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Introduction

The nowadays availability of large datasets and the recent increase in computational power offer
a new paradigm to understand complex systems. However, data provide abundant detail that
generally carry no labels on the procedure for extracting the important information that interests
us about the system. Statistical physics and information theory offer a framework on which it
is possible to manipulate large datasets on many different systems, leading to an interaction
with other disciplines and creating a whole new branch called Complex System Science. This
proficient union brought new insights in various fields such as ecology [1], population dynamics
[2]]3], ecosystem [4], nervous system [5] and economics, which is the framework in which we will
move in this thesis.

A recent new line of research that aims to couple network theory and economics has grown
in the last decade, thanks to its ability to capture information from large datasets of exports
and cast it into human-readable measures to rank nations and commodities. This is not the
first interdisciplinary approach to economics, as its road to complexity started many years ago.
However, this new theory called Fconomic Complexity is somehow different from standard
econophysics. It is a purely data-driven approach that does not aim to create a model but
instead seeks to extract as much as possible information from the network of exports that at
first sight may be hidden. This attracted a lot of attention at the institutional level (World
Bank, UE) [6]. This research is only in its infancy, so there is still a lot of discussion, especially
about what kind of information we want to extract and how.

In this thesis we will study the nations’ exports from 1995 to 2019 in a bipartite network
perspective, according to the economic complexity framework. We will discuss what is the
essential information and how a new algorithm, based on a self-consistent use of the Shannon
entropy, can enter into the theory to extract it, getting new measures of complexity of nations
and products. Finally, as an original contribution, we will try to understand the dynamics of
nations and forecast their future growth according to this new measure.

The Economics Road to Complexity The problem to understand why economic world
trade occurs has been a central topic from the very beginning of the economic thinking. Adams
Smith introduced the concept of absolute advantage [7]: the country that can supply the most
conspicuous amount of a commodity at the cheapest price has an absolute advantage on that
product. The search of this advantage was considered the force that drives countries to engage
in international trade. However, a satisfying theory occurred only several decades after due to
David Ricardo, who introduced the concept of comparative advantage [8]. With this theory we
have the first example of collective behavior in economics, that emerges when nations specialize
in products on which they have lower relative opportunity cost price F_-I, describing how countries
take advantage by engaging world trade.

The opportunity cost of an activity is the loss of value or benefit that would be incurred by engaging in that
activity [9)
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These considerations started to have mathematical foundations thanks to the initial work of the
Swedish economist E. Heckscher, who introduced in 1919 [10] a theory that was formalized by
his student B. Ohlin in 1933 [11]. The so called Heckscher-Ohlin model was extended and further
generalized up to become the standard economic model [12], describing how countries reach an
equilibrium trade according to their fixed non-tradable capital, such as labor and infrastructure.
Further works on the model [13] showed that the accumulation of capital can cause changes in
the export of a nation, both in quantity and in typology, therefore modifying the structure of
the world market breaking the equilibrium of trade proposed by the Heckscher-Ohlin model.
The paradigm shift towards a theory where exports and nation’s economic capitals influence
each other requires a deeper understanding of their complex interaction, paving the way for the
network science into economics.

We have to wait until 2003 for a first attempt to organize the world market into a network model,
the so called World Trade Web[14], on which nations are connected through their monetary
trade, setting up a model to describe the spread of economic crisis expansion among countries.
This study demonstrated how this network is far from being random, starting in this sense the
road to complexity into these topics.

In the same spirit, R. Hausmann and collaborators developed a model for the network of prod-
ucts, the Product Space [15], on which a proximity measure has been developed to catch the
"similarity” or ”proximity” among products. Countries explore this network through their pro-
duction system, changing it following paths that tend to connect similar products. However,
this measure of proximity, based on a conditional probability constructed on an empirical for-
mulation of comparative advantage, does not consider asymmetrical proximity relation that can
intuitively occur: for instance, oil and fruits have a clear unidirectional relation as fruits de-
pend strongly on oil for transportation costs. These considerations evolved into a new model
developed in Padua in 2016 [16], and further advanced in [17][18], on which a gravitational
model (one of the first economic models developed by a physicist, J. Tinbergen [19] winner of
a Nobel prize in economics in 1969) of trade has been used to construct a different measure of
distance among products. This new network is also equipped with the notion of time, on which
the dynamics of the nodes are described by a set of stochastic differential equations (SDE) that
describe the evolution of exports. This model is a particular example of the interdisciplinary
character of complex science, as the set of SDE used, inspired by a work of J.P. Bouchaud and
M. Mézard |20] on the distribution of wealth in a society, can be transformed into a more famous
equation already used to study the growth on surfaces [21], which is the Kardar-Parisi-Zhang
equation.

Economic Complexity foundations This path of economics into complexity has recently
led, thanks to the nowadays availability of large datasets of exports, to an alternative and com-
plementary line of research called Economic Complexity. The aim is no longer to create a
model capable to replicate the complex structure of the world trade network, but to infer as
much as possible meaningful information about the nodes of the network and, possibly, use this
information to deduce the future topology of the economic network. This approach lies in the
more general theory of data dimensionality reduction, on which we can gain more information
using a complexity approach than a mere aggregation of data. It is of course necessary to define
what kind of information we want to extract from the world trade network.

Countries interact with each other by exchanging products. As C. Hidalgo wrote in [22], prod-
ucts are nothing else than a solidification, or crystallization, of knowledge that takes three forms:
embodied knowledge in tools and material, codified knowledge in books, algorithms and formu-
las, and tacit knowledge also called know-how. While the first two types of knowledge are easily
tradable, the know-how is more complex and intangible, as it is a result of a long process of
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repetition, imitation and feedback. These three types of knowledge are strongly complementary:
to create a house we need several materials and infrastructures (embodied knowledge), we need
to know the necessary laws (codes information) and we need to know how to use the needed
instruments. The more complex is a product the more knowledge is required to construct it and
actually export it. In this sense production systems of nations are bounded by the amount of
knowledge they embed, and is the absence of know-how, which is not easily tradable, to create
this bound.

The know-how seems to be the important information we want to measure, as it is an indicator
of how much a nation is potentially able to produce more complex products. As firstly noted
by Adam Smith in his most famous work, the Wealth of Nations:

It is the great multiplication of the productions of all the different arts, in
consequence of the division of labor, which occasions, in a well-governed society,
that universal opulence which extends itself to the lowest ranks of the people

The diversification in productions drives the growth of know-how. Specialization of individuals,
that accumulate know-how, and diversification are two aspects of the same phenomenon seen
from two different scale [6]. A first qualitative results of these considerations is an explanation
of why for poor countries is difficult to enhance their wealth conditions, as noted by Hausmann
and Hidalgo [23] and paraphrased in [6]: ”as the number of possibilities grows exponentially
with the variety of elements to combine, countries with few (many) of those elements will have
few (strong) incentives to accumulate more elements as they may produce few (many) new
combinations”.

