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Abstract
The human gut microbiome is a central topic of research in bioinformatics and com-
putational biology. The more and more widespread availability of high-throughput,
whole-genome shotgun sequencing technologies makes it possible to obtain an un-
precedented amount of genomic and metagenomic data. Various microbiota have
been shown to correlate with health status and even with the early onset of dis-
eases, the most prominent examples being Irritable Bowel Syndrome (IBS) and the
more serious Inflammatory Bowel Diseases (IBD), such as Crohn’s Disease (CD)
and Ulcerative Colitis (UC). The desire naturally arises for predicting, based on
the composition of the gut microbiome, whether patients suffer from or risk devel-
oping these conditions.

This is especially valuable in the context of a newly-arising industry: holistic,
personalized, preventive health consulting. Such a data-centric approach to as-
sessing future health risks opens up the possibility for combining metagenomic in-
formation with results of other ’omics (metabolomics, genetics, proteomics, etc.),
in order to provide patients with a comprehensive and easier-to-understand pic-
ture of the effects of, and the associations between, various aspects of their lifestyle.

Most approaches to metagenomic analysis have so far focused on taxon-level reso-
lution, quantifying taxa at the genus, species, or strain level. However, biological
functions are not in a one-to-one correspondence with taxa: for instance, a cer-
tain species may (and does usually) fulfill more than one function, while the same
function may be provided by more than one species.

In this Thesis, we develop a metagenomic analysis pipeline based on individual
genes and families of homologous genes. In contrast with using a large database of
thousands of complete prokaryotic genomes, our approach only requires sequence
data for select individual genes, therefore it is less storage-demanding. Relying on
state-of-the-art read alignment software, we demonstrate gains in processing speed,
too. Finally, we also show that our approach performs only slightly worse than
SHOGUN, a more resource-intensive state-of-the-art metagenome analysis toolkit.

We then apply both pipelines to several datasets and build machine learning mod-
els for classifying stool samples as either healthy or IBD/IBS. Finally, we analyze
the association between gene families in both groups using the tools of network
science applied to abundance correlation networks.
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Sommario (Abstract in Italian)
Il microbioma intestinale umano è un argomento di rilevante importanza nell’ambito
della ricerca nella bioinformatica e biologia computazionale. È stato dimostrato che
vari microbiota sono in correlazione con lo stato di salute e persino con l’insorgenza
precoce delle malattie: gli esempi più noti sono la Sindrome dell’intestino irritabile
(IBS) e le più gravi malattie infiammatorie intestinali (IBD), come la Malattia
di Crohn (CD) e la Colite ulcerosa (UC). Sorge dunque spontanea la volontà di
provare a prevedere se i pazienti soffrono o rischiano di sviluppare questi problemi
basandosi sulla composizione del microbioma intestinale.

Ciò è particolarmente utile nel contesto di un’industria emergente: consulenza
sanitaria olistica, personalizzata e preventiva. Un tale approccio incentrato sui
dati per valutare i rischi futuri per la salute apre la possibilità di combinare infor-
mazioni metagenomiche con risultati di altri campi di ricerca (quali metabolomica,
genetica, proteomica) al fine di fornire ai pazienti un quadro più completo e facile
da intendere riguardante gli effetti di vari aspetti del loro stile di vita.

La maggior parte degli approcci all’analisi metagenomica si sono finora concen-
trati sulla risoluzione a livello di taxon, quantificando i taxa a livello di genere,
specie o ceppo. Tuttavia, le funzioni biologiche non sono in una corrispondenza
uno a uno con i taxa: ad esempio, una determinata specie può (e di solito è quello
che accade) svolgere più di una funzione, mentre la stessa funzione può essere for-
nita da più di una specie.

In questa Tesi, sviluppiamo una pipeline di analisi metagenomica basata su singoli
geni e famiglie di geni omologhi. Contrariamente all’utilizzo di un ampio database
di migliaia di genomi procariotici completi, il nostro approccio richiede solamente
sequenze di singoli geni selezionati, e per questo è meno dispendioso in termini di
memoria. Basandoci su un software di allineamento all’avanguardia, dimostriamo
anche dei miglioramenti nella velocità di elaborazione. Infine, si può notare come
il nostro approccio funzioni solo leggermente peggio di SHOGUN, un toolkit di
analisi del metagenoma all’avanguardia che richiede più risorse.

Applichiamo quindi entrambe le pipeline a diversi dataset e costruiamo modelli
di machine learning per classificare i campioni di feci come appartenenti a soggetti
sani o affetti da IBD/IBS. Infine, analizziamo l’associazione tra famiglie di geni in
entrambi i gruppi utilizzando gli strumenti di network science applicati alle reti di
correlazione dell’abbondanza.
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Résumé (Abstract in French)
La recherche du microbiome humain est actuellement un thème central de la bio-
informatique et de la biologie computationnelle. La disponibilité de plus en plus
répandue du séquençage haut débit (HTS ou NGS) nous permet d’obtenir une
quantité de données jamais vue. De nombreux microbes sont en corrélation avec
l’état de santé et également avec le commencement des maladies, les exemples les
plus importants étant le syndrome de l’intestin irritable (IBS) et les maladies in-
flammatoires chroniques de l’intestin (IBD), y compris la maladie de Crohn (CD)
et la rectocolite hémorragique (UC). La prédiction de ces maladies et du risque de
les attrapper, basée sur la composition du microbiome, est donc fort désirable.

Ceci est particulièrement précieux dans le contexte d’un nouveau domaine : la
médecine préventive personnalisée. Un point de vue «data-centric» nous permet
d’intégrer les résultats des «omics» divers, comme par exemple la métabolomique,
la génétique, et la protéomique, pour fournir aux clients une répresentation com-
plète et facile à comprendre, sur l’association entre leurs santé et leurs mode de vie.

Jusqu’ici, la plupart des études du microbiome humain se sont concentrés sur les
taxons, en quantifiant les microbes au niveau du genre, de l’espèce, et de la souche.
Pourtant, les fonctions biologiques non correspondent pas de manière biunivoque
avec les taxons.

Dans cette Thèse, nous allons développer un logiciel pour analyser la composi-
tion du microbiome, basé sur des familles de gènes homologues. En contraste avec
l’application d’une base de données contentant plusieurs milliers de génomes com-
plets, elle requiert donc seulement les gènes pertinents selon la littérature, alors
elle demande moins d’espace disque. En utilisant un aligneur avancé de séquences,
nous démontrons aussi une accélération. Puis, nous prouvons que notre modèle
est seulement légèrement moins précis que SHOGUN, un logiciel de pointe pour
l’analyse du microbiome.

Nous appliquons ensuite tous les deux logiciels a de diverses données, et formons
des modèles d’apprentissage-machine pour classifier des échantillons soit comme
«en bonne santé» soit «ayant une MII». Nous concluons enfin avec une analyse de
la correspondance entre les familles de gènes en utilisant la théorie des réseaux,
appliquée aux réseaux de corrélation.
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Kivonat (Abstract in Hungarian)
Az emberi bélflóra kutatása a bioinformatika egyik fő jelenlegi fejlődési iránya.
A több gigabyte adatot szolgáltató, ún. „shotgun” metagenom-szekvenálási tech-
nológiák egyre szélesebb körű elterjedése korábban elképzelhetetlen mennyiségű
adathoz juttatja a kutatókat. Számos mikróbáról kimutatták, hogy meghatáro-
zóak vagy éppen indikátorok az egészségi állapotra és bizonyos betegségek korai
fázisára nézve. Ez a legegyértelműbb az irritábilis bélszindróma (IBS) és a sú-
lyosabb bélgyulladás (IBD), utóbbin belül például a Crohn-betegség (CD) vagy a
fekélyes vastagbélgyulladás (UC) esetében. Felmerül tehát az igény, hogy ezeket
a betegségeket vagy a rájuk való hajlamot a bélflóra összetétele alapján felismerjük.

Ez különösen fontos egy új egészségügyi terület, a holisztikus, személyre szabott,
preventív medicína esetében. Az adatközpontú szemlélet lehetővé teszi, hogy a
különböző „omikák” (például metabolomika, genetika, proteomika) eredményeit
összesítve a klienseknek egy átfogó, mégis könnyen értelmezhető képet adjunk az
egészségük és az életformájuk egyes elemei közötti összefüggésekről.

A metagenomikai tanulmányok túlnyomó többsége ezidáig rendszertani megkö-
zelítéssel dolgozott, a nemzetség, faj, vagy alfaj illetve baktériumtörzs szintjén
kvantifikálva a mikrobiom összetételét. A bélflóra biológiai funkciói azonban nem
feleltethetők meg egyértelműen a taxonoknak: egy fajnak több funkciója is lehet,
és fordítva, egy funkciót több faj is betölthet.

Jelen dolgozatban kifejlesztünk egy olyan metagenom-elemző eszközt, ami a rend-
szertani besorolás helyett homológ géncsaládokon alapul. Előnye, hogy több ezer
faj teljes genomja helyett csupán az irodalom szerint releváns gének szekvenciá-
it igényli adatbázisként, így tárhelyigénye töredéke a taxonómiai alapon működő
programokénak. Fejlett szekvenciaillesztő programok használatával futási időben
is számottevő gyorsulást tudunk elérni a SHOGUN nevű metagenom-feldolgozó
csomaghoz képest, a pontosság és a jóslóérték minimális csökkenése mellett.

Végül mindkét programot lefuttatjuk több adathalmazra, és az eredményként ka-
pott abundancia-profilokat statisztikai és gépi tanulási modellek tanítására hasz-
náljuk, amelyekkel a teszthalmazban lévő pácienseket klasszifikáljuk mint egész-
séges vagy bélbetegségben szenvedő. A profilokat alkotó változók (géncsaládok,
fajok, funkcionális modulok) közötti korrelációkat ezek után a hálózatelmélet mód-
szereivel is elemezzük.
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1 Introduction

1.1 Setting the Scene
The last two decades have seen an explosion in computing power, as well as in new
experimental techniques in molecular biology. Specifically, whole-genome shotgun
metagenome sequencing and fast read alignment algorithms now allow researchers
to obtain data about the human microbiome relatively quickly, and in a large
enough quantity that is meaningful to analyze statistically. This naturally led to
metagenomics taking a leading position within the field of bioinformatics.

Several other multidisciplinary areas of research followed this trend — or, more
accurately, they developed in parallel. The word “omics” has become mainstream
terminology, collectively describing fields like genomics, genetics, metabolomics,
transcriptomics, and connectomics. The common theme of these disciplines is that
they attempt to characterize biological systems in a wide context, taking a system
approach instead of focusing on low-level description. As a result, scientists now
need to be fluent not only in their principal area of interest, but they must also
routinely handle tasks related to statistical analysis, scripting, and programming.

