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Abstract

Nowadays, ecological sciences depend heavily on genetic studies. Among these,
analysis of environmental genetic material — i.e., metagenomics — is becoming
increasingly popular for inferring essential information about microbial life and its
interaction with ecosystems. An interesting application of metagenomics in this field
is metagenomic comparison, that is the assessment of biotic dissimilarity between
microbial environments. Current technologies allow us to produce Terabytes of
metagenomic data with little effort. Consequently, the analysis of datasets of such
size requires a large amount of computational resources. This led to the development
and application of several strategies of dimensionality reduction, which are now
being exploited for metagenomic comparison too.

In this thesis, we analyse three different methods of reducing dimensionality to see
what an impact they have in relation to reference-based methods. Our results show
that a sketching on distinct k-mers, as implemented in the tool SimkaMin, have
almost no impact on both abundance-based and presence-absence-based comparison
for a sketching size larger than 105 distinct k-mers. On smaller sketches, quality of
results decreases. On Spriss’ sampling scheme, in which reads are selected uniformly
at random with replacement, abundance-based Bray-Curtis dissimilarity showed
no significant variations on moderated sampling rates — e.g., above 2% — and a
marked quality decline on lower sampling rates. When the k-mers used are too short,
12 bp for instance, this sampling scheme seems to improve drastically dissimilarity
measures. On the presence-absence Jaccard distance, instead, Spriss’ subsampling
scheme improves the correlation between reference-based and compositional-based
methods at moderate sampling rates. Lastly, comparison of approximate sets of
frequent k-mers, as outputted by Spriss, hold lower correlation with reference-based
dissimilarities, except on very short k-mers.

Overall, our study suggests that rare k-mers are of both types: weakly informative
and noise. Their impact is imperceivable on abundance-based dissimilarity, whereas
the noisy part of them affect negatively the quality of the Jaccard index, which
benefits from a moderate subsampling indeed.
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Chapter 1

Introduction

Due to a global concern about detrimental environmental changes, which, already
predicted, are now being witnessed, ecology is becoming an increasingly popular
science. Besides, thank to rapid technological development, which has made fast
and cheap genomic and metagenomic sequencing feasible, it is now possible to study
ecology by means of metagenomics, which is the focus of our thesis.

1.1 Background

Ecology knowledge has numerous applications and it is deeply influential for our
society. Indeed, it is essential in evolutionary biology and conservation biology, it
expands our understanding of geology, meteorology and medicine, and drives plenty
of our thoughts and actions, thence any real philosophical investigation. Here, we
are interested in microbial comunities, which are ubiquitous in our biosphere and
play vital roles in every ecosystem. Microbes, indeed, can remediate toxins in the
environment — including oil and chemical spills resulting from human activity, —
can transform CO2 into organic carbon, digest food that their hosts cannot digest and
provide them with essential nutrients, suppress some pathogens and regulate immune
response and epigenetic expression of their hosts [1, 9, 36, 45]. It is crystal clear, thus,
how useful it is for us to understand, control and manage microbial communities.
For instance, human microbiota composition may discriminate between healthy
and ill individuals, hence providing reliable diagnosis methods and, maybe even
more importantly, a new landscape in disease comprehension and treatment. We
refer the reader to [7] for a wider view on current applications, interests and future
perspectives.

As far as microbial comunities are concerned, metagenomics comes to our help. It
is common practice, indeed, to infer their microbial compositions from the genomes
collected from their environments, which constitute the metagenomes of those
communities. Thank to the genome–individual bijection generalised into a function
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Introduction

from genome to species, or other Operational Taxonimc Units1 (OTUs), it is possible
to determine the microbial composition of an environment via taxonomic binning,
provided all the genomes present in it are both detected and known. Unfortunately,
this is never the case, but relevant information can be extrapolated from available
data nonetheless. For instance, it is still possible to estimate statistics like the
number of different species in a sample (species richness) and the distribution of
species abundances. Many of such statistics are commonly referred to as α-diversities,
which are presented in Section 2.4.

Another bioinformatic technique to infer useful ecological information is to
compare distinct metagenomic samples between each others or with some reference
samples. In other words, we try to assess biological dissimilarity of distinct samples,
commonly referred to as β-diversity. Several approaches are used to carry out
such comparisons, some of which are described in Section 2.5. In fact, this is the
technique specifically addressed by this thesis.

Compared samples may have been collected from separate environments, or
from one environment in different moments. Noticeable is that a “community of
transcripts” (RNA molecules), a “community of proteins” or an “arrangement of
biological functions” are addressable as well by these methods.2 Therefore, this
technique applies to multiple purposes. Among them:

1. Diagnosis: compare patient’s microbiomes against references;

2. Monitoring microbial comunities over time (of great impact for agriculture, food
industry and conservation biology, but also for personalised medical treatment);

3. Evaluation of the health of an environment (similar to medical diagnosis);

4. Assessment of compatibility of results of different Next Generation Sequencing
(NGS) technologies, which are often biased [7];

5. Appraisal of human activity impact on environment, especially useful for
assuring safety of new products or services.

6. It might even corroborate dating in archaeology and evolutionary biology.

Moreover, in the current global scenario, applications of metagenomic comparison
might reveal to be even more useful than one may believe. In fact, if we think of
farming or food industry, not only it would provide an alternative quality control, but
even an additional sanity check. This is because increasingly often new pathogens
are emerging and they might elude traditional inspections.

1Operational definition used to classify groups of closely related individuals.
2However, for the sake of simplicity, we only target metagenomics.
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1.2 – Purpose of the Thesis

We could even force our creativity and speculate on purely imaginative applica-
tions. Observing animals’ behaviour, we notice that some of them feel in advance
geological events like earthquakes. Therefore, in spite of the difficulty in guessing
any evolutionary advantages for microbial comunities to predict an earthquake
and reorganise itself accordingly, what if few of them were nonetheless affected in
advance by such phenomena, like animals are? Furthermore, it is reasonable to think
that weather conditions both influence and are influenced by microbial communities
and it may be scientifically interesting to understand if and how they change with
weather. Even more so, life has proved to actively influence global climate [3, section
1.2]; what if peculiar communities could help weather forecasting?

Lastly, despite having adduced a consistent amount of reasons supporting interest
on this field, as more and more evidence of essentiality and impact of microbiomes
is collected, we shall not forget the risk of overestimating both their importance
and our understanding of their dynamics. Moreover, we reckon that human activity,
especially its intense chemical and electromagnetic pollution, has been confusing
myriads of living beings and so we ought to consider instability of methods based
on microbial life.

1.2 Purpose of the Thesis
The classification of diversity measures, and β-diversities in particular, into reference-
based and reference-free diversities is of great interest in our scope. In the first
case, the species (or whatever OTUs or functions) detected in the sample are firstly
determined via taxonomic binning and then considered in subsequent computation
in place of reads. In the other case, instead, reads in the sample are directly used in
the computation.

Ideally, reference-based approaches should be the most meaningful and reliable
since the real target of comparison are “effective” species rather than genetic se-
quences. However, for genomes of most species are still unknown, reliability is
doubtable.

Furthermore, a big issue in metagenomics is data dimensionality and, hence,
computational time and resources requested for metagenomic analysis. Indeed,
Terabytes of data can be easily produced, whereas their analysis is a bottleneck.
Reference-free methods are usually faster as they do not require the identification of
the source of each read, yet they benefit from dimensionality reduction nonetheless.
However, while time efficiency would naturally improve, its impact on results is
still unexplored. For example, subsampling would likely impact differently rare and
abundant species, hence possibly biasing results.

With this thesis we try to enlighten such an impact from an empirical point of view.
To do so, we compare β-diversity estimates obtained using k-mer-based methods
on subsampled metagenomic data with both those obtained without subsampling
and those calculated with reference-based approaches. The latter is carried out by
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classifying metagenomes with the Kraken 2 software and by estimating species
abundance through the tool Bracken. For k-mer-based dissimilarity computation
we rely on Simka, which also provides the first subsampling technique we study.
Other two subsampling approaches come from the tool Spriss.

1.3 Organization of the Work
In Chapter 2 we firstly introduce some relevant vocabulary of ecology and biodiversity.
Afterwards, we consider the mathematical notions of diversity and dissimilarity
and we present how these tools are applied to evaluate biodiversity. Hence, alpha,
beta and gamma diversities are explored in details, with particular focus on beta
diversities, which are the core topic of this thesis.

Subsequently, experimental settings and the implementation of the analysis is
described, with essential details about the tools we exploited.

Afterwards, in Chapter 4 we present our analysis of the results we collected on
each dissimilarity measure, on each dataset, for each subsampling scheme. Lastly, a
brief recapitulation of the results we observed concludes the thesis.
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Chapter 2

Biodiversity Measures

Whenever an artisan manufactures some implement, he/she must take into account
the necessities of his/her customers. The latter, on the flip side, interface with
the craftsman to know how to properly use their purchase. Similarly it goes for
bioinformatics computer engineers and biologists.

Throughout this chapter we build such an interface. Therefore, we shall report
clearly what we intend by “diversity” in a metagenomic context, how we measure
such diversities, warn about possible conflicting concepts and methods, and explain
how results are shown. Before diving into metagenomic diversities, however, a brief
summary on biodiversity is deserved. Indeed, that is the field in which we move
and we ought to agree on the vocabulary we use.

2.1 Biodiversity1

Metagenomic comparison, any possible diversity/dissimilarity measures based on
metagenomic samples, appears as a means for measuring life diversity. Therefore,
we likely think of it as a gauge of biological diversity, i.e., biodiversity. However,
while being a powerful tool to asses the latter — genomic diversity has been
regarded as “fundamental currency” of biodiversity, actually, — we should remark
that biodiversity has a broader meaning among scientists. In fact, besides living
organisms and their complex interactions, biodiversity is usually defined so to include
their relationships with abiotic (non-living) aspects of their environments as well. A
formal definition of biodiversity is: the variety of life on Earth at all its levels, from
genes to ecosystems, and the ecological and evolutionary processes that sustain it.

On a large scale, the distinction just highlighted is definitely relevant. Indeed,
two communities equally composed can act rather differently in diverse ecosystems:
just consider the behavioural discrepancy of the same individual in summer and

1We refer to [3, 7] as main sources of information for the content of this Section 2.1
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winter. Moreover, both an oak tree and an acorn belong to the same species, yet
their impact on their ecosystem is irrefutably different. Notwithstanding, coming to
microbial comunities, their richness in species composition and their high mutation
rate may result in sharp discriminants between distinct ecosystems; therefore, such
communities might carry information about their relation with abiotic environment
too. Nonetheless, by the same argument and remembering redundancy of microbial
individuals, though improbable, divergent species composition and distribution
might be detected from ecosystems that we would characterise as (instantaneously)
very similar.

In ecology, many concepts that we have already been using widely in the text
have precise meaning, which we must report to avoid confusion. Before that, of
paramount importance is to reason in a hierarchical way: different concepts are
arranged in hierarchies, meanwhile one term can be used at different levels with the
same meaning but unlike effect.

Biological taxonomy is the first hierarchy we find. While there are no exhaustive
definitions of species and there are several possible categorisation approaches2, there
is no vocabulary confusion and, moreover, we will stick to species level only. Thus,
we avoid expanding this subject. We shall nonetheless recall that species are not
the only possible fundamental block on which a taxonomy is built; in fact, species
constitute just some of several possible Operational Taxonomic Units (OTUs),
which are operational definitions used to cluster together groups of closely related
individuals. More relevant is, instead, the relation between ecosystems, communities,
populations, environments and so on, which we now describe with the help of Fig. 2.1.

Groups of cohesive individuals of a same species which share genetic or demo-
graphic aspects more closely with each other than with other individuals of the same
species are called populations.3 It is possible to define a population diversity4, but
we do not bother about that since metagenomic data are intrinsically unsuitable for
the purpose. In spite of that, microbial populations detection has lately been pro-
posed on the base of amount of identity in whole genome alignment as an indicator
of recent horizontal gene transfer [4].

Several populations of different species naturally interacting in some environment
form a community. For instance, the collection of species associated with ripening
figs in a tropical forest is a community. This concept, however, is probably even
more cumbersome than that of “species”. A small community can be part of a wider
one, comprising several communities and some populations might be assigned to

2Cladistic, phenetic and evolutionary taxonomies, for example. See [28, chapter 6]
3Hence, populations are clusters of individuals of a same species. Unfortunately, the same word

“population” in used in statistics with a different meaning; we will try not to use the statistical
meaning in order to avoid confusion.

4Diversity or dissimilarity. We clarify the difference between the two notions in Section 2.2; in
this section we just use the first of the two terms for simplicity.
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2.1 – Biodiversity

Figure 2.1: Representation of some relationships between populations (triangles),
communities (circles), abiotic environment (grey shade) and ecosystems (rectangles).

different communities depending on the interest of the biologists who study them.
Taken together, a community and its environment form an ecosystem. Following

the ambiguous definition of “community”, we can find larger and larger ecosystems
up to the entire biosphere. Ecosystem diversity takes into account species numerosity
and distribution, their functions and relationships, but also physical characteristics
of the environment.

As regards environment, ecoregions and landscape diversities are addressed
too by biologists. These regions being dealing with large regions on earth, however,
they are not of our interest.

Two key concepts in our scope are those of microbiome and microbiota. While
biology being an intrinsically “imprecise” science in many of its definitions, experts
from all over the globe have recently forgathered5 to make order on the definition of
these two terms. Formerly, they were used as synonyms by someone; others referred
to microbiota as the effective microbial comunity whereas its collective genomes
being a microbiome; and still other definitions have been used. Moreover, it was
common to reserve the two buzzwords for those microbial comunities occurring in
and on host multicellular organisms. As a result of the discussion, researchers have
proposed to address any community of living microorganisms present in a defined
environment (not necessarily a living host) as a microbiota. Viruses, phages,
plasmids, prions and the similar are therefore not part of a microbiota. Instead, the

5March 2019, MicrobiomeSupport project workshop.
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latter are part of a microbiome, which comprises a microbiota and its biotic and
abiotic “theatre of activity”.

Consequently, metagenomic diversity is related to many of the diversities
within and between the presented “entities”, yet distinct from them all. As metage-
nomic samples contain large portions of relic DNA sequences, which are extracellular
nucleic acids derived from dead cells, they usually embrace abiotic elements. On
the other hand, they cannot contain every kind of entities present in an environ-
ment. Abiotic compounds aside, think that even DNA and RNA are sequenced
separately, which implies bacteria and several viruses being sequenced using dif-
ferent technologies, which are not comparable in principle. Were these distinctive
aspects of metagenomic diversity not enough, the availability of genetic material
can vary enormously between individuals: therefore, genome abundance is not even
proportional to species abundance [37].

For the sake of completeness, we shall mention that chemical methods for
excluding extracellular DNA before sequencing have been proposed [27], hence
allowing to estimate microbiota diversity. However, such methods are still not
universally adopted. Moreover, despite relic DNA having shown to have little
effect on estimates of taxonomic and phylogenetic diversity [20], in peculiar cases it
could introduce “history” into measures of environmental diversities. If the latter
consideration is definitely daring and rather useless on its own, special attention
should be paid when exploiting metagenomic β-diversity for temporal studies and
security assessment of novel technologies.

Having clarified relevant vocabulary and differences between metagenomic com-
parisons and other comparisons, we shall discuss briefly the notion of diversity
itself.

2.2 The Notion of distance
Diversity is mathematically measured through the concept of distance, or metrics,
which, on a set M is a function d : M×M → R such that for any x, y, z ∈ M it
holds:

d(x, y) = 0 ⇐⇒ x = y (2.1a)
d(x, y) = d(y, x) (2.1b)
d(x, y) ≤ d(x, z) + d(z, y) (2.1c)

The couple (M, d) is called a metric space.6.
A distance is, then, what allows us to measure diversity, provided we managed to

define a sensible metric space. The key point is the codomain being R, which is an

6Not to be confused with a measurable space. Notice that d(x, y) ≥ 0 as a consequence of the
definition.
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2.2 – The Notion of distance

ordered field, thus making comparisons feasible. Intuitively, the higher the distance
d(x, y) between two objects x, y ∈ (M, d) is, the more diverse or dissimilar they are.

Sometimes it is convenient to relax some of the constraints (2.1a) to (2.1c): a non
negative function satisfying only Eqs. (2.1a) and (2.1b) is called a semi-metrics,
whereas a function satisfying Eqs. (2.1b) and (2.1c) and such that d(x, y) = 0 ⇐ x =
y is a pseudo-metrics. The latter arises naturally when calculating the distance
between elements of a set over which an equivalence relation maps those elements
to their equivalence class in the quotient set over which a metric is defined. Notice
that a pseudo-metrics captures well the meaning of geometrical similarity. As we
will see, also semi-metrics are profitably used as diversity measures.

Some authors prefer to use the term distance only for strictly metric functions,
and talk about dissimilarity as a general expression. While this distinction is
quite reasonable, we find in literature unclear differentiations between diversity and
dissimilarity. Often, the former is reserved to α-diversity, whereas the second one is
used for β-diversity indices [2, 31], which, however, seems to us inconsistent with the
name “β-diversity” itself. Elsewhere, we feel that diversity is used for unbounded
functions while dissimilarity for bounded ones, where total dissimilarity is the higher
bound and perfect similarity the lower one. Because of this confusion, we will just
use these two terms interchangeably.

While similarity as just defined suite well β-diversities, evaluation of α-diversities
requires different approaches. In that case, indeed, one’s interest is to quantify the
overall diversity present within one single sample. Therefore, diversity indices are
used, which not always make use of distance functions. We discuss some of them in
Section 2.4.

Consequence of the above definitions is that, given a very general universe M,
in order to measure difference between two objects in it, we would need to define
the values of a distance d case by case. For this is impossible in an infinite universe,
rather than assigning real numbers to each couple of objects, we define a procedure
which enables us to determine such values in an automatised way. The physical
measurement of distances by comparison with a unit of measure is probably the
easiest of such procedures.

There exist, however, sets where such procedures are expressed by mathematical
formulas. In the plane of real numbers R2 we calculate the Euclidean distance
between two points (which are advantageous representations of two objects), provided
their coordinates have been physically measured. Because we commonly work on
metric spaces (M, d) where d is algorithmically defined, it is worth underlying that
the difference between two objects is not only captured by some transformation of
d but also by the map from “real objects” to M.

As far as our work is concerned, parts of the map from environmental samples to
some tractable space M are:

• Sequencing:

13
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– Everything that is not a (ribo-)nucleic acid is discarded;
– Nucleic acids are sampled;
– Their structure and epigenetic markers are ignored;
– Integrity of the genomic sequences is lost;
– Letters of the alphabet map signals detected from different nitrogenous

bases;

• Quality filtering;

• Eventual further transformations of metagenomic data (e.g. k-mer decomposi-
tion);

• Eventual dimensionality reduction.

Thus, plenty of differences are disregarded from the beginning and would never be
quantified by any measure we define. This shed some more light on the distinctions
between comparisons remarked in the previous section. Finally, the last point in
the list clarifies the goal of our thesis work: we empirically measure the impact of
dimensionality reduction in the assessment of metagenomic diversity/dissimilarity.

2.3 Diversity Indices
Several indices of biological diversity are employed by the scientific community.
While being primarily interested in those based on metagenomic samples comparisons,
we shall provide an overview of the subject from a wider perspective. In this section
we summarise the notation we use and give a general introduction, discussing briefly
various proposed ways of categorising such indices. Next sections present some of
them more pragmatically.

As stated formerly, the notion of diversity is often captured by that of distance.
However, sometimes it is impossible to precisely measure some distance; even more,
rigorous universal method for the purpose could be rather difficult to settle. In such
cases, it is more appropriate to substitute the term “measure” with that of “index”,
like someone pointing to some direction while still not touching the goal. The same
concept of index also applies to that of summary, when many diversity values are
considered at once.

There are numerous “entities” that biologists and ecologists need to differentiate
quantitatively: individuals of the same species, OTUs, communities, and ecosystems,
to mention only four of them. As far as we are concerned, the basic characteristics
that distinguish environments from a biological viewpoint are:

Species richness: The tally of different species;

Species abundance: The numerosity, or proportion, of individuals for each species;

14



2.3 – Diversity Indices

Taxonomic variety: The taxonomic, or phylogenetic, distance among species.

All of these three components of biological diversity can be easily extended to
consider other OTUs in place of species.7 Actually, the majority of the traditional
literature refers only to the first two as such components. Indeed, it is usually
assumed that 1. individuals within the same species (OTU) are equivalent, 2. all
species are “equally different” from one another and receive equal weighting, and
3. diversity is measured in appropriate units of observation [14, 39]. Notwithstanding,
for the third component is equivalent to a relaxation of the second assumption and,
in fact, is vastly used as well, we feel adequate to integrate it as a component of
biodiversity.

2.3.1 Notation
A typical scenario is that of disposing of biological data collected from various
environments. Let us collect here the symbols we will use throughout this report.

N⋆ True number of individuals in an environment.

S⋆ True number of species (or OTUs) in an environment, that is its species (OTU)
richness.

