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Abstract

An Autonomous Mobile Robot is a robot that runs and navigates

by itself without human intervention. AMRs are foundamental for

automating materials handling into warehouses. This thesis work ex-

plains the procedure followed for designing and developing an AMR.

The hardware components are chosen considering the way in which

the robot will be controlled. A layered controlling approach is used.

The high-level controller is a mini PC running ROS nodes. The ROS

controller manages the actions that drivers have to perform and the

data received from sensors. The medium-level controller translates

the actions into signals that will be sent to the low-level controllers.

The medium-level controller is an Arduino Mega, which sends PWM

signals for controlling the speed of two BLDC motor wheels. The

low-level controllers are two BLDC motor drivers that power, sense

and drive the motor wheels. The Arduino implements a PI controller

on the speed of rotation of each motorized wheel. Real tests are per-

formed on the robot in order to evaluate the efficiency of the control-

ling system.

A future implementation consists in an integration of a LiDAR sensor

in order to execute a SLAM algorithm, which will allow the robot to

move autonomously in a space with obstacles.
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Chapter 1

Introduction

The objective of the following thesis work is to design and build an Autonomous

Mobile Robot capable of moving in the working environment without the need of

human interactions.

1.1 Various types of autonomous robots

1.1.1 AGV

An Automated Guided Vehicle (AGV) is an electric mobile robot that runs

and navigates by itself without human intervention. Automatic guided vehicle

consists of one or more PLCs or PCs controlled, wheel-based load carrier that

navigates on the factory or warehouse floor without the need for an onboard

driver. Its main purpose is to transport materials from a location A to a location

B of the space. The AGV performs the navigation task with the use of physical

components placed on the environment (eg tapes, sensor, magnets).

1.1.2 AMR

Autonomous Mobile Robot (AMR) is a smarter version of an AGV Robot.

It is a vehicle that uses on-board sensors and processors to autonomously move

materials without the need of physical guides or markers.

The greatest advantage of AMR over AGV is that AMR provides alternative

navigation options. An AMR navigates using a predefined map and plans its

own routes to the destination. It can detect obstacles similar to an AGV, but it

is slightly smarter because it can avoid the obstacles by navigating around them.

1



1.1 Various types of autonomous robots 2

Therefore, AMR robot is considered more flexible because it can change its path

dynamically with less effort. AMR robot is perceived to be much more expansive

compared to an AGV. In reality, the AMR could be more cost effective due to its

flexibility and ease to set up.

1.1.3 AMR System

AnAutonomous Mobile Robot System is a set of automated elements united

by a superior management system. The main elements of the system are the AMR

Vehicles, the AMR Management System and the Peripherals.

The AMR Management System controls the AMR robots, managing orders

and traffic of the vehicles.

Some Peripherals are needed to make the system works ( such as charging

stations, communication devices, etc.).

Figure 1.1: Representative model of a base configuration of an AGV System

1.1.4 Types of mechanical structures of AMRs

The choice of AMR’s body structure depends on the task the vehicle will have to

perform and the complexity of the infrastructure in which the robot will work.

There are 3 main types of robot: unit load, forklift and tugger.
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• Unit load vehicles: these are motorized vehicles capable of transporting

a single product (i.e. a coil, a motor, a pallet or a bin containing products).

Figure 1.2: Example of an unit load AMR.

• AMR Forklifts: they are used to move pallets. Many models have sensors

on their forks (for example infrared sensors).

Figure 1.3: Example of a forklift AMR.

• Towing (or tugger) AMR: they are motorized vehicles capable of pulling

one or more non-motorized vehicles with loads behind them, like a train.
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They have a capacity up to 8 tonnes. They are also equipped with trays

that can be lifted, lowered, with motorized rollers, belts, etc. to ensure the

automatic transfer of loads.

Figure 1.4: Example of a Towing (or tugger) AMR.

1.1.5 AMR’s components

An AMR vehicle is composed by 5 elements:

1. Navigation System in charge of acquiring the information needed to drive

and follow a given track or direction.

2. Safety System that ensures that all the movements and manoeuvres are

performed in safe conditions.

3. Motion System: it converts the energy drawn from the power supply into

mechanical motion.

4. Vehicle Controller: it manages all the information required by all the

sensors in order to succeed in the working purposes.

5. Power supply: that provides the energy needed for the vehicle movements

and accessory functions. The main elements are the battery and the charg-

ing solution.
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1.1.6 Navigation Technology

AMRs are able to move in the space through the use of a Navigation System.

The mainly used systems are the following:

• Wire guidance: the AMR travels along a ground track that can be com-

posed of wires, tracks, magnetic lines or cables. In this way the vehicle can

follow the track mechanically, by using a magnetic sensor or by detecting a

signal through the use of an antenna.

This option does not offer flexibility and it requires the installation of rails

on the working floor.

• Laser guiding: reflective tape is mounted on objects such as walls, fixed

machines and poles. AMRs are equipped with a laser transmitter and re-

ceiver. The lasers reflect off the tape and the AMR is able to compute its

position in the space precisely.

• Inertial (gyroscopic) navigation: some AMRs are controlled by a com-

puter system with the aid of transponders embedded into the facility floor

to verify that the AMR is on the proper course.

• Visual guidance: the AMR follows a path painted on the ground that its

camera recognizes. The installation cost is lower and it is not needed any

special installation on the working area.

• Geoguidance: the AMR contains a mapped representation of its environ-

ment in its system that allows it to move independently, without having to

adapt infrastructures. It calculates its trips by itself automatically. This

technology is very flexible because it is possible to modify the AMR’s map-

ping at any moment by working directly on the mapping software. It is the

most reliable solution.

In the recent years new AMR Navigation technologies have been devoleped thanks

to the improvements of sensors software and technology.

• LiDAR: a LiDAR sensor transmits laser pulses that measure the distance

between the hitted object and the AMR equipped with it. This data is

compiled to create a 360° degree map of the environment, allowing robots to

navigate the facility and avoid obstacles without the need for any additional

infrastructure. An AGV Vehicle equipped with this system can be called

Autonomous Mobile Robot (AMR).
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• Camera Vision System: the camera allows information to be captured

in real time, which helps the AMR to see obstacles. When this information

is combined with the data provided by a LiDAR sensors, a dynamic and

complete 3D image of the operational area is obtained.

Figure 1.5: Various methods of AMR Navigation.

1.2 The company

IDEA soc. coop. is an engineering company located in Ancona which designs,

projects and develops intelligent systems related to domotic, industry and ser-

vices.

It offers practical smart solutions for solving specific problems and for automating

processes. The company is composed by a young team of engineers, technicians

and marketing agents.

The following thesis work has been performed in the company, during the in-

ternship period, started from February 2022 and ended in July 2022.
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Figure 1.6: Logo IDEA soc. coop.

1.3 Thesis’s contents

The thesis is diveded in the following chapters:

• Chapter 2: describes the hardware components and the structure of the

robot.

First, it is presented an analysis about the kinematic of the vehicle, which

determines its design.

There is a section where all the hardware parts, with their functions, are

listed.

It is described the physical structure of the robot’s chassis.

The electric schemes are shown.

• Chapter 3: describes the logic used for controlling the robot. It shows the

top-down control levels scheme, specifying the role of each controller.

• Chapter 4: contains part of the code executed by the programmed con-

trollers (high-level and medium-level controllers).

• Chapter 5: contains plots relative to test results and an analysis of the

data acquired during the experiments.

• Chapter 6: future implementations are described, showing the relative

algorithms and methods needed for implementing new functionalities.



Chapter 2

Hardware Components

The hardware architecture of autonomous vehicles can be divided into two macro

groups. The first one involves accademic works and concerns the study of ar-

chitectures suitable for mobile vehicles devoted to research or service applications.

The second line concerns assembled industrial architectures with standard

components from industrial AGV suppliers.

These two fields have some points of contact and some differences: for example,

the positioning accuracy of the vehicle is a strong requirement for the industrial

AGV, but it seems to be less relevant in the research world, which is mainly

oriented to other navigation issues. An example of convergence of industrial and

academic goals is related to the use of cheap sensors to improve the navigation

system.

An analysis about the actual AGVs and AMRs on the market has been done

before the design process of the robot in order to reward awerness of the kind of

solutions implemented by other companies.

8
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Robot Model
Cinematic Sys-

tem

Navigation and Secu-

rity Systems

MiR100

6 wheels with 2

traction wheels in

the middle length

driven by differen-

tial drivers.

Laser guidance front and

back side. 3D camera

front side. Proximity

sensors in the 4 corners

for identifying object less

high than 20 cm.

RB-

THERON

6 wheels with 2

traction wheels in

the middle length

driven by differen-

tial drivers.

Laser guidance with

RGBD cameras.

Seit100

6 wheels with 2

traction wheels in

the middle length

driven by differen-

tial drivers.

Environment recognition

via LiDAR, inertial local-

isation. Usage of laser

sensors and cameras.

RB-1

BASE

5 wheels with 2

traction wheels

with servomotor

driven by differen-

tial drivers.

Standard configuration

integrates the UST-

20LX sensor and the

Laser Orbbec Astra

sensor.

RB-

VOGUI

4 wheels with one

traction motor for

each wheel. 6

steering motors: 4x

OMNI 4, 2x Acker-

man.

LiDAR Camera.
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2.1 Kinematic analysis

2.1.1 Drivers configuration

Considering a unit load AMR, there are mainly 3 different wheels setups:

1. Steer drive: the front wheel is controlled by a steering motor that allows

the forward and steering motion.

Figure 2.1: Steer drive system.

2. Quad drive: the front and back wheels are controlled by steering motors

that allow the forward and steering motion.

Figure 2.2: Quad drive system.

3. Differential drive: the mid-length wheels are controlled by two drivers

that allow the rotation of each wheel. The steering movement of the robot

is achieved when the speed of rotation of the driven wheels are different.
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Figure 2.3: Differential drive system.

2.1.2 Degrees of freedom

A robot with 6 Degrees of Freedom Kinematics can perform translations

over the frame axes (x, y, z) and rotations about them.

Figure 2.4: Possible movements allowed in a robot with a 6 DoF kinematics.

A robot with 3 Degrees of Freedom Kinematics can either perform trans-

lations over the frame axes (x, y, z) or rotations about them. Differently,

more usual cases either perform two translations over two axes and a rota-

tion about one axis or another combination of three movements.

