be
improved.

The unbalancement of the interferometer was ~ 1m (so that At =~ 3ns),
while the coherence time =~ 80ps. This ensures that the |L) and |S) states are

orthogonal, since their scalar product is = e (%) ~ 0. As far as satellite
tracking is concerned, precision measurements on satellite position and speed
are crucial, since they are necessary to the knowledge of the phase and expected
arrival time of the photons. This is why the experiment has been performed
at a laser ranging observatory. Laser ranging observation stations can achieve
precision measurement up to the millimeter order in the position of retroreflector
satellites, by means of measuring the round trip time of a powerful pulsed laser
beam.

A single photon detector is used to measure interference during the pas-
sage of a satellite. The data acquired over a passage is then divided between
different values of the phase v(t) mod 27. The phase values that have been
considered constructive interference are %w <~ mod 27 < gw, while, for de-
structive interference, %w <~ mod 27 < %W. Since a pulsed laser has been
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used, and the time resolution at the detector is sufficiently high (= 80ps), a
three-gaussian-peak distribution is expected. Ideally (we assume the distri-
bution normalized to 1), the central peak has null area when interference is
destructive, and % when interference is constructive. The remaining peaks that
contribute to the total distribution as which-path information should both con-
tribute to the total probability with two constant areas of % that do not change
while the phase 7 spans different values. In practise, the central interfering part
of the histograms obtained were fitted with a distribution that takes into ac-
count an experimental visibility less than one, that is, p = % (1 = Vegp cosy(t)).
Interference was measured with different experimental visibilities depending on
the satellite: Veyp = 67 £ 11% for Beacon-C, Veyp = 53 £ 13% for Stella and
Veap = 38 £ 4% for Ajisai.

4.3 Relativistic correction due to mirror movement

The setup of the experiment is treated as a two-way interferometer. A more
general setup has been treated in the introductory section. Schematically, the
system is composed by one interferometer, which the photon will cross twice,
and a moving mirror. Here we model a propagating gaussian wavepacket as

t—z)?

do(t) = etnl=De (5

(233)

representing a gaussian wavepacket propagating along x axis on from left to
right, with its peak located at * = 0 when ¢ = 0. Note that throughout this
whole computation we always consider one port of the interferometer at a time,
and to simplify the notation we drop normalization factors. The interferometer
acts on the wavefunction by splitting 1 in two distinct wavepackets, as previ-
ously derived. To avoid self interaction of the photon 7. < At, so that the two
split wavepackets are separated enough. The action of the interferometer upon
the first passage of the wavepacket through the interferometer is

P(t) = (1) — p(t — At) (234)

where port 1 has been chosen as the output outlet that will send photons
toward the mirror, hence the minus sign due to the double reflection on the
beam splitters. A second simplification has been made on the above formula:
equation 111 has an additional time shift due to Atg, which is the common travel
time shift between the arms of the interferometer. Later on in the derivation of
the total probability, obtained by integrating the amplitudes over all times, one
can see that the probability does not depend on this time shift. This is true in
general, since the matrix associated to the common time shift operator is a phase
multiplied by the identity. The amplitudes are still technically changed by such
a transformation, but the change is nothing but a common transposition of the
wavepacket on the positive direction of the ¢ axis. One can see the omission of
Atg as a change on the reference frame, that centers the “earlier” peak on a new
time £ when £ — 2 = 0. This description, while simplifying our calculation, keeps
useful quantities such as, say, round trip time, implicit. Having said that, note
that if we would want to restore the more verbose description we could always
retrace the steps of the calculation where said omissions have been made. In
the following we will keep the transformations implicit for ease of computation.
After exiting the interferometer the amplitude has the following form
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Py (t) = [em (5 — giwodte( Jeiwo(t=2) (235)

The photon at this point is travelling towards the mirror. It is convenient
to move to the reference frame of the mirror, since the photon’s reflection on it,
in this frame, will be described by a much more convenient equation than its
non transformed counterpart. Here we simplify the computation by considering
only the radial component of the speed of the mirror with respect to the inter-
ferometer. If B represents the instantaneous velocity of the satellite, which we
consider constant for the time being, to a first approximation, one can only con-
sider its projection on the direction connecting 3 and the interferometer back
on Earth. Basically, we are considering a one-dimensional motion. Here we use
Bradial = B- Using the Lorentz transformation connecting the two frames,

- 236
(o> (236)
t'=~(t - px) (237)
a’ = y(z - pt) (238)

we get the following relations between the Earth’s (z,t) and the satellite’s
coordinates (t',2’):
r—t=~71-8)F —2")=at —2) (239)

where oo = y(1 — ) has been defined. Rewriting the amplitude in this new
set of coordinates we obtain the satellite’s description of an incoming photon

t/—x/)z

G =l

This is where the coordinate change makes things easier: the reflection, as
seen from the mirror, is simply given by the transformation

_ eiwoAtef(ia“/f:)*m)Q]eiwoa(t’—w’) (240)

' — —a (241)

because the mirror is not moving in this reference frame. Applying this to
the wavepacket we find

Yh(t') = [e*QQ(ft,if,)g _ eiwoAtef(iﬂ“u'f:Hm)ﬁeiwoa(t’ﬂ/) (242)

At this point the equation above describes the amplitude travelling back
towards the MZI in the mirror’s reference frame. Because interference is even-
tually observed at the interferometer, another Lorentz transformation is needed
to go back to the initial reference frame. This second transformation is the same
as before, with velocity —f

t =~(t' + Bz) (243)
x =z’ + Bt (244)

hence
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t'+a’' =y(1-p)(t+z)=alt+z) (245)

We apply this transformation to the wavefunction v, to come back to Earth’s
reference frame, right before the photon crosses the interferometer once more.

t+z)2

ba(t) = [ (%

the action of the interferometer on the wavepacket observed from port 1 is
given by 234. Hence, the final result for port 1 is

_ eiwoAtef(az(%:)_M)Q]eiwoa%t-l-x) (246)

Ph(t) = e () — gl (=t o
7eiw0a2Ate—a4(%)2 + eiwoAt(1+a2)e—(%)z]eiwoaaﬂrw)
while, at port 2, we must use () — i (V(t) + ¥(t — At))
20 r—at(BE2)? At — (oSt =Aty
t) =1le T’/ —e e Tc
vt =il .

g 02 €T )— (12 .
+eiw0a2Ate—a4(M)2 _ eiwoAt(1+a2)e—(w)z]ezwoaz(thz)

Te Te

Note that although we have been neglecting normalization factors, it does
not mean that they are not affected by coordinate changes. This global change
comes from the fact that the commutation relations of the creation and annihi-
lation operators are

{at,az,} =5(t—t) (249)

hence, when a transformation is defined on the times, the relation 6(f (z — z)) =

Do j(ijt_'z"), where z; are the zeroes of the function f (z), must be used. If one
Dz | .,

wants to have a normalized commutation rule as in 249 in the new set of coordi-

nates, the transformation must necessarily rescale the amplitudes. Nevertheless,

this is an overall normalization factor over the amplitude as a whole, which we

have been neglecting.

Before computing the detection probabilities, we can check that when the
mirror is not moving we get the same action as a two-way interferometer. A two-
way interferometer with a still mirror is just a double interferometer where all
the phases are the same, hence setting a = § in the formulas for detection prob-
ability of a double interferometer (derived in the earlier sections) we get that,
on the central interfering peak, the detection probabilities for ports 1 and 2 are
1 and 0 (here we are not counting which-path events), i.e. perfectly constructive
and destructive interference. Indeed, when the mirror is not moving, then @ = 1
and the second and third terms on the above equation are summed at port 1
(constructive interference), while they cancel out when observing interference
from port 2 (destructive interference).