1.2 Tackling Inflammatory Bowel Diseases
Inflammatory Bowel Diseases (IBDs) such as Chron’s Disease (CD) and Ulcerative
Colitis (UC) are severe illnesses of the human digestive system. A related but
less severe group of diseases is called Irritable Bowel Syndrome or IBS for short.
Since these are directly related to the organs of the gut, studying them and try-
ing to achieve early detection from metagenomic data is sort of a low-hanging fruit.

Yet, this problem is not nearly solved: the devil is in the details, and getting
them right is crucial, as many things can go wrong during the planning and exe-
cution of a metagenomic study. Thus, microbial characterization and prediction of
IBDs and IBS remain an active area of research.
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1.3 Data-Oriented Risk Prediction
The emerging industry of personalized, preventive health consulting introduces
new challenges for applied research. In particular, it is desirable to come up with
quantitative risk indices for certain diseases. One way to solve this problem is to
create simple, human-engineered metrics, such as some combination of the concen-
tration of specific substances in the blood or the urine, e.g. sugar and cholesterol.

A more principled way to approach this problem, however, is to let the data speak
for itself, and to that end, integrate as many kinds of data as possible, then use ma-
chine learning for extracting and exposing its hidden patterns. This is the method
suggested by Knights et al. [1] The precursor of the development of production-
quality risk metrics is to first model existing data and study their structure. Here
we aim to address this need and carry out preparatory work for developing an IBD
risk index, based on metagenomic data from the human gut microbiome.

Disclaimer. The present Thesis was written under the supervision of Medipredict,
Ltd., a personalized health consulting company.
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2 Inflammatory Bowel Diseases and
the Gut Microbiome

The literature is rich in previous work characterizing the human gut microbiome
with different goals. In this chapter, we provide an overview of some important
and recent papers, which are relevant to our problem, and which we therefore built
upon. These articles are either concerned with methodology and metagenome
analysis workflows, or with the biological or pathological functions of taxa.

2.1 Current Best Practices in Microbiome Research

2.1.1 Recommended Workflows

Before jumping into metagenomic experiments or data analysis, it is critical to
have at least a high-level understanding of the entire process. Knight et al. [2]
describe an “optimal” workflow not only for metagenomics, shown in figure 2.1.

In addition, they summarize some technicalities that might often seem to be of
secondary importance, but which are in fact key for the correctness and reliability
for a study. Some of these are:

• When comparing healthy and ill patients and defining the control group, one
should consider known variations in the microbial profile across countries and
diets, as well as whether the subjects take any medications.

• Metadata should not be ignored.

• One should use manually-curated, high-quality, large databases. When re-
searching narrow taxonomic or functional categories, it is best to reach for
specialized databases. For instance, Resfams [3] is a database designed specif-
ically for discovering antibioic resistance genes.

• There are a myriad of metagenome analysis tools to choose from, and one
should not stick to just one for every kind of analysis. Pros and cons of
every tool should be carefully inspected, and the software or model should
be chosen based on whether it is adequate for the kind of data being analyzed.
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For example, short reads require different treatment of long reads, and high
error rate PacBio reads will need special treatment compared to low error
rate Illumina reads. Knight et al. recommend toolkits such as MetaPhlAn-2,
HUMAnN2, and MEGAHIT.

Figure 2.1 Recommended metagenomic analysis workflow.

2.1.2 Comparative Metagenomics

In “Toward Accurate and Quantitative Comparative Metagenomics”, Nayfach et
al. [4] assert that although metagenomics has a great potential of being quan-
titative, current experimental and analytical protocols are not in general being
exercised satisfactorily. The paper lists a long set of potential pitfalls and sources
of error, namely:

• Mixing of host DNA with microbial DNA
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• Post-sampling environment (e.g. differences in how samples are being chem-
ically treated, stored, or transported). They point to previous work showing
that inter-laboratory variation is on the same order as biological variation.

• Non-uniform sampling of reads, due to DNA fragmentation or PCR biases

• Effects of bioinformatical preprocessing – although it is noted that these are
among the least severe ones.

For the resolution of these problems, they make the following main suggestions:

• Evaluation of metagenomic data based on more meaningful and robust met-
rics, such as Average Genomic Copy Number, Cellular Absolute Abundance,
or Gene Absolute Abundance.

• Compositional data should be scrutinized using specialized statistical meth-
ods, such as those proposed by Aitchison.

• Standardization and ease of access of data and metadata. The importance of
metadata for repeatability and comparability across studies is re-emphasized.
In particular, the authors state that most experiments and papers suffer from
insufficient discoverability of metadata, and that it is hard and error-prone to
parse metadata from journal supplements and link them to sequence libraries.

2.1.3 The State of the Art

In the paper “Current understanding of the human microbiome”, Gilbert et al. [5]
provide an overview of the field of human microbiome research. They state that
the majority of studies to date have focused on factual description (the “what”),
rather than mechanistic understanding (the “why”). Similar to other reviews, they
also point out that the variation in microbial composition between individuals is
very high, but they optimistically believe that this can even be considered an ad-
vantage in some situations, such as forensic applications.

The article also addresses the question of dynamics, i.e. the time evolution of the
microbiome. The authors cite sources proving that the rate of temporal change is
highly variable across individuals, and there is some (still limited) evidence that
this is a clinical feature. This means that considering the time evolution of the
microbiome would be a useful addition to studying its composition at only a single
time point.

In addition, other factors influencing microbiome profiles and their behavior over

12



time are provided as well. Studies exist about the comparison of metagenomic
samples from different body sites (such as skin, gut, and oral), while it is also
shown that lifestyle patterns like co-habitation with pets or regular exercise also
affect the composition of microbiota. Consequently, these factors should also be
added to the metadata of metagenomic studies.

Furthermore, humans do not form discrete clusters based on their microbial pro-
files; instead, they are distributed across a continuum. It is thus foreseen that any
attempts at classifying microbial samples will likely be met with difficult challenges.

2.2 Previous Results about IBD and the Gut
Microbiome

2.2.1 Multi-omics of the Gut Microbiome in IBDs

Lloyd-Price et al [6] conducted a 1-year-long longitudinal and cross-sectional multi-
omic study on 132 subjects. Their focus was mainly on dysbiosis during inflamma-
tory bowel diseases. In the metagenomic analysis, samples with taxonomic profiles
highly unlike those of non-IBD patients were defined to be “dysbiotic”. For a com-
prehensive exploration of the data, several measurements were made, for example:

• Metagenomic species

• Species-level transcription ratios

• Metabolites

• Functional profiles, captured as Enzyme Commission (EC) gene families

• Serology

• Faecal calprotectin

The results once again reinforced, using PERMANOVA on concrete clinical data,
the more abstract finding of review articles that in omic datasets, variation between
individuals is larger than even variation arising out of strong biological effects, such
as IBD phenotype or antibiotics. The strongest differences between individuals
with and without IBD were the most pronounced in the metabolome. Specifically,
IBD was associated with a lower diversity of metabolites.

A key actionable finding from time series analysis of the taxonomic data was that
IBD patients exhibited significantly greater variation in composition over time than
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healthy patients. Sometimes, variation in the microbiome of IBD patients was ex-
treme, to the point where two samples taken at two different times from the same
person did not have any species in common.

2.2.2 Microbiome-Metabolome Interactions in IBDs

Another paper concerned with the comparison of metabolomic and metagenomic
profiles is Franzosa et al. [7]. The authors here took a more traditional approach
and performed differential abundance (DA) analysis on metabolites as well as
metagenomic species. By integrating data about differentially-abundant species
and metabolites, 122 statistically-robust associations were discovered, leading to
closer understanding of the mechanisms in the IBD gut.

The study also examined the metabolic state of subjects separately, and corre-
lated the first PCoA axis of metabolic variation with faecal calprotectin levels,
an indicator of the level of inflammation. The correlation was strong and highly
statistically significant (Spearman’s r = 0.486, P < 10−6). This provides further
evidence that IBD is associated with a higher variation in metabolites.

2.2.3 Longitudinal Changes in the Gut Microbiome of IBD
Mice

In the paper “Development of Inflammatory Bowel Disease Is Linked to a Longitu-
dinal Restructuring of the Gut Metagenome in Mice”, Sharpton et al. [8] conducted
a longitudinal gut metagenome study in mice, with the goal of understanding func-
tional changes related to IBDs. For this reason, they focused on the abundances
of functional groups, corresponding to KEGG modules.

Among others, a Kruskal-Wallis test was performed on Shannon entropy com-
puted from KEGG modules at different time points. It found that functional
alpha-diversity of IBD mice was more stable over time (P = 0.47) than that of
healthy subjects (P = 0.078). Interestingly, this is the opposite of the pattern ob-
served in metabolites, in which IBD was associated with higher, rather than lower,
variation.
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3 The Functional Genes Pipeline

3.1 Motivation
Taxonomic groups, such as species, are usually not in an unequivocal correspon-
dence with biological functions. Many species are able to fulfill a certain function,
while a given species may have several functions in itself. The association between
genes and biological functions (or the lack thereof) is much stronger, although
still not quite one-to-one. Therefore we explored the idea of using functional gene
groups instead of taxa for quantifying the microbiome profile of persons, with the
ultimate goal of classifying them as healthy or suffering from a certain group of
diseases. Namely, we analyzed data from patients diagnosed with Irritable Bowel
Syndrome and Inflammatory Bowel Diseases, which are diseases of the lower gas-
trointestinal tract, and which are thus hypothesized to correlate the strongest with
the abundance profile of microbial genes.

Gene groups corresponding to various fundamental microbial functions have been
selected by the help of a combination of the literature and biologists’ expert opin-
ion. Altogether, 121 orthologous families of genes were used for our analysis,
categorized into 27 functional groups. The list of orthologous families and the cor-
responding function is reproduced in table 3.1. Gene families were retrieved from
the KEGG database [9], and for this reason, they are identified by their KEGG ID.