Ni True species absolute abundance: the numerosity of individuals of the i-th species,
i ∈ { 1 . . . S⋆ }, in an environment: N⋆ =

∑︁S⋆

i=1Ni.

pi True probability of randomly selecting an individual of species i — i.e., its true
relative abundance — in an environment. Trivially, pi = Ni/N⋆.

n Number of individuals collected in a sample.

s Count of observed species in a sample.

xi Tally of individuals of the i-th species in a sample: n =
∑︁S⋆

i=1 xi.

ψi Observed relative abundance of the i-th species in a sample, that is ψi = xi/n.

fk Abundance frequency counts: number of species in an assemblage8 for each of
which exactly k individuals were observed. Therefore, f0 = S⋆−s is the number
of unobserved species. It holds:

∑︁n
k=0 fk = S⋆ and

∑︁n
k=1 fk = s.

An additional subscript is employed for referring to some specific sample. For
instance, pa,i is the relative abundance of species i in the environment from which a
sample a was drawn, thence pa,i = Na,i/N⋆

a.

7In what follows, we will mainly refer to species, as these are the most targeted OTU. It is
nonetheless clear that any other OTU could substitute species whenever sensible.

8In our scope, an assemblage is the set of individuals exposed to our sampling effort in a
defined area or point [17]
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2.3.2 Classification of Diversity Indices

The principal categorisation of diversity indices discerns OTU diversity within an
assemblage and OTU diversity between assemblages. The former is commonly
called α-diversity, the latter β-diversity. Depending on the amplitude of the
ecosystem at hand, ecologists define γ-diversity, δ-diversity and ε-diversity
too. Alpha, gamma and epsilon diversities are inventory diversities [18, 25, 39],
targeting overall diversity within larger and larger samples. For instance, α-diversity
could be employed for measuring community diversity, γ-diversity for regions and
ε-diversity for landscapes. Beta and delta diversities, on the other hand, are indices
of difference between samples: β-diversity between α-scale assemblages within a
“γ-region”, whereas δ-diversity measures difference between environments at γ scale
within an “ε-region”.

Unfortunately, even when discarding δ- and ε-diversities, which are rarely consid-
ered, there is no universal agreement on how proposed indices should be grouped
into these categories. For example, according to Jurasinski et al. [18] there is no
real distinction between inventory diversities, whereas Tuomisto [39] would rather
distinguish α-diversity and γ-diversity by the weights given to each separate subplot.9
Furthermore, the latter proposed entropy and probability ought to be referred to as
such instead of being hidden “behind the vague umbrella term ‘index of diversity’ ”
[39]. Besides, β-diversity can be defined either as a link between alpha and gamma,
or from scratch by only considering the elements of two samples. As a consequence,
it assumes a variety of meanings and scopes.

In addition, even when adopting the same convention, ecologists may refer
to alpha diversity of a microbial community as well as the alpha diversity of
an island, which are definitely different in scale [44]. In order to avoid all this
confusion, we would rather focus only on α- and β-diversity indices of generic
assemblages, ignoring their spacial amplitude. The first might be named sample
intra-diversity indices, or inventory-diversity indices, whereas the second could be
called sample inter-diversity indices, or sample-comparison indices. Our main
concern is, indeed, comparison between metagenomic samples, which is conceptually
quite different from traditional biodiversity indices, even though closely related to
them. Notwithstanding, although it may be useful to adopt diverse vocabulary to
avoid confusion, we will stick to the common terminology for compatibility. We
shall also report some of the traditional work done on the α-, β- and γ- triad in the
following sections.

9However, we notice in her paper a possible minor inconsistency: by distinguishing between
α- and γ-diversity indices, it might have been mathematically more coherent in formula (7) at
p.857 to write qDγ,j in place of qDα,j . This observation highlights a natural difficulty posed by her
method: the inventory diversity at low scale (alpha) is computed as a function of those indices
used at a higher scale (gamma). To avoid confusion, for an assemblage j, we will use the notation
qDj which does not take scale into account, and thence qDj =

qDγ,j.
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A secondary classification is founded on the type of sampling data structure:
Individual-based (abundance) data and Sample-based (incidence) data [10].
We will only target the first class, in which individuals are sampled and assigned
to their OTUs, and we will consider sequences as individuals. In incidence data,
instead, individuals are replaced by sampling units; see [14] for a review. Worth
noting is that this categorisation is fundamental in estimating α-diversities, but we
have not found it applied to β-diversities yet. However, the same terms “abundance”
and “incidence” are used for distinguishing β-diversities based on species abundance
and species richness, respectively: they should not be confused with the type of
data sampling.

When it comes to metagenomics, another distinction is set by the approach
adopted to detect and quantify species in a metagenomic sample. Reference-based
methods make use of a reference database to classify the collected metagenomic
sequences at the level of the desired OTU (e.g., species) and thus employ such a
classification in subsequent computation. Reference-free methods, on the flip
side, cluster together reads from the same OTU by means of sequence composition
similarity [11]. Such methods are also known as taxonomic binning/classification and
genome binning/classification, respectively. Ideally, the first category should provide
better results by being more readily comparable with traditional measures. However,
reference databases are extremely poor compared to the myriads of unknown and
uncultivable microbes actually present in our biosphere. Consequently, genome
binning is often more accurate [12].

Finally, a very relevant differentiation has been recently pointed out by Sun et al.
[37]. Taxonomic classification comprises: 1. alignment-based, 2. marker-based, and
3. composition-based methods [11]. In contrast, the authors of [37] recommend
to unambiguously discriminate between sequence abundance and taxonomic
abundance when dealing with reference-based methods. Taxonomic abundance
is generally obtained by marker-based approaches only, whereas methods 1 and 3
supply sequence abundance. As they displayed, indices computed from these two
kind of data are incompatible both mathematically and practically. The point is
that length and ploidy of species’ genomes are hugely variable and, hence, sequence
abundance does not reflect species abundance, which is a taxonomic abundance.

Due to such an incompatibility, we remark that, despite considering individual-
based data only, we had better not to confuse traditional biodiversity indices with
those based on sequence abundance. It would be interesting, though, to study
whether incidence data might overcome this latest distinction if properly managed.

Despite being interested in metagenomics comparison in the sense of sequence-
based comparison, we report in the following the classic formulation of several
dissimilarity indices in terms of species and individuals: the transposition to metage-
nomic data is immediate.
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2.3.3 Compatibility of Diversity Estimates

Besides incommensurability of sequence-based indices with taxonomy-based indices,
a number of other cautions are to be taken. In fact, neither true species richness
nor true species frequencies can be known – a common difficulty in measurement
theory. Therefore, only estimates of them are available. However, such estimates
are likely to be biased by the methods adopted to calculate them. Discrepancies in
sampling effort — e.g., number of individuals collected, area amplitude, quantity
of traps employed etc. — demands particular care when benchmarking α-diversity
indices of separate samples — i.e., proportional diversity in [18] terminology — and
for measuring β-diversities.

One proposed solution for the problem is rarefaction, a subsampling technique
for reducing all datasets down to the lowest available sampling effort. However,
while sampling effort being often measured in number of collected individuals, it
can also refer to sampled volume — and organisms density can very greatly, — or
to time dedicated for capturing individuals, or still other characteristics. Moreover,
rarefaction implies a loss of information and is said to be “neither justifiable nor
necessary” [43] in the context of comparison of relative abundances.

When comparing two environmental samples, the matter gets even more delicate.
Indeed, it is essential to measure diversity between assemblages regardless of efficiency
of sampling methods. The latter, then, may need to be commensurate with the
effective population’s size of the habitats. This becomes of utmost relevance in
benchmarking, as reference samples may be targeted by different studies.

However, we shall not expand this issue here.

2.4 Alpha Diversities

Alpha diversity indices try quantify how biologically differentiated is an environment
at an elementary scale. For instance, some α-diversity of a metagenomic sample
should be an index of variety of the microbial community sampled. In order to
measure such a variety, each of the components of biological diversity listed above
can be employed.

Hereafter we will use Table 2.1 as a simple instance to show how to compute
diversity indices.

2.4.1 Species Richness

The easiest way of quantifying sample intra-diversity is to provide the tally of
diverse species (or OTUs) present in the environment under study. Since the true
species richness S⋆ is quite impossible to measure, several non-parametric estimators
have been proposed, while other statistical strategies applied so far have proven to
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Table 2.1: A toy example of species abundances observed in three samples. Symbols in
parenthesis. Units are number of individuals.

Species Sample A Sample B Sample C
(i) (xa,i) (xb,i) (xc,i)

1 10 0 1
2 15 0 0
3 8 9 10
4 13 9 15
5 6 9 14
6 1 0 2
7 0 9 3
8 0 9 1
9 0 0 1
10 0 9 1

Total (n) 53 54 48

be unsuccessful [14, 15]. Indices of species richness should be expressed in actual
number of species, symbol “ sp”.

Trivially, a metric space (S, d′) for measuring species richness is one where S is
the set of every possible species and d′ is the 1-complement of the Kronecker delta
function:

d′(x, y) = 1− δxy =

{︄
0 if individuals x = y

1 otherwise
(2.2)

The set S can be easily viewed as a quotient set of the set of all living organisms
with an equivalence relation yielded by species membership. Species richness is
then the sum, over each detectable species, of their average distance from different
species.

Alternatively — and rather profitably, I believe, — we could settle a metric
space (M, d) on a set M of leaf nodes of a star graph G(V,E), which is a tree
with only leafs except the root r ∈ V , where each leaf represent a species and thus
is an equivalence class on individuals. Therefore, M ⊆ V \ {r}. We set we = c,
∀e ∈ E for some constant value c, for which we suggest c = 1/2. The distance
d(u, v) between two nodes u, v ∈ V \ {r} — i.e., two species — is then the length
of the shortest path connecting the two nodes in G, divided by 2c. The species
richness of an environment represented by M is then the length of the shortest cycle
traversing every node in the smallest connected subgraph GM(VM, EM) induced10

10Formally, VM = M∪ {r} and EM = {M× {r} } ∪ { {r} ×M } = { e ∈ E : e ∩M /= ∅ }.
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by M, divided by 2c.

Chao1 index

A simple, yet accurate, lower bound for species richness is Chao1 estimator, for
which the variance is known [14]. The assumption is that rare species carry the
majority of information about true species richness.

Recalling notation from Section 2.3.1, s is the number of observed species, f1 is
the amount of species of which only one individual was observed, and f2 is the tally
of species of which exactly two individuals were observed.

ˆ︁SChao1 =

{︄
s+ f2

1/2f2 if f2 > 0

s+ f1(f1−1)/2 if f2 = 0
(2.3)

Considering the example in Table 2.1, there are no species in a with exactly two
individuals, therefore fa,2 = 0; moreover, species 6 is the only one detected exactly
once in a, so fa,1 = 1; and, trivially, there are sa = 6 observed species in a.
Similarly we have fc,2 = 1, fc,1 = 4, and sc = 9. Then, samples a and c hold,
respectively:

ˆ︁SChao1,A = 6 +
1 · (1− 1)

2
= 6 sp

ˆ︁SChao1,C = 9 +
42

2 · 1
= 17 sp

Abundance-based Coverage Estimator – ACE

A more sophisticate estimator is the Abundance-based Coverage Estimator, which
uses information of rare species up to the frequency of κ individuals per species.
Empirically, a cut-off of κ = 10 works well in practice [14]. Coverage ( ˆ︁Crare) is an
estimated proportion of the n individuals recorded in the sample over the total true
numerosity N⋆ of the population.

ˆ︁SACE = sabun +
srareˆ︁Crare

+
f1ˆ︁Crare

ˆ︁γ2rare (2.4)
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With:

srare =
κ∑︂

i=1

fi

sabun =
n∑︂

i=κ+1

fi = s− srare

nrare =
κ∑︂

i=1

ifi

ˆ︁Crare = 1− f1/nrare

ˆ︁γ2rare = max

{︃
srareˆ︁Crare

·
∑︁κ

i=1 i(i− 1)fi
nrare(nrare − 1)

− 1, 0

}︃
In sample c of Table 2.1, with κ = 8 we have:

ˆ︁SACE,C = 3 +
6

1− 4/9
+

4

1− 4/9
·max

{︃
6

1− 4/9
· (1 · 0 · 4) + (2 · 1 · 1) + (3 · 2 · 1)

9 · 8
− 1, 0

}︃
= 3 +

6 · 9
5

+
4 · 9
5

· 1
5

= 15 sp

Other Indices

Thukral reported in [38] a mathematical characterisation of indices k of species
richness as being such that for the estimated number of species richness it holds
E[S] = f(k, n) for some function f . Accordingly, several such indices have been
proposed, e.g. ratios between observed species richness s and some function of the
number of detected individuals n. For such indices, collected in [38], adequate units
of observation should be declared.

Worth noticing is that many of these indices do only account for species richness,
whereas Chao1 and ACE indices provide estimated lower bounds of it by also consid-
ering species abundance distribution. Hence, the latter are preferable. Furthermore,
as remarked in [43], estimators and indices for which their variance is unknown had
better be discarded from scientific research.

2.4.2 Species Evenness
Consider samples a and b in Table 2.1: they equal in number of observed species,
yet they appear rather dissimilar. Such a difference is caught by species relative
abundance, on which various indices of evenness are built. Those indices convey
information on how much species are equally distributed in an environment. Al-
though alternative densities could be targeted, evenness in this context traditionally
refers only to probabilities pi = Ni/N⋆, or their estimates.
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Shannon Entropy

Already a milestone in information theory, Shannon Entropy HSh has been profitably
applied to ecology as well. Let J : x→ i be a random variable associating a randomly
chosen individual x from some environment to its species i: P [J = i]

.
= p(i) =

pi, ∀i ∈ { 1 . . . S⋆ }. Then, with the convention that 0 log(0) = 0, the biological
entropy of the environment is

HSh = E[− log(p(J))] = −
S⋆∑︂
i=1

pi log pi (2.5)

If the natural logarithm is employed — which is advisable, — then entropy is
measured in nats. If log2 is used, bits are the unit of measure; when base 10 is used,
the units are decits or hartleys [38]. For instance, referring to Table 2.1 with the
assumption of completeness of the samples — i.e., observed data equal true data, —
we calculate:

HSh,a =
10

53
ln

53

10
+

15

53
ln

53

15
+

8

53
ln

53

8
+ · · · ≈ 2 nat

HSh,b = 6× 9

54
ln

54

9
≈ 2 nat

HSh,c = 4× 1

48
ln 48 +

10

48
ln

48

10
+ · · · ≈ 2 nat

Entropy, here, measures the expected amount of information carried by the
identification of the species of a randomly chosen individual. Since common species
convey little information in this sense, samples with highly uneven species abundances
have low entropy. Uniform species distributions, then, yield maximum entropy.

Calling HSh a diversity index, however, has been discouraged since it more properly
is an entropy [39]. The term “diversity” is preferably reserved to Hill numbers only
(see below, Section 2.4.2). Nevertheless, entropy has been largely exploited, despite
an estimator of its true value is “extremely sensitive to the singleton count, which is
often difficult to determine in microbiome studies” [43].

As a result, the equivalent in effective species richness of Shannon entropy,
eHSh , should be considered, provided natural logarithm is used.11 Such an index
can be interpreted as the number of species yielding an identical entropy when
evenly distributed, number which is never higher than the actual species richness.
Accordingly, we quantify eHSh in terms of effective number of species (spe),
which however needs not be an integer. As an example, the former indices would be

11Otherwise, the transformation must be adjusted accordingly: 2HSh( nat) or 10HSh( decit) for
instance.
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transformed to:

eHSh,a ≈ e1.624 ≈ 5 spe

eHSh,b = eln 6 = 6 spe

eHSh,c ≈ e1.678 ≈ 5 spe

Gini-Simpson Index

The probability of randomly selecting (with replacement12) two individuals of distinct
species holds another index for quantifying evenness, which is commonly known as
the Gini-Simpson index. Indeed, when few highly abundant species are present, it
would be more likely to pick two individuals of one of such species. Under equal
species richness, the maximum probability of selecting two diverse individuals is
obtained when species are evenly distributed.

PGS = 1−
S⋆∑︂
i=1

p2i (2.6)

Being a probability, PGS is a pure number. Again, for it is not a measure of
species richness, its use as an α-diversity index is discouraged [43]. Its equivalent
in species richness is the inverse Simpson index DIS = (1− PGS)

−1, which actually
is the second-order Hill number, discussed below (Section 2.4.2). Following the
previous example,

PGS,a = 1−
(︃
10

53

)︃2

−
(︃
15

53

)︃2

−
(︃

8

53

)︃2

− · · · ≈ 0.788

PGS,b = 1− 6× 1

62
=

5

6
= 0.83

PGS,c = 1− 4×
(︃

1

48

)︃2

−
(︃
10

48

)︃2

− · · · ≈ 0.766

Hill Numbers

Aforementioned, a desirable property is for α-diversities indices to be measured in
units of (actual/effective) species richness [43]. In addition, a replication principle,
or doubling property should be met13: if M equally diverse assemblages with
no shared species are pooled in equal proportions, then the diversity of the pooled

12In real environments, the immense amount of living organisms make selection with replace-
ment a sensible model. Minimum Variance Unbiased Estimators, instead, use selection without
replacement as model [14].

13Equivalent Shannon entropy eHSh already satisfies these properties.
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assemblage should be M times the diversity of each single assemblage [14]. Hill
numbers are a class of diversity indices for which such properties hold. They are
therefore measured in effective number of species (spe), suggesting that an even
distribution of such “equivalent” number of species would yield the same value for
the adopted index. These indices are

qD =

(︄
S⋆∑︂
i=1

pqi

)︄ 1
1−q

(2.7)

The order q controls the sensitivity of the measure to species relative abundances.
For low order values, q < 1, rare species are weighted more. At q = 0 we get species
richness: 0D = S⋆. For q > 1, common species contribute increasingly more. As
anticipated, at q = 2 the inverse Simpson index is obtained: 2D = 1/1−PGS, which
severely discounts the contribution of rare species. The order q = 1 Hill number is
undefined, but [14, 43]

1D
.
= lim

q→1

qD = eHSh (2.8)

Remarkably, every Hill number is measured in effective species richness, fact
which makes this a coherent class of indices.14 Thank to such a coherence, diversity
profiles of effective species richness versus q can be drawn. We refer to [14] for an
explanation of them, as well as for estimators of Hill numbers.

2.4.3 Taxonomic Indices
Suppose two islands where observed, both with identical species richness and
evenness. In the first one, only angiosperms are present; in the second one, a both
angiosperms and gymnosperms grow. Then, the second island would be classified
as taxonomically richer in biodiversity than the first one because of the presence of
more distantly related species [3, 14].

To quantify taxonomic or evolutionary relatedness, it suffices a generalisation of
the star graph introduced in Section 2.4.1. Notoriously, taxonomies and phylogenies
are organised in cladograms, which are trees (rooted acyclic connected graphs).
Consequently, the metric space for measuring taxonomic diversity is (M, d) as before,
where only the star graph Gstar(V,E) is replaced with a taxonomic/phylogenetic tree
Gtax(W,E

′), with edge weights we needing not be constant. Species still correspond
to leaf nodes: M ⊂ W . Such trees can either be ultrametric, when all leaf nodes
are at equal distance from the root, or nonultrametric otherwise [14].

Due to the variability of we ∈ E ′, the distance d(u, v) between u, v ∈ M ⊂ W
must be adapted in the normalisation strategy — e.g., no normalisation, or division

14The same is not true for Good’s series of indices [38], for which reason we have not reported
it.
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by 2w = 2E[we], — but the length of the shortest path linking the two nodes
still applies. Alternative distances might be employed, provided they are metric
functions. For instance, maximum depth from the lowest common ancestor is viable,
but minimum such depth would not satisfy the triangular inequality (2.1c).

Among the proposed α-diversity indices accounting for taxonomic relatedness,
cladistic diversity is the tally of nodes in the minimal tree encompassing all the
detected species. Faith’s phylogenetic diversity is, instead, the sum of the branch
lengths (edge weights) in a minimal phylogeny comprising all species in the target
assemblage.15 These two measures do not make any use of species abundances, which
are instead integrated in Rao’s quadratic entropy and the phylogenetic entropy. For
the taxonomically aware equivalent of Hill numbers we link to [14].

Rao’s Quadratic Entropy

Let L : M×M → R be a random variable denoting the pseudo-distance δ(x, y) =
d(i, j) between two randomly selected individuals x, y ∈ M, with i = x/∼ =
[x], j = y/∼ = [y] being their equivalence classes in the space S = M/∼ of species.
Then its expected value, that is Rao’s quadratic entropy, is an α-diversity index
accounting both for taxonomic distance and species relative abundance. It can be
viewed as a generalisation of Gini-Simpson index, which is actually obtained when
(M, d) is defined on a star as in Section 2.4.1.

QRao = E[L] =
∑︂

x,y∈M

δ(x, y)

|M|2
=
∑︂
i,j∈S

d(i, j)pipj (2.9)

Phylogenetic Entropy

Let σ : M → W link a species i ∈ M to its correspondent leaf node σ(i) ∈ W of an
evolutionary tree Gphyl(W,E

′) rooted at node r ∈ W . Let λσ(i) = d(r, σ(i)). Then,
the phylogenetic entropy of an assemblage is

Hphyl = −
∑︂
i∈M

λσ(i)pi log pi (2.10)

See [14] for an equivalent characterisation.