Diversification in productive systems seems to be the right proxy to infer the amount of know-
how and unveil the complexity of nations. It is clear that a mere count of products or a
naive indicator of the distribution of exports of a nation is not enough to achieve this result.
The intrinsic complexity of the world trade has to be considered as well as the heterogeneity
of countries and the complexity of products. A complementary measure of the complexity of
nations regarding products is necessary to the task.

The first attempt to establish a measure of complexity of nations is due to C. Hidalgo and R.
Hausmann in 2009 [24]. Laying on the Ricardian’s idea of comparative advantage, they con-
sidered a country a producer of a product if it had a revealed comparative advantage (RCA)
on it. The more common, but not unique [25], way to define mathematically the comparative
advantage is to use the Balassa index [26], which is the most common name of RCA: in this
approach a country is considered to have a comparative advantage on a product if its fraction in
the export basket is greater than the same fraction of an ”average” country, setting in this sense
a threshold criterionﬂ Using RCA they constructed a bipartite network in which countries are
connected to the products on which they revealed a comparative advantage. The graph was
therefore equipped with a bi-adjacency matrix on which the elements could assume only binary
numbers (0 if the country was not a relevant exporter of a product, 1 otherwise).

To define weights to each nodes according to their importance in the graph, they developed an
iterative algorithm called Method of Reflections, obtaining from it the Economic Complexity
Index (ECI) and the Product Complexity index (PCI). This was the start of the economic com-
plexity framework and further works, using this approach, showed how to establish correlation
with green economy [27], income inequality [28] and health indicators [29] for some examples.
However, this algorithm has been criticized especially for the interpretation of generalized di-
versification that the authors give to ECI. It was realized in |30] that this measure is orthogonal

2A country ¢ has a revealed comparative advantage on a product p if and only if RCA., > 1. However, one
could think to change the threshold from 1 to T" getting RC Acp > T. The algorithm in question showed stability
on this choice.
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to a bare measure of diversity (the simple count of products exported with comparative ad-
vantage) rising legitimate suspicious about the real meaning of the measure. This problem of
interpretation is the first motivation on why we will discuss a new method in this thesis.

In 2012 L. Pietronero and his group developed a new method to estimate complexities among
the nodes of a bipartite network, the Fitness Method [31], getting a new measure with appar-
ently no problem of interpretation. Remarkably, they found that reordering the bi-adjacency
matrix according to the fitness rank shows a nested Structurﬂ very similar to the ones ob-
served in ecological mutualistic networks [1]. This feature in the bi-adjacency matrix indicates
a hierarchical structure based on the number of products a country exports with a comparative
advantage, corroborating the underlying idea that nations tend to diversify instead of special-
ize in few products. But if on the one hand we have a meaningful measure, on the other the
non-linear nature of the Fitness algorithm gives problems of convergence, in particular when we
have to deal with niche products or we change the criterion to establish comparative advantage
[32]. Despite these problematics, the algorithm works if we consider aggregated products and
we cut the iteration at a certain point, so a lot of ink has been spilled in this direction [33]]34].
Studying the dynamics of this complexity measure unveiled heterogeneous patterns of coun-
tries” evolution [35], individuating regions of high and low predictability of growth according
to fitness. From this consideration they developed an algorithm (the Selective Predictability
Scheme bootstrap) [36] to forecast GDP, based on the Method of Analogues developed my
E.N. Lorenz [37] in the context of atmospheric prediction. The problem of convergence in the
iterative algorithm for measuring fitness is the second motivation that led to the development
of the new measure discussed in this thesis. We will see that this new measure will also lead to
some of the main results discussed above.

What is in common between ECI and Fitness is that the information on exports is always initially
pre-processed by only considering revealed comparative advantage and, a part an exception [31],
the bipartite graphs only contemplate information about whether a country is a competitor
or not, regardless the amount of products it exports. Besides the huge loss of information, if
the main task is to sort of ”count” the number of products a country produce, it seems rather
unclear why we have to only consider products on which it is revealed a comparative advantage.
Moreover, as found in [25], Balassa index has shown some shortcomings to truly representing the
comparative advantage, opening a discussion on other empirical measures besides RCA. More
explanatory is the example of the clothing export [25]. In 1996 Italy showed an RCA of 11.4
while Germany only 0.06, with RCA criterion we would end up with the fact the Germany
does not export clothes, hence it does not have the know-how related to that product: this
seems rather unjustified. Moreover, RCA is a source of noise in the dynamics of the bipartite
graph as, especially for least developed countries, RCA values can oscillate around the threshold
[36] (Supplementary Information). In the same paper, regarding the Fitness algorithm, it was
proposed an alternative criterion that gets rid of thresholds, which was a problem for that
algorithm [32]. They decided to model the RCA time series as the emissions of the Hidden
States of an Hidden Markov Model. A first attempt to not use RCA threshold criterion is
found in [38], on which an analysis with principal component reduction and machine learning
techniques is proposed on large aggregation in products.

RCA is not the only cause of information loss. Export datasets provide products’ classification
at the finest possible level. However, most of the analysis of economic complexity concern
macro-categories of products obtained from a mere aggregation of exports, in contrast with
the dimensionality reduction thinking, as this approach does not preserve all the information

3A bipartite graph has a nested structure if its bi-adjacency matrix is comparable to an upper triangular
matrix, after a proper reorder of rows and columns.
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embedded at the finest level. RCA and product aggregation cause a loss of information that has
never been addressed in the literature.

A novel approach that makes full use of the information contained in the export datasets started
to grow in [18], but we had to wait 2021 for a full description of the method [39] (which is the
starting point of the thesis). Within this approach, the focus has moved from an iterative
counting of competitive products (ECI and Fitness) to a non-trivial measure of diversification in
the export’s basket. The measure is based on a self-consistent use of the Shannon entropy, which
is a common and universally accepted indicator of diversity, and shows an exponentially fast
local and global convergence to a unique fixed point. This is the first attempt in the economic
complexity literature to perform dimensionality reduction without considering the comparative
advantage of products, making this measure free on any data-preprocess assumptions. Moreover,
Shannon entropy allows performing coarse-grained analysis of nations and products going beyond
simple data aggregation of exports, opening a complete novel analysis in the economic complexity
framework according to the dimensionality reduction thinking. The proven convergence of the
algorithm, the clear interpretation of the measures, its complete use of the information embedded
in the datasets, and its not dependence on conceptual data-preprocessing, make this measure a
good candidate to rank nations and products according to their relevance in the trade market.
In addition, the stability of the algorithm and its use in weighted bipartite graphs inaugurate a
unique interdisciplinary approach to network science going beyond economics.

