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Abstract

Kernel-based methods are powerful tools that are widely applied in many
applications and fields of research. In recent years, methods from computational
topology have emerged for characterizing the intrinsic geometry of data.
Persistence homology is a central tool in topological data analysis, which
allows to capture the evolution of topological features of the data. Persistence
diagrams represent a natural way to summarize these features, but they can
not be directly used in machine learning algorithms. To deal with them, we
first analyse various kernel-based methods of recent development, then we
propose and apply Variable Scaled Kernels (VSKs) to the persistence diagrams
framework. We therefore discuss the application of these kernels in medical
imaging in the context of Alzheimer’s Disease classification. Taking into account
the cortical thickness measures on the cortical surface, we build the persistence
diagrams upon different MRI subjects and we perform some classification tests
using the support vector machines classifier.
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Introduction

Kernel methods are well-established tools in a variety of research and applied
fields, including engineering, machine learning, pattern recognition and in
general in many fields of computational mathematics.

In this thesis, we first introduce kernels, their properties and the related Hil-

bert structure. We recall some notions concerning kernel-based approximation
and we present some examples of well-known kernels.
Then, we focus on machine learning and pattern analysis. After an overview
about the statistical learning theory, we recall some important qualities of
kernels, such as the so-called kernel trick, which guarantee the effectiveness
of kernel-based methods in representing complex patterns in the data with
controlled computational costs. We then introduce the Support Vector Ma-
chines (SVMs) classification scheme, which is widely used in applications. This
algorithm approaches the learning problem from a geometrical point of view,
finding the hyperplanes which better separate the data with respect to the
output classes.

In the second part of this work, we give an introduction to Topological Data
Analysis, which is an emerging trend in data science to design descriptors for
complex data. The core of applied topology is based on persistent homology.
After a theoretical presentation, we present some examples in order to visualize
the descriptive power of persistent homology by using persistence diagrams,
which are effective and stable tools, and focusing on point cloud data. After
that, we show how dedicated kernels can be associated to persistence diagrams.
These kernels are constructed in order to deal with this peculiar framework and
can characterize meaningful similarities from a topological perspective.

In the last part of this manuscript, we apply the introduced kernels in
concrete classification tasks and we test their usage in the framework of the
so-called Variably Scaled Kernels (VSKs), originally introduced in the field
of functions approximation. The application we consider is a dataset of MRI
images and we analyse them by means of persistence diagrams built upon
the cortical thickness estimates information. Then, considering the presented
kernels in the the Support Vector Machines (SVMs) scheme, we show how
the constructed classifiers are effective in discriminating between healthy and
Alzheimer’s Disease (AD) patients.
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CHAPTER 1

Introduction to Kernels

In this introductory chapter, we present kernels in the context of approximation
theory and we mainly refer to the books [15, 16].

The starting point is the scattered data fitting problem. Let X be the set
of the data sites, X = {x1,...,x,} C 2 C R? where n,d € N, and let f be the
unknown function to be recovered, which is associated to the known values at
the data y; = f(x;) Vi = 1,...,n with y; € R. Our aim is to find a function
s:Q — Rsuch that s(x;) =y; Vi=1,...,n.

To solve this problem, we assume that the function can be expressed as a
linear combination of particular functions B; : @ — R j =1,...,n called basis
functions, so that

s(x) = chBj(x), x € R, for some ¢; €R j=1,...,n. (1.1)
j=1

The coeflicients c¢; are determined by imposing the interpolation conditions
n
S(Xi) =Y = ZBj(Xi)Cj'
j=1

Looking at the well-posedness of the problem, we need to introduce the
definition of Haar system and we present some fundamental properties useful
to understand their role in the context of interpolation.

Definition 1.1 (Haar System). Let the finite-dimensional linear function space
B C C(Q) have a basis {By, ..., Bx}. Then B is a Haar Space on € if detB # 0
for any set of distinct x1,...,X, in , where B is the matrix with entries
(B)i,; = Bj(x;). The set {Bj, ..., By} is then called a Haar system.

Then, we have the following results.

Theorem 1.2. A set {Bj, ..., By} of continuous functions on [a,b] forms a Haar
system if and only if any non-trivial linear combination of By, ..., B, has at
most n — 1 zeros in (a,b).

Theorem 1.3 (Haar-Mairhuber-Curtis). If Q ¢ R?, d > 2, contains an interior
point, then there exist no Haar spaces of continuous functions except for the
trivial ones, i.e. spaces spanned by a single function.

Haar systems are powerful spaces that guarantee the uniqueness of the
interpolant, but in the multivariate setting we do not have the powerful result

1



1.1. Kernels and Native Spaces

of Theorem 1.2, which provide the uniqueness of the interpolant without
assumptions on the data sites. As we will see in this chapter, the choice
of the data sites is important for interpolation purposes.

1.1 Kernels and Native Spaces

In this introduction, we will confine on kernels associated to positive definite
matrices. In the following we consider kernels: k: Q2 x Q@ — R, k:(x,y)+—
#(x,y). Moreover, unless otherwise stated, we consider @ C R? and x as a
real-valued function.

Kernel-based methods are born with the idea of building a point-dependent
basis. In the case of the scattered data fitting problem, we can then take
the set B = {k(,%1), ..., 5(,%,)} with k(x) = (k(x,%1), ..., 5(x,%,)) € RY.
Considering Equation (1.1) and ¢ = (¢q, ..., ¢,,), we write

s(z) = ZCJK(X’Xj) =k(x)Te, xecR? (1.2)

If we denote as K the matrix K; ; = k(x;,%;) and y = (y1, ..., Yn), then can we
find the vector of coefficients ¢ by solving the linear system

Kc=y.

It is well-known that the solution of this linear system is unique as long as
the matrix is nonsingular.

Definition 1.4 (Gram Matrix). Given a function s : Q x Q@ — R, and data
sites X1,Xa2, ...,X, € X C Q, the n x n matrix K with elements K;; := r(x;,x;)
is called the Gram matriz of k with respect to the point set x1, ..., X,,.

Definition 1.5 (Positive (Negative) definite matrix). A real symmetric n x n
matrix K is called positive (negative) definite if its associated quadratic form is
positive (negative) for any nonzero coefficient vector ¢ = (cy,...c,)T € R, i.e.:

c’'Ke>0(<0).

The matrix is called positive (negative) semi-definite if the quadratic form is
allowed to be nonnegative.

Definition 1.6 (Strictly positive definite kernel). A symmetric kernel « is
called strictly positive definite on Q x  if its associated kernel matrix K with
entries (K); ; = k(xi,%;), i,j = 1,...,n, is positive definite for any n € N and
for any set X = {x1,...,x,} € Q of distinct points.

Definition 1.7 (Positive (negative) definite kernel). A symmetric kernel « is
called positive definite on Q x € if its associated kernel matrix K with entries
(K)i,; = k(xi,%5), 1,5 =1, ...,n, is positive semi-definite for any n € N and for
any set X = {x1,...,x,,} € Q of distinct points.

Remark 1.8. Concerning the notation, in the scientific literature, we can find
either the notation of positive semi-definite kernels or positive definite kernels
respectively for kernels with associated positive semi-definite or positive definite
matrix. In this thesis we use the notation of [15].
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The definitions above can also be stated for strictly negative and negative
definite kernels considering respectively negative definite and negative semi-
definite matrices.

There are many interesting and important relations between positive and
negative definite kernels [4].

Lemma 1.9. Let X be a non-empty set, xg € X, and let ¢ : X x X — R be
a symmetric kernel. Put k(x,y) = ¥(x,X0) + ¥ (y,%0) — ¥ (x,¥) — ¥(x0,Xo)-
Then k is positive definite if and only if ¢ is negative definite. If 1(x0,%0) >0
and ko (x,y) := P(x,x0) + ¥(y,X0) — Y(X,y), then ko is positive definite if and
only if ¥ is negative definite.

Theorem 1.10. Let X be a nonempty set, and let k: X x X — R be a kernel.
Then k is negative definite if and only if exp(—t k) is positive definite for all
t> 0.

Of course, it is trivially true that —x is negative definite whenever & is
positive definite.

Another meaningful definition is the infinitely divisibility of positive definite
kernels which is particularly useful in applications, as we will see later in Section
4.1.

Definition 1.11 (Infinitely divisible kernel). A positive definite kernel « is
called infinitely divisible if for each n € N there exists a positive definite kernel
Ky such that k = (k,)™.

Proposition 1.12. Let N (X) denote the closure of all real valued negative
definite kernels on X x X in the space | — 0o, 00]***. Then for a positive
definite kernel kK > 0 on X X X the following conditions are equivalent:

(i) & is infinitely indivisible.
(i) —log(k) € Noo(X).

(iii) k' is positive definite for all t > 0.

We denote the well-known &), space as
2,(Q) = {f:Q—>R‘ / |f(x)|pdx<oo}
Q

with the associated norm: || f|.», ) = (fo, |f(x)[? dm)%
An alternative definition for positive definite kernels is the following.

Definition 1.13 (Integrally positive definite kernel). A symmetric kernel K
is called integrally positive definite on Q x Q if Vf € £ (Q)

[ | Kexx)ssdedy =0,
QJQ

To highlight the analogy between this definition and the other, we recall the
definition of self-adjoint operator, positive self-adjoint operator.
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Definition 1.14 (Self-adjoint operator). A linear operator K defined on a
linear everywhere-dense set Z(K) in a Hilbert space H is called self-adjoint if it
coincides with its adjoint operator £*, that is, such that 2(K) = 2(K*) and
(Kf.9) = (f.Kg)Vf.g € Z(K)

Definition 1.15 (Positive self-adjoint operator). A self-adjoint operator K
action on a Hilbert space H is called positive if (ICf, w >0, Vf eH

Then, considering the operator (Kf)(x fQ (y)dy, with
f e fg( ), and using the standard %, inner product ie. ( L)z =
fQ x) dz, we find that an integrally positive definite kernel is the kernel

of a p051t1ve integral operator.

Now we introduce series expansion of positive definite kernels [16, Section
2.2).

Definition 1.16 (Hilbert-Schmidt operators). Let H be a Hilbert space and
T : H — H a bounded linear operator. The operator T is called a Hilbert-
Schmidt operator if there exists an orthonormal basis {e, }n=1,.. of H such
that

S ITenll < .

n=1
Where || - || denotes the norm in H induced by its inner product (-, -)3;. Usually,
S I Tenll3, = I T % is called Hilbert-Schmidt norm.

Theorem 1.17 (Hilbert-Schmidt integral operator). Let % (Q), 1) be a Hilbert
space on a locally compact Hausdorff space 0 with positive Borel measure .
Further let the kernel k : (X,y) — k(x,y) be in Lo(Q x Q, pu x w), i.e. assume
that

[ [ 1sey)l? du) duty) < .
Then the operator K defined by

(KP)(x) = / k(YY) duly), | € La(p) (1.3)

is a Hilbert-Schmidt operator. Conversely, every Hilbert-Schmidt operator on
L5, 1) is on the form 1.3 for some unique kernel k : (X,y) — k(X,y) in
Lo x Q,pux p)

Theorem 1.18 (Mercer’s theorem). Let (2, 1) be a locally compact Hausdorff
space with positive Borel measure p and £ € ZL5(Q x Q, pu x p) be a kernel such
that the Hilbert-Schmidt operator IC : L5(Q, 1) — Lo(92, )

(Kf)(x) = / k(x,3) £ () du(y) (1.4)

is positive. Let @, € L (Qu), n = 1,2,... be the £ (2, 1) orthonormal
eigenfunctions of IC associated to the eigenvalues A, > 0. Then the following
are true:

(i) The kernel has a Mercer expansion

=Y Aen(®)en(y)- (1.5)
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which holds p? almost everywhere, and converges absolutely and uniformly p>
almost everywhere.

(ii) The eigenvalues {\,}52, are absolutely summable, and so K has finite
trace.

Mercer’s Theorem grants not only the convergence but the uniform
convergence, slightly differentiating by Schmidt’s version.

Reproducing Kernel Hilbert Spaces

Following these ideas, we want to further analyse the properties of the
interpolation space. We start by presenting the definition of reproducing
kernel in the context of Hilbert spaces [15, Chapter 13.1].

Definition 1.19 (Reproducing Kernel). Let # be a Hilbert space of real-
valued functions f defined on Q C R? with inner product (-,-)3. A kernel
k2 x Q — R is called reproducing kernel for H if:

(i) w(-,x) CHVx € Q.
(i) (f;m(x)n = f(x) Ve, vxe

The name reproducing kernel is motivated by the reproducing property (ii),
which shows how evaluating the function f on x is equivalent to considering
the inner product between f with (-, x). Recalling the Riesz representation
theorem [36], since for any x € €2 we have a function (-,x) such that the
reproducing property holds, it follows that x(-,x) is the Riesz representative of
function evaluation at x. The reproducing kernel of a Hilbert space is unique.

Definition 1.20. Given a kernel function x : Q x Q — R, we let H, () denote
the unique reproducing kernel Hilbert space (RKHS) with reproducing kernel «.

We remark some useful properties of reproducing kernels on Hilbert spaces.

(i) A reproducing kernel is symmetric, i.e. Vx,y €

(k(,%), 50 ¥ = w(x,y) = K(y, X).

This follows directly by reproducing property and the symmetry of inner
product.

(ii) Point evaluation in a RKHS is bounded i.e., Vf € H,(Q), x € 2

1F ()] < VEC )l -

This follows from the reproducing property and Cauchy-Schwarz inequality
to the inner product, added to the fact that Hn(o,x)H%N(Q) > 0.

(iii) Convergence in Hilbert space norm implies pointwise convergence i.e. if
we have || f — fulln,. (@) — 0forn — oo, then |f(x) — fn(x)] = 0V¥x € Q.

(iv) If k is the reproducing kernel of the RKHS H and V is a closed subspace
of H, then V is also a RKHS whose reproducing kernel is given in terms
of the orthogonal projection P onto V), i.e.:

KV(X7Y) = PV(’{('ay))(X)'
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Finally, we can link reproducing kernel Hilbert spaces to positive definite
kernels.

Theorem 1.21. Suppose H,.(2) is a reproducing kernel Hilbert function space
with reproducing kernel k : Q x  — R. Then k is positive definite. Moreover,
k 1s strictly positive definite if and only if the point evaluation functionals 0,
are linearly independent in the dual space H,(Q)*.

Now we show that every strictly positive definite kernel can indeed be
associated to a reproducing kernel Hilbert space, its native space [15, Section
13.2].

The space
MI{(Q) = span{/i(~,y) tye Q} (16)
equipped with the bilinear form (-, ),
N, N, N, N
O cin(xi), > dis(y;) =Y cidir(xiy;), Ny € NU{+oo}. (1.7)
i=1 j=1 i=1 j=1

for some ¢;,d; € RVi = 1,..., Ny, is a pre-Hilbert space if x is a symmetric
strictly positive definite kernel. Therefore we define the native space N, (Q2)
of r, by completing M, (Q) with respect to the x-norm || - [[r, (), so that
1l Mm@ = £l o for all f € M, (Q).

Here Mercer Theorem 1.18 allows us to build a reproducing kernel Hilbert
space H,,(€2) as infinite linear combination of eigenfunctions.

Ho( Q) ={f: [ =) e},

k=1

where @), are the eigenfunctions of K defined in (1.4). We notice that the
kernel « itself is in H,,(£2) since from Mercer theorem it has the eigenfunction
expansion. Lastly, the interpolation space, as subset of the native space, is a
reproducing kernel Hilbert space.

Native Space Error Estimates

Now we provide some error estimates for scattered data interpolation with
strictly positive definite functions. We want our estimates to depend on some
measure of the data distribution [15]. In approximation theory, it is widely used
the the fill distance,

h = hy,o = sup min ||x —x;||, (1.8)
x€N X EX

that denotes the radius of the largest empty ball that can be placed among the
data sites, as displayed in Figure 1.1. Another measure that we consider is the
separation distance,

= *1 i || — x| (1 9)
min ||X; — X, .

qx o T I 3l

that denotes the maximum radius of the balls centered in the data points, such

that each ball is disjoint by the others.
We introduce the cardinal functions.
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1.0 - 1.0

0.8 0.8
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Figure 1.1: The fill distance of a random set of points in [0, 1]? (left) and their
separation distance (right)

Theorem 1.22. Suppose r is a strictly positive definite kernel on R?, then

for any distinct points Xi,...,Xn, n € N, there exist functions uj €

span{k(-,x;), j = 1,...,n} such that u}(x;) = 0;; for every j =1,...,n. Where
0i; is the Kronecker delta.

Therefore, we can write the interpolant P at xy, ..., X, in the cardinal form

N
Prx) =D flx)uf(x), xeR™ (1.10)

j=1
Then, we define the power function [15, Section 14.3].

Definition 1.23 (Power function). Suppose @ C R? and k € (22 x Q) is
strictly positive definite on R%. For any distinct points X = {xy,...,x,} C Q
the power function is defined by

[Pr.x(x)]* = Q(u*(x)), (1.11)

where u* is the vector of cardinal function from Theorem 1.22, and Q(u) is
the following quadratic form:

N N N
Q(u) = k(x,x) — 2 Z'LLJ'H(X,X]') + Z Zuinli(Xi,Xj). (1.12)
j=1

i=1 j=1

The power function has an alternative representation.

P, x(x) = \/n(x, x) — (b(x))TA='b(x), (1.13)

where A;; = k(x;,x;) for i,j =1,...,n, and b = [k((,x1), ..., k(,x,,)]T. Since
A is a positive definite matrix whenever & is strictly positive, we have a bound
for the power function:

0 < P, x(x) < V/K(x,x).

Therefore, we can give the following error estimates in terms of the power
function.
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Theorem 1.24. Let Q C R?, k € € (2 x Q) be strictly positive definite on R?,
and suppose that the points X = {x1,...,X, } are distinct. Denote the interpolant
of f € Niu(Q) on X by Py. Then for every x € Q

|f(x) = Prx)| < [[flln. @) P, (%) (1.14)

The strength of this theorem it that we are now able to estimate the
interpolation error by considering two independent phenomena:

1. the smoothness of the data, measured in terms of the native space norm
of f (which is independent of the data locations);

2. the contribution of the specific kernel x and the distribution of the data,
measured in term of the power function (which is independent of data
values).