2.4.4 Taking Scale Into Account
Every α-diversity index introduced so far can be used as a γ-diversity index as well.
Let us now examine a collection of Kγ subplots (compositional units) within a larger

15In an ultrametric tree, Faith’s phylogenetic diversity would equal the number s of observed
species multiplied by the distance of any species from their lowest common ancestor.
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plot γ. Let pz,i = Nz,i/N⋆
z be the relative abundance of species i ∈ { 1 . . . S⋆ } in

sample z ∈ { 1 . . . Kγ }.
We could devise an α-diversity index of the region as an average biological

diversity per subplot. Such an index should meet Hill numbers’ properties and
be measured in effective species richness per effective compositional unit
(spe CUe

−1) if adjusted for species relative abundance, or in species richness per
compositional unit (spCU−1) otherwise [39].

The class of the former indices is

qDα,γ =

[︄
Kγ∑︂
z=1

(︄
wz

S⋆∑︂
i=1

pqz,i

)︄]︄ 1
1−q

=

[︄
Kγ∑︂
z=1

wz

(︂
qDγ

)︂1−q
]︄ 1

1−q

(2.11)

where wz = N⋆
z/N⋆

γ is the portion of individuals of the region γ contributed by subunit
z.

If we let wz = 1/Kγ instead, and q = 0 in Eq. (2.11), then we get the α-index
of species richness of the region γ, which belongs to the second type of indices
(measured in spCU−1).

Sα,γ =
1

Kγ

Kγ∑︂
z=1

S⋆
z (2.12)

2.5 Beta Diversities

As previously mentioned, β-diversities attempt to quantify the diversity between
assemblages. Whereas all α-diversities are indices of how much is some environment
diversified, although from different perspectives maybe, β-diversities assume several
different meaning. Among them, we find species turnover16, some relation between
shared and unshared species, and number of equivalent units constrained to satisfy
particular properties. Moreover, at least three radically different approaches exists
for comparing biotic differentiation between distinct sites: 1. comparison of their
α-diversities, this has been called “proportional diversity” [18]; 2. comparison of
assemblages composition17, species by species (“differentiation diversity” [18]), which
is the only approach we report in what follows; and 3. comparison of shared-abun-
dance of the samples, that is the total number individuals belonging to any shared
species [14, 17]. Such a variety of meanings should be considered seriously in order
to avoid confusion and wrongful conclusions.

16Species turnover: Rate, or magnitude, of change in species composition along predifined
spatial, environmental or time gradients [40].

17By composition of an assemblage we mean the list of species comprising it and their relative
abundances, i.e., their distribution.
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In order to guarantee validity of ecological inferences, every index of compositional
differentiation between assemblages should satisfy at least the following three
properties [17]:

Monotonicity it must monotonically increase when assemblages differentiation
unambiguously decreases;

Density invariance it should only depend on relative abundances;

Replication invariance those indices ranging between 0 and 1 shall be invariant
with respect to pooling of identical subsets (essential property in part-to-whole
studies).

All the incidence- and abundance-based indices described below satisfy these three
properties, except the Bray-Curtis index, which is not density invariant.

2.5.1 Taking Scale Into Account

Traditionally, β-diversity has been proposed as a multiplicative link between α- and
γ-diversity [42] (see also below, Section 2.6). Given a region γ and its inventory
diversities qDα,γ and qDγ,γ = qDγ, β-diversity indicates the number of distinct
virtual compositional units — i.e., non overlapping assemblages with no species in
common, — each of α-diversity qDα,γ, needed to make up a region of qDγ,γ γ-diversity
[39]. Formally,

qDβ =
qDγ

qDα

(2.13)

The units of observation of qDβ are effective compositional units (CUe), as just
explained.

A simpler index of β-diversity carrying a similar meaning, but measured in actual
compositional units (CU), is based on presence-absence data only, hence ignoring
species abundances. This is the original Whittaker index Sβ, i.e., the total count
of species present in a region divided by the average number of species per subunit.

Sβ =
Sγ

Sα

(2.14)

More pragmatically, in a region γ comprising Kγ subunits,

Sβ,γ =
Sγ,γ

Sα,γ
=

S⋆
γ

1
Kγ

∑︁Kγ
z=1 S

⋆
z

(2.15)

As a simple example, let us suppose the three samples a, b and c from Table 2.1
are the true species distribution of three subunits of which a larger region is composed.
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Then,

Sγ = 10 sp

Sα =
6 + 6 + 9

3
= 7 spCU−1

Sβ =
10

7
≈ 1CU

Remarkably, such β-diversity indices should not be regarded as distances, nor
as summaries of distances, but rather as the height of a parallelepiped of which
the volume represents γ-diversity and the area of its base represents α-diversity
[39]. Alternatively, they could also be visualised as some measure of a “β-volume”
in which a “γ-mass” is dispersed with “α-density”. Obviously, indeed, this is not
a measure of difference between two samples, but somewhat an index of how well
species in a vast region are physically clustered into smaller groups.

Other definitions of “scale-sensible” biological diversity, or “summary” diversity,
have been advanced. The indices above relate to a multiplicative approach — i.e.,
γ = αβ, — to which an additive γ = α+β approach is opposed. In this latter case,
all the diversity indices must be commensurable, thus measured by the same units
of observation, which is quite counterintuitive. Its advantage over the multiplicative
approach is that it needs not “α-samples” to be of equal sizes. However, empirical
studies as well as mathematical considerations discourage its use [44]. Another
proposed method, a hybrid of the formers, is a proportional approach β = (γ−α)/γ,
which again has no obvious physical interpretation.18

2.5.2 Incidence-Based Indices

Two distinct biotic assemblages can be compared with each others by means of
presence-absence of species in them. This is the case of so-called incidence-based
indices of β-diversity [14, 17], which are not to be confused with incidence-based
sample collection as seen in Section 2.3.2.

Generally, such indices are real-valued functions taking two (or more) elements
of a collection C of sets of species. As seen in Section 2.4.1, such sets of species can
be modelled as subsets of a metric space: C ∋ A ⊂ (S, d′) or C ∋ A ⊂ (M, d).

Whittaker’s β-diversity index Sβ is an example of incidence-based indices. How-
ever, while Whittaker’s index provides a conceptual link between local and regional
diversity [44], β-diversity indices are more commonly defined as some dissimilarity
measure between two samples, with no need of geographical considerations.19 Among

18In this case, such a β-diversity would be a pure number.
19We report that attempts to bring β-diversity indices interpretation back to Whittaker’s

definition have been made [31].
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these indices, we report below the two most widely adopted ones: the Jaccard and
the Sørensen indices, which actually differ in scale but are monotone one to the
other. This means that if the Jaccard distance between a couple of sets is greater
than that between another couple of sets, then so is the Sørensen dissimilarity
index [19]. It is possible to generalise such coefficients to work on more than two
assemblages [14, 17], but we will stick to the classical definitions for simplicity.

Jaccard Distance

The Jaccard distance compares the number of unshared species to the total number
of species in the combined assemblages. Therefore, it provides a pure number in
[0,1] which can be interpreted as the probability of randomly selecting an unshared
species among all the species detected in the samples. In this sense, the Jaccard
index takes a global view of the problem.[17] If we model two assemblages A, B
with two sets A,B ∈ C respectively, then the Jaccard distance

BJac(A,B) = 1− |A ∩ B|
|A ∪ B|

(2.16)

is a metrics on C .
Back to example in Table 2.1, it holds:

BJac(A,B) =
3

9
= 0.3̄ BJac(A,C) =

5

10
= 0.5 BJac(B,C) =

6

9
= 0.6̄

Sørensen Index

The Sørensen similarity index between two sets A,B ∈ C — representing species in
the two respective assemblages A and B — is the harmonic mean of the proportion
of shared species within one assemblage and the proportion of shared species within
the other assemblage [14]. Sørensen dissimilarity index is thus the one-complement
of the former:

BSør(A,B) = 1− 2|A ∩ B|
|A|+ |B|

(2.17)

The Sørensen dissimilarity coefficient can be interpreted as the probability of
randomly selecting an unshared species among all the species present in one of
the the two samples, randomly selected. In this sense, it takes a local view of the
problem [17]. Noticeably, it is only a semi-metrics as it violates triangular inequality
(2.1c) [19].

In the example from Table 2.1, we have:

BSør(A,B) =
6

6 + 6
= 0.5 BSør(A,C) =

10

6 + 9
= 0.6̄ BSør(B,C) =

12

6 + 9
= 0.8

29



Biodiversity Measures

2.5.3 Abundance-Based Indices

In contrast with incidence-based indices, abundance-based indices are indicators
of β-diversity taking into account the abundance of each species in assemblages. The
easiest way of modelling the latter to compute such indices is by point representations
in RS, where S is the number of known species, or that of species of interest. There
is a bijection between dimensions of RS

+ and species, and the coordinate of a point in
the i-th direction corresponds to the abundance of the i-th species in the respective
assemblage.

It is worth noting that by means of the equivalence relation ∼ : R → {0,1} such
that ∀x ∈ R : x ∼ 0 ⇐⇒ x = 0, trivially expanded component-wise on RS to
{0,1}S, we can pass from abundance-based to incidence-based indices. In this section,
indeed, we present three indices which are commonly considered as quantitative
extensions of the Sørensen similarity or dissimilarity index, which means that they
are equal when calculated on assemblages with even species distribution.

Bray-Curtis Dissimilarity

One of the most frequently adopted indices of β-diversity is the Bray-Curtis dis-
similarity index20 (BC). Like the Sørensen dissimilarity index is a semi-metric on
C , BC index too is a semi-metric on NS ⊂ RS

+. It measures, indeed, how many
individuals from one of the two assemblages cannot be coupled with an individual
of the same species from the other assemblage, and normalises such quantity by the
mean number of individuals per plot. Resuming the notation given in Section 2.3.1,
S⋆ being the true number of species in the pooled assemblage,

BBC(A,B) = 1− 2

∑︁S⋆

i=1min(Na,i, Nb,i)

N⋆
a +N⋆

b
=

∑︁S⋆

i=1 |Na,i −Nb,i|
N⋆

a +N⋆
b

(2.18)

It is worth underlying that BC index is computed on absolute species abundances
[17, 19, 30], hence accounting for differences in population sizes between compared
assemblages, in addition to their composition. In practice, the unknown true
abundances are replaced by observed (sample) abundances. This approach rises some
issues: it confounds composition similarity with density and it becomes statistically
meaningless in case of unequal sampling fraction (ratio between sampling and
population sizes) [17].

Notwithstanding, it is not rare to find BC dissimilarity computed on data
normalised by sample size, therefore on relative abundances, as reported by Calle
[9] ans adopted by Dubinkina et al. [12] and Sentinella et al. [35], for instance.

20Curiously, such an index of dissimilarity is named after Bray and Curtis since it was asserted
in the field after their publication on an ordination method [8], yet the index itself was previously
introduced by the Polish mathematician H. Steinhaus [19].
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Such method has empirically proven to be useful and informative, yet it is strongly
discouraged [14]. As a matter of fact, though, by substituting absolute quantities
with their respective relative quantities in Eq. (2.18), we get a Manhattan distance,
which is a metric function on relative abundances. On absolute abundances we
get a pseudo-metrics, instead. In other words, BC index becomes a distance when
computed on spaces

{︁
x ∈ RS : ∥x∥1 = N

}︁
, for every N ∈ R.

As an example, following Table 2.1 we apply two different formulation of the BC
index to get:

BBC(A,B) =
10 + 15 + 1 + 4 + 3 + 1 + 9 + 9 + 0 + 9

53 + 54
=

61

107
≈ 0.57

BBC(B,C) = 1− 0 + 0 + 9 + 9 + 9 + 0 + 3 + 1 + 0 + 1
54+48

2

=
51− 32

51
=

19

51
≈ 0.37

Horn Overlap Measure

Another abundance formulation of the Sørensen dissimilarity index is the Horn
overlap measure, which measures samples dissimilarity based on Shannon’s entropy.
This index is particularly useful when compositional differentiation is to be assessed
and rare species are important, e.g. in conservation biology [14].

BHorn(A,B) = 1− 1

log(2)

S⋆∑︂
i=1

[︂pa,i

2
log
(︂
1 +

pb,i
pa,i

)︂
+
pb,i
2

log
(︂
1 +

pa,i

pb,i

)︂]︂
(2.19)

Morisita-Horn Similarity Measure

When an index of compositional differentiation robust to undersampling is required,
the one-complement of the Morisita-Horn similarity measure is among the most
favourable ones. Such a similarity index consists of the probability of selecting two
individuals of equal species, one from each assemblage, normalised by the mean
probability of selecting two individuals of the same species within an assemblage
[14].

MH(A,B) =
2
∑︁S⋆

i=1 pa,ipb,i∑︁S⋆

i=1 p
2
a,i +

∑︁S⋆

i=1 p
2
b,i

(2.20)

2.5.4 Taxonomy-Based Indices

The former indices of β-diversity ignore taxonomic/phylogenetic diversity between
assemblages. When they are of interest, a first approach is to consider branch
lengths in a taxonomic tree instead of species tally. In this way, the Jaccard and the
Sørensen dissimilarity measures are adapted so that the cardinality |A| of a set of
species is replaced by the total branch lengths in the minimal phylogeny comprising
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all species in A up to a desired time interval t [14]. Such quantity is just the Faith’s
phylogenetic α-diversity LA,t of the assemblage A, mentioned in Section 2.4.3.

The phylogenetic version of the Jaccard distance is the unweighted UniFrac
distance [21], which measures the fraction of branch lengths unique to only one of
the two communities being compared on a phylogenetic tree embracing them both
[41]. If we let t be the depth of such phylogeny, then the UniFrac metrics is

UF(A,B) = 1− La∩b,t

La∪b,t
(2.21)

Such a taxonomic distance does only consider presence-absence of species in
the assemblages. There also exists an abundance-based version of it, which is the
weighted UniFrac measure [22]:

wUF(A,B) =
b∑︂

j=1

lj|pa,j − pb,j| (2.22)

where b is the number of branches in the tree, lj is the length of the j-th branch,
and px,j is the fraction of elements in an assemblage X that are grouped under
the taxon relative to branch j. In case the phylogenetic tree is nonultrametric, a
normalisation to wUF is applied, for which we refer to the original paper introducing
the measure [22].

When we come to metagenomics, though, the application of the UniFrac measures
is to be done with caution: it was originally designed to analyse 16S sequences and
only recently its application on Whole Genome Shotgun sequencing (WGS) data
has been studied [41].

2.6 Gamma Diversities
When a vast assemblage comprises several smaller assemblages, we differentiate
inventory diversity at different scales. Gamma diversity is then an index of how
much the wider environment is biologically differentiated. As priorly introduced,
γ-diversity indices ignore how organisms are clustered within the region of interest,
but they merely account for species abundance. Thus, all the “scale-insensible” α-
diversity indices reported in Section 2.4 are indeed γ-diversity indices when computed
at higher scale.

2.6.1 Observations

We believe that the use of mathematically identical indices assuming different names
in different context is just misleading. Furthermore, we have also displayed why
renaming α-diversity indices to “γ-diversity indices”, and retain α-diversity only for
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average species diversity per samples in a region would be terribly confusing. To
make things easier, we have suggested adopting new terms distinguishing intra-
diversity within samples from inter-diversity between samples. A similar division
had previously been advanced by naming “diversity” the former, while “dissimilarity”
the latter, which however contrasts with the term “β-diversity ” itself and is already
messy.

However, if we wished to maintain the current terminology, we would rather
reserve:

1. α-diversity for plain inventory diversities ignoring any (spatial) assemblage
structure. Whether functional diversity could be encompassed in this class or
not is questionable.

2. β-diversity for diversities between assemblages. Beta diversity in Whittaker’s
definition might be renamed as “clustering-diversity” or “clustering-efficiency”,
instead.

3. γ-diversity for inventory diversities that, somehow, also account for individuals’
organisation into cohesive subunits (clusters).

How to classify indices of average α-diversity per compositional unit, qDα and Sα, is
debatable too.

Obviously, the only need for such a clarification is posed by the many divergent
approaches being gathered under the same names α-, β-, and γ-diversity. In this
section we do not intend to suggest such a reorganisation, however: we are merely
indicating an alternative construction in order to highlight the need of not mixing
up these terms as it is being done.21

A viable approach for measuring γ-diversity in these terms, then, might be
the following. Let G′(V ′, E ′) be a graph where each node v ∈ V ′ represents a
compositional unit, of which a quantity cv is some index of its α-diversity. We advise
letting G′ be a complete graph, but it need not. For every edge e = {u, v} ∈ E ′, let
de = d(u, v) be a β-diversity index — preferably, a metrics taking values in [0,1] —
between the two corresponding subunits. Let δ′(v) = { e ∈ E ′ : v ∈ e } be the set of
incident edges to v. Lastly, let the weight (summarising importance, contribution)
of each compositional unit be its mean β-diversity from other such units:

w′
v =

1

|δ′(v)|
∑︂

e∈δ′(v)

de

21We would softly remind of the Genesis’ tale of Babel tower: scientists are building a massive
tower toward the sky, but once again the are being confused in their language. The problem stands
not in diversified lexicons, but rather in divergent semantics within one single vocabulary. Such
a divergence seems to be quite inevitable since the immensity of the tower makes tough for two
distant builder to keep in touch. While being a brake in science, ambiguity is nevertheless a huge
wealth for Human life.
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Then we could define a γ-diversity as the sum of α-diversities weighted by their
mean β-diversities

∆′
γ
.
=
∑︂
v∈V ′

(︁
w′

vcv
)︁

(2.23)

Consider a plot g composed of two subplots a and b. If the two subplots are
totally distinct, then d(a, b) = 1 and, reasonably, ∆′

γ = ca + cb. On the contrary,
suppose the two subplots are identical. Then ca = cb and d(a, b) = 0, whence
∆′

γ = 0, which is irrefutably undesirable.
We could overcome this issue by adding to G′ a special node z, holding cz = 0,

and edges {z, v}, ∀v ∈ V ′. We set de = 1, ∀e ∈ { {z, u} : u ∈ V ′ }. Let us call
G(V,E) the graph thus built.22 Then, let

δ(v) = { e ∈ E : v ∈ e }

wv =
1

|δ(v)|
∑︂
e∈δ(v)

de

∆γ
.
=
∑︂
v∈V

(︁
wvcv

)︁
(2.24)

Consequently, we correctly get ∆γ = ca + cb + cz = ca + cb = ∆′
γ in the first case,

and ∆γ = ca/2 + cb/2 + cz = ca in the second one.
Such a γ-diversity index ∆γ would then fall into the class of multiplicative gamma

indices. The difference with the previous definition is that γ-diversity would result
from α- and β-diversity, rather than the latter deriving from α- and γ-diversity.

One first difficulty with this approach is probably the physical understanding
of such diversities: which units of measure could be used, indeed? Beta-diversity
may be a pure number, eventually interpretable as a probability, but alpha and
gamma would hold different meanings, yet being commensurable. Notwithstanding,
since proposing such measures is not our aim, we believe we can conclude here our
introduction.

22A physical intuition behind the insertion of this dummy node z is the will to account for the
observer viewpoint. It is somehow like the ground from which a stairway arises: alpha-plots are
steps of the stairway, but there would be no first step unless a z ground floor existed.
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Chapter 3

Tools and Experimental
Settings

Our study focuses on the effects of sampling on reference-free metagenomic compar-
ison techniques. The aim is to understand if, under certain conditions, subsampling
actually improves results’ quality by removing noise from the data, if relevant
information is lost instead, or if results do not change consistently as in the case of
redundancy removal.

In this work, the assessment of such effects is carried out experimentally by
running sequence-composition-based tools for k-mer counting and metagenomic
comparison on subsampled metagenomes. Two different subsampling strategies are
studied: a k-mers-based sampling implemented in the tool SimkaMin [6] on the
one hand, and a more sophisticate reads sampling operated by the tool Spriss
[34] on the other hand. As reference, we adopted both a dataset of simulated
metagenomes with known taxonomy classification as ground truth, and collections
of real metagenomes classified by the reference-based classifier Kraken 2 [46].

A description of the computing environment and of the software exploited for
the analysis is provided below in this chapter, whereas datasets and results are
presented in Chapter 4. All the scripts used for the analysis are publicly available
at:
gitlab.com/giorgio.gallina.1/dimReductionEffectsOnMetagenComparison.git

3.1 Running Environment

The experiments have been run on a shared computing cluster of the Information
Engineering Department of the University of Padova. It is equipped with several
processing nodes, up to 96 available CPUs for each node, and up to 3TB of RAM
available. At the moment of writing, more information about the cluster is available
at the page: https://clusterdeiguide.readthedocs.io/en/latest/Overview.html
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The software was installed and run inside a Singularity container built on
February 2023 on the docker ’s container ubuntu:jammy. Its Singularity definition
file is retrievable from the main page of the aforementioned git repository.

3.2 Procedure Outline
Given a collection of metagenomic samples1, and an essential description of it so to
be able to asses the results, we proceed as follows:

1. For the collection of simulated metagenomes, we computed their metagenomic
dissimilarity matrices by using true species abundances.

2. We classified each metagenome by means of Kraken 2, and then estimated
species abundances using Bracken. We then used such abundance vectors
to get dissimilarity matrices through the distance function from the library
ecodist in the R language.