If we want the probability densities, we should use the fact that after the

square module, the only overlapping terms that do not vanish are those of
ot (trz=Aty2 _(042(H~m)—At)2 . . .
the form e e e e , while every other overlapping term is

separated by at least At, so it does not interfere because of 7. < At
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|1/J%(t)‘2 — o2 (D 672(a2(t+m):7ft(a2+1))2
poREEER=A | ggi(tizaty: (250)
+267a4(t+zf;m)267(02(%?_N)2 cos (woAt(1 — a?))
R0 = e 2 ()7 ey
pe2(TERI=AL2 | _ggt(ite=iy (251)

2
4t+z—At\2 t+x)—At
26—()( ( +z7.c t) e_(a ( 2)

) cos (woAt(1 — a?))

In this coordinates, evaluating the above at x = 0 we get two well separated
peaks at t = 0 and t = At(a? + 1) > At. The interference term is located
between these two peaks. Furthermore, if we define At’ = a2At the equalities
above become much more meaningful. For instance, at port 1,

|¢%(t)|2 = 6_2"‘4(%)2 + e—2a4($ju’)2
o2t (SR? | 2ty (252)
_a4(t;m)2 _a4(tht’

te o 7 )" cos (cPwo (At — At))

This is exactly the probability amplitude of a double interferometer where

e the two unbalanced arms have different unbalancement length (namely
c¢At and cAt')

e the coherence time of the input wavepackets time is rescaled: 7/, = a =27,

e the central frequency of the wavepacket is also rescaled: wj = awy

This means that special relativity has an effect on observation times, spread
of the wavepackets, and frequency of the wavepackets. Also, the visibility is not
one anymore, like on the simpler analysis of the previous section.

Because we are only interested in interference, we just integrate the central
peak |1/Ji,mt|2 to get

N =

p1 =/ dr i1 it (T =

— 00

_la4(At—At’)2 )
(1 +e ? 2 cos (a’wo (At — At)))

(253)
_ 14 (at—at’)?
(1 —e 2 cos (@Pwy (Al — At))
(254)

DN | =

mz/ dr [t ame (72 =

where the normalization has been chosen so that p; + po = 1. It is not
particularly useful to constantly have both amplitudes at sight, so we just pick
the second port from now on. The second port is also more accessible experi-
mentally because port 1 is where the photons enter the interferometer. If one
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writes the above in the form p = %(1 — Vcos p), phase and visibility become,

: 2 _1-8
using a” = 75

© = woAt—— (255)

v{ (fflfﬁf} (256)

The radial velocity of the satellite changes during the passage of the satel-
lite, but the formulas above do not depend explicitly on the time ¢. Technically,
the Lorentz transformations that have been employed above are not valid in
this case: § = f(¢), meaning that the motion is accelerated and the two ref-
erence frames are non inertial. In practise, the reflection time of the photon
is so small that the motion of the satellite can be considered uniform, and the
transformations are indeed valid for any time ¢. The above is then generalized
via 8 — B(t), where S(t) is the velocity profile of the satellite over one passage,
as obtained via laser ranging techniques. As a result, the phase becomes time
dependent and interference is modulated by the variation of the radial velocity
of the satellite with respect to the ground.

It should also be noted that there is a competing effect on the visibility
between the time shift / coherence time ratio and the At — A¢’ difference. Were
it not for the motion of the satellite, the time shift difference would be null and
visibility would be perfect (ideally). The faster the satellite moves, the larger
the relativistic effect on times is. Typical values for § in satellite experiments
never exceed values as large as 10~ and are around 107° in most cases, so that
only taking the first order of 8 in the above formulas is perfectly reasonable for
our purposes. Using on the above formula At ~ 3ns and 7. ~ 150ps, 8 = 10~*
and B = 1077, the visibilities are 99.9% and 99.99%, rendering the theoretical
visibility drop undetectable as compared to the overall drop we have seen in
the previous section due to mixed experimental reasons. Putting these two last
consideration together, the following is the final result

o(t) ~ 2w AtB(1) (257)
Va1 (258)

As long as the theoretical visibility drop is small compared to the experimen-
tal one, the simplified description of the interferometer of the previous section
is indeed an accurate one, provided that we use as v = o(t) for the phase.

4.4 Experimental realization of an interferometer with which-
path /interfering operational modes

The experimental results presented in the previous sections are very encour-
aging from the experimental perspective of the realization of a space based
delayed-choice scheme, because they show how both interference and polar-
ization are experimentally preserved — at the quantum level — over the long
distances involved with ground-satellite systems. In the following, we present
an experimental setup that with some changes can be used for a delayed-choice
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Figure 15: Photons in the |4} polarization state enter the MZI from the top and
are split by the first beam splitter (BS), and the beam is brought together again
by a polarizing beam splitter (PBS), which transmits the horizontally polarized
component of light, and reflects the vertical part. A quarter-wave plate (QWP)
is placed before the mirror (M) so that photons cross the latter twice before
re entering the PBS. This QWP-M-QWP systems turns horizontal and vertical
polarizations into one another. Interference is observed recombining the tem-
poral and polarization modes of the beam. Temporal modes are superimposed
when the photon crosses the PBS for the second time, while the superposition
of the polarization states is achieved by placing a combination of a half-wave
plate and another PBS in series. Interference is thereby measured at the two
detectors.

type of test. An earthbound interferometer was realized at Luxor laboratories
in Padova. Here we present the details of the design and a description of the
experimental realization. Later on we will see how this setup can accommodate
a delayed-choice operational mode keeping in mind that very large distances
will be involved when using laser ranging techniques.

4.4.1 Idealized scheme of the interferometer

The interferometer considered is a two-way scheme where both time-bin and
polarization degrees of freedom are combined to observe interference. Figure
15 is an idealized representation of the experiment. We will first carry out the
calculations relative to this idealized scheme and, after that, we will discuss
some of the necessary experimental adjustments that need to be made on the
setup.

Input states are diagonally polarized: |+) = %(\H}HV)) or |—) = %(|H>—
[V)). In the following computation the state |+ is assumed. After the first non
polarizing beam splitter the temporal part of the state is a mixture of the longer
|L) and shorter |S) temporal modes, while the polarization part of the wave-
function is not affected. The wavefunction in ket notation is given by
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We are only interested on the port of the PBS that leads to the mirror

because the other port directs the beam outside the interferometer. A photon on

the |S) state must be transmitted to be sent to that region of the interferometer,

while a photon in the |L) state needs to be reflected. This is because the

PBS transmits horizontal polarizations and reflects vertical polarizations. Thus,
writing down the transformations using only the port we need

(19) +21L)) [+) (259)

1 1
1S} |+) = Z 19 (H) + V) = 7 |S) [ H) (260)

and
1
V2

hence, on the wavefunction considered,

L) [+) = = 1S) (1H) +[V)) = % L) [V) (261)

5 US)1H) ~ |1} V) (262)

Transformations defined strictly on just the polarization leave the temporal
part of the wavefunction untouched, so that any time we have a polarization
transformation we can use, for example, Jones matrix notation. The horizontally
polarized state is (), and the matrix associated with a QWP at an angle of
7/4 with the horizontal axis is 1 (17?17 Upon crossing the waveplate, for the

214 144
horizontal polarization

L/ 1+i 1-i 1) 14i/ 1\ 1+i
2(1—i 1+i)<0>_ 2 <_Z~>— 5 17 (263)

ST (V)= () =S e

for vertical polarization. Therefore we use the following on the wavefunction

whereas

-
) >~ |R) (265)
1—1
V)=t (266)
which becomes
1 /141 1—1
g ( ‘2” [Short) |R) — = | Long) |L>> (267)

The reflection on the mirror inverts the direction of propagation while leaving
the polarization vector invariant. This means that right polarizations are turned
into left, and vice-versa, and after reflection the wavefunction is given by

3 (1910 - 5 DR (268
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the quarter wave plate is crossed once again. The outcome is therefore
computed with the same matrix as before. For right polarization

s ) s (L) AR () - e

and, for left polarization

;Gfi 112)1;(1):2“_@2(1%(3):% (270)

In fact, the configuration HWP-Mirror-HWP is often used in real world
applications as a way to switch from H to V polarization states and vice versa.
The wavefunction after the second passage through the wave plate is

S 18)[V) — L) |H)) (1)

The vertically polarized part of the wavefunction is now associated with the
short path. Vertical polarization is reflected when crossing the PBS, so that
vertically polarized photons will be directed towards the longer path. Similar
reasoning applies to the horizontally polarized part of the wavefunction.