Taking in consideration the robot reference frame, the Steer drive and Dif-

ferential drive explained in section 2.1.1 offer 2 DoF: the robot can perform

translations over the x axis and rotations about the z axis.
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Figure 2.5: Kinematics of the Differential Drive implementation: 2 DoF allowed.

With a Quad drive the robot has 3 DoF: it can perform translations over

the x and y axes and rotations about the z axis. It has the advantage of

rotating around its center and moving sideways.

Figure 2.6: Kinematics of the Quad Drive implementation: 3 DoF allowed. The body reference
frame alignment is not changed for a translation on the y axis.

Due to the high cost of electrical DC driving and steering wheel (starting

from 1500$ per unit). It has been choosen to use 2 differential drivers po-

sitioned as depicted in figure 2.5 with 4 ball wheels placed in the robot’s

corners for lowering the stability problem. The wheels setup depicted in

figure 2.5 may result unstable, especially if the distance between the two

driving wheels is not small. Placing an heavy object in a corner of the deck

may cause the fall of the vehicle.

Considering the figure 2.5, it is choosen to insert 4 castors ball wheels at the

deck’s corners, in place of the 2 castor not spherical wheels. This solution

allows to have a more stable robot. In addition, the driving and steering

errors caused by the dynamics of traditional castor wheels are not present

using ball wheels, resulting in a more responsive robot.
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Despite implementing steering motors may lead to a more accurate angular

positioning of the robot, many AGVs/AMRs manufactures have choosen

this solution for its easy implementation and control.

2.1.3 Differential drive kinematics

It consists of 2 drive wheels mounted on a common axis, and each wheel can

independently being driven either forward or backward. In order to perform

rolling motion, while varying the velocity of rotation of each wheel, the

robot must rotate about a point that lies along their common left and right

wheel axis. The point that the robot rotates about is known as the ICC -

Instantaneous Center of Curvature (see figure 2.7). The robot’s position is

expressed considering its center’s coordinates (x, y).

Figure 2.7: Differential Drivers kinematics.

By varying the velocities of the two wheels, it is possible to vary the tra-

jectories that the robot takes. Because the rate of rotation about the ICC

must be the same for both wheels, the following equations can be written:

w(R + l/2) = Vr (2.1)

w(R− l/2) = Vl (2.2)

Where l is the distance between the centers of the two wheels, Vr , Vl are

the right and left wheel velocities along the ground (expressed in meter over
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second), and R is the signed distance from the ICC to the midpoint placed

in the middle of the wheels axis. At any instance in time it is possible to

compute R and w (expressed in radiant over second):

R =
l

2

Vl + Vr

Vr − Vl

w =
Vr − Vl

l
(2.3)

It is possible to consider three different canonical scenarios of the robot

motion:

(a) Straight motion: if Vl = Vr, a forward linear motion is achieved in a

straight line. R becomes infinite, and there is effectively no rotation,

in fact w is zero.

(b) Rotation about the robot center: if Vl = −Vr, then R = 0, and a

rotation about the midpoint of the wheel axis is achieved.

(c) Rotation about the left wheel: if Vl = 0, then a rotation about

the left wheel is obtained. In this case R = l
2
. The rotation about the

right wheel can be achieved if Vr = 0.

Forward kinematics

Forward kinematics determines where the end effector will be if the joints

are set to a specific position. There is only one solution to the forward

kinematic equation. When the joints are set to a specific position, the end

effector will always end up in the same place.

For a differential drive robot, the solutions of the problem is the position

and orientation of the robot in the space, after rotating each wheel of a

specific velocity.

Considering the parameters defined in figure 2.7, knowing velocities Vl ,

Vr and using equation 2.3, the ICC location x and y coordinates are:

ICC = [x−Rsin(θ), y +Rcos(θ)] (2.4)

Considering a time t+ δt, with t ≥ 0, δ ≥ 0, the new robot position x′, y′, θ′

with respect to the actual position x, y, θ referred to the world reference

frame will be:
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cos(wδt) −sin(wδt) 0

sin(wδt) cos(wδt) 0
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y − ICCy

0
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ICCx

ICCy

wδt






(2.5)

Figure 2.8: Forward kinematics for differential drive robot.

The 3x3 matrix is the Revolute Matrix which is multiplied for the posi-

tion vector (3x1 vector) describing the center of the robot with respect to

a reference frame that has the ICC as origin (called ICC reference frame).

Then, it is summed the coordinates of the origin of this reference frame (the

frame with the ICC as origin) expressed with respect to the world reference

frame.

Generally equation 2.5 can be expressed in the following way:

[P ′ ]world = [Rz (wδt) ] ∗ [P ]ICC + [ ICC ]world (2.6)

Where P is the actual robot position and orientation with respect to the

ICC reference frame; P ′ is the new robot position and orientation, with

respect to the world reference frame, after the transformation; Rz(wδt) is

the revolute matrix used for accomplishing a rotation about the z axis of

an angle equals to wδt; ICC is the coordinates of the instantaneous center

of curvature with respect to the world reference frame.

It is possible to write equation 2.6 in the following form:
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(2.7)

Which can be written with respect to the Transformation Matrix: 4x4

matrix used for performing a transformation in the coordinates, passing

from the ICC reference to the world reference frame.

[ P ]world = [ TICC ,world ] [ P ]ICC (2.8)

Inverse kinematics

Inverse kinematics is a mathematical process used to calculate the joint po-

sitions that are needed to place a robot’s end effector at a specific position

and orientation, known as its pose. In a differential drive robot, the solution

of the inverse kinematics problem consists in the velocity that each wheel

has to rotate for making the robot reach a goal position and orientation in

the space.

It is possible to describe the position of a mobile robot capable of mov-

ing in a particular direction Θ(t) with a given velocity V (t).

x(t) =

∫ t

0

V (t)cos(θ(t)) dt (2.9)

y(t) =

∫ t

0

V (t)sin(θ(t)) dt (2.10)

Θ(t) =

∫ t

0

w(t) dt (2.11)

For a differential drive robot:

x(t) =
1

2

∫ t

0

[vr(t) + vl(t)] cos(θ(t)) dt (2.12)

y(t) =
1

2

∫ t

0

[vr(t) + vl(t)] sin(θ(t)) dt (2.13)
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Θ(t) =
1

l

∫ t

0

[vr(t) + vl(t)] dt (2.14)

A differential drive robot imposes what are called non-holonomic con-

straints on establishing its position. For example, the robot can not move

laterally along its axis. A similar non-holonomic constraint is a car that can

only turn its front wheels. It can not move directly sidewise, in fact parallel

parking a car requires a more complicated set of steering maneuvers. So it

is not possible to simply specify an arbitrary robot pose (x, y, θ) and find

the velocities that will take it there.

For the special cases of vl = vr = v (robot moving in a straight line, w = 0)

the motion equations are:







x′

y′

θ′δt






=







x+ vcos(θ)δt

y + vsin(θ)δt

θδt






(2.15)

If vr = −vl, then the robot rotates in place, R = 0 and the equations are:







x′

y′

θ′δt






=







x

y

θ + 2vδt1
l






(2.16)

If vl = 0 the robot rotates about the left wheel and R = 1
l
. The opposite

happens when vr = 0.

In each specific case depicted above, it is possible to find the values of

vl, vr knowing x, y, δ, x′, y′ and δ′.

There are often multiple different solutions and multiple approaches to cal-

culate the solution of the inverse kinematics problem. This motivates a non

optimized navigation strategy that is sometimes used for making the robot

curves over an arch, by moving the robot in a straight line, then rotating

for a turn in place, and then moving straight again and so on.
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2.2 Components

In this section all the hardware components used for building the robot are

described.

2.2.1 Motion

Wheels

The wheels choosen for the implementation are twoBrushless DC (BLDC)

motors wheels (see appendix A). Each motor is controlled by a driver con-

troller. The motor is incorporeted in the wheel unit (figure 3.2), it has the

following characteristics:

• Voltage: 36 V

• Power: 250 W

• Wheel diameter: 0.25 m

• Thickness: 0.05 m

The motor is provided by an Hall Effect Sensor, used for knowing the

rotor position in order to feedback this information to the motor driver.

Buying a motorized wheel had a cost advantage since it would have been

more expansive to buy the wheel unit and the motor gearbox separately.

The castor ball wheel chosen for the implementation is depicted in figure

2.2.1. It has a diameter of 30 cm.
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Figure 2.9: M365 250W 36V Motor Wheel Tire with Hall Sensor.

Figure 2.10: Castor spherical wheel.

Motor Driver

A motor driver is an hardware component responsible for the motion of the

motor connected to it. It acts between the motor and the motor controller

by sending the right signal for moving the wheel in the wanted position.

For the motorized wheel in figure 3.2 it has been choosen the Brushless DC

Motor Driver Board 6V-60V 400W with Hall Driver Module ZS-X11D1.

One driver for each wheel has been implemented.
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Figure 2.11: Brushless DC Motor Driver Board 6V-60V 400W model number ZS-X11D1.

Figure 2.12: BLDC Motor Driver ports description.

Screw terminal left connector

• MA : Motor Phase A

• MB : Motor Phase B

• MC : Motor Phase C
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• VCC : Power Supply Input 6 to 60 VDC

• GND : Power Supply Return

Screw terminal right connector

• 5V :Power output from the onboard voltage regulator.

• ANALOG CTRL (0-5V): Speed control input. 0 to 5V signal that can

be driven from the wiper terminal of a potentiometer connected to

5V and ground, or an analog output of a Digital to Analog Converter

(DAC).

• GND : Ground connection

• DIR : Direction control. This signal is active low, so shorting it to

ground or applying a logic 0 changes the motor direction. Leaving the

pin floating or applying a logic 1 will spin the motor in the default

direction.

• BRAKE : Controls the motor brake. This signal is active high, so

shorting it to 5V or applying a logic 1 will apply the motors brake.

Leaving the pin floating or applying a logic 0 will disconnect the brake

and allow the motor to spin.

• STOP : Functions as an enable input for the board. This signal is

active low, so shorting it to ground or applying a logic 0 will disable

the drive signals. This could be considered a coast or free spin mode.

Leaving the pin floating or applying a logic high will enable the boards

drive signals.

Aux control pads The auxiliary control pads allows a user to control the

speed of the wheel using a Pulse Width Modulated (PWM, see appendix

B) signal and to read the speed of the motor via the SC speed pulse output

interface.

• G – GND: Ground connection for the auxiliary signals.

• S – SC: Speed pulse output interface. The output signal changes state

whenever one of the hall sensors changes state. It ends up with 90

state changes for 1 complete rotation of the wheel (figure 2.13).