Structure of the Thesis This thesis will start with presenting the dataset used and char-
acterizing different ways to define a complex bipartite network to model the worldwide export
during 2019. After a brief introduction on revealed comparative advantage, ECI and Fitness
algorithms, we will highlight the importance of diversification as the essential ingredient in the
economic complexity framework and how entropy emerges as a natural candidate to measure
it. A technical introduction to the self-consistent iterative scheme developed in [39] will be the
next step, accompanied by a depth study of local and global convergence of the algorithm. We
will observe how this algorithm returns nations’ complexity measures that establish ranks in
line with the economic narrative and products’ ubiquity measures that discriminate according
to their importance in the world market. These results will be enhanced by a coarse-grained
analysis in product categories, showing a novel economic complexity approach that was impos-
sible with ECI and Fitness. To conclude the first chapter, we will discuss the role of revealed
comparative advantage and how its adoption would affect the entropy complexity measure.
The dynamics of the nations’ complexity measures will be presented in the second chapter, in
the same fashion of [35]. We will couple the entropy to a monetary measure, constructing a bidi-
mensional economic plane tracking the counties’ time series from 1995 to 2019. A coarse grain
technique will reveal a flow structure on this plane, showing different dynamical patterns in the
macroeconomic landscape. As the main result, we will demonstrate how entropy discriminates
among countries according to the stability of their economy and their possibility of growth. We
will also analyze the role of revealed comparative advantage in this dynamical context, observing
that it captures different dynamics.

Finally, in the last chapter, we will use the dynamics to forecast GDP growth using the Selective
Predictability Scheme [36]. The idea is to look at historical dynamics of nations with comparable
entropy and GDP (Gross Domestic Product) to infer future growth. However, in the original for-
mulation of the algorithm, the problem to choose the right ”comparable” nations’ dynamics was
not addressed. Therefore, we will individuate and solve this problem using a statistical learning
approach to historical data, combined with a kernel regression. The algorithm’s accuracy will be
compared to the International Monetary Fund’s (IMF) predictions, and the improvement will
corroborate our choice of entropy as a good candidate to measure nations’ complexity.
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List of Abbreviations and Symbols

Abbreviations
HS Harmonized System
RCA Revealed Comparative Advantage
GDP Gross Domestic Product
GDPpc Gross Domestic Product per capita
GDPpcPPP  Gross Domestic Product per capita in Purchasing Power Parity
IMF International Monetary Fund
SBSb Selective Predictability Scheme bootstrap
cSBS Convergent Selective Predictability Scheme
CAGR Compound Annual Growth Rate
MAE Mean Absolute Error
RMSE Root Mean Square Error

Most Used Symbols

Xep
M.,
5 cp

Ccp

Bi-adjacency matrix

Bi-adjacency matrix binarized with RCA

Weighted export basket of a country c

Weighted country’s share of a product p

Entropy of a nation

Ubiquity of a product

Spearman correlation coefficient

Point in the entropy-income plane, related to a country c at a time ¢
Velocity or trend related to a country c at a time ¢

Measure of chaos in a coarse-grained box

Analogue of X.; in the entropy-GDP plane

5 year displacement of X,

Covariance matrix or bandwidth of a multivariate Gaussian p.d.f.
Mahalanobis distance of two points in the entropy-GDP plane
Error in forecasting GDP growth using CAGR

16
16
34
45
45
20
o1
ol
o8

16
16
16
16
16
31
32
33
46
46
47
48
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Economic Complexity

Economic complexity is a new line of research that aims to measure the underlying intangible
capabilities of nations with complexity measures computed by analyzing the exports properly.
In the literature, two main algorithms can be found, economic complexity index [24] and fitness
[31], but the first does not have a clear interpretation [30], while the second shows problems of
convergence [32]. In this chapter, a new complexity measure will be introduced, based on the
work [39], and a static analysis of the year 2019 will be presented to support the work already
done. An original discussion about the role of revealed comparative advantage and different
editions of the harmonized system will be presented.

1.1 Dataset and Aggregation

The Dataset we are using is the BACI supplied by CEPII (it gathers and harmonizes different
declarations in monetary exports listed by COMTRADE) that covers exports and imports in the
world trade network from 1995 to 2019. The products are classified using different Harmonized
System (HS) editions, but for this particular analysis about 2019, we decided to use the most
recent, the 2017 edition (HS17)[40]. The classification works as a 6 digits code: the first two
digits designate the HS chapter, the second two digits label the HS heading, and the last two
indicate the HS subheading. We propose an example of how the HS database is organized:

e 01 - Live animals

— 0101 - Live horses, asses, mules and hinnies
* 010121- Pure-bred breeding animals
* 010129 - Other
* 010130 - Asses

— 0102 - Live bovine animals
* 010221- Pure-bred breeding animals
* 010229 - Other

e 72-Iron and Steel
— 7201 - Pig iron and spiegeleisen in pigs, block or other primary forms

* 720110 - Non-alloy pig iron containing by weight 0.5% or less of phosphorus

5



6 ECONOMIC COMPLEXITY

* 720120 - Non-alloy pig iron containing by weight more than 0.5% of phosphorus

* 720150 - Alloy pig iron; spiegeleisen

This classification offers a naturally aggregation of products in chapters, headings, and sub-
headings, for about 5400 products in total. Indeed, this kind of classification was helpful in many
works found in the economic complexity literature, which usually use products’ classification at
4 digits level. We can aggregate the BACI dataset in a more simple form, creating the bi-
adjacency matrix X,,(t) where the elements represent the total export of a product p done by
a country c in a given year t. In the whole chapter, we will omit the time dependence of the
bi-adjacency matrix as we will only deal with the exports made during 2019. In this scenario,
this matrix allows us to represent the world trade network of exports as a complex undirected
bipartite network, where in the first layer we have countries while in the second one we find
products. The links are the elements of the matrix X,

countries (c)
1-223

QQ\{JJ ,,,,,,,,,,,,, Qfg}

0000000000 0000000000

products (p)
1-5016

Figure. 1.1: Figure took from

It is common practice to use binarization methods in bipartite networks to aggregate data that
exceed a certain threshold. In this way, one can think to gather information only from the
most important links of the network. For the economic complexity approach, the most common
criterion is based on Revealed Comparative Advantage (RCA) that indicates if a
country can be considered an effective producer of a specific product. This idea is based on
Ricardian’s works of comparative advantage; RCA, also called Balassa index, is nothing else
than an empirical construction to measure it.