Theorem 1.25. Let QO C RY, and suppose k € € (2 x Q) is strictly positive
definite on R?. Let X = {x1,...,X,} a set of distinct points in 0, and define
the quadratic form Q(u) as in 1.12. The minimum of Q(u) is given for the
vector u = u*(x) from theorem 1.22 i.e.,

Qu*(x)) < Q(u), forallueR".

We introduce the following notation: for 8 = (B1,...,04) € N¢ with
18] = >_;_, Bi we define the differential operator D? as:

o8l
(0x1)Br ... (9xq)Pd

DP =

Moreover, we define what follows.

Definition 1.26. A region 2 C R? satisfies an interior cone condition if there
exists an angle 6 € (0, 3) and a radius 7 > 0 such that for every x €  there
exists a unit vector x(x) such that the cone

C={x+MNy:yc€ Rd, lylle =1, yTx(x) > cosf, X € [0,r]}
is contained in 2.

Thus, we can finally include the fill distance in Theorem 1.24, highlighting
the contribute of the data sites on the bound.

Theorem 1.27. Suppose @ C R? is bounded and satisfying an interior cone
condition and suppose Kk € €2 (Qx Q) is symmetric and strictly positive definite.
Denote the interpolant to f € N, () on the set X by Py. Then, there exist
positive constants hg and C (independent of x, [ and k) such that

(%) = Pr(x)| < Chk oV Or ()| fllnv (0 (1.15)

provided hx o < hg. Here

Cu(x) = Dfk
<) = B S P2 O 2

where B = B(x,cohx.q) denote the ball of radius cohx o for some co € R,
centered in X.
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Moreover if we fix o € N¢, with |a| < k, we have that

D% f(x) — D*Py(x)| < Chly F1/Colx) 1 £l ()

with
_ B
Cr(x) = X, | mex | Dy Dy k(w,z)].
18]+l |=2k

Here B = B(x,cohx o) denote the ball of radius cohy o for some ¢ € R,
centered in x. Estimates built by using the separation distance gy are used
mainly for error bounds for functions outside the native space [29].

In approximation theory, for measuring the stability of a method, we need
to look at the condition number of the interpolation matrix.

Definition 1.28. Let be A a matrix. its fs-condition number (usually referred
to simply as the matrix condition number) is given by:

_ Omax
cond(4) = [|Af2 A7 ]2 = ==

Omin

Here opin and opax are respectively the smallest and the largest singular value
of A. If A is a positive or negative definite matrix, then we can compute the
condition number as the ration between the highest and the lowest eigenvalues.

cond(4) = Amax

)\min

1.2 Radial Basis Functions

In this section, we show some of the most used radial kernels, that later on will
be important for the construction of more specific kernels. A radial kernel is of
the form k(x,y) = ¢(||x — y||) with ¢ : [0,00) — R, i.e. it is invariant for for
both translations and rotations, the function ¢ is called Radial Basis Function
(RBF). In the following we use the notation r = ||x — y||, taking the Euclidean
norm in the following examples, and we consider a shape parameter ¢.

We recall an important theorem [15, Section 15] that along with Theorem
1.27 gives us the tools to derive more accurate error bounds.

Theorem 1.29. Let be Q a cube in R, Suppose that k = ¢(|| - ||) is a strictly
conditionally positive definite radial function such that ¢ = ¢(\/7 satisfies
| ()] < UMY for all integers | > ly and all v > 0, where M is a fired positive
constant. Then there exists a constant ¢ such that for any f € N,.(Q):

I = Prllzaie < exp (1) o (1.16)

7

for all data sites X with sufficiently small fill distance hy q.

Moreover, if 1 satisfies even | (r)| < M!, then, provided hx q is sufficiently
small, we have

—c|loghy,
I = Pplon <o (“HERD i 0. )
X,Q

)



1.2. Radial Basis Functions

Concerning the numerical stability, recalling the Gershgorin theorem [44],
we know that

i=)

i#]

for some ¢ € {1,...,n}. Therefore, considering K;; = ¢(x; — x;):

Amax <1 - max |K;;|=n- max |é(x; —x;)] < n-¢0).
3,7=1,...,n i, T;EX

To find a lower bound for An;,, we consider the Rayleigh quotient

c’'Ke
Amin = Iin —
cekm\{0} cTc
Some near optimal bounds can be found [15, Section 15] For example, for
the Gaussian ¢(r) = exp(—?r?),

40.71(12) s
qxe x>

with Cy constant. We see that, for a fixed shape parameter ¢, the lower
bound for A\, goes exponentially to zero as the separation distance gy decreases.
Since we observed that the condition number of the matrix K depends on the
ratio of its largest and smallest eigenvalues and the growth of Ay .y is of order
n, we see that the condition number grows exponentially with the decrease of
the separation distance. This shows that, if one adds more interpolation points
in order to improve the accuracy of the interpolant, then the problem becomes
ill-conditioned.

Amin > Cd(\/ifs)_d exp ( —

This observations lead us to the so called uncertainty principle. This principle
states that if we use the standard approach to the RBF interpolation problem
a conflict between theoretically achievable accuracy and numerical stability
occurs. For well-distributed data a decrease in the fill distance also implies a
decrease of the separation distance. But now the condition estimated above
imply that the condition number of K grows exponentially. This leads to
numerical instabilities which make virtually impossible to obtain the accurate
results promised by the theoretical error bounds.

Moreover, Schaback [38] looked at the power function P4 x and showed that
it can always be bounded from above by a function Fj, depending on the fill
distance. On the other hand, he showed that the Rayleigh quotient can always
be bounded from below by a function G4 depending on the separation distance.
Furthermore, he showed that

Gylgx) < Fy(hx o)

and therefore, for well-distributed data (with ¢x ~ hx ), a small error
bound (i.e., small Fy(hy o)) will necessarily result in a small lower bound
(i.e., small G4(qx)) for the Rayleigh quotient, and therefore for the smallest
eigenvalue. This however implies a large condition number.

10



1.2. Radial Basis Functions

Gaussian kernel
We consider firstly the Gaussian RBF:

o(r) =", (1.18)
which is clearly €*°(R) smooth. In Figure 1.2 we plot the Gaussian function
for different values of the shape parameter in [—1, 1]

In the last section we focused on the analysis of the strictly positive definite
kernels, since the resulting linear system is well-posed. Now, in the contest
of radial functions, we recall an useful theorem about the characterization of
strictly positive definite functions.

Definition 1.30 ((Strictly) Positive definite function). A real valued continu-
ous function ¢ : R* — R is called positive definite on R? if

zn:c cip(x; —x;) >0 (1.19)

1:=1

M:

J

for any n pairwise different points x1,...,x, € R? and ¢ = (cy,...,¢,)T € R™.
The function ¢ is called strictly positive definite on R? if the quadratic form
1.19 is zero only for ¢ = 0.

Theorem 1.31. A continuous function ¢ : [0,00) — R such that r +— r¢~1¢(r) €
Z1[0,00) is strictly positive definite and radial on R? if and only if the d-
dimensional Fourier transform

-Fd¢( d 2 (T‘t) dt.

\/rd 2 / olt)
Here Jd 2 18 the classical Bessel function of the first kind of order ;2, 18
non- negatwe and not identically equal to zero.

Thanks to this result, we can show that the Gaussian is strictly positive
definite on R? for all d. In fact, the Fourier transform of a Gaussian is a

Gaussian:
A 1 _lw)?

¢(w) = (5\/§)de 4e2
Furthermore we can apply Theorem 1.29 and the error bound (1.16) to
the Gaussian ¢(x) = e=<’I71” | with & > 0 fixed. Since P(r) = e="", then
YO (r) = (=1)le2e="" for I > Iy = 0, so lastly M = 2.

Matérn kernel

Another example of strictly positive definite radial function, is given by the
class of Matérn functions:

(57’)5’%1( _af(er) d
2ﬁ*11“ﬂ(ﬂ§ . B>5 e>0. (1.20)

Here K, is the modified Bessel function of the second kind of order v. The
Fourier transform of the Matérn functions is given by the Bessel kernels

d(w) = 1+ Jlwl®)=? > 0.

¢(r) =

11



1.2. Radial Basis Functions

Figure 1.2: Gaussian kernel, with shape parameter ¢ = 1 (left) and € = 3 (right)

Thus the Matérn kernels are strictly positive on R? for d < 23 and their
smoothness changes depending on the parameter g as we can see in Table 1.1:

I} RBF smoothness
d+1 e~ e cgo
% e ="(1+er) ©?
% e~ (3 + 3(er) + (er)?) ¢4

Table 1.1: Matérn functions for various choices of 3, and their smoothness

These functions are also called Sobolev splines, because their native space is
the Sobolev space %ﬂ (R9), where

Q) ={f € L(QNEQ): D*f € £,(Q) for all |a| < p}. (1.21)
Moreover we have the following error estimate [15, Section 15]
a « B—4—|a
D°f(x) = D°Pr(x)| < Chiz ¢~ fllx. 0. (1.22)
Provided that |a| < 8 — f%], hx o is sufficiently small, and f € N, ().
Two examples are displayed in Figure 1.3: the functions are centered in the
origin of R and evaluated in [—1,1]2. The shape parameter is set to e = 1 for

both functions. Concerning [, we change the values to highlight the difference
in terms of smoothness.

Inverse Multiquadric kernel

Since in last section both the functions ¢ and </3 were positive and radial, we
can use Hankel inversion theorem to switch their roles. We find the so-called
generalized inverse multiquadrics

o(r) =1+~ P, g> g, £>0. (1.23)

12



1.2. Radial Basis Functions

Figure 1.3: Matérn kernel, with 3 = 3 (left) and 8 = 2 (right)

Then, the function is strictly positive definite on R? for d < 23. It can be
shown that we need only 8 > 0 for the generalized inverse multiquadrics to
be strictly positive on R? for any d. Moreover these functions are infinitely
differentiable.

As in the previous examples, we can apply the error estimate (1.17) [15,
Section 15]. In fact, for the generalized multiquadric 1 (r) = (14 )%, we can
show that [!(r)| < I!M! whenever | > [B]. Here M =1+ |3 + 1|.

Figure 1.4 display the well-known inverse multiquadric and inverse quadratic,
respectively for 8 equal to % and 1. In these examples we have fixed the shape
parameter € equal to 5.

Figure 1.4: Generalized inverse multiquadric kernel, with g = % (left, also called
inverse multiquadric) and 8 =1 (right, also called inverse quadratic)

Variably Scaled Kernel

In kernel-based approximation, the tuning of the shape parameter might be a
problem. In [5], the authors manage to overcome it through the introduction
of Variably Scaled Kernels (VSKs). The idea is to define a scale function ¢ to

13



1.2. Radial Basis Functions

transform the interpolation problem on the domain Q C R? at data x; to data
(x;,c(x;)) on R+,

Since the aim is the scale function, for simplify the notation the shape
parameter is fixed ¢ = 1.

Definition 1.32. Let  be a strictly positive definite kernel on R4+, If a scale

function ¢ : R — (0, 00) is given, we can define a VSK on R? by:

Ke(%,y) = K((x,¢(x)), (v,¢(y))), for all x,y € R%. (1.24)
The following holds true.

Theorem 1.33. If k is positive definite, then k. is positive definite, moreover if
K s strictly positive definite, then k. is strictly positive definite.

Now, considering k a strictly positive definite kernel, interpolation of values
f(x1), ..., f(x,) on data sites X = {x1, ..., X, }, we proceed as usual, solving the
linear system:

Ac,X a=fe¢€ R

with A; v := (Kc(Xi,X;j))1<ij<n, the kernel matrix which is positive definite
and a coeflicient vector a. Then we can express the interpolant

N N
Se.x,f (%) = Z ajic(X, %) = Z ajr((x, ¢(x)), (%5, ¢(x;)))- (1.25)

In the case of radial kernel i.e. k(x,y) = o(||lx —y||),

we find k.(x,y) = gb(\/||x —y[?2 + |e(x) — ¢(y)|?) and
N
Se (%) =Y a;o(|lx — %3 + (c(x) — c(x;))?).
j=1

In particular, if we consider « as the Gaussian kernel, then
Ke(x,y) = e P lze—(ct9—ev))®
is the scaled kernel, and the interpolant is in the form
N
Se,x f(X) = Z alje_”x_xjng_(c(x)—c(xj))z.
j=1

Considering the map
C:x (x,c(x)) (1.26)

we can show, being L the Lipschitz constant of ¢, that
Ix = yl3 < [C(x) = C)I3 < lx — yl3(1 + L)*.
then if we apply varying scale technique (VSK) on points x; and x; such that

[Ix; — Xsz =qx < hx,

14



1.2. Radial Basis Functions

The scales should then vary like

le(xi) = e(x;)| = ha o > qx.
This should be done for all close-by pairs of centers until one roughly gets that

qox) = hx.a = hewy,cw)-

holds. In particular we have that the transformed centers are approximately
uniformly distributed and:

dc(xy > qx

This result suggest us to use VSK to improve the stability of the interpolation
process and to work on points that may bring stability issues.
Lastly in [5], it is proved the following theorem:

Theorem 1.34. Given a kernel Kk : Q x Q — R and a bijective map
C:Qw— C(Q), the kernel

ko(C(x),C(y)) := k(x,y) forallx,y € Q

now acts on C(Q) and inherits the definiteness properties of k. Moreover the
native space for k and ko are isometric.

15
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CHAPTER 2

Learning with Kernels

Pattern analysis deals with the automatic detection of patterns in data, and
plays a central role in many modern artificial intelligence and computer science
problems. By patterns we understand any relations, regularities or structures
inherent in some source of data. By detecting significant patterns in the available
data, a system can expect to make predictions about new data that come from
the same source. In this sense, the system has acquired generalisation power by
‘learning’ something about the source generating the data [41].

For the purposes of this thesis, we present the supervised approach to pattern
analysis, in particular focusing on the binary case and mainly referring to [39,
41].

2.1 Elements of statistical learning

Let Q C RY and X = {x1,x%2,...,x,} C Q be a set of input data, d,n € N.
Each data x; is associated to a label y; € Y, with Y = {—1,+1}. Thus we can
consider the labeled set of the couples (x;,y;). The binary supervised learning
task consists in finding a non-trivial function f : 2 — ) such that it models
the input-output relation in the available data and in the unseen labeled data
& e\ X.

As expected, the problem is not in satisfying the relation f(x;) = y; but in
being able to predict in a satisfactory way the others data. To better explain
what we mean with ‘satisfactory’ we consider the so-called loss function.

Definition 2.1 (Loss function). Denote by (x,y, f) € Q x Y x Q* the triplet
consisting of a pattern x, an observation y and a prediction function f. Then
the map L : Q x Y x Q" — [0,00), such that L(x,y, f) = 0 for all couples of
labeled data (x,y) € X x Y, is called loss function.

In the binary classification case, we consider e.g.

1
In the following we consider two different approaches to the problem. The

first goes in the direction of the Vapnik-Chervonenkis dimension [39], the second
one involves the Rademacher complexity [41].

17



2.1. Elements of statistical learning

Let us suppose that there exists a probability distribution P(x,y) on X x Y
which governs the data generation, and training and test data are both drawn
independently and identically distributed (iid).

Definition 2.2 (Expected risk). If we have no knowledge about the test patterns
(or decide to ignore them) we should minimize the expected error over all possible

training patterns. Hence we have to minimize the expected loss with respect to
P and L

RIf] = ElL(x,y, /)] = / L(x,y, f) dP(x,y). (2.2)

X XY
R][f] is called expected risk.

Since we do not know P(x,y) explicitly and all we have is the training data,
we consider instead the empirical risk:

Remp[f] = ZL(Xivyiaf) (23)
i=1

3=

Furthermore, being m the cardinality of the training data, it can be proved
that

P(|Remplf] — R[f]) > €] < 2exp(—2me?).

For any fixed function the training error thus provides an estimate of the
test error. Moreover, the convergence in probability Remp[f] — R[f] as m — oo
is exponentially fast in the number of training examples. Unfortunately this
relation is useful only when the sample size m is sufficiently large.

What we need for empirical risk minimization to work is consistency. It
amounts to say that, as the number of examples m tends to infinity, we want
the function f that minimizes R to provide a test error which converges to
the lowest achievable value. It turns out that without restricting the set of
admissible functions, empirical risk minimization is not consistent [39].

Moreover it can be proved the following theorem, which underlines the
dependency of the result on the class of functions F.

Theorem 2.3. One-sided uniform convergence in probability,

lim P(sup(R[f] — Remplf]) >¢€) =0 (2.4)

mM—r 00 f€]:

for all e > 0, is a necessary and sufficient condition for nontrivial consistency
of empirical risk minimization.

Thus the next step is to find a suitable class of functions F > f such that we
can minimize Remp[f] with respect to F. Unfortunately, determining F could
be difficult and the minimization of the error can lead to ill-posedness problems.
For example, one possible source of problems is the condition number of the
matrix F = (fi(xj))i,j~

A subsequent direction in this analysis, instead of finding a suitable class of

functions, is to restrict the class of admissible solutions, taking into account
specific properties. Some possible strategies might be to narrow down to a

18



2.1. Elements of statistical learning

compact set, or add a regularization term to the original object function Remp[f]-
A connection between support vector machines and regularization operators can
be established, which can provide some insight on why support vector machine
and other kernel algorithms have been found to exhibit high generalization
capability [39].

Since Theorem 2.4 gives us conditions for the consistency of empirical risk
minimization, our aim is to find some simpler equivalent formulations to deal
with. Some concepts are needed to further analyse these possibilities.