%(i 1S)IL)[V) = |L) |S) |H)) (272)

Only one of the two ports of the BS is used, so there appears a % factor on
the wavefunction, and a phase factor ¢ due to the reflection:

1
i]1S)|L)|V)—1¢|L)|S)|H 273
2\@(|>|>|> L) |S) [H)) (273)
Since the states |L) |S) and |S) |L) are not distinguishable with a time mea-
surement, we can rewrite the above as

S ILS) (V) ~ |70) (214)

At this point, the state is still distinguishable: while the time ambiguity due
to the total round trip time appeared, there still is polarization as a distinguish-
ing factor '. A half wave plate and another polarizing beam splitter can mix
polarizations, so interference appears at the detectors. If the HWP is placed
at a m/8 angle with respect to the horizontal polarization, its Jones matrix is
—= (1 1) and its action on [H) and |V) is

V2
H) - \% ([H) + V) (275)
V) - \% (1H) - V) (276)

lhere we are making the assumption that the measurement is made on the {|H),|V)}
base. Strictly speaking, a measurement on any non orthogonal base would indeed restore
interference. In this system we are filtering the results with a second PBS right before the
detectors, that corresponds to performing a measurement on the {|H),|V)} base.
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so that, after the waveplate, the state is purely vertical, because

2 UH) — V)= (H) + V) = 2 V) (217)

As a result, after the final PBS, the state will always be reflected and never
transmitted. If I is the transmission port, and II is the reflection port, and
photodetectors are placed after each port, we would observe constructive in-
terference at I, while destructive interference at I. The role of the ports is
inverted when the HWP is placed a —m/8 angle with respect to the horizontal
polarization axis. This is therefore the interfering configuration of the setup. If
the detectors are connected to an oscilloscope, a single-gaussian peak distribu-
tion is expected.

The wavefunction has not been normalized to keep track of the total losses
due to the fact that we discard 2 output ports. As a result, the total signal is
halved twice, and the total probability here adds up to 1/4. Contrary to the
two-way setup where only normal beam splitters are employed, the output is
purely interfering, rather than just a mixture. This is because we restricted
the possibile paths by means of the PBS and the deviation of the photons
to different paths is not randomly governed by non-polarizing beam splitters
anymore. Losses due to the geometry of the apparatus are comparable to the
two-way interferometer without polarizing beam splitters. Indeed, on the two-
way interferometer seen in the previous section, signal is discarded 2 times: the
first time when the photons are on their way toward the mirros, after crossing
the interferometer for the first time, while the second time when observing
interference from just one of the two ports. The total signal is then damped
by a % . % factor. Furthermore, if one is only interested on the interfering part
of the signal, one must keep in mind that interference makes up only half the
signal, so another % factor on the total probability must be considered. As a
result, the portion of interfering signal, as compared to the input, is lowered by
a 1/8 factor.

Which-path behavior is obtained with a simple change on the interferometer
above, that is, either removing the QWP or placing its optical axis parallel to the
horizontal or vertical polarization axis. Equation 271 does not hold anymore,
and needs to be substituted with

S (S)1H) = 1)[V)) (2789)

The horizontal component is now transmitted by the PBS and takes the
shorter path, while vertical polarization is reflected and the corresponding part
of the wavefunction takes the longer route on its way back. We obtain a wave-
function that has two well distinct time components, instead of the mixing that
occurs with the other configuration.

% (I1S)[S) [H) = |L) [L) [V)) (279)

No changes to the last part of the configuration are made, so that after the
HWP the wavefunction is
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1(\5> 1S) (1H) + (V) = |L) [L) (|H) — [V))) =
. 4 (280)
7 ((5)15) =L} |L)) | H) + (15} 1S) + |L) |IL)) V)

Both detectors will have their signal characterised by the two different trip
times ¢(LL) and ¢(S.S). Double gaussians peaked at two different time values are
expected at both detectors, where the time difference is given by t(LL) —t(S.S).

Because a simple change on the setup as the turning of the quarter-wave
plate can be used as a toggle for interference, the setup lends itself to a delayed-
choice version (with a minor change, as will be discussed on the next sections).
Also, the similarity with the already tested setup for the MLRO experiment
that was presented in the previous section makes it very manageable from an
experimental standpoint since many of the practical difficulties that might arise
when implementing this on a space version would be already taken care of. Still,
the above is an idealization of the interferometer, and the actual experimental
realization slightly differs.

4.4.2 Experimental objectives

The main goal is to realize the interferometer described above, and test both
which-path and the interfering configuration. Furthermore, an assessment of the
experimental visibility of interference corresponding to the latter operational
mode is extracted. A pulsed laser beam with the same wavelength as the laser
available at the MLRO (532nm) is used as the light source.

4.4.3 Modifications on the idealized configuration

A delayed-choice experiment cannot be realized in the laboratory, because of
the optical elements used and the distances involved. Because we need to test
the two operating modes and provide a visibility estimate, a laser beam is used
instead of single photons, as opposed to the idealized case. The coherence length
of the laser is shorter than the length of the 1 meter unbalancement to avoid
interference between the delayed pulses. The time difference introduced by the
unbalancement will be of the order of few nanoseconds, as the detectors will
confirm.

To make sure that the divergence of the laser is the same when the beams are
recombined at the PBS, two pairs of lenses are placed on the longer arm of the
interferometer; this evens out the different divergence that the beam traveling
through the longer arm acquires with respect to the shorter path. The lenses
need to be adjusted making sure that the two light spots, relative to short path
and long path exiting the interferometer from the secondary port of the first
PBS have the same diameter, both near the port and from a distance of ~ 2m.

Another complication is that the phase between |H) and |V') before crossing
the HWP is not 7 as in the ideal case above, because additional phase effects
that are not under direct control build up. This is mostly due to the mirrors,
that upon reflection add a relative phase between the two polarizations. As a
result, the wavefunction in the interfering case before entering the HWP is

72



L (V) — e |H)) (281)

D Polarizer
PBS

AT ) 0 N
N o e I N
ST

S

2

Lenses Mirrors

Detectors

= il 0/

[ Quarter-wave Plate

Sending Back Mirror

Figure 16: A more accurate representation of the actual interferometer realized.
Note the addition of a second QWP and the 4 lenses system.

If one wants to detect interference at the maximum/minumum, an additional
QWP must be placed right before the HWP to fix the phase before entering the
HWP-PBS detection system. Figure 16 represents this adjusted setup.

4.4.4 Methodology of the realization

The input laser generates a beam with too much intensity for our purposes
(10mW), because it might saturate the detectors and it is a bit too bright to
look at for extended periods, especially when aligning the laser beam. The
light is therefore attenuated right at the output of the laser with a 3 orders of
magnitude filter, which still gives plenty of light to both comfortably align the
laser and drive the detectors with sufficient power. Furthermore, during the
alignment process the detectors are not connected, so the filters are easily taken
out (unscrewed) and replaced with lighter filters if ever needed.