To measure the speed of the wheel it is needed to measure the time

between two transitions (w), in fact the Rps (Rotation Per Second) can
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be evaluated:

Rps =
1

w ∗ 90

Rpm = Rps ∗ 60

Figure 2.13: Speed pulse output signal for one wheel rotation using the ZS-X11D1 BLDC motor
driver.

• V – 5V: 5V output PIN used to provide power to a small micro-

controller.

• P – PWM: This pin can be used to control the motor via a Pulse Width

Modulated (PWM) signal. The documentation states the frequency

can be from 50Hz to 20kHz, with an amplitude of 2.5V to 5V. The typ-

ically Arduino PWM signal is either 490Hz or 980Hz so it can be used

for controlling the motor speed via this pin. The PWM Jumper must

be shorted and the Speed Control Potentiometer must be adjusted to

the minimum when using the PWM control pin.

• G – GND: Ground connection for the auxiliary signals.

• J1 Jumper – The J1 jumper is used to connect the PWM control line.

To use the PWM for motor control the J1 jumper must be shorted.

Also the Speed Control Potentiometer must be adjusted to the mini-

mum.

Hall sensor connector

• GND : Black wire. Used as a ground for the hall sensors.

• Hc : Green wire. Hall sensor for the motor C phase.

• Hb : Yellow wire. Hall sensor for the motor B phase.

• Ha : White wire. Hall sensor for the motor A phase.

• 5V : Red wire. Hall sensor power.
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2.2.2 Navigation

Many sensors and components are needed for allowing the robot to move

in the working environment. The navigation of the robot is based on the

Multi-Sensor Fusion concept (better explained in section 6.2). In the

following are described the components used.

LiDAR

The LiDAR Slamtech RPLIDAR A1 has been chosen for its affordable cost,

the good performances that it offers and the easy implementation with the

ROS environment.

Figure 2.14: Slamtech RPLIDAR A1.

IMU

The Adafruit 9-DOF IMU (see appendix D) has been implemented.

Figure 2.15: Adafruit 9-DOF IMU.
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2.2.3 Controllers

As explained in section 3, the control part of the robot is divided into

High-Level Control and Medium-Level Control.

Medium-Level Controller

The microcontroller (see appendix C) Arduino Mega 2560 REV3 has

been chosen for controlling the BLDC Motor Drivers (the low-level con-

trollers) and for interacting with the IMU for the following advantages:

• User-friendly IDE

• Easy to program

• Cheap

• Well online documentations

Figure 2.16: Arduino Mega 2560 REV3 board.

High-Level Controller

The mini PC Asus PB50 has been chosen for controlling the robot motions,

by interacting with the medium-level controllers, and for managing the path

planning task.

It is directly connected to the LiDAR and to the Arduino.
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The choice of this components derives for the fact that the company had

already bought this hardware part, which was not used anymore. Otherwise

a NVIDIA Jetson Xavier would be used.

Figure 2.17: Mini PC Asus PB50.

2.2.4 Security

Emergency Stop Button

An Emergency Mushroom Push Button is installed in the front part of the

robot. When pushed it cuts the three phasis of each bldc motor wheel, in

order to achieve an istantaneous stop of the robot’s motion.
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Figure 2.18: Siemens emergency push button.

Relays

Two industrial relays have been installed for cutting the phasis of each

motor. The Finder Relays 62.33 24V are used. When the mushroom button

is pushed the relays are not powered anymore, resulting in cutting off the

power of the motor’s phasis.

Figure 2.19: Finder relay 62 series, 3PDT 24V DC.

Fuse box

Each electric component is connected to a fuse, located after the power

supply. Four fuses are needed for the 2 BLDC motor drivers, depicted in
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figure 2.2.1, and for the 2 DC-DC converters introduced in section 2.2.5.

Figure 2.20: Fuse box.

2.2.5 Power

Battery

Mobile robots use different kind of batteries: Sealed GEL, AGM Pure-Lead,

Lithium, Flooded Lead Acid.

A Lithium battery has been chosen for the following reasons:

• Longer cycle time: For a given depth of discharge (DOD), Lithium

batteries grant more recharging cycles so more life.

• Deepest Depth of Discharge (DOD): in order to have a good

cycle life for an AGM or GEL battery, it is needed to keep DOD close

to 40%-50%. Lithium batteries can handle DOD of 80% maintaining

excellent battery life (still close to 2500 cycles).

• Higher efficiency: lithium batteries are more efficient. Lithium bat-

teries efficiency is near 95% while in Lead batteries such AGM or GEL,

it is close to 80-85%. Roughly, it means that when charging 1 kwatt,

a lithium battery losses around 50 watts (you really get 950 watts).

Lead battery instead, loses 15-20%, it means that more time is needed

to fully charge the AGM/GEL battery.

• Faster charging: In AGM/GEL batteries it is needed around 4-5

hours to charge from 60% to 100%. With lithium it is only needed

close to 1.5 hours.
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• Higher energy density: More energy available in a given volume

with respect to other types batteries.

Lithium batteries require complex electronics to keep life parameters under

control and maintain safe operating conditions. It is important the presence

of a Battery Management System (BMS) that controls the operation

conditions of the battery, avoiding overcharging and overvoltages. Nowa-

days manufactures integrate BMS into the battery package itself.

Figure 2.21: Choosen Lithium battery 36V 20Ah 500W with BMS.

Figure 2.22: Choosen battery charger 42V 2A.
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DC-DC Converter

The robot contains different devices that work with different power volt-

ages, some voltage transformators are used in order to convert the nominal

voltage provided by the battery (36 V) to the desired ones.

36V Battery

DC-DC transformator

DC-DC transformator

19V channel

24V channel

The DC-DC transformators have been chosen considering the needed cur-

rents of the loads connected to the channels.

The 19V channel is used for powering the mini PC which manages all the

ROS nodes.

The 24V channel is used for powering the relays used in the security system,

explained in section 2.2.4.

Figure 2.23: WINGONEER XL4016E1 DC-DC transformator for the 19V channel.
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Figure 2.24: AZ-Delivery LM2596S LM2596 DC-DC transformator for the 24V channel.

Battery switch

A DC switch has been installed near the positive terminal of the power

supply. In this way it is possible to shut off all the robot’s components

by turning off the switch. The battery switch allows to perform safely

maintenance operations on the robot’s components.

Figure 2.25: Battery DC switch used.

2.3 Robot’s structure

The material chosen for the robot’s chassis is stainless steel, AISI304, be-

cause it has good mechanical characteristics: high resistence to corrosion,
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good workability.

Figure 2.26: Lateral side view of the robot.

Figure 2.27: Front side view of the robot.

Figure 2.28: Upper view of the robot.
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Figure 2.29: 3D model of the robot’s chassis with the hardaware components.

Some software tests have been performed in order to see how the chassis

behaves when carrying a payload, the results are shown in figure 2.30 and

2.31

Figure 2.30: Chassis’s stress-strain state obtained considering the interlocking costraint in the point
of contact between the motor wheels and the chassis and applaying in the upper frame
a payload of 50Kg. In every point the chassis has a stress-strain value below the yield
stress value of the material. This ensure its capability to hold up the payload.
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Figure 2.31: Graphical description of the chassis’s deformation considering the same boundary con-
ditions considered in figure 2.30.

The AMR’s structure consists of three levels:

(a) The first floor contains the power supply, the battery’s charger (ready

to be plugged into a 220V electrical outlet for charging), the mini PC

and a switch for shutting off the robot. 2 screws bus bars are installed

in order to have 4 positive channels at +36V and 4 negative channels

at 0V . For each castor spherical wheel is present a spring mechanism

that works as a car shock absorber.
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Figure 2.32: First floor of the AMR.

Figure 2.33: Shock absorber implemented for each castor spherical wheel.
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(b) The second floor contains a removable aluminium deck in which are

installed all the other hardware components: the Arduino, 2 BLDC

motor drivers, the IMU sensor, 2 relays, 2 DC-DC converters. These

components have not been installed on the chassis of the robot in

order to ease the maintenance operations. Contrary, 2 screws bus

bars, the fuse box and the emergency stop button have been installed

on the chassis of the robot. The 2 screws bus bars are used as positive

and negative channels of the 24 output voltage, used for powering the

relays.

Figure 2.34: Hardware components located at the second floor of the AMR’s chassis.

(c) The third floor is used for loading the weights needed to be moved

around the warehouse. The LiDAR sensor is placed in the front frame’s

border, in order to ease the scan operation of the environment (in the

figure depicted the LiDAR sensor is not presented due to shipping

delay).
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Figure 2.35: Payload floor of the robot.

Figure 2.36: Left side view of the robot.
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Figure 2.37: Front side view of the robot.

Figure 2.38: Right side view of the robot.
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2.4 Schematics

In the following figures it is shown the electric schemes of the connection of

all the components involved into the robot.

Figure 2.39: Schematic regarding the power channels of the system.

Figure 2.40: Schematic of the connection between each wheel with the motor driver.
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Figure 2.41: Schematic of the connection between the Arduino and the 2 motor drivers for control-
ling the wheels.



Chapter 3

Control

The control part is divided in 3 different levels

Low-level Controller Low-level Controller

Medium-level Controller

(Arduino)

Hihg-level Controller

(Mini PC)

IMU

LiDAR driver

LiDAR

BLDC Motor Wheel BLDC Motor Wheel

The High-level Controller manages all the robot operations through the

use of ROS (see appendix E) nodes:

• Sends motion commands to the Medium-level Controller through the

use of ROS topics.

40
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• Receives odometry information from the Medium-level Controller through

the use of ROS topics.

• Takes values from the LiDAR sensor.

• Process a 3D map of the space and locates the robot inside the map

(using a SLAM algorithm).

The Medium-level Controller interacts with the BLDC motor wheels

through the communication with the BLDC motor drivers (the Low-level

Controllers).

• Translates the motion commands received from the upper level into

PWM signals sent to the motor drivers.

• Senses the speed of rotation of each wheel received from the motor

drivers.

• Implements a PI controller on the speed of rotation of each wheel to

reach the set point value (Speed Controller).

• Implements a winding up action on the control voltage values sent to

the DC motor wheels (acceleration and deceleration ramps).

The Low-level Controller powers the phasis of each motor in order to

reach the reference speed of rotation, managing the current sent to each

phasis. It detects the wheel’s speed of rotation through the use of the hall

sensor, directly connected to the driver.

3.1 Communication between Controllers

The communication between the High-Level Controller and the Medium-

Level Controller is managed by ROS nodes, running in both the con-

trollers.