Such a relatively short list of genes and functions is an advantage from a compu-
tational point of view as well. Taxon-based abundance analysis software typically
comes with a large database of complete genomes of thousands or tens of thou-
sands of microbial species and strains. It is not uncommon for such a database to
take up several hundreds of gigabytes. Obtaining (e.g. downloading or building)
and storing these databases thus incurs a significant overhead and is a constant
source of hurdle, especially when the need arises for setting them up on a personal
computer, usually for the purposes of small-scale research activity or developing
and debugging the software itself.
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KEGG ID Abbrev./EC number Function KEGG ID Abbrev./EC number Function

K20708 E5.1.1.21 BCAA degradation K22373 larA l-lactate prod.
K03334 IL4I1 BCAA degradation K22212 mleA, mleS l-lactate prod.
K00271 vdh BCAA degradation K05357 VKORC1 menaquinone prod.
K00263 E1.4.1.9 BCAA synthesis K00400 K00400 methanogenesis
K01652 ilvB, ilvG, ilvI BCAA synthesis K00399 mcrA methanogenesis
K01653 ilvH, ilvN BCAA synthesis K00401 mcrB methanogenesis
K00826 ilvE BCAA synthesis K03421 mcrC methanogenesis
K01754 ilvA, tdcB BCAA synthesis K03422 mcrD methanogenesis
K09011 cimA BCAA synthesis K00402 mcrG methanogenesis
K00053 ilvC BCAA synthesis K15923 AXY8, FUC95A, afcA mucin degradation
K01687 ilvD BCAA synthesis K01206 FUCA mucin degradation
K01649 leuA, IMS BCAA synthesis K01205 NAGLU mucin degradation
K00052 leuB, IMDH BCAA synthesis K12111 ebgA mucin degradation
K01703 leuC, IPMI-L BCAA synthesis K12112 ebgC mucin degradation
K01704 leuD, IPMI-S BCAA synthesis K17624 engCP, engBF, endoEF mucin degradation
K03311 TC.LIVCS BCAA transport K01190 lacZ mucin degradation
K01999 livK BCAA transport K07406 melA mucin degradation
K02560 lpxM, msbB LPS production K01207 nagZ mucin degradation
K00317 dmd-tmd TMA degradation K23550 nanH mucin degradation
K14082 mtbA TMA degradation K01239 iunH niacin-nicotinamide prod.
K14083 mttB TMA degradation K18153 nga niacin-nicotinamide prod.
K14084 mttC TMA degradation K12410 npdA niacin-nicotinamide prod.
K22443 cntA TMA synthesis K03783 punA, PNP niacin-nicotinamide prod.
K22444 cntB TMA synthesis K03784 deoD niacin-nicotinate prod.
K20038 cutC TMA synthesis K00763 pncB, NAPRT1 niacin-nicotinate prod.
K20037 cutD TMA synthesis K03462 NAMPT niacin production
K01895 ACSS1_2, acs acetate prod. K08281 pncA niacin production
K00128 ALDH acetate prod. K18427 hpdB p-cresol sulfate prod.
K14085 ALDH7A1 acetate prod. K18428 hpdC p-cresol sulfate prod.
K00149 ALDH9A1 acetate prod. K04069 pflA, pflC, pflE p-cresol sulfate prod.
K00467 E1.13.12.4 acetate prod. K09722 pps pantothenate prod.
K01067 ACH1 acetate prod. K01947 birA-coaX pantothenate prod.
K18118 aarC, cat1 acetate prod. K00867 coaA pantothenate prod.
K01905 acdA acetate prod. K09680 coaW pantothenate prod.
K24012 acdAB acetate prod. K03525 coaX pantothenate prod.
K22224 acdB acetate prod. K20626 lcdA propionate production
K00925 ackA acetate prod. K01604 mmdA propionate production
K01512 acyP acetate prod. K13922 pduP propionate production
K00138 aldB acetate prod. K05275 E1.1.1.65 pyridoxine production
K01026 pct acetate prod. K07758 PDXP pyridoxine production
K00156 poxB acetate prod. K13248 PHOSPHO2 pyridoxine production
K01012 bioB biotin prod. K23998 PPOX pyridoxine production
K01035 atoA butyrate prod. K00275 pdxH, PNPO pyridoxine production
K01034 atoD butyrate prod. K18607 pno pyridoxine production
K00929 buk butyrate prod. K03788 aphA riboflavin production
K00798 MMAB, pduO cobalamin prod. K01093 appA riboflavin production
K02303 cobA cobalamin prod. K09474 phoN riboflavin production
K09882 cobS cobalamin prod. K00793 ribE, RIB5 riboflavin production
K04032 eutT cobalamin prod. K20861 ybjI riboflavin production
K00287 DHFR, folA folate production K20862 yigB riboflavin production
K13998 DHFR-TS folate production K14394 ACP1 thiamine production
K18589 dfrA1, dhfr folate production K01077 phoA, phoB thiamine production
K19643 dfrA10, dfr10 folate production K01078 PHO thiamine production
K18590 dfrA12, dhfr folate production K06949 rsgA, engC thiamine production
K19644 dfrA19, dfrA18 folate production K01695 trpA tryptophane prod.
K18591 dfrD, dhfr folate production K01696 trpB tryptophane prod.
K01667 tnaA indol production K01427 URE urease production
K19266 E1.2.1.22 l-lactate prod. K01430 ureA urease production
K00016 LDH, ldh l-lactate prod. K14048 ureAB urease production
K07248 aldA l-lactate prod. K01429 ureB urease production

K01428 ureC urease production

Table 3.1 Orthologous gene families and their functions

3.2 Architecture of the Software
Like many other pieces of metagenome analysis software, our functional genes
pipeline applies a two-stage method. First, a database is built from the sequences
of each gene family, including HMM profiles. Since a handful of heuristics are
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applied for the creation of the HMM profiles (e.g. for multiple alignment and
for determining conserved regions), a number of visualizations are also output by
this stage of the program. This allows a biologist or bioinformatician to look at
the results and determine whether they make sense, or, if they are wildly incor-
rect, discard them or rebuild the database with improved settings for the relevant
heuristics. In the second stage, two different read alignment algorithms are applied:
one is the usual short-read alignment to the raw reference sequences of individual
genes, and the other is profile search against HMM profiles for entire orthologous
families. In both cases, reads are counted with respect to several criteria of vary-
ing strictness, and the counts are then normalized and transformed according to
industry best practices. In the following sections, we elaborate on the detailed
modus operandi of both stages.

3.2.1 Building the Database

The specification for building the database, at a minimum, needs to be a list of
KEGG Orthology IDs, one for each gene family. However, for technical reasons,
this needs to be further refined. In particular, since KEGG Orthology IDs are
not human-readable, we should allow a human-readable title (that contains e.g.
the scientific name and the function of a family) to be specified as well. Further-
more, some families in the KEGG Orthology database comprise tens of thousands
of genes – consequently, processing and downloading all of them is not practical
(the KEGG REST API is notoriously slow to respond to HTTP requests). This
means that the number of genes needs to be restricted in some way. For lack of
a better method, we opted for randomly sampling a more manageable number of
genes from the family. This number is also specified for each individual gene family.

Since the input to our program is apparently becoming structured, we choose to
organize all the specifications into a single “manifest” file, written in the human-
readable TOML format [10]. An example of such a manifest is given in listing 3.1.

This excerpt highlights two more important details about the code. First, besides
the fact that each gene family contains sequence data for many individual genes, the
software allows the user to BLAST for even more sequences, similar to those found
by gene family ID. The reason behind this feature is that originally the KEGG
database wasn’t used for retrieving sequence data, and so only a single representa-
tive sequence was input, then homologous sequences were searched for in the RefSeq
Representative Prokaryotic Genomes database (ref_prok_rep_genomes [11] [12]).
However, since KEGG Orthology includes manually-curated sequences, using them
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directly is preferred over trying to infer homology automatically via BLAST. Yet,
the feature might be useful in the future and was therefore retained. If, however,
running BLAST is not desired, and consequently we do not want to have to pro-
vide the corresponding BLAST database, we can turn the feature off completely
by specifying that the number of required hits is zero.

Listing 3.1. Input manifest for database building

1 [[query]]
2 kegg-id = ’K00271’
3 title = ’BCAA degradation: K00271 (vdh)’
4 subsample = 100
5
6 [[query]]
7 kegg-id = ’K03334’
8 title = ’BCAA degradation: K03334 (IL4I1)’
9 subsample = 100

10
11 [blast]
12 num-hits = 0
13
14 [misc]
15 gene-cache-path = ’/root/mp-userdata/.cache/’

The second feature that the gene-cache-path configuration option hints at is
extensive caching. Since the act of downloading metadata and sequences through
the KEGG HTTP API is pretty time-consuming, our pipeline caches every entry
after downloading them for the first time. More precisely, the association between
KEGG Orthology gene family IDs and the IDs of individual genes is cached, as
well as all of the sequence data for the genes actually having been downloaded (i.e.,
caching occurs after subsampling). The cache expires after a configurable amount
of time (by default, 30 days), so that it eventually synchronizes with any updates
to the KEGG database.

The pipeline also reads from an internal configuration file, config.toml (please see
the supplementary material), which contains default values for the configuration
of the heuristic algorithms of this first stage as well as those of the second one.
The default options can be overridden by specifying them in the input manifest
file, structured in the same manner as they are laid out in the internal config file.

After downloading sequence data for each specified orthology group, it starts pro-
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cessing them. In short, the following steps are performed on each set of sequences
belonging to the same family:

1. The sequences are written out in a single FASTA file which will be used later
as the reference database for read alignment.

2. A Multiple Sequence Alignment is created with Clustal Omega [13].

3. Conserved regions are determined using the following heuristics:

a) At each position (column) i of the MSA, the entropy Si is computed
and normalized so that its maximal possible value is 1. This essentially
means using the base-4 logarithm, since there are 4 possible symbols:
A, C, T, G, i.e.:

Si = −
∑

j∈{A,C,T,G}
Pij · log4(Pij) (3.1)

Probabilities are computed using the total number of non-gap symbols
at each position.

b) The ratio of gaps Gi, i.e. the number of gaps divided by the number of
aligned sequences, is computed for each position as well, this also gives
a number between 0 and 1, inclusive.

c) The raw conservation score is then computed for each position based on
the scheme proposed by Valdar [14]:

RCi = (1 − Si)α · (1 − Gi)β (3.2)

where α and β are configurable positive exponents, with default values
of α = 0.5 and β = 1.

d) A “smoothed” conservation score Ci is then obtained by running the raw
scores through a Gaussian filter, the width of which is also configurable
and by default equals σ = 4.

e) A low and a high score threshold is defined according to the following
adaptive algorithm. The median of all scores Cm = median

i
(Ci) is com-

puted. Next, four configurable values, called the low and high relative
and absolute thresholds 0 ≤ Rlo < 1 ≤ Rhi and 0 ≤ Alo < Ahi ≤ 1,
are used for deriving reasonable thresholds that work well with align-
ments of which the conservation score varies only very slightly, or is
consistently very low or very high. We don’t want to mark absolutely
high-scoring regions (e.g. Ci ≥ 0.6) as non-conserved or absolutely low-
scoring regions (e.g. Ci ≤ 0.1) as conserved just because their scores are
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below or above a certain fraction of the median score, but we do want to
adaptively take the general tendency of the scores into account. Thus,
the low and high thresholds are defined respectively as:

Tlo =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Alo if Cm · Rhi ≤ Alo

Ahi if Ahi ≤ Cm · Rlo

max(Alo, Cm · Rlo) otherwise

(3.3)

and

Thi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Alo if Cm · Rhi ≤ Alo

Ahi if Ahi ≤ Cm · Rlo

min(Ahi, Cm · Rhi) otherwise

(3.4)

f) Finally, hysteresis thresholding is applied to the smoothed score, simi-
larly to the corresponding step of the Canny operator [15]. All positions
of the MSA with a score exceeding the high threshold are marked as
conserved, all positions not exceeding the lower threshold are marked
as not conserved, and the remaining positions are marked as conserved
if and only if they are connected to an unconditionally conserved region
(i.e. one with scores above the high threshold).