It F={f1,..., fn}, letting

C; = {(leyl)a ceey (Xﬂ’mym) ‘ (R[fl] - Rcmp[fi] > 5}’

then we have that

n

P(sup(Rf) = Rewplf)) > €) = P(CLU..0C2) S IOP(CL). (25)

This inequality is called union bound, where the equality holds only if all
events P(C!) are disjoint. Thus, if we have a finite function class we can bound
the left hand side of 2.5, using law of large numbers to have a constant on the
right hand side of the bound.

Lemma 2.4 (VC Symmetrization). For me? > 2, we have

P( Sup(R[f] - Remp[f]) > ‘9) < 2P( SUP(Remp - R/emp[f]) > 5)7 (26)
fer fer

where the first P refers to the distribution of 7id samples of size m, while the
second one refers to iid samples of size 2m. In the latter case Ry, measures
the loss on the first half of the sample, and R, on the second half.

emp

The Lemma 2.4 implies that the function class F is finite: restricted to the
2m points of the right hand side of 2.6, it has at most 22 elements, since the
possible outputs are +1 for every pattern with 2m elements.

Let Zom = {(X1,Y1)s -y (X2m, Y2m ) } be the given set of input-output couples
of the pattern. Denote with N'(F, Zs,,) the cardinality of F when restricted to
{X1, ...y Xom }, and with N (F,2m) the maximum number of function that can
be distinguished on it. N'(F,m) is also known in this framework as the shatter
coefficient. It is particularly relevant since it measures the number of ways that
the functions in F can separate the patterns in the two classes.

Lastly using a famous inequality due to Chernoff,

1 m
P=>¢-E ’> < 2exp(—2me> 2.7
{23 6 -mi0]> < < 2emi-amet 1)
we finally obtain the inequality of Vapnik-Chervonenkis

2

P(sup(R[f] = Remplf]) >¢) < dexp <1n]E[N(]:, Zom)| — m;) . (2.8)
fer
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2.1. Elements of statistical learning

We can rewrite Equation 2.8 in a more explicit way, in particular with a
probability at least 1 — d we have that

o

Note that this bound holds independently on the function f. This is a
strength, because learning algorithms do not truly minimize the empirical risk,
and this bound grant at least an acceptable performance, but also a weakness,
since using more information related on the function we are interested in, we
could have better bounds.

R[f] < Remplf] + \/:i <1n]E[N(]-", Zom)| +1n 4). (2.9)

The critical factor that controls how much our choice may have compromised
the stability of the resulting pattern is the capacity of the function class F. The
capacity is the capability of a function class to fit different data. Clearly the
higher the capacity of the class the greater the risk of overfitting the particular
training data and identifying a spurious pattern. On the other hand if we
choose a class with poor capacity we may have an underfitting problem related
with a possibly high empirical risk. The capacity will be related to tunable
parameters of the algorithms for pattern analysis, hence making it possible to
directly control the risk of overfitting the data.

In Equation (2.9) the so called capacity-term is \/% (InEN(F, Zay)] +1n %)

A further step can be done, by trying to minimize not only the empirical
risk but rather the right hand side of Equation (2.8), since this leads not only to
a small risk but also to choosing a function from a class with smaller capacity.
This intuition leads to the so-called structural risk minimization, where the
main idea is to define a structure on F and minimize over the choice of the
structure.

As capacity measure, we have used so far the so-called annealed entropy

H;:nn(m) =InE [N(]:7 (1‘1, y1)7 ) (xmvym))] ) (210)

but there are more function that we can consider, like the VC' Entropy:

H]-'(m) :E[IHN(}—, (mlayl)w--a(xmvym))]v (211)

or the Growth function:

G =
]:(m) (ml,yl),...,(:r,r}i?@';)fn)efx{:I:l}

InN (F, (21,91), oy (T, Ym))  (2.12)

and lastly the VC' dimension.

Definition 2.5 (VC dimension). Let be F a class of classifying functions. the
VC dimension of F is the maximum number of points that can be shattered
by functions in F. If such a number does not exist, then the VC dimension is
infinity.

For example, take three not collinear points 1, 22, 3 in R?. Independently
on their labels, we can always find an hyperplane which divides the points in
the two classes. This implies that the VC dimension of the set of hyperplanes
on R? is h > 3. Moreover if we consider four points this ceases to be true, thus
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2.1. Elements of statistical learning

we can never shatter four points in R? with a set of hyperplanes. Therefore the
VC dimension in this case is h = 3. It can be shown that the VC dimension in
the case of hyperplanes on R? is d + 1.

It is denoted by h and it is possible to prove that, for m > h it holds:

Gr(m) <h (m % n 1)

furthermore we can consider the other capacity measures and have
Hr(m) < HE(m) < Gr(m) < h (1n % + 1) (2.13)
from which we can rewrite Equation 2.9 accordingly of our needs.
Another relevant capacity measure is the so called Rademacher complexity,
which is based on the capability of a class to fit random data.

Definition 2.6 (Rademacher complexity). For a sample X = {x1,....,x,}
generated by a distribution p(x) on a set Q and a real-valued function class
F with domain €2, the empirical Rademacher complexity of F is the random

variable
25 ()
— g i
nia

where 0 = {01,...,0,} are independent uniform {£1}-valued (Rademacher)
random variables. The Rademacher complexity of F is

%Zaif(xi)

i=1

]A?m(]:) =E, |sup

feF

X1, ...,x"] , (2.14)

R,(F)=Ex [f?n(f)} =Exo Lsclelg

] . (2.15)

Here the labeled set Z,, are not taken into account, instead it is assumed
that the data are described by a probability distribution and the labels are
randomly chosen in ) = {£1} with equal probability (the so called Rademacher
variables). The Rademacher complexity uses precisely the ability of the class
to fit noise as its measure of capacity, since pattern detection is a probabilistic
process, there is always a chance of detecting a pattern in noise.

Now we show some useful propertiesies of empirical Rademacher complexity
and thus Rademacher complexity.

Proposition 2.7. Let G, F, Fi, ..., Fm class of real functions. Then:
(i) If F € G, then R, (F) < Rn(G).
(ii) Rn(F) = R,(comuF).
(iii) For every ¢ € R, R, (cF) = |c|Rp(F).
(iv) Ra(X7 Fi) < 2070 RalF).

We point out that property (i) assures the stability of Rademacher complexity
as capacity measure.

Like with VC dimension, is possible to bound the expected risk using a
Rademacher complexity dependent capacity term:
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2.2. Kernels in Machine Learning

Theorem 2.8. Let F be a class of classifying functions and let Z,, be a set of n
labeled data drawn independently according with a probability distribution p(z,y).
Then with probability at least 1 — o, for all f € F and o > 0:

R[f] < Remp[f] + \/ (2.16)

< Romplf] + ln(2/a

(2.17)

Moreover, in [25], is shown that using the Rademacher penalty R,,(F) or its
conditional expectation E[R, (F)|Z,] directly instead of VC dimension bounds
is advantageous because the Rademacher bound is able to take both the exact
size and structure of F|Z, into account. Using a VC bound means essentially
neglecting the information inherent in Z, and also the properties of F not
captured by VC dimension. R, (F) automatically captures both these properties
neglected by the VC dimension bound.

2.2 Kernels in Machine Learning

In machine learning and support vector machines we are interested in
separating/classifying the given data in the input space. Ideally, we want
to do this with a hyperplane. However, using a linear separation severely limits
the effectiveness and applicability of such an approach. Therefore, one looks
to use nonlinear separation in the input space, and the setting of reproducing
kernel Hilbert spaces provides (Section 1.1) a perfect framework to accomplish
this while still applying linear techniques.

Recalling the problem at the beginning of this chapter, we have a set of
labeled data (x;,¥;)i=1,..., With x; € X C Q, and y; € ¥ = {—1,+1}. Here we
want to generalize this pattern, in other words if we consider a data x € Q\ X,
we want to choose y such that (x,y) is similar in some sense to the starting
labeled dataset. To achieve this, we consider a symmetric similarity measure
also called kernel:

K:QxQ—>R, (x,x") — r(x,x")

Here we have the same definition of Chapter 1 and the same theoretical
background, but we gave it a different interpretation. Since Q C R? a possibility
is to consider the Euclidean inner product to compute similarity measures, i.e.
#(x,y) = xTy, but this structure may not always be up to the problem.

In order to overcome this limitation we introduce the concept of feature
map.

Definition 2.9 (Feature map). Assume that & is a real valued positive definite
kernel, and 2 a non-empty set. if R® := {f : Q — R}, a feature map is a
function such that

®:Q— R
x = Kk(x,-)
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2.2. Kernels in Machine Learning

® maps patterns into function of R, This allow us to embed the data into
a vector space called feature space

n
F = {Zam(xi,.)’n eENx;€Q, q;, €R, i = 17._.771}.
i=1

Using these concept we can build a pre-Hilbert space (or dot product space).
Let be f, g € F with coefficients respectively «; and 8; € R, and associated
with patterns x; and x; € Qi =1,..,n,j =1,...,n.

n n’
f:Zai’%(Xi?') QZZBJ'K(X;,-)
i=1 j=1
Thus, we define the inner product as

’
n

<fvg> = Zzaiﬁj/‘ﬁ(XmX;‘) (218)

j=1i=1

Note that using the properties of kernels we have that

(F.9) = 38,06 = 3 augl) (219)

Theorem 2.10. A function x defined on Q x Q is a reproducing kernel if and
only if there exist a Hilbert space H and a mapping ® : Q@ — H, such that for
allx, x' € Q

H(Xv X/) = <(I>x7 <I)x’>’}-[-

Specifically, in terms of the native space inner product, we had that

w(w,2") = (6( @), 50 7)), @)

Additionally (f, g) = (g, f) and

(f,.f) = Z o;0kK(X4, %) > 0,

4,5=1

> cicifis f) = <Z Cz‘fi,Zijj> > 0.

ij=1 i=1 j=1

This implies that (-,-) is actually itself a positive definite kernel on the
feature space.

Lastly, (f, f) = 0 directly implies f = 0 and

[f(@)? = [(k(x,), /P < K(x,%) - (£, f)-

Thus, (-,-) is a well defined dot product.
Recalling the reproducing property of positive definite kernels we can see
that for all functions in .% we have
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2.2. Kernels in Machine Learning

and in particular

(®(x), P(x")) = r(x,x"). (2.20)

So far we have shown that any positive definite kernel can be viewed as a
dot product in another space. Therefore, the dot product space constructed in
this way is one possible choice of the feature space associated with a a kernel.

Furthermore we can build a kernel starting from a feature map ® using the
equation above and

2
>0

n

Z C#b(x,)

i=1

Z CiciR(X;,Xj) = <Z Ciq’(Xz‘)szjq)(xj)> =

i,j=1 i=1 j=1

The Equation 2.20 states the equivalence between a kernel evaluation and a
dot product of feature maps, it is often referred to as the kernel trick in the
machine learning literature. It is particularly interesting by a computational
point of view, since k(x,x’) gives us the scalar product without mapping ®,
also allow us to work with a more suitable space and associated scalar product.
In fact we can build different kernels based on the problems and data we are
working with, and the RKHS will always be equipped with the proper inner
product.

Remark 2.11 (Kernel Trick). Given an algorithm which is formulated in terms
of a positive definite kernel k, one can construct an alternative algorithm by
replacing k by another positive definite kernel &.

Another useful insight that characterizes the continuity of the feature map
® is the following:

Proposition 2.12 (Continuity of the feature map). If X' is a topological space
and Kk s a continuous positive definite kernel on X x X, then there exists a
Hilbert space H and a continuous map ® : X — H such that for all x, x' € X,
we have k(zx") = (D(x), P(x')).

On the other hand, recalling Theorem 1.18 we can also interpret the Mercer
series representation of x in terms of an inner product, now in the sequence
space fo,

(X)) =D Ann(X)en(x) = (B, )y (2.21)
n=1

where \,, are the eigenvalues of the eigenfunctions ¢,,, and

.00
X = (\/Egol(x)v \/EQOQ(X)v )

is the so called Mercer feature vector. Even if we use ® for both the
construction of the feature maps, although the target spaces are different.
However we have shown different methods for constructing Hilbert spaces where
the kernel corresponds to a dot product meaningful for us, and as long as we
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are interested only in dot products, if we consider two different feature spaces
Hi1 and Ho with their maps &1 and ®5, we have that

(®1(x), 21(x )2, = (B2(x), Po (X)) 3¢,

We conclude this section with some properties of positive definite kernels in
order to construct more complicated kernels from simpler ones.

Proposition 2.13. Let 1y and ko be kernels over QxQ, Q C RY, a € R, 0 € RT,
f() a real value function on Q, 1 : Q@ — R™ with k3 a kernel over R™ x R™, B
a symmetric positive definite n X n matriz, x,x" € Q and p(x) is a polynomial
with positive coefficients. Then the following functions are kernels:

vi) k(x,x') =xT Bx'.
vii) k(x,x") = p(r1(x,x")).

viii) x(x,x’) = exp(r1(x,x)).

(
(
(
(
(v) K(x,x') = K3 (¢ (x), Y (X))
(
(
(
(

ix) K(x,x) = exp(—||x — x| /(202)).

2.3 Support Vector Machines

In this section we deal with the problem introduced in the first pages of this
chapter with the well-known Support Vector Machines (SVMs). For a complete
discussion about this topic see [21, 39, 40, 41].

We start considering the so called hard margin setting, where linear
separability between training data is assumed.

Suppose we are given a pre-Hilbert space X', and a set of pattern vectors
X1, ...,Xn, € X. Any hyperplane in X is of the form

{x € X|{w,x) + b= 0}, weX, beR (2.22)

Here w is a vector orthogonal to the hyperplane: If w has unit length, then
(w,x) is the length of x along the direction of w. In any case the set 2.22
describes vectors that have the same length along w. Since if we multiply b and
w by the same non-zero constant we have the same set, in order to have the
uniqueness of the hyperplane we define:

Definition 2.14 (Canonical hyperplane). The pair (w,b) € X x R is called
canonical form of the hyperplane 2.23 with respect to x1,...,x, € &, if it is
scaled such that

min |(w,x;) +b| =1, (2.23)

i=1,...,n
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which amounts to say that the point closest to the hyperplane has a distance of
1

We can further notice that the two different pairs (w,b) and (—w, —b) satisfy
the condition 2.23. For the purpose of classification, these hyperplanes are
different since they correspond to two decision function

fw,b X = {:l:].}
X = fwp(x) =sgn((w,x) +b)

In pattern recognition we attempt to find a function fy ; which correctly
classifies fuw p(xi) = i, or at least for a large fraction of the patterns x;.

Now we introduce the concept of margin, which play a key role on the design
of SVMs.

Definition 2.15 (Geometrical margin). For a hyperplane {x € X|(w,x) +b =
0} we call

Piw) (X, y) = (2.24)
the geometrical margin (usually simply called margin) of the point (x,y) €
X x {£1}. The minimum value

Plw,p) 7= 10D P p) (X, i),

shall be called the geometrical margin of (x1,y1), ..., (Xn,yn). If the latter is
omitted, it is understood that the training set is meant.

If (x,y) is a well classified point the margin is the distance from x to the
hyperplane. Indeed, notice that that the margin is zero on the hyperplane. The
multiplication by y ensures that that the margin is positive for all points that
are correctly classified, and negative for the misclassified ones. Moreover notice
that for canonical hyperplanes the margin is 1/||w/||.

It turns out that the margin of a separating hyperplane, and thus the length
of the weight vector w, plays a fundamental role in SVMs. In fact if we manage
to separate the training data with a large margin, we can assumed that the
classification of the test set goes well.

The simplest justification is the following: since we assumed that training
and test data are generated by the same underlying dependence, it seems
reasonable to assume that most of the test patterns are close to at least one
of the training patterns. For simplicity, we suppose that all test points are
generated with random noise added to training patterns, i.e. given training
patterns (x;,y;), the test patterns are of the form (x4 Ax, y), with Ax bounded
by some r > 0. Clearly if we separate the points with a margin p > r, we
correctly classify all test points. As r grows up to p, the resulting hyperplane
should better approximate the maximum margin solution.

A similar robustness approach can be made for the dependence of the
hyperplane parameters (w,b). It can be shown that small perturbations to the
hyperplane parameters will not change the classification of the training data
[42].
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For a more formal proof we consider hyperplanes that have offset b = 0,
leaving f(x) = sgn(w, x)
Theorem 2.16 (Margin error bound). Consider the set of decision function
f(x) = sgn{w,x) with |w| < A and ||x|| < R, for some A, R > 0. Moreover,

let p > 0, and v denote the fraction of training examples with margin smaller
that HTPH’ referred to as the margin error.

For all distributions P generating the data, with probability at least 1 — §
over the drawing of the n training patterns, and for any p > 0 and ¢ € (0, 1),
the probability that a test pattern drawn from P will be misclassified is bounded

from above, by
2A2 1
y+\/C<R2 ln2n+ln>. (2.25)
n\ p o

Here ¢ is a universal constant

The test error is bound by a margin error v and a capacity term that reminds
us the VC bounds shown in Section 2.1. The latter of the capacity term tends
to zero as the number of examples tends to infinity, assuming that R and A are
bounded, the main influence is given by p. As we can see from Theorem 2.16, a
large p leads to a small capacity term, but leads also to a larger margin error
v. On the other hand, a small p leads to a smaller margin error but capacity
terms will increase correspondingly.

Notice that maximizing p is the same as minimizing the length of w. Thus
we might fix p (usually fixed p = 1) and search for hyperplanes which has small
|lw|| and few points with a margin smaller than IT?VH

The favored approach in literature is the following: keep the margin training
error small, and the margin large, in order to achieve high generalization ability.
In other words, hyperplane decision functions should be constructed such that
they maximize the margin, and at the same time separate the training data
with few exceptions as possible.

Our aim is now to find the optimal margin hyperplane. Suppose we have
a training set (x;,y;) with ¢ = 1,...,n. We want to find a decision function
Jwp(x) =sgn((w,x) + b) satisfying

Jw,b(Xi) = i,

if such function exists, the canonicality (2.23), implies that

yi((w,x;) +b) > 1.