The mini PC sends and receives data from the Arduino through the use

of ROS topics, using a publisher-subscriber architecture (see appendix

G). Each controller publishes its topics and it subscribes to the topics pub-

lished by the other controller. In this way the exchange of information is

made possible.
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This method of exchanging data has been chosen in order to let other ROS

nodes reading the information published, at any time.

Controller 2Controller 1

topic 2

topic 1

topic 1

topic 2

publishes

subscribes

subscribes

publishes

The rosserial arduino package has been used for integrating the Arduino

environment with ROS, indeed for using the ROS library in the Arduino

project.

3.2 Speed Control

The robot’s carthesian speed of motion is controlled by the Medium-level

Controller. Since the kinematics of the robot consists of two differential

drivers, it is needed to control the speed of rotation of each wheel.

Each motor is controlled through the motor driver using a Pulse Width

Modulated (PWM) signal (see appendix B). By knowing the maximum ve-

locity of each wheel, the speed value can be converted into duty cycle used

for generating the driving PWM signal.
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Figure 3.1: This block diagram explains the communication between the Arduino and the motors
drivers.

The PWM signal drives the wheel in the forward (clockwise) or backward

(anti-clockwise) direction, depending on the value of the Direction signal.

The Brake signal is used for stopping the spin of the wheel, indeed for

stopping the wheel also in free spinning (when the value of this signal is a

logic 1 the wheel is not able to rotate anymore).

The Velocity signal is used as feedback for knowing if the wheel is spin-

ning at the correct velocity (measured in Rpm).

3.2.1 PI Controller

It is needed to implement a PI Controller for perfect tracking of the

reference speed value, which is forwarded to the motor driver through a

PWM signal. The PI controller will mainly work in the following contexts:

• The wheel is spinning on a surface with friction. This can be seen as

a disturbance for the rotation of the wheel, not allowing the perfect

tracking of the reference speed.
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• The wheel is spinning on a inclined surface: the gravity force will cause

an undesired acceleration of the wheel.

The final closed loop control system is depicted in the following scheme:

PI Controller

Bias

Motor Driver
− ur e y

−

y

• r: reference speed of rotation of the wheel (in Rpm).

• u: final control input signal obtained by subtracting a Bias value from

the controller output.

• y: sensed speed of rotation by the motor driver (in Rpm), used as

feedback value for computing the error, e, input of the controller.

The PI controller has been chosen because it helps in reducing both the rise

time and the steady state errors of the system. A derivative component has

not been used since a derivative controller is required to minimise the tran-

sient errors like overshoot and oscillations in the output of the plant. But

this can create heavy instability in noisy environments, like the warehouse

in which the robot will work (characterized by friction of the ground, slope

etc.).

3.2.2 High-Level Implementation

The High-level Controller runs two ROS nodes which communicate using a

client-server approach (see appendix F, code in section 4.2.1):

• wheel Command Service: ROS service that sends data to the Medium-

Level controller. It waits for data from a client. The data packet

contains the following information (service format data):

– motionL: determines the sense of rotation of the left wheel; 1

for forward rotation, -1 for backward rotation, 0 for braking the

rotation.

– speedL: determines the speed of rotation of the left wheel (ex-

pressed in RPM).
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– motionR: determines the sense of rotation of the right wheel.

– speedR: determines the velocity of rotation of the right wheel.

• wheel Command Client: ROS client that sends data to the

wheel Command Service by invoking the requestCommand method with

the necessary data (previously explained).

The client is run by terminal and it implements a user friendly menu

with the following options:

– Linear motion: for a linear movement of the robot backward or

forward of a specified speed (expressed in meter/second).

– Rotation in place: for a rotation of the robot with respect to an

ICC point with a specified angular speed (expressed in degree/sec-

ond). If the distance of the ICC value is positive it is performed

a clock-wise rotation (since the ICC is placed in the proximity of

the right wheel) and viceversa. The computations performed are

the ones explained in section 2.1.3.

– Stop: for stopping the robot’s wheels. The brake signals explained

in section 2.2.1 are set to a logical 1.

– Motor motion: for controlling a single motorized wheel by express-

ing the motor number, the sense of rotation and the desired speed

of rotation (0 for the left motor, 1 for the right motor).

Figure 3.2: wheel Command Client menu.

The data received from the terminal menu (user format data) are

converted in the correct unit and sent to thewheel Command Service

by invoking the specific method. The client performs a control on the

data before of invoking the method, checking if the desired speed of ro-
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tation is inside a range between two values (MIN RPM andMAX RPM ),

otherwise an error is shown.

wheel Command Servicewheel Command Client

Terminal MENU

Data conversion
requestCommand(data)

invoked method

High-Level Controller (ROS nodes)

Medium-Level Controller

Service formatUser format

Data (user format)

3.2.3 Medium-Level Implementation

The communication between the High-Level Controller and the Medium-

Level Controller is managed through the use of ROS topics as explained

in section 3.1.

The wheel Command Service (run as ROS node on the mini PC) pub-

lishes a ROS topic called wheel Command. The data of this topic is a

vector of std msgs/Float64.msg (data type used in the ROS environment

for transmitting float value). This vector contains 4 data in the following

order:

(a) Sense of rotation of left wheel

(b) Speed of rotation of left wheel (RPM)

(c) Sense of rotation of right wheel

(d) Speed of rotation of right wheel (RPM)

The wheel Command Service publishes this information as soon as it re-

ceives the data from the wheel Command Client.
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Figure 3.3: Data of the wheel Command topic for achieving a forward linear motion of 0.5 me-
ter/second.

Figure 3.4: Data of the wheel Command topic for achieving a backward linear motion of 0.6
meter/second.

Figure 3.5: Data of the wheel Command topic for achieving an anticlockwise rotation of 40 de-
gree/second, with the ICC placed 1 meter left with respect to the mid length point of
the wheels axis.

Figure 3.6: Data of the wheel Command topic for controlling a single motor (the left wheel) in
order to reach a velocity of 1 meter/second.

Figure 3.7: Data of the wheel Command topic for stopping the wheels.
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When it is necessary to perform a rotation in place, indeed one wheel is

spinning and the other wheel is not spinning, also the sense of motion of

the not spinning wheel is set to 1 (forward motion), or -1 (backward mo-

tion), as depicted in figure 3.6. This is due to the fact that the Arduino

would stop the wheel if a 0 value is set in the sense of motion, not making it

to free spin. The rotation in place would not be possible. The PI controller

running on the Arduino does not operate when a wheel has a sense of mo-

tion 1 or -1 with a 0 value for the speed velocity. This are the conditions

of free spinning . In this conditions the PI controller has not to track the

reference speed for that specific wheel.

The Medium-Level Controller (the Arduino MEGA board) publishes two

ROS topic:

• wheel0 Vel: used for publishing the speed of rotation of left wheel.

• wheel1 Vel: used for publishing the speed of rotation of right wheel.

The data type of both topics is a std msgs/Float64.msg variable. The speed

is expressed in RPM (service format data). For each wheel, the Arduino

publishes the information through the use of an interrupt: the digital pins

2 and 3 of the board are used for catching the velocity information com-

ing from the motor drivers. When the interrupt is triggered 90 times, it

is possible to compute the speed of rotation of the wheel (this due to the

functioning of the speed pulse output of the motor driver, explained in sec-

tion 2.2.1). When the velocity is known, it is published on the respective

topic.

The overall scenario is the following:
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Arduino’s ROS nodewheel Command Service

wheel1 Vel

wheel0 Vel

wheel Command

publishes

subscribes

publishes subscribes

topics

topics

PI Controller implementation

There are two different ways for implementing a PI controller in a program:

(a) Polling method: the program continuously checks if the actual speed

of rotation is equal to the reference value (plus or minus a threshold),

in case of negative answer the PI controller executes the control action.

(b) Timer interrupt method: at each specified interval of time (defined

by a timer) the program checks if the actual speed of rotation is equal

to the reference value (plus or minus a threshold), in case of negative

answer the PI controller executes the control action.

The polling method is surely more accurate because it guarantees to have an

immediate control action when it is needed. Contrary, this method involves

widely the computation of the microcontroller: its normal operations are

delayed because of the repeated polling. For this reason the timer interrupt

method has been implemented.

A timer is defined in the setup method of the Arduino program, every

0.2 seconds it triggers an interrupt which invokes the PICallBack func-

tion.

This function checks if both the velocities of the wheels have been sensed.

In the negative case, it attaches two interrupts used for catching the speed
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pulse signals coming from the motor drivers. When the velocities are col-

lected from the motor drivers, indeed when for each wheel 90 interrupts

have been triggered, the sensed flags are switched to true and the inter-

rupts used for catching the speed pulses are detached.

The next time that the timer interrupt is triggered, the velocities have been

sensed so the PI Controller computes the control actions, if it is needed,

indeed two new velocities signals are sent to each motor driver in order to

reach the reference speeds.

Then, the PI controller waits that the speeds of the two wheels are sensed

again to compute the new control actions. The explained computation flow

is repeated until the velocity of the wheel is equal to the reference value

plus or minus a threshold. The functioning scheme is the following:

Timer PICallback

triggers

speeds sensed?

Speeds interrupts

NO

counting 90 interrupts for each wheel

after speeds sensed

actual - reference < THRESHOLD

YES

reset of the variables

Performing the control actions on both wheels

NO

YES
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3.2.4 Acceleration Ramp

It is necessary to perform a winding process of the voltages that control the

DC motors. If the motor driver suddenly requires a speed of rotation much

major of the actual speed, the DC motor wheel may get damaged because

it is suddenly powered with an higher voltage.

For this reason, the Medium-Level Controller perform a winding up action

on the control signals. It creates a linear ramp of acceleration. It evaluates

the difference of speed between the actual and the reference speed, then it

acts considering the value obtained.

Considering the module of this difference, it is performed either and ac-

celeration or a deceleration ramp.

|actual speed− reference speed| = delta speed

In the following it is shown the winding algorithm used.

Algorithm 1 Acceleration ramp Algorithm

Input: Actual Speed, Reference Speed
Output: Control Speed
1: if delta speed > THRESHOLD then
2:

3: if delta speed > THRESHOLD HIGH ACC then
4: delay time = DELAY HIGH ACC
5: else if delta speed > THRESHOLD MEDIUM ACC then
6: delay time = DELAY MEDIUM ACC
7: else if delta speed > THRESHOLD SMALL ACC then
8: delay time = DELAY SMALL ACC
9: else
10: Motor control with no acceleration ramp

11: end if
12: if delta speed > THRESHOLD SMALL ACC then
13: Motor Control with acceleration ramp

14: end if
15: else
16: No action performed

17: end if
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Figure 3.8: Linear acceleration/deceleration ramp generated for controlling the DC motor wheels.