4. The (ambiguous) consensus sequence of the alignment is obtained: at each
position, the frequencies of all 4 kinds of bases are counted, and bases of which
the frequency exceeds a certain (configurable) proportion of the count of the
most frequent base at that position are included in the consensus sequence.
This proportion is 0.55 by default. If more than one base is included in the
consensus sequence at a given position, this fact is indicated with an IUPAC
ambiguity code.

5. The MSA is written out in the Stockholm format, annotated with its con-
served regions. Sub-alignments and consensus sequences for each conserved
region are also written out to separate files for easier downstream processing.

6. The hmmbuild program from the HMMER3 suite [16] is then used for building
HMM profiles.

7. The MSA is visualized in the form of a colorful HTML table. Conservation
scores and conserved regions are plotted for easier inspection, and for each
conserved region, a so-called “sequence logo” is created with the help of
the Logomaker library [17]. This depicts the most prominent bases at each
position in an intuitive manner.
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Since the quality of a heuristically-computed multiple alignment may be negatively
impacted by wildly varying sequence lengths, sequences are clustered by length,
and the above procedure is repeated for each such cluster. Clustering is based
on an unsupervised model. First, the probability density of the logarithm of the
sequence lengths is obtained using Gaussian Kernel Density Estimation, as imple-
mented in statsmodels [18], and with a bandwidth of 50% of the approximation
given by Silverman’s rule of thumb. (Using the rule-of-thumb value directly typ-
ically leads to oversmoothing, and as a result, important gaps between clusters
remain undiscovered. However, this has only been verified by visual inspection of
the results, and is therefore a subjective statement.) Cluster boundaries are then
defined at the local minima of the estimated PDF.

Clustering turned out to be more useful (in the sense that it noticeably improved
alignment quality in some cases) when homology groups had previously been de-
fined as a single seed sequence and the corresponding BLAST hits. After our
pipeline was switched over to KEGG, this clustering basically ceased to be neces-
sary, because the quality of MSAs based on entire KEGG Orthology groups was
readily deemed satisfactory.

3.2.2 Quality and Efficiency of the Database

In this section, we describe how we curated the automatically-generated align-
ments, profiles, and conserved regions, and we compare the storage requirements
of our software to those of a state-of-the-art taxon-based metagenome analysis tool,
SHOGUN [19].

The primary indicator of MSA quality is the alignment plot itself. An alignment
is good-quality if homologous genes align reasonably well and as such, their con-
served regions can be easily distinguished. The alignment is low-quality if for some
reason the similar regions of each sequence do not align, therefore evolutionary
relations cannot be deduced from it. Figure 3.1 shows part of the alignment plot
for the K18591 orthology group, a very conserved family of genes, while figure 3.2
depicts a non-conserved section of family K07406 – a low-quality alignment would
look like this along the entire sequence.

The second kind of plot useful for quality checking is the (smoothed) conservation
score and the thresholding, which indicate the boundaries of conserved regions. The
heuristic is tuned correctly when there are a few long conserved regions and the
corresponding MSA plots look uniform and well-aligned, as in figure 3.3; whereas an
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Figure 3.1 A good-quality alignment for orthology family K18591.

Figure 3.2 A “bad-quality” excerpt from the alignment for family K07406. A non-conserved
region is in fact shown here for illustrative purposes only.

incorrectly-working heuristic results in many short, almost consecutive conserved
regions, making the generated HMM profiles fragmented and hard to align against,
as shown in figure 3.4.

The last kind of quality control plot is aimed at assessing the level of conservation
within a conserved region. These so-called sequence logos show the letters occurring
at each position of a conserved region of an MSA, their height being proportional
to their ratio in that position. In addition, the total height of a stack of letters
quantifies the amount of conservation in that column: the higher the stack, the
higher the conservation (i.e. the lower the entropy). A well-conserved region can
be seen in figure 3.5, while a not very well-conserved one is shown in figure 3.6.
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Figure 3.3 Good-quality conserved regions from family K03311.
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Figure 3.4 Low-quality conserved regions from family K01206.

Figure 3.5 The beginning of a well-conserved region from family K18591.

Figure 3.6 Excerpt from a not well-conserved region in family K01695.

After inspecting the 121 generated entries, we concluded that most of them are
good-quality and thus we proceeded to use them as-is. The database takes up a
little more than 2 Gigabytes in total, including all the quality control plots that our
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software output alongside the useful data (sequences and HMM profiles). Table 3.2
summarizes the size distribution of these entries, while table 3.3 details the size of
the components of the database used by the SHOGUN toolkit. This shows that
using fewer and shorter sequences does obviously pay off in terms of disk space:
our software requires less than 1

35 of the size of the SHOGUN database.

Metric Size

Minimum 224.00 kB
Median 18.00 MB
Mean 19.86 MB
Maximum 82.00 MB
Total 2.35 GB

Table 3.2 Sizes of database entries generated for 121 functional gene families.

File Size

humanD252.acx 17.00 GB
humanD252.edx 3.40 GB
ko-enzyme-annotations.txt 975.00 kB
ko-module-annotations.txt 576.00 kB
ko-pathway-annotations.txt 2.30 MB
ko-species2ko.80pct.txt 12.00 MB
ko-species2ko.txt 12.00 MB
ko-strain2ko.txt 38.00 MB
rep82.1.bt2l 6.40 GB
rep82.2.bt2l 9.50 GB
rep82.3.bt2l 6.60 MB
rep82.4.bt2l 4.80 GB
rep82.fna 19.00 GB
rep82.gg.ctr 8.30 GB
rep82.gg.log 2.00 MB
rep82.rev.1.bt2l 6.40 GB
rep82.rev.2.bt2l 9.50 GB
rep82.tax 1.90 MB
sheared_bayes.txt 2.00 MB
Total 84.00 GB

Table 3.3 Detailed space requirements of SHOGUN.

3.2.3 Quantifying Relative Abundances

Once the database is built, the second stage of the software, abundance counting,
can be invoked. Here two distinct methods are applied.
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First, “traditional” read alignment is performed using minimap2 [20]. This tool is
an evolution of the widely-used BWA-MEM [21] aligner from the same author, and
while it is primarily designed for aligning long and ultra-long reads, it is claimed
to be approximately 3 times faster than BWA-MEM even on short reads, while
achieving comparable accuracy. In our experience, this claim seems to be accurate
for the most part.

The output of minimap2 is a SAM file containing information such as which aligned
read mapped to which reference sequence, the substitutions and indels in the align-
ment, and whether the pair of a paired-end read was mapped as well. This SAM
file is then parsed by our software, and some useful statistics (such as percent iden-
tity of the alignment) are extracted from it. These will be used later for deciding
whether a mapped read should indeed be counted towards the abundance of the
corresponding gene.

The second method is profile hidden Markov model search, again using the HM-
MER3 package. Specifically, the nhmmer program is invoked for comparing all
of the 121 profiles, each generated from multiple alignments of the corresponding
homologous family, to the sequenced reads. While HMMER wasn’t specifically de-
signed for read alignment, it is a more sophisticated model than simple one-vs-one
alignment. Furthermore, there is precedent for relying on HMM profiles in the
context of metagenome analysis. For instance, Skewes-Cox et al [22] use them for
detecting viruses in metagenomic data, and the SAT-Assembler [23] also performs
a profile HMM search in order to create overlap graphs between reads mapped to
the same profile.

The only downside of profile HMM searching is that it is orders of magnitude
slower than direct sequence alignment. This makes it necessary to reduce the
number of reads aligned to the reference profiles. Similarly to how we dealt with
an excessively high number of sequences in the database building step, we im-
plemented random sampling for the reads to be aligned to HMM profiles as well,
mainly for reasons of simplicity.

The output of nhmmer is in a whitespace-separated, tabular, and to some extent
ad-hoc format, for which there is no parser in the Biopython [24] package (that
we otherwise rely heavily on for parsing various file formats used extensively in
bioinformatics). In addition, since HMMER3 isn’t a read aligner, it doesn’t take
paired-end reads into consideration. Therefore, further post-processing is required.
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Pairing of the reads is achieved with the following algorithm:

1. First, we note that nhmmer handles individual HMM profiles independently
from one another. This means that a single read can be mapped to more
than one profile.

2. Next, for each fragment (i.e., pair of reads), we take the Cartesian product
of the mappings of both reads. This effectively produces all possible combi-
nations of HMM profiles that matched the reads.

3. We make the (somewhat naive) assumption of independence of composition
at the two ends of the fragment, which means that the P-value of a pair is
the product of the P-values of its two reads. We then note that for small
E-values, the E-value is approximately proportional to the P-value, which
in turn means that the pair P-value is approximately proportional to the
product of its E-values. Therefore, we choose the mapping with the smallest
product (or, equivalently, the smallest geometric mean) of E-values. (nhmmer
only outputs E-values.)

4. Finally, we check if the given mapping results in a “proper pair”, and we
augment the mapping with this piece of information. A proper pair is one
such that:

a) both of its reads are mapped, and

b) they are mapped to the same profile, and

c) they are mapped to different strands.

The latter two are correct criteria, since nhmmer checks the reverse comple-
ment of each read as well, and it also outputs the direction of the match.

Two examples for the post-processed read mappings are provided in figures 3.7 (for
minimap2) and 3.8 (for nhmmer). Only the most important columns are shown for
brevity and readability.
Once appropriately-postprocessed read mappings are obtained, they can be con-
verted into relative abundances. This is done in two steps.

First, the reads are filtered according to certain criteria. For both mappings de-
rived by minimap2 and HMMER, we implemented 6 levels of decreasing strictness,
called Draconian, Strict, Moderate, Lenient, Loose, and Placebo, respec-
tively. Without diving into the specifics of these criteria, their importance is that
they impose different requirements on each read in order to be counted towards
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Figure 3.7 Excerpt from the post-processed minimap2 mapping data for patient SRR5935741
from the study of Lloyd-Price et al [6].