Xep/ > Xep

RCA., =
P Zc’ Xc’p/ Zc’p’ Xc’p’

(1.1)

In the RCA criteria, a country has to have an RC' A, > 1 to be accepted as an important
producer of a product p. Intuitively, with a threshold equal to one, we are saying that a country
is an effective producer of a product p if its export share of that product X,/ Zp, Xp is bigger
than the average export share made by all countries » o Xerp / Zc,p, Xy

In this way, one can construct a binarized version M., of the matrix X, in which we have only
the information whether a country is a competitor of a specific product or not. A filtered matrix
X¢p can be constructed as well, where remains the information of the amount of product that
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without RCA, all the information with RCA
Bl ° lzgw

100

ountry of a given product [$ - 10%]
ountry of a given product [$ - 10°]

countries
countries
total cxynor\ of a c

total export of a ct

200
200

0 1000 2000 3000 4000 5000 e o 1000 2000 3000 4000 5000
products products

Figure. 1.2: In the left figure is represented the biadjacency matrix X, sorted with an increasing country entropy
and am ascending product ubiquity, using the method that will be explained in the next section. In the right
figure is represented the X, sorted, it is visible a more evident nested structure. The data are considered for
2019

is exported.

M. = 0 ?f RCA., <1 ch _ 0 '1f RCA., <1 (1.2)
1 it RCA, >1 Xep if RCA, >1

An essential element of consistency of our method of complexity measure is that a nested struc-
ture in the bipartite network is revealed . With a particular reorder, based on the ranking
criterion exposed in the following sections, a nested structure emerges from the rows and columns
of the bi-adjacency matrix (figure . We can observe that the RCA criterion eliminates most
of the links in the yellow region of the color bar (low export), erasing almost an 18% of them.
We will start with a short introduction of the two most popular algorithms to measure node’s
complexity. It is to highlight the fact that both use RCA, although the loss of information due
to it has never been discussed in the economic complexity literature.

1.2 Ranking with ECI and Fitness

Economic Complexity Index The first attempt to create a rank using only exports infor-
mation in the world trade network was made by C.Hidalgo and R. Hausmann in . In this
work, they treated the exports as a complex bipartite network using as links the binarized matrix
M., obtained through the RCA criteria. They developed the Method of Reflections, called in
this way because of the symmetry of the algorithm, where it is computed the average value of
the previous-level properties of a node’s neighbors in a linear coupled iteratively way.

1
kc,N = k_ ZIZ,VP Mcpkp7N—1
c,0

1
kpyN - k’_ Zi\fc Mcpkc,N—l
p,0
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Figure. 1.3: Complexity of countries (a) and ubiquity of products (b) using th full digit HS system classification,
computed using the Method of Reflection

2500

&
g

g

ke,n for N even
kp,n for N even

20 (
[

(a) country ranks (b) product ranks

w K v E
even iteration even iteration

Where N, and N, are respectively the number of countries and products. Using as initial
condition the number of links connected to a node

Np Nc
koo =Y M, koo =Y M, (1.4)
p c

The first initial condition k. indicates the number of products on which the country ¢ shows
comparative advantage, while the second initial condition k, o represents the number of coun-
tries having a comparative advantage on the product p. They are respectively bare measures
of a country’s diversification and a product’s ubiquity, as they do not take into account the
difference of each country and product. With the method of reflections the difference among the
nodes of the network is extracted and for countries even variables (k. 2, k¢4, . .. ) are considered
generalized measure of diversification, while for products even variables (k,0, kp2, kp4, - .. ) are
generalized measures of ubiquity.

This simple method has an uninformative fixed point, as the rank between countries is captured
in a progressively shrinking difference (fig . The reason is that k. y tends to converge to a
vector with all components that are the same. Although they used the 4-digit classification in
the HS for products in their work, we decided to show the results for the finer classification of
products, as this does not change the shape of the graphs.

The convergence is due to the linearity of the iterative map

1 1 M. M ks nv—q
keny = — Mok, Nn_1 = — S 1.5
N ; p/vp,N—1 k’co kp’,O ( )

for large N this iteration map is equivalent to an eigenvalue problem

McpMc’p B Zp McpMc’p
» kp/70k670 Zc’,p’ Mc’p/ MC/@/

ke=Y_ Myks  with M, = (1.6)

the solution of the system are the eigenvectors of M/ ,, but since it is a transitional probability
matrix (), M. = 1) its first eigenvector has equal elements.
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The authors noted this problem, and in a subsequent work [42] they tried to fix it by taking the
eigenvector associated to the second largest eigenvalue of the iterative map M ,. They called
it economic complexity index (ECI) and gave to it the meaning of a generalized measure of
diversification, hence complexity. The principal issue pointed out in [30] is that the ECI vector
is orthogonal to the bare diversification k., undermining its interpretation.

Fitness Method A novel approach, called Fitness Method, that uses a non-linear iterative
algorithm, and therefore does not suffer from the eigenvector problem illustrated previously, was
developed by the group of L.Pietronero [31]. In the spirit of the work done with the method
of reflections, they gathered data in the binarized matrix M,,, but also in the weighted matrix
X p Dormalized with the worldwide export of a product, using the RCA criteria.

The idea is that the fitness F, of a country is proportional to the sum of the products with a
revealed competitive export (just like the ECI), weighted by their complexity (),. Computing
the complexity of a product is more subtle; it is inversely proportional to the number of countries
which export it (the more a product has revealed competitor, the less it is complex). In addition,
if a country has a high fitness this should reduce the weight in bounding the complexity of a
product, and the countries with low fitness should strongly contribute to the bound on (). This
is a consequence of the nestedness of the bipartite graph, countries with high fitness tend to
export everything. This idea is written mathematically in the following algorithm

( ~(n)

F
= (n) n—1 Fc(n) = —°
Fc :Z;VPMcp 1(7 ) <F(”)>
1.
Qv = ! ) () D
T X My ) = ?(+)
\ <QP >p

The initial condition are Fc(n) =1 and Q;E,n) = 1 for all countries and products. The analysis in
[31] was made using the 4 digits classification of the HS for products, and apart from a few nodes
that converge to zero, the algorithm stabilized at a fixed point. As noted in [32], the problem
arises when the algorithm has to deal with niche products. If we use the 6 digits classification
in the HS for products, the algorithm shows convergence problems (see figure . It is still
possible to get a rank and a measure by stopping the algorithm at a certain point, but this is not
a good solution since it adds an arbitrariness leading to different fitness and complexity values.