If the delta speed is below the THRESHOLD value (set to 1.5 RPM), the

speed of rotation of the wheel is considered correct, indeed the reference

value is reached (with a small error).

If the delta speed is below the THRESHOLD SMALL ACC value, no ac-

celeration ramp is executed and the DC motor wheel is controlled directly

either with the voltage value relative to the reference speed value or with the

voltage value relative to the control action. Otherwise an acceleration/de-

celeration is performed depending on the difference value.
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Code

The programming language used is C++ (see appendix H).

4.1 Workspace

The code files of the projects are divided in:

• High-Level Controller files: compiled and executed by the mini PC

for running the ROS framework. The PC uses Ubuntu Linux where

it is installed ROS 1 Noetic version.

The source code files are located in the src folder of the Catkin Workspace

(ROS’s workspace).

Figure 4.1: Contents of the Catkin Workspace folder

The src folder contains the ROS projects of the workspace. The

amr idea folder contains the code files of the robot.

Figure 4.2: Content of the src folder in the Catkin Workspace

53



4.1 Workspace 54

The project is divided in two ROS sub-projects:

(a) amr idea control : contains the High-Level implementation control

code.

(b) amr idea bringup: contains the code for running all the amr idea

project at the booting of the mini pc.

The amr idea bringup project contains the Autostart ROS ser-

vice, which executes the launch file of the project at the booting

of the mini pc. The launch file of a ROS project sets up the work-

ing environment, indeed it runs the ROS nodes when executed.

1

2 <launch >

3

4 <node name="wheel_Command_Service" pkg="

amr_idea_control" type="wheel_Command_Service

" output="log" >

5

6 </node>

7

8 <rosparam file="$(find amr_idea_control)/config/

diff_driver.yaml" command="load" />

9 <node name="serial_node" pkg="

rosserial_arduino" type="serial_node.py">

10 <param name="port" type="string"

value="/dev/ttyACM0"/>

11 <param name="baud" type="int"

value="115200"/>

12 </node>

13

14

15 </launch >

Listing 4.1: Launch file for Autostart ROS service of the amr idea bringup project

The launch file runs the wheel Command Service ROS node

and the rosserial arduino ROS node for allowing the commu-

nication among the High-Level and the Medium-Level Controller.

This last execution requires the information about the serial port

of communication and the baud rate value.
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Figure 4.3: Sub-projects of the workspace.

• Medium-Level Controller files: compiled and executed by the Ar-

duino board at the booting of the microcontroller.

4.2 Speed Control

4.2.1 High-Level Implementation

The wheel.cpp file contains utility methods. Its header contains the defini-

tion of functional parameters.

1

2 #ifndef wheel.h

3 #include "math.h"

4

5 #define MAX_VEL 1054 //(RPM) evaluated considering that 0,38

Amp --> 71,5 RPM . Max amps are 250/36 = 6,944

6 #define WHEEL_DIAM 0.25

7 #define THRESHOLD 0.01

8 #define R 0.24 // distance between the center of the wheel

and the middle point of the robot

9 #define L 0.48 // distance between the center of the two

wheels

10 #define FORWARD 1

11 #define BACKWARD -1

12 #define STOP 0

13

14 double computeRPM(double speed);

15

16 double computeRadFromDeg(double vel);

17

18 #endif

Listing 4.2: wheel.h file

The mini PC executes two ROS nodes:
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• wheel Command Service

• wheel Command Client

Both have their own .cpp file and header .h associated.

wheel Command Service

The sendCommand function publishes the wheel Command topic with the

motion information. It requires the data in service format.

The requestCommand function is the service function invoked by the client

for requesting the motion of the wheels. It reads the data of the request and

it invokes the sendCommand method for achieving the motors motions, by

sending the data to the Medium-Level Controller through the ROS topic.

1 #include "ros/ros.h"

2 #include "std_msgs/Float64MultiArray.h"

3 #include <iostream >

4 #include <sstream >

5 #include "amr_idea_control/RequestPacket.h"

6

7

8

9 ros:: Publisher publisher;

10

11 void sendCommand(int motionL ,float speedL ,int motionR ,float

speedR)

12 {

13 std_msgs :: Float64MultiArray msg;

14 msg.data.resize (4);

15 msg.data [0]= motionL;

16 msg.data [1]= speedL;

17 msg.data [2]= motionR;

18 msg.data [3]= speedR;

19 publisher.publish(msg);

20 ros:: spinOnce ();

21

22 ROS_INFO("Data sent");

23 }

24 bool requestCommand(amr_idea_control :: RequestPacket :: Request

&req , amr_idea_control :: RequestPacket :: Response &res)

25 {
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26

27 sendCommand(req.motionL ,req.speedL ,req.motionR ,req.

speedR);

28

29 return true;

30 }

31

32

33 int main(int argc , char **argv)

34 {

35 ros::init(argc , argv , "wheel_Command_Service");

36 ros:: NodeHandle n;

37 publisher=n.advertise <std_msgs :: Float64MultiArray >("

wheel_Command", 100);

38 ros:: ServiceServer service = n.advertiseService("

wheel_Command_Service", requestCommand);

39 ROS_INFO("wheel_Command_Service is running");

40 ros::spin();

41

42

43 return 0;

44 }

Listing 4.3: wheel Command Service.cpp file

wheel Command Client

In the following are listed the three main functions used in the

wheel Command Client for sending a request of a particular wheel motion

(as explained in section 3.2.2).

1 int linear(float speed)

2 {

3 ros:: NodeHandle n;

4 float rpm=speed *60.0/( WHEEL_DIAM*PI);

5 if (checkSpeed(rpm))

6 {

7 int motion;

8 if (rpm >=0)

9 motion=FORWARD;

10 else

11 motion=BACKWARD;

12 rpm=abs(rpm);
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13 client = n.serviceClient <amr_idea_control :: RequestPacket

>("wheel_Command_Service");

14

15 srv.request.motionL=motion;

16 srv.request.motionR=motion;

17 srv.request.speedL=rpm;

18 srv.request.speedR=rpm;

19

20 if (! client.call(srv))

21 {

22 ROS_ERROR("ERROR while linear motion");

23 return -1;

24 }

25

26

27 }else

28 {

29 ROS_ERROR("ERROR: linear velocity not valid");

30 return 1;

31 }

32

33 return 0;

34 }

Listing 4.4: Linear motion function of wheel Command Client.cpp file

1

2 int angular(float speed ,float icc)

3 {

4 ros:: NodeHandle n;

5

6 float radSpeed=speed*PI /180.0;

7 float vel [2];

8 vel [0]= radSpeed *(icc -R)*60.0/( WHEEL_DIAM*PI);

9 vel [1]= radSpeed *(icc+R)*60.0/( WHEEL_DIAM*PI);

10 client = n.serviceClient <amr_idea_control :: RequestPacket

>("wheel_Command_Service");

11

12 if (abs(icc)<R)

13 {

14 if (vel [0] >0)

15 srv.request.motionL=FORWARD;

16 else

17 srv.request.motionL=BACKWARD;

18
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19 if (vel [1] >0)

20 srv.request.motionR=FORWARD;

21 else

22 srv.request.motionR=BACKWARD;

23 }else

24 {

25 srv.request.motionL=FORWARD;

26 srv.request.motionR=FORWARD;

27 }

28

29 vel [0]= abs(vel [0]);

30 vel [1]= abs(vel [1]);

31

32 if (checkSpeed(vel [0]) ==0)

33 {

34 ROS_ERROR("ERROR: angular velocity not valid");

35 return 1;

36 }

37 srv.request.speedL=vel [0];

38 if (checkSpeed(vel [1]) ==0)

39 {

40 ROS_ERROR("ERROR: angular velocity not valid");

41 return 1;

42 }

43

44 srv.request.speedR=vel [1];

45 if (! client.call(srv))

46 {

47 ROS_ERROR("ERROR while angular motion");

48 return -1;

49 }

50

51 return 0;

52 }

Listing 4.5: Angular motion function of wheel Command Client.cpp file

1 int stop()

2 {

3 ros:: NodeHandle n;

4

5 client = n.serviceClient <amr_idea_control :: RequestPacket

>("wheel_Command_Service");

6 srv.request.motionL =0;

7 srv.request.motionR =0;
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8 srv.request.speedL =0;

9 srv.request.speedR =0;

10 if (! client.call(srv))

11 {

12 ROS_ERROR("ERROR while stop motion");

13 return -1;

14 }

15

16

17 return 0;

18 }

Listing 4.6: Stop motion function of wheel Command Client.cpp file

The three methods return an integer value:

• 0: the request has been executed succesfully.

• 1: a value error has occured. It has been require a wrong motion with

a speed value out of the allowed range.

• -1: an error has occured during the invocation of the wheel Command Service

function.

4.2.2 Medium-Level Implementation

The code of this implementation is contained into the Arduino project.

As in the code of the High-Level Implementation (explained in section

4.2.1), it is defined a wheel.cpp and wheel.h files for utility methods and

parameters relative to the wheels.

1

2 #ifndef wheel.h

3 #define Morse_h

4 #include "math.h"

5 #include "Arduino.h"

6

7 #define MAX_VEL 1054 //(RPM) evaluated considering that 0,38

Amp --> 71,5 RPM . Max amps are 250/36 = 6,944

8 #define WHEEL_DIAM 0.25

9 #define THRESHOLD 0.01

10 #define R 0.24 // distance between the center of the wheel

and the middle point of the robot
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11 #define L 0.48 // distance between the center of the two

wheels

12 #define FORWARD 1

13 #define BACKWARD -1

14 #define STOP 0

15

16

17 double computeDuty(double speed); // return the

corresponding duty cycle knowing the speed (meter over

second)

18

19 double computeDutyFromRPM(double rpm);

20

21 double computeRPM(double speed);

22

23 double computeVolt(double refDuty); // return the

corresponding voltage knowing the duty cycle

24

25 double computeReal(double speed ,String direction); //

compute a input speed to be given to the motor in order

to reach the speed inserted by the user

26

27 double computeSpeedFromSignal(double val);

28

29 double computeSpeedFromRPM(double rpm);

30

31 #endif

Listing 4.7: wheel.h file of the Arduino project

It has been created a Motor class for managing each motor wheel using the

signals attached to the digital pins of the Arduino connected to the motor

driver. Two instances of this class are created: one for the left DC motor

and one for the right DC motor.

