
Università degli Studi di Padova
Facoltà di Ingegneria

Dipartimento di Ingegneria dell’informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Human action recognition
from rgb-d frames

Candidato
Gioia Ballin

Relatore
Prof. Emanuele Menegatti

Correlatore
Dott. Matteo Munaro

Anno Accademico 2011-2012





To my parents





Acknowledgments

I would like to acknowledge Prof. Emanuele Menegatti for giving me the chance
to work in a research lab. Special thanks go to Matteo Munaro and Stefano
Michieletto that followed me during this work day-by-day. I want to thank also
Riccardo De Battisti, Stefano Ghidoni, Riccardo Levorato, Andrea Marcato and
Alessandro Zanella for having helped me to realize the dataset discussed in this
work. My final thanks go to Arrigo Guizzo and Antonio Passamani that have
supported me all the time during the thesis project.





Abstract

In this work we propose a novel approach to real-time human action recognition.
We use the Microsoft Kinect sensor and an underlying tracking system to ro-
bustly detect people in the scene. Next, we estimate the actual 3D optical flow
related to the tracked people from point cloud data only. Each point cloud asso-
ciated with a track in a specific frame is matched against the same point cloud in
the immediately previous frame in order to find correspondences between points.
Furthermore, we investigate about possible methods to accomplish a proper corre-
spondence rejection and noise removal. A suitable descriptor is then computed for
the 3D optical flow information: we create a 3-dimensional grid surrounding each
detected track and we summarize the flow by taking relevant information from
each voxel in the grid. Experiments are performed on a newly created dataset
which contains six human actions performed by six different actors. Experimental
results show the effectiveness of the proposed approach.





Contents

Contents ix

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Human actions and activities . . . . . . . . . . . . . . . . . . . . . 3
1.2 Recognizing human actions . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature review 9
2.1 Recognition from RGB video images . . . . . . . . . . . . . . . . . 10

2.1.1 Application fields . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Recognition from RGB-D video images . . . . . . . . . . . . . . . . 14
2.3 Comparison between different approaches . . . . . . . . . . . . . . 16

2.3.1 Publicly available datasets with only RGB information . . . 17
2.3.2 Color-depths publicly available datasets . . . . . . . . . . . 18

3 System baselines 21
3.1 Tracking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 System components . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Microsoft Kinect . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 ROS - Robot Operating System . . . . . . . . . . . . . . . . 23

4 Action recognition with global cues 25
4.1 Extracting simple features . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Velocity Estimation . . . . . . . . . . . . . . . . . . . . . . 27

ix



x CONTENTS

4.2 Discerning between actions . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Detecting motion from point cloud XYZRGB data 35
5.1 Dealing with point clouds . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 PCL - Point Cloud Library 1.4 . . . . . . . . . . . . . . . . 37
5.1.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Change Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Computing 3D optical flow . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 The problem of matching point clouds . . . . . . . . . . . . 42
5.3.2 The optical flow calculator . . . . . . . . . . . . . . . . . . 48
5.3.3 Visualizing results . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Comparison with 2D optical flow . . . . . . . . . . . . . . . . . . . 54

6 Recognizing actions from 3D optical flow information 67
6.1 Computing descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Voxel grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Extracting features from 3D voxels . . . . . . . . . . . . . . 69

6.2 Classifying descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.1 Collecting video samples . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Nearest Neighbor classification . . . . . . . . . . . . . . . . 75

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusions 83
7.1 Future improvements and developments . . . . . . . . . . . . . . . 84

Bibliography 87



List of Figures

4.1 Overview of the recognition approach based on global cues. . . . . 25
4.2 Display of the velocity vector related to the centroid of a person. . 28
4.3 Action recognition with global cues: results for the action standing. 32
4.4 Action recognition with global cues: results for the action hand

waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Action recognition with global cues: results for the action sitting

down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Action recognition with global cues: results for the action getting up. 33
4.7 Action recognition with global cues: results for the action pointing. 34
4.8 Action recognition with global cues: results for the action walking. 34

5.1 Comparison between the recognition approaches developed in this
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Overview of the computational process of 3D optical flow. . . . . . 43
5.3 Matching point clouds by means of an octree-based matcher: dis-

play of the estimated correspondences with regard to the action
standing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Matching point clouds by means of an octree-based matcher: dis-
play of the estimated correspondences with regard to the action
hand waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Matching point clouds by means of a PCL-based matcher: display
of the estimated correspondences with regard to the action hand
waving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Correspondence rejection not applied: display of the estimated 3D
optical flow with regard to the action pointing. . . . . . . . . . . . 52

5.7 Correspondence rejection applied: display of the estimated 3D op-
tical flow with regard to the action pointing. . . . . . . . . . . . . . 53

5.8 Comparing 2D versus 3D optical flow: the chosen frames related to
the action pointing are shown. . . . . . . . . . . . . . . . . . . . . . 55

xi



xii LIST OF FIGURES

5.9 Comparing 2D versus 3D optical flow: the 2D optical flow computed
for the pointing action with the Dalal method is shown. . . . . . . 56

5.10 Comparing 2D versus 3D optical flow: two different zoom of Figure
5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.11 Comparing 2D versus 3D optical flow: the 3D optical flow captured
from our application in three successive frames is shown with re-
gards to the action pointing. Our correspondence rejection method
is applied before computing the flow. . . . . . . . . . . . . . . . . . 58

5.12 Comparing 2D versus 3D optical flow: the 3D optical flow captured
from our application in three successive frames is shown with re-
gards to the action pointing. No correspondence rejection method
is applied before computing the flow. . . . . . . . . . . . . . . . . . 59

5.13 Comparing 2D versus 3D optical flow: the chosen frames related to
the action walking are shown. . . . . . . . . . . . . . . . . . . . . . 60

5.14 Comparing 2D versus 3D optical flow: the 2D optical flow computed
for the walking action with the Dalal method is shown. . . . . . . . 60

5.15 Comparing 2D versus 3D optical flow: two different zoom of Figure
5.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.16 Comparing 2D versus 3D optical flow: the 3D optical flow captured
from our application in three successive frames is shown with re-
gards to the action walking. Our correspondence rejection method
is applied before computing the flow. . . . . . . . . . . . . . . . . . 62

5.17 Comparing 2D versus 3D optical flow: the 3D optical flow captured
from our application in three successive frames is shown with re-
gards to the action walking. No correspondence rejection method
is applied before computing the flow. . . . . . . . . . . . . . . . . . 63

5.18 Comparing 2D versus 3D optical flow: the 3D optical flow captured
from our application in three successive frames is shown with re-
gards to the pointing action. Our correspondence rejection method
is applied together with a low restrictive voxel grid filtering before
computing the flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.19 Comparing 2D versus 3D optical flow: the 3D optical flow cap-
tured from our application in three successive frames is shown with
regards to the action is the walking. Our correspondence rejection
method is applied together with a low restrictive voxel grid filtering
before computing the flow. . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Example views of the voxel grid computed: 2 partions along the x,
y and z axis are designed. . . . . . . . . . . . . . . . . . . . . . . . 70



LIST OF FIGURES xiii

6.2 Example views of the voxel grid computed: 4 partions along the x,
y and z axis are designed. . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Example views of the voxel grid computed: 5 partions along the x,
3 partions along the y axis and 2 partitions along the z axis are
designed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Example frames of the action standing taken from our dataset. . . 76
6.5 Example frames of the action hand waving taken from our dataset. 76
6.6 Example frames of the action sitting down taken from our dataset. 76
6.7 Example frames of the action getting up taken from our dataset. . 76
6.8 Example frames of the action pointing taken from our dataset. . . 76
6.9 Example frames of the action walking taken from our dataset. . . . 76



xiv LIST OF FIGURES



List of Tables

2.1 Recognition from RGB-D images: comparison between our work
and works at the state of the art. . . . . . . . . . . . . . . . . . . . 17

2.2 Comparison between relevant RGB publicly available datasets. . . 19
2.3 Comparison between RGB-D publicly available datasets. . . . . . . 20
2.4 Characteristics of the existing RGB-D publicly available datasets. . 20

4.1 Action recognition with global cues: the used raw features. . . . . 26
4.2 Action recognition with global cues: recognized actions and used

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Sampling techniques developed in this work. . . . . . . . . . . . . . 78
6.2 Confusion matrix related to a nearest neighbor classification in

which the Mahalanobis distance is computed. . . . . . . . . . . . . 81
6.3 Confusion matrix related to a nearest neighbor classification in

which the Euclidean distance is computed. . . . . . . . . . . . . . . 81
6.4 Accuracy and precision results obtained with the nearest neighbor

classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xv



xvi LIST OF TABLES



Chapter 1

Introduction

R ecognizing human actions is one of the most challenging
research fields in computer vision. This chapter aims to

introduce the reader into this particular field and lays the foundations
for a good understanding of the following chapters.

Human action recognition is an important research area in computer vision. First
investigations about this topic began in the seventies with pioneering studies ac-
complished by Gunnar Johanssons [19]. From then on, interest in the field grew
increasingly, motivated by a number of potential applications. In this discussion,
we present the main application areas of human action recognition to provide the
reader a concrete idea of the impact that vision-based recognition systems could
have in everyday life.

Behavioural Biometrics

Biometrics, or biometric authentication, aims to identify humans by their charac-
teristics or traits. By contrast to traditional biometric approaches, the so called
“behavioural biometrics” believes that behavioural cues are as useful as physical
attributes to recognize humans. By contrast to the acquisition of physical cues,
behavioural cues do not require the cooperation of the reference subject, so they
can be captured without interferring with the subject’s current activity. It is clear
it is necessary to observe individuals for a certain period of time to be able to
obtain behavioural traits, and then approaches for action recognition extend nat-
urally to this task. Recent applications of the behavioural biometrics are related
to airport controls. Since the terrorism threat emerged in the past years, airport
controls have been intensified and new approaches are currently investigated to

1



2 Introduction

detect suspicious behaviours in passengers. In order to indentify terrorists, the
current research is devoted to the developement of automatic systems able to ob-
serve passengers during the check-in process or the gate controls, and to detect
potential terrorists among them.

Video surveillance

Video surveillance is the most natural application of human action recognition.
Indeed, it involves the monitoring of behaviours and activities, usually attributed
to people, with the purpose of influencing, managing, directing, or protecting.
Security and surveillance systems have traditionally relied on networks of cam-
eras. The transmitted images are tipically monitored by a human operator who
has to control the activities taking place in the camera’s view field. The techno-
logical progress has led to the introduction of increasingly powerful cameras on
the market, and in recent years also RGB-D sensors have become available as an
alternative to standard color cameras. These technological advances have helped
human operators to accomplish their monitoring job. Furthermore, security agen-
cies are currently seeking for vision-based solutions able to completely replace the
human labor. In fact, nowadays the need of an automatic system able to detect
specific actions is dictated by real world contexts in which millions of cameras
constantly monitor traffic, pedestrians, animals, environments, thus generating
big amounts of videos. Therefore, the volume and complexity of those videos far
exceeds the capabilities of human agents to analyze image sequences and take
real-time decisions. To this aim, automatic recognition of suspicious actions, and
more generally, automatic action recognition, are target issues that have to be
solved.

HCI – Human Computer Interaction

Human computer interaction involves the design and the development of usable
interfaces that enable humans and computers to communicate each other. Visual
cues are the most important form of non verbal communication among humans,
and the current challenge is to exploit such visual information to develop comput-
ers that can better interact with humans. When visual cues are represented by
actions or activities, respectively human action recognition and human activity
recognition are exploited. This is also the case of intelligent environments, such
as smart homes and interactive workspaces, in which human gestures or actions
have to be recognized to enable the environment to properly react. Furthermore,
some special kinds of smart rooms can be devoted to the monitoring of children
or elderly people, which are also tipical task in the field of service robotics.



1.1 Human actions and activities 3

Content-based video analysis

The content-based video analysis regards the design and the development of al-
gorithms able to automatically analyze videos to detect and determine termporal
events. Important applications belonging to this wide sector are: video indexing,
video storage and video retrieval. All those tasks require to learn patterns from
raw videos and then to summarize each video based on its content. If the content
is represented by actions or activities performed by one or several people, it is
clear that either human action recognition or human activity recognition comes
into play.

In this work we propose a novel approach to human action recognition. First,
our system relies on the acquisition of RGB-D data, by contrast to traditional
approaches in which RGB images from color cameras are exploited. Second, a
tracking phase is initally performed to detect people in the scene. Once people are
tracked, we estimate the 3D optical flow for each detected track. The innovation
lies in the way we compute 3D optical flow: we estimate the 3D velocity vectors
from point cloud data only, thus obtaining a real-time calculus of the optical flow.
When the flow is estimated, we compute a particular descriptor that allows us to
classify actions by means of learning-based classification techniques.

1.1 Human actions and activities

This section addresses the issue of defining what a human action actually is. This is
not straightforward as it could appear at first sight and it is required to define what
is an action, because it helps to fully understand in which context this thesis work
takes place and its motivations. While dealing with the computer vision literature,
it seems that a lot of publications make an interchangeable use of the words action
and activity and this can lead to frequent misunderstandings by the reader. The
conceptual problem of defining what a human action is was first addressed in [10]
by Aaron F. Bobick. Bobick distinguished between movements, activities and
actions, but the meaning he associated to the word “activity” is far different from
its current use. In this work, the definition given is much more similar to what
could be found in [43]. Therefore an action is considered to have more complexity
with respect to a single movement or gesture, whereas the concurrent, parallel or
consecutive execution of two or more single actions constitutes what is referred
with the term activity. An action refers to simple motion patterns and it is
usually executed by one or at most two people. Furthermore an action typically
has a short temporal duration. Examples of actions are: bending, hand waving,
running, jumping, shaking hands. By contrast, an activity is a complex sequence



4 Introduction

of actions, as previously defined. Activities could be performed by several people
at the same time or at different times and they are characterized by having a
longer temporal duration with respect to actions. Examples of activities include
the gathering and dispersing of groups of people.

However, there is not a crisp boundary between actions and activities and
in fact there is a significant “gray area” between these two extremes. This gray
area is mostly due to the subjectivity of the observer and to the wide variety of
actions that a single person can accomplish alone or while interacting with other
people. Turaga et al. [43] take as an example the gestures of a music conductor and
they said that the music conductor gestures are not so “simple” to be categorized
as an action but at the same time they are not so “difficult” to be categorized
as an activity. This is just the point: in order to discern between actions and
activities the discretion of the observer also comes into play, furthermore there
are many types of actions, some of which will be easier to recognize and some
of the others will constitute a challenge to the recognition although they do not
represent activities. This work is focused on recognizing actions. The reason is
simple: the work started from scratch for what concerns the recognition field, so
it was reasonable to build an initial recognition system able to recognize actions
at first, whereas activities have been left to further future developments.

1.2 Recognizing human actions

Human action recognition is a challenging problem that required efforts coming
from the best researchers in the computer vision field. At first, researchers fo-
cused on recognizing primitive movements or simple gestures, then switched to
the recognition of human actions, where the term “actions” has the meaning de-
fined in Section 1.1, and at last they faced the problem of recognizing complex
human activities. Recognizing human actions and activities are active research
fields also nowadays. Furthermore, always new challenges have been introduced
in recent years. These challenges mostly regard possible existing variations in the
recording and execution of the action. For example, the environment in which an
action takes place is an important source of variation in the recording, so action
recognition in cluttered or dynamic environments has also been experimented.
Moreover, the speed at which an action is performed by a certain actor could be
different from the speed at which the same action is performed by another actor.
A good human action recognition approach should also be able to generalize over
possible variations in the execution of the actions.

Before continuing the dissertation, it is required to define the problem of human
action recognition, and specifically what are the inputs and outputs to the problem



1.3 Aim of the thesis 5

and what are the guidelines to achieve the final results. The goal of human action
recognition is to identify which action is represented in a finite sequence of images
given as input to the system. Furthermore, the action associated with each video
can be selected from a finite set of action classes. The entire recognition process
can be divided in three major steps:

1. Extraction of features from the sequence of images given as input to the
system.

2. Processing a features description suitable for the application in example.

3. Classification of the descriptors obtained at point 2.

Features are specific pieces of information which contain all the visual motion
information relevant to the application at issue. Features play a central role in
human action recognition: they actually have a discriminant power in discerning
between different action classes. For example, suppose that different features have
been extracted from the same sequence of images and these features are referred to
A and B. It can happen that A is the best way to represent the motion information
contained in the video frames. A recognition system that would use A as baseline
features would have better classification results than a system that would use B
instead, and finally this would result in a better recognition performance. This
is essentially why this work is focused on features: the discriminant power of a
recognition system heavily relies on features. New ways to detect and extract
features could significantly improve existent recognition methods or even could
give rise to new recognition methods. Obviously, not all the discriminant power
relies on features (and their descriptors). A portion of this effective power is
certainly due to the classifier used. However, classifiers are well-known instruments
coming from machine learning field and it is very hard to substantially improve
each of them.