Diversity is the essential ingredient in both approaches, as the more a country has revealed
comparative advantage in different products, the greater its complexity. In the next section, we
will deeply analyze the role of diversification and see how entropy emerges as a natural candidate
for this task.

1.3 The Role of Diversification

Diversification at the country level seems counter-intuitive, as one could think that countries
will reach different levels of specialization in a free trade market according to their know-how.
R. Hausmann wrote about this in an opinion article "Many believe that cities, regions, and
countries should specialize: they cannot be good at everything, so they must concentrate
on their comparative advantage. But, while this idea seems obuvious, it is both wrong
and dangerous [45].” It is misleading to equate the benefits of individual specialization with
those of specialization at a larger scale. Specialization at the individual level is needed to
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Figure. 1.4: Fitness of countries and complexity of products computed using the Fitness Method. There are
problems of convergence in (c) and (d) when the algorithm has to deal with niche product (products that are
exported from very few countries in very low quantity). Using the 4 digit classification we remove a little niche
products from the bipartite network, however there are still some problem of convergence of the iterative map.

gather the necessary know-how to create something, but at the scale of cities or countries, this
individual specialization yields diversification. If the opposite were true, we would observe in
the bi-adjacency matrix X, a block diagonal shape, but we have seen in figure that the
bi-adjacency matrix shows a clear nested structure, after a proper reorder. In other words,
wealthy countries tend to export all the possible products. In this sense, diversification is the
most critical indicator for the economic complexity approach: it drives economic development,
as also indicated in other works [38].

Both Fitness and, according to the authors, ECI are complex measures of diversification con-
structed on a non-trivial count of products on which nations revealed comparative advantage.
However, this concept of diversification does not contemplate the relative weights that each
production has on the productive system. A more intuitive way to observe the diversification
of nations is to look at how their products are distributed in their export baskets, hence at the
quantity gp = X/ Zp Xep - The most diversified country should have a narrow distribution
peaking close to the equal share value 1/ N, (where NN, is the number of product trade in the
world trade network that year), getting broader with countries with low diversification. Using
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the BACI dataset, we can get some insights into this role of diversification. According to World
Bank classification [44] we take four different countries (Figure 1.5): Sudan (SDN) as a low in-
come economy, Iran (IRN) as a lower-middle income economy, Brazil (BRA) as a upper-middle
income economy, and finally Italy (ITA) as an high income economy. Sudan shows a broader
peak far from the equipartition value; for Iran and Brazil, the peak moves towards equipartition
and their distribution gets narrower. Italy shows a more narrow distribution with a peak rather
close to the equipartition value.

Diversification in the export shares already embeds some information about the wealth of a
nation. It is fascinating that the median of the basket shares of a country, which can be seen
as a naive measure of diversification, correlates very well with the total export of countries that
export less than 1000 products, see figure (a). This line individuates a set of underdeveloped
countries (such as Iraq, Venezuela and Sudan), but also not underdeveloped ones like San Marino
(SMR) or Andorra (ADR), that have only the constraint of being a very small exporters due to
their dimension. Future diversification measures should capture this poverty line with also the
ability to exclude small countries with a high total export per capita. However, the poverty line
is no longer visible when we plot against export per capita (see figure (b)). This problem is
resolved using a more complex diversity indicator, as we will see in the results section.

In the next section, we will introduce a new method developed by the group of Padua [39] that
aims to measure this diversification correctly, using the machinery of information theory.

0.5 — 3DN

IRN
—— BRA
— mA

P [¥1) L=
1 L L

fraction of products exported

0o

—iz —i':' -8 —-b -4 -2 0
log basket shares &2,

Figure. 1.5: In these plots, we observe Gaussian kernel density estimation with a bandwidth equal to one of
the diversification of the export shares §Sp. Four different countries are considered, according to their income
classification. Differences in these densities are present among these main sets. The vertical line represents the
ideal equipartition value.
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Figure. 1.6: Figure (a) depicts a scatter plot of export - median of basket share. A clear correlation is visible
with countries which export less than 1000 products. In figure (b), we changed the y-axis with export per capita.
As a result, a region or line with countries that export a few products is no longer visible. As for some countries,
population information is lacking, few nations are depicted in the (b) plots.

1.4 Entropic Complexity Measure

A natural candidate function to measure diversification is the Shannon Entropy: given a set of
probabilities {pi}izlw..’N and ZZ p; = 1 the Shannon entropy is defined as

= _Zpi log(p;) (1.8)

We can think of the probabilities as the relative occupation of a collection of N states, hence
the shares of a country’s export basket. As pointed out before, we can define the share gp of
the product p in the basket of country c as the fraction of the product’s export in the overall
export of that country.
0o _ X
r Z /Xcz)/

In the same way, we can define the export share Cp, which is the fraction of the export p of the
country c in the overall export of that same product at a global level.

0 _ Xep

* Zc’ Xerp
The apex zero indicates that those quantities are the basis of our construction of the measure.
Indeed, these shares only gather monetary information and have no insight into the relationship

between different products or nations. The bare entropic and ubiquity indicator can be defined
using these shares as probabilities, as they are already normalized and sum to one.

Z ) log(&? Z ) log (¢ (1.11)

Where N, is the total number of products traded, and N, is the total number of countries
considered. This entropy has not to be intended as an indicator of the diversity of the p.d.f. in

(1.9)

(1.10)
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figure indeed one can argue that an ideal diversified country should have a delta distribution
centered on the equipartition line. The entropy is instead an indicator of the diversity of the
shares fgp as a function of products.
As mentioned before, these indicators do not have the information of different products and
nations for example, we could change crude oils with copper in the basket of a country’s export
Cp and this would not change the bare entropic 1nd1cator In the same way, we could change
USA with Tunisia for computing the export share cp of a product, and this would not change
the result.
The distinction among the nodes of the bipartite network is obtained with a self-consistently
re-weighting of the share matrices, in the same fashion as Fitness and ECI algorithms. Using
a coupling approach: the more a product is ubiquitous, the less it should contribute to the
diversification of a country (i.e. to the entropy of a country), while the more a country is
diversified (in our approach means wealthy), the less it should contribute to determining the
ubiquity of a product. We adopt the idea, corroborated by the proven nested property of the
graph, that wealthy and developed countries have a consolidated diversification and export all
kinds of goods. In this sense, diversified (wealthy) countries should contribute less than poor
diversified nations to the ubiquity of products.