3. We ran SimkaMin on a grid of sketch sizes and k-mer lengths k to get k-mer-
based dissimilarity matrices of the collection obtained by sampling uniformly
at random distinct k-mers of the metagenomes.

4. We ran Simka to get the exact k-mer-based dissimilarity matrices computed
over all available k-mers except singletons, for each of the former k-mer lengths
k.

5. We executed Spriss on a grid of minimum frequency cut-off ϑ and k-mer
lengths k to get estimated abundances of frequent k-mers, over which we
obtained dissimilarity matrices. By doing so we can observe the influence of
frequent k-mers in dissimilarity indices more directly.

6. Since, for each metagenome, Spriss also produces a subsample appropriately
designed for its estimation of frequent k-mers, we also used such subsamples
to compute dissimilarity matrices on their k-mer composition. We did so by
inputting these subsamples to Simka. In this way, we observe the effects of
reads sampling, besides k-mer sampling.

We developed some shell scripts for automatised execution of the programs with
the desired parameter settings, which are available in the BashScripts directory
within our GitLab repository. The analysis of results has been developed in R
language, for which the R scripts are collected into the Rscripts folder. Other

1In order to avoid confusion, we will reserve the words collection and dataset for a set of
metagenomic samples only, even though it would be reasonable to call “collection” or “dataset” a
metagenome as well.
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useful scripts for downloading the datasets and for the analyses are stored in the
directories Datasets/Datasets_preparation and src, respectively.

3.3 True Dissimilarities Computation

Simulated metagenomic samples from the Critical Assessment of Metagenome
Interpretation (CAMI) initiative [13, 26] do have true taxonomic classifications
available for benchmarking. Among them, we tested the popular taxonomy from
the National Center for Biotechnology Information (NCBI) taxonomy database.

In order to get species dissimilarity matrices between such samples, we used the
files mapping reads of each metagenome to their true genome identifiers — i.e.,
file $sample_dir/reads/reads_mapping.tsv in the CAMI folder structure of the
dataset — and the mapping from genome identifiers to their relative NCBI taxonomic
identifiers — i.e., file metadata.tsv. The latter are all specified at species level, thus
our analysis is carried out at that taxonomic rank. To this goal, we wrote the C++

program betaDiversity_camitrue.cpp, publicly available in the directory src in
our git repository, that maps each read to its species identifier, computes abundance
vectors accordingly, and calculates BC and Jaccard dissimilarities on them. It
relies on the dataset’s files naming and organisations provided by the automatised
download gained through the shell script download_CAMI_HMP_bis.bash. Notice
that we only counted one of the two pair ended sequences to get species abundances
of these metagenomes, which actually does not change the results.

3.4 Reference-based Metagenomic Comparison

On real data, for which true species distributions are not available, we used a metage-
nomic classifier to estimate them. We shall mention, however, that these estimates
are heavily biased by the availability of reference sequences. Furthermore, as the
reference databases grow with more and more genomes added, in combination with
the high sequence similarity between species, classification is becoming increasingly
less accurate at species level, while improving at the genus level [24]. Nevertheless,
up to our knowledge, reference-based techniques are still the only ones assuring
results reasonably directly comparable with traditional definitions of β-diversities.
Furthermore, since similar environments are better clustered at species level, we
only computed reference-based dissimilarity indices at species level, except when
explicitly stated.

Driven by difficulties in the reference database construction, which followed
an heavy modification of the NCBI taxonomy database in 2019, constrained by
limitation of resources available to us, and aware of some issues in estimating real
abundances from a bare classification, we finally opted for using Bracken to solve
the latter problem, which relies on Kraken 2 for the taxonomic binning. Once the
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abundances were obtained for each metagenome of a dataset, we run a simple R
script, betaDiversity_bracken.R, which reads them, merges them taxon-wise and so
exploits the R library ecodist for dissimilarity matrices computation.

3.4.1 Kraken 2

Kraken 2 is a sequence-composition-based metagenomic classifier, i.e., it uses
sequences’ k-mers rather than whole sequence alignment for classification. Its
workflow is naturally divided into two major blocks: 1. reference index building,
which is done once and needs not be repeated, and 2. sample classification.

We can sketch it as follows [46]:

1. Building of the reference database index. In this step, a hash table
is produces. Its key-value pair is given by k-mers as keys, and taxonomic
identifiers (id) as values.

(a) A taxonomy (NCBI’s by default) and the reference genomes are read.

(b) An internal taxonomy tree is created starting from the one given at the
previous step by: i. pruning nodes which do not correspond to any of the
reference genomes and ii. renumbering nodes sequentially.

(c) For each reference sequence, its k-mers are hashed in two steps:

i. for each k-mer w of length k, the lexicographically smaller canonical
l-mer v of w is extracted, with l ≤ k; then a spaced seed2 is applied,
allowing s alternate mismatches in the trailing positions of the l-mer,
with a match in the last one. For example, if l = 10 and s = 3, the
spaced seed applied is 1111010101. Let us denote the final result by z.

ii. A proper hash function h is calculated on the trimmed l-mer z.

Let us define the overall hash function η(w) = h(z).

(d) The thus calculated hash value η(w) is used to index a compact hash
table of |T | 32 bit cells where to store a taxonomic identifier of the genome
to which w belongs. The table size |T | is fixed so to reach an estimated
load factor of 70%. This process goes as follows:

• Assume q < 32 bits are necessary to store the taxonomic (internal) id
value, i.e., there are fewer than 2q nodes in the internal taxonomy tree.
The q least significant bits of a cell are then reserved to accommodate
a taxonomic identifier.

2A spaced seed is a mask, usually represented as a binary string, which tells which positions
of characters in a string are to be retained (matched) and which other ones shall be filtered out
(mismatched).
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• The hash value modulo the size of the table, η(w) mod |T |, locates a
cell of the table.

• The q̄ = 32− q most significant bits of the hash complete the previous
location by indexing w to the first subsequent cell storing the value
⌊η(w)/2q̄⌋ in its q̄ most significant bits.

• If, starting from the position η(w) mod |T |, an empty cell is found
before than a cell storing ⌊η(w)/2q̄⌋ in its indexing part, the lowest-
level taxonomic identifier of the genome to which the k-mer w belongs
and the most significant part of its hash value are stored accordingly
in that cell.

• If a collision happens, that is, a cell holding the value ⌊η(w)/2q̄⌋ in its
q̄ most significant bits is found, the Lowest Common Ancestor (LCA)
between the hit taxon and the hitting taxon replaces the former.

2. Sample classification. For each read of a metagenomic sample:

(a) it is decomposed into its k-mers, which are hashed as previously described
to query the reference index;

(b) for each of its k-mers, if a hit occurs, the retrieved taxon is counted in a
read-specific pruned tree;

(c) a k-mer w remains unclassified if, starting from position η(w) mod |T |
of the compact hash table and proceeding sequentially, an empty cell is
found before than a cell storing the ⌊η(w)/2q̄⌋ part of the hash;

(d) when all the k-mers of a read are queried, the latter is classified with the
leaf node of the maximally scoring root-to-leaf path in its specific tree.

3.4.2 Bracken

Once the reads in a metagenomic sample have been classified via Kraken 2, taxon
abundances in it are estimated by Bracken (Bayesian Re-estimation of Abundance
after Classification with KrakEN). A naive solution to the problem of estimating
abundances at a desired taxonomic level, given a Kraken 2’ classification, would
retain only reads classified at the taxonomic rank of interest and reject the others;
however, such an approach would both ignore important information and give poor
estimates. Bracken, instead, undertakes a probabilistic approach to redistribute
reads categorised at other taxonomic ranks to the one of interest [23]. In doing so,
it takes into account both the Kraken 2’ classification strategy and the database
queried.

If we denote with P [Gj(r)] the probability that a read r is classified by Kraken
2 at genus level Gj , and the probability P [Si(r)] that it actually belongs to genome
Si, then the probability that a read r classified by Kraken 2 at genus Gj belongs
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to the genome Si is expressed by the Bayesian law:

P [Si(r)|Gj(r)] =
P [Gj(r)|Si(r)]P [Si(r)]

P [Gj(r)]
(3.1)

Given a read r classified at genus Gj in a metagenome M analysed by Kraken
2 against some defined database D containing genomes Si, Bracken estimates the
probabilities of Eq. (3.1) as follows [23]:

• P [Gj(r)] is clearly unitary.

• To estimate P [Gj(r)|Si(r)], roughly writing, we can consider every genome in
the database D being decomposed into its r-mers, with r being the length of
the reads in the metagenome M. All such r-mers are then pooled together to
form an ideal new metagenome D that is thus classified by Kraken 2 against
the index built on the same database D . Finally, for each genome Si, the
probability P [Gj(r)|Si(r)] is estimated as the proportion of its reads that has
been classifies at genus level Gj.

• To estimate P [Si(r)], Bracken begins with calculating the proportion USi

of reads of a genome Si that are uniquely assigned by Kraken 2 to it in
D. Consequently, the number RSi

of reads classified at level Si in M are
adjusted according to the unshared proportion of Si: R̂Si

= RSi/USi
. Thence,

the probability P [Si(r)] is estimated as P [Si(r)] =
R̂Si∑︁

Sg∈Gj
R̂Sg

, where Gj is the

set of all the genomes Sg in the database D belonging to genus Gj.

Similarly, all the probabilities P [Si(r)|Ta(r)] of a read r classified at each taxon
level Ta above genus level are computed. Finally, every read classified below species
level is summed up to its species and all those reads classified above species level
are redistributed to their species level according to the conditional probabilities just
computed. Abundances at other taxonomic levels are calculated analogously.

Moreover, Bracken allows users to scale abundances based on the length of
their reference sequences. However, for ploidy is still ignored and in line with Sun
et al.’s advice [37], we have not taken into account this possibility.

3.4.3 Reference Database
For the analysis, we built up a reference database by means of our shell script
bracken_db_builder.bash which performs as follows:

• Download taxonomy:
kraken2-build --download-taxonomy --db $db_path

where $db_path is the path to the directory where either stdDB or microDB
is to be stored.
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• Download reference genomes:
kraken2-build --download-library $lib_name --db $db_path

for each library $lib_name of interest and with option --use-ftp added if
necessary. In particular, we set $lib_name to archaea, bacteria, plasmid,
and viral.

• Build Kraken 2 reference index for classification:
kraken2-build --build --db $db_path

In addition, for each dataset’s average read length $read_len, a k-mers distribution
index is built for Bracken to estimate abundances:
bracken-build -d $db_path -t $ncpus -l $read_len

where $ncpus is the number of processors available for the computation, which we
fixed to 40. All the other settings are left as default, i.e.,

• k-mer length k = 35

• minimiser length l = 31

• spaced seed number of mismatches s = 7

• a low-complexity sequences masker (NCBI’s dustmasker) is used.

3.4.4 Technical Issues
We installed from the respective git repositories:

• Bracken version 2.8, and

• Kraken 2 version 2.1.2.

However, due to a few bugs of Kraken 2, we had to fix it manually as suggested
in the issues section of its GitHub repository. All the changes we made are detailed
in the README file from the src directory of our git repository, where the modified
code is collected as well. We also slightly modified the Bracken main script
so to terminate rising an informative exit code on errors. An installation script
install_krakenSuite_git.bash is available for convenience.

3.5 Simka and SimkaMin for k-mer-based Dissimi-
larities

In spite of the plain interpretation of reference-based approaches, the probably
easiest way of comparing two metagenomic samples is by means of their mere
k-mer decomposition. Such an operation is indeed very easy to implement: it
just suffices to decompose each read into its k-mers and use their abundances in
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place of taxa abundances in the formulas. Notwithstanding, this strategy does not
elude the requirement of massive computational resources for their computation on
huge datasets. When dissimilarity indices are additive, though, efficient parallelised
algorithms exist for the task. Simka implements one of such algorithms, as described
in Section 3.5.1. However, despite allowing computation on a feasible amount of
resources, Simka is still demanding. Consequently, their developers have provided
a version of it which exploits k-mers subsampling in order to reduce dimensionality,
that is SimkaMin. This is the first subsampling technique we analysed.

Dissimilarity matrices collection is carried out by running the run_simkamin.bash
shell script. Since both Simka and SimkaMin must take the complete dataset
as input to produce its dissimilarity matrices, an explanation of how to treat un-
even sample sizes is deserved. SimkaMin does only compute Jaccard and BC
dissimilarity matrices, which are also the two most popular indices for metagenomic
comparison, hence we focused on these two indices only, and on the BC in particular.
This is why we retained the complete datasets for Simka computation, even in case
of uneven metagenome sizes. We have explained in Section 2.5.3, indeed, that the
BC index does not make any correction for uneven assemblages sizes, as it makes
statistical sense when sampling fraction, rather than sample sizes, is constant. The
same holds for SimkaMin, even though a constant number of distinct k-mers is
retained, regardless of the metagenome size. We therefore defined a grid of numbers
of distinct k-mers to retain as SimkaMin’s sampling sizes and thence collected the
dissimilarity matrices thus obtained.

Technically, the programs were run with the following settings:

• Sketch sizes: 500, 750, 1000, 2500, 5000, 7500, 10000, 25000, 50000, 75000,
100000, 250000, 500000, 750000, 1000000 distinct k-mers. Notice that if in a
collection of metagenomes there were fewer distinct k-mers than how many
allowed in a SimkaMin’s sketch3, then no subsampling would be applied in
practice. We have not checked how many distinct k-mers are there in our
datasets, however it is possible to verify a posteriori that a subsampling has
actually occurred whenever SimkaMin’s results do not coincide with Simka’s
ones.

• Singletons — i.e., k-mers appearing only once in a metagenome — were
filtered out both from Simka (-abundance-min 2 option) and SimkaMin
(-filter option). Notice that such a choice is particularly reasonable since:
1. unique k-mers do often come from sequencing errors, 2. in this context
single k-mers are not even representative the read they come from, and 3. if

3Technically, we correctly use the term sketch here, which is a more powerful data summary
than a mere subsample [32]. Notwithstanding, because in our scope such a distinction is of little
relevance and since a sketch is indeed a subsample — whereas the vice versa is false, — we will
refer to SimkaMin’s sketching as to subsampling as well.
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the probability of randomly extracting a give singleton in the metagenome it
comes from, we can confidently assume the probability of extracting an equal
k-mer from other metagenomes to be even smaller.

• One computation node was used, with as many CPUs as double the number
of metagenomes in the collection, plus one free. For instance, on a dataset
comprising 12 metagenomes we required 25 processors and input to the programs
the option -nb-cores 24.4

• Up to 2TB of RAM were reserved for the execution, while a little less was
explicitly allowed (-max-memory 1800000).

3.5.1 Simka

Simka exploits additivity of many dissimilarity indices to calculate efficiently exact
dissimilarity matrices. Thanks to additivity, indeed, an abundance vector can be split
into chunks, computation performed independently over each chunk simultaneously,
and these partial results combined into the final result. Its algorithm is described
as follows [5]:

1. By using a same distribution function on canonical representation5 of each
k-mer on each of the N samples independently, k-mers are separated into P
partitions, each divided into N chunks, and stored on disk.

2. k-mers are then sorted and counted independently on each of the P × N
sub-partitions.

3. Eventually, low-abundance k-mers, usually generated as sequencing errors, are
filtered out.

4. For each of the P partitions, k-mer counts are parallelly merged into k-mer
abundance vector. The efficiency of this operation is guaranteed by the previous
sorting phase.

5. P independent processes are run in parallel to combine k-mer abundance
vectors into P partial additive matrices of crossed terms used in dissimilarity

4We shall warn that, since CPU usage was inefficient, we tried reducing the number of processors
dedicated to the program, but some issues arose. For example, with option -nb-cores 13 on the
12-samples HMP dataset the programs failed due to core dumped error.

5The canonical representation of genetic sequence takes the former in lexicographic order
between the sequence itself and its reverse complement, which is the sequence read right-to-left
and with each nitrogenous base complemented.

43



Tools and Experimental Settings

calculation. An example of crossed term is the min calculated in Eq. (2.18) for
the BC index.6

6. Finally, the P partial matrices are combined together to get the resulting
dissimilarity matrix, for each dissimilarity function.

3.5.2 SimkaMin

SimkaMin runs essentially the Simka algorithm, except for adding a threshold on
the number of distinct k-mers counted. It does so by implementing a generalised
version of the k-minimum values (KMVs) MinHash sketching scheme, which was
originally devised for Jaccard distance estimation [32]. More explicitly, in the process
of k-mer counting, each k-mer is mapped through a unique hash function and only
those holding one of the minimum w of such hash values are counted; for these, a
vector of abundances instead of a vector of incidence is computed. Such an operation
constitutes the first phase of the SimkaMin algorithm, whereas the second phase is
equal to that of Simka [6].

It has been shown that the BC dissimilarity estimated by SimkaMin has both
bias and variance which are linear in the inverse size w of the sketch, hence it is
dominated by its standard deviation as w increases [6, supplementary data].

3.6 Reads Sampling with Spriss

While SimkaMin takes a sketching approach to improve time efficiency, Spriss
(SamPling Reads algorIthm to eStimate frequent k-merS) is an efficient algorithm
exploiting an intelligent sampling scheme to extract frequent k-mers and provide
estimates of them with rigorous guarantees [34]. In fact, Spriss implements an
approximate solution to the computational problem:

Given a metagenomic sample D, a positive integer k and a minimum
frequency threshold ϑ ∈ (0,1], find the set FK(D, k, ϑ) of all the k-mers
K ∈ Σk, with alphabet Σ, whose frequency in D is at least ϑ, and their
frequencies.

In order to do so efficiently, Spriss firstly draws a subsample of a metagenome
D, comprising m× l reads extracted independently and uniformly at random, with
replacement, form D. These reads are conceptually organised into m bags of l reads
each. The user can choose how many reads they want in each bag by inputting l
to the algorithm; however, in all our experiments we have used the default bag size

6Notice, indeed, that, given the tally of individuals in each sample as constants, the BC
similarity index is a linear function of such minima.
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l = ⌊0.9/ϑgD,k⌋, where, using the same notation as in [34], gD,k is the mean number
of k-mers per read in a sample D. On the other hand, m is internally determined
as in [34, Proposition 1], except substituting ln

(︂
1
δ

)︂
with ln

(︂
2
δ

)︂
as Santoro et al.

explain in the cited paper:

m =

⌈︄
2

ε2

(︃
1

lgD,k

)︃2(︁⌊︁
log2min

(︁
2lgmax.D,k, σ

k
)︁⌋︁)︁

+ ln

(︃
2

δ

)︃⌉︄
(3.2)

where gmax.D,k is the maximum number of k-mers per read in D, σ is the cardi-
nality of the alphabet of D, and δ and ε are parameters tuning the quality of the
approximation.

Santoro et al. have shown that, by estimating adequate statistics on such m bags,
it is possible to approximate the set FK(D, k, ϑ) of frequent k-mers with a set A of
k-mers and their estimated frequency which, with probability at least 1− 2δ over
the choice of the subsample, contains only k-mers K with frequency fD(K) ≥ ϑ− ε
and empirically holds a small false negative rate, for fixed frequency threshold ϑ,
error parameter ε ∈ (0, ϑ), and confidence parameter δ ∈ (0,1). In practice, then,
Spriss outputs an overestimate of the mentioned estimates because it approximates
the amount R[K] of reads containing a k-mer K in a metagenome D with the tally
T [K] of occurrences of K in D. Notwithstanding, the overestimation is considerable
only for highly repetitive k-mers.

Once Spriss creates and stores its subsample, it invokes the program KMC 3 to
count canonical k-mers and thus it can easily compute the mentioned statistics.

Technical Details

In all our experiments, we fixed the following parameters as suggested by Santoro
et al.:

• l = ⌊ 0.9
ϑgD,k

⌋ as anticipated;

• ε = ϑ− 2
tD,k

, where tD,k is the tally of k-mer in a metagenomic sample D;

• δ = 0.1, implying the result being almost an ε-approximation of FK(D, k, ϑ)
with probability at least 1− 2δ = 80% in the definitions given in [34].

Tractable values of frequency threshold ϑ are dataset-dependent: indeed, for high
ϑ, the list of frequent k-mers could be empty; for low ϑ, on the other hand, the
subsample size becomes grater than the original sample size, thus making the
approximation senseless.

Furthermore, because the main interest of the authors was to present the algorithm
and the sampling scheme, rather than providing a performant and user-friendly
software implementing such an algorithm, we had to modify two of the Spriss’
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scripts so to meet our needs like, for instance, working with metagenomes in fasta
format and accommodating available resources. Our modifications are available in
the directory src of the git repository. The analysis pipeline for some given dataset
is available under the name BashScripts/run_spriss.bash.

3.6.1 Frequent k-mers Estimates
Together with canonical k-mers representation and their estimated frequency, Spriss
outputs their estimated absolute abundances as well. We used such output7 to
compute BC and Jaccard dissimilarity indices in order to observe their behaviour
along with the increase of the frequency threshold, i.e., decreasing subsample sizes.

Due to heavy inefficiency of the programming language R, this was totally unsuit-
able for computing such dissimilarities on large datasets. Therefore, we developed the
ad hoc C++ program betaDiversity_spriss.cpp, exploiting parallelism similarly
to how Simka works, retrievable from the src folder in the git repository.