1

2 #ifndef motor.h

3 #include "wheel.h"

4

5 #define THRESHOLD_CONTROL 4

6 #define THRESHOLD_SMALL_ACC 0.005

7 #define THRESHOLD_MEDIUM_ACC 0.009

8 #define THRESHOLD_HIGH_ACC 0.011

9 #define DELAY_SMALL_ACC 50

10 #define DELAY_MEDIUM_ACC 150
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11 #define DELAY_HIGH_ACC 250

12

13

14 class Motor{

15 public:

16 int PIN_STOP;

17 int PIN_BREAK;

18 int PIN_DIRECTION;

19 int PIN_CONTROL;

20 int PIN_SPEED;

21 int motion= STOP;

22

23 //in RPM

24 double referenceSpeed =0.0;

25 double actualSpeed =0.0;

26 double drivenSpeed =0.0;

27

28 bool sensed=false;

29 bool controlled=false;

30

31

32 Motor(int stops ,int breaks ,int dirs ,int control ,int

speed);

33 void stop();

34 void start();

35 void forward ();

36 void backward ();

37 void changeDirection ();

38 void drive(double referenceSpeed);

39 void driveNoAcc(double drivSpeed);

40 void accelleration(double initialSpeed ,double finalSpeed

);

41 };

42

43 #endif

Listing 4.8: motor.h file of the Arduino project

The constructor of the Motor class requires as input the values of the digital

pins attached to the motor driver’s signals.

The driving action is executed knowing the RPM desired for each wheel,

which is converted into a duty cycle value and then into a voltage value.
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1 double computeDutyFromRPM(double rpm)

2 {

3 return rpm/MAX_VEL;

4 }

5

6 double computeVolt(double refDuty)

7 {

8 double val=refDuty *255.0;

9 return refDuty *255; // Since duty = 1 corresponds to 5 Volt

which is analogWrite 255

10

11 }

Listing 4.9: Utility functions for values conversion.

Knowing the voltage value (from 0V to 5V) it is possible to generate a

PWM signal using the analogWrite function of the Arduino library.

Driving functions

The motor class contains three methods used for driving the DC motor

wheels.

1

2 void Motor:: drive(double drivSpeed)

3 {

4 Motor ::start ();

5 if (motion == FORWARD)

6 {

7 forward ();

8 }

9 else if (motion == BACKWARD)

10 {

11 backward ();

12 }

13 else

14 return;

15 drivenSpeed=drivSpeed;

16 Motor :: acceleration(actualSpeed ,drivenSpeed);

17 }

18

19 void Motor:: driveNoAcc(double drivSpeed)

20 {
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21 drivenSpeed=drivSpeed;

22 double finalDuty=computeDutyFromRPM(drivSpeed);

23 analogWrite(PIN_CONTROL ,computeVolt(finalDuty));

24 }

25

26 void Motor:: acceleration(double initialSpeed ,double

finalSpeed)

27 {

28

29 double initialDuty=computeDutyFromRPM(initialSpeed);

30 double finalDuty=computeDutyFromRPM(finalSpeed);

31 double deltaDuty =(finalDuty -initialDuty)/10;

32

33 int delayTime;

34

35 if (abs(deltaDuty)>=THRESHOLD_HIGH_ACC)

36 delayTime=DELAY_HIGH_ACC;

37 else if (abs(deltaDuty)>=THRESHOLD_MEDIUM_ACC)

38 delayTime=DELAY_MEDIUM_ACC;

39 else if (abs(deltaDuty)>=THRESHOLD_SMALL_ACC)

40 delayTime=DELAY_SMALL_ACC;

41

42 if (deltaDuty >= THRESHOLD_SMALL_ACC)

43 {

44

45 for (int i=1;i <=10;i++)

46 {

47 analogWrite(PIN_CONTROL ,computeVolt(initialDuty+

deltaDuty*i));

48 delay(delayTime);

49

50 }

51 }else

52 Motor :: driveNoAcc(finalSpeed);

53

54 }

Listing 4.10: Driving functions of the Motor class

• drive: turns on the motor, sets the sense of motion and invokes the

acceleration method.

• acceleration: computes the delta speed value between the actual

speed and the reference value (expressed in duty cycle and normal-
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ized in 10 units) and checks which kind of acceleration/deceleration

ramp has to be used (explained in section 3.2.4).

If the delta speed value is below every threshold, no acceleration is

performed and the driveNoAcc method is invoked.

Otherwise it is performed a cycle with 10 instants of time (each last

delayTime seconds); at each interval a control action signal is sent to

the motor, with a speed equals to the initial value plus an extra value

that depends on the delta speed and the number of instants of time

passed.

• driveNoAcc: sends a control action signal to the motor driver, con-

sidering the reference speed value.

PI Control Action

The method that performs the control action, PI Control, is defined in

the Arduino’s project main file: motor control.ino. The method is invoked

by the PICallback function triggered by the timer (as explained in section

3.2.3).

The function requires as input the reference speed value (setPoint), the

actual speed of rotation (sensedOutput) and the index of the motor (0 for

the left motor, 1 for the right motor).

1 void PI_Control(double setPoint ,double sensedOutput ,int

index){

2 noInterrupts ();

3 motors[index]. sensed=false;

4 if (setPoint !=0)

5 {

6 unsigned long current_time = millis (); // returns the

number of milliseconds passed since the Arduino started

running the program

7 int delta_time = current_time - last_time[index]; //

delta time interval

8

9 if (delta_time >= T){

10

11 if(setPoint != previousSetPoint[index])
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12 {

13 total_error[index ]=0;

14 previousSetPoint[index]= setPoint;

15 }

16

17 double error = setPoint - sensedOutput;

18

19 if (abs(error)<=THRESHOLD_CONTROL)

20 return;

21

22 total_error[index] += error; // accumalates the error -

integral term

23 if (total_error[index] >= max_control) total_error[

index] = max_control;

24 else if (total_error[index] <= min_control)

total_error[index] = min_control;

25

26 double delta_error = error - last_error[index]; //

difference of error for derivative term

27 double bias=setPoint /10;

28 double controlSpeed=setPoint +(kp*error + (ki*T)*

total_error[index] + (kd/T)*delta_error)-bias;

29

30 if (controlSpeed >= max_control) controlSpeed =

max_control;

31 else if (controlSpeed <= min_control) controlSpeed =

min_control;

32

33 last_error[index] = error;

34 last_time[index] = current_time;

35 motors[index]. driveNoAcc(controlSpeed);

36 }

37 motors[index]. controlled=true;

38 interrupts ();

39 }

40 }

Listing 4.11: Function that performs the control action of the PI Controller.

The interrupts are disabled during the computation of the control action

for ensuring an immediate control of the motorized wheel.

The gain values of the PI Controller have been tuned performing real tests

with the DC motor wheels. The best values obtained are the following:
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• Proportional gain: KP = 0.001:

• Integral gain: KI = 0.15:

Speed Interrupts

As explained in section 3.2.3, the PICallback function attaches the speed

interrupts for both the DC motor wheels.

1 void speedChangeInt0 (){

2 speedChangeInt (0);

3 }

4

5 void speedChangeInt1 (){

6 speedChangeInt (1);

7 }

8

9 void speedChangeInt(int index){ // Interrupt for speed

changing of wheel 0

10

11 if (! motors[index]. sensed)

12 {

13 if (counter[index ]==0)

14 {

15 lastRead[index ]= micros ();

16 counter[index ]++;

17 reader[index]=true;

18 }

19 else if (counter[index ]==90)

20 {

21 detachInterrupt(digitalPinToInterrupt(motors[

index]. PIN_SPEED));

22 noInterrupts ();

23 actualRead[index ]= micros ()-lastRead[index ];

24 lastRead[index ]= micros (); // Evaluating the time

the pulse is on

25

26 double a=actualRead[index];

27 motors[index]. actualSpeed=computeSpeedFromSignal(

a); // Computing the speed considering the time the pulse

is on
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28 toPub_vel[index ].data=motors[index ]. actualSpeed;

// speed value to publish on the ROS topic

29

30 // publishing the velocity

31 publisher[index ]. publish (& toPub_vel[index ]);

32 node.spinOnce ();

33

34 counter[index ]=0;

35 reader[index]= false;

36 motors[index]. sensed=true;

37 motors[index]. controlled=false;

38 interrupts ();

39 }

40 else

41 {

42 counter[index ]++;

43 }

44 }

45 }

Listing 4.12: Speed interrupts.

When an interrupt occurs the speedChangeInt method is invoked. It

counts the number of state of changes occurred for each motor wheel. When

90 changes are counted, the speed is evaluated considering the duration in

time of the last pulse (the speed computation is performed by the compute-

SpeedFromSignal method). The value is published on the ROS topic and

the sensed flag relative to that specific motor wheel is set to true, so that

the PI Control action can be computed, if it is needed, when the PICall-

back function is triggered again by the timer.
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Tests and Results

Some tests were performed in order to ensure the reliability of the robot.

• It has been ensured that all the hardware components turn on/off

correctly as soon as the battery switch (explained in section 2.2.5) is

set on/off.

• It has been tested that the power supply charges correctly

• The speed controller and the kinematics of the robot have been tested.

5.1 Speed Controller

The Speed Controller tests were executed in the following steps:

(a) On each single DC motor wheel, before that the robot was built.

(b) Simultaneously on the two DC motor wheels, in order to tests the

effective kinematics of the AMR.

69
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Figure 5.1: Work station used for testing the functioning of each BLDC motor wheel.

The wheels behaviours between step a and b were slightly different. In fact

in case a the wheels did not have a load; in case b the wheels sustained the

robot’s components weights, so they acted with a load.

The following tests were performed using the final built of the robot. It was

sent a motion command using the wheel Command Client. The veloci-

ties of each wheel were tracked by reading thewheel0 Vel andwheel1 Vel

ROS topics. The motion command can be considered as an input step sig-

nal to the system. The response is a Step Response in the time domain

(see appendix I).

Figure 5.2: ROS topics used for reading the speed of rotation (in RPM) of each wheel.