Figure 3.8 Excerpt from the post-processed HMM mapping data for patient SRR5935741 from
the study of Lloyd-Price et al [6].

the abundance of the matching reference. For instance, a filter might require any
or all of the following:

1. In paired-end mode, the read must be mapped together with its pair.

2. At least a certain proportion (e.g. 90%) of the read must be aligned to the
reference.

3. At least a certain proportion of the aligned positions must be matches (as
opposed to substitutions or indels).

4. The read must pass the internal probabilistic quality check of the read aligner.

5. The read must have an E-value below, and/or a bit score above, a specific
threshold.

6. In the case of HMM profile searches, the so-called “bias correction” of the bit
score for the read must not exceed a certain ratio of the raw (uncorrected) bit
score. This essentially ensures that the composition of the read is sufficiently
random and meets the assumptions of the underlying hidden Markov model
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– otherwise, reported E-values might be too optimistically low and therefore
unsuitable for assessing the significance of an alignment.

Once reads are counted for each reference (sequence or HMM profile), the counts
are transformed into relative abundances. According to current best practice, we
calculate the metric known as TPM (which essentially measures relative abun-
dance in units of parts per million) and percents (which is just 1

10000 of the TPM
values). Briefly, this means normalizing for reference length first, yielding the so-
called “RPK” or “Reads per Kilobase” metric, then dividing each RPK value by
their sum and multiplying by 1 000 000 (for TPM) or 100 (for percents).

For HMM-based mappings, the process ends here, since each gene family corre-
sponds to exactly one reference profile. In the case of alignments produced by
minimap2, however, each gene family is associated with many sequences. Con-
sequently, TPM values for sequences in the same homologous family need to be
summed up. An example of the results of this computation is provided in figure 3.9.

Figure 3.9 Excerpt from the relative abundance table based on minimap2 for patient SRR5935741
from the study of Lloyd-Price et al [6].
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3.2.4 Computational Performance

The abundance analysis stage of our software has a clear computing performance
advantage over SHOGUN both in terms of RAM usage and running time when
considering only direct read mapping (and not HMM profile alignment). Using
this metric is justified because — surprisingly — HMM profile searching turned
out not to be very useful for classification. The following numbers have been ob-
tained on a Scaleway GP1-L virtual machine, with 32 AMD EPYC CPU cores and
128 GB of RAM.

The reduction in operative memory footprint is genuine and is owed to our smaller
database, since read aligners typically need to load the entire reference database
into memory. In our case, minimap2 needed less than 0.8 GB of RAM, while
the aligner we ran SHOGUN with, Bowtie2 [25], used 27.7 GB. This signifies
a more than 34-fold reduction in RAM usage. The aligner that SHOGUN
comes with by default, called BURST [26], is significantly faster than Bowtie2, but
it consumes even more RAM, and we were in fact unable to get it running on the
aforementioned machine, as it simply exhausted all available RAM then crashed.

The reduction in running time, however, is mostly due to the choice of read aligner,
and is therefore not an advantage of our pipeline per se. Still, the moral of this com-
parison is that it is very well worth following new developments in high-performance
computing, and authors should continuously monitor and update dependencies in
order to find the best current alternative.

Table 3.5 illustrates the execution time of both programs, on a small subset of
patient data from the study by Lloyd-Price ey al [6], while figure 3.10 visualizes
the same data. Table 3.4 shows the results of testing the hypothesis that the run-
ning time of our own pipeline using minimap2 is significantly smaller than that of
SHOGUN with Bowtie2, and gives the ratio between the mean running times.

Quantity Value

Own runtime mean (s) 87.8
Own runtime stddev (s) 0.6476
SHOGUN runtime mean (s) 929.3
SHOGUN runtime stddev (s) 401.8
One-sided Wilcoxon test statistic 190.0
One-sided Wilcoxon test p-value 7.15 · 10−5

Speedup (fold) 10.6

Table 3.4 Summary of the comparison between running times.

29



Patient ID Runtime, own pipeline (s) Runtime, SHOGUN (s)
SRR5935776 87.36 860.95
SRR5935783 87.20 528.00
SRR5935852 87.52 1577.05
SRR5935978 87.28 1775.76
SRR5936116 87.13 493.46
SRR5936139 88.72 578.24
SRR5936180 87.52 720.11
SRR5946618 87.66 767.10
SRR5946647 87.84 631.35
SRR5947014 88.13 903.32
SRR5947067 88.93 474.33
SRR5950519 87.08 1403.51
SRR5950634 88.16 1387.42
SRR5950645 87.77 1452.19
SRR5950695 87.99 562.38
SRR5950697 87.99 943.93
SRR5950714 87.69 1045.43
SRR5950720 87.59 673.22
SRR5950746 89.57 878.67

Table 3.5 Running time of our software and that of SHOGUN.
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Figure 3.10 Visualization of the different running times.
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3.3 Packaging for Reproducibility
The software was developed and tested under macOS 10.12.6 “Sierra” and Debian
GNU/Linux 10 “Buster”. Many nontrivial programming tasks (such as interfa-
cing with the filesystem, dealing with character encodings, calling out to the shell,
or compiling external tools from source) are significantly easier to accomplish if a
Unix-like environment can be assumed. However, since future users of the software
are expected to work with a variety of other operating systems, including Microsoft
Windows, the impedance mismatch between user and programmer convenience
had to be bridged somehow. Furthermore, the pipeline relies on several dependen-
cies: Python libraries as well as stand-alone bioinformatic programs. These should
preferably be pinned at exact versions for improved reliability.

For these reasons, the software and all of its dependencies have been packaged
as a Docker [27] image based on Ubuntu GNU/Linux 20.04 “Focal Fossa”, using
Docker 2.2.0.5 (43884). Finally, the image was exported as a gzipped tar archive,
from which it has been successfully installed on two other computers to date. Con-
tainers instantiated from this image can then communicate with the host machine
via Docker volumes and a dedicated mount point inside the container. This is ne-
cessary for uploading input (e.g. metagenomic read files) and downloading results
(e.g. tables containing abundance profiles) from/to the host computer.
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4 Predicting Disease Status with
Functional Genes

4.1 Data Sources
Raw metagenomic sequencing data have been obtained from four sources:

1. A set of 15 healthy clients of Medipredict, Ltd. (proprietary data). For
reasons of data protection, directly identifiable information such as age, sex,
and any data relating to the microbial composition, has been omitted from
tables, plots, and the Supplementary material for these persons.

2. A study about Inflammatory Bowel Diseases by Lloyd-Price et al [6].

3. A de novo genome assembly article by Nielsen et al [28], henceforth referred
to as “PRJEB1220”.

4. The American Gut Project [29], referred to as “PRJEB11419” in this Thesis.

The last two studies have been selected by searching GMrepo [30] and filtering
for samples from large, manually-curated metagenomic analysis projects, with
the following criteria: QCStatus = 1 AND experiment_type = ’Metagenomics’
AND nr_reads_sequenced >= 1000000. We then performed basic, automated ex-
ploratory analysis on the metadata for each study, plotting the distribution of
patients’ age, BMI, country of origin, disease status, and that of the sequencing
depth of each stool sample. We preferred data sets where age and sex were spe-
cified, the countries of origin were diverse, detected diseases were only or mostly
IBS and IBD, and the number of healthy controls did not exceed the number of ill
patients disproportionately.

Naturally, no data set met all of these requirements simultaneously, therefore we
picked the ones that still seemed the most decent based on at least the existence of
metadata, geographical diversity, or healthy-ill balance. Severely unbalanced data
sets (e.g. those with thousands of healthy controls) were again handled by (pseudo-)
randomly choosing as many healthy samples as there were ill ones. This was also
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necessary because processing the raw sequencing data and obtaining abundance
information is time-consuming, so with our computing capabilities, it wouldn’t
have been possible to complete several thousands of samples within a time frame
reasonable for this Thesis.

Furthermore, some of the selected samples ultimately failed to download or became
corrupted for mostly unclear technical reasons that caused frequent intermittent
lack of web service availability. These very few samples have been ignored and
were subsequently excluded from further analysis.

Finally, both our pipeline and the SHOGUN have been run on each patient’s data,
resulting in 581 data points for each kind of result (functional gene composition in
the case of our pipeline; and taxon, KEGG module, and pathway composition in
the case of SHOGUN). All-zero rows have been omitted, because these are impos-
sible to handle with the imputation method we used later. The smallest dataset
thus cleaned was 536 rows long, which means that overall, not much data was lost.
In addition, patient metadata was joined to each dataset redundantly, with the
sole purpose of facilitating the rest of the work.

4.2 Handling Compositional Data
It is a well-known fact that relative abundances are a form of compositional data.
Namely, they always sum to a constant, which can be normalized to 1 without loss
of generality. This missing degree of freedom causes problems if we naively attempt
to compute statistics (e.g. correlation coefficients) directly from the relative abun-
dances. For example, the absolute abundance of a single species might increase
while the rest is unchanged. This causes all the unchanged species to decrease in
relative abundance, which in turn leads to spurious correlations.

Consequently, the data have to be transformed before statistical analysis. The
most popular and simplest approaches are based on logarithms of relative abun-
dances or ratios thereof. This means that zero values have to be imputed with small
nonzero values. After researching available options, we decided to use multiplica-
tive imputation [31], because it is easy to implement and has appealing statistical
properties – namely, it is one of the methods that distorts data the least. The
small imputed value was chosen to be δ = 1

D2 where D is the dimensionality of the
space (i.e. the number of genes or taxa), following the default in scikit-bio [32].
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Therefore, values are transformed during imputation like so:

X
(i)
ij =

⎧⎪⎪⎨⎪⎪⎩
1

D2 if X
(r)
ij = 0(

1 − 1
D2 ·

D∑
j=1

I(X(r)
ij = 0)

)
· X

(r)
ij otherwise

(4.1)

where X(i) is the imputed matrix, X(r) is the original (raw) but normalized matrix
of relative abundances, that is, ∀i

∑D
j=1 X

(r)
ij = 1, and I(·) is the indicator function.

As usual, rows of the X matrices represent patients while their columns are genes
or taxa.

Following imputation, three well-known transforms have been applied to the data:
centered log-ratio (CLR), isometric log-ratio (ILR), and relative log-expression
(RLE). Since the literature doesn’t reach consensus as to what exactly these terms
should mean, below we reproduce the exact formulae that we used:

CLR(X)ij = log(Xij) − IQM(log(Xi·)) (4.2)

ILR(X) = −CLR(X) · HT
D (4.3)

RLE(X)ij = log(Xij) − IQM(log(X·j)) (4.4)

where IQM(·) denotes the interquartile mean of its argument vector, and HD is
the incomplete Helmert matrix of order D, HD ∈ R(D−1)×D.

Each of these methods has advantages and drawbacks. CLR and RLE are con-
ceptually simple and easy to interpret, since transformed values are computed by
comparing them to the central tendency along the axis of taxa (in the case of CLR)
or patients (in the case of RLE). However, while improving statistical properties,
they do not completely get rid of the constant-sum constraint: the sum along the
appropriate dimension will still be close to zero, since measures of central tendency,
the IQM included, are expected to be “close” to the mean.