1.3 Aim of the thesis

The main objective of this work consists on developing an automatic system able to
recognize human actions in indoor office environments. Furthermore, this system is
characterized by having a 3D tracking as underlying system and by using a widely
available cheap sensor, namely the Microsoft Kinect, to acquire input data. Since
the recognition system is targeted to applications in the field of video surveillance,
it has been developed to:

1. execute real-time;



6 Introduction

2. recognize the actions performed by each individual present in the scene at a
certain time instant;

3. perform a continuous recognition task, if possible.

Point 1 is justified by two different motivations: first, the underlying tracking
system is a real-time system and we really did not want to lose this great property;
second, achieving real-time performances together with good recognition results
is a challenging task in human action recognition. Indeed, an important trade-
off exists between the recognition accuracy and the computational performances:
fast algorithms are able to perform real-time computations, but these calculus
can not be too much complex; by contrast, off-line recognition methods generally
perform complex computations without worrying about time performances. So,
we have preferred to develop a fast recognition system even at the expense of a
lower recognition accuracy. It is important to remark that it is possible to obtain
poor results with a fast algorithm, but this does not really represent a certainty.
Furthermore, the recognition performances are offset by the usefulness that real-
time performances hold in a video surveillance context. Finally, also points 2 and
3 represent challenging tasks in human action recognition, in fact:

- All the works at the state of the art of human action recognition with RGB-D
data concentrate on recognizing isolated actions, namely actions performed
by only one individual and defined as stated in Section 1.1.1

- Most of the work at the state of the art of human action recognition from
RGB images concentrates on recognizing isolated actions, but in recent years
new challenges have been addressed.2

For instance, such a challenge is represented by the continuous recognition. In
the continuous recognition task, an actor performs several actions in a certain
sequence and the recognizer has to correctly detect each executed action. This
means that the algorithm has to recognize the series of actions, but in addition it
has also to locate temporally the actions, and to assign to each temporal interval
the correct action. It is clear that the job of continuously recognizing human
actions is much more difficult with respect to the recognition of isolated actions,
since some mechanism to perform the action segmentation is required before (or
concurrently to) the execution of the recognizer. In this work, we have combined
difficulties arising from the continuous recognition to those resulting from the
recognition made over several people at once, all within a context in which only
real-time computations are allowed.

1See Section 2.1.
2See Section 2.2.



1.4 Organization of the thesis 7

1.4 Organization of the thesis

The thesis is organized as follows. Chapter 2 provides a review of the state of the
art of human action recognition together with some important remarks about the
existing differences between our system and systems already known in literature.
Chapter 3 focuses on the fundamental components on which the recognition system
we propose in this work is built. Chapter 4 describes a simple recognition system
developed in the start-up phase of this work. In such a system global cues are
used to discern between action classes. Chapter 5 and 6 describes the evolution
of the work with respect to Chapter 4. In those chapters we propose a novel
approach to human action recognition, in which 3D optical flow is estimated from
point cloud data only, and a well-suited descriptor is built on it. Finally, Chapter
7 discusses the validity and the potential of our innovative recognition system
both by analyzing experimental results and by showing future developments of
the system.



8 Introduction



Chapter 2

Literature review

T his chapter provides a survey on the state of the art of human
action recognition in videos. First, recognition from RGB

video images is addressed. Then the discussion is focused on techniques
that exploit RGB-D sensors to recognize human actions. Finally, brief
considerations are given about the state of the art of comparison be-
tween different approaches.

As outlined in Section 1.2, the recognition process generally requires three essential
steps. Each step is associated to a specific computational problem that has to be
solved. First of all, it is necessary to extract some pieces of visual information
that will be further processed in the subsequent steps. These pieces of information
are called features in the computer vision field and are designed to completely
summarize the motion information. Secondly, features are encoded in a suitable
data structure: the descriptor. The role of the descriptor is to summarize specific
properties of the features previously computed. In some sense, we are able to
recognize human actions using only descriptors, because they are built explicitly
to encode only the discriminant information coming from the features extraction
stage. When descriptors are finally available for an observed frame, human action
recognition becomes a classification problem. Indeed, each video is represented
by means of a set of descriptors and this set represents what is actually fed into
the classifier. Therefore a classifier is first trained with a set of labeled videos
(namely sets of descriptors) and its role consists on determining the correct label
for a previously unseen video. Each label represents an action, and each action is
taken from a finite set of possible occurring actions. Finally an action label or a
distribution over labels is given as output of the classification step at each frame.

9



10 Literature review

Furthermore, the classifier can express a confidence value for the decision taken.
This chapter provides an overview of the existing literature on human action

recognition field and it is organized as follows: in Section 2.1 we propose a brief
discussion on the state of the art of human action recognition carried out from 2D
video images, whereas in Section 2.2 we argue about related work with RGB-D
sensor; finally, the chapter concludes with Section , in which some general consid-
erations about comparison between different recognition techniques are provided.

2.1 Recognition from RGB video images

Human action recognition has been studied by a number of different authors. In
literature, most of the works is focused on recognition from 2D images, where
simple color cameras are employed. However, it is possible to find some works in
which also thermo-graphic cameras, infrared cameras or wearable sensor are used
(two examples are given by [15], [48]). In all these cases, recognition is carried
out from 2D video images. In all these cases, recognition is carried out from 2D
video images. Since 2D video images have really been exploited a lot, this section
goes into deep about this argument in a structured way. The application fields,
the computation of features and descriptors, together with classification choices
are briefly reported here.

2.1.1 Application fields

Since investigations about recognition from 2D video images started at least 15
years ago, there are several application fields already explored. The applications
range from video surveillance to smart houses, from motion capture to behavioral
biometrics, and again from content based video analysis to health-care and elder-
care. Other applications can be found in classical robotics: teaching by touching,
teaching by demonstration, service robotics, human-computer interaction are only
few of them.

2.1.2 Features

Many features representations have been developed in order to recognize actions
from video sequences based on color cameras. In addition, the features extrac-
tion step represents the main source of diversification between various recognition
techniques. The choice of which features to use often depends on the ultimate goal
that has to be achieved by the recognition system. Some common goals require
the development of robust representations when particular variations occur in the
scene. Such variations can regard the appearance of the actors performing the



2.1 Recognition from RGB video images 11

actions (anthropomorphic variations, clothing variations, etc.), the background of
the scene (light variations, variations due to cluttered or dynamic backgrounds),
the viewpoint and so on. Furthermore, the extracted features shall enable a robust
classification of actions, because this is the final objective of action recognition.
Also the temporal aspect is important in action performance. Some features ex-
plicitly take into account the temporal dimension, while some others extract image
features for each frame in the sequence. In this case, the temporal variations need
to be dealt with in the classification step.

In this section, we discuss the features that have been extracted from 2D video
images in literature. According to [32], we divide the features extracted into two
broad categories: global representations and local representations.

Global representations

Global representations encode the visual information as a whole. These represen-
tations are typically obtained by means of a top-down approach: first a person
is localized in the scene (using background subtraction or tracking methods) and
then the region of interest (abbreviated ROI), identified in the localization step, is
encoded as a whole. Global representations, as well as local representations, have
advantages and disadvantages at the same time. The advantages are listed below:

• global representations are rich representations of the visual information: en-
coding much of the motion information enables to recognize actions with a
good accuracy;

• good recognition performances in constrained environments: in such envi-
ronments, variations are kept under control.

While the major drawbacks are:

• an accurate localization of people in the scene is required before starting the
features extraction step;

• sensitivity to viewpoint variations, noise and occlusions.

However, new techniques have been developed to aim at a partial solution of the
weaknesses mentioned above. These approaches are called grid-based and they
perform a spatial division of the visual information into cells, each of which encodes
part of the motion information locally (see [33], [9], [18], [42]). We distinguish
between the following types of global representations:

• shape-based representations;

• optical flow-based representations;



12 Literature review

• volume-based representations.

Popular shape-based representations include edges [6] and silhouettes of the hu-
man body [7]. In particular, silhouettes of the human body have been investigated
a lot in literature and have shown promising results. The basic approach involves
the extraction of specific features, called shape features, designed to summarize
information about the pose of a person. Further advanced approaches [49] [3] [35]
have been proposed. In these latter approaches, silhouettes are first extracted
and then stacked along the spatial and the temporal dimension. The results of
stacking silhouettes is a 3D spatio-temporal volume, and so these techniques can
also be categorized as volume-based approaches.

Optical flow based representation have been used by lots of research groups
[12] [20] [47]. Furthermore, new techniques that attempt to improve the stan-
dard approach have risen recently. An example of such a technique is outlined
in [1]. Ali e Shah [1] compute a set of kinematic features derived from a optical
flow calculation. Each kinematic feature encode some information related to the
motion dynamics. After that, the salient characteristics of the kinematic features
are summarized in structured spatio-temporal pattern, called kinematic modes.
Finally, for the classification task, a Multiple Instance Learning approach is used
and results are reported on publicly available datasets (see Section 2.3.1).

A 3D spatio-temporal volume, abbreviated in STV, is formed by stacking
frames in a specific sequence. The already cited [49], [3], [35] can be classified as
volume-based approaches. However there exists also volume-based works which
do not use silhouettes and [21] [26] [39] are only some examples.

Local representations

Local representations describe the extracted visual information by means of a
collection of local descriptors or regions of interest, the so called patches. By
contrast to global representations, local representations are computed by following
a bottom-up approach: first, spatio-temporal interest points are detected and then
local patches are calculated around them. Finally, all the obtained local patches
are combined into a final representation. Local representations, in turn, have
advantages and disadvantages. The advantages are:

• Lower sensitivity to noise and partial occlusions with respect to global rep-
resentations.

• The preventive application of a background subtraction or tracking method
is not strictly required.

While the main disadvantages are:



2.1 Recognition from RGB video images 13

• If the number of extracted interest points is too small, the final recognition
system is not ensured to be robust.

• A pre-processing phase is sometimes needed, in order to detect a proper
number of relevant points.

Before the widespread of RGB-D sensors, like Microsoft Kinect, spatio-temporal
features really represented the direction in which researchers were focusing more.
Obviously, research about local representations is still very active, but now it
might not seem the most promising way to follow in research. With regard to
local representations, works by Laptev et al. [24] [23], Dollár et al. [11], Schuldt
et al. [38], Scovanner et al. [39], Niebles et al. [29], Kläser et al. [22] e Willems
et al. [46] are a reference point for anyone who aims to implement a recognition
technique based on the extraction of spatio-temporal features.

It should be noted that for each new spatio-temporal feature invented, often
also a new descriptor was invented. Indeed, the cuboid detector was proposed
by Dollár et al. [11] in conjunction with the cuboid descriptor, while the Hessian
detector together with the ESURF descriptor were proposed by Willems et al. [46].
By contrast Laptev and Lideberg in [23] proposed a new detector, the Harris3D
detector, but not a correspondent descriptor, while in [24] only new descriptors
were introduced: this is the case of the well known descriptors HOG, Histograms
of Oriented Gradients, and HOF, Histograms of Optical Flow. A modified version
of HOG, was finally proposed by Kläser et al. [22]: here histograms of 3D gradient
orientation were computed, and these gave risen to HOG3D descriptor. There is
a last remarkable publication by Wang et al. [44]. In [44] a comparison between
the most promising local representations is given. The comparison is based on
common test beds, such as some selected publicly available datasets: KTH Action
Dataset, UCF Sport Action Dataset and Hollywood2 Human Action Dataset (see
Section 2.3.1) have been used to evaluate experimental results.

2.1.3 Classifiers

As stated in Section 2.1.1, human action recognition from 2D video images has
been widely studied. Accordingly, lot of classifiers have been experimented till
now. However, it is possible to distinguish classifiers into two broad categories:
those which permit to model temporal variations, the so called temporal-state
space classifiers, and those which not. The latters, are often called direct classi-
fiers. Furthermore, very popular classifiers belong to this class: this is the case
of nearest neighbors (abbreviated in k-NN) and discriminative classifiers, such as
SVMs1. When a direct classifier is used, the temporal aspect cannot rely on the

1SVM, Support Vector Machine.



14 Literature review

classifier and so it has to be handled in another way: one possible way to do this
is to incorporate the temporal aspect directly in the features representations. An
alternative method consists in performing the recognition on each frame individ-
ually. By contrast, the temporal evolution might not be explicitly handled before
classification if a temporal-state space model is used. These kinds of models are
generally representable by means of a graph structure which shows the evolving
of an action. Temporal state-space classifiers can be ulteriorly distinguished in
generative models and discriminative models. Conditional random fields belong
to the class of discriminative models, while dynamic time warping and HMM2

can be seen as generative models and have been extensively used in the action
recognition field.

2.2 Recognition from RGB-D video images

Human action recognition from RGB-D images is really new in literature. The
first work in this direction was done in collaboration with Microsoft Research [25].
In [25], a sequence of depth maps is given as input to the recognition system
and there is no knowledge about the current RGB stream. In this work, relevant
postures for each action are extracted and represented as a bag of 3D points.
Then, the motion dynamics are modeled by means of an action graph. It is clear
how our work differentiates from [25]: the input data, features and descriptors are
all different. There are other seven papers that address the task of recognizing
human actions with RGB-D sensors. However, not all these works have used
Microsoft Kinect as a sensor: in two of them [16, 17], a Time of Flight sensor is
used. Furthermore, [16,17] refer to the same author. Let us analyze first works in
which Microsoft Kinect is used.

The existing literature related to the exploitation of Microsoft Kinect sensor
refers to [40], [41], [50], [31], [28]. [40, 41] refer to the same authors and represent
the first attempt to exploit OpenNi skeleton tracking information to recognize
human actions. In [40, 41], work is much more focused on the classification step,
whereas our work concentrates on the features extraction step. Indeed, Sung et
al. tested their method on different classifiers: an SVM classification is compared
with a MEMM3 classification.

By contrast, our aim was to develop innovative features in order to burst
on the action recognition scene, so we chose not to concentrate too much on
the classification phase. Our work follows the perspective outlined in [50] by
Zhang and Parker instead. In [50], Zhang and Parker decided to extend spatio-

2HMM, Hidden Markov Model.
3MEMM, Maximum Entropy Markov Model.



2.2 Recognition from RGB-D video images 15

temporal features (see Section 2.1) already developed for RGB data only, to the
new dimension. The new features have been called 4D spatio-temporal features,
where “4D” is justified by the 3D spatial components given by the sensor plus
the time dimension. The descriptor computed is a 4D hyper cuboid, while Latent
Dirichlet Allocation with Gibbs sampling is used as classifier. Another work in
which typical 2D representations are extended to 3D is [28]. In [28], Ni et at.
extend the exiting definitions of spatio-temporal interest points and motion history
images [4] to incorporate also the depth information. At the same time, Ni et al.
have constructed a new dataset which is declared to be publicly available. For
the classification purpose, SVMs with different classifiers are used. Our work
aims to extend an existing method for 2D images to the RGB-D field like [50]
and [28], but differently from them, the definition of the new features already
exists and we have developed a new efficient way to compute them. It is important
to notice that probably both [40,41], [50] and [28] are not real-time systems since
nothing has been reported about time performances. Conversely, we expressively
designed a real-time system. Furthermore, [40], [41] and [28] aim to recognize
useful activities in the personal or assistant robotics field, whereas we look at
useful actions in video surveillance applications. Another remarkable distinction
factor between [40, 41], [50], [28] and our work is represented by the number of
people that can simultaneously appear in the scene and execute actions. While
[40,41], [50], [28] have realized a single-person action recognition, our system can
execute the recognition algorithm on each person present in the scene at a certain
time instant. Unlike [40], [41], [28] Popa et al. in [31] concentrate on recognition
of video surveillance actions. However, they refer to actions related to shopping
behaviors, and these are really specific actions. By means of Microsoft Kinect,
Popa et al. extract silhouette data for each person in the scene and then compute
moment invariants to summarize features. Finally, descriptors are classified using
different approaches: SVM, k-NN, LDC and HMM are used. Besides, [31] aims
to build a real-time recognition system in which also continuous recognition is
performed. These objectives are very similar to ours, but the features extraction
and the description steps clearly differentiate us from [31]. Moreover, we are not
interested on testing our system on more than one classifier yet, this may be left
to future developments.