Thus following the previous results, a separating hyperplane which
generalizes well can be constructed by solving

o 1 2
minimize —|lw]|
weX, beR 2

subject to  y;((w,x;) +b) >1 foralli=1,..,n

(2.26)

This is called the primal optimization problem.
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Methods or techniques to solve this kind of problems are beyond the scope of
this thesis. Furthermore we derive the dual problem, since it can be shown that
it has the same solution as 2.26. As we will see, in this case is more convenient
to deal with the dual.

To derive it we introduce the Lagrangian,

L(w,b,0) = 5wl > oa(yil (i, w) +) 1), (2.27)
i=1

with Lagrange multipliers a;; > 0. Since the Lagrangian must be maximized
with respect to «;, and minimized with respect to w and b, thanks to Karush-
Kuhn-Tucker conditions [39]. Moreover, at this saddle point, the derivatives of
L with respect the primal variables must vanish.

0 0
%L(W, b,a) =0, 6—WL(W, b,a) = 0.

Thus we have the dual form of the problem

n n
. 1
Ino?,)élrﬁl%e ;ai 3 Z Oéiajyiyj<xiaxj>

ij=1
subject to a; >0 foralli=1,..,n, (2.28)

n
> iy =0
=1

and that

n
W = E QY X,
i=1

where we can see an expansion of the solution vector in term of the training
examples. Furthermore the solution w is unique.

It can be proven that only the Lagrangian multipliers «; that are non zero
at the saddle point, correspond to constraints 2.26 which are precisely met. The
patterns z; for which a; > 0 are called support vector. Its easy to see that they
lay exactly on the margin. All remaining patterns in training set are irrelevant,
for which a; = 0, since their constraints are satisfied automatically and they
not appear in the expansion of the solution vector.

This lead directly to an upper bound on the generalization ability of optimal
margin hyperplanes.

Therefore the optimal classifier is

f(x) = sgn (Z oiyi{x, ;) + b) : (2.29)

i=1

So far we have followed a linear approach to data, to have a more general
approach now we introduce kernels to nonlinearly transform the input data into
a high dimensional feature space, using the feature map @ : x; — ®(x;). Then
we do a linear separation there.

Thanks to Cover’s Theorem [13] we have a characterization of the number
of possible linear separations of n points in general position in a d-dimensional
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space. If n < d+ 1, then all 2" separations are possible, if n > d + 1 then the
Cover’s Theorem states that the number of linear separation is

22(“25

This Theorem formalize the idea that the number of possible separations
increase as the dimension increase.

On the practical level, no particular changes is needed, since in the framework
defined so far we do not make restrictive assumptions. & needs only to be
equipped with a dot product and the patterns x; do not have to coincide with
the input patterns, they can be the results of mapping the original patterns
into a high dimensional space. We simply need to take into account that
whenever we consider x before we meant ®(x). Furthermore the computation of
(®(x;), ®(x;)) is needed to maximize the target function 2.28 and evaluate the
optimal classifier 2.29. These expensive calculations are reduced significantly
by using a positive definite kernel and use the kernel trick 2.11.

Then the form of the decision function is

f(x) = sgn <Z Yk (X, %) + b) . (2.30)

i=1

To find it, we solve the following problem

max&mize g al—f g QY YK X“XJ)
4,j=1

subject to a; >0 foralli=1,..n, (2.31)

n
Z a;y; =0
i1

If k is positive definite, (y;y;x(x;,%;)); is a positive definite matrix, which
provides us with a convex problem that can be solved efficiently. In fact

Z Qi QGYiY K X“X] <Za2yz X’L Zajyj XJ > > 0.

1,j=1

To compute the threshold b, we take into account that due to the Karush-
Kuhn-Tucker conditions, a > 0 implies

> aiyin(xi x;) + b=y
i=1

Thus the threshold can be obtained, for instance, by averaging

- Z o yik(xs, ;). (2.32)
i=1

Sometimes is also useful to do not use the optimal threshold b, but change
it in order to balance the number of false positives and false negatives.
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Among all the SVM optimization problems, the one in 2.31 is actually a
general framework that includes all the others. Indeed, the linear case can be
recovered by simply considering the linear kernel x(x,y) = x - y.

So far we have discussed freely about the separating hyperplane. But there is
no guarantee that such hyperplane exists, i.e. that the data are linearly separable,
and even if it does, it is not always the best solution to the classification problem.
After all in practical applications we can have mislabelled patterns that can
sensitively can affect the hyperplane. We would rather have algorithms which
can take into account the presence of some outliers. This setting is the so called
soft margin formulation. If in the following we take the stance that wherever
we will write x, we actually meant ®(x), we have the resulting non linear soft
margin formulation.

A natural idea might be to have an algorithm that return the hyperplane
which lead to the minimal number of training errors. Unfortunately this
approach is hard to approximate: it can be shown that finding such hyperplane
is it NP-hard. Moreover it can be also shown that by disregarding points that
are within some fixed positive margin of the hyperplane, then the problem has
polynomial complexity.

We can let some elements violating the constraint 2.26, using the so called
slack variables,

& >0, withi=1,...,n

and use them to relax the constraint

yi(k(x;, w)+b) >1—¢&, withi=1,..,n (2.33)

Clearly increasing &; the constraint 2.33 is always satisfied. In order to not
obtain the trivial solution with all large values of §;, we have to penalize them in
the objective function. Thus, we add the term ), &; on the objective function.

Then, for some C' > 0, we introduce the primal form of our soft margin
problem, approached with the so called C'—SV classifier

1 C
minimize “wlF+ =) &
weX, EcR" 2 n ; '

subject to yi((w,x;) +b) >1-¢& foralli=1,..,n,
& >0 foralli=1,...,n

(2.34)

It is interesting to compare this with Theorem 2.16, considering the case
p = 1. Whenever the constraint 2.33 is met with & = 0, the corresponding
point will not be a margin error. On the other hand all £ > 0 corresponds to
margin errors. Hence, the the fractions of margin error of the Theorem increase
along with ), &, while the capacity term increase with ||w|. Therefore, for a
suitable constant C', this approach minimizes the right hand side of the bound.

However if the term ), &; is too large, in particular larger than the fraction
of margin errors, there is no guarantee that the hyperplane generalizes well.

As in separable case the solution can be shown to have an expansion
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n
W = g QY X
i=1

Again we can find the dual formulation and and find the coefficient «;

n 1 n
maximi%e E oy — B} E Oéiajyiyj/‘é(xuxj)
aeR i=1 ij=1

subject to 0 < a; < g foralli=1,...,n, (2.35)
n

n
> iy =0
=1

to compute the threshold b, we take into account that for 2.33, for support
vectors x; associated with & = 0 we have an analogous situation to the
separability case and thus find the optimal threshold averaging 2.32 over all
support vectors with «; < C.

In the above formulation C' is the trade-off between the minimization of the
error and the maximization of the margin. Unluckily the parameter C' is not
intuitive, and we do not have a priori ways to select it.

Therefore, a sightly different method is proposed in [40] which replace C' by
a parameter v.
As a primal form of this problem, referred as ¥—SV classifier, we have

1 1<
et g 1Y
subject to yi((w,x) +b)>p—& foralli=1,..,n, (2.36)
§& >0 foralli=1,...,n,
p=>0

Instead of C' we have the parameter v and a new variable p to optimize. To
understand the meaning of p, note that for {; = 0 the first constraint of 2.36
states that the separation of the two classes is done by margin \|27p||' On the
other hand for underline the role of v we state some of its property

Proposition 2.17. Suppose we run the v—SV classifier with k on some data
with the result that p > 0. Then

(i) v is an upper bound on the fraction of margin errors.
(ii) v is a lower bound on the fraction of support vectors.

(iil) suppose the data (X1,Y1), ..., (Xn, yn) were generated iid from a distri-
bution P(x,y) = P(x)P(y|x), such that neither P(x,y = 1) nor P(x,y = —1)
contains any discrete component. Suppose, moreover, that the kernel used is
analytic and non constant. With probability 1, asymptotically, v equals both the
fraction of support vectors and the fraction of errors.
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The derivation of the dual is similar to the other cases. Thus we consider
the Lagrangian

1 1 &
L(Wa§7b7pva,ﬁ,6) - §||W||2 — yp_|_ E Zé‘z
=1

- Z(ai(yi(ﬁ(xia w)+b) —p+&)+ Bi&) — dp,

thus we obtain the following conditions

W = Z QY X, (2~37)
i=1
1
i+ Bi=—, (2.38)
m

> aiy =0, (2.39)
i=1
ai-d=v. (2.40)
i=1

From which we find the dual formulation

n
- 1
maximize  — — E OziOéjyiyjH(Xz‘7Xj)
A S Rn 2 i,j=1

1
subject to 0<q; < — foralli=1,...,n,
n

n
Z a;y; =0,
i—1

n
Z%’ZV foralli=1,...n
i=1

(2.41)

As above, the resulting decision function can be shown to take the form

f(x) =sgn <Z o yik(X, X;) + b) . (2.42)

i=1

Furthermore it can be shown that optimal values for b and p are respectively

1 n
b=—-o Yo D ayn(xxg), (2.43)

xeSLUS_ j=1
1 " n
P =5 Z Zajyjn(x,xj) - Z Zajyjf-@(x,xj) . (2.44)

xeSy j=1 xeS_ j=1

Here Sy are sets of identical size s > 0, containing support vectors with
0 < a; <1 and y; = £1 respectively.
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Proposition 2.18 (Connection between »—SV and C'—SV classifiers). If
v—_SV classification leads to p > 0, then C—SV classification, with C set a
priori to %, leads to the same decision function.

Lastly we consider robustness of soft margin classification. When we
introduced the slack variables, we did not justify the choice of the penalizer
> ; &, so now we do it thanks to the following proposition introduced and
proven in [40].

Proposition 2.19 (Resistance of support vector classification). Suppose w
can be expressed in terms of of the support vectors which are not bound

W= Z%(xi), (2.45)

with v; # 0 only if the coefficient of dual solution «; € (0, %) Then local
movements of any margin errors x,, parallel to w do not change the hyperplane.

Note that the assumption 2.45 is not restrictive as it seems. Even though
the support vector expansion of the solution, w = Z?:l ;1 X;, often contains
many multipliers a; which are bound, it still possible that we can obtain an
expansion, as the one in the proposition, in terms of a subset of support vectors.
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CHAPTER 3

Topological Persistence and its
application

3.1 Introduction to Simplicial Complex and Simplicial
Homology Group

Before getting into the details of the topological persistence and its properties
we need to define some topological basic concepts that underlie it. For this
introductory section we refer to [19, Chapter 1] while for the section dealing
with persistent homology we refer to [9, 20].

Definition 3.1 (n-dimensional simplex). Consider n + 1 linearly independent
points Ag, ...A,, in the Euclidean space R™*!, so there are n + 1 distinct vectors
going from the origin into these points. A n-dimensional simplex A™ is a convex
linear hull of the points Aq, ..., A,,. The points Ag, ..., A,, are called vertices of
the simplex.

Figure 3.1: n-dimensional simplex from left to right with n =0,1,2,3

Associating every point A; with the non-negative mass m;, i = 0,...,n and
requiring that mg + ... + m,, = 1, let us the opportunity to define the center
of gravity of the simplex: A = myOAy + ... + m,, OA,,. The numbers m;,
1=0,...,n, are called barycentric coordinates of the point A.

Now we consider a set of points of a n-dimensional simplex, such that
Ji € {1,...,n}, m; = 0. From the definition of simplex we know that this set
is a (n-1)-dimensional simplex, that is embedded in the original simplex A™
and is opposite to the vertex A;. This simplex (which we denote with A?fl) is
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called the i-th (n-1)-dimensional face of the simplex A™. Thus, a n-dimensional
simplex has n+1 faces (of dimension n-1).

Generalizing the idea, given a n-dimensional simplex A™, a set of points of
the simplex A", for which some n-k barycentric coordinates are equal to zero,
is called k-dimensional face of the simplex. The remaining k41 coordinates
change so that the corresponding masses are non-negative and their sum is the
unity.

The 1-dimensional faces are called edges.

The geometric boundary of a n-dimensional simplex A™ is the union of its
n — 1 faces.

We say that a simplex is oriented if a finite order of vertices is given. We
assume that two orders of vertices of a simplex differing by an even permutation
determine the same orientation, otherwise, if the order of the vertices differ by
an odd permutation, the two orders determine opposite orientation. Usually
given a simplex with an orientation we denote it as +A"™, while the same simplex
with the opposite orientation is denoted as —A™.

In what follows we consider oriented simplex, unless otherwise indicated.

Considering a rectilinear (Euclidean) simplex, as the ones in figure 3.1,
a curvilinear or topological simpler is an image of the simplex under an
homeomorphism.

We say that curvilinear simplexes form a finite simplicial subdivision of the
set X of points of a topological space if the two following conditions are met.

(i) There is a finite number of simplexes and each point of the set X’ gets
into a certain simplex.

(ii) Either two simplexes do not intersect at all, i.e. do not have common
points, or one of them is a face of the other, or they have a common face
which is the intersection of these simplexes.

Definition 3.2 (Polyhedron). If a set of points of a topological space is divided
into simplexes such that the conditions (i) and (ii) hold, this set is called
topological polyhedron. The set of points in a Euclidean space, which is the
sum of a finite or countable number of rectilinear simplexes satisfying the
conditions, thus forms a topological polyhedron.

There exists various ways to subdivide one and the same set of points into
the union of simplexes satisfying the conditions (i) and (ii).

A simplicial compler is a set of simplexes of a fixed subdivision of a
polyhedron.

The language of polyhedra and simplicial homology groups is rather obvious
and convenient for the first acquaintance with the important geometric concepts
as one can find in [19, Section 1.2].

Let X be a polyhedron with fixed arbitrary simplicial division. For simplicity
we denote with the same letter X the corresponding simplicial complex. We
shall further observe the set of all k-dimensional simplexes of the polyhedron X,
numbering them and associate them with some orientation, both in an arbitrary
ways, denoting with A¥ the i-th simplex of dimension k. By the definition of
polyhedron, the index 7 runs from one to infinity. Finally, we assume to fix the
numbers and the orientations of simplexes.
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Definition 3.3 (Simplicial chain). Let G be an abelian group, X a simplicial
complex (polyhedron). The linear combinations of the form:

c= ZgiAf (3.1)

are called k-simplicial chains or simply k-chains,
where g; belong to the abelian group G with only a finite number of non-zero
elements and A¥ are k-dimensional simplexes of X'

Chains can be summed up as ordinary linear forms, that is ¢; = Y, g;A¥
and co = Y, h;A¥, the chain ¢; + ¢o is equal to Y, (g; + h;)AF. Consequently
the set of all k-dimensional chains forms an abelian group which we denote by

Cr(X, Q).

Definition 3.4 (Group of simplicial chains). Let G be an abelian group, X a
polyhedron. The group Ci (X, G) is called the group of k-dimensional simplicial
chains of the polyhedron X (of the simplicial complex X).

In the following with C}(X) we consider G = Z. The associated simplicial
chains are called integer-valued chains. The simplest chains are those on the
form 1- Ak and (—1)- A¥, similarly Cy(X) is the group of integer-valued chains.

Before talking about boundary of a chain, we introduce the concept of

orientation induced on the i-th face Af‘l of the simplex A*. We recall that the
orientation of a simplex is supposed to be fixed and given, and as the simplex
is given by the set of its vertices, we can obtain the (k-1)-dimensional faces of
the simplex by elimination of successive vertices, i.e. if AF = (Ag, Ay, ..., A1)
we have that A?_l = (Ao, Ay, ..., Ai—1, Aix1, ..., A). The orientation induced
on the i-th face Af‘l by the orientation of the simplex A* is determined by
the sign (—1)°.
Definition 3.5 (Boundary of an oriented simplex). The boundary OAF of an
oriented simplex A* is the sum of all its (k-1)-dimensional faces taken with
induced orientation. We shall write the simplex boundary operator in algebraic
language. We obtain:

k
OAF =N (1) AT = AFT - AT AR - AR (3.2)
i=0

In a simple case where X = {4y, A1, A3} C R?, we have:
OA? = 9(Ag, A1, As)
= (Ao, A1) + (A1, A2) — (Ao, A2)
= (Ao, A1) + (A1, A2) + (A2, Ao)
We can generalize this definition and define the boundary of a simplex chain.

Definition 3.6 (Boundary of a simplicial chain). Let ¢ = Y, g;A¥ be as in
equation 3.1. The boundary of a k-dimensional chain c is a (k-1)-dimensional
simplicial chain dc given by the following:

Oc = giOA} (3.3)
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The 0 operator is called boundary operator recalling its early definition in
the case of an oriented simplex, we can extend it "by linearity" to arbitrary
linear combinations of elementary chains thus obtaining a well defined operator
on the abelian group Cj(X).

Now before analysing the properties of the boundary operator we have to
recall some definitions:

Definition 3.7. A chain z is called a cycle if its boundary is equal to zero, i.e.
0z = 0. A chain b is called a boundary if b = Oh, for some h simplicial chain
whose dimension is greater by unity.

Here we present some simple but useful properties of the boundary operator
[19, Section 1.2]

Proposition 3.8. Let ¢ be a k-chain, and G an abelian group with g € G.
(i) The operator O is linear.
(ii) The square of the boundary operator O is identically zero.
(iii) If O(gc) = 0 and the coefficient g # 0, then dc = 0.

(iv) The set of cycles forms an abelian subgroup in a chain group. This
subgroup is denoted as Zi(X,G) or Zy(X) in the integer-valued case.

(v) the set of boundaries forms an abelian subgroup in a chain group. This
subgroup is denoted as By(X,G) or Bi(X) in the integer-valued case.

(vi) Each boundary is a cycle, so Bi(X) C Zi(X), and clearly Z;(X) C
Cr(X). Contrariwise a cycle should not necessary be a boundary.

Let z be a k-dimensional cycle, we shall say that it is homologic to zero if it
is the boundary for a certain (k+1)-dimensional chain h, i.e. z = 0h. Notice
that the chain h such that z = dh is not unique. In fact z = 9(h + 1) where [ is
an arbitrary (k+1)-dimensional cycle, i.e. 9l = 0.