In contrast, IRL does in fact get rid of this constraint by normalizing away the spu-
rious dimension, therefore outputing only as many dimensions as there are actual
degrees of freedom. However, the results will not be easy to interpret, nor bio-
logically meaningful, since transformed values are a somewhat complicated linear
combination of input values.
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4.3 Exploratory Data Analysis
After transforming the data, we can start analyzing it. The first step in this is
of course exploratory analysis. The common theme of exploring microbiome data
is dimensionality reduction: the number of dimensions is in the hundreds or
thousands, which cannot be visualized directly. For the same reason, plotting the
distribution of all input dimensions is not useful: even if we did it, we could not
look at hundreds or thousands of plots. We know that there is an inherent problem
with the data anyway: relative abundances are usually heavily zero-inflated, so a
sizeable portion of the data will come from imputation, resulting in a dispropor-
tionate frequency of a single constant value. Therefore, we know that statistical
models relying on the assumption of normality cannot be used.

Instead, we are interested in simplifying the structure of the data in order to
be able to plot it. We take two approaches:

1. Computing low-dimensional summary statistics and correlating them, and

2. Using unsupervised models for visualizing the distance between points, then
inferring how they cluster.

As for the first approach, a convenient and biologically relevant metric is that of
alpha diversity. This may be computed from relative abundances Pi in several
different ways, although the results tend to be qualitatively similar, except in
extreme cases. We computed three indexes of diversity:

1. Shannon diversity (entropy):

DShannon = −
∑

i

Pi · log(Pi) (4.5)

2. Simpson diversity, inverse (effective number of taxa/genes):

DSimpson = 1∑
i

P 2
i

(4.6)

3. Richness (Simple count of detected taxa/genes):

DRichness =
∑

i

I(Pi > 0) (4.7)

We then plotted these together and examined whether any one of them clearly sep-
arates healthy and ill patients. We observed that the correlation between Shannon
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and Simpson diversities is almost perfect (although we do need to take the loga-
rithm of the Simpson and richness indexes, since entropy measures bits). The
lowest Pearson correlation between them was 0.889 (P = 1.82 · 10−198 in the
shogun_taxatable.strain.kegg dataset), and in 14 out of the 19 data sets, it ex-
ceeded 0.95 with similar, very low P-values. Correlation between Shannon entropy
and richness wasn’t so clear-cut, and neither was correlation between Simpson di-
versity and richness. Often, these were not significant at all, one of them was
negative (which is clearly nonsensical), and only in 4 cases did they exceed 0.9.
The highest-correlated case is shown in figure 4.1.

Neither diversity metric can be used for confidently distinguishing between ill and
healthy samples, as data points do not cluster based on health status. They do
however cluster based on their study of origin, suggesting that the experimental
setup impacts results so strongly that it suppresses the biological signal,
if any. Figures 4.2 and 4.3 demonstrate this phenomenon.

Figure 4.1 In the dataset mp-pipeline_stats_hmm_pct_abundance_draconian, different diver-
sity metrics correlate strongly.
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Figure 4.2 Data do not cluster strongly based on health and illness.

Figure 4.3 Clustering based on study (experimental setup) is well-visible.

37



For the second part, we used two standard dimensionality reduction models par-
ticularly suitable for visualization: Principal Coordinate Analysis and TSNE. Be-
cause TSNE does not work well with a very high number (several hundreds or
thousands) of dimensions, Independent Component Analysis was used for lowering
the dimensionality of the TSNE input space to 32. The scikit-learn library [33]
was used for fitting the models to 19 different kinds of data sets as output by our
pipeline as well as SHOGUN, each subject to the aforementioned 3 kinds of log
transform. Qualitatively, both approaches resulted in largely the same projections,
although sometimes PCoA plots looked nicer than TSNE plots and vice versa.

Again, we colored data points based on health status and study, as well as other
potentially influential factors such as age and sex. Unfortunately, the outcome was
once more uninteresting: data are well-separated along the dimension of different
studies, but not with respect to health versus illness. Age and sex do not seem to
be clustering factors either. In addition, this behavior appears consistent across
data sets: the clarity of clustering does not depend much on whether taxa, KEGG
modules, gene families, or metabolic pathways are considered, or whether abun-
dances are transformed using CLR, ILR, or RLE.

The best-looking results were obtained from the shogun_taxatable.bowtie2.pdf
dataset, transformed with centered log-ratio and relative log-expression. These are
depicted in figures 4.4, 4.5, 4.6, and 4.7.
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Figure 4.4 Clustering by disease as seen by TSNE after centered log-ratio transform.

Figure 4.5 Clustering by study as seen by TSNE after centered log-ratio transform.
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Figure 4.6 Clustering by disease as seen by PCoA after relative log-expression transform.

Figure 4.7 Clustering by study as seen by PCoA after relative log-expression transform.
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In addition, we have performed some of the usual, but less advanced exploratory
analyses, and plotted distributions of metadata, namely:

• Age, in order to ensure that most age groups are well-represented (figure 4.8).

• Diseases, in order to check how balanced or imbalanced the datasets are
(figure 4.9);

• Countries, because geographical location is known to affect gut microbiome
composition (figure 4.10);

Furthermore, for mp-pipeline_stats_ref_seq_pct_abundance_placebo_CLR, a
smaller-dimensional dataset generated by our pipeline, Pearson correlationss be-
tween features were computed, as well as point-biserial correlations between each
feature and the target label, encoding health as 0 and disease as 1. These are shown
in figures 4.11 and 4.12), respectively. In the former, approximately square-shaped
blocks of strong correlation can be observed. This is expected because the gene
families are grouped by their biological function. In the latter, we can see that
most correlation coefficients are almost zero, the largest ones being about ±0.2.
This is also expected, given the lack of disease-based clustering.

0 20 40 60 80 100
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0.000

0.005

0.010

0.015

0.020

0.025

0.030
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Figure 4.8 Distribution of age in the raw data sets, split by sex.
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Figure 4.11 Pearson correlation coefficients between each pair of features.
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Figure 4.12 Point-biserial correlation coefficients between each feature and the target.

43



4.4 Building and Evaluating Classifier Models
There is a number of considerations when deciding on the particular statistical
model:

• Given the relatively small number of data points (around 500), we need to
fit simple, basic models on them.

• Because clustering based on the variable to be predicted (i.e. disease) is not
at all strong, we will need to apply feature engineering methods in order to
stand a chance of classifying samples.

• Given the high-dimensional nature of the data, we must once again use reg-
ularization.

• Another consequence of poor separation and high dimensionality is the ten-
dency to overfit, so we need to be particularly careful about that, too.

• There is a relatively high number of data sets, so the model should be rea-
sonably fast to train.

Considering all of these requirements, we have built a scikit-learn Pipeline with
the following stages:

1. RobustScaler: Normalization to 0 median and unit interquartile range

2. FastICA: dimensionality reduction as pre-processing with Independent Com-
ponent Analysis. We need this as a separate step because interaction features
are added subsequently, which would be otherwise unfeasible, as it would re-
sult in tens of thousands or millions of features.

3. PolynomialFeatures: adding at most 2nd-order (interaction and quadratic)
combinations of the columns produced by ICA.

4. LogisticRegression: logistic regression with ElasticNet (simultaneous L1
and L2) regularization. This is a very simple, relatively robust, and quite fast-
to-fit model for binary classification. Another model we initially considered
was a random forest, since in our experience, it is particularly effective when
applied to biological data. However, it turned out to be unacceptably slow
to fit to our many data sets, while performing slightly worse than logistic
regression in terms of AUC.
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We then split each of the 57 transformed data sets into training and test sets, where
the test set was always 50 rows long. This strikes a balance between how represen-
tative it is for assessing the performance of a model and how much training data is
lost. We fit the model to each training set, optimizing hyperparameters using 16-
fold stratified cross-validation and the BayesSearchCV class of scikit-optimize [34].
The performance of the optimized models was evaluated on the corresponding test
set using ROC curves. Confusion matrices were also built at the optimal decision
threshold that maximized the difference between TPR and FPR, i.e. with decision
function y(x) = I(x > argmax

t
{TPR(t) − FPR(t)}).

The best-performing models were associated with the data sets in table 4.1. We
note that most of the top-scoring models were fit to datasets generated by SHOGUN,
and only one dataset generated by our own pipeline exceeded an AUC of 0.8.

We observed a tendency: there is a trade-off between AUC score and sensitivi-
ty to the decision threshold. The best, AUC = 0.93 model (figures 4.13 and 4.14)
can’t distinguish between the classes with high confidence. Sweeping with the de-
cision boundary over the range 0.485 . . . 0.514, the TPR and FPR go from 1 to
0, which means that most predictions lie near 0.5, signaling that the model is un-
sure (table 4.2). Meanwhile, the worst model in the above table (figures 4.15 and
4.16), with AUC = 0.84, needs to have its decision boundary swept over the range
of 0.11 . . . 0.85 for the same effect, indicating a much more robust model (table 4.3).

Overall, this seems very much like a bias-variance trade-off: high AUC scores
mean seemingly more accurate but fragile models, suggesting that they overfit,
whereas low AUC scores correspond to less accurate (thus, underfit) but more ro-
bust models. Figure 4.17 contrasts the ROC AUC score and the dispersion of the
necessary decision boundaries of each aforementioned model.

Dataset of relative abundances Transform AUC

shogun_taxatable.strain CLR 0.93
shogun_taxatable.strain.normalized CLR 0.92
shogun_taxatable.strain.normalized RLE 0.92
shogun_taxatable.strain.kegg ILR 0.91
shogun_taxatable.bowtie2 RLE 0.90
shogun_taxatable.strain.kegg RLE 0.87
mp-pipeline_stats_ref_seq_pct_abundance_placebo CLR 0.84

Table 4.1 Data sets for best-performing models.
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Figure 4.13 ROC curve of the best-performing model.

Figure 4.14 Confusion matrix of the best-performing model.
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Figure 4.15 ROC curve of the least well-performing model among the top 7.

Figure 4.16 Confusion matrix of the least well-performing model among the top 7.
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Threshold TPR FPR TPR − FPR

1.513653 0.000 0.000 0.000
0.513653 0.043 0.000 0.043
0.505026 0.304 0.000 0.304
0.504775 0.304 0.037 0.267
0.503001 0.565 0.037 0.528
0.502691 0.565 0.074 0.491
0.501522 0.696 0.074 0.622
0.501088 0.696 0.111 0.585

0.498978 0.913 0.111 0.802
0.498499 0.913 0.222 0.691
0.498363 0.957 0.222 0.734
0.497484 0.957 0.333 0.623
0.497244 1.000 0.333 0.667
0.485408 1.000 1.000 0.000

Table 4.2 Decision Boundaries vs. Positive Rates of the best-performing model.