3.6.2 Running Simka on Spriss’ Samples
Thanks to Spriss storing subsamples of the metagenomes in the same fasta/fastq
format of the latter, it was possible to compute the exact k-mer-based dissimilarity
indices between such subsamples by means of Simka.

3.7 Examples of k-mers and Reads Sampling Schemes
Effects

Let as recapitulate the subsampling techniques presented in this chapter by means
of an example, so to better visualise them and interpret results more easily. Suppose
we have two samples, S and Q, for which the distribution of k-mers is:

Sample A B C D E F G H I J K Tot.

S 15 18 11 3 0 1 2 0 1 1 2 54
Q 16 12 6 6 1 1 2 1 0 0 1 46

Due to indices availability through the software we used, we are only focusing on
Jaccard and BC dissimilarities, which here hold:

BBC(S,Q) =
20

100
= 0.2, BJac(S,Q) =

7

11
≈ 0.636

7Using abundances instead of frequencies is in line with the BC index definition, which is not
density invariant. k-mers tally of each metagenome is considered informative for k-mer-based BC
index computation, indeed.
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The first sampling method we have introduced is that implemented in SimkaMin.
The latter builds a generalised MinHash sketch by retaining a fixed number of
distinct k-mers, chosen at random, for which the real abundances are annotated.
For instance, if we fixed the sketch’s size to six k-mers, a possible solution may be
the following, where retained k-mers are marked in dark red.

Sample A B C D E F G H I J K Tot.

Ssm 15 18 11 3 0 1 2 0 1 1 2 32
Qsm 16 12 6 6 1 1 2 1 0 0 1 31

BBC(Ssm,Qsm) =
11

63
≈ 0.175, BJac(Ssm,Qsm) =

4

6
≈ 0.667

Notice that the set of k-mers kept in such a sketch have to be the same across all
the samples.

Secondly, the sampling scheme adopted by Spriss extracts reads uniformly at
random with replacement. Suppose, for the sake of simplicity, that: 1. Q and S are
sampled with equal sampling rate at 50%, and 2. k-mers are uniformly distributed
over reads; then the next table shows an instance of such a subsample.

Sample A B C D E F G H I J K Tot.

Srs 7 9 6 2 0 0 1 0 1 0 2 28
Qrs 9 6 3 3 0 0 1 1 0 0 2 25

BBC(Srs,Qrs) =
11

53
≈ 0.208, BJac(Srs,Qrs) =

6

8
= 0.75

In practice, however, since compared metagenomes ought to be collected with
equal technologies, with the chosen parameters reported in Section 3.6, and with
subsample size equal to ml reads for each metagenome, with m given by Eq. (3.2),
the sampling rate is not constant across the dataset, unless metagenomes are equal
in sizes. This is because the only dependence on the sample size is laid by a small
contribution of the error parameter ε; therefore, such subsamples happen to be
comparable in size even if the original metagenomes were not, and so they hold
different sampling rates.

Lastly, if we compare frequent k-mers’s estimated abundances like those provided
by Spriss, with a threshold ϑ = 0.1 we may have a situation similar to the following:

Sample A B C D E F G H I J K Tot.

Ssf 15 20 10 − − − − − − − − 45
Qsf 17 13 6 6 − − − − − − − 42

BBC(Ssf,Qsf) =
19

87
≈ 0.213, BJac(Ssf,Qsf) =

3

4
= 0.75
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In the above table we have omitted rare k-mers’ abundances because Spriss actually
selects k-mers to output by means of a biased frequency estimate, while the reported
frequencies and abundances are unbiased estimates of such quantities.

3.8 Statistical Analysis
To compare two dissimilarity matrices, we used the cor.test() function of R to get
their correlation. Since such matrices are symmetric with a 0-diagonal by definition,
we only retained the dissimilarities in the upper triangle for the comparison. Let
then x and y be two vectors storing such non-redundant dissimilarities of the first
and second matrix, respectively, and let METHOD be either the string “spearman”
or “pearson”; we obtained the correlation of the two matrices and its p-value by
running cor.test(x, y, alternative = “two.sided”, method = METHOD).

We run a two-sided test because we are interested in testing comparability of two
matrices rather than testing one be greater than the other. As far as the method
is concerned, with the Pearson correlation we test linear correlation, whereas
with the Spearman correlation we observe mutual monotonicity — i.e., linear
correlation of the ranks of the two vectors.

In order to obtain basic statistics of the metagenomes, we have exploited the R
library ShortRead, which allows to read fasta and fastq formatted file and already
provides the most essential statistics. Referring to the git repository of the project,
the two R scripts performing this job are available in the Rscripts folder, named
datasets_glob_statistics.R and datasets_kmer_statistics.R. Both of them
are automatically run within the shell script parameters_setup.bash, which can
be found inside the directory BashScripts. For help on their usage, the user can
read the top comment in them.
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Chapter 4

Analysis of Results

4.1 Datasets Description

In our experiments, we have used three different datasets, which we describe
below. All of them were classified by means of the tool Bracken against a
reference database comprising bacterial, archaea, viral and plasmid sequences, built
as explained in Section 3.4.3. Heatmaps of BC dissimilarities on data collections
are reported in this section to help visualising their variety; such figures provide
a reference for subsequent analysis as well. For ease of reading, tables detailing
datasets have been collected in Appendix A.

4.1.1 The Human Metagenome Project (HMP) dataset

We downloaded a collection of 12 large metagenomes from two different body sites of
healthy humans: 1. gastrointestinal tract (stools), and 2. oral cavity (supra-gingival
plaque, tongue dorsum) from the web page www.hmpdacc.org/hmp/HMASM/#data
of the HMP. Their selection was carried out so to dispose of large metagenomes
of comparable sizes around 108 reads (see Tables A.1 and B.2). These samples
were collected as 101 bp paired-end reads on the Illumina GAIIx platform [16,
Supplementary Information] and reads’ alphabet comprises the canonical four
nitrogenous bases A, C, T, and G, plus the N character for unknown bases. Human
sequences and duplicated reads resulting as artefacts of the sequencing technology
were removed and low quality sequences trimmed before their publication (see
www.hmpdacc.org/hmp/doc/ReadProcessing_SOP.pdf).

Reads for which their paired-end mate had been excluded by quality filtering
were discarded as well. Overall, we exactly mimic the library creation operated by
Santoro et al. in [34] on a different set of metagenomes, described in Tables A.1
and A.2.
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BC dissimilarity by BRACKEN abundances − Read length ACTUAL, taxon S
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(a) Species-level Bracken-based BC dissimilarity.

BC dissimilarity by Simka − k=26
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(b) 26-mers-based BC dissimilarity.

Figure 4.1: BC dissimilarities on the HMP collection.

4.1.2 The Global Ocean Sampling expedition (GOS) dataset

A popular metagenomic dataset comes from the Global Ocean Sampling Expedition.
This is a collection of small oceanic metagenomes taken between 2004 and 2006 and
sequenced by means of gel electrophoresis [33]. Of these, excluding those from the
Sargasso Sea, we considered the 37 samples analysed by Rusch et al., and reported
in [34] as well. These samples are rather heterogeneous in size, with up to one
order of magnitude of difference, and are composed of sequences of average length
≈ 1070 bp. See Table A.4 for further details.

Due to its scarcity and heterogeneity, this is a challenging dataset to analyse.
Moreover, our reference database is probably insufficient for its classification: eu-
karyotic sequence, indeed, are likely to comprise part of its metagenomes because
of the presence of algae and planktons. Unfortunately, we disposed of insufficient
resources for using a larger reference database, yet the results we got are quite
consistent.

4.1.3 The CAMI II Toy Human Metagenome Project dataset

Common practice in empirical studies is to compare results with known ground truth
to establish their trustfulness. For the purpose, we applied our analysis pipeline to
a dataset of 12 synthetic WGS short-read metagenomes provided by the CAMI
initiative [13], simulating HMP samples. These metagenomes have approximately
equal size and all their paired-end reads are 150 bp long; however, their alphabet is
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not limited to the four canonical nucleotides plus the N (see Table A.7). Further
properties of this dataset are listed in Table A.6.

BC dissimilarity by BRACKEN abundances − Read length ACTUAL, taxon S
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BC Dissimilarity, Simka − k=21
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Figure 4.2: BC dissimilarities on the GOS collection.
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Figure 4.3: BC dissimilarities at species level on the CAMI collection.
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Since a ground truth is known only on the CAMI dataset, this is our main
collection of reference. Nevertheless, because effects of subsampling depend on the
distribution of the population1 being subsampled, we have also analysed the two real
datasets just introduced. Indeed, even the real HMP collection we used is rather
different from the simulated human metagenomes. For confirmation, we compared
them by means of their k-mer-based BC index computed by Simka on the two
datasets pooled together (Fig. 4.4).

Ideally, this would provide an unbiased vision of the diversity between the
collections since their sequences composition is the only information used. In
reality, however, the two datasets are not genuinely comparable due to their different
metagenomes’ sizes and reads length. To mitigate the issue, we exploited -max-reads
0 option of Simka for reading an equal number of reads from each metagenome
and we scaled crossed-dissimilarities so to range from 0 to 1: BBC(R,S)norm =
1− 5

4
(1−BBC(R,S)) for each real metagenome R versus each simulated metagenome

S.2

In spite of these comparability issues, the results show with little doubt that the
two human datasets have divergent k-mer distributions.
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Figure 4.4: Comparison of real (HMP) versus simulated (CAMI) metagenomic samples
via BC dissimilarity indices. Indices have been obtained by running Simka on the pooled
dataset with automatic limit on the number of reads (option -max-reads 0) and with
post-processing normalisation of crossed-dissimilarities as explained in the text.

1We adopt here the statistical meaning of “population”.
2The motivation of such a form of normalisation is that with equal number of reads retained

and with read length being 150 bp for CAMI dataset whereas ≈ 100 bp for the HMP, in case of
identical k-mers distribution among two samples, their BC similarity would be equal to 4/5.
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4.2 SimkaMin Subsampling Effects

In this and the following studies, we began by observing how well k-mer-based
β-diversity indices computed on subsampled metagenomes correlate with their
respective reference-based indices obtained from the whole metagenome. In order to
see if subsampling brings either an improvement or a worsening on results, indeed,
it just suffices to observe if such correlations decrease or increase, respectively, with
the size of the subsample. We ran these kind of analysis for different k-mer lengths.

As mentioned in Section 3.8, we compared both Pearson and Spearman correla-
tions, since both of them carry relevant information. A high Pearson correlation
indicates a strong linear relation between two variables. Consequently, it is reason-
able to expect that two dissimilarity matrices highly correlated in Pearson’s sense
would hold similar clustering at higher levels of the clustering tree. A high Spearman
correlation, on the other hand, being a rank correlation and thus indicating mutual
monotonicity of two variables, is more likely to produce similar clustering at low
level of the tree. The main reason for considering Spearman correlation, though,
is that k-mer-based and taxonomy-based dissimilarities are not linearly related in
principle, yet we are interested in their discriminative power, which is captured by
ranking dissimilarities.

We believe that, to our knowledge, this is the most proper way of assessing
subsampling effects in our scenario because, in light of a recent study [37], watching
at bare dissimilarities might be doubly misleading: 1. it could lead to failures
in interpretation of results, and 2. it may give the impression that k-mer-based
dissimilarities are good estimates of reference-based ones, whereas they are only
good substitutes.

Baring these warnings in mind, it is nonetheless convenient to actually see how
dissimilarity measures behave directly to better understand the former results. We
therefore analyse their trend in absolute value by means of scatter plots (sampled
k-mer-based versus complete reference-based dissimilarities) and line plots of the
dissimilarity against sampling size. Due to the considerable amount of data we
produced, we have selected a small representative subset of them. The complete set
of results is retrievable through GitLab at the Results directory.

4.2.1 Experiments on Bray-Curtis Dissimilarity

We firstly analyse the behaviour of SimkaMin’s sketched Bray-Curtis dissimilarity
compared to ground truth in the simulated human dataset (Figs. 4.5a and 4.5b).
Both their Pearson and Spearman correlations reveal that, no matter which k-mer
length k ∈ { 21, 26, 31 }, such dissimilarity indices computed on sketches comprising
more than 105 distinct k-mers chosen at random according to the MinHash sketching
technique are barely distinguishable from one another. All of them, indeed, appear to
be constant along with increasing sketching size up to non-subsampled metagenomes.
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Analysis of Results

Moreover, they are also extremely high — i.e., neatly above 97%, — vouching validity
of sequence-composition reference-free methods for measuring metagenomic diversity
(Table 4.1). Tighter subsampling generally worsen results, thus leaving out relevant
information. Overall, Fig. 4.8 confirms these considerations.

When 16-mers were used, however, a clear decay is manifest. Such a phenomenon
deserves further investigation for an explanation, yet we suppose a combination of
metagenomes size and the true distribution and phylogenetic diversification of species
to be its leading cause. Such hypothesis is corroborated by Fig. 4.8a, where we can
see the drop in correlation being brought by pairs of highly dissimilar metagenomes
that hold milder 16-mers-based indices. This suggests, indeed, that 16-mers are
too short for metagenomic comparison at species level on this collection. Hence, It
would be interesting to study how these k-mer-based dissimilarities correlate with
truth at genus level, instead.

Bracken-based BC dissimilarity also correlates very well with truth on the
CAMI collection, although it generally underestimates BC dissimilarity proportion-
ally to true BC similarity. This allows us to rely on the former for assessment of
real datasets. Of these, the collection from the GOS expedition shows a similar
behaviour to the simulated dataset in spite of the huge diversity of the two datasets.
In these metagenomes, however, the highest linear correlation between reference-free
and reference-based indices is reached using 16-mers and it is markedly lower than
the previously analysed ones, although being still high (Fig. 4.7 and Table 4.3).
Spearman correlation peaks on 21-mers, which hold the second-best Pearson correla-
tion. Interestingly, these also provide the best clustering of metagenomes according
to the classification proposed in [33], which is even better than the reference-based
one, as it can be visualised in Fig. 4.2. Therefore, we shall avoid lucubrating
on lower or higher values of correlation between k-mer-based and reference-based
metagenomic comparison on this dataset. Nevertheless, it is evident that moderate
sketching effort have practically no impact.

More peculiar is the HMP dataset. Here Pearson correlations sticks to our
previous observations but for a slightly clearer differentiation between indices based
on different k-mer lengths, which was not perceivable in the CAMI dataset. 21-
mers provided the highest linear correlation with Bracken’s results at species
level. Outstanding is the appearance of Spearman correlations, instead. These are
markedly lower than their respective Pearson correlations, they are rather fluctuating
in function of sketch size, and 21-mers hold the worst results. Figure 4.9 helps
understanding this plot. We see in Fig. 4.9c, indeed, a high density of maximum
dissimilarity pairs, which is perfectly desirable, yet the ranking strategy underlying
Spearman correlation fails to stand up to this scenario.

To sum up, all the three datasets analysed showed a similar behaviour on the
SimkaMin sketching technique: as expected [6, Supplementary file], a reasonably
small amount of distinct k-mers was just enough to estimate with very high precision
k-mer-based Bray-Curtis dissimilarity index. In light of the example given in
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Section 3.7, we can intuitively explain this result as follows. Suppose we ordered k-
mers abundances and showed their distribution in a bar-plot, and then we randomly
removed some of them leaving the others unchanged, then the shape drawn by the
second bars would be similar to the original one, except only for steepness. However,
it is impossible to assess neither an improvement nor a worsening along with light
subsampling: just redundant information is cut off. With heavier subsampling,
instead, an obvious worsening of results becomes manifest.

4.2.2 Experiments on the Jaccard Distance
We repeated the former analysis to study Jaccard distance’s behaviour on increasingly
intensive subsampling effort (Fig. 4.11a).However, from the very beginning, this
index appears to be much less linearly correlated in its k-mer form compared to the
true taxonomic one at species level. This becomes incontrovertible in Fig. 4.11c,
where plots’ line do not respect colour stratification at all on weakly dissimilar
metagenomes pairs. Notwithstanding, we may notice that, as shorter k-mers provide
Jaccard distances more linearly correlated with the true ones, such correlation
slightly increases with heavy sketching effort on longer k-mers. This suggests
that a k-mer-based version of the Jaccard distance should not rely on too much
discriminative information.

Spearman correlation between true and SimkaMin’s Jaccard distances, on the
contrary, is high and even higher than the that with reference-based Bracken
Jaccard index. Nevertheless, on the basis of previous considerations and the wealth
of plots we have drawn, we reckon it cannot be said whether SimkaMin’s sketching
scheme removes either noise or information in this scenario. As before, however, a
moderate subsampling have nearly no impact on results, although it cannot be said
that only redundancy is left out.
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Table 4.1: Correlations between BC dissimilarities computed on SimkaMin sketches
and the true ones on CAMI simulated dataset. Sketches’ correlations are reported as
average of those with size indicated in column 2 with standard deviation in error notation.

k Sketch size Pearson
cor.

Pearson
p-value

Spearman
cor.

Spearman
p-value

16 >=1e+05 0.9869(3) 2(2)× 10−52 0.853(6) 1.3(8)× 10−19

16 unsampled 0.987 4.66× 10−52 0.849 2.02 × 10−19

21 >=1e+05 0.9936(1) 3(2)× 10−62 0.9864(6) 2(4) × 10−51

21 unsampled 0.994 1.06× 10−62 0.986 1.26 × 10−51

26 >=1e+05 0.9937(2) 3(7)× 10−62 0.9870(3) 3(3) × 10−52

26 unsampled 0.994 9.82× 10−63 0.987 2.87 × 10−52

31 >=1e+05 0.993 86(6) 7(2)× 10−63 0.9871(2) 1.4(7)× 10−52

31 unsampled 0.994 7.96× 10−63 0.987 1.24 × 10−52

Bracken 0.9900 3.32× 10−56 0.9844 5.16× 10−50

Table 4.2: Correlations between BC dissimilarities computed on SimkaMin sketches
and those Bracken-based in HMP dataset. See Table 4.1 for table structure.

k Sketch
size

Pearson
cor.

Pearson
p-value

Spearman
cor.

Spearman
p-value

16 >=1e+05 0.9822(6) 5(5) × 10−48 0.960(4) 0
16 unsampled 0.982 2.18 × 10−48 0.96 0

21 >=1e+05 0.9853(4) 1(1) × 10−50 0.90(2) 4(10)× 10−27

21 unsampled 0.985 7.86 × 10−51 0.902 0

26 >=1e+05 0.9826(8) 7(20)× 10−48 0.909(7) 0
26 unsampled 0.983 6.3 × 10−49 0.913 1.5 × 10−26

31 >=1e+05 0.9810(3) 3(1) × 10−47 0.913(7) 7(20)× 10−27

31 unsampled 0.981 4.92 × 10−47 0.915 0
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Table 4.3: Correlations between BC dissimilarities computed on SimkaMin sketches
and those Bracken-based in GOS dataset. See Table 4.1 for table structure.

k Sketch size Pearson
cor.

Pearson
p-value

Spearman
cor.

Spearman
p-value

12 >=1e+05 0.446(1) 7(3)× 10−34 0.4268(7) 5(4)× 10−31

12 unsampled 0.447 5.38× 10−34 0.427 0

14 >=1e+05 0.692(1) 6(6)× 10−96 0.665(2) 2(3)× 10−86

14 unsampled 0.694 1.16× 10−96 0.666 0

16 >=1e+05 0.8389(3) 1.66× 10−177 0.8540(5) 1.77× 10−190

16 unsampled 0.839 6.16× 10−178 0.855 0

21 >=1e+05 0.7490(3) 9(3)× 10−121 0.9014(9) 7 × 10−242

21 unsampled 0.749 9.83× 10−121 0.902 9.91× 10−245

26 >=1e+05 0.7103(7) 3(2)× 10−103 0.8898(9) 1.77× 10−227

26 unsampled 0.711 1.38× 10−103 0.89 1.52× 10−228

31 >=1e+05 0.687(1) 6(10)×10−94 0.878(2) 1.15× 10−209

31 unsampled 0.687 3.79× 10−94 0.879 9.07× 10−216
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Figure 4.5: Correlation between BC indices computed by SimkaMin and the true
species-level BC dissimilarity on the CAMI dataset, varying sampling effort. Correlation
between the true dissimilarities and that calculated on Bracken results is reported too.
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Figure 4.6: Correlation between BC indices computed by SimkaMin and the species-
level Bracken-based BC dissimilarity on the HMP dataset, varying sampling effort.
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Figure 4.7: Correlation between BC indices computed by SimkaMin and the species-
level Bracken-based BC dissimilarity on the GOS dataset, varying sampling effort.
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Figure 4.8: Pairwise SimkaMin and true BC dissimilarities compared on the simulated
CAMI dataset. On the right, dissimilarity values of each pair of metagenomes are
reported varying sketch’s size. Each line correspond to one such pair, and colouring is
based on reference dissimilarity as shown in legend, i.e., k-mer-based dissimilarities should
ideally respect the colour legend at least in stratification. The highest sketch’s size is
met in correspondence with the vertical dashed red line, after which dissimilarity without
subsampling is reported at the extreme right.
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Figure 4.9: Pairwise SimkaMin and Bracken BC dissimilarities compared on the
HMP dataset. On the right, the highest sketch’s size is met in correspondence with the
vertical dashed red line, after which dissimilarity without subsampling is reported at the
extreme right.
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Figure 4.10: Pairwise SimkaMin and Bracken BC dissimilarities compared on the
GOS dataset, with k-mer lengths which provide the best correlation between the two
types of dissimilarities. On the right, the highest sketch’s size is met in correspondence
with the vertical dashed red line, after which dissimilarity without subsampling is reported
at the extreme right.
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Figure 4.11: SimkaMin estimates of Jaccard distance compared with true species
Jaccard index on the CAMI dataset. On the bottom-right, the highest sketch’s size is
met in correspondence with the vertical dashed red line, after which dissimilarity without
subsampling is reported at the extreme right. Only plots on 26-mers are reported for
ease of reading since other k-mer lengths hold very similar results. However, all plots and
results can be downloaded from the aforementioned git repository if of interest for the
reader.