Two k-dimensional cycles z; and zo will be called homologic if their difference
is homologic to zero. Then the homology is sometimes written as follows: z; ~ 2z,
notice that if a cycle z; is homologic to a cycle zo they differ by a boundary, i.e.
for some h (k+1)-dimensional chain holds that z; ~ zo + Oh.

Similarly two chains ¢; and ¢o are called homologic if they differ by a
boundary, i.e. ¢; = ¢o + Oh or ¢; ~ co.

Supposing X is an arbitrary polyhedron, Z(X) and By (X') are well defined
and are both abelian groups. Then we can define:

Definition 3.9 (Simplicial homology group). Given an arbitrary polyhedron
X, the group Hy(X,G) := Zi(X,G)/Br(X,G) is called the k-dimensional
simplicial homology group of the polyhedron X'. Furthermore it is an abelian
group. likewise Hy(X) := Zi(X)/Bi(X) is the k-dimensional integer-valued
stmplicial homology group.

We can notice that "Homologies are indivisible": there may exist non-zero
elements {z} from the group Hy(X), such that their integer multiple is equal
to zero, i.e. m{z} ~ 0 while z » 0 for some m € Z. This implies that Hy(X)
are not generally free abelian groups.
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3.2. Persistent Homology

Each group Hy can be represented as the direct sum of its two subgroups Ay
and By, where Ay is a free abelian group (the direct sum of a certain number
of copies of the group Z) and By is a finite abelian group.

The group Ay is uniquely characterized by the number £ of constituent
copies of the group Z, or in other words, () is the rank of the group Ay, i.e.
the minimal number of generator of the group. Clearly fy is also the rank of
the entire group Hy.

Definition 3.10 (Betti number). The number S is called a k-dimensional Betti
number of a polyhedron X.

Remark 3.11. The 0-dimensional Betti number is the number of connected
components, while the i — th Betti number is the number of i—dimensional
holes.

Summarizing what we have defined so far we can consider a n-dimensional
polyhedron X, and associate the homology groups H;(X) with i = 0,1, ..., n.
Clearly Hy =0 for k > n.

These groups depend on the choice of the simplicial complex of the
polyhedron. Supposing we fixed the simplicial polyhedron partition we can
build the following sequence:

Co(X) 225 Cy () 28 2 ) 2 2 o) B0 (34)

This sequence is called chain complex (of a simplicial complex).

A polyhedron can be represented by different simplicial complex, i.e. different
triangulations can be created. This lack of uniqueness might therefore affect
the homology groups, making them rely on the choice of the polyhedron
triangulation. But this is not the case. The theorem 3.12 grants us that
the simplicial homology groups is determined only by the polyhedron itself and
not by its triangulation.

Theorem 3.12. The simplicial homology groups of the polyhedron do not depend
on the way the polyhedron is represented as a simplicial complex.

3.2 Persistent Homology

When using tools from simplicial homology to study a dataset X = {z;}., C
R™ we face the problem of not having a simplicial complex structure [20].
Assuming that X is sampled from a manifold, e.g. X C M, usually we hope to
gain homological information of M using only the dataset X. Attempting to
construct a simplicial complex structure from X can be a difficult problem. A
simple, but effective, idea would be to consider the homology of the spaces

X, = 6 B(:L'i,é‘)
=1

where a ball B(z;,¢) of radius € is centered around each point of X'. A first
strategy would be to try to find an optimal parameter £y such that the homology
of X, corresponds to the homology of M, but this approach is highly unstable.
Here comes the motivation under the introduction of persistent homology: we
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3.2. Persistent Homology

get topological information from all the positive values of € simultaneously, not
from just one single value. We firstly describe how to build a suitable structure
on X., then how persistent homology works in details.

There are two principal ways to construct a simplicial complex from a point
cloud X with given parameter € > 0 [9]:
The first and more intuitive one is the so-called Cech complezx.

Definition 3.13 (Nerve). Let X be a topological space and let U any covering of
X. The nerve of, denoted by N(U), will be the the abstract simplicial complex
with vertex set A, and where a family {ay, ..., ax } spans a k-simplex if and only
if Upy N ... NUq, # 0.

Supposing that our dataset is defined in a metric space, for some € > 0 we
can consider the nerve of the set of balls X, defined above. The Cech complex
is usually denoted with C(X,¢). An important result for this construction is
the nerve lemma [9, Theorem 2.3], which provide criteria for the homotopy
equivalence between N (/) and X.. However the computation of Cech complex
is particularly expensive, since it needs the storage of simplicial complexes of
various dimensions.

That is why in [8] was introduced the so called Vietoris-Rips complex. A
simplicial complex which can be recovered solely from the edge information.

Definition 3.14 (Vietoris-Rips complex). Let X' denote a metric space, with
metric d. Then the Vietoris-Rips complex for X, attached to the parameter
e, denoted by VR(X,¢), will be the simplicial complex whose vertex set is X,
and where {zg, z1, ..., 1} spans a k-simplex if and only if d(z;,x;) < ¢ for all
0<1i,j<k.

This construction, as wished, depends only on the vertex set and the the
pairwise distance between vertexes. This considerably lightens the computation.

Note that both construction have the same vertex sets, so they can be
viewed as subcomplexes of the complete simplex on the initial dataset, X in
our case. We have the following relation between the two constructions:

C(X,e) C VR(X,2¢) c C(X,2)

In figure 3.2 we can confront the construction of the two kind of simplicial
complexes. In the construction of the Vietoris-Rips complex we mark 1-simplicial
complex with black, 2-simplicial complex with blue and 3-simplicial complex
with red, we can even mark n—simplicial complex with n > 3 because the
V-R complex only depends on the relations between the edges, instead in the
construction of the Cech complex we only marked 1-simplicial complex and
2-simplicial complex, because this construction depends on the embedding on
X, and with this representation on R? we cannot highlight k-simplicial complex
with k > 2.

For a given ¢j, the Vietoris-Rips complex V R(X,¢) provides an element
of the filtration K3 C Ky C ... C K, with K; = VR(X,e;). In conclusion,
there is only a finite set of positive values {g;}!_; that describe homological
characteristics of X, each of which generate a Vietoris-Rips complex {K;}7,
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3.2. Persistent Homology

Figure 3.2: Given a random set of point, the construction of the Vietoris-Rips
complex (top) and the Cech complex (bottom) for € = 0.02,0.1,0.22,0.4

representing the topological features of the family {X.,e > 0}. Therefore, the
topological analysis of a point cloud data X boils down to the analysis of a
filtration K7 C Ky C ... C K, which is the main object of study in persistent
homology [20, Section 3.2].

Persistent homology was firstly introduced in [14], where the authors wish
to simplify a complex through the removal of its topological attributes. They
describe a measure that ranks attributes by their life-time in a filtration: their
persistence in being a feature in the face of growth.

Denoting a chain complex, as in 3.4, with C,, we recall that we can define
the k-cycle groups and the k-boundary groups respectively as Z, = kerdg,
By = im0Og11. A simple complex is defined as a family of chain complexes
{C?};>0 over a commutative ring R, together with the maps:

fiiol ot

or more explicitly:

a 1 2

0 1 2
00— o0 01
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we will assume that chain complexes are trivial in negative dimension,
because of their applications to our problems. Given a filtration of a simplicial
complex K, a basic example of a persistent complex is given by considering
the functions f? as the inclusion maps between each simplicial complex in the
nested sequence ) = Ko C K1 C ... C K, = K.

We define Z,l€7 ch respectively to be the k-cycle group and the k-boundary
group of the I-th complex K* in a filtration. To capture persistent cycles in K*,
we factor its k-th cycle group by the k-boundary group of K**P, p complexes
later in the filtration.

Formally the p-persistence k-homology group of K' is:

HyP = ZL)(B" N Z)) (3.5)

which is well defined because B,ljp nz ,ﬂ is the intersection of two subgroups of
C’,ljp and thus a group itself. In particular we are interested in the p-persistent
k-th Betti number number ,B,i’p of K' that is the rank of H,i’p )

These persistent homology groups contain homology classes that are stable
in the interval ¢ to i + p: they are born before the index 7 and are still alive at
index i + p. Persistent homology classes alive for large values of p are stable
topological features of X, while classes alive only for small values of p are
unstable or noise-like topological components.

The output of the persistence homology algorithm are representations of
evolution, with respect to the parameter € > 0, of the topological features of X
These representation are depicted with persistence diagrams indicating, for each
homology level k, the amount and the stability of the different k-dimensional
holes (Betti numbers) of the dataset X.

We define a persistence module as a family of R-modules M? and
homomorphisms ¢* : M* — M*t!. we also say that the persistence module is of
finite type if each M? is finitely generated, and the maps ¢’ are isomorphisms
for i > k and some integer k. Now we try to describe the analysis of persistent
homology groups by capturing their properties in a single algebraic entity
represented by a finitely generated module.

Recall that a main objective of persistent homology is to construct a summary
of the evolution (with respect to £) of the topological features of X'. This property
is analysed when constructing, with the homology groups of the complexes
K;, a graded module over the polynomial ring R = F[t], with a field F. We
then consider a persistent module M = {M?*, ¢;},>¢ and construct the graded
module a(M) = @,~, M* over the graded polynomial ring F[¢] defined with the
action of t given by the shift ¢-(m® m!,...) = (0,¢°m° ¢*m?!,...). The crucial
property of this construction is that « is a functor which defines an equivalence
of categories between the category of persistence modules of finite type over F,
and the category of finitely generated non-negatively graded modules over F[t]
[20]. In our case, considering the filtration of complexes K, this characterization
of persistence modules provides the finitely generated F[¢] module:

a(M) = Hp(Ko) ® Hp(K1) ® -+ & Hp(Ky).

These modules are now used in a crucial step that defines and characterizes
the output of persistent homology. The main tool is the well-known structure
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3.2. Persistent Homology

theorem characterizing finitely generated modules over principle ideal domains
(this is why we need F to be a field). This property considers a finitely
generated non-negatively graded module 91 and ensures that there are
U1y ooy bamy 1y eoes Jms 115 ooes Iy € Z and the following isomorphism:

m n
m = P (i) & EDF(/1") ()
s=1 r=1

This decomposition is unique up to permutation of factors, and the notation
F[t](is) denotes an iy shift upward in grading. The relation with persistent
homology is given by the fact that when a persistent homology class 7 is born
at K; and dies at K; it generates a torsion module of the form F[t]7/t7 (7).
When a class 7 is born at K; but does not die, it generates a free module of
the form F[t]r.

We can now explain the concept of persistence diagrams using an additional
characterization. Firstly we define a persistence interval as an ordered pair
(i,7), where 0 < i < j for ¢,j € Z U co. Now we construct the function @
mapping a persistence interval as Q(i, j) = (F[t]/t?=%)(4), Q(i,00) = (F[t])(4),
and for a set of persistence intervals S = {(i1, 1), (i2,J2), -.s (in, jn)}, we have
the F[t]-module

Q(S) = P QUin, jn).
h=1

The map @ turns out to be a bijective map between the sets of finite families
of persistence intervals and the set of finitely generated graded modules over
Ft].

Now, we can recap all these results by noticing that the concept of persistent
diagrams can be described as the corresponding set of persistence intervals
associated with the finitely generated graded module over F[t], constructed with
the functor «, from a given filtration ) = Ko Cc K; C K, C ... C K, = K.

Definition 3.15. Let D = {(b;,d;) € R?ji € I,b; < d;} be a persistence
diagram, every point (b;,d;) € D is called generator of the persistent homology,
represents a topological property which appears at &}, and disappears at &y, .
The difference d; — b; is called persistence of the generator, represent its lifespan
and shows the robustness of the topological property.
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3.2. Persistent Homology

Examples

There are many ways to represent persistent diagrams, but one of the best
known is the persistence barcodes. The persistence images are also well-known
but, since we talk about them in details in the next section, we postpone their
introduction.

Persistence barcodes represent in a graph of lines the behaviour of a
persistence diagrams emphasizing the “life” of the topological features. In
the graph the horizontal axes is associated to the evolution parameter e, while
in the vertical axes there are the homology generator in an arbitrary order.

His strength is the visual impact of the representation: in fact it is easy
discriminate the relevant topological features with the ones caused by noise.

In this introduction and later on we use Ripser [3, 45] and Persim [37],
respectively for the computation of Vietoris-Rips simplicial complex and for the
visualization of the persistence diagrams.

Sphere

We start considering the 2—sphere.
The Betti numbers for the n—sphere are [14]:

Bo, Bn =1 Bi=0 Vi=1,..n—1

Thus in our case: fp =1, f1 =0 and [ = 1.

In Figure 3.3 we consider an approximation of the sphere with 100
points, to which we added negligible noise. As we can see from the
persistence barcode, there is only one line in the third graph and his
lifespan is not short as the ones in the second graph. In the same way in
the first graph we can see that there is only one line with high persistent
and a lot of shorter ones. So we can suppose that our cloud of point
has no 1—dimensional holes (31 = 0) along with the hypothesis that the
short lines in persistence barcode are expression of topological noise as
the ones in the first graph. Instead, looking for 2—dimensional homology,
we can suppose that it has only one generator.

Usually the 0—dimensional persistence barcodes is useful to have
an idea of the position of the data, as in this case there is only one
meaningful component, while in different cases, multiples lines with a
high persistence, can reveal the presence of different clusters.

In Figure 3.4 we show the construction of the simplicial complex,
with the Vietoris-Rips scheme, frozen on ¢ = 0.2, and the persistence
barcodes where we highlight the state of evolution of the system at the
time of the displayed simplicial complex.
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Figure 3.3: Approximation of a sphere in R? with a cloud of 100 points and the

persistence barcodes for (from left to right) the 0—, 1— and 2— dimensional
homology

As we can see at the value e = 0.2 in the simplicial complex there
is a hole, but from the persistence barcodes we know that it does not
last long. We can also see that the points are not yet all connected, and
there is no 2—dimensional hole in the complex.

scattered sphere
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Figure 3.4: The Vietoris-Rips complex of a cloud of points approximating a
sphere for ¢ = 0.2, and some correlation with the persistence barcodes
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3.2. Persistent Homology

At the end, we consider a more dense cloud of points that approximates
the sphere. We see that some assumptions find further confirmation. In
Figure 3.5 we see that all the lines in the H; persistence barcode are still
too short, and similarly in the persistence barcodes of Hy and Hs, there
are no major changes with respect to the barcodes obtained before.
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Figure 3.5: Approximation of a sphere in R? with a cloud of 600 points and the
persistence barcodes for (from left to right) the 0—, 1— and 2— dimensional
homology
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Torus

Another interesting example is the torus.
The Betti numbers for the 1—torus are [14]:

60:17 61:27 B2:1

Even in this case, in Figure 3.6 we first consider an approximation
of the torus with 100 points, to which we added negligible noise. This
time the results are sightly different of what we expect. In fact from the
persistence barcodes we do not see the generator of the Ho homology,
and only one out of two is noticeable in the second graph. This
happens, for two main reasons: the humble number of points used
for the approximation, and the geometry of the torus itself. Looking

at the simplicial complex at a certain time of his filtration may help to
understand this results.
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Figure 3.6: Approximation of a torus with a cloud of 100 points and its
persistence barcodes for (from left to right) the 0—, 1— and 2— dimensional
homology

In Figure 3.7 we show the construction of the simplicial complex, with
the Vietoris-Rips scheme, at two different points of the filtration with
e = 0.21,0.5. This time we do not display the Hy and Hy persistence
barcodes, but focus our attention in the H; persistence barcode, in the
two moment of the construction of the simplicial complex.
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As we can see, with € > 0.5 there are no more births and only one
generator remains, and looking at the simplexes, due to random nature
of points and the tight radius of the tube, we can suppose that the holes
longitudinal to the body of the torus are missing, or better that all that
kind of holes have a low persistence. On the other hand the generator
with the greatest persistence is one of the last to be born. This support
our hypothesis since the hole traced at a certain latitude needs a circular

connection of the points, not achieved in the left Figure 3.7.

scattered torus, vietros-rips complex with eps = 0.21

scattered torus, vietros-rips complex with eps = 0.5
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Figure 3.7: The Vietoris-Rips complex of a cloud of points approximating a
torus for e = 0.2,0.5, and some correlation with the persistence barcodes

Furthermore we are considering a more deep cloud of points to
approximate the torus, in addition we consider a torus with a greater
internal radius, to bound complications due the thickness of the “ring”.
In Figure 3.8 we see that in the H; persistence barcode we have two

enough persistent lines, and even in the Hy persistence barcode, there is
a sign of the expected generator.
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Figure 3.8: Approximation of a torus with a cloud of 100 points and its
persistence barcodes for (from left to right) the 0, 1 and 2 -dimensional homology

Stability Proprieties of Persistence Diagrams

A crucial property in persistent homology is the concept of stability of
persistent diagrams. We recall that for a topological space X, and a
map h : X — R, we say that h is tame if the homology properties of
{X.,e > 0}, for X. = h™1([~00,¢]), can be completely described with
a finite family of sets X,, C X,, C ... C &,,, where the positive values
{a;}i_, are homology critical points. If we denote the persistent diagram
for X and h: X — R, as D,,(h), we have a summary of the stable and
unstable holes generated by the filtration[20]:

KXoy C Xy, C ... C AL,

With these concepts, the stability of persistent diagrams is a property
indicating that small changes in the persistent diagram D,,(h) can be
controlled with small changes in the tame function i : X — R [11]. In
order to investigate the theoretical stability of the persistent homology
features, we now introduce some definitions.

Definition 3.16 (Homological critical value). Let X’ be a topological
space, and a : X — R a continuous function. A homological critical
value (HCV) is a number a € R for which the map induced by a:

Hy(a (] = o00,a —€[)) = Hy(a (] = 00,a + <))

is not an isomorphism for all € > 0 and for some integer n > 0. Recall
that each a~1(] — 0o, al) is a sublevel set of a.
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In other words, the HCVs are the levels where the homology of the
sublevel sets changes.