The tests were performed in the IDEA’s warehouse.
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5.1.1 Single Wheel Motion

COMMAD: Left wheel, forward, 1 (meter/second) (76.39 RPM), tracked

for 18 seconds.
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COMMAD: Right wheel, forward, 1 (meter/second) (76.39 RPM), tracked

for 18 seconds.
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5.1.2 Linear Motion

COMMAND: Linear motion, forward, 0.7 (meter/second, 53.47 RPM),

tracked for 16 seconds.
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COMMAND: linear motion, backward, 1.2 (meter/second, 91.67 RPM),

tracked for 16 seconds.
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5.1.3 Angular Motion

COMMAND: Angular motion, forward, 60 (deg/second), ICC 1 meter

away on the right from the mid length point of the wheel axis (clockwise

rotation), tracked for 16 seconds.

The computed nominal speed are:

• Left wheel: 99.20 RPM

• Right wheel: 60.80 RPM
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COMMAND: Angular motion, forward, 60 (deg/second), ICC 1 meter

away on the left from the mid length point of the wheel axis (anticlockwise

rotation), tracked for 16 seconds.

The computed nominal speed are:

• Left wheel: 60.80 RPM

• Right wheel: 99.20 RPM
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Results Analysis

As shown in the plots, the Speed Controller acts correctly, allowing an al-

most perfect track of the reference value for the speed of rotation of each

wheel.
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Looking at the plots it is possible to determine the time domain specifi-

cations of the step responses (see appendix I).

Figure 5.3: Time domain specifications of a step response.

• Delay Time: almost equals to 0.2 seconds for responses to step valued

at maximum 75 RPM; almost equals to 0.5 seconds for responses to

step with higher value.

• Rise Time: almost equals to 0.5 seconds for responses to step valued

at maximum 75 RPM; almost equals to 1 seconds for responses to step

with higher value.

• Peak Time: almost equals to 0.6 seconds for responses to step valued

at maximum 75 RPM; almost equals to 1.1 seconds for responses to

step with higher value.

• Settling Time: in the worst case it is equal to 1.3 seconds.

• Maximum Overshoot: the overshoot is mostly present in the right

wheel, of 4 RPM; in the left wheel it is generally not present or it is

lower (about 2 RPM).

The performances of the right DC motor wheel are worse with respect to

the left one. This can be caused by a factory issue. In fact, the engine of

the left wheel sounds slightly different when the wheel is controlled.

The control speed value signal has a direct effect on the time domain speci-

fications (delay time, rise time, peak time and settling time). This is caused

by the different acceleration ramp used, depending on the delta speed value

(explained in section 3.2.4)
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5.1.4 Payload Test

Tests with a payload of 20 kg were performed.

COMMAND: Linear motion, forward, 0.7 (meter/second, 53.47 RPM),

tracked for 16 seconds.
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COMMAND: Angular motion, forward, 60 (deg/second), ICC 1 meter

away on the right from the mid length point of the wheel axis (clockwise

rotation), tracked for 16 seconds.

The computed nominal speed are:

• Left wheel: 99.20 RPM

• Right wheel: 60.80 RPM
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Result Analysis

The payload affects the performances, causing more oscillations during the

transient time. The original control action is not sufficient to reach the

reference speed. The PI Controller computes a control action to compensate

the effect of the payload. It is needed to power the motor’s phases with an
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higher voltage for tracking the reference signal, indeed a PWM signal with

a greater duty cycle has to be used for controlling the motor wheel. The

research phase of the correct control signal is the one characterized by the

oscillations of the response.



Chapter 6

Future Implementations

The robot requires others implementations and integrations in order to be

used in the industrial context. During the traineeship, shipping delays of

the robot’s components and hardware issues have compromised the develope

and implementations of the following points:

• Integration of the LiDAR sensor with the ROS nodes of the robot.

• Development of the SLAM algorithm.

• Integration of the SLAM algorithm with the Multi-Sensor Fusion

method.

• Development of the path planning and obstacle avoidance algorithms

based on the map built by the SLAM algorithm.

6.1 SLAM

SLAM stands for Simultaneous Localization and Mapping. It is an algo-

rithm that allows a robot to build its surrounding map and localize its

location on the map at the same time. The map can be used for different

tasks, such as path planning, obstacle avoidance etc.

Generally, SLAM uses devices and sensors for collecting:

• Visible data: from cameras.

• Non-Visible data: from radar, sonar, LiDAR.

80
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It is possible to build a picture (2D or 3D) of the surrounding environment

by using the collected data.

6.1.1 Functioning

The SLAM algorithm can be broke down into Front-End data collection

and Back-End data processing.

Front-End Data Collection

The Front-End data collection of SLAM is of two types Visual SLAM and

LiDAR SLAM.

The LiDAR SLAM has been chosen for the implementation since lasers

(such as LiDAR) are more precise and accurate with respect to cameras.

The rate of data collection is also much higher, making the solution suitable

for use in high-speed applications.

Back-End Data Processing

The data of the sensor is then used for the Back-End data processing task.

The output data of LiDAR sensors is called point cloud data; it is available

with 2D (x, y) or 3D (x, y, z) positional information.

The laser sensor point cloud provides high-precision distance measurements.

The movement of the robot is estimated sequentially by matching different

point clouds given by the laser. The calculated movement (travelled dis-

tance) is used for localizing the vehicle. For LiDAR point cloud matching,

iterative closest point (ICP) and normal distributions transform (NDT) al-

gorithms are used. 2D or 3D point cloud maps can be represented as grid

maps.

RPLiDAR A1

The Slamtec RPLiDAR A1 is the sensor chosen for the application (as

shown in section 2.2.2), it supports 2000/4000 samples per second. There
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exists a ROS package (rplidar ros) that provides basic device handling for

2D Laser Scanner RPLIDAR A1/A2 and A3 models.

The driver of the RPLiDAR reads RPLiDAR raw scan result using RPL-

IDAR’s SDK and converts the data to a ROS LaserScan message. In fact

the RPLiDAR’s driver publishes sensor msgs/LaserScan data on the

scan ROS topic.

Figure 6.1: ROS LaserScan RAW data definition.

Two services, start motor and stop motor, are provided by a ROS node

for starting and stopping the RPLiDAR A1 sensor.

Figure 6.2: RPLiDAR data scan opened using RVIZ and the RPLIDAR’s SDK
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6.2 Multi-Sensor Fusion Method

In order to overcome environmental problems and reduce positioning errors,

different types of sensors can be used for improving positioning accuracy and

apply it to SLAM. There are three types of sensor information: odometer

(given by the motors), inertial measurement (given by the IMU sensor) and

ultra-wideband (UWB information). The data fusion is performed through

an Extended Kalman Filter. Depending on the sensors used and the way

in which the information is combined, there exist different architectures for

performing the fusion method. The one depicted in figure 6.3 has been

chosen.

Figure 6.3: Multi-Sensor Fusion method approach chosen for the SLAM algorithm.

6.2.1 Extended Kalman Filter

Kalman Filtering, also known as linear quadratic estimation (LQE), is an

algorithm that uses a series of measurements observed over time, including

statistical noise and other inaccuracies, and produces estimates of unknown

variables.

The Kalman filter model assumes the true state at time k is evolved from

the state at (k − 1) according to:

xk = Fkxk−1 +Bkuk + wk (6.1)

Where:
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• xk: is the state of the system at instant k.

• Fk: is the state-transition matrix.

• Bk: is the input-transition matrix.

• uk: is the control input at instant k.

• wk: is a gaussian noise at instant k with zero mean and Qk covariance.

wk ∼ N (0, Qk).

Considering that at instant k an observation zk of the true state xk is taken.

It follows the equation:

zk = Hk ∗ xk + vk (6.2)

Where:

• Hk: is the observation state matrix that maps the true state space in

the observer space.

• vk: is the observation noise assumed to be zk ∼ N (0, Rk).s

Considering:

• xk|k: the a posteriori state estimate at time k given observations up to

instant k.

• Pk|k: the a posteriori estimate covariance matrix

The predicted state estimate is :

x̂(k|k−1) = Fkxk−1|k−1 +Bkuk

Predicted estimate covariance:

P̂(k|k−1) = FkP(k−1|k−1)F
T
k +Qk

Update state estimate:

x̂(k|k) = x̂(k|k−1) +Kkỹk (3)

With:

Kk: Kalman gain at instant k

ỹk: is the innovation at instant k, yk = zk −Hkx̂k|k−1
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Optimal Kalman gain:

Kk = P̂(k|k−1)H
T
k S

−1
k (4)

Update estimate covariance:

P(k|k) = (I−KkHk) P̂(k|k−1) (5)

The Extended Kalman Filter works following the previous equations.

It is generated an estimate of the position of the robot with an estimated

noise. Then, the information from the sensors is used for updating the

position information. Those steps are repeated recursively to get a more

accurate result.

6.2.2 Other Architectures

Four different fusion methods are compared:

(a) Gmapping SLAM: the SLAM construction requires information from

the odometer (motor) and LiDAR. The odometer (motor) provides x,

y, vx, vy, vz, vroll, vpitch, vyaw. LiDAR provides 2D distance infor-

mation.

Figure 6.4: Gmapping SLAM architecture

(b) Method 1: odom + IMU fusion positioning architecture.
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Figure 6.5: Odom + IMU fusion positioning architecture.

(c) Method 2: odom + UWB fusion positioning architecture.

Figure 6.6: Odom + UWB fusion positioning architecture.

(d) Method 3: odom + UWB + IMU fusion positioning archi-

tecture.

Figure 6.7: Odom + UWB + IMU fusion positioning architecture.
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Researchers have compared the four methods described, obtaining the fol-

lowing results:

Figure 6.8: Comparisons of the 4 methods described.
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Appendix A

Burhless DC motor

A motor converts supplied electrical energy into mechanical energy. Vari-

ous types of motors are in common use. Among these, brushless DC motors

(BLDC) feature high efficiency and excellent controllability, and are widely

used in many applications.

A Brushless DC Electric Motor (BLDC) is an electric motor powered by a

direct current voltage supply and commutated electronically instead of by

brushes like in conventional DC motors. BLDC motors are more popular

than the conventional DC motors nowadays, but the development of these

type of motors has only been possible since the 1960s when semiconductor

electronics were developed.

A.1 Similarities BLDC and DC motors

Both types of motors consist of a stator with permanent magnets or elec-

tromagnetic coils on the outside and a rotor with coil windings that can

be powered by direct current on the inside. When the motor is powered

by direct current, a magnetic field will be created within the stator, either

attracting or repelling the magnets in the rotor. This causes the rotor to

start spinning.

A commutator is needed to keep the rotor rotating, because the rotor would
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stop when it is in line with the magnetic forces in the stator. The commu-

tator continuously switches the DC current through the windings, and thus

switches the magnetic field too. This way, the rotor can keep rotating as

long as the motor is powered.