Finally, we compare our work with [16,17]. In [16,17], 3D optical flow is com-
puted exploiting RGB-D data coming from the Time of Flight sensor. But there
is not a substantial improvement with respect to the traditional way of computing
optical flow. Indeed, Holte et al. compute 2D optical flow using the traditional
Lukas-Kanade method and then extend the 2D velocity obtained to incorporate
also the depth dimension. At the end of this process, the 3D velocity vectors are



16 Literature review

used to create an annotated velocity cloud. 3D Motion Context (3D-MC) and
Harmonic Motion Context (HMC) serve the task of representing the extracted
motion vector field in a view-invariant way. With regard to the classification task,
Holte et al. have not followed a learning-based approach and preferred to apply
a probabilistic Edit Distance classifier in order to identify which gesture best de-
scribes a string of primitives. [17] differs from [16] because it has been developed in
a multi-view camera system. So, in [17] 2D optical flow is estimated for each view,
then each of this flows is extended to the 3D definition and finally is combined
into a unique 3D motion vector field. It should be noted that both [17] and [16]
are devoted to solve a gesture recognition problem, while we look at recognizing
actions. Furthermore, Holte et al. do not really exploit all the 3D information
provided by the sensor while computing optical flow. Indeed, they calculate op-
tical flow 2D whereas we have developed a new method to estimate optical flow
3D directly from RGB-D information. Optical flow 2D is generally computed for
all pixel in the images and requires relevant computation times. We have over-
come the problem related to slow computation by estimating optical flow 3D only
for salient points, namely points associated with a person moving in the scene.
Lastly, the lack of a learning-based classification method in [16, 17] diverges from
our intention to classify actions by using GMM, Gaussian Mixture Models. At
last, in Table 2.1 we propose a structured comparison between our work and all
the works that have been cited in this section.

2.3 Comparison between different approaches

Currently, standard testing modes are missing in the human action recognition
field. Establishing common test beds to all researchers is a prerequisite in or-
der to compare different algorithms and evaluate research progress. Recently, a
certain number of datasets has been released by research groups at the cutting-
edge of the action recognition field, and this seems encouraging. Furthermore,
new publications are expected to report experimental results on these datasets
in order to help algorithmic comparisons. Video datasets released to the public
are commonly referred to as publicly available datasets. However, most of the
publicly available datasets is dated. Indeed, these datasets are generally composed
by video clips representing simple actions and generally, only recognition from 2D
images can be achieved. Nowadays, there are still to few datasets that can allow
researchers to evaluate algorithmic performances for complex actions or activities,
and much more remains to be done in this direction. Besides, for what concerns
recognition from RGB-D images, there is a complete lack of datasets on which pi-
oneering researchers can base their work. We really faced with this problem: there



2.3 Comparison between different approaches 17

is not a publicly available dataset with the RGB image information aligned with
depths information that allows us to recognize the actions we want to recognize.
So, in order to build a recognition system we have realized our own dataset, and
the decision about making it publicly available has been left to the future.

Table 2.1: Comparison between our work and works at the state of the art of human
action recognition from RGB-D images.

Work Recognition Application Features Classifiers
Task Fields

Li et al. [25] Action Gaming Salient GMM
Recognition postures

Sung et al. [40,41] Activity Service Body joints SVM,
Recognition robotics MEMMs

Zhang et al. [50] Activity Surveillance 4D spatio-temp. LDA with
Recognition HCI features Gibbs sampling

Popa et al. [31] Action Video Silhouettes SVM, k-NN,
Recognition surveillance LDC6, HMMs

Ni et al. [28] Activity Service DL MC STIPs7 SVM with
Recognition robotics 3D MHIs8 χ-square and

RBF kernels

Holte et al. [16,17] Gesture HCI 3D optical No learning,
Recognition flow Edit Distance

classifier

Our work Action Video Real 3D Nearest Neighbor
Recognition surveillance optical flow GMM, expected

2.3.1 Publicly available datasets with only RGB information

Some popular public datasets that allow only recognition from RGB images are
cited below:

• Weizmann Action Dataset9 [14]

• KTH Action Dataset10 [38]

• UCF Sports Action Dataset11 [34]
4LDC, Linear Discriminant Classifier.
5DL MC STIPs, Depth-Layered Multi-Channel Spatio-Temporal Interest Points.
63D MHIs, Three-Dimensional Motion History Images.
9See the Weizmann Action Dataset website.

10See the KTH Action Dataset website.
11See the UCF Sports Action Dataset website.

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
http://www.nada.kth.se/cvap/actions/
http://vision.eecs.ucf.edu/data.html


18 Literature review

• Hollywood Human Action Dataset12 [24]

• Hollywood2 Human Action Dataset13 [27]

• Virat Video Dataset14 [30]

• INRIA XMAS multi-view dataset15 [45]

In Table 2.2 we propose a structured comparison between these datasets. For each
dataset, the number and the resolution of existing video samples, as well as the
number and the class of the actions represented by the samples in the dataset are
reported.

2.3.2 Color-depths publicly available datasets

Just recently, new inexpensive sensors have appeared in the technological scene.
This is the case of Microsoft Kinect (see Section 3.2). The global diffusion of
Microsoft Kinect has excited the researchers’ curiosity about working not only
with RGB information but also with aligned depths information. This way, new
works that achieve recognition from RGB-D frames have emerged (see Section
2.2). At the same time a new need has arisen: the construction of new datasets
in which the RGB stream is aligned with the depth stream. Currently, only two
of such datasets have been released:

• Indoor Activity Database [40]

• RGBD-HuDaAct Database [28]

In Table 2.3 we propose a structured comparison between these two datasets. For
each dataset, the number and the resolution of existing video samples, as well as
the number and the class of the actions represented by the samples in the dataset
are reported.

Both these two datasets are targeted to recognition tasks in indoor environ-
ments. Furthermore, both these works aim to realize applications in the field
of personal or service robotics. In Table 2.4 further information about Indoor
Activity Database and RGBD-HuDaAct are provided, each field of the table is
self-explanatory.

12See the Hollywood Human Action Dataset website.
13See the Hollywood2 Human Action Dataset website.
14See the Virat Video Dataset website.
15See the INRIA XMAS multi-view dataset website.

http://www.di.ens.fr/~laptev/actions/
http://www.di.ens.fr/~laptev/actions/hollywood2/
http://www.viratdata.org/.cling
http://4drepository.inrialpes.fr/public/viewgroup/6


2.3 Comparison between different approaches 19

Table 2.2: Comparison between the most important publicly available datasets in which
only RGB information is provided.

Dataset Resolution Number of Number of Action classes
(pixel) video samples actions

Weizmann 180x144 90 10 running, walking
Action Dataset skipping, bending

jumping-jack
jumping forward
jumping in place
gallopsideways
waving with two hands
waving with one hand

KTH Action 160x120 2391 6 walking, jogging
Action Dataset running, boxing

hand waving
hand clapping

UCF Sport 720x480 197 10 diving, golf swinging
Action Dataset kicking, lifting

horseback riding
running, skating
swinging, walking
pole vaulting

Hollywood Human 540x240 About 700 8 answering the phone
Action Dataset on average getting out of a car

handshaking
standing up
hugging, kissing

Hollywood2 Human 600x450 3669 12 answering the phone
Action Dataset driving a car, eating

fighting, handshaking
getting out of a car
hugging, kissing
running, sitting down
sitting up, standing up

Virat Video 1920x1080 N/A 23 Some of them are:
2.0 release walking, running

standing, throwing
gesturing, carrying
loitering, picking up
get into a vehicle
get out of a vehicle
opening or closing trunk
unloading, dropping off

INRIA XMAS 390x291 429 13 checking the watch
multi-view Dataset crossing arms

scratching head
sitting down, getting up
turning around, walking
waving punching, kicking
pointing, picking up
throwing (over head)
throwing (from bottom)



20 Literature review

Table 2.3: Comparison between the existing publicly available datasets in which RGB-D
data are provided.

Dataset Resolution Number of Number of Action classes
(pixel) video samples actions

Indoor 640x480 N/A 12 brushing teeth
Activity Dataset cooking (stirring)

writing on keyboard
working on computer
talking on the phone
wearing contact lenses
relaxing on chair
opening a pill container
drinking water
cooking (chopping)
talking on a chair
rinsing mouth with water

RGBD-HuDaAct 640x480 1189 6 making a phone call
mopping the floor
entering the room
exiting the room
going to bed
getting up
eating meal
drinking water
sitting down
standing up
taking off the jacket
putting on the jacket

Table 2.4: Characteristics of the existing RGB-D publicly available datasets.

Dataset Number of Cluttered Different
different actors background environments

Indoor Activity Dataset 4 No Yes, 5

RGBD-HuDaAct 30 No No



Chapter 3

System baselines

T his chapter provides an overview of the fundamental compo-
nents on which the recognition system has been built. The

discussion is accompanied by specific remarks related to the implemen-
tation of the system.

In order to build a recognition system, the first step involves the definition of the
features to be extracted. As described in Section 2.1 and 2.2, it is possible to choose
features that require or not a preventive tracking or background subtraction. For
our work, we could exploit a people tracking system based on RGB-D data. This
system is described in [2,13] and it has been developed internally at the IAS-Lab1

in University of Padua. Then, we were faced with a twofold challenge: exploiting
the existing tracking system while computing effective features to recognize human
actions. We finally succeed by finding a new method to compute features belonging
to the category of global representations. The computed features are described
in Chapter 5, whereas in this chapter a brief overview of the recognition system
components is given, together with an overview of the underlying tracking system.

3.1 Tracking system

The underlying tracking system implements in the C++ programming language
what is known in literature as tracking by detection. Furthermore, this system
is designed to work on mobile robots as well. Complete information about the
tracking system we used can be found in [2, 13], however we think it is useful to
report some of them also in this work. The tracking system is view here as a

1See http://robotics.dei.unipd.it/.

21

http://robotics.dei.unipd.it/


22 System baselines

baseline system that helps us to realize the recognition system. The approach
used to achieve an effective people tracker involves the continuous application of a
detection algorithm in individual frames and the association of detections across
frames. Therefore, the entire system can substantially be divided into two main
steps:

1. the detection phase;

2. the tracking phase.

The detection phase is devoted to divide the scene in clusters. Then, specific fea-
tures are computed for each cluster: these features are necessary for the subsequent
tracking phase. This stage coincides with the detection phase of our recognition
system. We need to extract a certain type of features in order to recognize actions,
and the detector of the underlying tracking system already gives us what we need.
Specifically, we used clusters representing people (namely clusters that have al-
ready been evaluated) as raw data to be given as input at our features calculator.
In this case, each cluster is merely a point cloud representing a single person in
the scene. The results of the detection phase, both for the tracking system and
the recognition system, are finally sent to the tracker.

The tracking step takes the output given by the detection phase and tries to
assign each person detected to the correct track. The way the tracker performs this
work does not regard this discussion. However it is interesting to see the role of the
tracker in our recognition application. It is important to remember that we want
to recognize the action performed by each person in the scene at a certain time (see
Section 1.3). In order to achieve this goal, we have to associate each “clustered”
cloud coming from the detection phase to the correct track. Once we have made
this association, it is possible to extract features from the clustered cloud for each
track (namely person) at each frame and so it is possible to recognize the action
performed by each person in the scene. The tracking has been implemented so
that it is possible to manage each single track, but it is also possible to handle all
the detected tracks together. This is a crucial point: in this work the majority
of operations are performed at the level in which we can handle single tracks.
Indeed, the features extraction and computation, the descriptors computation
and the classification step are all referred to this level. The stage at which we can
handle all the detected tracks is devoted to message passing, to realize visualization
objectives and to perform what is computed at the level previously described.
Finally, the tracking system is a real-time system and we really did not want to
lose this great property. Therefore we decided to build a recognition system which
is also real-time. Being able to satisfy our real-time constraints is not as easy as
it could sound: sometimes we had to use small tricks to make computing feasible



3.2 System components 23

at a good frame rate.
The articulated structure of the tracking system allows us to see the potential

inside our recognition application. In fact, if the classification step and some
portion of the features extraction step are performed at the stage in which all
the detected tracks can be handled together, also actions involving more than one
person can be recognized. However, this enhancement of the system is left to
future developments (see Chapter 7).

3.2 System components

It makes sense that if the recognition system is built on an existing tracking
system, the components of the tracking system are also components of the recog-
nition system. However, we believe useful to report the essential elements of the
recognition system in this discussion.

3.2.1 Microsoft Kinect

Nowadays it is possible to develop an entire recognition system based on data
acquisition by means of cheap sensors. An example of such a sensor is Microsoft
Kinect. The Kinect sensor is distributed by Microsoft for the Xbox 360 video
game console but it has recently gained in popularity also in the computer vision
field. We used Microsoft Kinect in our system and we are currently among few
pioneering works in this direction. This device consists of an RGB camera, an
infrared structured light source for inferring depths and a multi-array microphone
running a proprietary software. As a consequence, Microsoft Kinect returns an
RGB video stream with aligned depth at each frame as output. The RGB video
stream uses 8-bit VGA resolution (640 x 480) pixels with a Bayer color filter,
while the monochrome depth sensor outputs a video stream at VGA resolution
as the RGB stream, but with 2048 levels of sensitivity (corresponding to 11 bits).
It has been estimated that Kinect sensor outputs videos at a frame rate of 30Hz.
Furthermore, the small size of Microsoft Kinect makes it suitable to be mounted
on mobile ground robots such as Pioneer 3-AT2.

3.2.2 ROS - Robot Operating System

The recognition system has been designed in C++ programming language to run
entirely with ROS. ROS stands for Robot Operating System but it do not repre-
sent an actual operating system according to the common meaning of these words.

2The PIONEER 3-AT is a highly versatile four wheel drive robotic platform. All information
about it can be found at http://www.mobilerobots.com/researchrobots/p3at.aspx.

http://www.mobilerobots.com/researchrobots/p3at.aspx


24 System baselines

Instead ROS is better defined as a framework: it provides libraries, hardware ab-
straction, device drivers, visualizers, message passing, and more other function-
alities in order to help the development of robot applications. Furthermore, it is
geared toward a Unix-like system: currently only Ubuntu Linux is supported while
other variants such as Fedora and Mac OS X are considered experimental. Orig-
inally realized at Standford Artificial Intelligence Laboratory, now ROS is being
developed at Willow Garage3, a robotics research lab devoted to the development
of hardware and open source software for personal robotics applications.

ROS looks like an appealing framework to research teams because it provides
a lot of utilities while being free for research use. This work is based on ROS
and it has taken advantage of a lot of its functionalities. Only some of which are:
the message passing, the computation by means of graph architectures and the
visualizer rviz. It is necessary to say something more about graph architectures,
because they really are the “bearing walls” of our application. In ROS graph archi-
tectures, processing takes place in nodes and each of these nodes may receive, post
and multiplex sensor, control, state, planning, actuator and other messages. ROS
nodes are simply executables that uses ROS to communicate with other nodes.
This communication is realized by means of message exchanging: in order to send
a message to other nodes, each node has to publish messages to a topic, whereas it
has to subscribe to a topic to receive messages from other nodes. Communication
between nodes can also be achieved by exploiting RPC services or the Parameter
Sever functionalities. More information about this and other arguments can be
found at the official ROS website4.

There are two possible ROS distributions available to users: the stable version
and the unstable version. The stable release of ROS is ensured to be working,
but it may typically contain the old versions of certain libraries. It is therefore
recommended to always use the stable version. However, it can happen a developer
needs a function contained only in the cutting-edge version of a specific library.
In the last case, the developer has to work with the unstable distribution of ROS.
The latter is a rolling distribution that targets the next ROS distribution release.
In the unstable version, updated libraries can be found but it can happen that
something doesn’t work because it is still under development. We have used the
ROS stable version for what concerns the ramp-up phase of this work (see Chapter
4), whereas we have needed the ROS unstable version in order to compute the new
features we propose in real-time (see Chapter 5).

3See http://www.willowgarage.com/.
4See http://www.ros.org/wiki/.

http://www.willowgarage.com/
http://www.ros.org/wiki/


Chapter 4

Action recognition with global
cues

I n the start-up phase of this work, a simple recognition sy-
stem has been developed in order to take confidence with

the underlying tracking system and see the real potential of a future
recognition system. This chapter covers all the details about this ini-
tial recognition system, including which type of features are used and
which classification method is exploited.

Before developing a robust recognition system, we decided to realize a simple
recognition system in which ad hoc rules are used to distinguish actions from each
other. An overview of this simple recognition system is shown in Figure 4.1. In
this system, we exploit some simple features coming directly from the tracking-by-
detection system and we investigate about which actions could be recognized using
this approach. Since these features are not so discriminant, we did not choose to
extend this approach to a learning-based classification method. Thanks to the
knowledge acquired during this phase of the work, at a later stage we succeed in
developing an innovative recognition system (see Chapter 5 and Chapter 6).

Figure 4.1: Overview of the recognition approach in which global cues are exploited.

25



26 Action recognition with global cues

The remainder of this chapter is organized as follows: Section 4.1 briefly ex-
plains the type of features we used to create a basic recognition system, Section
4.2 describes how the recognition is performed, while Section 4.3 reports the ex-
perimental results obtained while testing the program on a dedicated dataset.

4.1 Extracting simple features

One of our aims (see Section 1.3) is to recognize actions executed by each person
present in the scene at a certain time. To achieve this objective, we had to associate
each track with its current set of features. However, the tracking system already
gave us what we needeed: the desired features associated with each individual
track. Specifically, these features are the:

- 3D geometric coordinates of the centroid of each person in the scene;

- bounding box proportions of each person in the scene.