A polarizer is also placed at this stage, to feed the interferometer a diagonally
polarized state. After that, the light is reflected by three mirrors before entering
the interferometer. For alignment purposes only two mirrors are really needed;
the third one just makes the interferometer more reacheable and manageable.

The first BS, the two mirrors, the 4 lenses and the PBS are all mounted on
the same frame, although this only simplifies the alignment process and does
not solve it. The beam splitter is a half sivered mirror with a diameter of 2
inches resting inside a cubic box solidal with the frame; the BS can be rotated
and moved inside the box with some freedom. The angle must be at a 7/4 with
respect to incident light, thus ensuring that the reflected part of the beam is
deviated by a m/2 angle with respect to transmitted light. Furthermore, the BS
must be placed inside its rest in such a way that reflected light impinges on the
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first two lenses of the longer arm right in the center, so as to minimize aberra-
tions. All the lenses are solidal with the frame, so that they are automatically
aligned to each other, and can only be moved in one direction parallel to the
laser beam. This degree of freedom is needed to properly adjust the divergence
of the ray traveling through the long arm.

The mirrors in the longer path are mounted on two boxes, also solidal to
the main structure, that accommodates a V-shape configuration, approximately
at a w/4 angle with the light beam and at a 7/2 angle with each other. Fine
adjustments can be made on the mirrors by rotating two knobs controlling
the two rotational degrees of freedoms of each mirror around the vertical and
horizontal axis with respect to the main frame. These are adjusted so that the
beam crosses the second pair of lenses in the middle.

After the lenses, light in the longer beam reaches the PBS. The PBS is in
a completely analogous configuration as the BS, and is adjusted with the same
criteria as the latter. At this point, light coming from the shorter and longer
paths exits the interferometer from the two ports of the PBS. The port that
leads to the outside mirror is the port that transmits light from the shorter
path and reflects light from the longer one. A QWP solidal with the frame is
placed at this port, perpendicularly to the laser beam, with its optical axis at
an angle of /4 with respect to the horizontal polarization axis when one wants
to observe interference. The reflective mirror is solidal with the optical table,
and is adjusted at a perpendicular angle with the beam by superimposing the
reflected beam with the incoming beam.

The other exit of the interferometer is not of direct use in the experimental
scheme, but is actually very useful for the calibration of the two pairs of lenses,
as described previously. Furthermore, light coming out of this port is eventually
used as a stable trigger signal for the oscilloscope, since the various configura-
tions of the interferometer (interfering and non interfering) do not affect its
output in any way, which is always non interfering.

At this point, if all the pieces are aligned correctly, the ingoing and outgoing
beams should be well superimposed all over their paths inside the interferometer.
As already stated, to observe interference one can place, in this order, a QWP,
a HWP, and another PBS before the detectors. Instead of a PBS, a Glan-
Thompson polarizer has been used, since it is a rotating polarizing beam splitter
that also features a secondary exit to observe the part of light that has been
reflected. The fact that this PBS can be rotated also helps with fine adjustments
of the horizontal plane of polarization at the output. When this is simply
operated as a polarizer, the secondary output is closed, and interference is still
detected.

In fact, one can continuously rotate the polarizer from the horizontal to the
vertical position to see the single gaussian signal at the oscilloscope continuosly
variate from a mininum of interference to a maximum. This also makes it easier
to pinpoint the maximum and minimum values of intensity that will be used to
provide the experimental visibility.

Another optical element that can be continuously rotated in order to observe
mixed behavior is the QWP before the sending-back mirror. The two cases
where the waveplate is at a 0 and 7/4 angle with the light beam are just the
extreme cases of a transformation that gradually mixes the polarizations and the
time degrees of freedom to different extents. This behavior was indeed observed
experimentally, and the output of the oscilloscope is represented in figure 20.
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Figure 17: Three screenshots from the oscilloscope, connected to the two detec-
tors simultaneously operating after ports I and II1. From top to bottom: con-
structive/destructive interference at ports I and II, destructive/constructive
interference, which path signal. The arrival times of the peaks are slightly
shifted because the detectors are placed at different distances from the two exit
ports of the polarizer. The signal is triggered with the non interfering laser
pulses coming out of the unused port after the first PBS; note that the inter-
fering peak corresponds to an intermediate time of arrival, between the peaks
corresponding to the short-short and long-long paths.

4.4.5 Fine Tuning

Before placing the photodetectors after the QWP-HWP-polarizer series, we
made sure that the light spot which will eventually be fed to the photodiodes
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must show interference. If the two interfering light beams are aligned more or
less correctly, the typical interference fringes of two laser beams must appear on
a screen (see figures 18 and 19 for reference). Finer alignment is achieved with
a careful manipulation of the knobs of the two mirrors mounted on the frame.
Alignement is complete when, instead of an interference pattern, a solid spot
can be seen on the screen instead of interference patterns.

When the alignement process is complete, the detectors are placed in posi-
tion, and the whole interfering spot is focalized with lenses on their active area
of about 1mm?. Real time signal analysis is provided by an oscilloscope, which
the detectors are connected to.

The oscilloscope characterizes the temporal properties of the signal, and the
intensity of the various peaks. Better alignement of the first QWP is obtained
by making sure that the oscilloscope reproduces, in the two cases,

Figure 18: Circular interference fringes. Source: Wikimedia commons

Figure 19: Linear interference fringes. Source: Wikimedia commons

e which-path configuration: two well distinct peaks relative to the short-
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Figure 20: Signal at the oscilloscope when the QWP is not parallel either to the
horizontal or the diagonal polarization axis. The central peak corresponds to
the interfering part of the signal. The two peaks are non interfering, and their
timing indeed corresponds to either the short-short or the long-long path. The
first image represent the purely which-path configuration, while the last is the
interfering configuration

short and long-long passages; no central peak (short-long passage) can be
seen between these two

e interfering configuration: only one single peak corresponding to the long-
short and short-long passages is observed

When in interfering configuration, the last quarter-wave plate is rotated in order
to observe a minimum of interference from port I, rather than just an interme-
diate intensity.

4.4.6 Data acquisition

Visibility was computed fitting every peak of the output of the interferometer
with the exponentially modified gaussian distribution

2 2 —
fi G A\ p,o) = Ai%e%(mﬁ')‘a -2t) (1 — erf ('M_F\/\f;aﬁ)) (282)

where erf (u) is the error function, defined by
erf (u) = =l /u du'e" (283)
V7 Jo
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and A; gives the area of the i-th peak on the data. The distribution is the
convolution of a gaussian and an exponential, and takes into account both the
gaussian form of laser pulses, and the exponential discharge of the photodiodes.
Experimental visibility is thereby estimated as

Aconstr - Adestr
Aconstr + Adestr

where Aconstr/destr are the areas under the fitted functions in the construc-
tive and destructive case. From figure 17 we can see how one of the two detec-
tors, while roughly showing the expected output at port I1, is not well behaved
enough to provide a valid visibility estimate. It was still worth mounting it so as
to show the simultaneous relationship of the outputs at both ports. Using the
detector at port I, the visibility estimate is derived by fitting the raw output
of the oscilloscope shown in figure 21, using only port I, in both constructive
and destructive case. Constructive and destructive configurations are found by
rotating the HWP. The fit results are in table 2

Vewp = (284)

| SS | SL/LS | LL
Constructive | - 1.000 + 0.005 -
Destructive | - 0.028 + 0.002  0.016+ 0.002
Which-Path | 0.236 4 0.003 - 0.248 + 0.003

Table 2: Fit results for the areas of the Gaussians appearing in the oscilloscope,
normalized to the largest area A.onser = 0.335 + 0.002. Errors are given by the
least square method used for the fits.