For instance, if USA exports a lot of a product called P that is not exported by a large share
of the less diversified competitors, the product P will end up with a small ubiquity indicator.
On the other hand, if the same product P is exported by many countries with a small entropic
indicator, hence with low diversification, the product will end up with a high ubiquity indicator.
USA has a high entropic indicator, so it can produce and export a vast quantity of diversified
products whether they are complex or not, while countries with a small entropic indicator
produce and export only products that are not complex. We can think of the ubiquity measure
as the opposite of the complexity of a product [39], in a sense given by the fitness algorithm.

This idea was proposed mathematically using an iterative algorithm with initial conditions the
bare entropic indicator ((1.11]) [39]. In contrast with Fitness and ECI, we iteratively re-weight
the shares instead of the measures with this approach.

k k k
AP = = 520 el log(€5)

(1.12)
HY = = 320 (5 log(¢')
with shares at the k-th step defined as
k) (k)
k) _ Xef (Hp”) k) _ Xepg (He™)
€W = : (W = (1.13)

Zp/ ch’f(prg)) Zc/ XCIPQ(H(S’IC))

The functions f and ¢ are the weighting functions that re-weight the share matrices at each
iteration. We want to give higher contributions to products with low ubiquity in computing the
entropy of a country, and in the same way, we want to give more weight to countries with low
entropy to compute the ubiquity of a product. We need two functions f and ¢ that invert the
concept of entropy and ubiquity, respectively.

There are many ways to achieve this, but a simple way is to take the complementary of the
entropy. The Shannon entropy stays in a compact set because it is a continuous function
bounded from below by 0 that indicates maximum information on a stochastic variable, hence
a minimum diversification (a delta probability distribution, hence a monopoly of one product),
and also bounded from above by log(V) indicating minimum information, therefore a maximum
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Figure. 1.7: Entropy (ubiquity) of each country (product) after 10, 100, 1000 iterations. We can clearly see that

after a very small transient the iteration process stabilized. In figure (b) is more evident a reorganization in the
ranking of the products than the entropy case due to the bigger initial vector Hg .

diversification (a uniform probability distribution). Leveraging on this property, we can define
the re-weighting function as

f(H,) =log(N.) — H, g(H.) = log(N,) — H. (1.14)

1.4.1 Fixed point analysis

The scheme of ([1.12]) can be seen as a closed map ¢ between compact sets.
o [0,log(N,)]™ @ [0,log(Ne)™ - = [0,1og(N)]™* ® [0,log(Ne)]™  (1.15)

This feature is guaranteed by the boundedness of the Shannon entropy, which also compares in
the weighting functions. These properties allow us to use the Brouwer s fixed point theorem

that ultimately prove the existence of a fixed point { H,, H, } ’ ’Nc for the map .
We can see from a simple line plot that this algorithm is fast convergent and is stable (see figure

17)

Local convergence To study the algorithm’s convergence, we can compute the Euclidean
distance between consecutive steps of the iteration process.

/2
d® — (Z (Hc(k—f—l) (k) +Z (k+1) (k)) >1 (1.16)

C

The algorithm reaches a fixed point exponentially fast, as it reaches the double-precision slightly
above 20 iterations, figure a).

Global convergence We can also check numerically if this algorithm is globally convergent
by iterating the scheme for randomly initial conditions. In particular, we take random initial
conditions from uniform distributions to simulate different initial bare entropies.

H? ~ U[0,1og(N,)] H)) ~U[0, log(N.)] (1.17)
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Figure. 1.8: Study of the convergence of the algorithm: In figure (a), to study the local convergence, we plot
the Euclidean distance d*) evaluated between consecutive steps; it clearly shows a fast exponential convergence
before reaching the double precision at the 23rd iteration. To study the global convergence we plot, in figure
(b), the Euclidean distance at each step of the simulation from the fixed point obtained after 100 steps of the
iteration process, while the gray dotted line represents the first 10 simulations. We get from the graph an
exponential convergence until the line flattens when it is reached double-precision after the 23rd iteration step.
The exponential decay coefficient D) ~ e** is computed as @ = —1.54. Figure (c) represents the evolution of the
Lipschitz constant, which after 23 iteration we pass the double precision, they gray lines indicate 10 simulations.

For each simulation, we compute at each step the Euclidean distance from the fixed point,
obtained from data after 100 iterative steps with the bare entropic indicator as initial conditions.

D) — (Z (H® = H)* + > (HP _Hp)2>1/2 (1.18)

C

The graph in figure b) shows an exponential decay of this distance D®) ~ e and a curve
parametric fit allows us to compute the coefficient « = —1.54. With this information, we can
compute the Lipschitz constant ¢ , an indicator of how good is the global convergence

1= e = e = (149
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A Lipschitz constant ¢ = 0.19 indicates that the algorithm is globally convergent ﬁ We can
observe the evolution of the Lipschitz constant in figure [L.§|c).
The iterative scheme converges to the same fixed point, for which these consistency relations

hold (((1.20)) and (L.21))
He=— ngvp Eep log(Eep)
(1.20)

Hp: - Zive Ceplog(Cep)

Using a direct re-weight of the shares, instead of the measure, allows to define weighted shares
normalized concerning country’s exports, which are endowed of the different information that
each node in the bipartite network has.

_ chf (Hp)
Zp/ ch/f(Hp')

_ chg<Hc)
Yoo Xepg(He)

gcp

Cep (1.21)

The fixed point of the iterative scheme are generalized measure of diversification of the export
shares, as they embed the information of the non-trivial topology of the complex bipartite
network.

1.5 Results

In this section we are going to use also other information taken from World Bank datasets, such
as: population [47], GDP [48] and GDP per capita [49].

To observe how entropy discriminates among countries, we plot the fixed point of the iterative
scheme, computed after 100 iterations, against some monetary indicators. Of course, the most
used monetary indicator is the Gross Domestic Product (GDP), which measures the market
value of all the final goods and services produced in a specific period, however it is criticized by
some economist who think that it is a wrong tool for measuring well-being and sustainability
[50]. In this sense, we also consider the total export of a country €. = Zp, X¢p. This monetary
measure is simpler to compute than GDP and has the advantage that it can be obtained directly
from the BACI dataset. Moreover, export and GDP correlate very well (see figure , SO we
can use the total export as a proxy of GDP, as done in [39]. The correlation is evaluated using
the Spearman correlation coefficient.