A.2 Differences BLDC and DC motors

The most prominent difference between a BLDC motor and a conventional

DC motor is the type of commutator. A DC motor uses carbon brushes for

this purpose. A disadvantage of these brushes is that they wear quickly.

That is why BLDC motors use sensors – usually Hall sensors – to measure

the position of the rotor and a circuit board that functions as a switch. The

input measurements of the sensors are processed by the circuit board which

accurately times the right moment to commutate as the rotor turns.

Figure A.1: Functioning principle of a BLDC and a DC motors.
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PWM

Digital signals are signals that can be represented by a 0 or 1. Analog sig-

nals on the other hand have a greater range of possible values than just a 0

or 1. Both of these signals are used in the electronics but they are handled

very differently.

If it is needed to take an analog input, it is possible to get the real-time

analog data from a sensor, and then using an analog-to-digital converter

(ADC)for converting it to digital data for a microcontroller.

If it is needed to control an analog device using a microcontroller a DAC

(digital-to-analog) converter should be used. A DAC is expensive and it

takes a lot of silicon area. To overcome these issues and to easily achieve

the functionality of a DAC in a much more cost-efficient way, it is possible

to use the PWM.

Figure B.1: Analog vs Digital Signal.
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PWM or Pulse Width Modulation is a technique used to control analog

devices, using a digital signal. This technique can be used to output an

analog-like signal from a digital device, like a microcontroller. It is possible

to control motors, lights, actuators, and more using the generated PWM

signal.

Figure B.2: PWM Signal Waveforms.

B.1 How it works

The PWM reduces the average power delivered by an electrical signal, by

effectively chopping it up into discrete parts. The average value of voltage

(and current) fed to the load is controlled by turning the switch between

supply and load on and off at a fast rate. The longer the switch is on com-

pared to the off periods, the higher the total power is supplied to the load.

The term duty cycle describes the proportion of ’on’ time to the regular

interval or ’period’ of time; a low duty cycle corresponds to low power,

because the signal is off for most of the time. Duty cycle is expressed in

percent, 100% being fully on. When a digital signal is on half of the time

and off the other half of the time, the digital signal has a duty cycle of 50%

and resembles a ”square” wave.
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Figure B.3: PWMs with different duty cycle.

D =
Ton

Period
∗ 100 Vavg =

D

100
∗ Vmax (B.1)

Where:

D = Duty Cycle in Percentage

Ton = Duration of the signal being in the “on” state

Period = Total time taken to complete one cycle (Ton + Toff )

Vavg = Average voltage of the signal

Vmax = Max voltage of the signal

It is possible to generate a PWM using the analogWrite(pin,value) func-

tion of Arduino (value determines the duty cycle of the signal, 0 for 0%

duty, 255 for 100% duty). In the Arduino Mega board, it is possible to

generate a PWM using the digital pins from 2 to 13.



Appendix C

Microcontroller

A microcontroller (MCU for microcontroller unit) is a small computer on

a single VLSI integrated circuit (IC) chip. A microcontroller contains one

or more CPUs (processor cores) along with memory and programmable in-

put/output peripherals. Program memory in the form of ferroelectric RAM,

NOR flash or OTP ROM is also often included on chip, as well as a small

amount of RAM. Microcontrollers are designed for embedded applications,

in contrast to the microprocessors used in personal computers or other gen-

eral purpose applications consisting of various discrete chips.

In modern terminology, a microcontroller is similar to, but less sophisti-

cated than, a system on a chip (SoC). A SoC may connect the external

microcontroller chips as the motherboard components, but a SoC usually

integrates the advanced peripherals like graphics processing unit (GPU)

and Wi-Fi interface controller as its internal microcontroller unit circuits.
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IMU

An Inertial Measurement Unit (IMU) is a device that can measure and

report specific gravity and angular rate of an object to which it is attached.

An IMU typically consists of:

• Accelerometer: is a sensor that measures the specific force (the body

mass normalized the force). It provides the acceleration across the x,

y, and z axes in its local frame.

• Gyroscope: is a sensor that measures angular velocity around the x,

y, and z axes, in its local frame. Generally, integrating the measure-

ments results in the angles themselves.

• Magnetometer: is a sensor that measures the Earth’s magnetic field

and provides the heading (the compass is one such device). If it is

included in the IMU, it is called a “9-axis IMU.”

• Barometer: is a sensor that measures air pressure and can provide

altitude.
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Figure D.1: Main sensors of an IMU.



Appendix E

ROS

The Robot Operating System (ROS) is an open-source framework that helps

researchers and developers build and reuse code between robotics applica-

tions. ROS is also a global open-source community of engineers, developers

and hobbyists who contribute to making robots better, more accessible and

available to everyone.

E.1 What is ROS?

Robot Operating System, despite its name, is not an operating system. Nor

it is really a framework.

ROS is more of a middleware, something like a low-level “framework” based

on an existing operating system. The main supported operating system for

ROS is Ubuntu.

ROS is mainly composed of 2 things:

• A core (middleware) with communication tools

• A set of plug & play libraries

E.1.1 What is a Middleware

A middleware is responsible for handling the communication between pro-

grams in a distributed system. In a robotic applications, the software is
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divided into modules: small sub-programs which handle different tasks.

ROS allows the communication between each other of all the modules.

E.2 Communication Tools

ROS comes with 3 main communication tools:

• Topics: used mainly for sending data streams between nodes.

• Services: allow to create a simple synchronous client/server commu-

nication between nodes. Very useful for changing a setting on the

robot, or ask for a specific action.

• Actions: based on topics, provide an asynchronous client/server ar-

chitecture, where the client can send a request that takes a long time

(ex: asking to move the robot to a new location). The client can

asynchronously monitor the state of the server, and cancel the request

anytime.

For using these communication tools it is needed to define specific mes-

sages data.

ROS uses standard TCP/IP sockets to communicate between nodes.

E.3 Other features

It is possible to create some global settings named parameters, so multi-

ple nodes can get access to the same set of settings from anywhere in the

robotics application. It is possible to launch the complete robot’s applica-

tion with just one XML file, called launch file.

ROS also includes a complete logging system.

ROS allows to use a huge amount of ROS libraries for developing differ-

ent functionalities of the robot.

Using all the ROS’s features, it is possible to develope a distributed sys-

tem for controlling the robot, by making many ROS packages.
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Figure E.1: Modules of a distributed system used for controlling a ROS robot.

E.4 ROS Languages

Robot Operating System is mainly developed using 2 languages: C++ and

Python. Those are often the most preferred and used languages when de-

veloping robotics applications. It is needed to use the roscpp library to

write C++ code, and the rospy library to write Python code. There are

also some libraries to make a bridge with other languages, such as rosjava

for Java, and roslibjs or rosnodejs for JavaScript.

The ROS’s modules can be written in any language. The communication is

allowed since the Communication Layer is below the ”language-level”.

Figure E.2: ROS Communication Layer and Language Layer.
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E.5 ROS Nodes

A ROS Node is a sub-part of the robotics application. It is basically a

process that performs computation. It is an executable program running

inside the robotics application. The application will contain many nodes,

which will be put into packages. Nodes will communicate to each other.

Considering figure E.1, Motion planning pkg, Camera pkg, Hardware control

are packages that contain many ROS nodes.



Appendix F

Client-Server Architecture

The Client-server model is a distributed application structure that parti-

tions tasks or workload between the providers of a resource or service, called

servers, and service requesters called clients.

In the client-server architecture, when the client computer sends a request

for data to the server through the internet, the server accepts the request,

then process and delivers the data packets requested back to the client.

Clients do not share any of their resources. Examples of Client-Server

Model are Email, World Wide Web, etc.

• Client: is a computer (Host) i.e. capable of receiving information or

using a particular service from the service providers (Servers).

• Server: a remote computer which provides information (data) or ac-

cess to particular services.
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Figure F.1: Client-Server architecture.

This architecture can be adopted also for the communication of modules

(sub-programs) between each other in a single application of a distributed

system.



Appendix G

Publisher-Subscriber Architecture

In software architecture, publish–subscribe is a messaging pattern where

senders of messages, called publishers, do not program the messages to be

sent directly to specific receivers, called subscribers, but instead categorize

published messages into classes without knowledge of which subscribers, if

any, there may be. Similarly, subscribers express interest in one or more

classes and only receive messages that are of interest, without knowledge of

which publishers, if any, there are.

In the publish-subscribe model, subscribers typically receive only a sub-

set of the total messages published. The process of selecting messages for

reception and processing is called filtering. There are two common forms

of filtering: topic-based and content-based.

• topic-based system: messages are published to topics or named

logical channels. Subscribers in a topic-based system will receive all

messages published to the topics to which they subscribe. The pub-

lisher is responsible for defining the topics to which subscribers can

subscribe.

• content-based system: messages are only delivered to a subscriber if

the attributes or content of those messages matches constraints defined

by the subscriber. The subscriber is responsible for classifying the

messages.

Some systems support a hybrid of the two; publishers post messages to a

topic while subscribers register to one or more topics.
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C++

C++ is a cross-platform language that can be used to create high-performance

applications. It was developed by Bjarne Stroustrup, as an extension to the

C language. It gives programmers a high level of control over system re-

sources and memory.

H.1 Why use C++?

C++ is one of the world’s most popular programming languages. It can be

found in today’s operating systems, Graphical User Interfaces, and embed-

ded systems.

C++ is an object-oriented programming language which gives a clear struc-

ture to programs and allows code to be reused, lowering development costs.

C++ is portable and can be used to develop applications that can be

adapted to multiple platforms. It is close to C, C# and Java, so it is

easy for programmers to switch to C++ or vice versa.

H.2 Differences between C and C++

C++ was developed as an extension of C, and both languages have almost

the same syntax. The main difference between C and C++ is that C++

support classes and objects, while C does not.
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Appendix I

Step Response

When a dynamical system is studied, one of the most common test input

used is the unit step function. The response of a system (with all initial

conditions equal to zero at t=0-, i.e., a zero state response) to the unit step

input is called the unit step response.

Given a system with x(t) as input, y(t) as output and H(s) as transfer

function:

H(s) =
Y (s)

X(s)
(I.1)

The output with zero initial condition is given by:

Y (s) = H(s) ∗X(s) (I.2)

For the unit step function as input X(s) = 1
s
so the unit step response is:

Yγ(s) =
1

s
∗H(s) (I.3)
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