Threshold TPR FPR TPR − FPR

1.848351 0.000 0.000 0.000
0.848351 0.037 0.000 0.037
0.752065 0.222 0.000 0.222
0.739061 0.222 0.043 0.179
0.723762 0.259 0.043 0.216
0.702240 0.259 0.087 0.172
0.664717 0.333 0.087 0.246
0.660855 0.333 0.130 0.203
0.557606 0.630 0.130 0.499
0.553100 0.630 0.174 0.456
0.518168 0.704 0.174 0.530
0.511729 0.704 0.217 0.486
0.507905 0.741 0.217 0.523
0.496029 0.741 0.261 0.480

0.468090 0.889 0.261 0.628
0.451621 0.889 0.304 0.585
0.450763 0.926 0.304 0.622
0.387802 0.926 0.565 0.361
0.385484 1.000 0.565 0.435
0.114481 1.000 1.000 0.000

Table 4.3 Decision Boundaries vs. Positive Rates of the less well-performing model.
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Figure 4.17 Dispersion of decision boundaries, and thus, robustness of the model, decreases with
increasing ROC AUC.

Lastly, we examined feature importance. Since the models consist of several trans-
formation steps, it is not easy to directly compute exact importance indices from
the model. For example, we could take the coefficients of the logistic regression,
but those would relate to the interaction terms, which in turn are also computed
from a linear combination of the inputs (after ICA). This means that a straight-
forward biological interpretation would practically be impossible.

Therefore, we turned to approximations. One such metric is permutation im-
portance, which measures how much the performance of the model drops if a given
feature is randomly shuffled across samples. This method is theoretically appea-
ling, although not without flaws. For example, highly-correlated features might
not be assigned a high enough importance score, and indeed, our dataset has some
highly-correlated features. We decided to ignore this fact for the sake of simplici-
ty – we are only looking for a quick at-a-glance measure of feature importance here.

Permutation importances of the top-scoring features for a lower-dimensional dataset
are plotted in figure 4.18. We can observe that only a few of them are statistically
significant.
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Figure 4.18 The 25 features with the highest permutation importance scores,
averaged over 128 random permutations of each feature, in the dataset
mp-pipeline_stats_ref_seq_pct_abundance_placebo_CLR. Bars are colored according
to statistical significance (logit of the P-value), the darker the more significant. Error bars show
±1 stddev.
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5 Microbial Correlation Networks

In this chapter we describe how abundance data can be used for discovering the
interaction structure of the gut microbiome.

5.1 Generating Network Data
The most obvious way of describing potential interactions between microbiota is
the correlation network. A correlation network is a graph such that two vertices
are connected with an edge if and only if they are correlated with one another.
In addition, a weighted correlation network contains edges with different weights,
according to the strength of the correlation between the relevant vertices.

We wanted to run a number of different analyses in an automated manner, so
we decided to generate unweighted networks. These are the simplest and most
special kind of graphs, and most of the graph-theoretic models work well on them,
a fact that makes them a good default for general preliminary or exploratory ana-
lysis. However, while this is an important advantage, there are also drawbacks to
this decision, which are discussed in Chapter 6.

For reasons already explained, it is not sound to compute correlations directly from
relative abundances. It is not useful to correlate columns of the IRL-transformed
data either, because the IRL transform mixes dimensions with one another, so the
resulting correlations and graphs will not have a clear interpretation. Therefore,
we only computed correlations between columns of data after applying CLR and
RLE transforms – this is similar to the procedure recommended in [35].

The exact procedure we carried out for each data set was the following. We com-
puted Spearman’s rank-order correlation between each pair of variables. We used
this instead of Pearson’s because there is no basis for assuming an exact linear
relationship. We then added an edge between the variables as vertices if the cor-
relation exceeded ρ > 0.7 and it was simultaneously significant at the P < 0.001
level. This is a pretty conservative approach, because we wanted to filter out as
many artifactual correlations as possible. We have a good reason to believe these
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exist: raw abundance data are sparse, and sparsity inflates correlations. (More on
this problem in chapter 6.)

Finally, self-edges were removed and only the largest connected component of the
graph was retained, because some of the analyses rely on connectedness of the
subject graph. Node names (for example, KEGG IDs) were obtained and stored
separately, so that visualizing a network (or part of it) would result in human-
readable, easy-to-interpret plots.

It should also be noted that the above procedure ignores negative correlations al-
together. This decision was made because negative correlations (and signed edges)
are more difficult to interpret.

The resulting set of correlation networks was shrunk further. We only retained
large enough adjacency matrices which were at the same time sufficiently sparse.
The reasons for this are threefold:

1. Results of network science are usually stated in terms of asymptotics as the
number of vertices and/or edges tends to infinity. Therefore a large adja-
cency matrix is needed to meet the assumptions behind a given calculation.
Accordingly, the smallest generated correlation network was on the order of
400 vertices.

2. Real networks are usually sparse, so a dense adjacency matrix likely indicates
that the dataset does not reflect reality, especially because we know our data
are prone to generating excess correlations.

3. A network with tens of millions of edges is not computationally tractable
within a reasonable amount of time with the small-scale computing resources
we had access to.

This process was then repeated three times for each CLR and RLE-transformed
dataset: once for the complete dataset, once for the subset of ill subjects, and
once for the subset of healthy controls. This allows us to make inferences (albeit
not in the strict, statisticaly exact sense) about the differences between the ill and
healthy subgroups. Included in the final analysis were all three variants (combined,
disease, healthy) of each of the following datasets:

• shogun_taxatable.strain.kegg_CLR

• shogun_taxatable.strain.kegg.modules_CLR
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• shogun_taxatable.strain.normalized_CLR

We can see that only CLR-transformed data met the above inclusion criteria. The
reason for this was that the RLE-transformed datasets exhibited an excessively
high number of correlations, resulting in unreasonably dense networks.

5.2 Results and Interpretation of the Analyses
The dataset shogun_taxatable.strain.normalized_CLR_combined yielded the
most illustrative, representative results. Therefore in the next paragraphs, we
exclusively describe this dataset, unless otherwise noted. We also note that in all
three groups of datasets mentioned above, results obtained from the healthy
control subset are virtually identical to those obtained from the corres-
ponding subset of ill patients. We therefore conclude that the structure of
correlation networks is largely independent of whether they have been generated
from data of healthy or IBD patients.

5.2.1 Degree and Distance Distribution

The distance distribution is close to expected (figure 5.1): its mode and median
is 8, while the 90th percent effective diameter is 11, which is comparable to the
metrics of typical small-world networks (cf. the popular idea of “six degrees of
separation”). The logarithm of the complementary CDF of the degree distribution
above k ≥ 10 fits a line almost perfectly (figure 5.2), with a corresponding power-
law coefficient (degree exponent) of γ = 3.785. According to Barabási [36], in the
range γ ≥ 3, the network essentially behaves like a random graph, making it harder
to prove its scale-free nature, if any.

5.2.2 Assortativity

The network shows a strong and significant assortative tendency, with a linear
regression coefficient of β = 0.502, P = 1.442 · 10−7 (figure 5.3). This disappears
(figure 5.4) under degree-preserving randomization (βrand = −0.0356, P = 0.122).
However, typical biological networks are expected to exhibit disassortativity, so
either this correlation network is atypical, or, as suggested by the degree exponent,
it is merely random.
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Figure 5.1 Distance distribution of the examined network, i.e. the relative frequency of shortest
paths of length 1 ≤ d ≤ 19.

Figure 5.2 Degree distribution of the examined network. The tail of the complementary cumula-
tive distribution function decays almost perfectly exponentially.
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Figure 5.3 Assortativity plot of the network: average degree of neighbors ⟨knn⟩ as a function of
k.
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Figure 5.4 Assortativity disappears under randomization.
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5.2.3 Robustness under Attacks and Random Failure

The robustness of the network under attacks was assessed by systematically remo-
ving the highest-degree node, then the second highest-degree node, etc. Meanwhile,
robustness under the removal of random nodes (“random failure”) was evaluated on
8 independent realizations of the randomly-modified graph, for each node removal
rate f = 0.0, 0.04, 0.08, . . . , 0.96, 1.0. Four quantities were then plotted against f :

• Absolute number of connected components

• Absolute size of (number of nodes in) the Giant Component, i.e. the largest
remaining connected component (|GCf |)

• Relative size of the GC with respect to the total number of nodes (Nf )

• Relative size of the GC with respect to the size of the GC in the original
network (|GC0|)

A sudden decrease in the size of the giant component and its subsequent shrink-
age towards 0 signifies the so-called breaking point f0 of the network, whereby its
structure falls apart and it becomes a loose collection of very small sets of vertices.
It is apparent from figures 5.5 and 5.6 that the network is of course somewhat
more resilient against random failures (f (rand)

0 ≈ 0.4) than it is against attacks
(f (atk)

0 ≈ 0.8), although it is not very robust in eiher case. In particular, the size
of the giant component starts to drop quickly and immediately, even at f = 0.
That is, the graph of the GC size is approximately convex in both cases, whereas
it would appear concave in the presence of random failures if the network were
truly scale-free.

The biological interpretation of “attacks” and “random failures” in the context
of a network of microbial taxa or genes is actually pretty straightforward. If we
assume that (positive) correlations arise out of true interactions (e.g. mutualism
or commensalism) or due to a common third (e.g. environmental) factor affecting
both variables, then the removal of nodes may be interpreted as the correspon-
ding species or gene ceasing to function. For example, taking antibiotics might
be considered an attack if it kills key species rich in interactions, meanwhile ran-
dom fluctuations in the availability of diverse and healthy nutrients might cause
decreased activity or extinction of any species, constituting a random failure.
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Figure 5.5 Robustness under Attacks.
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Figure 5.6 Robustness under Random Failure.
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5.2.4 Vertex Importance using PageRank

The most central or “influential” species were defined with the help of PageRank.
The usual damping factor of β = 0.85 was used. Among the top-scoring vertices
are mostly bacteria, but some of them correspond to bacteriophages, as shown in
figure 5.7. Some bacteria (such as Candidatus Arthromitus) are commensalists,
while others (such as Chlamydia avium) are pathogenic. Altogether, there is no
obvious pattern to be observed, nor any strong evidence for the dominance of a
particular taxonomic or functional group. This also suggests that the network being
analyzed wasn’t very evocative of the real interaction structure of the microbiome
to begin with.

5.2.5 Community Detection with Spectral Clustering

Communities, i.e. subgraphs of high internal connection density, were identified
using spectral clustering. The optimal number of clusters was determined by
maximizing modularity. The graph was repeatedly clustered into N = 1, 2, . . . , 50
communities, and the N = 49 partition maximized modularity, with Qmax = 0.857.