Spearman correlator coefficient This coefficient is defined as the Pearson correlation co-
efficient between the rank variables [51]

:CWB@%MW}

OR(X)OR(Y)

r (1.22)

Where R indicates the rank function, a map that returns a vector of ordered integer numbers. It
is a nonparametric measure of rank correlation and it asses how well the relationship between two
variables can be described using a monotonic function. In this context, where we are interested
in correlations beyond a simple linear model, this coefficient is more appropriate than a Pearson
correlation coefficient.

Another interesting correlation is between entropy and population. We observe that they do
not have a strong correlation (see figure [1.9), meaning that entropy does not depend on the

1¢ < 1 indicates that the map associated with the algorithm is a contraction.
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Figure. 1.9: In the left graph, we plotted entropy against the population, is visible that these two quantities
do not have a strong correlation and in fact the Spearman coefficient turns out to be rs = 0.34. In the right
graph, we plotted the total export against GDP, these measures correlate very well with a Spearman coefficient
of rg = 0.94.

population of countries. However, it is natural to think that the possibility of diversifying an
economy depends on how many people participate in it, and indeed, there is a small positive
correlation (rg = 0.35). This consideration yields us to take into account also intensive monetary
measures such as GDP per capita (GDPpc) and total export capita.

Nations and entropy In figure[I.10|we observe the correlation between entropy and extensive
monetary indicators (total export and GDP). There is a relatively high and positive correlation
(rsg >~ 0.6), but more importantly, entropy discriminates very well among countries that export
a different number of goods. In figure studying the correlation with intensive monetary
measures, we observe a smaller but still positive correlation (rg ~ 0.4). According to the
number of products they export, the distinction among countries is still present but less evident,
suggesting classifications of nations on the entropy-GDPpc plane. This consideration will be
the central point in the second chapter, where we will try to observe macroeconomic dynamical
patterns by coupling entropy with intensive monetary indicators. A macro region of countries
that export few products is highlighted, and remarkably, countries like San Marino (SMR) and
Andorra (AND) move away from it. Other countries that have small entropy but still high
GDPpc are basically of two types: small countries that are very specialized (Bermuda, Cayman
Island, etc.), and one-product dependent countries, like Qatar or Saudi Arabia.

It is peculiar the position of India in the entropy-GDPpc plane, it has an high entropy but
still a low GDPpc, similarly to what China was two decades ago. This type of countries are
characterized by a stable economic growth, and this will be proved in the second chapter.

Products and ubiquity The only monetary information that we can have for products is
the total export of the product made by all countriesﬂ In figure a scatter plot between
ubiquity and worldwide export is presented. We find widespread goods such as copper, oils, and
cement in the upper-right plane. In the upper-left plane, we find products with a high global
export but not produced by so many countries; these products are not simple to produce, like
telephones, automatic data processing machines, wristwatches, or palm oils which depend on
the climatic condition of nations. In the lower-right plane, we find standard products traded by

SExists other monetary measures that can be related to products, such as PRODY or Sophistication
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a few countries; a high ubiquity indicates that these products are exported by a vast range of
low entropic countries. In the lower-left plane, we find unique products like spent fuel elements
of nuclear reactors that are exported in small quantities by a few countries, but also we can find
old products that are still exported by a small percentage of nations like cathode-ray television
tubes. In figure in the next section, we will see how different nations are positioned with
their export compared with the global situation in figure [1.13
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Figure. 1.10: Entropy correlation with extensive monetary measures

L
5000 10° SMR e ADR 5000

2

4000

ITA 3000 3000

payodxa Jonpoud Jo #
payodxa Jonpoud jo #

2000 2000

GDP per capita in dollar

total export per capita in dollar

1000 1000

3 4
entropy
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Figure. 1.12: Entropy-GDPpc scatter plot for the year 2019 with HS edition of 2017. On each point is depicted
the iso 3 codes of each nation.
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1.6 Coarse-Grained Properties

In the other complexity measures, aggregation at 4 or 2 digit level of the Harmonized System
is performed in the bi-adjacency matrix, so if P is a macro category of products, an aggregated
bi-adjacency matrix can be constructed as

Xep =Y _ Xg (1.23)
peEP

after this step, Fitness or ECI can be computed but losing the finer information. The entropy
algorithm allows leveraging a special summation rule when we cluster over products, overlooking
this step entirely. Instead of aggregating products in the bi-adjacency matrix, we can cluster
them directly in the weighted shares normalized solutions of the entropy algorithm.

ch = chp (124)
peEP
This new coarse-grained share is already normalized
Zé.cP :Zzgcp:Zé.cp: 1 (125)
P P peP 14

A similar approach can be exploited in the weighted shares normalized concerning worldwide
product export

CCP - Z (cp (126)
peP

However, this new coarse-grained share is no more normalized. A new renormalization is needed

_ ZpGP CCP
Zc ZpGP CCP

This clearly works also for country aggregation, or both product and country aggregation. We
summarize the procedures:

Cep (1.27)

(

ch = ZpEP gcp
roduct aggregation 1.28
o S G p ggreg (1.28)
\ Zc ZpEP CCP
(1.29)
(gc _ ZCEC SCp
p = O P
2p Lcec b country aggregation (1.30)
\CCP = ZCGC Cep
(1.31)
( gCP _ Zc,pEC,P gcp
ZP Zc,pEC’,P gCP
country and product aggregation (1.32)
CCP _ ZQPGC,P QCP
\ ZC’ Zc,pGC,P CCP
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At first sight, we immediately get an improvement as the aggregation is performed a posteriori
on the weighted shares normalized matrix, solutions of the iterative scheme that uses the not
aggregated information.

In the following, we will analyze products aggregation from 6 to 4 digits for the year 2019 and
HS edition 2017.

1.6.1 Coarse-grained Shannon entropy

From the coarse-grained weighted shares normalized we can compute a coarse-grained entropy

HEY = = " &oplog(ep) (1.33)
P

This entropy is always less than or equal to H..