The experimental visibility is therefore given by

V =94.6% +0.1% (285)

4.5 Comments on the result

A realistic model of the polarizing beam splitters used in the experiment should
account for the different transmission and reflection coeflicients. Transmitted
light is horizontally polarized with very good approximation, while reflections
retain a horizontally polarized component. This is described by changing the
transformation law of the PBS as

[V) — ity |V) |Refl) (286)
|H) — tg |H) |Transm) + ir |H) |Refl) (287)

where |Refl) and |Transm) are the spatial modes relative to the reflected
and transmitted part of the beam. Only non-negligible coefficients have been
written down in the formulas above. The phase of the states is assumed to be
unchanged by the PBS, so all the coefficients are real. Their square module
must give the percentage of the beam that is reflected or transmitted. For
example, if horizontally polarized light of intensity Iy impinges on a PBS, at
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Figure 21: Data taken from the interferometer representing which-path, de-
structive, and constructive interference, along with the corresponding exponen-
tial gaussian fits. The second plot represents the zoomed in area from the grey
box in the first plot.

the transmission port the intensity is Iz = Iyt% while at the reflection port the
intensity is Ir = Ior2.

When this model is applied to the experimental scheme above, we find that
before the HWP and the Glan-Thompson, the wavefunction is given by

i
2

Because the short-long part of the wavefunction is still proportional to |V —
|HY), visibility is not affected by the non ideality of the Polarizing beam splitters.
Some signal corresponding to the long-long travel time appears at the detectors.
This peak is observed along with the central one in the case of destructive
interference, with area Ajong—iong = 0.005Vns, as shown in figure 21.

The experimental factor with the largest impact on the visibility is the aligne-
ment of the light beams. By looking at the interfering spot that is sent into
the detectors when interference is destructive, the signal does not appear as a
completely dark spot. Rather, on average, the signal on the screen is darker
than any other configuration. This is because the two interfering beams are not
perfectly plane waves, and they are not perfectly superimposed.

A good improvement on visibility is obtained by occluding the lighter areas
of the destructive spot by means of an iris. It was possibile to postselect a

[tuty |LS) (|V) — |H)) —r |LL) (V) + [H))] (288)
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dark spot with a diameter of ~ 1mm, which was focalized on the detectors.
The visibility obtained this way was ~ 98%. This procedure was applied on a
slightly different setup, where the PBS and the BS are inverted. More details
on this different setup will be given in one of the next sections. Because with
this method much better visibility has been achieved, we conclude that the less-
than-one value for the visibility obtained with the whole spot is primarily due
alignement, rather than other physical effects.

4.6 Space based delayed-choice version

In delayed-choice experiments, a “switch” is performed that allows the exper-
imenter to trigger the two complementary aspects of quantum states. In our
case, this switch would have to be in place of the first quarter wave plate. In-
deed, the cumulative effect of the \/4 waveplate at a 7/4 angle, upon double
passage of the photon is the exchange of the polarization states with respect to
their temporal part:

[H)[S) = [V)]S) (289)
V) |L) — |H)|L) (290)

This is the same effect of a \/2 waveplate at a w/4 angle with respect to the
horizontal polarization axis, granted that it is crossed only once (two passages
would get the polarizations back to their original configurations). Ideally, in a
delayed-choice experiment, one wants to change the experimental setup from
a which-path detector to an interferometer, or vice versa, as late as possible.
Physically, the manipulation that allows this behavior change, in this interfer-
ometer, is the polarization swap above described: if polarizations are swapped,
interference is measured, while if they are left untouched, which-way informa-
tion is recorded. With the QWP method, this switch is clearly inefficient, since
it takes the whole round trip time of the photon to be realized. But if a HWP
is put in place right before the photon enters the interferometer for the second
time, almost all the round trip time is used as a delay. Since the time delays
provided by the Earth-satellite distance are, for example, about 10 milliseconds
for a satellite distance of 1500km, no “artificial” retarders like optical fibers are
needed to delay light.

The practical implementation of the switch is not a mechanical one. Instead,
a liquid crystal variable waveplate operating at two switchable configurations
can be used. These configurations are defined by the retardance §. The phase in-
troduced between the components parallel to the slow and fast axis is expressed
in terms of multiples of the wavelength, so that, for a HWP we have § = %,
(7, a half wavelength) and for a QWP § = 1 (7/2, a quarter of a wavelength).
The two configurations needed for operating a delayed switch are § = %, needed
to exchange the polarizations of the two temporal modes, and § = 0, needed
to leave the polarizations untouched. Retardance values for the liquid crystals
waveplates available at the laborarory (Thorlabs LCC-1221a) range from about
0 to about 0.75, so using an integer multiple of the wavelength to not switch
polarizations is not an option.

Different retardance values are obtained by driving the waveplate with dif-
ferent voltages with a voltage controller that can supply up to about 25V. The
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dependence of the retardance from the voltage (V') must be determined exper-
imentally. A quick estimate of the voltage value needed to operate at A/2 can
be obtained by using, in this order, a polarizer, the LCWP, and another polar-
izer, aligned as follows. The axis of the first polarizer is diagonal, the LCWP
horizontal, and the last polarizer is parallel to the first one. Voltage is gradu-
ally applied to the LCWP until no light comes out of the second polarizer; this
means that diagonally polarized light has been rotated by a w/2 angle, which
is the effect of a A/2 waveplate at a m/4 angle with the polarization axis of the
incident beam.

If one wants to reconstruct the whole 6(V) dependence instead, a more thor-
ough calibration system is needed. The system is a series of optical elements,
namely, a continuous-wave laser, a fixed polarizer that polarizes laser light diag-
onally, the LC-waveplate with the slow axis aligned horizontally that introduces
a phase 2w between the horizontal and vertical polarization axes and another
polarizer. The last polarizer is mounted on a computer controlled rotator at
a variable angle 6. A power meter is also connected to the computer, so that
angle-intensity data can be acquired automatically. This allows for a complete
analysis of the behavior of the variable waveplate. The expected intensity, as a
function of the retardance and the angle of the rotating polarizer is

Iy

2

where the angle of the first polarizer is fixed at 7/4 and Iy is the intensity

after the first polarizer. This is derived by using input photons with Jones vec-
1

tor proportional to 7 (1), the matrix for a arbitrarily oriented polarizer and

( (1) 6_97:”5) for the LCWP parallel to the horizontal axis. Substituting 6 = /4
and 0 = % in 291 validates the procedure described above to estimate the A/2
voltage. A single acquisition is made when the voltage (thus ¢) is fixed. The
rotator gradually changes the angle of the polarizer, saving a power measure-
ment for each angle, thus the experimental values are expected to represent the
function above. The acquisitions are subsequently fitted with the function for
each value of the voltage, and the retardance corresponding to each value of the
voltage is estimated. This estimate, unfortunately, shows that even at the maxi-
mum voltage, a single LCWP cannot be operated as a 0-order retarder, because
of a small offset 6 ~ 0.05. The problem is solved by using a pair of LCWPs
instead. If their two slow axes are parallel, then the total matrix associated
with the waveplates in series is

1 0
( 0 e-2mi(81462) ) (292)

meaning that §; + do must add up to % when the switch occurs, and to 1
when it does not. If the slow axes are crossed instead, the total Jones matrix is

1(0,6) = — (1 4 cos (270) sin (20)) (291)

—27i 1 0
e 2midy < 0 e—27ri(52—51) ) (293)

and the difference must be chosen as d, — §; = % for the polarization swap,
while they must be set at the same value when the polarizations are left un-
touched (the overall phase has no physical effect).
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Figure 22: Two liquid crystal wave plates are available at the laboratory. The
figure represents the retardance values obtained from the fit results with the
procedure described above, for the two LCWPs, at different voltages. Note the
offset when 25V are supplied.