However, plotting the modularity score against the number of communities (fig-
ure 5.8) reveals that modularity does not increase significantly after N = 24, while
plotting the matrix of intra-community and inter-community connection densities
(figure 5.9) also makes it clear that some communities are quite densely connected
to many others. For instance, community #39 is connected to the majority of
other clusters. This suggests that perhaps the mathematically-optimal number of
clusters, 49, is too high, and we are in fact overfitting. We are thus inclined to
instead declare N = 24 as the most realistic community count, as it is the lowest
number of clusters with which modularity is still almost maximal.
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Figure 5.7 Top-scoring vertices according to PageRank.
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Figure 5.8 Modularity coefficient Q as a function of community count.

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

Inter- and Intra-Community Log-Connection Density

12

10

8

6

4

2

Figure 5.9 Intra- and inter-community connection densities. The diagonal of the matrix contains
intra-cluster connection densities, every other matrix element is an inter-cluster density. Densities
are computed as the ratio of existing and possible edges between each pair of vertices in the two
clusters being considered. Coloring is based on the natural log scale.

60



6 Discussion and Future Work

6.1 Summary of the Results
Altogether, we can confirm that we have come up with an approach to metagenome
analysis that is faster and more computationally lightweight than methods based
on whole-genome reference databases, at the cost of reduced predictive perfor-
mance.

Since classification of patients with IBD and IBS — diseases directly related to
the microbial content of the lower gastrointestinal tract — already appears to be
a hard problem, we expect that correctly detecting other kinds of diseases from
metagenomic data will be even more challenging. Therefore, both the metagenome
analysis pipeline and the subsequent machine learning models will need to be im-
proved.

6.2 Improvements to the Software
Potential improvements to the metagenome pipeline are therefore threefold:

1. Fine-tuning heuristics by optimizing their parameters,

2. Speeding up manipulation of large data sets, and

3. Making use of better methodology in places where the current solution takes
a shortcut.

The first group mainly entails running the pipeline, perhaps with the classification
models attached, with various parametrizations of the underlying bioinformatic
tools, such as minimap2 or HMMER3, then choosing the parameters that correspond
to the most biologically relevant outcome and/or the best classification perfor-
mance. This has to be automated eventually, given the large search space spanned
by all possible parameters.

It would also be valuable to develop a metric so as to precisely define what is
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meant by “biologically relevant”. An obvious but not necessarily optimal approach
here would be to quantify the difference between the output of our model and that
of an existing “gold standard” tool, when applied to a representative reference data
set.

The most time-consuming part of metagenome analysis is usually read alignment.
However, in our software, post-processing the output of the read aligners takes a
comparable amount of time. In fact, when only running the quicker minimap2 on
read files of around 12–30 million pairs (1-2 GB gzipped) and skipping the profile
HMM search step, post-processing usually takes noticeably longer than read map-
ping.

This can be owed to the fact that for reasons of velocity of development, sim-
plicity, and correctness of the software, the developed algorithms are often naïve
and sometimes a lot slower than what would likely be possible. In addition, we
relied on the Pandas [37] library, which is heavily-optimized for the most part,
but certain operations are still slow when applied to longer datasets. For instance,
groupby and join function often ran for several minutes on our DataFrames of ap-
proximately 500 rows and 6000 columns. However, such data manipulation could
be replaced by less convenient but more performant manually-coded equivalents.

Lastly, the third opportunity for improvement is increasing the sensitivity of read
alignment and abundance counting. A recurring theme during our entire work was
the obvious sparsity of abundance data. This was apparently a real issue, since
we have seen in the previous chapters that the best-performing models among the
ones fitted on the output of our software were those that declared the least strin-
gent criteria for read inclusion and counting, that is, the placebo datasets. We
can infer from this fact that our functional genes pipeline has a high false negative
rate when deciding if a read is mapped to a reference.

The origin of this problem is complex, but some of the design and methodological
decisions are likely contributing factors. Concretely:

• Pseudorandom sampling is extensively used for making otherwise very large
datasets tractable. As a reminder, the software draws samples from reference
genes when building the database, and it also subsamples read files when
aligning to HMM profiles. The latter is particularly dangerous practice –
processing only 1, 5, or even 10% of all available reads can (and usually does)
completely eliminate very low-abundance taxa or genes from the output.
Therefore, more advanced alternatives to subsampling should be investigated.
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Incidentally, the related technique of rarefaction is already deemed to be
statistically unsound, as demonstrated in McMurdie and Holmes [38].

• Some of the conditions for accepting mapped reads might be unfounded and
prohibitively strict, and that is inherent in our approach. To elaborate, refe-
rence sequences and HMM profiles are very often only a couple of hundreds
or at most a couple of thousands of base pairs long. Plugging in some typical
numbers for Illumina paired-end short-read sequencing, we might try to align
reads of length 2 · 150 base pairs with an insert size of say, 50 . . . 250 to a
reference gene of size 300.

In this case, even if we succeed in mapping one of the reads to the refe-
rence, its pair is virtually guaranteed not to map or to map only partially,
simply because there is physically not enough space for it to fit. Therefore,
requiring that in paired-end mode all reads be aligned in proper pairs is likely
unwarranted and results in many reads being thrown away incorrectly.

In addition to increasing the sensitivity, another methodological improvement
would be to filter out host (human) DNA reads, as these can contribute noise
if they contain sequences similar to microbial genes, either for evolutionary rea-
sons or just by chance. The SHOGUN pipeline does perform this pre-filtering step
automatically. We, however, omitted it, because originally, it wasn’t going to be
necessary.

Initially, our pipeline was to be run only on the proprietary data from the clients
of Medipredict, and the sequencing vendor the company is currently working with
filters out any non-microbial DNA fragments before prividing the final FASTQ
files. However, the software was later executed on other, open-access datasets as
well, as previously described. We unfortunately lacked the time to check how much
human DNA, if any, these 3 open datasets contain.

6.3 Improvements to the Classification Models
We also identified aspects of the statistical methods applied that could be fruitful
to explore further. These are more on the refinement side, rather than requiring
fundamental, structural changes.

A first step would be to get to know the data and the behavior of the models
in even more detail. This could be done by explaining the worst instances of mis-
classification, row-by-row, for example using the ELI5 [39] library. This would
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in turn enable us to discover why the model is making its biggest mistakes, and
perhaps point out problems with imputation or data preparation in general. Bad
imputation is one of the primary causes of severe, outlying prediction errors, so
this would also be an opportunity to try other imputation methods.

We could make use of a more principled metric of feature importance, too. The
SHAP [40] package offers a game-theoretic index of feature importance, which can
be computed exactly for tree-based models. It would be interesting to try tree-
based models anyway, primarily the more advanced boosting algorithms, such as
XGBoost [41] or CatBoost [42]. These are expected to perform better than simple
logistic regression on high-dimensional data, provided that one manages to avoid
overfitting, which they are more prone to.

Another actionable suggestion for dealing with overfitting is manual feature se-
lection. We could use the all-vs-all correlation matrix of features for eliminating
multicollinearity, while the correlations between features and the response would
help us remove redundant columns that only contain noise.

After having improved the data, we could try and gain more insight into the
inner workings of the models. Obviously, while area under the ROC curve and the
confusion matrix are useful metrics, they don’t provide a detailed description of
the advantages and disadvantages of the model. In order to fill this gap, we should
evaluate the models using a variety of metrics, such as:

• Matthews Correlation Coefficient, of which the strength is that corrects for
class imbalance (a priori probabilities), so it is a good default for descri-
bing the goodness of a model if positives and negatives are deemed equally
important.

• F1 score, which is a very popular metric, and thus other statisticians and
machine learning experts will likely find it familiar and easy to compare
against other models.

• Area under the Precision-Recall curve. This is yet another AUC index, how-
ever, in some contexts, precision and recall can be more informative than
false positive rate and false negative rate.

Another obvious-sounding but in practice nontrivial thing to do is simply getting
more computing power, and increasing the size of the data sets by one or two orders
of magnitude. Going from 500 to 5000 or even 50 000 instances does sound feasible
given enough time and sufficient hardware. This would aid a lot with training as

64



well as evaluation – in particular, if there is more data, we can use more instances
for the hold-out set, and consequently, the generalization power of the models can
be assessed more accurately.

6.4 Enhancements to Network Analysis Methods
Studying correlation networks is probably the hardest task to carry out correctly
within the context of the present work. It then follows that it also presents the
highest number of concrete opportunities for using more advanced techniques and
mathematical models.

First of all, networks generated according to the procedure described in Chapter 5
may have many spurious edges not bearing any real biological meaning, however
statistically significant the underlying correlations might be. Again, the reason is
sparsity: the many zeros in the abundance tables appear, after imputation and
log-transformation, as several repeated large numbers. By repeated we mean that
they are equal within a row or column (depending on the exact transform applied).
Rare co-occurring nonzero values can then drive correlation values disproportion-
ately towards ±1, even though the co-occurrence is only an artifact of noise (and
thus heavily depends on the quality and parametrization of read alignment). This
phenomenon is demonstrated in listing 6.1. It could be ameliorated using the
same approaches that address the problem of sparsity in general, as previously
mentioned.

Listing 6.1. Log-transformation of imputed sparse data results in overly confident estimates of
correlation

1 >>> from scipy.stats import pearsonr, spearmanr
2 >>>
3 >>> x = np.log([0.010, 0.010, 0.010, 0.010, 2.000, 0.100])
4 >>> y = np.log([0.001, 0.001, 0.001, 0.001, 1.500, 0.010])
5 >>>
6 >>> ’Pearson R = {:.3f}, P = {:.6f}’.format(*pearsonr(x, y))
7 ’Pearson R = 0.993, P = 0.000073’
8 >>> ’Spearman R = {:.3f}, P = {:.6f}’.format(*spearmanr(x, y))
9 ’Spearman R = 1.000, P = 0.000000’

Another issue with our network datasets is discretization. We generated un-
weighted graphs by thresholding correlation coefficients and P-values. This was
necessary because our goal was to apply several models and to run many different
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kinds of statistics on the same dataset. And while almost all models work on undi-
rected, unweighted graphs with positive edges, more general (weighted, directed,
or signed) graphs present various degrees of challenges.

However, discretization of continuous variables inherently loses information, and
so does the act of completely ignoring negative correlations. Consequently, we
should aim for retaining the original correlation coefficients and P-values without
thresholding, and rely on more advanced models which are able to deal with such
more general networks.

A third aspect is about being more principled when comparing networks based
on data of healthy and ill persons. It is of course useful to visualize and inspect
the resulting graphs, but for an objective comparison, proper statistical testing
and other quantitative methods should be applied. Some of the recently-developed
metrics that could help us achieve this goal are DeltaCon [43], NetDifM [44], and
Portrait Divergence [45].
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