62



4.3 – Spriss Subsampling Effects

4.3 Spriss Subsampling Effects

Instead of sampling randomly detected distinct k-mers, Spriss samples reads
uniformly at random with replacement. We can thus expect different results because
the probability mass would probably shift from rare k-mers, which tend to disappear,
to frequent ones.

By fixing error and confidence parameters, subsample sizes are controlled by the
minimum frequency threshold ϑ: higher such thresholds hold smaller subsamples.
To better understand the actual size of subsamples, then, we report in Tables 4.4
to 4.6 and Tables B.1 to B.3 in Appendix B a summary of average actual subsample
sizes per dataset. Importantly, notice that replacement in the sampling scheme
implies that a sampling rate of 100% does not mean all available data is retained.

The choice of reasonable values of ϑ depends on the collections through their
original size [29]. At too high thresholds, indeed, subsamples would always be
produced, yet the set of frequent k-mers may be empty. Too low thresholds, on
the flip side, require subsamples of larger size than the originally available data;
these are therefore not produced. These phenomena have great impact on small
heterogeneous collections, like the GOS dataset, which led us to reduce it to its 26
largest metagenomes, listed in Table A.8 in Appendix A.

Table 4.4: Spriss’ sampling rates on CAMI dataset. Rows are minimum frequency
thresholds inputted to Spriss, columns refer to different k-mer lengths. Sampling rates are
expressed as number of k-mers in the subsample divided by the number of k-mers available
in the complete metagenome, which equals the rate of sampled reads since all reads have
equal length. The values displayed are taken as arithmetic mean of all sampling rates on
the dataset, with their standard deviation expressed as an error in parenthesis. See also
Table B.1 in Appendix B for more details on sampling sizes when 26-mers are used.

ϑ k = 16 k = 21 k = 26 k = 31

1.00 × 10−6 0.011 401(2) 0.011 840(2) 0.012 314(2) 0.012 827(2)
5.00 × 10−7 0.024 003(5) 0.024 927(5) 0.025 924(5) 0.027 004(5)
3.00 × 10−7 0.041 339(8) 0.042 928(8) 0.044 647(9) 0.046 507(9)
2.00 × 10−7 0.065 01(1) 0.067 51(1) 0.070 21(1) 0.073 14(1)
1.50 × 10−7 0.086 68(2) 0.090 01(2) 0.093 61(2) 0.097 51(2)
1.25 × 10−7 0.104 02(2) 0.108 02(2) 0.112 34(2) 0.117 02(2)
1.00 × 10−7 0.136 02(3) 0.141 25(3) 0.146 90(3) 0.153 02(3)
7.50 × 10−8 0.181 36(3) 0.188 34(4) 0.195 87(4) 0.204 03(4)
5.00 × 10−8 0.284 04(5) 0.294 97(6) 0.306 77(6) 0.319 55(6)
3.50 × 10−8 0.405 78(8) 0.421 38(8) 0.444 41(8) 0.462 93(9)
3.00 × 10−8 0.480 07(9) 0.4985(1) 0.5185(1) 0.5401(1)
2.50 × 10−8 0.6001(1) 0.6232(1) 0.6481(1) 0.6751(1)
2.00 × 10−8 0.7501(1) 0.7893(2) 0.8209(2) 0.8551(2)
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Table 4.5: Spriss’ sampling rates on HMP dataset. Rows are minimum frequency
thresholds inputted to Spriss, columns refer to different k-mer lengths. Sampling rates
are expressed as number of k-mers in the subsample divided by the number of k-mers
available in the complete metagenome. The values displayed are taken as arithmetic mean
of all sampling rates on the dataset, with their standard deviation expressed as an error in
parenthesis. See also Table B.2 in Appendix B for more details on sampling sizes when
26-mers are used.

ϑ k = 16 k = 21 k = 26 k = 31

1.00 × 10−6 0.0060(6) 0.0064(7) 0.0068(7) 0.0073(8)
5.00 × 10−7 0.013(1) 0.013(1) 0.014(2) 0.015(2)
3.00 × 10−7 0.022(2) 0.023(2) 0.025(3) 0.027(3)
2.00 × 10−7 0.034(4) 0.036(4) 0.039(4) 0.042(5)
1.50 × 10−7 0.045(5) 0.048(5) 0.052(6) 0.056(6)
1.25 × 10−7 0.054(6) 0.058(6) 0.062(7) 0.067(7)
1.00 × 10−7 0.070(8) 0.075(9) 0.081(9) 0.09(1)
7.50 × 10−8 0.09(1) 0.10(1) 0.11(1) 0.12(1)
5.00 × 10−8 0.15(2) 0.16(2) 0.17(2) 0.18(2)
3.50 × 10−8 0.21(2) 0.23(3) 0.24(3) 0.26(3)
3.00 × 10−8 0.25(3) 0.26(3) 0.28(3) 0.31(4)
2.50 × 10−8 0.31(3) 0.33(4) 0.35(4) 0.38(4)
2.00 × 10−8 0.39(4) 0.41(4) 0.44(5) 0.48(5)
1.50 × 10−8 0.52(6) 0.56(6) 0.59(7) 0.65(8)
1.20 × 10−8 0.68(8) 0.72(8) 0.77(9) 0.8(1)

4.3.1 BC Dissimilarity on Spriss Subsamples

In this set of experiments, we sample reads with Spriss and then compute the k-mer
frequency in the sampled set with Simka. When directly sampling k-mers (see
Section 4.2), 16-mers proved to be inadequate for comparing large human datasets ;
here they do perform better, yet worse than longer k-mers (see Fig. 4.13). Hence we
focus on the latter, which behave similarly to one another. For convenience, results
obtained on 26-mers are displayed here, while figures of 21-mers and 31-mers are
reported in Appendix C.

On the CAMI dataset, linear correlation between k-mer-based and true BC
dissimilarities approaches unity on high subsampling rates (Figs. 4.12 and 4.13). In
fact, high values of such a correlation have been reported in all our results, as far as
proper k-mer lengths were used. We shall therefore notice that this is not guaranteed
a priori, in spite of observations. Were we to explain such a behaviour of the two
different BC indices, by considering that they can be expressed as additive functions
of abundances [6], we would suppose the existence of a relation from species to
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Table 4.6: Spriss’ sampling rates on the reduced GOS dataset (26 metagenomes).
Rows are minimum frequency thresholds inputted to Spriss, columns refer to different
k-mer lengths. Sampling rates are expressed as number of k-mers in the subsample divided
by the number of k-mers available in the complete metagenome. The values displayed
are taken as arithmetic mean of all sampling rates on the dataset, with their standard
deviation expressed as an error in parenthesis. See also Table B.3 in Appendix B for more
details on sampling sizes when 16-mers are used.

ϑ k = 12 k = 14 k = 16 k = 21 k = 26 k = 31

8.00 × 10−6 0.04(1) 0.04(1) 0.04(1) 0.04(1) 0.04(1) 0.04(1)
7.00 × 10−6 0.04(1) 0.04(1) 0.04(1) 0.04(1) 0.04(1) 0.04(1)
6.00 × 10−6 0.05(2) 0.05(2) 0.05(2) 0.05(2) 0.05(2) 0.05(2)
5.50 × 10−6 0.05(2) 0.05(2) 0.05(2) 0.05(2) 0.05(2) 0.05(2)
5.00 × 10−6 0.06(2) 0.06(2) 0.06(2) 0.06(2) 0.06(2) 0.06(2)
4.00 × 10−6 0.08(2) 0.08(2) 0.08(2) 0.08(2) 0.08(2) 0.08(2)
3.50 × 10−6 0.09(3) 0.09(3) 0.09(3) 0.09(3) 0.09(3) 0.09(3)
3.00 × 10−6 0.10(3) 0.10(3) 0.10(3) 0.10(3) 0.10(3) 0.10(3)
2.50 × 10−6 0.12(4) 0.12(4) 0.12(4) 0.12(4) 0.12(4) 0.12(4)
2.00 × 10−6 0.16(5) 0.16(5) 0.16(5) 0.16(5) 0.16(5) 0.16(5)
1.50 × 10−6 0.21(7) 0.21(7) 0.21(7) 0.22(7) 0.22(7) 0.22(7)
1.00 × 10−6 0.3(1) 0.3(1) 0.3(1) 0.3(1) 0.3(1) 0.3(1)
8.00 × 10−7 0.4(1) 0.4(1) 0.4(1) 0.4(1) 0.4(1) 0.4(1)
5.00 × 10−7 0.7(2) 0.7(2) 0.7(2) 0.7(2) 0.7(2) 0.7(2)

k-mers such that an approximately constant number of k-mers, likely dependent
on the environment studied, distinguishes each species. Non-discriminative k-mers,
shared among many species, would then carry information about distribution of
higher-ranked taxa. The variance brought by the latter, however, might reasonably
be negligible compared to species variance when similar environments are compared
— i.e., we expect linearity would drop down if, for instance, human and oceanic
metagenomes were pooled together and compared. Diversity between samples at
higher taxonomic ranks would then affect k-mer-based dissimilarity indices by some
constants rather than biasing their type of relation with their respective species-level
reference-based indices. We pose it here as an hypothesis, which has not been
verified yet.

Figure 4.13 shows an odd behaviour of the BC index on Spriss’ subsamples on
the CAMI collection: a very mild subsampling in terms of sample size results in
a sudden increase of all pairwise dissimilarities, which then decrease tidily towards
their value on original samples, and finally increase again more messily. Such an
early peak is likely due to deterministic removal of unique k-mers actuated by Simka,
the impact of which is milder on Spriss subsamples at high sampling rates because
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of replacement in Spriss’ reads-sampling scheme, which inevitably duplicate many
originally unique k-mers. Coherently, at lower sampling rates, singleton removal is
partially reached. Figure 4.14 sustains our hypothesis.

Nevertheless, although being barely perceivable in Fig. 4.12c,3 Pearson correlation
between true BC indices and those based on k-mers on Spriss’ subsamples with
minimum frequency thresholds from 2.5 × 10−8 to 2.0 × 10−7 is the highest. For
instance, with k-mer length k = 26, at a minimum frequency threshold ϑ = 1×10−7,
which corresponds to a sampling rate of 14.7%, k-mer-based BC dissimilarity on
such a subsample has a Pearson correlation of 0.9949 with the true BC, whereas
Simka results on the complete dataset with unique k-mers removal holds a linear
correlation of 0.9938 with truth, and Bracken-based correlation is 0.9900. At
heavier subsampling, though — i.e., sampling rates4 below 2.6%, — the quality
of k-mer based BC dissimilarity quickly drops, thus suggesting that important
information is lost.

Spearman correlation with true BC dissimilarity, on the other hand, holds highest
values on Spriss’ subsamples at high sampling rates. Such correlations decline
as soon as a ϑ = 5.0× 10−8 threshold is applied, in correspondence with a 30.7%
sampling rate. It is therefore very coherent with what can be observed in Fig. 4.13d:
Spearman correlation is fairly constant as long as pairwise dissimilarities maintain
their mutual ordering (rank), but decline as soon as such an order begins to be
lost. As we mentioned earlier (see Section 4.2), Spearman correlation is more
informative than Pearson correlation on low levels of a clustering tree built on these
dissimilarities. However, due to marked linear correlation between k-mer-based and
true BC indices on the CAMI dataset, we would privilege Pearson correlation for
comparison.

The collection of real metagenomes from the HMP project holds similar results
to the previously analysed ones (Fig. 4.15), except that: 1. Pearson correlation
between bracken-based BC index and its k-mer version on Spriss’ subsamples is
never higher than that between the former and its k-mer version computed on the
complete dataset, and 2. dissimilarity measures monotonically increase along with
diminishing subsampling rates.

Therefore, both real and simulated collections of large human metagenomes
constituted of short reads provided no evidence of Spriss subsampling removing
noise nor important information as far as the sampling rate is not excessively low
for the dataset.

Lastly, as seen in Section 4.2.1, the best correlation between species-level
Bracken-based BC dissimilarity and its k-mer-based version on the reduced

3The interested reader can download all the results from the aforementioned git repository,
where correlation values on Spriss experiments are stored in csv files inside directories named
Spriss_MTDabs__vs__Bracken_BacArcVirPla_lvlS.

4See Table 4.5
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GOS dataset is reached on 16-mers. On such settings, results are shown in
Fig. 4.16, whereas Fig. 4.17 displays analogous results on 21-mers. In this scenario,
Spriss subsampling improves correlation between reference-based and k-mer-based
BC indices, which is rather surprising if considering the scarcity of the dataset in
comparison with the richness of oceanic environments. As observable in Figs. 4.2,
4.16d and 4.17d, indeed, subsampling here results in a clear rise of the majority
of the pairwise dissimilarities, yet these provide a better means of metagenomic
comparison. Interestingly, Spriss’ subsampling improves drastically metagenomic
comparison on too short k-mer lengths (Fig. 4.18), suggesting that frequent relatively
short k-mers might be as informative as complete sets of longer k-mers.
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Figure 4.12: Correlation between Spriss-based and true BC indices on the CAMI
dataset. Also correlation between truth and Bracken-based BC dissimilarity at species
level is plotted. In legend, “Spriss freq.” stands for dissimilarity computed on frequent
k-mers’ estimates of abundance; “Spriss sample” denotes the exact index computed by
Simka, with unique k-mers removal, on metagenomes subsampled by Spriss.
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Figure 4.13: Spriss-sample-based and Bracken-based BC indices referred to truth,
at species level, on the CAMI dataset. On the right, a vertical dashed red line indicates
the lowest frequency threshold applied: at its left, the dissimilarity values on complete
datasets, with unique k-mers excluded, as computed by Simka are reported.
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Figure 4.14: Spriss-sample-based and Bracken-based BC indices referred to truth,
at species level, on the CAMI dataset as in Figs. 4.13c and 4.13d, but exact k-mer-based
BC dissimilarities on the non-sampled dataset are computed by Simka without filtering
out singletons (dark bullets in the plot on left, leftmost end on the plot in the right).

70



4.3 – Spriss Subsampling Effects

2e−08 5e−08 1e−07 2e−07 5e−07 1e−06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BC Dissimilarities Comparison − k=26

Minimum Frequency Threshold (theta)

P
ea

rs
on

 C
or

re
la

tio
n

SPRISS freq. vs. BRACKEN
SPRISS sample vs. BRACKEN
Simka exact vs. BRACKEN

(a) Pearson correlation

2e−08 5e−08 1e−07 2e−07 5e−07 1e−06
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

BC Dissimilarities Comparison − k=26

Minimum Frequency Threshold (theta)

S
pe

ar
m

an
 C

or
re

la
tio

n

SPRISS freq. vs. BRACKEN
SPRISS sample vs. BRACKEN
Simka exact vs. BRACKEN

(b) Spearman correlation

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

BC Dissimilarities on SPRISS Sample − k = 26

BRACKEN BC dissimilarity

km
er

−
ba

se
d 

B
C

 d
is

si
m

ila
rit

y

theta = 1.0e−06
theta = 2.0e−07
theta = 1.0e−07
theta = 3.5e−08
theta = 2.0e−08
theta = 1.2e−08
Simka exact
perfect match

(c) k-mer-based versus reference-based dissimilarities

5e−09 2e−08 5e−08 2e−07 5e−07

0.
6

0.
7

0.
8

0.
9

1.
0

BC Dissimilarities on SPRISS Sample − k = 26

Frequency threshold theta

B
C

 d
is

si
m

ila
rit

y

Bracken BC Dissim.

d > 0.9
0.8 < d < 0.9
0.6 < d < 0.8
0.4 < d < 0.6
0.2 < d < 0.4
d < 0.2

(d) k-mer-based dissimilarities along with decreasing sam-
pling rate

Figure 4.15: On the top, correlation between Spriss-sample-based and Bracken-based
BC indices on the HMP dataset; “Spriss freq.” in the legend stands for dissimilarity
computed on frequent k-mers’ estimates of abundance, “Spriss sample” denotes the exact
index computed by Simka, with unique k-mers removal, on metagenomes subsampled
by Spriss. On the bottom, Spriss-based compared to species-level Bracken-based BC
indices. A vertical dashed red line in Fig. 4.15d indicates the lowest frequency threshold
applied: at its left, dissimilarity values on complete datasets with unique k-mers excluded
as computed by Simka are reported.
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Figure 4.16: Comparison of Spriss-sample-based and Bracken-based BC indices
on the reduced GOS dataset when 16-mers are used by Spriss. A vertical dashed
brown line in the top Figs. 4.16a and 4.16b signals the lowest frequency threshold for
which at least one metagenome holds an empty frequent k-mers set, which is considered
to be at unitary dissimilarity from every other frequent k-mers set. On the top, “Spriss
freq.” in the legends stands for dissimilarity computed on frequent k-mers’ estimates of
abundance, “Spriss sample” denotes the exact index computed by Simka, with unique
k-mers removal, on metagenomes subsampled by Spriss. In Fig. 4.16d, a vertical dashed
red line indicates the lowest frequency threshold applied: at its left, dissimilarity values on
complete datasets with unique k-mers excluded, computed by Simka, are reported.
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Figure 4.17: Comparison of Spriss-sample-based and Bracken-based BC indices
on the reduced GOS dataset when 21-mers are used by Spriss. A vertical dashed
brown line in the top Figs. 4.16a and 4.16b signals the lowest frequency threshold for
which at least one metagenome holds an empty frequent k-mers set, which is considered
to be at unitary dissimilarity from every other frequent k-mers set. On the top, “Spriss
freq.” in the legends stands for dissimilarity computed on frequent k-mers’ estimates of
abundance, “Spriss sample” denotes the exact index computed by Simka, with unique
k-mers removal, on metagenomes subsampled by Spriss. In Fig. 4.17d, a vertical dashed
red line indicates the lowest frequency threshold applied: at its left, dissimilarity values on
complete datasets with unique k-mers excluded, computed by Simka, are reported.
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Figure 4.18: Correlation between Spriss-based and Bracken-based BC indices on the
reduced GOS dataset on short k-mers. In legend, “Spriss freq.” stands for dissimilarity
computed on frequent k-mers’ estimates of abundance; “Spriss sample” denotes the exact
index computed by Simka, with unique k-mers removal, on metagenomes subsampled by
Spriss. A vertical dashed brown line in the top Figs. 4.16a and 4.16b signals the lowest
frequency threshold for which at least one metagenome holds an empty frequent k-mers
set, which is considered to be at unitary dissimilarity from every other frequent k-mers set.
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4.3.2 BC Dissimilarity on Spriss Frequent k-mers Estimates
Since Spriss is a tool for estimating frequent k-mers’ abundances, we compared
the BC index computed on the latter with its reference-based version to asses
this third subsampling technique. With few exceptions, BC dissimilarity between
frequent k-mers estimates correlates generally worse than all the other computations
of BC dissimilarity (blue lines in Figs. 4.12, 4.15a, 4.15b, 4.16a, 4.17b and 4.18, and
Figs. C.2, C.4 and C.5 in Appendix C).
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Figure 4.19: BC dissimilarity indices computed on Spriss’ frequent k-mers abundances
estimation between pairs of metagenomes on the CAMI collection, varying sampling effort.
See Fig. 4.13 for further details on the plot structure. A vertical dashed red line indicates
the lowest frequency threshold applied: at its left, the dissimilarity values on complete
datasets, with unique k-mers excluded, as computed by Simka are reported.

However, on simulated large human metagenomes composed of short-reads — i.e.,
the CAMI dataset, — when minimum frequency thresholds are ϑ ≤ 5× 10−8,
Pearson correlation to true BC index is comparable with those held by Bracken and
by Simka, whereas Spearman correlation is markedly worse (Fig. 4.12 and Fig. C.2
in Appendix C). Both correlations have a steep decline peaking to a minimum
around the threshold ϑ = 1.5× 10−7, then increasing again. An explanation of such
an odd phenomenon might be that mildly frequent k-mers are the most unshared
and, hence, they enhance dissimilarity; consequently, when they are excluded by
higher minimum frequency thresholds the BC index improves again before declining
definitely. Such an hypothesis is weakly sustained by Fig. 4.19, however it deserves
further investigation. More likely, the phenomenon could be explained by considering
the interaction of the two different estimates used: one for frequent k-mer selection,
and one for frequency estimation. Indeed, with the settings we applied — i.e.,
ε = ϑ− 2/tD,k as suggested by Santoro et al., — the frequent k-mers set output by
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Spriss does only guarantee not to report any k-mer appearing fewer than three
times in the original metagenome [34, Def. 1, point 2]; therefore, the observed
hollow may depend on the distribution of false negative and false positive k-mers in
the frequent k-mers set.