We refer to the 3D geometric coordinates of the centroid as the x, y and z co-
ordinates at which the centroid is located in the real world, whereas we refer to
the bounding box proportions as the width and the height of the bounding box
in the camera reference system. Starting from these features, we decided to add
a new one: the 3D velocity vector of the centroid for people in the scene. Table
4.1 shortly represents the features used at this stage of the work.

Features given by the tracking system Features computed

- 3D geometric coordinates of the centroid 3D velocity vector of the centroid
- Bounding box proportions

Table 4.1: The table shows the features used as global cues by the recognition system.
The left column lists the features given by the tracking system, while the right column
shows the features computed from those on the left.

The geometric coordinates of the centroid and the bounding box proportions
are initially collected in vectors for each track and at each frame. In other words,
for each track there are two vectors: one storing the centroid coordinates and one
storing the bounding box proportions. Obviously, the two vectors are aligned: this
mean that if the object A is collected at frame F and it is stored in a vector at the
position K, then also the other vector will store the object B, different from A,
at the position K (if it is collected at frame F ). Furthermore, while developing a
collector for the chosen features, a more extended approach was used: instead of
storing only the geometric coordinates related to the centroid, it is possible to store



4.1 Extracting simple features 27

geometric coordinates related to every desidered key point. Different key points
are associated with different IDs, so that it is possible to refer to key points of the
same type without any problem. Although this extension was available, it was not
exploited because we decided to store only the 3D geometric coordinates of the
centroid. Indeed, 3D trajectories of the centroids have already demonstrated to
be discriminant features in human action recognition, e.g. in [5] these features are
exploited to recognize human behaviour models in smart home enviroments. Once
the collection of 3D centroids is started, the next step regards the computation of
the 3D velocity vectors associated with them.

4.1.1 Velocity Estimation

We developed two different methods to calculate velocity vectors: these methods
differ each other in the way they look backward for the previous centroid that has
to be used in the calculus of the velocity vector. The first method allows us to
search backward in terms of the number of frames, while the second one enables
searches based on seconds of time. Furthermore, both these methods take as input
the current centroid and, respectively, the number of frames in the former case, or
the amount of time in the latter case, of which we have to go back to pick up the
previous centroid. When the previous centroid is retrieved, the spatial difference
and the time difference related to this pair of centroids are computed. Then, the
spatial difference is divided by the temporal difference and the 3D velocity vector
is finally returned. Concurrently with the collection of 3D geometric coordinates
of the centroid, the 3D velocity vector is computed at each frame. It is clear
that some time is needed before the computation of the velocity vectors becomes
effective and this portion of time directly depends on the setting of the “backward
search” described so far.

In addition, we decided to display the 3D velocity vector in the RGB visual
image in order to verify the correctness of the computations outlined above. We
have accomplished the visualization in more than one step:

1. at each frame, the 3D velocity vector related to the current centroid is re-
trieved;

2. the 3D velocity vector is then normalized;

3. the final point of the arrow to be displayed is computed by exploiting the 3D
geometric coordinates of the current centroid and the normalized velocity
vector;

4. 3D geometric coordinates of the final point are converted to the camera
reference system;



28 Action recognition with global cues

5. finally, an arrow is visualized between the current centroid and the so called
final point of the arrow.

Point 1 and point 5 are self-explanatory, while point 2 is accomplished in order to
visualize an arrow that keeps always the same lenght even if the velocity vector
changes frame by frame. In point 3 we used a simple a simple formula to compute
the final point:

final_point = current_centroid + normalized_velocity_vector × current_time_difference

and the successive point 4 is necessary because the final point obtained in 3 is
expressed in the real world coordinates system. Eventually, Figure 4.2 shows four
frames in which the velocity vector is displayed while a person is moving in a lab
environment.

(a) First frame. (b) Second frame.

(c) Third frame. (d) Fourth frame.

Figure 4.2: Display of the velocity vector associated to the centroid of a person. Four
consecutive frames are shown.



4.2 Discerning between actions 29

4.2 Discerning between actions

As stated in the introduction of this chapter, the recognition is realized here by
means of ad hoc rules. For each specific action class, rules are used to determine
if the action into consideration is taking place at a certain time instant. Since the
features used to discern between actions are really limited, we had to investigate
about which type of actions could potentially be recognized by following this basic
approach. The result was that:

• actions like standing, sitting down, standing up, crouching (or bending) could
ideally be recognized observing the movement of the centroid along the ver-
tical axis;

• actions like walking, jogging, running, could ideally be recognized observing
the norm of the current 3D velocity vector associated with the centroid of a
person;

• finally, actions like boxing or hand waving could not be recognized with
our simple approach, because there is no way to identify the movement
performed by single parts of the human body.

Therefore, we decided to concentrate on the following actions: standing, sitting
down, standing up, crouching, walking, jogging and running. Recognizing actions
like walking, jogging, running is a challenging task due to their intra-class varia-
tions: in this case the speed at which an actor is moving strongly depends on the
characteristics of the actor, so for example an actor may “run” at the same speed
at which another actor is simply “jogging”. Table 4.2 shows the actions we aimed
to recognize along with the features we used in order to achieve this objective. We
started developing the ad hoc rules for the standing, walking, jogging and running
actions and then we continued by adding more actions beyond these three ones.
Firstly, rules associated with standing, walking, jogging and running took into ac-
count only the current speed of the centroid, but when new actions were added to
these initial ones, it became necessary to add other parameters in order to avoid
overlapping between actions. Specifically, we said that:

• A person is standing if the current speed of his/her centroid is less than 0.2
km/h, the centroid itself is not lowering or rising, and he/she is not sitting
down currently.

• A person is crouching if his/her centroid is lowering by an amount greater
than a predefined constant threshold at each frame. Furthermore the person
has not to be already sitting.



30 Action recognition with global cues

Action Raw features used

Standing - 3D geometric coordinates of the centroid
- 3D velocity of the centroid (smaller than 0.2 km/h)

Crouching - 3D geometric coordinates of the centroid

Standing up - 3D geometric coordinates of the centroid

Sitting down - 3D geometric coordinates of the centroid
- bounding box proportions (width - height)

Walking - 3D geometric coordinates of the centroid
- 3D velocity of the centroid (between 0.2 km/h and 6.0 km/h)

Jogging - 3D geometric coordinates of the centroid
- 3D velocity of the centroid (between 6.0 km/h and 8.0 km/h)

Running - 3D geometric coordinates of the centroid
- 3D velocity of the centroid (greater than 8.0 km/h)

Table 4.2: The table shows the actions recognized by the basic recognition system together
with the features used to develop ad hoc rules in order to discern between the outlined
actions. Further details are provided in the discussion.

• A person is standing up if his/her centroid is rising by an amount greater
than a predefined constant threshold at each frame. The person could be
previously sitting or not.

• A person is walking if the current speed of his/her centroid is between 0.2
and 6.0 km/h, the person is not lowering or rising, and he/she is not sitting
down currently.

• A person is jogging if the current speed of his/her centroid is between 6.0
and 8.0 km/h, the person is not lowering or rising, and he/she is not sitting
down currently.

• A person is running if the current speed of his/her centroid is greater than
8.0 km/h, the person is not lowering or rising and he/she is not sitting down
currently.

We set the thresholds related to the velocity of the centroid according to the
conventional wisdom, whereas the thresholds related to lowerings and risings are
set according to experimental evaluations. Furthermore, we observed that by
adding more and more actions, the recognition task, as realized here, becomes more
complicated due to possible overlapping actions. Let us consider two overlapping



4.3 Experimental results 31

actions as two actions for which the associated ah hoc rules return “true” in both
cases. When the output of two distinct rules is “true”, the system is ideally
recognizing two different actions at the same time, but this can not occur. If
more than one discriminant rule gets a “true” as output value, it will be necessary
to modify most of the rules present in the system in order to make them more
discriminant. Obviously, this process is intended to produce increasingly detailed
rules without the assurance that at the next step other actions will not overlap.
All these considerations prove that such a basic approach to the recognition is
limited and it is not scalable.

4.3 Experimental results

First, we tested the recognition system with global cues on-line. In this context,
on-line means that the Microsoft Kinect is connected while the program is exe-
cuting, and it sends the RGB-D stream real-time to the application. This live
execution enabled us to properly estimate thresholds related to ad hoc rules (see
Section 4.2). A remarkable observation coming from these first experiments re-
gards the frame rate of the application. Indeed there is an important issue: if ad
hoc rules are estimated while working on a personal computer which can perform
only at low frame rates, and successively, the application is executed on a personal
computer working at high frame rates, the thresholds will not be well estimated
(also the vice versa holds). Furthermore, such “wrong” thresholds will lead to a
wrong action recognition.

Secondly, we tested the system in the context of Section 6.2.1. Despite we
created the dataset described in Section 6.2.1 for other purposes, we felt that it
could be an interesting test bed also when applied to the recognition system based
on global cues. In this section, each video sample, namely each recording, related
to a different individual is entirely given as input to the system and the results
are observed in the perspective of continuous recognition. Figures 4.3, 4.4, 4.5,
4.6, 4.7 and 4.8 show the result of the recognition system based on global cues
for each action of the dataset defined in 6.2.1. For each action class two frames
are provided. Figures 4.4 and 4.7 confirm what was stated in Section 4.2: the
system is not able to recognize actions in which only the movement of single body
parts is involved. While, Figure 4.5 show that also the action crouching could be
recognized by our simple system. Indeed, the action crouching is rightly inferred
while the actor is bending but he is not already sitting down.

Finally, we provide final considerations about the continuous recognition task
and possible developments of this basic system. In general, the system is not
scalable with regards to the number of actions that can be recognized and it is not



32 Action recognition with global cues

error-free when it attempts to infer the action for a piece of video stream. However,
the continuous recognition is performed in a fairly good way, even if it occurs that
the beginning and the end of an action are not always properly identified. Limits
and weaknesses of the system, outlined in this discussion and in Section 4.2, led
us to the design of a new recognition system in which more sophisticated features
are used together with a learning-based classification algorithm.

(a) First frame. (b) Second frame.

Figure 4.3: Recognition results of the system based on global cues for the action standing
taken from the dataset defined in Section 6.2.1.

(a) First frame. (b) Second frame.

Figure 4.4: Recognition results of the system based on global cues for the action hand
waving taken from the dataset defined in Section 6.2.1.



4.3 Experimental results 33

(a) First frame. (b) Second frame.

Figure 4.5: Recognition results of the system based on global cues for the action sitting
down taken from the dataset defined in Section 6.2.1.

(a) First frame. (b) Second frame.

Figure 4.6: Recognition results of the system based on global cues for the action getting
up taken from the dataset defined in Section 6.2.1.



34 Action recognition with global cues

(a) First frame. (b) Second frame.

Figure 4.7: Recognition results of the system based on global cues for the action pointing
taken from the dataset defined in Section 6.2.1.

(a) First frame. (b) Second frame.

Figure 4.8: Recognition results of the system based on global cues for the action walking
taken from the dataset defined in Section 6.2.1.



Chapter 5

Detecting motion from point
cloud XYZRGB data

�U sing the right tool for the right job” represents the real
essence of this chapter. The right tool for us is Point

Cloud Library, while the right job regards the computation of 3D optical
flow starting from point cloud data representing a person. Therefore
this chapter firstly gives an overview of the Point Cloud Library and
its tools, and then it goes into the deep about the issue of computing
optical flow 3D from point cloud data only.

Poor results and limitations coming from the recognition approach in which global
cues are exploited (see Chapter 4), encouraged us to create an enhanced recog-
nition system. This new approach to human action recognition consists of three
major steps:

1. the features extraction, in which we propose a novel approach to compute
useful features to recognize actions;

2. the descriptors computation, in which features computed at the previous
phase are conveniently summarized in a data structure, the so called de-
scriptor;

3. the classification, in which previously unseen temporal sequences of descrip-
tors are classified following a learning-based approach.

The point 1 is discussed in this chapter, while point 2 and and 3 are described
in Chapter 6. Furthermore, a comparison between the approach to recognition

35



36 Detecting motion from point cloud XYZRGB data

based on global cues and the one proposed in this chapter is shown in Figure 5.1.
As briefly seen in Section 1.2, features are powerful discriminants in human action

Figure 5.1: Comparison between recognition approaches: the overview of the recognition
with global cues is matched against the overview of the recognition based on 3D optical
flow computation.

recognition and this work is focused on finding new features and effective ways
to compute them. In particular, we propose a new way to compute 3D optical
flow, namely the extension to the third dimension of the traditional 2D optical
flow used to recognize actions from 2D video images (see Section 2.1). Further-
more, our approach is able to perform real-time computations for 3D optical flow,
whereas most of the works based on computing 2D optical flow has not real-time
performances. Indeed, computing optical flow is really a challenging problem. The
approach we followed in order to achieve real-time performances aims to compute
the velocity vectors of the 3D optical flow only for the portions that represent peo-
ple in the scene. More specifically, each person is associated with a point cloud
and 3D velocity vectors for the points of each cloud are calculated. While aiming
to compute velocity vectors a new issue arose: the problem of finding correspond-
ing points between a specific cloud in a current frame and the same cloud in a
past frame. This problem has been solved exploiting the geometric coordinates
of points together with the color information and is addressed in Section 5.3.1.
The same section provides also further details about the calculation of 3D optical
flow, whereas the earlier sections, 5.1 and 5.2, describe respectively the tools we
used to compute the 3D optical flow and the first approach to the problem. The
chapter ends with Section 5.4, in which a brief discussion about the performances
of our approach to 3D optical flow is provided, together with a comparison with
2D traditional approaches.



5.1 Dealing with point clouds 37

5.1 Dealing with point clouds

A point cloud is defined as a data structure representing a collection of multi-
dimensional points. When dealing with a 3D point cloud, points are commonly
represented by the x, y and z geometric coordinates of an underlying sampled
surface. In order to compute the optical flow 3D, we needed to deal with 4D
point clouds, namely point clouds in which points are characterized by having a
fourth field representing the color component. Past methods to compute optical
flow 2D relied on pixel color intensity. Intensity was used to compute image
derivatives in order to find correspondences between pixels in the past and the
current frame. Similarly, we exploit the RGB color information to direct a search
that aims to find correspondences between points in each past and current point
cloud representing a person. As seen in Section 3.1, the recognition system is
based on an existing tracking system. Originally, this tracking system accessed to
only depth information from Microsoft Kinect sensor, so that point clouds were
all 3-dimensional (i.e. each cloud associated with a person was uncolored). The
first step needed to compute optical flow 3D has involved the addition of the color
information to the tracking system, so that colored clouds for people in the scene
could be available at any time. Next steps are described in Section 5.2 and 5.3,
while this section is focused on providing an overview of Point Cloud Library and
its data structures. We used the PCL 1.4 version, provided in the unstable ROS
branch (see Section 5.3). The stable version of ROS includes PCL 1.1 version
in which data structures are not fully working and a lot of bugs are not fixed.
Advanced data structures are used to efficiently perform computations on point
clouds and they proved to be decisive on realizing real-time operations in this
work, therefore proving PCL 1.4 version has been a good choice.

5.1.1 PCL - Point Cloud Library 1.4

The Point Cloud Library [36], abbreviated in PCL, is a standalone, large-scale
open source project for n-dimensional point cloud processing, with special focus
on 3D geometry processing. The PCL framework contains various algorithms at
the state of the art of filtering, feature estimation, surface reconstruction, point
cloud registration, model fitting and segmentation. These algorithms make a
number of functions available to users, including functions devoted to:

• filtering outliers from noisy data;

• stitching 3D point clouds together;

• segmenting salient parts of a scene;



38 Detecting motion from point cloud XYZRGB data

• extracting keypoints and computing associated descriptors in order to re-
cognize objects based on their geometric appearance;

• estimating surface normals and reconstructing object surfaces;

• visualizing point clouds at high frame rate.

Furthermore PCL is released under the terms of the BSD license and it is free for
commercial and research use. Unlike other open source libraries, PCL is really well
supported by a community of reference developers. Engineers and scientists from
all over the world are currently contributing to the development of this framework,
though the majority of them is concentrated in U.S.A. and Europe. PCL has also
a rich community of users that can take contact with developers by means of the
users forum1. The users forum is a great communication system that helps users
to solve problems and also helps developers to find new bugs to be fixed. During
the development of this thesis work, we have relied on this forum for what concern
challenging point clouds processing and so we could really see the hidden potential
in the community of developers and users. Finally, the PCL project is also well
financially supported: large companies such as Google, NVidia, Toyota and Urban
Robotics are active financiers.

5.1.2 Data Structures

In PCL, the basic data structure is a point cloud. There are actually two types of
point clouds:

• unorganized point clouds;

• organized point clouds.