Definition 3.17 (Tame function). A function f : X — R is tame if it
has a finite number of HCVs and the homology groups Hy,(f~!(—o0,a])
are finite dimensional for all k € Z and a € R.

Definition 3.18. Let X be a closed subset of a metric space M, and
d* : M — R the function that map each point p € M to its distance from
X. The homological feature size of X denoted by hfs(X) is the smallest
positive HCV of d*.

An interesting result is the Homology Interference Theorem [11].
Suppose we estimate the homology of X', closed subset of a metric space
M, from another closed subset P approximating X, which may be a
finite set of points. For any two numbers x < y, let XY and PY be the
persistent k-th homology groups of d¥ and d associated with = and y.

Theorem 3.19 (Homology Interference Theorem). Let X1 be the
parallel body consisting of all points in M at distance less than & from X.
For all real numbers ¢ with di (X, P) < e < hfs(X /4) and all sufficiently
small § > 0, the dimensions of the homology group of X+ and P3¢ are
either both infinite or both finite and equal.

Thinking in terms of persistence diagrams this theorem states that
when we have a sufficiently dense finite sample P from a space X, the
points in the persistence diagram with sufficiently small birth times can
estimate the homology groups of the space.

Definition 3.20. For a tame function o : X — R, we define its
persistent diagram, D(«) as the persistent diagram of the filtration
Ki C Ky C ... C K, = X where we let K; = f~!(—00,a;), and
a1 < ag < ... < a, are critical values of «.

Definition 3.21. For two nonempty multisets X', ) C R? with the same

cardinality the Hausdorff distance and bottleneck distances ' are defined
as:
di(X,Y) = max{sup inf ||z — y||eo,sup inf ||z — y||o} (3.6)
zeX YEY yeyreX
dp(X,Y) = inf sup ||z — y(z)||e (3.7)
7 zex

where we consider all possibly bijection of multisets v : X — ). Here,
we use:

Il — qlloc = max{[p1 — q1|, |p2 — @2} forg, peR

IBy convention, all points on the diagonal are taken with infinite multiplicity. This
facilitates the definitions of the p-Wasserstein and bottleneck distances, discussed in 4
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We also have that[11]:

dp(X,Y) <dp(X,)) (3.8)
And another stability property for bottleneck distance [22].
Proposition 3.22. Let X and ) be finite subset in a metric space

(M, dpr). Then the persistence diagrams satisfy

dp(Dy(X), Dg(Y)) < du (X, D)

This proposition provides a geometrically intuitive idea of stability:
given a dataset X of a finite number of points, we consider as ) the data
with some noise ¢ < dg(X,Y). If we consider a point (b,d) € Dy(X),
then we can find at least one generator (b, d) € ) such that b € (b—¢, b+¢)
and d € (d —e,d + ). Thus the similarity of the persistence diagrams is
guaranteed by this stability result.

Lastly the main theorem of [11]:

Theorem 3.23. Let X be a topological space with tame functions o, 3 :
X — R. Then, the following stability property holds:

dp(D(a), D(B)) < |la = Blleo (3.9)
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CHAPTER 4

Kernels and Persistent Homology

The construction of kernels for comparing persistent diagrams has recently
become an important topic due to the fact that measures like the
bottleneck distance are inefficient to compute in practice [20]. A better
conceptual and numerical strategy is to use reproducing kernels and their
ability to translate unstructured data in a more convenient setting of
linear algebra. Several methods have been proposed in the last years,
some of which we will introduce later in the chapter, mainly focusing on
classification problems.

Usually persistence diagrams are produced from two different types
of input data.

(i) If the data are a point cloud, then we produce persistence diagrams
using the Vietoris—Rips filtration.

(ii) If the data are from a real-valued function, then we produce
persistence diagrams using the sublevel set filtration.

We have seen in Section 3.2 how to handle the first case. Now we focus
on the second case. Let 2~ be a topological space and let f: 2" — R
be real-value function. The sublevel sets of the function f are defined
as R(y) = f~1((—o0,y]). In other words, a sublevel set is the set of all
points x for which f(z) <y. One can study the function f, through its
sublevel set f~1((—ocg]), with ¢ € R. In fact one can study map f using
the persistent homology of the resulting filtration of topological spaces,
known as the sublevel set filtration:

Given g1 < g9 < ... < &, the sublevel set filtration is:

F7H(=00,e1]) € fH(—00,e2]) € oo f (=00, En)

As we increase y, the critical points of the function are visited. The
homology of f(x) <y changes (with respect to y) if a homology class is
born (or dies) by visiting f(x).
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In both settings, the output of the persistent homology computation is
a collection of persistence diagrams encoding homological features of the
data across a range of scales. Denoting with ® the set of all persistence
diagrams. The space © can be equipped by metrics as studied by [11].

The bottleneck distance, that was introduced in the previous chapter,
can be embedded in p- Wasserstein distances, which are a more general
type of distances defined for any positive real number p:

dw,(D, E) = (inf 3 ||z~ Y(@)|I%) (4.1)
zeD

Here, as before, v ranges over all bijections from the elements of D
to the elements of E. Notice that as p — oo, we have that dy .~ = dp.
The Wasserstein distance is induced by the Wasserstein metric which is
the most used one in the context of persistence diagrams and optimal
transport problems.

We have the following result bounding the p-Wasserstein distance in
terms of the 2, distance [12]:

Theorem 4.1. Assume that 2" is a compact triangulable metric space
such that for every l-Lipschitz function f on % and for k > 1, the degree
k total persistence Z(b’d)eDf (d — b)* is bounded above above by some
constant C. Let f, g be two L-Lipschitz piecewise linear functions on
2. Then for all p > k we have:

1 1-k
dw,p(Dyg, Dg) < (LC)?[|f — glloc ” (4.2)

Some studies consider the vectorization of a persistence diagram
[7]. In these methods, a vector representing a persistence diagram is
typically expressed in a Euclidean space R¥ or a function space Zp.
The aim of these methods is to make topological data analysis with
principal component analysis or support vector machines classification
using statistical information gained from vector representation of the
persistence diagram.

For the purpose of this thesis we are more interested in methods
focused on building kernels for persistence diagrams. Before introducing
the kernels recently developed we briefly discuss other vectorization
techniques used in machine learning, and often compared with the works
we will subsequently present.

Persistence Landscapes

Persistence Landscape [7] is a well-known vectorization of persistence
diagrams approach in topological data analysis. Let D be a persistence
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diagram, then
Ap(k,t) = k-th largest value of min{t — b;,d; — ¢}

is the persistence landscape of D, where c¢; = max{c,0}. A\p is a vector
on Z?(N x R). Persistence landscape can be used as a linear positive
definite kernel on Z?(N x R):

kpL(D, E) = (Ap, Ap) 2 ixg) = /R ST An(k OAp(h,t)dt (4.3)
k=1

Since a persistence landscape does not have any parameters, we
do not need to consider the parameter tuning. However, the integral
computation must be done and it requires much computational time. Let
D be a collection of persistence diagrams with at most m points. Since
Ap,(k,t) =0 for any k > m, t € R, i = 1,...,n, evaluating Ap, have time
complexity O(mlog(m))

Persistence Images

As a finite dimensional vector representation of a persistence diagram,
persistence images are proposed in [1]. The idea is to produce a
persistence surface from a persistence diagram by taking a weighted
sum of Gaussians centered at each point. We create vectors, or
persistence images, by integrating our surfaces over a grid, allowing
machine learning techniques for finite-dimensional vector spaces to be
applied to persistence diagrams. Persistence images are stable, and
distinct homology dimensions may be concatenated together into a single
vector to be analyzed simultaneously.

Firstly, let D be a persistence diagram in birth-death coordinates. Let
T : R? — R? be the linear transformation (b, d) — T'(b,d) = (b, d—b) and
let T'(D) be the transformed multiset in birth-persistence coordinates.
Let ¢, : R> = R be a differentiable probability distribution with mean
u = (ug,uy) € R% Authors used normalized symmetric Gaussian in
applications:

(z = us)® + (y — uy)z)
202

gu(z,y) = exp (—

- 2702

Definition 4.2. Let f : R> — R be a non-negative weight function that
is zero along the horizontal axis, continuous and piecewise differentiable.
For a persistence diagram D, the corresponding persistence surface
pp : R? = R is the function

pp(2) = Y f(w)du(z) (4.4)

ueT (D)
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The weight function f is fundamental to ensure the stability of the
transformation of persistence diagrams in persistence images, which is
proven in [1, Section 5]. In their paper-related works authors use as
weight function f(x,y) = wp(y) with:

0 ift<O0
wy(t) = ¢4 if0<t<b
1 ift>b

where b > 0 is the persistence value of the most persistent feature
between the trials of the experiment.

Definition 4.3. For a persistence diagram D, its persistence image is the
collection of the pixels I(pp), = [/, pp dy dx.

Persistence images provide a convenient way to combine persistent
diagrams of different homological dimensions into a single vector. In fact
one can concatenate the persistence images vectors for Hy, Hy, ..., Hy, into
a single vector representing all homological dimensions simultaneously,
and then use this concatenated vector as input into machine learning
algorithms.

The choices of parameters in persistence images as resolution,
distribution and weight function grant them high flexibility. On the
other hand these choices are non-canonical

In [1] authors have shown persistence images improved classification
accuracy over persistence landscapes and persistence diagrams on
sampled data of common topological spaces at multiple noise levels.
Additionally the classification accuracy is robust to the choice of
parameters for building persistence images, providing evidence that
it is not necessary to perform large-scale parameter searches to achieve
reasonable classification accuracy. This indicates the utility of persistence
images even when there is no prior knowledge of the underlying data.
The flexibility of persistence images allows for customization tailored to
a wide variety of real-world data sets.

In the following sections we focus our analysis on kernel-based methods
for persistence diagrams. In the last decade four kernels have been
proposed to deal with classification problems. The original contributes
of the next section is contained in papers which are published on
internationals journals [10, 22, 27, 35].
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4.1. Persistence Kernels

4.1 Persistence Kernels

Persistence Scale-Space Kernel

One of the first kernels defined for persistence diagrams in the Persistence
Scale-Space Kernel.

Considering a set . The kernel will be defined via a feature map
D, 1 D — L(Qyq) with Q,9 C R? denoting the closed half plane above
the diagonal.

To motivate the definition of ®,, the authors point out that the set
of persistence diagrams, i.e., multisets of points in R?, does not possess
a Hilbert space structure per se. However, a persistence diagram D can
be uniquely represented as a sum of Dirac delta distributions, one for
each point in D. Since Dirac deltas are functionals in the Hilbert space
H~2(R?), we obtain a canonical Hilbert space structure for persistence
diagrams by adopting this point of view.

Unfortunately, the induced metric on ® does not take into account the
distance of the points in the diagrams or to the diagonal, and therefore
cannot be robust against perturbations of the diagrams. This issue is
solved by using the sum of Dirac deltas as an initial condition for a heat
diffusion problem with a Dirichlet boundary condition on the diagonal.
The solution of this partial differential equation is a .Z5(£2,4) function
for any chosen scale parameter o > 0.

Definition 4.4. Let Qg = {x = (71,22) € R? : 25 > 71} denote the
space above the diagonal, and let dx denoted a Dirac delta centered at
the point x. For a given persistence diagram D, we now consider the
solution u : Q49 X R>¢g — R, such that (x,t) — u(x,t) of the following
partial differential equation:

AX'LL = 8tu mn Qad X RZO (45)

u=>0 on 004 x R> (4.6)

u= Z 0y on Quqg x0 (4.7)
yeD

The feature map ¥, : © — Z(Qq) at scale 0 > 0 of a persistence
diagram D is now defined as ¥,(D) = u|;—,. This map yields the
persistence scale space kernel k, on ® as:

ko (D, E) = (Vo (D), Vo (E)) 2,(02,0)- (4.8)

Note that ¥, (D) = 0 for some o > 0 implies that u = 0 on Q44 x {0},
which means that D has to be the empty diagram. From linearity of the
solution operator it now follows that W, is an injective map.
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4.1. Persistence Kernels

The solution of the partial differential equation can be obtained by
extending the domain from €2 to R? and replacing 4.7 with

u = Z dy — Oy on R? x {0}. (4.9)
yeD

Here y = (b,a) is y = (a,b) mirrored at the diagonal. It can be shown
that restricting the solution of this extended problem to 2,4 yields a
solution for the original equation. It is given by convolving the initial
condition 4.9 with a Gaussian kernel:

[Ix —ylP? Ix — 3
exp(———=—) —exp(—— ).

tx) —
u(t, x) At At

—_— (4.10)
47t veD

Using this closed form solution of u, we can derive a simple expression
for evaluating the kernel explicitly [35]

I°

—Z —z|]?
— exp(—Hy&j) —exp(—Hy80||). (4.11)

Note that the kernel can be computed in O(|F| - |G|) time, where |F|
and |G| denote the cardinality of the multisets F' and G respectively.

Theorem 4.5. The kernel ko is 1- Wasserstein stable. More precisely

190(D) = (Bl s € grmdwa (D). (12

The left-hand side of 4.12 is called persistence scale space distance d .
Note that the right-hand side of 4.12 decreases as o increases. Adjusting
o accordingly allows us to counteract the influence of noise in the input
data, which causes an increase in dy1 (D, E).

A natural question is whether our stability result extends to p-
Wasserstein distances for p > 1. Firstly note that the kernel is additive,
ie. K(EFEUF,D)=kr(E,D)+ k(F,D) for all F,E,D € ®. By choosing
D = (), we see that if x is additive then x((), E) = 0 for all £ € ©. We
can further say that a kernel k is trivial if (D, E) =0 for all D, E € ©.

Then the following theorem can be proven:

Theorem 4.6. A non-trivial additive kernel k on persistence diagrams is
not stable with respect to dyy, for any 1 < p < oo.

Lastly the authors propose a comparison between the Persistence
scale-space kernel and persistence landscape, introduced in [7], for this
purpose they consider the persistence landscape kernel x%, associated
with the feature map ®% : ® — % (R?).
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The results obtained show the need to have different methods for
different type of analysis. In fact persistence landscape, if considering its
kernel version, can be used for their remarkable topological features but
the induced distance tends to over-emphasize points of high persistence.
Considering classes of persistence diagrams that differ only in their
points with low persistence, the distance associated with persistence
landscape kernel will be dominated by the by variations in the points of
high persistence. Hence instances of these classes would be inseparable.
Persistence space-scale kernel instead allow to distinguish classes that
differ only in their points with low persistence, because they do not
over-emphasize points with high persistence.

In [35] persistence scale-space kernels are applied in the context of
shape classification/retrieval and texture classification with good results.
Moreover the tuning of the scale parameter o brings numerous practical
benefits.

Persistence Weighted Gaussian Kernel

In [22, 23] is introduced a stable kernel following the idea of the kernel
mean embedding of distributions [43], the Persistence Weighted Gaussian
Kernel.

Let € be a locally compact Hausdorff space, let M;(€2) be the space of
all finite signed Radon measures on 2, and let x be a bounded measurable
kernel on 2. Then we define a mapping from M;(Q2) to H, by

Bt My@) = Moy s [ %) du(x), (4.13)
which is well defined since [ ||k(-,x)||%, du(x) is finite. Let denote

Q) ={f:Q=R|fe?(),Ve>0
JK compact € € such that sup |f(x)| <e}.
xeK¢
A kernel k on  is said to be ép—kernel if k(x,x) is %p(Q2) as a
function of x. Moreover, if k is a 6y-kernel the associated Reproducing
Kernel Hilbert Space H, is a subspace of %p(€2). A %p-kernel is called
%o-universal if H, is dense in 6((£2). When & is Gp-universal, the vector
E(p) defined in 4.13 uniquely determines the measure p in the RKHS.

Furthermore if x is %p-universal then the map FEy is injective. Thus
di(p,v) = ||Ex(p) — Ex(v)||n, define a distance on My(2) [43].

In vectorizing persistence diagrams, it is useful to mitigate the
importance of generators located near the diagonal, since they tend
to be caused by noise. The authors proposed two different ways of
embeddings, which turn out to introduce the same inner products for
two persistence diagrams.

59
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The first method involves the introduction of a weighted measure for
a persistence diagram D

up = Z w(x)dx,

xeD

where w(x) > 0 is a weight for every x € D and dx is the Dirac
delta in x. A proper choice for the weight function w(x) will be
discussed later. As discussed before given a %p-universal kernel k on
Quq = {(b,d) € R?|b < d}, the measure u% can be embedded as an
element of the RKHS via

uh = E(up) = ) w(x) (-, x), (4.14)
xeD

then we can use E.(u}y) € H. as a representation of the persistence

diagram.

The second construction involves the following weighted kernel

(X%, y) = w(x)w(y)s(x,y), (4.15)
where w is the same weight function as above. Then the mapping

Eww : up — Z w(x)w(-)k(-,x) € Hy (4.16)
xeD

also define a vectorization of persistence diagram.
Notice that the inner products introduced by two RKHS vectors 4.14
and 4.16 are the same:

(Ex(1D)s Ex(D))#, = (Ex(ptD)s Ex(tD)) 4,0 -
Moreover we can prove the following proposition [23].
Proposition 4.7. Let k be a 6p-universal on Quq and w be a positive
function on Qguq. Then the mapping
HK — HN“’; f = w f

defines an isomorphism between the RKHSs. Under this isomorphism,
E.(1%) and Eqw(up) are identified.