Another parameter that must be taken into account is the switching time.
Liquid crystals behave in such a way that transitions from higher to lower voltage
(lower to higher retardance) take longer time than the opposite. The nominal
values of the waveplates for high-to-low are of the order of 10ms while low to high
are 2 orders of magnitude less than that. For the configuration chosen here, we
must firstly choose whether we want to perform a which — path — inter ference
switch or the opposite, and then adjust the parameters as needed. Furthermore,
another thing that should be considered is that the fall time is shortened by a
larger voltage change. For the time being, a preliminary estimate on the rise
and fall times was performed. The results agree with the nominal values.

Because the sending-back mirror would be on a satellite, interference is not
expected to be stable as the case of the laboratory realization, because during the
round trip the photons will acquire the same Doppler induced relative phase as
the MLRO experiment previously discussed. As a result, interference is expected
to be modulated by the Earth-satellite relative speed.

4.7 Alternative setup

A similar delayed-choice scheme can be realized with a simple modification to
the setup discussed earlier. This employs the same optical elements used so far.
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Figure 24: Rough estimate on the rise time of the LCWP.

The calculations are carried out once more in an idealized fashion, leaving out
the possible kinematic phase of the satellite and the additional mirror phases,
since we have already learned how to introduce these phases at need when
discussing practical implementations.

The variant of the previous setup has the BS and the PBS inside the frame
of the interferometer switched. The |4) state after the PBS is then transformed
to

+) = % (15) [H) +¢|L) [V)) (294)

7%

Photons are recombined at the BS, and the new state after the port that
leads to the mirror is given by

5 (8)1H) ~ |1} V) (295)
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Leaving the LCWP doublet off, photons reach the satellite and come back to
the interferometer without changing the polarization state. The BS is crossed
once again, so that before crossing the PBS the state is

1 .
= (IS) (IS) [H) = [L) [V)) + i |L) (IS) [H) — L) [V)))
2V2

1 (296)
== (1519 [H) = S) |L) [V) +4|L) |S) [H) — ¢ |L) [L) [V))

2V2

if the photons are observed from the port of the PBS that leads to the
detectors, the wavefunction is transformed to

i
=— SY|LY |V —|L)|S) |H 297
2\/§(H|>|>\>|>|>) (297)
which leads to interference if we use a HWP and a PBS before the detectors.
Carrying out the same calculation with the pair of LCWPs acting as a HWP on
the photons that are returning to the interferometer, a which-path measurement
is performed instead.

The difference between this and the BS-first setup is that when the variable
waveplates are either not in place, or set to induce a 0 phase shift, we have
interference, while which-way information is detected when these are set so as
to act as a HWP.
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Figure 25: Experimental data and fits for constructive (green line) and destruc-
tive (blue line) interference. The grey area is the detail of the first plot.
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This setup was tested in the laboratory and, as compared to the PBS-first
setup, a similar visibility value (= 93%) was obtained when focusing the whole
interfering spot into the photodetectors.

‘ SS ‘ SL/LS ‘
Constructive | 0.017 £ 0.002  1.000 = 0.008
Destructive ‘ 0.006 £ 0.004 0.034 £+ 0.002

Table 3: Fit results for the areas of the Gaussians appearing in the oscilloscope,
normalized to the largest area Acopstr = 0.428 £ 0.003nsV .

Experimental visibility estimated with the areas on table 3 is V = 93.3% +
0.1%.

When taking into account the non ideality of the polarizing beam splitters,
using 287, the final state before entering the last polarizer is

% [|ILS) (—r?|H) — 3, |V) + t}; |H)) —irty |SS) |H) +irty |LL) |H)] (298)

which is quite different from the BS-first setup. Two horizontally polarized
peaks corresponding to the short-short and long-long times appear. The peak
corresponding to the shortest travel time can be seen in figure 25, while the
delayed peak corresponding to the longest path is harder to see, because it
seems to be concealed by the response function of the photodetector.

The expected visibility computed with the areas of the |LS) peaks is not
exactly one, as the previous case, but

2 42
i o
Tty

where T = t2, — r%. The greater the difference between Ty and ty is, the
more visibility deteriorates.

The coefficients were measured in the laboratory: t%, was found to be at
least 95%, while t%; — r? was found to be at the most 98% = 99% — 1%. These
two values therefore constitute a worst case scenario estimate for the visibility
drop. Using the formula above, we get that V ~ 99.995%, which constitutes the
maximum visibility drop that could be observed with the PBS that have been
used in the experiment.

As previously stated, for this setup an iris was placed after the last polarizer
so that the analysis could be restricted to the part of the signal with better
contrast between constructive and destructive configuration. This improves
visibility from = 93% to ~ 98%. The ~ 0.005% maximum error due to the non
ideality of the polarizing beam splitters can be safely neglected, because it is
three orders of magnitude smaller than the alignement error.

In table 4 and figure 26 experimental data relative to this last visibility
estimate is reported. In this case, ¥V = 97.6% 4+ 0.2%
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ES | SL/LS
Constructive | - 1.000 + 0.007
Destructive | 0.0120 £ 0.0006 0.01249 + 0.0008

Table 4: Fit results for the areas of the Gaussians appearing in the oscilloscope,
normalized to the largest area A.onsir = 2.47 +0.02nsV.
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Figure 26: Oscilloscope data when the iris was set in place to optimize the
contrast between constructive and destructive signal.
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5 General Relativistic effects

5.1 Introduction

Up until now, the main focus has been placed on delayed-choice type experi-
ments. However, taking test of fundamental quantum mechanics to space au-
tomatically opens up many different possibilities. Among these, a particularly
appealing route is to envision experiments specifically designed to highlight the
interplay between QM and General Relativity. Lately, much attention has been
dedicated to this topic, as discussed for example in [31, 43, 42]. This is because
while General Relativity tests have come a long way since the first experimen-
tal verifications, there is still much to be experimentally demonstrated at the
quantum level.

Interaction between gravity and Quantum Mechanics has been first mea-
sured with interferometric techniques by Colella, Overhauser, and Werner in
[8]. Neutrons crossed an interferometer with two different paths under different
gravitational potential, and the phase shift induced by the latter is measured.
The gravitational potential which the neutron wavefunction is coupled with,
however, is the classical Newtonian potential. In this case the predictions made
by General Relativity and Newtonian gravitation are the same, therefore, it
is not possibile to take the experiments as either proving or disproving Gen-
eral Relativity at the quantum level. COW-like experiments evolved over time,
making it possibile to reach a precision on measurements of the gravitational
acceleration g of 2 107 [30]. Still, as emphasized in works like [31], a quantum
test of General Relativity as opposed to Newtonian gravity has yet to be per-
formed. Zych and colleagues proposed interferometric experiments that would
confirm genuinely General gravitational effects, such as gravitational time dila-
tion. One of these is matter wave based, while the other comprises the use of
photons. We note that, while a matter based experiment would necessarily have
to demonstrate a proper time shift to confirm the influence of general relativ-
ity, a photon based test that can detect single photon / gravitational potential
interaction — even just a Newtonian potential — would have to be considered a
success in its own rights, without necessarily a direct measurement of a shift
of the proper time, because newtonian gravity does not predict the coupling of
massless particles to the potential. Such an experiment would then constitute a
good proof of the mass-energy equivalence, which is of fundamental importance
in General relativity. The ideal experimental scenario, though, would have both
effects showing: proper time shift and photon coupling to the gravitational field.

In the following we show how a time-bin encoded qubit can potentially be
exploited to observe a gravitational effect on a single photon wavepacket, where
an Earth-satellite system is once again used. Because of the motion satellite,
relative speeds must be taken into account in the computation, so that the final
result will present special relativistic effects as well as gravitational.