Organized point clouds resemble an organized image structure, where data is split
into rows and columns. Clouds coming from Time of Flight cameras are examples
of such organized clouds. The advantages of dealing with organized point clouds
is that nearest neighbor searches can become much more efficient thanks to the
possibility of exploiting relationships between adjacent points. By contrast, unor-
ganized point clouds are simply collections of points with no structure. However,
PCL provides advanced data structures by means of which it is possible to define
a structure for unorganized point clouds. By using these advanced data struc-
tures nearest neighbor searches become effective as in the organized case. In this
work, we have dealt with unorganized point clouds coming from the underlying
tracking-by-detection system and we have exploited advanced data structures to

1See http://www.pcl-users.org/.

http://www.pcl-users.org/


5.2 Change Detection 39

force a structure on these clouds. PCL provides two advanced data structures,
kdtree and octree, which both are tree-based structures and have been used in
this work. A k-dimensional tree, or kdtree, is a space partitioning data struc-
ture that stores a collection of k-dimensional points in a tree structure in which
FLANN searches are enabled. FLANN stands for Fast Library for Approximate
Nearest Neighbors and it is a library that allows for fast nearest neighbor searches
in high dimensional spaces. In this work, k-dimensional trees have been used while
inquiring about possible ways for matching point clouds coming from the current
and past frame (see Section 5.3.1). To achieve this objective, also octree struc-
tures have been used. An octree is a hierarchical tree data structure in which each
node has either eight children or no children. The root node identifies a cubic
bounding box which encapsulate all points, furthermore at every tree level the
space becomes partitioned by a factor of 2 and this results in an increased voxel
resolution. Octrees, as well as kdtrees, enable for fast nearest neighbor searches
including:

• radius searches

• k-nearest neighbor searches

• neighbors within voxel search.

Radius searches and neighbors within voxel searches return all neighbors of a query
point that are within a given radius and a given voxel respectively, while k-nearest
neighbor searches return the k nearest neighbors of a query point. Fast searches
are the core operations that enable our system to perform real-time computations
and octree has proved to be a data structure well suited for our purposes. Indeed,
we have also used octrees to implement change detection (see Section 5.2) and
correspondence rejection methods (see Section 5.3.2).

5.2 Change Detection

First, we approached the problem of detecting motion from point cloud data by
exploiting a tool available in PCL (1.2 version or higher). This tool is represented
by a particular octree data structure that allows for spatial change detection on
unorganized point clouds. The octree implementation for detecting spatial changes
takes two clouds as input and returns a vector of indices as output. When the first
cloud is set as input cloud, an octree is built on it and describes its distribution.
Also when the second cloud is fed as input an octree is built on it, but it is
important to notice that when an octree is built on the second cloud this particular
octree class has to be reset. Resetting allows to keep the first octree structure in



40 Detecting motion from point cloud XYZRGB data

memory while dealing with the second one. This mechanism is referred to as octree
double buffering and it is necessary to efficiently process multiple point clouds over
time. Once the two clouds have been added to the octree spatial change detector,
their octree structures are recursively compared in order to find differences in voxel
configuration. These differences mean that spatial changes have occurred. At the
end of this process, a vector of point indices is returned. These indices refer to
points coming from octree voxels which did not exist in previous buffer. As an
additional detail, the voxel resolution of the octree spatial change detector can
be set at the time octree is created. The voxel resolution determines how many
points would be stored in each of the voxels, so by changing the voxel resolution
it is possible to have any number of points within a single octree node. We set
the voxel resolution so as to have a single point in each octree voxel and then we
added the octree point cloud change detector to our system. In order to do that, we
needed to associate each track with its point cloud at each frame. This objective
was accomplished by sending the right clouds via ROS message from the detector
to the tracker in the underlying tracking system. Furthermore we also needed to
store, for each track, the point cloud associated to it in the current and the past
frame. In other words, at each frame F and for each track T , a vector stores
two elements: the point cloud associated to T at frames F and F − 1. Finally,
these two point clouds are sent as input to the octree spatial change detector and
indices for the moving points are retrieved at every time. The correct use of the
octree double buffering technique allows us to achieve good results while keeping
real-time performances, indeed the tracking system with the add of the spatial
change detector maintains its original time performances.

5.3 Computing 3D optical flow

Performing spatial change detection gave us the true insight on which this thesis
work is based. As described in Section 5.2, in order to execute spatial change de-
tection frame by frame, we had to store for each track the point cloud associated
to it for the current and the past frame. At this stage, we realized that if we had
found the existing correspondences between the points of the two clouds (the past
and the current cloud), we could estimate the optical flow by simply calculating
the 3D velocity vector for each pair of matching points. Therefore, we investigated
about the possible ways in which the correspondences between points could be es-
timated. From the correspondence estimation problem, a new issue arose: the
correspondence rejection problem. Since correspondences are “simply” estimated,
some of them could represent a wrong estimation, namely the algorithm could
find a matching between two points even if those points did not actually match.



5.3 Computing 3D optical flow 41

The task of rejecting wrong estimations for points of two different point clouds is
called correspondence rejection. We concentrated also on finding methods to reject
wrong correspondences and finally, we developed a particular algorithm that aims
to reject “bad” correspondences concurrently to the noise caused by the Microsoft
Kinect sensor. In order to test the correctness of the estimation and rejection
methods we decided to visualize results by means of the PCL visualizer (available
from the 1.2 version).

Before going into the details of the discussion, it is important to remark that:

1. spatial change detection can or can not be applied before correspondences
between points have been estimated;

2. 3D optical flow can be computed with or without the previous execution of
the correspondence rejector.

As regards point 1, we initially developed a system able to estimate correspon-
dences between points of the clouds without previously performing the spatial
change detection algorithm. Applying spatial change detection could lead to some
advantages and disadvantages at the same time. Advantages are:

• reduced number of points in the point cloud to be considered for further
computations;

• pre-screening devoted to noise removal.

In order to achieve an actual reduced number of points we created a new cloud,
starting from the current one, and then we added to this cloud all the points
in the current cloud that are found to be moving by the spatial change detector.
Furthermore, when dealing with Microsoft Kinect there is a bit of noise constantly
present; this noise is due to the continuous mapping and remapping of the points
from the camera reference system to the real world system and vice versa. The
major drawback hidden inside this approach is related to the number of corre-
spondences returned by the estimator. Indeed, if a person is currently standing
(namely without making any movement), the number of output correspondences
might be very low and this could lead to a loss of information potentially precious
in successive steps.

As stated in point 2, once correspondences have been estimated, they could
be fed as input directly to the optical flow calculator or they could first pass
through a correspondence rejector. In the former case, the optical flow calculator
returns the 3D optical flow computed for all the points in the current cloud that
have a correspondence in previous cloud. In the latter case, a correspondence



42 Detecting motion from point cloud XYZRGB data

rejection method is applied just after the correspondence estimation and a new
vector of matching points is returned. Obviously, the length of this vector could
be ideally less than or equal to the length of the vector containing the estimated
correspondences, but if it remains unchanged, then there is not any improvement
with respect to the correspondence estimation step, since the two outputs are
actually the same. After the correspondence rejection has been performed, the
new vector of matching points is given as input to the optical flow calculator and
finally the 3D optical flow is computed for all the points in the current cloud that
have a correspondence in the previous cloud which is not been rejected by the
application of the correspondence rejection algorithm. In Figure 5.2 a scheme of
the process related to the computation of 3D optical flow is provided.

5.3.1 The problem of matching point clouds

Matching point clouds represents a central issue in this work. Indeed, the 3D
optical flow calculus strictly depends on how many correspondences between points
are well estimated. In this work, the tool devoted to the correspondence estimation
is called point cloud matcher. The point cloud matcher takes four elements as
input:

• the previous cloud to which we are referring at the current frame;

• the current cloud associated with the current frame;

• the previous vector of indices related to points in the previous cloud;

• the current vector of indices related to points in the current cloud;

and it attempts to estimate the existing correspondences between the points of
the current cloud and the points of the previous cloud. Actually, the point cloud
matcher returns a vector of correspondences between points: a correspondence is
defined as a pair of matching indices, one taken from the current cloud and one
from the previous cloud. In order to find pairs of matching indices, we discussed
several ways that all had a common characteristic: the objective of performing
searches based on the color information. Indeed, since the 2D optical flow calculus
relies on the differences in pixel color intensity observed during the time evolution,
we thought we could bring a similar approach to the point clouds world. Since the
point clouds involved in this work are 4D point clouds (see Section 5.1) we chose to
perform nearest neighbor searches driven by both the geometric coordinates of the
points and the color information. First, we implemented a brute force algorithm:
the current cloud is scanned and each of its points is compared against each point
in the previous cloud, in order to find the match with the minimum distance. The
distance is computed based on:



5.3 Computing 3D optical flow 43

Figure 5.2: Overview of the computational process of 3D optical flow.



44 Detecting motion from point cloud XYZRGB data

1. the geometric coordinates and the RGB color information related to the
points, or

2. the geometric coordinates and the HSV color information related to the
points.

As regards point 2, the RGB color information is converted to the related HSV
representation by means of well-known conversion algorithms. Unfortunately, the
brute force method did not estimate the correspondences between points very well
and furthermore, it has demonstrated to be really high-costly in term of compu-
tation. In fact, at this level each cloud has on average 300 points, and performing
such an algorithm could lead to the execution of 300 × 300 computations on av-
erage, since the brute force method is O(N ·M) where N is the size of the current
cloud and M is the size of the previous cloud. Furthermore, the N × M compu-
tations will be executed for each track and at each frame, potentially leading to a
crash of the system.

To enhance the brute force algorithm, we needed an efficient tool to perform
searches in point clouds and PCL was the right tool for our purposes. Further-
more, the knowledge acquired by performing spatial change detection (see Section
5.2) suggested us to use the octree data structure to perform efficient searches.
Indeed, PCL provides the class OctreePointCloudSearch which enables to execute
various kind of searches, like searches within voxels, k-nearest neighbor searches
and radius searches (see Section 5.1.2). Then, we looked for a search algorithm
that best suited our application and particularly we examined searches for the
k-nearest neighbors at a query point and searches within a radius. In both cases
the algorithm that attempts to estimate correspondences is organized as follows:

a. The cloud at the current frame is scanned, and a point belonging to it is
extracted each time.

b. An octree search structure is set based on the previous cloud (associated
with the current one).

c. Pretending that each point in the current cloud is a point in the previous
cloud, an efficient search is performed: a current point is searched in the
previous cloud each time a point is extracted.

d. Finally, a set of nearest point to the query one is retrieved.

Furthermore, searches are driven by:

• the 3D geometric coordinates and,

• the color information expressed in the RGB representation,



5.3 Computing 3D optical flow 45

so that points retrieved are really the nearest points in term of both spatial location
and color. Results indicated that:

1. The k-nearest neighbor search algorithm estimates correspondences quite
well, whereas the radius search algorithm do not.

2. Best results are obtained for k = 1.

With regard to point 1, we want to provide some further details. First, the number
of correspondences returned by both algorithms is equal to the number of points
in the current cloud. Since, each point in the current cloud is matched against
each point in the previous cloud, it could happen that two different points are
associated to the same point in the previous cloud. It is obvious that these kinds
of association can not exists in the reality and there is the need of rejecting such
“bad” associations (see Section 5.3.2). However, since we focused on discovering
the best way to match point clouds, we did not investigate possible enhancements
of those algorithms, leaving those improvements to the further developments of
this work (see Chapter 7). In Figure 5.3 the correspondences estimated while a
person is standing are shown in two successive frames. Furthermore, in Figure 5.4
we also show three successive frames in which the correspondences are estimated
for a person who is hand waving. The left cloud is the cloud in the previous frame,
while the right cloud is the cloud at the current frame and both clouds are referred
to the same actor. Screenshots are obtained by means of the PCL visualizer (see
Section 5.3.3).

(a) First current frame to the right. (b) Second current frame to the right.

Figure 5.3: Display of the estimated correspondences with regard to the action standing.

It is straightforward to see why point 2 holds. Setting k to 1 means that the
algorithm will find, in the previous cloud, the nearest point to the current point
under consideration at each iteration, and this completely fits our objective. If k



46 Detecting motion from point cloud XYZRGB data

(a) First current frame to the right.

(b) Second current frame to the right.

(c) Third current frame to the right.

Figure 5.4: Display of the estimated correspondences with regard to the action hand
waving.



5.3 Computing 3D optical flow 47

is set to values greater than 1, then the algorithm will retrieve the farthest points
with regard to both the geometric and the color space.

Real-time searching algorithms provided within the octree class allowed us to
see how powerful PCL could be. Since, we were not completely satisfied with the
correspondence estimation methods seen so far, we decided to search for such an
algorithm in PCL. This algorithm exists and it is available as part of the registra-
tion module. Registration is a particular task involved in point cloud processing.
More specifically, the registration task is defined as the problem of consistently
aligning various 3D point cloud data views into a complete model. Registration
aims to find the relative positions and orientation of the separately acquired views
in a global coordinate framework, such that the intersecting areas between them
overlap perfectly. As part of the registration process, the correspondence esti-
mation is used to find correct point correspondences in the input datasets, and
to estimate rigid transformations that can rotate and translate each individual
dataset into a consistent global framework. Our purposes overlap with those of
the registration module until the correspondence estimation is accomplished. After
the correspondence estimation step, our task differs significantly from the regis-
tration task, since the human body is not subject to rigid transformations only.
However, we have exploited the correspondence estimation algorithm founded in
PCL discovering that it is well-suited for our application. In particular we dealt
with the CorrespondenceEstimation class that provides two different methods to
estimate pairs of matching points:

• determineCorrespondences;

• determineReciprocalCorrespondences.

The difference between these two methods stands in the number of correspon-
dences returned, and so in the way they compute the correspondences between
points. The method determineCorrespondences returns a number of correspon-
dences equal to the number of points in the previous cloud or the number of
points in current cloud, depending on how parameters are set. In fact, deter-
mineCorrespondences performs a one-way matching between the clouds, like that
performed in our algorithm based on octrees. Matching point clouds in one-way
means that:

- one cloud is fixed: this is the cloud in which searches are performed;

- points in the other cloud are searched in the fixed cloud.

It is easy to see how the number of correspondences returned can vary, depend-
ing on which cloud is set as fixed. The determineCorrespondences method is



48 Detecting motion from point cloud XYZRGB data

really similar to our octree-based method with the exception of the data struc-
ture used: in determineCorrespondences, kdtrees with FLANN searches are used
as underlying data structure. The second and final method provided by PCL
is determineReciprocalCorrespondences. In determineReciprocalCorrespondences,
a two-way matching algorithm is applied in order to estimate correspondences.
This means that, if we are referring to two clouds, namely A and B:

1. the one-way algorithm is applied twice: once with the cloud A as fixed cloud,
and once with the cloud B as fixed cloud;

2. from point 1 two different vectors of correspondences are returned, those
vectors are then intersected and a new vector of correspondences is returned.

Since determineReciprocalCorrespondences provides a more precise correspondence
estimation, we chose to use it in this work. In Figure 5.5, we show the correspon-
dences estimated while a person is hand waving. The left cloud is the cloud in the
previous frame, while the right cloud is the cloud at the current frame and both
clouds are referred to the same actor. Screenshots are obtained by means of the
PCL visualizer (see Section 5.3.3).

5.3.2 The optical flow calculator

In this work, the optical flow calculator represents the tool that enables us to
compute the 3D optical flow in each frame. The instantiation of the optical flow
calculator requires five input elements:

• a vector containing the estimated correspondences between points;

• the previous cloud to which we are referring at the current frame;

• the current cloud associated with the current frame;

• the previous vector of indices related to points in the previous cloud;

• the current vector of indices related to points in the current cloud.

The optical flow calculator has several methods that respectively return as output
what follows:

1. A vector of 3D velocity vectors: this vector is aligned with the vector storing
the estimated correspondences.

2. A vector of norms: each norm is related to the corresponding 3D velocity
vector and the overall vector of norms is aligned with the vector storing the
estimated correspondences.



5.3 Computing 3D optical flow 49

(a) First current frame to the right. (b) Second current frame to the right.

(c) Third current frame to the right. (d) Fourth current frame to the right.

Figure 5.5: Display of the estimated correspondences with regard to the action hand
waving. Here the method determineReciprocalCorrespondences of PCL is exploited.

3. A vector of records: this vector is aligned with the vector storing the esti-
mated correspondences. Furthermore, each record stores four different fields:
the 3D velocity vector, the temporal difference used in computing the 3D
velocity vector, the norm of the velocity vector and a final point.

4. An annotated point cloud: the current point cloud is customized by adding
more information with respect to the default ones.