On the HMP dataset, Spearman correlation between BC dissimilarities based
on frequent k-mers’ abundances estimates and the Bracken-based ones are more
comparable with those between the latter and the Simka-based BC (Fig. 4.15d).
Nonetheless, low minimum frequency thresholds provide high Pearson correlation as
well, while the behaviour noticed on the CAMI dataset is only weakly perceivable
here (Figs. 4.15d and 4.20a).

Exceptionally, as far as the reduced GOS dataset is concerned, although non-
optimal, the linear correlation of BC indices on estimated abundances of frequent
12-mers with those based on Bracken’s abundances is better than that computed
on all k-mers, as displayed in Fig. 4.18. The respective plot of Pearson correlation in
this figure (top-left) clearly demonstrate that infrequent 12-mers can be considered
as a noise when BC dissimilarity is to be computed on their abundances: not only the
Spriss’ approximate set of frequent 12-mers holds the highest linear correlation with
true BC dissimilarity on all minimum frequency thresholds lower than ϑ = 3× 10−6,
but also Spriss’ subsamples provide better dissimilarity estimates on subsamples
with lower sampling rates. Notwithstanding, the dependence on k-mer length k = 12,
the limitations of the GOS dataset, and the visualisation of such BC dissimilarities
in Fig. 4.20b do not allow us to generalise from this single result.

Overall, limiting metagenomic comparison to estimated abundances of frequent
k-mers is never improving k-mer-based BC index on taxonomic interpretation of it at
species level on higher k-mer lengths. As a consequence, our results strongly suggest
that, despite frequent k-mers carrying most of the relevant taxonomic information,
part of rarer k-mers are informative too when comparing environment by means of
the BC dissimilarity index on their sequenced metagenomes.

4.3.3 Experiments on the Jaccard Distance
Lastly, we observed the effects of subsampling on the k-mer-based computation
of the Jaccard distance between two metagenomes. Once again, k-mer lengths
k = 21, 26 and 31 provide very similar results, so we are only reporting those on
26-mers as representative.

On the CAMI dataset, we observe a sampling window on minimum frequency
thresholds ϑ = 5.00 × 10−8 to 1.50 × 10−8 where k-mer-based Jaccard distance
computed by Simka with singletons removal on the Spriss subsamples is unequiv-
ocally better correlated to the true Jaccard distance than any other is, both in
Pearson and Spearman methods (Fig. 4.22). Figure 4.23b shows that pairs of
metagenomes holding the lowest Jaccard distance get better clustered together
toward low distance values when such thresholds are applied. We therefore believe
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Figure 4.20: BC dissimilarity indices computed on Spriss’ frequent k-mers abundances
estimation between pairs of metagenomes, varying sampling effort. A vertical dashed red
line indicates the lowest frequency threshold applied: at its left, the dissimilarity values on
complete datasets, with unique k-mers excluded, as computed by Simka are reported.

that rare k-mers are inadequate when inferring information about presence-absence
dissimilarities. On such dissimilarities, indeed, frequent and rare k-mers are equally
weighted. Therefore, were we to explain why infrequent k-mers are informative,
although weakly, for computing metagenomic BC dissimilarity while being rather
noisy on the Jaccard distance, we would suggest that there are both informative
and noisy infrequent k-mers, and that the way through which they are weighted by
the respective indices makes the one or the other part of them emerge.

Interestingly, the high peak in correlation just described happens near to the
lowest correlation between the Jaccard distance computed on Spriss’ approximate
frequent k-mers set and the true taxonomic Jaccard distance. This might suggest
that infrequent k-mers on the subsamples just indicated are the most informative
for presence-absence β-diversity. However, we think the second hypothesis proposed
in Section 4.3.2 applies here as well and could be the right explanation. Conse-
quently, a specific study on the distribution of false positives and false negatives
on the respective Spriss’ approximate frequent k-mers sets and their impact on
metagenomic comparison should be carried out to verify our hypothesis.

The HMP dataset provides similar results (Figs. 4.24 and 4.25). Notwithstand-
ing, we see a lower correlation, which is maximum on 16-mers, and is less variant
on subsampling rates higher than 1%. The main reason for a worse correlation
may be the lower number of pairs of metagenomes at nearly unitary distance in
this collection, as clear in Fig. 4.21. Indeed, our results suggest that k-mer-based
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Jaccard distance does not correlate well with its reference-based version on pairs of
similar samples in general, as visible in both CAMI and HMP results displayed in
Figs. 4.23b and 4.25, respectively.
K-mer based Jaccard distance on the reduced GOS dataset correlates quite

badly with their respective reference-based Jaccard distance, holding a coefficient
always well below 0.75. However, because clustering of this dataset is sharply better5
on k-mer-based Jaccard distance than on its reference-based version (Fig. C.1 in
Appendix C), our analysis is not applicable on this dataset.

Therefore, a sampling scheme selecting reads uniformly at random with replace-
ment, as that applied by the tool Spriss, seems to reduce the noise which affects
Jaccard distance computation for metagenomic comparison, at proper sampling rates.
However, despite being reasonably well correlated with reference-based Jaccard
distance, k-mer-based Jaccard distance is not a really good substitute of the former,
and subsampling, even where it improves such a correlation, is still not powerful
enough for that aim.
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Figure 4.21: Comparison of Jaccard distance on human datasets.

5Clustering is better with that provided by Rusch et al. as a reference.
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Figure 4.22: Correlation between Spriss-sample-based Jaccard distances and true
Jaccard distances on the CAMI dataset. Also correlation between truth and Bracken-
based Jaccard distance at species level is plotted. In legend, “Spriss freq.” stands
for dissimilarity computed on frequent k-mers’ estimates of abundance; “Spriss sample”
denotes the exact index computed by Simka, with unique k-mers removal, on metagenomes
subsampled by Spriss.
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Figure 4.23: Spriss-based and Bracken-based Jaccard distances referred to true
Jaccard distance on the CAMI dataset. On the right, a vertical dashed red line indicates
the lowest frequency threshold applied: at its left, the distance values on complete datasets,
with unique k-mers excluded, as computed by Simka are reported.
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Figure 4.24: Correlation between Spriss-based and Bracken-based Jaccard distances
on the HMP dataset. In legend, “Spriss freq.” stands for dissimilarity computed
on frequent k-mers’ estimates of abundance; “Spriss sample” denotes the exact index
computed by Simka, with unique k-mers removal, on metagenomes subsampled by Spriss.
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Figure 4.25: Spriss-based referred to Bracken-based Jaccard distances on the HMP
dataset. On the right, a vertical dashed red line indicates the lowest frequency threshold
applied: at its left, the dissimilarity values on complete datasets, with unique k-mers
excluded, as computed by Simka are reported.
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Chapter 5

Conclusion

In this thesis we have explored the effects of three different subsampling approaches
on k-mer-based metagenomic comparison in relation to reference-based metagenomic
comparison.

Our results show that SimkaMin’s sketching approach — i.e., randomly selecting
a small set of distinct k-mers to be counted in the metagenomes under comparison —
does not improve nor worsen the correlation between k-mer-based and reference-
based BC dissimilarity and Jaccard distance, unless extremely small sketches
— i.e., comprising fewer than 105 distinct k-mers — are applied. In the latter
case, the quality of results naturally drops. Our observation is, therefore, in line
with SimkaMin’s authors claim that bias and variance of dissimilarity measures
computed on such sketches are linearly proportional to the inverse of the number of
distinct k-mers in the sketch [6, Suppl.].

Similarly, Spriss sampling scheme — i.e., selecting reads uniformly at random
with replacement — appear to have very little impact on k-mer-based BC dissimilar-
ity on large human metagenomes composed of short reads, on sampling rates higher
than about 1%. Instead, on metagenomes from the GOS experiment, which are
small metagenomes with average sequence length ≈ 1070 bp, such a sampling scheme
has provided better correlation with reference-based BC dissimilarity on sampling
rates higher than 10%. In such settings, Spriss sampling scheme drastically improve
BC dissimilarity computed on very short k-mers, e.g., k = 12 and 14.

Coherently, a third sampling scheme providing an approximate set of frequent k-
mers with their estimated abundances, as the output of the Spriss algorithm, shows
a huge improvement of short-k-mers-based BC dissimilarity. On longer k-mers,
however, this third method clearly worsen metagenomic comparison. Although this
allows us to affirm that relevant information is thus lost, we ought to be cautious
before stating that informative k-mers are therefore removed. Indeed, information
loss may be due to statistical effects, like distribution of false positives and negatives
in the estimated set. Effects of such a distribution are probably heavier when
comparing k-mer-based Jaccard distance with its reference-based version.
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Conclusion

Accordingly, our results show that Spriss’ approximate frequent k-mers set is
non-optimal for computing a reference-free Jaccard distance. Instead, the best way
of computing such indices, as emerges from our results, is by means of a moderate
subsampling in the Spriss’ scheme. On the latter, indeed, reference-based Jaccard
distance correlates with the k-mer-based Jaccard distance even better than it does
on non-subsampled metagenomes.

Our study has also highlighted few interesting problems to be solved. Firstly,
there is a need of better relating optimal k-mer length with relevant characteristics of
the metagenomes and the task to be accomplished; here we focused on metagenomic
comparison at species level. Indeed, the research carried out by Dubinkina et al.
[12] should be repeated with longer k-mers and variable datasets. In particular,
our results suggests k-mer length should be proportional to metagenome size, but
nothing about this problem can be definitely inferred form our study.

Secondly, the strong linear relation between k-mer-based and reference-based
dissimilarity measures observable in our results deserves an explanation, as we have
commented in Section 4.3.1.

To sum up, our study has shown a very weak impact of subsampling on the
computation of reference-free BC dissimilarities between metagenomes, unless a
consistent amount of data is excluded. Therefore, just uninformative data seem to
be cut off by subsampling. Among such data, however, rare k-mers are likely to be
more noisy on the Jaccard distance, therefore a subsampling scheme reducing their
quantity improves sensibly the quality of such a distance.
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Appendix A

Datasets Details

We gather here for convenience tables which enrich the datasets’ description given
in Section 4.1.

Table A.1: Sequencing properties of the HMP dataset.

Label Sample
name Reads tally Average

read length
Symbols

tally

SGP1 SRS053917 1.158× 108 100.00 5
SGP2 SRS075410 9.949× 107 95.06 5
SGP3 SRS011126 9.627× 107 93.48 5
ST1 SRS012273 1.075× 108 94.22 5
ST2 SRS045713 1.057× 108 93.01 5
ST3 SRS016095 1.069× 108 95.61 5
ST4 SRS011239 1.238× 108 95.70 5
ST5 SRS024388 1.197× 108 96.21 5
TD1 SRS012279 1.050× 108 95.51 5
TD2 SRS011306 1.004× 108 94.72 5
TD3 SRS023617 9.535× 107 93.42 5
TD4 SRS062761 1.181× 108 100.00 5
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Datasets Details

Table A.2: Sequencing sites of the HMP dataset.

Label Name Body Site Sampling site

SGP1 SRS053917 Oral Cavity Supragingival Plaque
SGP2 SRS075410 Oral Cavity Supragingival Plaque
SGP3 SRS011126 Oral Cavity Supragingival Plaque
ST1 SRS012273 Gastrointestinal Tract Stool
ST2 SRS045713 Gastrointestinal Tract Stool
ST3 SRS016095 Gastrointestinal Tract Stool
ST4 SRS011239 Gastrointestinal Tract Stool
ST5 SRS024388 Gastrointestinal Tract Stool
TD1 SRS012279 Oral Cavity Tongue Dorsum
TD2 SRS011306 Oral Cavity Tongue Dorsum
TD3 SRS023617 Oral Cavity Tongue Dorsum
TD4 SRS062761 Oral Cavity Tongue Dorsum

Table A.3: Alphabet of the HMP dataset.

Label A C G T N

SGP1 2.9× 109 3.0× 109 2.9× 109 2.8× 109 2.4× 106

SGP2 2.5× 109 2.3× 109 2.3× 109 2.4× 109 1.5× 106

SGP3 2.4× 109 2.1× 109 2.1× 109 2.3× 109 2.2× 106

ST1 2.8× 109 2.2× 109 2.2× 109 2.8× 109 2.5× 106

ST2 2.8× 109 2.1× 109 2.1× 109 2.8× 109 4.3× 105

ST3 2.9× 109 2.3× 109 2.3× 109 2.8× 109 1.7× 106

ST4 3.3× 109 2.7× 109 2.7× 109 3.2× 109 8.3× 105

ST5 3.3× 109 2.5× 109 2.5× 109 3.3× 109 6.2× 106

TD1 3.0× 109 2.0× 109 2.1× 109 2.9× 109 3.3× 106

TD2 2.8× 109 1.9× 109 1.9× 109 2.8× 109 1.1× 106

TD3 2.7× 109 1.8× 109 1.8× 109 2.6× 109 2.8× 106

TD4 3.4× 109 2.5× 109 2.5× 109 3.4× 109 7.9× 106
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Datasets Details

Table A.4: Properties of the GOS dataset.

Label Sample
name Reads tally Average

read length
Symbols

tally

E01 GOS011 1.244× 105 1070.85 4
E02 GOS012 1.262× 105 1078.62 4
NC1 GOS020 2.964× 105 1063.42 4
NC2 GOS025 1.207× 105 1075.50 4
NC3 GOS032 1.480× 105 1035.97 4
NC4 GOS033 6.923× 105 1054.10 4
TG01 GOS014 1.289× 105 1085.58 4
TG02 GOS021 1.318× 105 1088.44 4
TG03 GOS022 1.217× 105 1077.41 4
TG04 GOS027 2.221× 105 1068.65 4
TG05 GOS028 1.891× 105 1084.40 4
TG06 GOS029 1.315× 105 1093.47 4
TG07 GOS030 3.592× 105 1090.61 4
TG08 GOS031 4.364× 105 1057.91 4
TG11 GOS034 1.343× 105 1058.45 4
TG12 GOS035 1.408× 105 1078.30 4
TG13 GOS036 7.754× 104 1106.01 4
TG14 GOS037 6.567× 104 1045.40 4
TG15 GOS047 6.602× 104 1035.10 4
TG16 GOS051 1.290× 105 1089.28 4
TN1 GOS002 1.216× 105 1058.98 4
TN2 GOS003 6.161× 104 1086.07 4
TN3 GOS004 5.296× 104 1074.83 4
TN4 GOS005 6.113× 104 1079.37 4
TN5 GOS006 5.968× 104 1082.72 4
TN6 GOS007 5.098× 104 1087.31 4
TO1 GOS015 1.274× 105 1083.79 4
TO2 GOS016 1.271× 105 1081.48 4
TO3 GOS017 2.576× 105 1091.93 4
TO4 GOS018 1.427× 105 1096.20 4
TO5 GOS019 1.353× 105 1081.94 4
TO6 GOS023 1.331× 105 1079.49 4
TO7 GOS026 1.027× 105 1061.74 4
TS1 GOS008 1.297× 105 1062.25 4
TS2 GOS009 7.930× 104 1063.36 4
TS3 GOS010 7.830× 104 1052.62 4
TS4 GOS013 1.380× 105 1079.51 4
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Datasets Details

Table A.5: Environmental characteristics of the GOS dataset. We report the categorisation
made by Rusch et al. in [33] despite ignoring, for instance, how sample GOS014 could be labelled
within the Galapagos group. NAEC stands for North America East Coast.

Label Name Rusch et al.
finer category

Rusch et al.
large cluster

Geographic
provenience

E01 GOS011 Estuary Temperate Estuary NAEC
E02 GOS012 Estuary Temperate Estuary NAEC
NC1 GOS020 Non classified Non classified Freshwater Panama
NC2 GOS025 Non classified Non classified Trop. Eastern Pacific
NC3 GOS032 Non classified Non classified Galapagos
NC4 GOS033 Non classified Non classified Galapagos
TG01 GOS014 Galapagos Tropical Gulf Stream
TG02 GOS021 Galapagos Tropical Trop. Eastern Pacific
TG03 GOS022 Galapagos Tropical Trop. Eastern Pacific
TG04 GOS027 Galapagos Tropical Galapagos
TG05 GOS028 Galapagos Tropical Galapagos
TG06 GOS029 Galapagos Tropical Galapagos
TG07 GOS030 Galapagos Tropical Galapagos
TG08 GOS031 Galapagos Tropical Galapagos
TG11 GOS034 Galapagos Tropical Galapagos
TG12 GOS035 Galapagos Tropical Galapagos
TG13 GOS036 Galapagos Tropical Galapagos
TG14 GOS037 Galapagos Tropical Trop. Eastern Pacific
TG15 GOS047 Galapagos Tropical Trop. South Pacific
TG16 GOS051 Galapagos Tropical Polynesia Archipelagos
TN1 GOS002 Temp. North Temperate Coast NAEC
TN2 GOS003 Temp. North Temperate Coast NAEC
TN3 GOS004 Temp. North Temperate Coast NAEC
TN4 GOS005 Temp. North Temperate Embayment NAEC
TN5 GOS006 Temp. North Temperate Estuary NAEC
TN6 GOS007 Temp. North Temperate Coast NAEC
TO1 GOS015 Open Ocean Tropical Gulf Stream
TO2 GOS016 Open Ocean Tropical Gulf Stream
TO3 GOS017 Open Ocean Tropical Gulf Stream
TO4 GOS018 Open Ocean Tropical Gulf Stream
TO5 GOS019 Open Ocean Tropical Caribbean Sea
TO6 GOS023 Open Ocean Tropical Trop. Eastern Pacific
TO7 GOS026 Open Ocean Tropical Galapagos
TS1 GOS008 Temp. South Temperate Coast NAEC
TS2 GOS009 Temp. South Temperate Coast NAEC
TS3 GOS010 Temp. South Temperate Coast NAEC
TS4 GOS013 Temp. South Temperate Coast NAEC
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Datasets Details

Table A.6: The CAMI simulated dataset. In samples’ names the original CAMI’s
sample numbering is kept.

Label Sample
name

Number
of

reads

Average
read

length

Number
of

symbols
Body Site

A04 CAMI_airways4 3.333× 107 150 12 Airways
A07 CAMI_airways7 3.333× 107 150 12 Airways
A08 CAMI_airways8 3.333× 107 150 11 Airways
G00 CAMI_gastro0 3.333× 107 150 7 Gastrointestinal

Tract
G01 CAMI_gastro1 3.333× 107 150 11 Gastrointestinal

Tract
G02 CAMI_gastro2 3.333× 107 150 4 Gastrointestinal

Tract
O06 CAMI_oral6 3.332× 107 150 9 Oral Cavity
O07 CAMI_oral7 3.332× 107 150 12 Oral Cavity
O08 CAMI_oral8 3.333× 107 150 12 Oral Cavity
S01 CAMI_skin1 3.333× 107 150 11 Skin
S13 CAMI_skin13 3.333× 107 150 10 Skin
S14 CAMI_skin14 3.333× 107 150 11 Skin

Table A.7: Alphabet of the CAMI dataset.

Label A C G T M R W S V H D B N

A04 1.4× 109 1.1× 109 1.1× 109 1.4× 109 219 443 468 176 365 315 0 14 2256
A07 1.4× 109 1.1× 109 1.1× 109 1.4× 109 105 178 121 51 217 87 3 0 817
A08 1.2× 109 1.3× 109 1.3× 109 1.2× 109 89 330 181 102 328 61 0 0 1180
G00 1.1× 109 1.4× 109 1.4× 109 1.1× 109 8 0 0 0 3 0 0 0 14
G01 1.2× 109 1.3× 109 1.3× 109 1.2× 109 4 17 7 2 17 14 0 0 77
G02 1.2× 109 1.3× 109 1.3× 109 1.2× 109 0 0 0 0 0 0 0 0 0
O06 1.5× 109 1.0× 109 1.0× 109 1.5× 109 12 3 5 0 4 0 0 0 18
O07 1.5× 109 1.0× 109 1.0× 109 1.5× 109 20 36 29 29 28 26 0 1 152
O08 1.5× 109 1.0× 109 1.0× 109 1.5× 109 276 449 312 189 330 229 0 3 1956
S01 1.5× 109 1.0× 109 1.0× 109 1.5× 109 51 96 134 27 162 68 0 0 453
S13 1.4× 109 1.1× 109 1.1× 109 1.4× 109 1 20 20 3 48 0 0 0 87
S14 1.6× 109 9.2× 108 9.2× 108 1.6× 109 162 529 393 137 786 93 0 0 2141
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Datasets Details

Table A.8: Properties of the GOS dataset reduced to 26 metagenomes.