5.2 Possibily measurable effects on a one-way setup

Photons are sent to a satellite in the same way as the MLRO experiment, but
the setup considered is not a two way interferometer. Instead of reflecting the
photon by means of a retroreflector, a second unbalanced interferometer with the
same time unbalancement At as the first one is mounted on an orbiting satellite,
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where interference is measured. The goal is to estimate how and to what extent
the photon is affected by the interaction with the Earth’s gravitational field. In
general, the metric is written as

dr? = ds* = g(2) u,do"dx” (300)

from now on we set ¢ = 1. We adopt the notation with greek indices u =
0,...,3, associating the temporal index to the 0 index, while we use latin indices
only for spatial indices ¢ = 1,2,3. The metric tensor g,, is a function of the
coordinates z* = (¢, z%). The proper time 7 is the time measured according to a
clock in free fall. In general, to get the metric associated to a particular system,
one must solve Einstein’s equations. The general soulution for our simple case
(spherical distribution of mass) is the Schwarzschild metric

goo =1—2¢p (301)
goi =0 (302)
20 wixj
9ij = *(gij + 1+ 2%0 2 (303)
Where the gravitational potential is ¢ = ¢(r) = —2<. G is Newton’s

gravitational constant, M is the Earth’s mass, and r is the distance from the
origin of the coordinate system, where the center of the Earth is located. qubits
are transmitted from a point placed somewhere in the gravitational field at x; in
motion with velocity 81 = %, with 87 = |B31]|. Substituting these coordinates
in 300, using 303, one finds

dTl 2901
S = [14+2p; — B2 (1 - —— cos24 4
s \/ + 2 — 32 < 520 cos 1) (304)

where 60 is the angle between x; and (1. ¢ is short for ¢(|x1|). The
same equation holds for a second point located at xa, also in motion (B2). If
the emission event occurs at point (¢1,x1), and the emission event at (¢2,x2),
when S; emits a frequency w; that is recieved at point 2, the general relativistic
prediction for the frequency shift is [1]

dt, | 14201 — B2(1 — 22— cos? 6,)
1 1 14+2¢1 (305)

Yt \[ 1+ 205 — 2(1 — 222 cos? )

Wy = W

To simplify the calculation, we can assume a 1-dimensional motion. Point
2 represents a satellite falling at constant speed ([, towards the center of the
Earth. Point 1 is placed on the surface of the Earth on the line connecting 2
and O, the origin of the coordinate system. The speed of the point on Earth
(1) is negligible, so the formula above becomes

Wy = wlﬂ 1+2¢1 ~ wlﬁ _ 142010 (306)
diz \[ 1+ 25 — B2(1 - 352-) dts \ 1+ 2p9 — 32

Typical values for 3% and ¢ for a LEO satellite are both in the order of
10719, so there really is no need here to carry out a calculation for all orders,
since we can safely consider just the first order of respectively 8 and (.
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The derivative % represents the relationship between the coordinate times

of reception and emission, in Schwarzschild coordinates. In general, the compu-
tation is more complicated than just the case of the Doppler shift we have seen
earlier. This is because photons are deflected by Earth’s gravitational field, and,
in principle, that interaction should be accounted for. Admittedly, the compu-
tation is fairly easy in the case of the one dimensional motion here. However,
we are tackling this problem with a first order approach, and one can show that
the complete calculation would yield a correction in the order of @B ~ 10~14
(as pointed out in [1]), which we would have discarded anyway. Thus, for the
follwing, we can use the flat Minkowsky metric to get %v in conjunction with
the fact that for a photon the interval equals to zero.

ds* = dt* —dr* =0 (307)
= dt = +dr (308)

the + solution is chosen because the photon is traveling from earth to the
satellite, hence increasing its distance from the origin O

=ty =101 +1r20—11 (309)

the motion of the satellite described with Schwarzschild coordinates is ra(t2) =
ro — Bta, where 1 is the position of the satellite at time to = 0. If 8 is posi-
tive, the satellite is falling towards the Earth. Also, uniform motion has been
assumed. The motion of the emission point is r; = rp, with r Earth’s radius.
By differentiating 309 with these constraints on the motion, we get

dtq
T 1+8 (310)
Note that the 2-dimensional computation where the satellite is still in uni-
form motion but is moving towards a generic direction, has 8 replaced with the
projection of the velocity on the radial direction. For our purposes we continue
with the 1-dimensional case. The final result for the frequency shift under said
approximation is obtained substituting the above in 306

w2:w1(1+5)\/1_i_1;;0%1ﬁ2 (311)

The special relativistic Doppler frequency shift is recovered evaluating this
expression far from the gravitational source where ¢y, = 0, and we get wo =

w1/ % We define

w
ag = 22 (312)

w1
The propagation of a a wavepacket is described by the phase w(t —z). For a
description of the same wavepcket in the two coordinate systems which measure
the redshifted frequencies w; and wsy, we can use the fact that w(t—x) is observer

independent [6], so that, for the two coordinate systems,

wi(T—x) =wa(r — ') (313)
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which can be inverted to find out the transformation between 7 — x and
7/ — /. Both Earth and the satellite will measure times according to their
clocks (here respectively 7 and 7). We can carry out a similar calculation
as in the case where we worked out the sole Doppler effect on the outgoing
wavepackets from the interferometer to the satellite, provided that we promote
times to proper times. Consistently with the notation used in the previous
chapters, we use a notation where the primed coordinates refer to the satellite’s
frame, and the regular ones to Earth’s. With this notation 7 —z = L%(7” —a') =
2(r' —a') = ag(t' —a') (cfr 239). The wavefunction as seen from Earth, after
passing through the interferometer, is given by (omitting normalizations)

b (1) = [T g0t o= (P piwo(7—2) (314)

while, right before entering the satellite’s interferometer, in coordinate sys-
tem of the satellite,

a2 . ag(t/—z/)—At 2 . ’ ’
2/1/1(7_/) _ [e*ac =) _ ezwoAte*(Gfic) }ezwoac(r —z’) (315)

Using the fact that the interferometer is mounted on the satellite is a perfect
copy of the one on Earth, we write down its action on the wavepacket in the
new coordinate system. If interference is being observed from the second port,
the wavefunction is modified according to

Pp(7') = i(r (') + 41 (7 — At)) (316)
S0, at the second port of the interferometer on the satellite, the wavefunction
is

1/}2( ) [ —ozc;(T7m 2 iwoAte—(iaG(T/::”iAt)z

] Iy
_’_eiwg(chtefaé(i" —Z —ALy2 . eiwoAt(l—&-ac)ef(ac(T e) At(aGJrl))Q]eiwgac(T'—x')

(317)

We can set At' = At , and rewrite the above

2! 'z’ At )2

1/)2( ) [ —al (= = ezwoAt —ad( =

+eiw0agAt6—aé(M)2 GWOQG(AH_At )) —a (M)ﬁ iwoaa(+ —z')

(318)

As usual, the time-bin qubit is assumed to be perfectly encoded, so overlap-
ping terms in the square module vanish.