To achieve the results outlined in points 1, 2 and 3, the input vector of estimated
correspondences is scanned and at each iteration a pair of matching indices is
retrieved. From each pair of indices, the related points are caught, respectively
from the current and the previous cloud, in constant time. Then, the spatial
difference and the temporal difference between points are computed, and finally
the 3D velocity vector and its norm are obtained. In particular, point 3 requires



50 Detecting motion from point cloud XYZRGB data

also the computation of a “final point”. Given a 3D velocity vector and a current
point to which this vector is applied, we define final point the point in which the
current point will be, if the velocity vector computed is actually applied to it. We
perform the calculus of this special point, in order to simplify the visualization of
the optical flow on the RGB image. As concerns point 4, the optical flow calculator
is enabled to return an annotated point cloud as output, in order to speed up the
successive computations. In this work, an annotated point cloud is a point cloud in
which a customized point type is defined. Indeed, in addition to the implemented
point types, PCL allows the user to define custom points, in which the traditional
fields can be accompanied by personalized fields. The point type associated with
our annotated clouds contains:

a. Three fields related to geometric coordinates of the point: x, y, z.

b. Three fields related to the color information associated to the point: r, g, b.

c. Three fields related to the velocity vector associated to the point in the
previous frame: prev_vx, prev_vy, prev_vz.

d. Three fields related to the velocity vector associated to the point in the
current frame: vx, vy, vz;

e. One field related to the temporal difference to which the optical flow com-
putation is referred: timeDifference;

f. One field related to the norm of the velocity vector associated to the point
int the current frame: norm;

g. One field representing a flag: isDefined. If the flag is set to zero, then there
is no valid velocity vector associated with that point (namely, the point has
not a correspondent one in the previous cloud), by contrast, if the flag is set
to 1 a valid velocity vector is associated to the point.

Originally, our custom point type was composed only by the fields outlined in a.
, b. , f. . Successively it has been extended to contain also c. , d. , e. and g., in
order to easily compute features described in Section 6.1.2. Therefore, we refer the
reader to Section 6.1.2 for further details about the purpose of those additional
fields, while we discuss here about the initial purpose of the annotated cloud. This
purpose is related to the development of our customized correspondence rejection
method.

Before developing our own correspondence rejection method, we sought to find
such method in PCL. Specifically, we investigated the following methods in the
registration module:



5.3 Computing 3D optical flow 51

• CorrespondenceRejectorDistance, which implements a simple correspondence
rejection method based on thresholding the distances between the correspon-
dences.

• CorrespondenceRejectorOneToOne, which implements a correspondence re-
jection method based on eliminating duplicate match indices in the corre-
spondences.

• CorrespondenceRejectorFeatures, which implements a correspondence rejec-
tion method based on a set of FPFH2 descriptors.

We found that, CorrespondenceRejectorDistance and CorrespondenceRejectorOne-
ToOne are somewhat useless when combined with the correspondence estimation
method owned by PCL, because they do not substantially improve the previous
estimation. The same methods could potentially be useful when our custom cor-
respondence estimation method is used: especially CorrespondenceRejectorOne-
ToOne could be effective since our algorithm does not discard duplicate match in-
dices. Besides, the main issue when dealing with CorrespondenceRejectorDistance
regards the difficulty in estimating the distance to be set as threshold. Finally, we
decided not to use any of these methods. The method which seemed more attrac-
tive to us was CorrespondenceRejectorFeatures. CorrespondenceRejectorFeatures
aims to reject “bad” correspondences based on estimating FPFH descriptors. Un-
fortunately, this algorithm is based on an input features space, i.e. it takes as
input correspondences related to FPFH point clouds, and so it is not suited for
our purposes. Furthermore, also the remaining correspondence rejection methods
in PCL, namely CorrespondenceRejectionTrimmed and CorrespondenceRejector-
RandomSampleConsensus, are not well suited for our application, since they have
been designed expressively to the purpose of registering point clouds.

It is clear to the reader that PCL did not meet our needs for what concerns
the correspondence rejection issue. Therefore, we decided to develop our own
correspondence rejector in order to target a specific objective: removing corre-
spondences associated to noisy data. Indeed, when dealing with Microsoft Kinect,
the mapping and remapping of points from and to the Kinect reference system, the
camera reference system and the real world reference system, are subject to errors.
Those errors affect the geometric coordinates of the points, namely if a point is
not actually moving between a frame and the successive one, the system detects
different geometric coordinates for the same point in the next frame. Obviously,
if coordinates between frames are not constant, the 3D velocity vectors will not
result equal to the zero vector, thus identifying points as moving points even if

2FPFH, Fast Point Feature Histogram.



52 Detecting motion from point cloud XYZRGB data

they are not actually moving. To delete these noisy points together with their
correspondences, the optical flow is first computed and returned as an annotated
point cloud. Since the annotated point cloud stores the norm of the current veloc-
ity vector in each point, we performed a thresholding based on the norm of the 3D
velocity vector. More specifically, our algorithm combines a simple thresholding to
a complex thresholding: the former discards correspondences associated to points
for which the norm is lower than a determined value, while the latter applies to
points which pass the previous step. With regards to those points, a radius search
is performed initially to find closest points to the query ones, then the norm of the
founded neighbors is taken into account to perform the final thresholding. Figure
5.6 shows three frames in which the optical flow is displayed in the RGB image.
The optical flow is obtained without applying the correspondence rejection method
described so far. Furthermore, Figure 5.7 shows the same frames, but this time
the flow is referred to a previous computation of the rejection algorithm outlined.

(a) First frame. (b) Second frame.

(c) Third frame.

Figure 5.6: Display of the estimated 3D optical flow with regard to the action pointing.
Here our correspondence rejection method is not applied.

Eventually, there is a substantial trade-off between the noise removal and the
rejection of correspondences. Indeed, if an algorithm is developed to strictly re-



5.3 Computing 3D optical flow 53

(a) First frame. (b) Second frame.

(c) Third frame.

Figure 5.7: Display of the estimated 3D optical flow with regard to the action pointing.
Here our correspondence rejection method is applied.

move the noise derived from the data acquisition and from the subsequent map-
ping, it could happen that the rejection discards possible useful matches, and on
the contrary, if an algorithm is build to explicitly reject “bad” correspondences
then the noise might not be removed effectively. We decided to perform a noise
removal not so strict to prejudice the number of final correspondences returned
by the algorithm.

5.3.3 Visualizing results

In order to visualize results coming from point clouds processing, we used the
PCLVisualizer, a tool available in PCL from version 1.2. The PCLVisualizer
is a full-featured visualization class, indeed it currently offers features such as
displaying normals, drawing shapes and multiple viewports. In this work, the
PCLVisualizer has been customized and used in order to display:

• point clouds with their original colors;



54 Detecting motion from point cloud XYZRGB data

• point clouds with modified colors in relation to the norm of the estimated
3D optical flow;

• normals associated to point clouds;

• the estimated correspondences between the point cloud at the current and
the previous frame (see Section 5.3.1);

• the norm and direction of the 3D optical flow computed;

• the grid developed to compute the descriptor associated to the 3D optical
flow computed (see Section 6.1.1).

We have implemented the PCLVisualizer as an independent ROS node, so if spe-
cific data need to be visualize by our personalized graphical tool, they have to be
sent through ROS as a message. In this work, point clouds or elements needed
by the PCLVisualizer are sent to the tracker. Then, the tracker packs all those
data in a single message, called PCLVisualization.msg, and it finally sends the
PCLVisualization message over ROS, at each frame. The PCLVisualizer node in
turn catches the upcoming messages and it performs the computations required.
As a side note, we want to point out that there is a trade-off between the overall
amount of data sent under a specific topic and time performances: if too much
data are sent, the entire application could experience slowdowns. So when dealing
with point clouds characterized by having a discrete number of points, care has
to be taken while adding them to the PCLVisualization message.

5.4 Comparison with 2D optical flow

The approach used in this work to compute 3D optical flow is really new in lit-
erature. To demonstrate the validity of our approach, we propose a comparison
with a well-known 2D computation of the optical flow: specifically, we refer to
the approach followed by Dalal in the context of [8]. The comparison has been
executed as follows:

• First, we chose two recordings representing two different actions: one in
which only arms are moving, and one in which the actor’s entire body is
moving.

• Second, we collected some frames representing each actions: those frames
are successively fed to the 2D optical flow calculator.

• Third, we computed separately the 3D optical flow with our application and
the 2D optical flow for the selected frames with the Dalal approach.



5.4 Comparison with 2D optical flow 55

• Finally, we visually compared the results.

As additional details our application is implemented in the C++ programming
language, while as for Dalal’s algorithm we used a Matlab implementation. Fur-
thermore, as test bed, we chose the actions pointing and walking. Results regarding
the action pointing are shown in Figure 5.8, 5.9, 5.10, 5.11 and 5.12. While, results
regarding the action walking are show in Figure 5.13, 5.14, 5.15, 5.16 and 5.17.

It is easy to see how the Dalal approach allows to fully detect the motion,
while in our approach some motion could be only partially described by motion
vectors (see Figure 5.11 and Figure 5.12). However in order to achieve this pre-
cision, tradional 2D methods need the entire images to perform the optical flow
computation, thus resulting in poor time performances. Event though our method
could not achieve the precision of traditional 2D approaches, it is able to detect
correctly the direction and the magnitude of the majority of the motion vectors.
The size of the cloud associated to each track depends in turn on the voxel grid
filter applied in the detection phase of our application (see [2, 13]). By default,
the voxel grid filter is set to be restrictive: this allows the algorithm to achieve
good rates, namely about 23 frames per second. If the filtering power of the voxel
grid filter is lowered, then clouds will have more points and thus the 3D optical
flow will be composed by more motion vectors with respect to the restrictive case.
However, if the filtering power is lowered too much, the computational perfor-
mances will necessarily degrade. Figures 5.11, 5.12, 5.16 and 5.17 are referred to
the application of a restrictive voxel grid filter (default choice). While, in Figure
5.18 and in Figure 5.19 we propose analogous screenshots, but this time they are
referred to a less restrictive voxel grid filtering.

(a) First frame. (b) Second frame: this frame is the
frame just following 5.8(a).

Figure 5.8: Comparing 2D versus 3D optical flow. The chosen frames related to the action
pointing are shown.



56 Detecting motion from point cloud XYZRGB data

Figure 5.9: Comparing 2D versus 3D optical flow. The 2D optical flow computed for the
pointing action with the Dalal method is shown.



5.4 Comparison with 2D optical flow 57

Figure 5.10: Comparing 2D versus 3D optical flow: two different zoom of Figure 5.9.



58 Detecting motion from point cloud XYZRGB data

(a) First frame.

(b) Second frame.

(c) Third frame.

Figure 5.11: Comparing 2D versus 3D optical flow. The 3D optical flow captured from
our application in three successive frames is shown. The frame in 5.11(a) is the same
frame shown in 5.8(a). Furthermore, screenshots are referred to a computation of the 3D
optical flow in which the correspondence rejection method described in Section 5.3.2 is
previously applied.



5.4 Comparison with 2D optical flow 59

(a) First frame.

(b) Second frame.

(c) Third frame.

Figure 5.12: Comparing 2D versus 3D optical flow. The 3D optical flow captured from our
application in three successive frames is shown. The frame in 5.12 is the same frame shown
in 5.8(a). Furthermore, screenshots are referred to a computation of the 3D optical flow
in which the correspondence rejection method described in Section 5.3.2 is not previously
applied.



60 Detecting motion from point cloud XYZRGB data

(a) First frame. (b) Second frame: this frame is the
frame just following 5.13(a).

Figure 5.13: Comparing 2D versus 3D optical flow. The chosen frames related to the
action walking are shown.

Figure 5.14: Comparing 2D versus 3D optical flow. The 2D optical flow computed for the
walking action with the Dalal method is shown.



5.4 Comparison with 2D optical flow 61

Figure 5.15: Comparing 2D versus 3D optical flow. Two different zoom of Figure 5.14.



62 Detecting motion from point cloud XYZRGB data

(a) First frame.

(b) Second frame.

(c) Third frame.

Figure 5.16: Comparing 2D versus 3D optical flow. The 3D optical flow captured from
our application in three successive frames is shown. The frame in 5.16(a) is the same
frame shown in 5.13(a). Furthermore, screenshots are referred to a computation of the
3D optical flow in which the correspondence rejection method described in Section 5.3.2
is previously applied.



5.4 Comparison with 2D optical flow 63

(a) First frame.

(b) Second frame.

(c) Third frame.

Figure 5.17: Comparing 2D versus 3D optical flow. The 3D optical flow captured from our
application in three successive frames is shown. The frame in 5.17 is the same frame shown
in 5.13(a). Furthermore, screenshots are referred to a computation of the 3D optical flow
in which the correspondence rejection method described in Section 5.3.2 is not previously
applied.



64 Detecting motion from point cloud XYZRGB data

(a) First frame.

(b) Second frame.

(c) Third frame.

Figure 5.18: Comparing 2D versus 3D optical flow. The 3D optical flow captured from our
application in three successive frames is shown. Like in Figure 5.11, the frame in 5.18(a) is
the same frame shown in 5.8(a). Furthermore, screenshots are referred to a computation
of the 3D optical flow in which the correspondence rejection method described in Section
5.3.2 is previously applied and the voxel grid filtering is set to be less restrictive with
respect to Figure 5.11.



5.4 Comparison with 2D optical flow 65

(a) First frame.

(b) Second frame.

(c) Third frame.

Figure 5.19: Comparing 2D versus 3D optical flow. The 3D optical flow captured from our
application in three successive frames is shown. Like in Figure 5.16, the frame in 5.19(a) is
the same frame shown in 5.13(a). Furthermore, screenshots are referred to a computation
of the 3D optical flow in which the correspondence rejection method described in Section
5.3.2 is previously applied and the voxel grid filtering is set to be less restrictive with
respect to Figure 5.16.



66 Detecting motion from point cloud XYZRGB data



Chapter 6

Recognizing actions from 3D
optical flow information

T his chapter is focused on the description and classification
phases of the entire recognition process. The first part of

the chapter describes how we have computed a suitable descriptor from
the 3D optical flow calculated in Chapter 5, while the second part of
the chapter is focused on typical aspects of the classification of actions.

Having calculated the 3D optical flow associated to the point cloud of an indi-
vidual, a suitable description for the flow was required. In fact, the 3D optical
flow computed in Chapter 5 is generally composed by a different number of ve-
locity vectors in each frame, even if those vectors are associated to same person.
Therefore, we faced with the challenge of finding a descriptor:

• able to efficiently summarize the flow;

• characterized by a constant size in each frame.

To this aim, we computed a 3D grid surrounding each person in the scene and,
successively, we captured some relevant piece of information from each voxel of the
grid. The voxel grid computation is described in Section 6.1.1, while the features
we extracted from each grid cube are discussed in Section 6.1.2.

The second part of the chapter is focused on the classification of the descriptors
computed for the 3D optical flow. Since the classification is based on multiple
frames, first a series of descriptors is collected. The entire collection is then treated
as a unique vector to be normalized. Normalization enables to partially discard

67



68 Recognizing actions from 3D optical flow information

the presence of noise in the raw data. Finally, a nearest neighbor classification
is performed between collections of training and test examples. To see the real
effectiveness of our work, we created a new dataset that we used as test bed while
executing the application. The creation of a new dataset is motivated by the actual
lack of publicly available datasets in which RGB-D data are provided (see Section
2.3.2). Indeed, our work is targeted to video surveillance applications and typical
actions accomplished in the field of personal and assistant robotics did not meet
our intents. In particular, Section 6.2 is focused on classifying descriptors, while
Section 6.3 briefly discusses the experimental results related to the recognition
based on the 3D optical flow calculus.

6.1 Computing descriptors

Training classifiers generally requires structured data as input. In the most of
the cases data are organized in matrices or files in which each row represents
a labeled descriptor. Each descriptor is simply a data vector and all training
vectors must have the same size. Furthermore, the labeling refers to the action
class which the descriptor belongs to. Since our aim is to perform a classification
based on descriptors, we first had to compute a descriptor with fixed-size from the
3D optical flow. Section 6.1.1 describes how we could achieve a fixed-size for the
descriptors, while Section 6.1.2 discusses the elements each descriptor is composed
of.

6.1.1 Voxel grid

In order to achieve a descriptor of constant size, we developed a 3-dimensional grid
surrounding the point cloud associated to each track. The 3D grid provides an
effective spatial partition of the points in a cloud. Furthermore, since each point
of the current cloud is associated with a 3D velocity vector (see Section 5.3.2) by
means of an annotated point cloud, the voxel grid provides also a 3D optical flow
partition.

With regards to implementation details, it is important to observe that PCL
does not contain any tool able to accomplish a spatial partition usable for our
purposes. Therefore we developed a structure, named voxel grid, that enables us
to efficiently summarize the 3D optical flow. The instantiation of a voxel grid
takes only two elements as input:

- the current point cloud;

- the current vector of indices related to points in the current cloud;



6.1 Computing descriptors 69

but it requires that:

- the spatial divisions along the x, y, z axis, and

- the annotated point cloud associated to the current cloud

are set before actually calculating the descriptor. To compute the grid, first min-
imum and maximun bounds along the three dimensions are defined. Bounds are
established so that the current cloud is centered in the grid. Secondly, the bounds
of the grid are combined with the spatial divisions in order to define the minimum
and maximum ranges, along the three dimensions, associated to each voxel of the
grid. Once minimum and maximum ranges are defined for each 3D cube, the
current cloud is scanned and each point of the cloud is put into the right cube
based on its 3D geometric coordinates. More specifically, for each voxel of the
grid only indices related to points are stored. In any case, indices enable to access
the points of a cloud in constant time. Furthermore, the current cloud indices are
perfectly aligned with the indices of its associated annotated cloud. Finally, the
voxel grid is returned as a dynamic matrix in which:

• each row represents a 3D voxel of the grid;

• each row contains a vector of indices: indices are related to points in the
cloud which stands in the voxel at issue.