Label Sample
name Reads tally Average

read length
Symbols

tally

E01 GOS011 1.244× 105 1070.85 4
E02 GOS012 1.262× 105 1078.62 4
NC1 GOS020 2.964× 105 1063.42 4
NC2 GOS025 1.207× 105 1075.50 4
NC3 GOS032 1.480× 105 1035.97 4
NC4 GOS033 6.923× 105 1054.10 4
TG01 GOS014 1.289× 105 1085.58 4
TG02 GOS021 1.318× 105 1088.44 4
TG03 GOS022 1.217× 105 1077.41 4
TG04 GOS027 2.221× 105 1068.65 4
TG05 GOS028 1.891× 105 1084.40 4
TG06 GOS029 1.315× 105 1093.47 4
TG07 GOS030 3.592× 105 1090.61 4
TG08 GOS031 4.364× 105 1057.91 4
TG11 GOS034 1.343× 105 1058.45 4
TG12 GOS035 1.408× 105 1078.30 4
TG16 GOS051 1.290× 105 1089.28 4
TN1 GOS002 1.216× 105 1058.98 4
TO1 GOS015 1.274× 105 1083.79 4
TO2 GOS016 1.271× 105 1081.48 4
TO3 GOS017 2.576× 105 1091.93 4
TO4 GOS018 1.427× 105 1096.20 4
TO5 GOS019 1.353× 105 1081.94 4
TO6 GOS023 1.331× 105 1079.49 4
TS1 GOS008 1.297× 105 1062.25 4
TS4 GOS013 1.380× 105 1079.51 4
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Appendix B

Spriss Samples Details

Tables below show the actual Spriss’ subsamples sizes for each dataset. For
simplicity, subsamples on only one k-mer length is being shown for each dataset.

Table B.1: Spriss’ subsamples sizes summary on CAMI dataset when 26-mers are
used. Values displayed are taken as arithmetic mean of all sampling rates on the dataset,
with their standard deviation expressed as an error in parenthesis if not null.

ϑ
#reads
original

#reads
sampled

#26-mers
original

#26-mers
sampled

Sampling
rate

1.00 × 10−6 3.3328(6)× 107 4.1 × 105 4.1660(8)× 109 5.13× 107 1.2314(2)× 10−2

5.00 × 10−7 3.3328(6)× 107 8.64× 105 4.1660(8)× 109 1.08× 108 2.5924(5)× 10−2

3.00 × 10−7 3.3328(6)× 107 1.49× 106 4.1660(8)× 109 1.86× 108 4.4647(9)× 10−2

2.00 × 10−7 3.3328(6)× 107 2.34× 106 4.1660(8)× 109 2.93× 108 7.021(1) × 10−2

1.50 × 10−7 3.3328(6)× 107 3.12× 106 4.1660(8)× 109 3.9 × 108 9.361(2) × 10−2

1.25 × 10−7 3.3328(6)× 107 3.74× 106 4.1660(8)× 109 4.68× 108 1.1234(2)× 10−1

1.00 × 10−7 3.3328(6)× 107 4.9 × 106 4.1660(8)× 109 6.12× 108 1.4690(3)× 10−1

7.50 × 10−8 3.3328(6)× 107 6.53× 106 4.1660(8)× 109 8.16× 108 1.9587(4)× 10−1

5.00 × 10−8 3.3328(6)× 107 1.02× 107 4.1660(8)× 109 1.28× 109 3.0677(6)× 10−1

3.50 × 10−8 3.3328(6)× 107 1.48× 107 4.1660(8)× 109 1.85× 109 4.4441(8)× 10−1

3.00 × 10−8 3.3328(6)× 107 1.73× 107 4.1660(8)× 109 2.16× 109 5.185(1) × 10−1

2.50 × 10−8 3.3328(6)× 107 2.16× 107 4.1660(8)× 109 2.7 × 109 6.481(1) × 10−1

2.00 × 10−8 3.3328(6)× 107 2.74× 107 4.1660(8)× 109 3.42× 109 8.209(2) × 10−1
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Spriss Samples Details

Table B.2: Spriss’ subsamples sizes summary on HMP dataset when 26-mers are used.

ϑ
#reads
original

#reads
sampled

#26-mers
original

#26-mers
sampled

Sampling
rate

1.00 × 10−6 1.1(1)× 108 7.3(2) × 105 7.6(9)× 109 5.1299(1) × 107 0.0068(7)
5.00 × 10−7 1.1(1)× 108 1.53(5)× 106 7.6(9)× 109 1.079 99(1) × 108 0.014(2)
3.00 × 10−7 1.1(1)× 108 2.64(8)× 106 7.6(9)× 109 1.859 98(1) × 108 0.025(3)
2.00 × 10−7 1.1(1)× 108 4.1(1) × 106 7.6(9)× 109 2.924 99(1) × 108 0.039(4)
1.50 × 10−7 1.1(1)× 108 5.5(2) × 106 7.6(9)× 109 3.899 98(1) × 108 0.052(6)
1.25 × 10−7 1.1(1)× 108 6.6(2) × 106 7.6(9)× 109 4.679 98(1) × 108 0.062(7)
1.00 × 10−7 1.1(1)× 108 8.6(3) × 106 7.6(9)× 109 6.09(4) × 108 0.081(9)
7.50 × 10−8 1.1(1)× 108 1.16(4)× 107 7.6(9)× 109 8.159 98(2) × 108 0.11(1)
5.00 × 10−8 1.1(1)× 108 1.79(6)× 107 7.6(9)× 109 1.259 998(2)× 109 0.17(2)
3.50 × 10−8 1.1(1)× 108 2.59(8)× 107 7.6(9)× 109 1.825 712(2)× 109 0.24(3)
3.00 × 10−8 1.1(1)× 108 3.0(1) × 107 7.6(9)× 109 2.129 998(1)× 109 0.28(3)
2.50 × 10−8 1.1(1)× 108 3.8(1) × 107 7.6(9)× 109 2.65(2) × 109 0.35(4)
2.00 × 10−8 1.1(1)× 108 4.7(1) × 107 7.6(9)× 109 3.329 998(2)× 109 0.44(5)
1.50 × 10−8 1.1(1)× 108 6.4(2) × 107 7.6(9)× 109 4.48(3) × 109 0.59(7)
1.20 × 10−8 1.1(1)× 108 8.3(3) × 107 7.6(9)× 109 5.83(3) × 109 0.77(9)

Table B.3: Spriss’ subsamples sizes summary on the reduced GOS dataset when
16-mers are used.

ϑ
#reads
original

#reads
sampled

#16-mers
original

#16-mers
sampled

Sampling
rate

8.0 × 10−6 2(1)× 105 5.60(8)× 103 2(1)× 108 5.93(2) × 106 0.04(1)
7.0 × 10−6 2(1)× 105 6.39(9)× 103 2(1)× 108 6.78(3) × 106 0.04(1)
6.0 × 10−6 2(1)× 105 7.5(1) × 103 2(1)× 108 7.92(2) × 106 0.05(2)
5.5 × 10−6 2(1)× 105 8.2(1) × 103 2(1)× 108 8.64(2) × 106 0.05(2)
5.0 × 10−6 2(1)× 105 9.0(1) × 103 2(1)× 108 9.51(1) × 106 0.06(2)
4.0 × 10−6 2(1)× 105 1.17(2)× 104 2(1)× 108 1.24(1) × 107 0.08(2)
3.5 × 10−6 2(1)× 105 1.34(2)× 104 2(1)× 108 1.42(1) × 107 0.09(3)
3.0 × 10−6 2(1)× 105 1.56(3)× 104 2(1)× 108 1.66(1) × 107 0.10(3)
2.5 × 10−6 2(1)× 105 1.88(3)× 104 2(1)× 108 2.00(2) × 107 0.12(4)
2.0 × 10−6 2(1)× 105 2.46(3)× 104 2(1)× 108 2.606(9)× 107 0.16(5)
1.5 × 10−6 2(1)× 105 3.29(5)× 104 2(1)× 108 3.49(3) × 107 0.21(7)
1.0 × 10−6 2(1)× 105 5.21(8)× 104 2(1)× 108 5.53(6) × 107 0.3(1)
8.0 × 10−7 2(1)× 105 6.5(1) × 104 2(1)× 108 6.93(7) × 107 0.4(1)
5.0 × 10−7 2(1)× 105 1.11(2)× 105 2(1)× 108 1.18(2) × 108 0.7(2)
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Supplementary Plots
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Figure C.1: Comparison of Jaccard-distance-based clusterings on the reduced GOS
collection.
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Figure C.2: Correlation between Spriss-sample-based and true BC indices on the
CAMI dataset. Also correlation between truth and Bracken-based BC dissimilarity
at species level is plotted. In legend, “Spriss freq.” stands for dissimilarity computed
on frequent k-mers’ estimates of abundance; “Spriss sample” denotes the exact index
computed by Simka, with unique k-mers removal, on metagenomes subsampled by Spriss.
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Figure C.3: Spriss-sample-based and Bracken-based BC indices referred to truth,
at species level, on the CAMI dataset. On the right, a vertical dashed red line indicates
the lowest frequency threshold applied: at its left, the dissimilarity values on complete
datasets, with unique k-mers excluded, as computed by Simka are reported.
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Figure C.4: Correlation between Spriss-sample-based and Bracken-based BC indices
on the HMP dataset; In legend, “Spriss freq.” stands for dissimilarity computed
on frequent k-mers’ estimates of abundance, “Spriss sample” denotes the exact index
computed by Simka, with unique k-mers removal, on metagenomes subsampled by Spriss.
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Figure C.5: Correlation between Spriss-based and Bracken-based BC indices on the
reduced GOS dataset on long k-mers. In legend, “Spriss freq.” stands for dissimilarity
computed on frequent k-mers’ estimates of abundance, “Spriss sample” denotes the exact
index computed by Simka, with unique k-mers removal, on metagenomes subsampled by
Spriss.
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Glossary

Abundance vector Given N assemblages { A1 . . .AN } of individuals and a set T
of taxa with which each individual is categorised, the abundance vector of a
taxon τ ∈ T is the vector

[︁
xA1,τ . . . xAN ,τ

]︁
of its abundances over the N

assemblages. 36, 43
Assemblage In our scope, an assemblage is the set of individuals exposed to our

sampling effort in a defined area or point [17]. 15, 16, 23, 25, 26
Binning The process categorising elements on the basis of a set of “known” cate-

gories.
Metagenomic binning The process of grouping metagenomic reads or contigs

by their organism of origin. 99
Taxonomic binning reference-based metagenomic binning, which can be

broadly devided into three categories: 1. alignment-based, 2. marker-based,
or 3. sequence-composition-based [11]. 6, 7

Biodiversity [contraction of “biological diversity”, from βίος (bίos) “life” and -λογία
(-logía) “study of” ] The variety of life on Earth at all its levels, from genes to
ecosystem, and ecological and evolutionary processes that sustain it. See [3].
9, 99

Biosphere Our global ecosystem, that is all the “life-supporting stratum of Earth” [En-
cyclopedia Britannica (Oct 2022)]. 5, 11, 17

Cluster Given a set {S } of elements, a cluster is a subset {C } ∈ {S } such
that its elements are similar to each others whereas they are different from
elements outside {C }. Usually, the notion of dissimilarity is mathematically
captured by that of distance over the metric space to which the set {S }
should belong. Clustering, then, is either the process or the result of
partitioning a set into clusters. 10, 17, 28, 33, 100

Community As concerns biology, the populations of different species that naturally
occur and interact in a particular environment. See [3, Chapter 14]. 5, 9–11,
14, 100

Microbial comunity A community of microbes [μικρός (mikrós) “small” and
βίος (bίos) “life” ], which are microscopic living organisms. 5–7, 10, 11

Conservation biology A multidisciplinary science addressed to investigate ecosys-
tem perturbations in order to protect and maintain biodiversity.
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See, among others, Gerger L. (2010), Conservation biology and Soulé M.E.
(1985), What is conservation biology? . 5, 6, 31

Contig [from contiguous] It is a set of overlapping DNA segments that together
represent a consensus region of DNA. 99

Dimensionality reduction A transformation of data from a high-dimensional
space into a low-dimensional space so that the low-dimensional represen-
tation retains some meaningful properties of the original data. A variety
of strategies are available: clustering, subsampling a sketching are three
examples of them. 7

Distance see metric
Diversity measure A measure of how much two entities are incorrelated. 7
α-diversity Some measure of diversity between species within an environment

or a sample. 6, 13, 16–18, 23, 25–28, 32–34
β-diversity Some measure of diversity between distinct communities, ecosystems

or samples. 6, 7, 12, 13, 16–18, 26–28, 30, 31, 33, 34, 37, 53, 77
γ-diversity A measure of the overall diversity within a large region (composed

of many communities). 16, 25, 27, 28, 32–34
Ecology The study of relationships between organisms and their environment.

The term was coined in 1866 by the zoologist Ernst Haeckel from Ancient
Greek οἶκος (oîkos) “house”, and -λογία (-logía) “study of”. 5, 10

Ecosystem or ecological system, is “A community plus the physical environment
that it occupies at a given time” [3]. In other words, it consists of all biotic
and abiotic components which, in some environment at some time, are linked
together through nutrient cycles and energy flows. 5, 9, 11, 14, 99, 100, see
also ecology

Evolutionary biology The subfield of biology that studies the evolutionary pro-
cesses that produced the diversity of life on Earth. 5, 6

Kmer Substring of k countiguous nucelotides (bases) of a genetic sequence. 1, 3, 7,
8, 14, 35, 36, 38, 39, 41–48, 52–55, 59, 61–84, 91, 94–97

Metagenome “The collective genomes and genes from the member of a microbiota.”
[7]
The word was derived from genome, which is the whole genetic information
of an organism, with the prefix meta, from Ancient Greek μετά, which in
this context means “beyond”. We can therefore state that a metagenome is
the (necessarily incomplete) genetic information of an environment rather
than that of an individual organism. Hence, it is worth noticing that besides
genetic sequences from several organisms, metagenomic data should come
with many relevant “metadata” describing the environment from which the
sample was taken and its physical state.
From a practical point of view, we call a metagenome also the collection of
reads sequenced from an environment – i.e., a metagenomic sample. 5, 6,
35, 101
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Metagenomics The study of metagenomes. It is “Both a set of research techniques,
comprising many related approaches and methods, and a research field” [1,
p. 13]. Metagenomics aims at “understand biology at the aggregate level,
transcending the individual organism to focus on the genes in the community
and how genes might influence each other’s activities in serving collective
functions”. 5, 7, 9, 17

Metric A communtative function d : {M } × {M } → R on a set {M } such that
d(x, y) = 0 ⇐⇒ x = y and the triangular inequality holds. 12, 13, 101

Metric space A couple ({M } , d), where {M } is a set and d a metric on {M }.
12, 13, 19, 24

Microbiome A “characteristic microbial community occupying a reasonable well-
defined habitat which has distinct physio-chemical properties. It not only
refers to the microorganisms involved but also encompass their theatre of
activity, which results in the formation of specific ecological niches. The
microbiome, which forms a dynamic and interactive micro-ecosystem prone
to change in time and scale, is integrated in macro-ecosystems including
eukaryotic hosts, and here crucial for their functioning and health” [7]. See
the cited article for the etymology of the word. 6, 7, 11, 12

Microbiota “The assemblage of living microorganisms (bacteria, archaea, fungi,
protists and algae) present in a defined environment. As phages, viruses,
plasmids, prions, viroids, and free DNA are usually not considered as living
microorganisms, they do not belong to the microbiota” [7]. See the cited
article for the etymology of the word. 5, 11, 100

Phylogenetics [from Ancient Greek φυλή/φῦλον (phylé/phylon) “tribe, clan, race”,
and γενετικός (genetikós) “origin, source, birth” ] The study of the evolution-
ary relatedness among groups of organisms.

Phylogeny Also known as phylogenetic/evolutionary tree, is a branching
diagram or a tree showing the evolutionary relationships among various
biological species or other entities based upon similarities and differences in
their physical or genetic characteristics. Not to be confused with taxonomy.
24, 25, 31, see also phylogenetics

Population Group of individuals of the same species that share aspects of their
genetics or demography more closely with each other than with other
groups of individuals of that species (where demography is the statistical
characteristic of the population such as size, density, birth and death rates,
distribution, and movement of migration), [3]. 10, 99

Read In bioinformatics, a genomic sequence output by a sequencing machine. NGS
reads are usually 80 bp to 500 bp long. 7, 17, 35–37, 39, 83, 99, 100

Reference-based In bioinformatics, any reference-based approach is one that
requires to query a database of references. For instance, reference-based
metagenomics comparison needs to “map the reads obtained from sequencing
the microbiome against a database of reference genomes” [11], taxa or
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functions. 7, 17, 35, 83, 99
Reference-free In bioinformatics, any reference-free approach is one that does not

rely on external sets of references [11]. 7, 17, 35, 84
Relic DNA extracellular DNA derived from dead cells. 12
Sketch In a streaming model, a space-effcient data structure that can be used to

provide estimates of (statistical) characteristics of a data stream. Therefore,
sketching is the “process of generating — such — an approximate, compact
summary of data” [32]. 36, 42, 44, 47, 100

Species This is a notoriously ambiguous concept in biology. Its definition we like
the most is “The basic unit of classification and a taxonomic rank of an
organism, as well as a unit of biodiversity” [Wikipedia (Oct. 2022)].
Alternatively, species are commonly defined as “groups of actually or poten-
tially interbreeding natural populations, which are reproductively isolated
from other such groups” [Ernst Mayr (1942)] and generating a fertile off-
spring. However, this definition is problematic as it only considers sexual
organisms and, even within these, there exist pathological cases such as
that of Larus gulls. Several other characterisations exist, — morphological,
phylogenetic, ecological, etc. — none of which is satisfactory.
In any case, species should be regarded as conventional groups, not unequiv-
ocally defined and not even sharply delimited, rather than “real entities”. 6,
7, 10, 99–101, see also taxon

Species abundance The number (cardinality) of individuals of a species in an
environment. It is sometimes a synonymous of species frequency, which is the
relative abundance of a species in an environment – i.e., species abundance
divided by the total number of individuals in the environment. 6, 14

Species richness “The number of different species in a particular area” [3].
6, 14

Species turnover Rate, or magnitude, of change in species composition along
predifined spatial, environmental or time gradients [40]. 26

Streaming model A computational model consisting of a sequential machine with
limited ammount of working memory and a continuous (one-way) stream in
input. 102

Subsample A small portion of a larger sample. 7, 100
Taxon plural taxa, is “any unit used in the science of biological classification, or

taxonomy. Taxa are arranged in a hierarchy from kingdom to subspecies, a
given taxon ordinarily including several taxa of lower rank. In the classi-
fication of protists, plants, and animals, certain taxonomic categories are
universally recognised; in descending order, these are kingdom, phylum (in
plants, division), class, order, family, genus, species, and subspecies, or race”
[Encyclopedia Britannica (Oct 2022)]. 39

Taxonomy “In a broad sense the science of classification, but more strictly the
classification of living and extinct organisms – i.e., biological classification”
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[Encyclopedia Britannica (Oct 2022)].
The term is derived from the Ancient Greek τάξις (táxis) “arrangement,
ordering” and νόμος (nómos) “law, custom”. “Taxonomy is, therefore, the
methodology and principles of systematic botany and zoology and sets up
arrangements of the kinds of plants and animals in hierarchies of superior
and subordinate groups”. 10, 101
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Abbreviations

Alignment Sequence alignment, or, more specifically, genome alignment.
It is a bioinformatic techinque that aims at finding the best matching
between two sequences of characters. We use this term also to concisely
indicate the process of aligning (matching) a sequence against each sequence
in a reference set and electing best alignment obtained. 99

BC Bray-Curtis dissimilarity index. 30, 31, 37, 42, 44, 46, 49–52, 54, 56–61, 64–77,
83, 84, 94–97

CAMI Critical Assessment of Metagenome Interpretation.
A Bioinformatics challenge aimed at assessing realiability of metagenomic
analysis by exploiting simulated metagenomes. See [26]. 37, 50–52, 54, 56,
57, 59, 62–66, 68–70, 75, 76, 78–80, 89, 91, 94, 95

GOS Global Ocean Sampling expedition.
An expedition aimed at collecting oceanic metagenomes for further analysis.
See [33] or www.jcvi.org/research/gos for more details.. 50, 51, 54, 57, 58,
61, 63, 65, 67, 72–74, 76–78, 83, 87, 88, 90, 92, 93, 97

HMP Human Metagenome Project.
A project aimed at generating resources to facilitate characterization of the
human microbiota. Visit the NIH HMP site at hmpdacc.org/hmp/. 49, 50,
52, 54, 56, 58, 60, 64, 66, 71, 76–78, 81, 82, 85, 86, 92, 96

LCA Lowest Common Ancestor.
In a phylogenetic tree, the ancestral taxon most near to all of a set of given
taxons. In a taxonomic tree, the most specific taxonomy rank to which all
taxons in a given set belong.. 39

NCBI National Center for Biotechnology Information.
For more information, visit the site www.ncbi.nlm.nih.gov/. 37, 38, 41

NGS Next Generation Sequencing.
It is any of several high-throughput approaches to DNA sequencing using
the concept of massively parallel processing. Among them, Illumina and
Ion-Torrent technologies stand out. 6, 101

OTU Operational Taxonimc Unit.
Operational definition used to classify groups of closely related individuals.
6, 7, 10, 14–18
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Abbreviations

RNA RiboNucleic Acid. 6
WGS Whole Genome Shotgun sequencing. 32, 50
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