' —at—at’ )2

1 2() = e"200 5 4 oo T

oo TEA | a(agEA) (319)
267(04(; = _At)zef(aG%)Q CcoS (OéGUJO(At/ — At))
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The non interfering peaks are the first two terms because their integration
yields equal and constant values, while the last three give rise to interference
with less-than-one visibility. Integrating the probability density, and restoring
normalization, the total probability is

At —At

p= %(1 —Vecos®) = % —&-% (1 —e_%( =) cos (w, (At — At))) (320)

where the % term comes from the integration of the two non-interfering
peaks. This overall contribute to the probability can be omitted as long as we
refer just to the interference probability (we might have just as well integrated
over the central peak). The above is the same interference pattern of two un-
balanced interferometers in series with different unbalancements At and At’,
crossed by a beam with the following parameters adjusted

e coherence time 7/ = ag'7,
e central frequency w( = agwy

e unbalanced arms time shifts At and At' = At/ag

where the first two substitutions describe the redshift of the laser as seen
from the satellite.
Visibility and phase ® are, expressed in terms of 5 and ¢,

Yo B mtm (BT (g9

q):LJ()(].—OZG)At:OJ(] <1 - (1—'—5)”14—12—:0390—162) At (322)

If the motion does not take place in one dimension, the most straightforward
generalization of the result is derived considering that the motion takes place on
a plane instead. Let 6 be the angle between 8 and the vector x2 —x7, connecting
the satellite to the point of observation on Earth. Still in the approximation of
uniform motion

dt
dit; =1—[fcosf (323)
Since the approximations made on the second factor of expression 306 are

still valid, the generalized result, to the first order in 8 and ¢ 2 is

@:wo(l—(l—ﬁcosﬁ)uw>At (520
324

2

~ (—Bcost + % — (2 — p1))woAt

Alternatively, a calculation based on the spectral amplitudes as a function
of the frequencies could have been been perfomed. Since the relativistic trans-
formation here is defined on the frequencies, this method might be preferred.

91



As a double check, as well as completeness, the main points of the calculation
are reported.
The amplitude after the first interferometer is,

w—wq |2 .
di(w) = e (57 (1 = emitomwoar) (325)
frequencies are transformed according to 311, so that right before entering

the second interferometer, the wavepacket is

w! fag—wo

P (w) = e_< 2o )2 (1 _ e—i(W’/ac—wo)At> (326)

Interference is detected at the satellite, observing at port 2. The second
interferometer transforms the wavepacket as seen in the introductory chapters

2
W' ag—wo

Py (w) = 6_< 2 ) (1 — e iW fag—wo)At |

(327)
+e—i(w/—w0)At _ e—i(w'—wo)Ate—i(w//ag—wo)At)
And the probability density function is
5 , _(u//aQG*wo>2 ( , )At ( ,/ )At
w)=e 7 2 — 2eM\ W Two)al | getlwW /aGmwo)Aal
ol () ( 529

_ei(w/+w'/ac—2w0)At _ ei(wl/ac_“’/)At + C.C.)

with c.c. denoting complex conjugation. After integration over all frequen-

cies, three vanishing terms are obtained because the coherence time o' is much
smaller than At. These terms are
(agAto)?
4V2rolage™ 2 cos(wolag — 1)At) (329)
to)2
—4V2ro2ace” e (330)
(At(1+ 51002 1
—2V2ro2age” p coS (wo < — 1) At) (331)
ag
(332)
The only non vanishing term is
(At(l—ag)o)?
—2V2ro?age” 2 cos (wp (g — 1) At) (333)
so the total probability, after normalization, is
1 1 (At(l—ag)e)?
P=3 + 3 (1 e T s (wo (g —1) At)) (334)

and substituting At’ = At/ag we get the same result of the previous calcu-
lation, as expected.
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5.3 Comments on the result

The same result as equation 320 has been derived in [43] for a different setup,
where the use of a single Mach-Zehnder interferometer is proposed. The two
arms are placed at different heights, so that photons traveling through them
interact with two different gravitational potentials. The possibility of realizing
an equivalent experiment which is ground-satellite based was also suggested.

The result of this section emphasizes how the speed of the satellite is an effect
that cannot be neglected for this type of experimental test. For a numerical
estimate on the effect, we can consider circular orbit, in which case the phase
shift becomes

3
~ (—fcost — 52 + ¢1))woAt (335)
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Figure 27: Gravitational contribute (¢1 — ¢2) woAt to the phase shift for differ-
ent values of the time delay at different heights, for the wavelength A\ = 532nm.

5.4 General relativistic effects on two-way setups

Gravitational effects do not affect a two-way MLRO type of experiment when
considering the first order in 8 and ¢. To understand why, it is not strictly
necessary to redo all our calculations, because by now we have developed a
shorthand for treating this kind of problem. All the important physics at work
on this kind of computations can be summarized by the transformation that
the frequencies undergo, from the second that the wavepacket enters the first
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interferometer, to the time when interference it is eventually observed at the
detectors. Hence we omit every direct transformation on the wavepackets, which
at this point are just cumbersome and unnecessary.

We will be using 305 as the general formula for frequency transformations,
here re-written again for reference (where terms in the order of 3%¢; » have been

neglected).
1 ! 0 | 1+2p— 2
o —w + B’ cos +20 - (336)
14 Bcosh \| 1+ 2p — B2

where ', ¢’ refer to the reciever, and 3, ¢ to the emitter. For simplicity, the
motion is assumed one-dimensional, so that 6 and 6’ are either 0 or 7.

e the photon exits from the first interferometer and bounces off the satellite.
The only element in motion in the system is the satellite, with velocity

B =B,
[ 142

e the photon is transmitted back to Earth and frequencies are observed with
respect to Earth’s clocks. The emitter and reciever roles are inverted. The
angle also changes: ¢/ = —6

w41 1+290/_62_ 1-p
w_w(1+ﬂ)\/ 1120 ‘148 (338)

e interference is detected. The interference pattern detected back at the
interferometer is not affected by the gravitational potentials, and mea-
surements have the same outcome as the case where gravitational effects
are neglected. The interference pattern is obtained by taking the formula
for a double interferometer with different unbalancements, and substitut-
ing all the relevant quantities with their transformations induced by the
frequency shifts here derived.

5.5 Comments on the result

We conclude that in a two way interferometer, when photons are sent back with
a satellite, no gravitational effects can be measured to the first order, and the
sole Doppler shift affects measurements. Higher order effects do appear in the
term %, for example, when considering the radial motion of a rocket launched
from Earth. The rocket’s speed couples with the gravitational field, and effects
of the order Syp(r) appear, because the altitude of the satellite changes during
the motion. In other words, the reflection of the two wavepackets on the satellite
happens at two different heights, that is, at two different gravitational poten-
tials. The same effect is present when the satellite is in elliptical orbit, which
provides a motion of the satellite through different values of the gravitational
field, although sufficiently large radial speeds might be difficult to achieve.

However, since the effect has yet to be measured experimentally, it might
be best to focus on experimental possibilities that predict the effect at the first
order.
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6 Conclusions

An interferometer that can in principle be taken as-is to be employed as the
earthbound part of a space based version of the famous delayed choice exper-
iment was realized in the laboratory. Which-path behavior and interference
were observed to a very good degree. Specifically, the assessment of interfer-
ence visibility, which was done after careful alignement of the setup, yields a
value of ~ 95%. A comparable value of =~ 93% was obtained with an alterna-
tive setup which has the BS and the PBS inverted. We suggest the hypotesis
that the main cause for less-than 100% percent visibility is linked to alignement
imperfections due to the fact that the superposition of the wavefronts of two
light beams is slightly off. This could be corrected with the use of more precise
optical components, if needed.

As far as theoretical computations are concerned, a good formalism to deal
with space-based interferometric measurements was pointed out, which allows
to take into account both special relativistic contributes and general relativistic
corrections to the amplitude describing the photons involved with this kind of
experiments. Two different setups, which are candidates for the measurement
of single photon gravitational redshift, were analyzed with this formalism. The
setup with one interferometer on the ground and the other on the satellite,
in principle, constitutes a good way to observe this effect by means of a phase
measurement, to the first order in the gravitational potentials. This is especially
true if the interferometer is allowed to introduce a time delay in the order of
few microseconds (this may be achieved with optical fibers), which would mean
that the gravitational contribution to the phase would be in the order of the
radian, as shown in figure 27.
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