For practical applications, the map FEj (,u%q ( X)> from a dataset X

to the vectorization of the persistence diagram D,(X) should be stable
with respect to perturbations of the data.
The following proposition can be proven [22]:
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Proposition 4.8. Let D and E be persistence diagrams, a 6o-universal
kernel k satisfy:

(K) 3 constants By, L, > 0 such that

15033, < Bey IR %) = 69 < L |lx = ¥lloo (x,y € R?)
(4.17)
and a weight function w satisfy:

(W1) For any persistence diagrams D and E, and any multi-bijection
vy:DUA — FEUA, there exist By, L1 > 0 such that

S lw)| <Bi, Y |wx) —w(x)| <Lt sup [[x — (%)
x€D x€DUA xeDUA
(4.18)

Then,
1Ex(1D) — Ex(pi)lln. < (LxBi 4 BrLi)dw, (D, E). (4.19)

Authors choose as weight function
Ware(x) = arctan(C - pers(x)?), (C >0, p € Z~y),

where C, p are parameters used to control the effect of the persistence
and pers(x) is the persistence of x. wg,¢ is a bounded and increasing
function of pers(x) and, by restricting a class of persistence diagrams to
that of a Cech complex filtration, it satisfies (W1) [22].

With this weight function the authors define a positive definite kernel,
the Persistence Weighted Gaussian Kernel (PWGK):

- = -yIP s
KPWGK (X,Y) = Ware(X)Ware(y) exp 202 . (4.20)

Therefore, considering a Cech complex filtration, we have the
bottleneck stability for PWGK:

Theorem 4.9. Let M be a triangulable compact subspace in RY, X, Y €
M be finite subsets, p > d + 1, and a 6p-universal kernel k satisfy (K).
Then,

E(5e0)) = Bulbieis s, < Inaredin(Dy(X), Dy(M)
where Ly qrc 15 a constant independent of X and ).

If we denote with kg the Gaussian kernel, since the constant Ly, 4rc
is independent of X and ), recalling Proposition 3.22, we have that

Pfinite(M> — Hkg7 X — EkG (,u%zr(‘c)())
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4.1. Persistence Kernels

is Lipschitz continuous, where Pprinite(M) is the set of finite subsets in a
triangulable compact subspace M C RY.

Moreover results on the stability with respect to 1-Wasserstein
distance for PWGK can be proven too.

Proposition 4.10. Let D and E be persistence diagrams, a Go-universal
kernel k satisfy (K), and a weight function w satisfy

(W2) For any x, y € R?, there exist constants By, Ly > 0 such that
[w(x)] < B, |w(x) —w(y)| < Lel[x = y]loo-
Then,
|Ex(1D) — Ex(pi)lln, < (LxB2 + BeL2)dw, (D, E). (4.21)

Remark 4.11. Note that the assumption (W2) is weaker than (W1).
Some weight function that satisfy (W2) are:

if pers(x) < 0
if 0 < pers(x) < L (4.22)
if pers(x) > L

Wpers(X) 1=

S

where L > 0 is a parameter. Even a simpler function like wope(x) =1
works, so these functions are 1-Wasserstein stable. But none of them
satisfies (W1), thus is still unknown if bottleneck stability holds for this
weight functions.

On the other hand wyy. satisfies (W2) choosing p = 1 by By = § and
Lo = 2C without any assumption on persistence diagrams structure.

More formally:

Corollary 4.12. Let D and E be persistence diagrams and a Co-universal
kernel k satisfy (K). Then,

'S ers 2B
Be(y™) = Bl e, < (L + =) (D, ),
Bu(u™) = Bal)l e, < Ludwn (D, B),

L
NEx(up) = Ex(pg ), < (=

+2B,C)dw, (D, E) withp =1 in weyc.

Furthermore for p > 1 in general wg,. does not satisfy (W2) since C't?
is not Lipschitz continuous with respect ¢ € R. Similarly to Theorem 4.9,
restricting to the class of persistence diagrams 1-Wasserstein stability
can be proven:
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Corollary 4.13. Let M be a triangulable compact subset in RY, X, € M
be finite subset, p > d+ 1, and a Gy-universal kernel k satisfy (K). Then,

B 7)) — Enlirs e
Ly p—1)

4
< (—=+ B:C il

< (5 mC’Mdiam(M)p_l_d)dwl(Dq(X), Dy(Y))

(4.23)

for some constant Cyy > 0.

Once persistence diagrams are represented as RKHS vectors, any
kernel methods can be applied to those vectors by defining a kernel over
the vector representation. In a similar way to standard vectors, two
simple choices can be done: considering the inner product as a linear
kernel or as a non-linear kernel on the RKHS.

kL (D, B, w) = (Be(up), Be(up))m, = Y Y wx)w(y)r(x,y)
xeDyeFE

(4.24)
In the first case we have a (k, w)-linear kernel.

1
kG (D, By k,w) := exp(— g5 || Ex(up) — Bx(pg)ll) >0 (4.25)

Or the second one a (k,w)-Gaussian kernel. This is also the most
used since better performance has been observed with non-linear kernels
in the context of complex tasks [28].

Concerning the computational cost of the methods, if the persistence

diagrams contains at most m points, each element of the Gram matrix
ESE
(ka(Di, Djs kg, w); ;) involves O(m?) evaluations of e~ 22 . If we

consider in our application a collection ® of n persistence diagrams, the
total complexity will be O(n?M?).

Authors solved this computational issue with random Fourier features
[33], reducing the computational complexity of the approximated Gram
matrix to O(mnM + n?M), where M is a constant, which is linear to
m. This technique could be particularly useful since usually m > n and
m > M, but can be sensitive to the choice of .

The main advantage of Persistence Weighted Gaussian Kernel over
previous work, as Persistence Images and Persistence Scale-Space Kernel,
is the stability with respect to the bottleneck distance, even if is satisfied
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4.1. Persistence Kernels

only for specific filtrations. Another strength of the PWGK is the
flexibility with which it can control the effect of persistence independently
of the Gaussian parameter o.

Lastly we consider a comparison between the performance of the
algorithms introduced so far applied to a simple SVM classification
problem [22]. In the experiment the authors design data sets so that
important generators close to the diagonal must be taken into account
to solve the classification task.

The results show that the PWGK and the Gaussian kernel on the
persistence image with wg,.. and large mesh size have higher classification
rates (85% accuracy), than the other methods (Persistence scale-space
kernel : 50%, Persistence Landscapes kernel : 50%, and Persistence
Images kernel : 55%). These unfavorable results must be caused by
the difficulty in handling the local and global locations of generators
simultaneously.

Furthermore it is observed that the classification accuracies are not
sensitive to p. Thus, authors set p = 5 because the assumption p > d+1 in
Theorem 4.9 ensures the continuity in the kernel embedding of persistence
diagrams and all data points used in others experiments are obtained
from R3.

Sliced Wasserstein Kernel

Although the above defined persistence scale-space kernel and persistence
weighted Gaussian kernel are both stable kernels, in the sense that the
metric they induce in their respective RKHS is bounded above by the
distance between persistence diagrams, there is no evidence that their
induced RKHS distances are discriminative and therefore follow the
geometry of the diagram distances.

One of the reasons why the derivation of kernels for persistence
diagrams is not straightforward is that the natural metrics between
persistence diagrams are not trivial, since the diagram distances are not
negative semi-definite. Moreover is experimentally observed in appendix
A of [34] that dy; is not conditionally definite. However, a relaxation of
this metric called the Sliced Wasserstein distance has been shown to be
negative semi-definite [32].

That is the idea behind the introduction of the Sliced Wasserstein
Kernel in [10] which is both stable and discriminative.

The Wasserstein distance [46], is a distance between probability
measures. For the purpose of their work authors will focus on the 1-
Wasserstein distance for nonnegative, not necessary normalized, measures
on the real line.
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Let p and v be two nonnegative measures on the real line such that
lp| = p(R) and |v| = v(R), both equal to the same number r, then
consider:

Worv) = inf f[ -y Pldr.dy) (4.26)
0, (1, v) = T/R MY (x) — N7(x)| da, (4.27)
Luw) = it [ o) — (o). (428)

where II(p,v) is the set of measures on R? with marginals x and v,
and M~ and N~! the generalized quantile functions of the probability
measures £ and ¥ respectively.

Proposition 4.14. We have W = Q, = L. Additionally (i) Q, is
conditionally negative definite on the space of measures of mass r; (ii)
for any three positive measures p, v, v such that |u| = |v|, we have
Llp+y,v+7) = Lp,v).

The idea underlying this metric is to slice the plane with lines passing
through the origin, to project the measures onto these lines where W
is computed, and to integrate those distances over all possible lines.
Formally:

Definition 4.15. Given 0 € R? with ||0||2 = 1, Let L(6) denote the line
{A0| X € R}, and let 7y : R? — L(6) be the orthogonal projection onto
L(0). Let D and E be two persistence diagrams, and let u§ = > opeD Omo(p)
and ,qu = 2 peD Ongora(p), and similarly for 1d, where ma is the
orthogonal projection onto the diagonal. Then, the Sliced Wasserstein
distance is defined as:

1
SW(D,E) i= 5 | Wil + i, 1 + pda)db. (429
1

Recalling Proposition 4.14, the conditionally positive definiteness of
the Sliced Wasserstein distance can be proven in the space of finite and
bounded persistence diagrams Ds’c:

Lemma 4.16. the Sliced Wasserstein distance is conditionally definite
on DY
!

therefore we can define the Sliced Wasserstein Kernel:

SW(D, B) E)> . (4.30)

202
The peculiarity of the Kernel 4.30, compared with others kernels
defined so far, is that the metric with which his RKHS is equipped is

ksw (D, E) := exp (—
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induced by the sliced Wasserstein distance, which is strongly equivalent
to 1-Wasserstein distance dyy 1.

Theorem 4.17. Sliced Wasserstein distance is stable with respect to dy,
on Ds’c. For any D, E € D‘l;c, one has

SW(D, E) < 2v2dw.1(D, E).

For the discriminative property, stronger assumptions have to be done
on persistence diagrams, namely their cardinalities have not only to be
finite, but also bounded by some N € N*,

Theorem 4.18. Sliced Wasserstein distance is discriminative with respect
to dw,1 on D?V. For any D, E € D, one has

1
—dw1(D,E) < SW(D,E
oM VV,l( ) )— ( ) )’

where M =1+ 2N (2N —1).

In particular, Theorems 4.17 and 4.18 allow us to show that dgy, the
distance induced by kg in its RKHS, is also equivalent to dy; in a
wide sense: there exist continuous, positive and monotone functions g, h
such that ¢g(0) = h(0) =0 and hodw, < dsw < godw,.

Moreover the condition on cardinalities can be relaxed. In fact it
can be proven that the feature map ®gy induced by kgw is injective
when persistence diagrams are in D?. In particular kg can become an
universal kernel considering exp(ksw) [24].

Proposition 4.19. The feature map ®gw is continuous and injective
with respect to dy,1 on D?‘.

Speaking of computational complexity, the exact computation of
the kernel for persistence diagrams in general position can be done in
O(N?log(N) time, where N is the cardinality of the persistence diagrams.
A persistence diagram is said to be in general position if it has no triplet
of aligned points. In practice, given two persistence diagrams D and E,
the kernel is evaluated with D and E, which is the modified diagrams
with infinitesimally small random perturbations.

Since the time complexity in the exact computation case could
be significant in applications, an approximating computation is also
proposed. The approximation time complexity is O(M N log(N)), where
M is the approximating factor (with M < N). This approximation is
still a negative semi-definite kernel. This approximation of kg is useful
since, as shown in [10], authors have observed empirically that M ~ 10
is sufficient to get good classification accuracies.

Time complexity is the major issue of the proposed kernel, since other
analysed kernels have linear complexity with respect to the cardinality
of the persistence diagrams.
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The parameter o of Equation 4.30 is the only one of this kernel
and is, in practice, easier to tune than the parameters of the other
kernels analysed so far when using grid search. Indeed, as is the case
for all infinitely divisible kernels, the Gram matrix does not need to be
recomputed for each choice of o, since it only suffices to compute all the
Sliced Wasserstein distances between persistence diagrams in the training
set once. As we will see in the last chapter, this property is particularly
appealing, since it strongly speeds up the tuning of parameters through
cross validation.

Sliced Wasserstein Kernel has tested on several benchmark application
compared with PWGK and PSSK. Authors show on several datasets
substantial improvements in accuracy and training times (when tuning
parameters is done with grid search) over competing kernels.

Persistence Fisher Kernel

The last kernel method for persistence diagrams we propose is the
Persistence Fisher Kernel introduced in [27]. In their work authors explore
an alternative Riemannian geometry, namely the Fisher information
metric [2], for persistence diagrams.

Persistence diagrams can be considered as a discrete measure pup =
> ueD Ous Where dy is the Dirac delta on u. Therefore, the Wasserstein
geometry is a popular choice in kernel-based methods for persistence
diagrams content, together with related metrics to compute distances,
on the set of persistence diagrams with bounded cardinalities.

Firstly we briefly introduce the Fisher information geometry:
Given a bandwidth o > 0, for a set ©, one can smooth and normalize
up as follows

pp = [; Z N(x;u, O'I)‘| (4.31)
ueD x€O0
where Z = [ > uep N(x;u,01) dx, N is a Gaussian function and I is
an identity matrix. Therefore, each persistence diagram can be regarded
as a point in a probability simplex P := {p| [p(x)dx = 1,p > 0}.
In case, one chooses © as an entire Euclidean space, each persistence
diagram turns into a probability distribution as in [1].

Fisher Information Metric is a well-known Riemannian geometry on

the probability simplex PP, especially in information geometry. Given two
points pp and pg in P, the Fisher information metric is defined as:
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dp(pp, pp) = arccos (/ \ PD(x)pE(x) dﬂ?) (4.32)

In the following we denote Dp := {IIa(u) |u € D}, where IIa(u) is
the projection of a point u on the diagonal set A.

Definition 4.20. et D , E be two finite and bounded persistence
diagrams. The Fisher information metric between D and F is defined as
follows,

drmv(D, E) = dp (p(DUEA)v p(EUDA)) (4.33)

Lemma 4.21. Let DSL be the set of finite and bounded persistence
diagrams. Then, (dpp — T) is negative definite on D? forallT> 7.

Motivated by the lemma above and Theorem 1.10, we introduce a
positive definite kernel: the Persistence Fisher Kernel
kpp(D, E) :=exp ( — tdpim(D, E)) (4.34)
where t is a positive scalar since we can rewrite the kernel as
kpp(D, E) = aexp (— t(dpma(D, E) — 7)) (4.35)

where 7 > § and a = exp(—t1) > 0.
Moreover the kpp is positive definite without approximation.

The square distance induced by the Persistence Fisher kernel, denoted
as dip »» can be computed by the Hilbert norm of the difference between
two corresponding mappings. Given two persistence diagrams D and E,
we have:

d2. (D,E) = kpr(D,D)+ kpp(E,E) — 2kpp(D, E)

KPF

Since kpp is based on the Fisher information geometry, it is
interesting to bound the kernel induced distance diPF with respect
to the corresponding Fisher information metric dppy; between persistence
diagrams.

Lemma 4.22. et D, F € Dg’c be a persistence diagrams. Then,

d?> (D,E) < 2tdp(D, E)

KPR
where t is a parameter of kpp.

The Lemma above implies that the Persistence Fisher kernel is stable
on Riemannian geometry in a similar sense as work of [23] and [35] on
Wasserstein geometry.

Another important result is the infinite divisibility of the kernel

Lemma 4.23. The Persistence Fisher kernel kpp is infinite divisible.
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Thus, the Gram matrix of the kernel does not need to be recomputed
for each choice of t (Equation 4.34), since it suffices to compute the
Fisher information metric between persistence diagrams in training set
only once. This property is shared with the Sliced Wasserstein kernel.
However, neither Persistence Scale Space kernel nor Persistence Weighted
Gaussian kernel has this property.

Given two finite persistence diagrams D and E with cardinalities
bounded by N, for the computation of the kernel, is considered the finite
set © := D U EA UE U DA without multiplicity in R? for smoothed
and normalized measures p(.) 4.31. Then let m be the cardinality of ©,
we have m < 4N. Consequently the time complexity of p(.y is O(mN).
For acceleration, we propose to apply the Fast Gauss Transform to
approximate the sum of Gaussian functions in p() with a bounded error.
The time complexity of p() is reduced to O(m + N). Due to the low
dimension of points in persistence diagrams (R?), this approximation by
the Fast Gauss Transform is very efficient in practice. Additionally, dP
(Equation 4.32) is evaluated between two points in the m-dimensional
probability simplex P,,,_1 = {x|x € R™, x > 0, ||x||1 = 1}. So, the time
complexity of the Persistence Fisher kernel kpp between two smoothed
and normalized measures is O(m).

Hence, the time complexity of kpr between D and E is O(N?), or
O(N) for the acceleration version with Fast Gauss Transform.

Lastly in [27] authors evaluated the Persistence Fisher kernel with
SVM on many benchmark dataset. The performance of the kernel was
compared with the other kernels for persistence diagrams discussed so far:
Persistence Scale-Space kernel (kpgg), Persistence Weighted Gaussian
kernel (kpw¢) and Sliced Wasserstein kernel (kgy ). For the parameter
tuning the guidelines from the original papers were followed.

For the Persistence Fisher kernel, there are 2 hyper-parameters: ¢
(Equation 4.34) and o for smoothing measures (Equation 4.31). The
choice of them is done through cross validation.

The accuracy results shows that xkpp outperforms other kernels
followed by kgw. Moreover, looking at computational time with
approximations, the xpp is faster than xpgg, but slower than xpy g and
even more so than kg .

Variably Scaled Persistence Kernels

In section 1.2 we introduced the variably scaled kernels, proposed as
alternative kernels that shift the problem of the parameter tuning into
the problem of chose a suitable scaling function.
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Can a similar approach be introduced in the context of kernels for
persistence diagrams?

The main difference between standard kernels and kernels for
persistence diagrams is that the underlying space is different. The
persistent diagrams are a collection of topological features, in particular
of birth-death couples in Rgd. There is not a meaningful reason behind
the introduction of a scale function, in its classical sense, applied to a
persistence diagram, since outside RZd we do not longer talk of persistence
diagrams as long all the metrics discussed so far.

Thinking of the algebraic derivation of the persistent homology,
another way to approach this idea is to add a a couple to the persistence
diagram.

Following this intuition we can define a Variably Scaled Persistence
Kernel.