After the calculus of the optical flow has completed, the voxel grid is computed
for the current cloud associated with each track. Figure 6.1, 6.2, and 6.3 shows
three different views of the grid computed. In Figure 6.1and 6.2, the displayed
grid is characterized by having, respectively, 2 and 4 divisions along the x, y, and
z axis. In Figure 6.3 instead, the grid is featured by 5 divisions along the x axis, 3
divisions along the y axis, and finally, 2 divisions along the z axis. The points of
the visualized point cloud are expressed in the Kinect reference system, in which
the y axis represents the height of the cloud and the z axis is related to the depth.
Finally, from Figure 6.3, it should be noticed that if we want to distinguish the left
side from the right side of the human body, an odd number of partitions should
be set for each dimension.

6.1.2 Extracting features from 3D voxels

Once the 3D grid is computed we defined two different descriptor types, in or-
der to see if at least one of them has a real effectiveness. The two descrip-
tors differ according to the features extracted from each voxel of the grid. The
first kind of descriptor summarizes the defined 3D velocity vectors contained in
each 3D voxel by means of the 3D average velocity vector. Therefore, each 3D



70 Recognizing actions from 3D optical flow information

Figure 6.1: Example views of the voxel grid computed: 2 partions along the x, y and z
axis are designed.



6.1 Computing descriptors 71

Figure 6.2: Example views of the voxel grid computed: 4 partions along the x, y and z
axis are designed.



72 Recognizing actions from 3D optical flow information

Figure 6.3: Example views of the voxel grid computed: 5 partions along the x, 3 partions
along the y axis and 2 partitions along the z axis are designed.



6.2 Classifying descriptors 73

voxel actually contains three elements: the x, y, and z components of the av-
erage velocity vector calculated for the voxel at issue. The total size of the de-
scriptor is equal to 3 × size_of_the_grid, where size_of_the_grid is in turn
equal to x_partitions × y_partitions × z_partitions in which x_partitions,
y_partitions and z_partitions are the grid partitions along the x, y, z axis.

The second kind of descriptor provide additional information with respect to
the first one. In particular, the 3D velocity vectors in each voxel are summarized
by the following data:

• the 3D average velocity vector (3 elements, i.e. the three components of the
vector);

• the minimum, maximum and average divergence (3 elements);

• the minimum, maximum and average curl along the x, y, and z axis (9
elements).

We calculated the divergence and the curl for each of the 3D voxel according to
the formula 6.1 and 6.2.

divergence = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(6.1)

curl =
(
∂vz

∂y
− ∂vy

∂z
,

∂vx

∂z
− ∂vz

∂x
,

∂vy

∂x
− ∂vx

∂y

)
(6.2)

The total size of the descriptor is equal to 15 × size_of_the_grid this time,
where size_of_the_grid is defined as outlined above. As a remarkable observa-
tion, we chose not to apply the change detection algorithm and the correspondence
rejection method discussed respectively in Section 5.2 and in Section 5.3.2. In-
deed, since the system was not previously tested with a classification algorithm,
we did not want to lose possible information coming from the 3D optical flow.
So, we accepted to work with a noisy flow and we accomplished a classification
based on it. Depending on the results obtained, the change detection and the
correspondence rejection algorithms can be applied to see if better results could
be achieved subsequently to an improvement of the flow quality.

6.2 Classifying descriptors

The features extraction step outlined in Section 6.1.2 returns as output a vector.
There is a bijection between the vector indices and the 3D voxel of the grid. In-
deed, the vector stores at each index the extracted features for the corresponding



74 Recognizing actions from 3D optical flow information

voxel. This vector is the descriptor that summarizes the 3D optical flow infor-
mation captured in a single frame. Since after the descriptor computation the
human action recognition task becomes a classification problem, we defined a pre-
cise approach to classify actions. It should be noted that, even if the approach
to recognition has to be well-defined, the one implemented in this work will be
subject to further improvements. Indeed, we first developed a “simple” classifica-
tion system with the aim of modifying it with regards to the results obtained. In
this work, the classification process is divided into two main steps. The first step
concerns the creation of a new dataset and it is addressed in Section 6.2.1, while
the second step is related to the actual classification (see Section 6.2.2).

6.2.1 Collecting video samples

In this section, we discuss the video dataset collected in the context of this work.
The database we propose is oriented to video surveillance tasks. Each video sample
is captured in the form of a ROS bag, that is a particular file in which ROS topics
are recorded. ROS bags enable to record data from a running ROS system and
then to play back the data to produce a similar behaviour in the running system.
The data recorded are stored in a .bag file which represents the file format of each
video sample in our dataset. The recorded topics are:

• /camera/rgb/points, which represents the combination of the color camera
output stream and the depth sensor output stream;

• /camera/rgb/camera_info and /camera/rgb/image_color/compressed, which
provides respectively the color camera intrinsic parameters and the color
camera compressed stream of images;

• /tf, which allows to send and receive multiple coordinate frames over time;

• /skeleton_output, a particular topic that keeps track of the estimated skele-
ton joints of the human body.

The reader could observe that the information related to the color camera are
duplicated in our recordings. That is true, but we aim to avoid this repetition in
further developments of this work.
In particular, when only /camera/depth/points will be recorded together with
/camera/rgb/camera_info and /camera/rgb/image_color/compressed, an explicit
alignment between the depth information and the RGB images must be embedded
in our application. Finally, the particular topic /skeleton_output is due to our
purpose of comparing the recognition performances of the application based on the
3D optical flow information with respect to a system based on acquiring OpenNI1

1See the OpenNI webpage.

http://75.98.78.94/default.aspx


6.2 Classifying descriptors 75

skeleton joints data.
The video dataset is entirely collected in a lab environment. There are minor

variations in the camera position and orientation due to repeated mountings of
the camera. The framing was arranged so that the actor is centered in the scene
with clearly visible feet. The current video dataset is inspired by the INRIA
Xmas Motion Acquisition Sequences (IXMAS) dataset (see Section 2.3.2) and it
currently contains six types of human actions:

1. standing

2. hand waving (with right hand)

3. sitting down

4. getting up

5. pointing (with right arm)

6. walking

performed once by six different actors. The six volunteers were invited to naturally
execute the actions, and no indication about how to accomplish movements was
given to them. Each actor was asked to perform all the six actions in the sequence
outlined above, and we collected a single ROS bag file for each actor. Subsequently,
each ROS bag was manually segmented to represent only a single action. This
mean that we chose the instant in which an action begins and ends according
to the common sense. Each of the segmented video samples spans from about 1
second to 7 seconds. Three example frames from each action class are illustrated
in Figure 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9.

Finally, we want to make two remarkable observations. First, when the human
body acts in the environment, different depth layers come into play. Generally,
this implies that incorporating the depth layer information could bring additional
discriminating capability for the action feature representation. Secondly, the first
aim of our dataset was to provide us with reliable training data. Indeed, in order
to show the real power of our application we have to take video samples (to be
used as test examples) in which more actors are present in the scene at the same
time, and each of them is performing a different action. But this is left to further
extension of the dataset, that it could also become publicly available in the future.

6.2.2 Nearest Neighbor classification

The first issue we met during the classification process involves making a decision
about whether to perform a classification based on a single frame or on multiple



76 Recognizing actions from 3D optical flow information

Figure 6.4: Example frames of the action standing taken from our dataset.

Figure 6.5: Example frames of the action hand waving taken from our dataset.

Figure 6.6: Example frames of the action sitting down taken from our dataset.

Figure 6.7: Example frames of the action getting up taken from our dataset.

Figure 6.8: Example frames of the action pointing taken from our dataset.

Figure 6.9: Example frames of the action walking taken from our dataset.



6.2 Classifying descriptors 77

frames. Performing a classification based on a single frame means that only de-
scriptors related to single frames are collected and classified. Classifying actions
based on multiple frames means that first descriptors already computed for single
frames are collected to form a more complex descriptor; then, in a second time,
final descriptors are in turn collected and classified.

We decided to perform a classification based on multiple frames: since an ac-
tion actually represents a sequence of movements over time, considering multiple
frames could potentially provides more discriminant information to the recogni-
tion task with respect to approaches in which only a single-frame classification is
performed. If a classification based on multiple frames has to be achieved, it is
necessary to define two parameters:

1. the number of frames that have to be considered;

2. the way in which frames have to be captured from the entire sequence of
frames that composes the action recording.

With regards to point 1 we decided to consider 10 frames. This choice is justified
by [37] and by our willingness to maintain a “small” descriptor size, since we
did not apply any dimensionality reduction method to descriptors. In future, we
expect to apply Principal Component Analysis to descriptors, in order to maintain
only the useful dimensions and to reject the others. Point 2 refers to the method in
which data related to the selected frames are collected to form the final descriptor.
During the training phase, it is important to distinguish three possible cases:

1. the action at issue lasts less than 10 frames;

2. the action at issue lasts exactly 10 frames;

3. the actions at issue lasts more than 10 frames.

If the action at issue lasts less than 10 frames, we perform suitable computations
to bring its size to 10 frames: to this aim, the interpolation technique was used.
A data vector can be interpolated in a basic way, in which dummy data are
added starting from the beginning of the vector. Alternatively, interpolation can
be realized by first selecting a window centered on the data vector, and then by
interpolating data that stand inside the window. We chose this second approach,
in this work. When the action lasts exactly 10 frames, all the information captured
are used to learn the classifier. Finally, if the action lasts more than 10 frames,
a sampling technique is used. We have developed the three sampling methods
outlined in Table 6.1. We used the window-based sampling method with the
purpose of testing the classification based on the uniform and mixed sampling
technique in further improvements of this work.



78 Recognizing actions from 3D optical flow information

Sampling technique Description

Window-based sampling Input: a data vector and its desired size after
sampling.
Output: the sampled vector.

The algorithm simply chose a window centered
on the data input vector. The windows size is
equal to the desired size of the sampled vector.
Finally, the window is returned as a vector.

Uniform sampling Input: a data vector and its desired size after
sampling.
Output: the sampled vector.

The algorithm first estimates the sampling inter-
val based on the desired size of the sampled input
vector. Then, it picks up elements according to
the sampling interval. The final vector of chosen
elements is returned.

Mixed sampling Input: a data vector and its desired size after
sampling.
Output: the sampled vector.

The algorithm combines both the window-based
sampling and the uniform sampling algorithms.

Table 6.1: Sampling techniques developed in this work.



6.2 Classifying descriptors 79

During the test phase, we decided not to rely on interpolation methods, since
we observed that they do not support vectors with a high dimensionality. In doing
so, it is not possible to recognize actions by means of recordings that last less than
ten frames. However, this is justifiable by the real-time purpose of our application:
since the application is able to execute real-time computations, it can naturally
be devoted to recognize actions on-line rather than off-line and generally, on-line
video streams last more than 10 frames (i.e. about 0.42 seconds).

We decided to first test the recognition performance of the 3D optical flow
by means of a nearest neighbor classifier. The training phase involved four main
steps:

1. Collecting raw data, namely the single-frame descriptors.

2. Computing the final descriptors by aggregating 10 single-frame descriptors
with the sampling and interpolation algorithms described above.

3. Normalizing the final descriptors in order to reduce the presence of noisy
data.

4. Storing the normalized descriptors related to each action performed by each
actor in the dataset.

And also the test phase involved four main steps:

1. Collecting single-frame descriptors in a so called final descriptor until 10
frames are reached. When the 10 frames are exceeded, a window sampling
is applied to obtain a 10-frames final descriptor.

2. The final descriptor is normalized in order to reduce the presence of noisy
data.

3. The distance between the test descriptor and all the training examples in
the dataset is computed.

4. The label related to the training descriptor that has the shortest distance to
the test descriptor is chosen as predicted class.

We used two types of distance function:

• the Euclidean distance function

• the Mahalanobis distance function



80 Recognizing actions from 3D optical flow information

The Euclidean distance function for fixed-length vector of real numbers is defined
as:

d(x, y) = (
m∑

i=1
(xi − yi)2)1/2.

where xi and yi are points in Rm, and m represents the dimensionality of the
data vector. While, the Mahalanobis distance function is defined for a mul-
tivariate vector x = (x1, x2, . . . , xn)T from a group of values with mean µ =
(µ1, µ2, µ3, . . . , µn)T and covariance matrix S as:

dM (x) =
√

(x− µ)TS−1(x− µ).

The approach outlined in relation to the test phase is suitable to achieve the
recognition of isolated actions, but it is less suitable to perform a continuous
recognition task. Indeed, in order to continuously recognize actions, it is necessary
to find a way to estimate the beginning and the ending of each action in a sequence.
There are two possible ways to easily obtain an on-line segmentation. The former is
based on the observation of the classification results on successive frames while the
latter is based on the confidence of the classifier. Classification results can be used
in successive frames to claim that “the action A is really the action performed by
the actor if and only if the classifiers predicts the class A for at least N successive
frames” for example. The confidence of the classifier can be used to segment a
sequence of actions if it is set as a threshold. This means that if the classifier
predicts the action A with a confidence greater than a defined threshold, then the
action A is really the action performed by the actor in the scene and a new action,
after A, will start subsequently. In this work, the continuous recognition task is
left to future developments.

6.3 Experimental results

This section discusses the experimental results we achieved by performing a nearest
neighbor classification on final descriptors. Tests have been executed following
a leave-one-out approach: first we chose an actor from the dataset to use its
recordings as test bed, then we trained the classifier with the examples related
to the other five subjects. Finally, we collected the classification results related
to the unseen actor with respect to the training samples. The process described
is then performed for each actor in the dataset. Unfortunately, final descriptors
containing kinematic features, such as the divergence and the curl, did not enable
us to achieve a consistent action recognition so they are not reported in this
discussion. By contrast, the other kind of computed descriptor (see Section 6.1.2)



6.3 Experimental results 81

STA HAW SIT GET POI WAL

STA 0.67 0.17 0.17
HAW 0.17 0.50 0.17
SIT 0.83
GET 0.17 1.00 0.17
POI 0.17 0.17 0.17 0.50
WAL 0.83

Table 6.2: Confusion matrix related to a nearest neighbor classification in which the
Mahalanobis distance is computed. In the matrix: STA stands for standing, HAW
stands for hand waving, SIT stands for sitting down, GET stands for getting up, POI
stands for pointing and finally WAL stands for walking.

STA HAW SIT GET POI WAL

STA 0.83 0.33 0.17 0.33
HAW 0.50
SIT 0.83
GET 0.17 1.00
POI 0.17 0.67
WAL 1.00

Table 6.3: Confusion matrix related to a nearest neighbor classification in which the
Euclidean distance is computed. In the matrix: STA stands for standing, HAW stands
for hand waving, SIT stands for sitting down, GET stands for getting up, POI stands
for pointing and finally WAL stands for walking.

allows to recognize actions quite well and results have to be considered with respect
to that particular descriptor calculus.

Results have been collected in the form of confusion matrices and they are
shown in Table 6.2 and Table 6.3. Table 6.2 is related to a nearest neighbor
classification in which the Mahalanobis distance is used, while Table 6.3 is referred
to a nearest neighbor classification based on the Euclidean distance computation.

From Table 6.2 and 6.3, it could be observed that Mahalanobis distance leads
to poor results with respect to the Euclidean distance. Indeed, the computation
of Mahalanobis distance require the calculus of the covariance matrix and its
inverse, that it is high costly when dealing with data characterized by having
high dimensionality. The result is that our application suffers the calculus of the
Mahalanobis distance and we had to execute recording at low speed in order to



82 Recognizing actions from 3D optical flow information

Accuracy Precision

NN with Mahalanobis distance 0.78 0.72
NN with Euclidean distance 0.80 0.74

Table 6.4: Accuracy and precision computed for the confusion matrices illustrated in Table
6.2 and Table 6.3.

be sure not to lose data.
Other remarkable observations could be done with regards to the recognized

actions. Experimental results show that our application recognizes best the actions
that involve the movement of the entire human body (e.g. getting up and walking),
while the recognition of actions in which only arms are moved obtains poor results
with respect to the first one. This could have several reasons. First, the voxel grid
filter applied in the detection phase might be too much restrictive, so that only
few points of the actors’ arms (namely few velocity vectors related to the actors’
arms) could actually be captured. Secondly, the descriptor might not summarize
well the flow information: in this direction a descriptor in which the flow in each
voxel is summarized by the median velocity vector could be implemented. Finally,
since nearest neighbor classifier does not provide exceptional performance with
respect to other classifier, it could be changed to see if a more effective recognition
is achieved. In future developments of this work, we expect to use the Gaussian
Mixture Model to classify actions.

Eventually, Table 6.4 shows the accuracy and precision computed from Table
6.2 and Table 6.3. Results are self-explanatory.



Chapter 7

Conclusions

T his chapter summarizes the contribution of the thesis and
discusses avenues for future research.

This thesis aims to contribute to the field of human action recognition. We have
proposed a new approach to recognize human actions with RGB-D data. We
focused on developing a new way to quickly compute typical features of the 2-
dimensional field. So the contribution is twofold with regards to the features
extraction step: first we extended features traditionally computed from RGB im-
ages to the RGB-D world, and secondly we invented a rapid approach to capture
them. Time performances in this work are important: indeed it is targeted to
applications in the video surveillance field, and we aimed to develop a real-time
recognition system that could be usable in a video surveillance context. The ex-
tracted features are the 3D velocity vectors that constitute the 3D optical flow
field. Computing optical flow is really a challenging problem: generally, works that
rely on the 2D optical flow computation have not real-time performances since cal-
culus are performed on each image pixel. We solved this issue by computing the
3D optical flow field only for the portions that represent people in the scene. More
specifically, each person in the scene is associated with a point cloud and 3D ve-
locity vectors are calculated by estimating correspondences between points in the
clouds during the time passing. We therefore investigated on correspondence esti-
mation problems, correspondence rejection and noise removal problems, and this
is the first time, to our knowledge, that such issues are addressed in the field of
human action recognition. The successive step in the recognition process regards
the development of a suitable description to summarize the flow information. To
this aim, we computed a 3D grid surrounding each person in the scene and suc-

83



84 Conclusions

cessively, we captured relevant flow information from each voxel of the grid. The
3D voxel grid combined to the information extracted from the flow represents the
descriptor computed with regards to a single frame. Since we decided to perform
a classification based on multiple frames, we first collected a series of descriptors.
The entire collection is then treated as a unique vector to be normalized. Normal-
ization enables to partially discard the presence of noise in the raw data. Finally,
the system is tested on a newly created dataset. The dataset contains six different
action classes performed by six different actors. The creation of a new dataset is
motivated by the actual lack of publicly available datasets in which RGB-D data
are provided. Indeed, the existing datasets are mainly devoted to tasks in the
field of personal and assistant robotics, therefore they did not meet our intents.
A nearest neighbor classification is performed between collections of training and
test examples taken from our dataset. In particular, two nearest neighbor classifi-
cations are performed: the former is based on the Mahalanobis distance function,
while the latter is based on the Euclidean distance function. We achieved the 78%
accuracy for the overall dataset with regards to the use of the Euclidean distance
function, while we obtained a 72% accuracy with regards to the use of the Maha-
lanobis distance. Reaching an accuracy of 78% represents a good result for our
application, since we developed the system to be real-time even at the expense of
possible losses in accuracy.

7.1 Future improvements and developments

The system developed in this work can be improved in several parts. As for the
features extraction step, new algorithms able to reject “bad” correspondences and
noisy data can be implemented. Also the results visualization can be improved by
minimizing the amount of data passed via ROS messages. The phase regarding
the computation of a suitable description for the flow features can be enhanced
by calculating more complex descriptors, such as 3-dimensional or 4-dimensional
histograms of optical flow and their variants. It is however important to pay
attention to the overall descriptor size at the end of the computation. Indeed, it
is possible that after having calculated a more complex descriptor, its size grows
by a relevant amount. If no dimensionality reduction method is applied to such
a descriptor, the classification phase could provide poor results in term of both
time performances and accuracy. Therefore, the selection of a new descriptor has
to be combined with the investigation about traditional dimensionality reduction
methods, like Principal Component Analysis. The new descriptor should also
be designed to be view-invariant, so compensating for the major limit of all the
approaches based on the optical flow calculus. Finally, as regards the classification



7.1 Future improvements and developments 85

phase, an advanced classifier should be used instead of nearest neighbor. We
expect to use the Gaussian Mixture Model classifier to this aim.

Once our application achieves a robust recognition of isolated actions, it can
be extended to accomplish more complex tasks. There are two possible extensions
of the current work that can be taken into consideration. The former concerns
the continuous recognition of actions. In the continuous recognition task, an actor
performs several actions in a certain sequence and the recognizer has to correctly
detect each executed action. This means that the algorithm has to recognize the
series of actions, but in addition it has also to locate temporally the actions, and to
assign to each temporal interval the correct action. While, the latter regards the
recognition of actions executed by two or more people. Continuous recognition
and recognition of group actions are currently two active topics in the human
action recognition research field.



86 Conclusions



Bibliography

[1] S. Ali and M. Shah, “Human action recognition in videos using kinematic
features and multiple instance learning,” Pattern Analysis and Machine In-
telligence, IEEE Transactions on, vol. 32, no. 2, pp. 288 –303, feb. 2010.

[2] F. Basso, “Rgb-d people tracking by detection for a mobile robot,” Master’s
thesis, University of Padua, 2011.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as
space-time shapes,” in Proc. Tenth IEEE Int. Conf. Computer Vision ICCV
2005, vol. 2, 2005, pp. 1395–1402.

[4] A. Bobick and J. Davis, “The recognition of human movement using temporal
templates,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 23, no. 3, pp. 257 –267, mar 2001.

[5] O. Brdiczka, M. Langet, J. Maisonnasse, and J. Crowley, “Detecting human
behavior models from multimodal observation in a smart home,” Automation
Science and Engineering, IEEE Transactions on, vol. 6, no. 4, pp. 588 –597,
oct. 2009.

[6] S. Carlsson and J. Sullivan, “Action recognition by shape matching to key
frames,” in IEEE Computer Society Workshop on Models versus Exemplars
in Computer Vision, 2001.

[7] K. M. G. Cheung, S. Baker, and T. Kanade, “Shape-from-silhouette of artic-
ulated objects and its use for human body kinematics estimation and motion
capture,” in Proc. IEEE Computer Society Conf. Computer Vision and Pat-
tern Recognition, vol. 1, 2003.

[8] N. Dalal, “Finding people in images and videos,” Ph.D. dissertation, Institut
National Polytechnique de Grenoble / INRIA Grenoble, 2006.

[9] S. Danafar and N. Gheissari, “Action recognition for surveillance
applications using optic flow and svm,” in Proceedings of the 8th

87



88 BIBLIOGRAPHY

Asian conference on Computer vision - Volume Part II, ser. ACCV’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 457–466. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1775728.1775783

[10] J. Davis and A. Bobick, “The representation and recognition of human move-
ment using temporal templates,” in Computer Vision and Pattern Recogni-
tion, 1997. Proceedings., 1997 IEEE Computer Society Conference on, jun
1997, pp. 928 –934.

[11] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition via
sparse spatio-temporal features,” in Proc. 2nd Joint IEEE Int Visual Surveil-
lance and Performance Evaluation of Tracking and Surveillance Workshop,
2005, pp. 65–72.

[12] A. Efros, A. Berg, G. Mori, and J. Malik, “Recognizing action at a distance,”
in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference
on, oct. 2003, pp. 726 –733 vol.2.

[13] S. M. Filippo Basso, Matteo Munaro and E. Menegatti, “Fast and robust
multi-people tracking from rgb-d data for a mobile robot,” in Proc. of the
12th Intelligent Autonomous Systems (IAS) Conference, Jeju Island (Korea),
2012.

[14] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as
space-time shapes,” Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 29, no. 12, pp. 2247–2253, December 2007.

[15] J. Han and B. Bhanu, “Human activity recognition in thermal infrared im-
agery,” in Computer Vision and Pattern Recognition - Workshops, 2005.
CVPR Workshops. IEEE Computer Society Conference on, june 2005, p. 17.

[16] M. Holte and T. Moeslund, “View invariant gesture recognition using 3d mo-
tion primitives,” in Acoustics, Speech and Signal Processing, 2008. ICASSP
2008. IEEE International Conference on, 31 2008-april 4 2008, pp. 797 –800.

[17] M. Holte, T. Moeslund, N. Nikolaidis, and I. Pitas, “3d human action recog-
nition for multi-view camera systems,” in 3D Imaging, Modeling, Processing,
Visualization and Transmission (3DIMPVT), 2011 International Conference
on, may 2011, pp. 342 –349.

[18] N. Ikizler, R. G. Cinbis, and P. Duygulu, “Human action recognition with
line and flow histograms,” in Proc. 19th Int. Conf. Pattern Recognition ICPR
2008, 2008, pp. 1–4.

http://portal.acm.org/citation.cfm?id=1775728.1775783


BIBLIOGRAPHY 89

[19] G. Johansson, “Visual perception of biological motion and a model
for its analysis,” Attention, Perception, & Psychophysics, vol. 14,
pp. 201–211, 1973, 10.3758/BF03212378. [Online]. Available: http:
//dx.doi.org/10.3758/BF03212378

[20] S. Ju, M. Black, and Y. Yacoob, “Cardboard people: a parameterized model
of articulated image motion,” in Automatic Face and Gesture Recognition,
1996., Proceedings of the Second International Conference on, oct 1996, pp.
38 –44.

[21] Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visual event detection using
volumetric features,” in Proc. Tenth IEEE Int. Conf. Computer Vision ICCV
2005, vol. 1, 2005, pp. 166–173.

[22] A. Kläser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor
based on 3d-gradients,” in British Machine Vision Conference, sep 2008, pp.
995–1004. [Online]. Available: http://lear.inrialpes.fr/pubs/2008/KMS08

[23] I. Laptev and T. Lindeberg, “Space-time interest points,” in Proc. Ninth
IEEE Int Computer Vision Conf, 2003, pp. 432–439.

[24] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning realistic
human actions from movies,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition CVPR 2008, 2008, pp. 1–8.

[25] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3d points,”
in Computer Vision and Pattern Recognition Workshops (CVPRW), 2010
IEEE Computer Society Conference on, june 2010, pp. 9 –14.

[26] J. Liu, S. Ali, and M. Shah, “Recognizing human actions using multiple
features,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, june 2008, pp. 1 –8.

[27] M. Marszalek, I. Laptev, and C. Schmid, “Actions in context,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition CVPR 2009, 2009, pp. 2929–
2936.

[28] B. Ni, G. Wang, and P. Moulin, “Rgbd-hudaact: A color-depth video
database for human daily activity recognition,” in Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International Conference on, nov.
2011, pp. 1147 –1153.

[29] J. C. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised learning of
human action categories using spatial-temporal words,” Int. J. Comput.

http://dx.doi.org/10.3758/BF03212378
http://dx.doi.org/10.3758/BF03212378
http://lear.inrialpes.fr/pubs/2008/KMS08


90 BIBLIOGRAPHY

Vision, vol. 79, pp. 299–318, September 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1380728.1380729

[30] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee,
J. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah,
C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song,
A. Fong, A. Roy-Chowdhury, and M. Desai, “A large-scale benchmark dataset
for event recognition in surveillance video,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, june 2011, pp. 3153 –3160.

[31] M. Popa, A. Koc, L. Rothkrantz, C. Shan, and P. Wiggers, “Kinect sensing of
shopping related actions,” in Constructing Ambient Intelligence: AmI 2011
Workshops, undefined, K. Van Laerhoven, and J. Gelissen, Eds., Amsterdam,
Netherlands, 11/2011 2011.

[32] R. Poppe, “A survey on vision-based human action recognition,” Image and
Vision Computing, vol. 28, no. 6, pp. 976–990, 2010. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0262885609002704

[33] H. Ragheb, S. Velastin, P. Remagnino, and T. Ellis, “Human action recogni-
tion using robust power spectrum features,” in Proc. 15th IEEE Int. Conf.
Image Processing ICIP 2008, 2008, pp. 753–756.

[34] M. D. Rodriguez, J. Ahmed, and M. Shah, “Action mach a spatio-temporal
maximum average correlation height filter for action recognition,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition CVPR 2008, 2008,
pp. 1–8.

[35] R. B. Rusu, J. Bandouch, F. Meier, I. A. Essa, and M. Beetz, “Human ac-
tion recognition using global point feature histograms and action shapes,”
Advanced Robotics, vol. 23, no. 14, pp. 1873–1908, 2009.

[36] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13 2011.

[37] K. Schindler and L. van Gool, “Action snippets: How many frames does
human action recognition require?” in Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on, june 2008, pp. 1 –8.

[38] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a local
svm approach,” in Proc. 17th Int. Conf. Pattern Recognition ICPR 2004,
vol. 3, 2004, pp. 32–36.

http://portal.acm.org/citation.cfm?id=1380728.1380729
http://linkinghub.elsevier.com/retrieve/pii/S0262885609002704


BIBLIOGRAPHY 91

[39] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor
and its application to action recognition,” in Proceedings of the
15th international conference on Multimedia, ser. MULTIMEDIA ’07.
New York, NY, USA: ACM, 2007, pp. 357–360. [Online]. Available:
http://doi.acm.org/10.1145/1291233.1291311

[40] J. Sung, C. Ponce, B. Selman, and A. Saxena, “Human activity detection
from rgbd images,” in Plan, Activity, and Intent Recognition, ser. AAAI
Workshops, vol. WS-11-16. AAAI, 2011.

[41] ——, “Unstructured human activity detection from rgbd images,” in Inter-
national Conference on Robotics and Automation, ICRA, 2012.

[42] D. Tran and A. Sorokin, “Human activity recognition with metric learning,”
in Proceedings of the 10th European Conference on Computer Vision: Part
I, ser. ECCV ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 548–561.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-88682-2_42

[43] P. K. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” IEEE Trans. Circuits Syst. Video
Techn., vol. 18, no. 11, pp. 1473–1488, 2008.

[44] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, “Evaluation
of local spatio-temporal features for action recognition,” in British Machine
Vision Conference, London, United Kingdom, Sep. 2009, cLASS. [Online].
Available: http://hal.inria.fr/inria-00439769/en/

[45] D. Weinland, R. Ronfard, and E. Boyer, “Free viewpoint action
recognition using motion history volumes,” Comput. Vis. Image Underst.,
vol. 104, no. 2, pp. 249–257, Nov. 2006. [Online]. Available: http:
//dx.doi.org/10.1016/j.cviu.2006.07.013

[46] G. Willems, T. Tuytelaars, and L. Gool, “An efficient dense and
scale-invariant spatio-temporal interest point detector,” in Proceedings of the
10th European Conference on Computer Vision: Part II, ser. ECCV ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 650–663. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-88688-4_48

[47] Y. Yacoob and M. Black, “Parameterized modeling and recognition of activi-
ties,” in Computer Vision, 1998. Sixth International Conference on, jan 1998,
pp. 120 –127.

[48] A. Yang, S. Iyengar, S. Sastry, R. Bajcsy, P. Kuryloski, and R. Jafari, “Dis-
tributed segmentation and classification of human actions using a wearable

http://doi.acm.org/10.1145/1291233.1291311
http://dx.doi.org/10.1007/978-3-540-88682-2_42
http://hal.inria.fr/inria-00439769/en/
http://dx.doi.org/10.1016/j.cviu.2006.07.013
http://dx.doi.org/10.1016/j.cviu.2006.07.013
http://dx.doi.org/10.1007/978-3-540-88688-4_48


92 BIBLIOGRAPHY

motion sensor network,” in Computer Vision and Pattern Recognition Work-
shops, 2008. CVPRW ’08. IEEE Computer Society Conference on, june 2008,
pp. 1 –8.

[49] A. Yilmaz and M. Shah, “Actions sketch: a novel action representation,” in
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, vol. 1, june 2005, pp. 984 – 989 vol. 1.

[50] H. Zhang and L. E. Parker, “4-dimensional local spatio-temporal features for
human activity recognition,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, sept. 2011, pp. 2044 –2049.


	Contents
	List of Figures
	List of Tables
	Introduction
	Human actions and activities
	Recognizing human actions
	Aim of the thesis
	Organization of the thesis

	Literature review
	Recognition from RGB video images
	Application fields
	Features
	Classifiers

	Recognition from RGB-D video images
	Comparison between different approaches
	Publicly available datasets with only RGB information
	Color-depths publicly available datasets


	System baselines
	Tracking system
	System components
	Microsoft Kinect
	ROS - Robot Operating System


	Action recognition with global cues
	Extracting simple features
	Velocity Estimation

	Discerning between actions
	Experimental results

	Detecting motion from point cloud XYZRGB data
	Dealing with point clouds
	PCL - Point Cloud Library 1.4
	Data Structures

	Change Detection
	Computing 3D optical flow
	The problem of matching point clouds
	The optical flow calculator
	Visualizing results

	Comparison with 2D optical flow

	Recognizing actions from 3D optical flow information
	Computing descriptors
	Voxel grid
	Extracting features from 3D voxels

	Classifying descriptors
	Collecting video samples
	Nearest Neighbor classification

	Experimental results

	Conclusions
	Future improvements and developments

	Bibliography