Definition 4.24. Let x : © x © — R be a kernel for persistence diagrams
and let ¥ : 0 — Rgd be a scale function. A variably scaled persistence
kernel ky on ® x © is defined as

kw(D,E) = k(DU (D), EU¥(E)) (4.36)

for D,E €®

If we consider the kernel introduced so far, except for persistence
scale space kernel, they are of the kind:

k(D,E) = exp (—vd(D, E))

where d(-,-) is the distance induced by the metric introduced along
with the kernel. Thus it is easy to prove that if  is a (strictly) positive
definite kernel, so is . The same result follows for (strictly) negative
definite kernels.

More precisely, the kernel kg inherits all properties of .

As scale function we propose a sort of center of mass:

U(D)=—> wx)z (4.37)

z€D
where w(z) € RT and W =3, p w(z).
Some common choices for w are ﬁ, where we denote as |D| the

number of generator of the persistence diagram D, or the persistence of
x.
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We denote as center of uniform mass the scale function

U(D) = |é| o (4.38)
xzeD

and as center of persistence the scale function:

B 1

(D) = Z pers(x) . (4.39)
eD

> wep Pers(z) 4

Note that Y, p pers(z) = pers (3 ,cp ).

For specific application it could be useful to give different weights
accordingly to the needs of the situations. For example, we may have
meaningful information on low persistence generators, in this case we

can consider w(x) = ﬁ.
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CHAPTER 5

Application to Alzheimer’s
Disease Diagnosis

5.1 Introduction

Dementia is an umbrella term used to describe a range of neurological
conditions affecting the brain that get worse over time. It is the loss
of cognitive functioning (thinking, remembering, and reasoning) and
behavioral abilities to such an extent that it interferes with the daily
routines of a person. These functions include memory, language skills,
visual perception, problem solving, self-management, and the ability to
focus and pay attention. Some people with dementia cannot control
their emotions, and their personalities may change. Dementia ranges in
severity from the mildest stage, when it has just started to affect the
functioning of a person, to the most severe stage, when the person must
depend completely on others for basic activities of living.

In the past, dementia was sometimes referred to as “senility” and was
thought to be a normal part of aging, likely because it is more common
as people age. As many as half of all people age 85 or older may have
dementia. But dementia is not a normal part of aging. Not everyone
develops dementia as they get older, and, in rare cases, some people
develop dementia in midlife.

Dementia is the result of changes in the brain that cause nerve cells,
or neurons, to stop working properly and eventually die. Researchers
have connected changes in the brain to certain forms of dementia, but in
most cases the specific brain changes that cause dementia are unknown.
Moreover the overlap in symptoms of various dementias can make it
hard to get an accurate diagnosis. Currently, there are no cures for these
types of disorders.

Although some people may be diagnosed with general dementia, to
best tailor treatment, it is ideal to know the specific type. One of the
most known type of dementia is the Alzheimer’s disease (AD).
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AD is an irreversible, progressive brain disorder that slowly destroys
memory and cognitive functions. It slowly gets worse over time. People
with this disease progress at different rates and in several stages.
Symptoms may get worse and then improve, but until an effective
treatment for the disease itself is found, the personal ability will continue
to decline over the course of the disease. AD is currently ranked as the
sixth leading cause of death in the United States, but recent estimates
indicate that the disorder may rank third, just behind heart disease and
cancer, as a cause of death for older people.

AD is named after Dr. Alois Alzheimer. In 1906, Dr. Alzheimer
noticed changes in the brain tissue of a woman who had died of an
unusual mental illness. Her symptoms included memory loss, language
problems, and unpredictable behavior. After she died, he examined her
brain and found many abnormal clumps (now called amyloid plaques)
and tangled bundles of fibers (now called neurofibrillary, or tau, tangles).
These plaques and tangles in the brain are still considered some of the
main features of AD. Another feature is the loss of connections between
nerve cells (neurons) in the brain. Neurons transmit messages between
different parts of the brain, and from the brain to muscles and organs
in the body. During the preclinical stage of AD, people seem without
symptoms, but abnormal deposits of proteins form amyloid plaques and
tau tangles throughout the brain. When healthy neurons stop functioning,
because of the amyloid plagues and tau tangles, they lose connections
with other neurons, and die. Although the damage initially takes place
only near the hippocampus and the entorhinal cortex, as more neurons
die, additional parts of the brain are affected and begin to shrink. By
the final stage of Alzheimer’s, damage is widespread, and brain tissue
has shrunk significantly.

Early clinical diagnosis is challenging because AD-specific changes
begin years before the patient becomes symptomatic: its cellular
hallmarks can accumulate in the living brain up to 30 years before
the characteristic symptoms of dementia can be identified. Moreover,
brain changes in AD are difficult to compare from those in normal aging.
Therefore, a major focus is lead to identify such changes at the earliest
possible stage by leveraging neuroimaging data. One specific interest is
to go beyond group analysis (i.e., between clinically different groups),
rather to “learn” patterns characteristic of neurode-generation using
machine learning (ML) methods [30].

5.2 Materials and Methods

Since AD leads to a progressive shrinkage of cerebral tissue, a key feature
in diagnosis of the disease is the cortical thickness. Using medical software
Freesurfer [17] we can, from MRI images, estimate the cortical thickness
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in various points of the brain. Then, by exploiting the high complexity
and the importance of the geometry structure, we can build a simplex
on these points as in Section 3.2.

Statistical machine learning methods provide means for learning a
hypothesis from a set of training examples. In the context of a specific
disorder, the training data is given as a set comprised of both diseased
and control subjects, and our objective is to learn a pattern in such
examples to help predicting the target variables for new test cases.

In our study we aim to test the effectiveness of the different methods
proposed in Chapter 4 to build a discriminative kernel in the context of
SVM classification of cortical thickness persistence diagrams.

We evaluated the accuracy of our method by performing experiments
on data collected as part of the OASIS Brains Datasets.

The Open Access Series of Imaging Studies (OASIS) is a project
aimed at making neuroimaging data sets of the brain freely available for
the scientific community.

In particular, OASIS-3 is a compilation of MRI and PET imaging
and related clinical data for 1098 participants who were collected across
several ongoing studies in the Washington University Knight Alzheimer
Disease Research Center over the course of 15 years. Participants include
605 cognitively normal adults and 493 individuals at various stages
of cognitive decline ranging in age from 42 to 95 years. The OASIS-3
dataset contains over 2000 MR sessions, including multiple structural and
functional sequences. PET metabolic and amyloid imaging includes over
1500 raw imaging scans and the accompanying post-processed files from
the PET Unified Pipeline are also available in OASIS-3. OASIS-3 also
contains post-processed imaging data such as volumetric segmentations
and PET analyses. Imaging data is accompanied by dementia and APOE
status and longitudinal clinical and cognitive outcomes [26].

In the selection of a proper study group, we consider the needs of
our methods. Not all the subject in the Oasis-3 dataset have both an
estimate of the cortical thickness and a clear diagnosis, so we do not
take them into account. Moreover, after this initial selection, we further
reduce the set of subjects in order to have a balanced dataset.

A summary of demographic and neuropsychological details of the
subjects considered in our study is presented in Table 5.11.

For each subject, we build the persistence diagrams using the
estimation of cortical thickness on 34 points in both right and left
hemisphere of the brain, for a total of 64 values. For simplicity in the
study we consider the same coordinates of the above mentioned points

IMMSE in Table 5.1 is for Mini-Mental State Examination [18]
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AD AD Control Control
(mean) (st.dev.) (mean) (st.dev.)
No. of subjects 225 - 248 -
Gender (F/M) 114/111 - 126/122 -
Hand preference (A/L/R)  5/23/197 - 6/26/216 -
Age at entry 74.41 7.60 65.21 9.62
Education (years) 14.77 3.08 16.04 2.51
MMSE 20.33 6.38 29.27 1.30

Table 5.1: Demographic details and baseline cognitive status measures of the
study population.

for all subjects. The coordinates are computed with the scipy toolbox
[47]. From this coordinates we build the Vietoris-Rips complex and then
compute the persistence diagrams of the subjects using persim and ripser
[37, 45]. We extract 0, 1 and 2-dimensional topological features, but for
the experimental setup we consider the generators asssociated with H;
and Hs.

In Figure 5.1 we show two examples of persistence diagrams built in
this way.

Frze
Frze

0 20 40 60 0 20 40 60
Birth Birth

Figure 5.1: Persistence diagram of an AD subject with a MMSE of 7 (right)
and the persistence diagram of a control subject with a MMSE of 30 (left)

We compare the performance, in terms of classification accuracy
and computational cost, of the kernel introduced in Chapter 4, namely:
the Persistence Scale-Space Kernel (PSSK), the Persistence Weighted
Gaussian Kernel (PWGK), the Sliced Wasserstein Kernel (SWK) and
the Persistence Fisher Kernel (PFK). This classification is based on
1-dimensional generators of persistence diagrams.

Furthermore, we employ the so-called variable scaled persistence
kernel technique to all the defined above kernels, and compare them
with their original version in a classification task based on 2-dimensional
generators of persistence diagrams. As scale function we consider the
center of persistence (Equation 4.39).
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All kernels are handled using Python 3.8 and the modulus scikit-

learn [31]. The results are averaged over 6 runs, with random 70%/30%
splitting of the data for training and test, on a 2.6Ghz Dual-Core Intel
Core i5. The cost factor C' of SVM is cross validated in the following
grid: {0.001,0.01,0.1, 1, 10,100, 1000}.

Free and open source PYTHON software concerning this application

is available at

https://github.com/reevost/master_thesis

In the validation step we consider a 5-fold CV on the training set.

The hyperparameters of the methods are chosen following the guidelines
of the authors.

« PSSK.

o € {0.001,0.005,0.01,0.05,0.1,0.5, 1, 5, 10, 50, 100, 500, 1000}.

PWGK.
Care, 0 and 7 are chosen in {0.01,0.1,1,10,100}, while p is fixed?
to 10.

SWK.

The range of possible values for the bandwidth ¢ in PSWK is
obtained by computing the squareroot of the median, the first and
the last deciles of the training matrix, then by multiplying these
values by the following range of 5 factors: 0.01, 0.1, 1, 10 and 100.

PFK.

o is chosen in {0.01,0.1,1, 10,100} and } from {1, g2, g5, 910, 420, G50 }
where ¢; is the i% quantile of a subset of Fisher information metric
observed on the training set. After few experiments, we denote
a poor results with these candidates hyperparameters, Then we
decide to change the candidates for hyperparameter % The new
possible values are chosen from {qi,g20,¢50} multiplied by the
following factors: 0.001, 1, 1000.

For the validation we consider the fl-score.

precision - recall

f1-score = 2 - (5.1)

precision + recall

where:

?because the assumption p > d + 1 ensures the continuity of the kernel embedding
(Theorem 4.9), and in our case d = 4
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5.3. Results

. true positive
precision = — — (5.2)
true positive 4 false positive

true positive

recall = (5.3)

true positive + false negative

5.3 Results

We report the considered algorithms performance over the dataset
introduced before. To have a meaningful comparison with results of [30],
we firstly consider the classification result of the proposed kernel on the
H, persistence diagrams of the subjects. In Table 5.2 we display the
results obtained.

As second experiment we consider the same task but on Hy persistence
diagrams. Here we compare each kernel with its variable scaled variant.
in Tables 5.3-5.6 we show some further details on the comparison between
the considered kernels and their variably-scaled version (VS-kernel).

Lastly, we demonstrate that VS-kernels are discriminative showing,
in Table 5.7, the results of a SVM classification with Gaussian kernel
based on the set of center of persistence or center of mass and of the H»
persistence diagrams.

Accuracy fi-score testing time validation time

PSSK 0.78 0.77 24 8727
PWGK 0.74 0.72 54 239786
PFK 0.74 0.73 3871 162582
PSWK 0.76 0.72 70 220

Table 5.2: Results of SVM classification on H; persistence diagrams.

PSSK  VS-PSSK

accuracy 0.78 0.81
precision (AD) 0.75 0.83
recall (AD) 0.80 0.77
fy-score (AD) 0.77 0.80
precision (Control)  0.80 0.80
recall (Control) 0.76 0.85
f1-score (Control) 0.78 0.82

Table 5.3: Comparison between PSSK and VS-PSSK on SVM classification of
the Hs persistence diagrams.
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PWGK VS-PWGK

accuracy 0.76 0.80
precision (AD) 0.83 0.82
recall (AD) 0.64 0.77
f1-score (AD) 0.72 0.79
precision (Control) 0.72 0.79
recall (Control) 0.88 0.84
f1-score (Control) 0.79 0.84

Table 5.4: Comparison between PWGK and VS-PWGK on SVM classification
of the Hy persistence diagrams.

PSWK VS-PSWK

accuracy 0.76 0.82
precision (AD) 0.81 0.86
recall (AD) 0.67 0.74
f1-score (AD) 0.73 0.80
precision (Control)  0.73 0.79
recall (Control) 0.85 0.89
f;-score (Control) 0.79 0.84

Table 5.5: Comparison between PSWK and VS-PSWK on SVM classification
of the Hy persistence diagrams.

PFK VS-PFK

accuracy 0.73 0.67
precision (AD) 0.72 0.67
recall (AD) 0.72 0.64
fy-score (AD) 0.72 0.65
precision (Control)  0.74 0.68
recall (Control) 0.74 0.70

f1-score (Control) 0.74 0.69

Table 5.6: Comparison between PFK and VS-PFK on SVM classification of
the Hs persistence diagrams.

5.4 Discussion and Conclusion

Differently from the examples considered in the original articles of the
kernels, the persistence diagrams used in this application had a very
small number of generators. This has meant that the computational
cost of the related kernels has not influenced results as in the examples
reported in comparing articles. Instead, the number of parameters of
each kernel was much more relevant, since the brief time needed to
validate a combination of hyperparameters. In fact, while the testing
times are quite similar to each other, the validation times are influenced
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center of uniform mass center of persistence

accuracy 0.56 0.65
precision (AD) 0.55 0.60
recall (AD) 0.55 0.90
f1-score (AD) 0.55 0.72
precision (Control) 0.58 0.82
recall (Control) 0.58 0.42
f;-score (Control) 0.58 0.56

Table 5.7: Results of SVM classification task performed on the center of mass
of the persistence diagrams. As scale function we chose the center of uniform
mass (Equation 4.38 and the center of persistence (Equation 4.39)

by the number of parameters. The PWGK has a set of 125 possible
parameters against the 10/15 of the other methods.

In this framework the infinitely divisible kernels has a great advantage.
For this reason, despite his theoretical computational cost, PSWK is by
far the fastest kernel, helped also by having only one hyperparameter to
tune.

Concerning the accuracy results, we found that the persistence
diagrams can be a discriminative representation of our brain. Moreover,
all the proposed kernels reached a solid accuracy.

Comparing the results with a similar study made by Pachauri et al. in
[30], where the classification is based only on cortical thickness estimates
on MRI, we can say that our approach leads to slightly better results in
some cases (~ 75% in [30]).

Furthermore we presented an original approach to employ the VSKs
in the persistence diagrams framework, showing their effectiveness in
classification experiments in the context of Alzheimer’s Disease diagnosis.
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APPENDIX A

Cross Validation

Cross-validation is one of the most widely used data resampling methods
to estimate the true prediction error of models and to tune model
parameters.

Cross-validation was originally employed to evaluate the predictive
validity of linear regression equations used to forecast a performance
criterion from scores on a battery of tests. It was found that the
multiple correlation coefficient within the original sample used to
assign values to regression weights gave an optimistic impression of
the predictive effectiveness of the regression equation when applied
to future observations. In order to investigate this phenomenon the
cross-validation procedure was employed. Two samples from the same
population were drawn. The first, the calibration sample, was used
to calibrate the regression equation, that is, to assign values to the
regression weights. The weighted linear composite of predictors, with
previously calibrated weights, was then correlated with the criterion in
a second sample, the validation sample. The cross- validation index so
obtained yielded a realistic impression of the predictive effectiveness of
the linear composite of tests. This two-sample form of cross-validation
can be wasteful because only about half of the available observations are
used for calibration purposes leading to less effective calibrations. The
remaining observations are required for the validation sample [6].

More formally, let Q € R? let X = {x1,...,2,} C Q be a set of
data and YV = {y1,...,yn} C {0,1}" a set of labels associated to X,
with d,n € N\ {0}. In this case we considered the label for a binary
classification problem, but it may be different if we consider other tasks.
Then we can define the labeled dataset Z = {(x;,y;), |x; € X,y; € V}.

Now let suppose that our aim is to describe a process where the
labelled dataset Z is involved. We also have a model m,, where
v = (7i)i=1,...m are the vector of real parameters, for a some m € N.

The role of Cross Validation is to identify the set of parameter that
better represent the data in the set Z, along with unknown samples
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from Q\ X. The cross validation techniques are based on the following
approach: splitting the initial data into two set, one of the sets is used
to calibrate the hyperparameter (via CV), after that the remaining set
is used to test the model.

There are various CV routines. One of the simplest, but not for
this less effective, is the k-fold CV. Fixed I', the set of all possible
hyperparameter vectors, the cross validation scheme is the following:

(i) we fix y € T.
(ii) Let £k € N,1 < k < n. We divide the set Z into k disjoint sets
{2}z, called folds.

(iii) We choose k—1 training folds, and we leave the last one as validation
fold. We denote as V; = Z; the j—th validation fold and as
Tj = Ujer Zi, with I = {1,...;i — 1,i+1,...,k}. After that we train
the model with the hyperparameter vector v on Tj.

(iv) We take a cost function, for example the zero-one function 2.1, then
we evaluate the model and compute the cost on V

(v) We repeat the training-validation process for every j = 1,..., k.
Finally we consider the average of all cost gained during the process
and save it assigning the value to the hyperparameter vector ~.

(vi) repeat the whole process for all v € I'. Lastly we choose the ~
associated with the minimum averaged cost.

There are other type of cross validation as stratified C'V or nested C'V,
with various kind of complexity and specific for certain type of problems.
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