Proof H, > HS¢

HC_HSG - _chplog gcp _’_Zécplog é.CP)

_ Z £ log(&ey) + Z > &plog(éer)

P peP

_ _chp log(&) — log(€cp)]

- _chzzl()g <§Cp)

= Z§6P|: Z gcp 1 (gcp )} chPHcP
P

At the end we have defined a new quantity H.p, which is actually an entropy as the argument
of the Shannon entropy sum to one

N ey, (S
I; ch to (€CP> (134)

This entropy, called intra-sectorial entropy measures the diversification of a country
into a PP macro-category of products. Therefore, using the fact that H.p > 0 we end up with
H. > H CC & The equality holds in the case where for every coarse-grained category P there is
one and only one fine-grained category p.

The difference H, — HEY, called inter-sectorial entropy ((1.35)), measures the gain in di-
versification that a country obtains, focusing on diffusing its productive system into a more
specialized micro category of goods.

AH,=H.— H® =" ¢.pHep (1.35)

In figure we observe the inter-sectorial entropy, computed using aggregation from 6 to
4 digits of products of the Harmonized System, against GDPpc. Wealthy countries show an
extreme articulated structure of the export shares (we find Germany at the first position), while
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countries in the poverty region have a scarce inner organization in their economic structure.
We also find oil-dependent countries, such as Saudi Arabia, with a low intra-sectorial entropy,
indicating that their export shares are concentrated in few sectors. The other country that
has a very high inner economic organization is Vanuatu, a small nation in the Pacific Ocean,
indicating that, besides its very low diversification in export (it exports 372 products, on a total
of 5400, and has an entropy of H. = 2.6, in contrast with Germany that has H. = 6.8), it has
a very diversified little economy. This example shows that an inter-sectorial analysis has to be
coupled with a sectorial one to get meaningful information.
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Figure. 1.14: In figure (a) is evident the inequality H. > HEC. Developed countries have a high inner organization
of their economic structure, while poor countries show a scarce inner organization.

1.7 Difference with RCA, Binarization and HS Edition

The stability of the entropy algorithm allows tackling the problem of ranking nodes in a bipartite
graph in many different ways. In the initial part of the chapter, we have defined two different
ways to construct the bi-adjacency matrix, using the revealed comparative advantage cri-
terion (RCA), common in most of the works in economic complexity. In this section, we want
to discuss the role of RCA in the entropy algorithm framework.

From the bi-adjacency matrix X,, we can calculate entropies indicating the level of diversifi-
cation of nations as if they exported only goods over which they have a revealed comparative
advantage; we call these indicators filtered RCA entropies. Using the binarized bi-adjacency
matrix, we eliminate the monetary information about products (to be precise, it is still into the
RCA criterion) and their different weights into the basket of a nation; it is like considering it an
urn full of equal balls (products). The relative weights of the balls into the urn are given by the
entropy algorithm, giving heterogeneity to the baskets of countries. In this sense, the binarized
RCA entropy is not an indicator of diversification of the basket of export but a complex count
of products on which is revealed comparative advantage. This last approach is more similar to
Fitness and ECI in concept.

In figure we observe the variation of our complexity measure using the two different RCA
criteria. As expected with the RCA criterion, with no binarization (figure (b)), we get smaller
entropic values as the matrix is the same with fewer non-zero elements; therefore, the probability
distributions of countries and products move away from the uniform distribution. This is a
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Figure. 1.15: In figure (a) we observed the entropy measure obtained using the binarization criteria M., versus
the one obtained with the full dataset, the correlation among ranks is very high (rs = 0.95). In figure (b)
the entropy obtained with the matrix X op is plotted against the full information entropy, it correlates very well
(rs = 0.99). In figure (c) is depicted the binarized ubiquity with RCA against the full information ubiquity
(rs = 0.81), the correlation is still high. In the last figure (d) we have the filtered RCA ubiquity against the full
information one (rs = 0.93)

consequence of the fact that for coarse-grained entropy, as the filtered weighted matrix is, is
valid this inequality H > HCY. As visible in figure (d) and (b), a few dots can been found
slightly above the red line. In fact, this relation is non more exact after the iteration process, as
different initial bi-adjacency matrices give different weights to the normalized weighted shares.
Regarding the entropies computed with binarization criteria the loss of information is evident,
as the elements tend to be concentrated in areas with higher entropy; still a high correlation in
ranks remains.

The difference among ubiquity measures is more evident: with a RCA filter we still observe the
relation H > HYY and an high correlation (rg = 0.93), but with binarization the correlation
gets smaller (rg = 0.81).

Regarding the different ranking for nations, we have decided to consider G7 countries

a) (for the most developed), top oil-dependent countries [Figure 1.16{b) (with a share
of oil export in their basket higher than 0.5), G20 countries [Figure 1.17(a) (for middle devel-

oped nations), and also countries with a small population, less than 1 million. Analyzing G7
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Figure. 1.16: In figure (a) we have the countries that are into the G7 organization, the plot describes the
differences in ranking due to two different procedures of data pre-processing with RCA. In figure (b) we have the
most oil-dependent countries (shares of oil export more than 0.5).

countries, we observe that Japan has the most significant positive difference, indicating a solid
revealed comparative advantage on many products. Interestingly, the binarization criterion for
oil-dependent countries tends to give higher ranks, but if we filter with RCA, this does not
happen. With binarization, we lose the information about the relevance of some products in a
country’s basket, giving them higher ranks at the end.

For G20 countries, apart from the last two countries (Nigeria and Venezuela) that are also oil-
dependent ones, we find Pertt (PER) and Chile (CHL) that both have a fraction of the 26% of
copper exportation, and Ecuador (ECU) that is still oil-dependent (32% of oil in the basket of
export). These considerations brought us to consider countries that are one-product dependent
b) : a product that constitutes more than half of their basket of export. It is vis-
ible that the binarization criterion tends to give higher ranks to these countries. As expected,
crude petroleum constitutes the most common and significant product for these countries. How-
ever, we can also find copper (Zimbabwe), Gold (Uganda, Suriname, Somalia, Nigeria, Mali),
petroleum gases (Turkmenistan), tobacco (Malawi), aluminum oxide (Jamaica), mollusks (Falk-
land islands), and diamonds (Botswana).

If we study the ranks of nations with less than one million population, we find that the binariza-
tion criterion tends to lower those countries’ ranks. Indeed, it is remarkable that the binarized
entropy correlates better with population (rg = 0.43) than full information entropy (as pointed
out in the results section rg = 0.35) and filtered RCA entropy (rg = 0.34). Concerning the
pre-processing data phase with filtering with RCA, we have not noted significant differences,
thanks also to the high correlation in ranks with full information entropy (rg = 0.99). We
summarize these considerations

a. RCA binarization tends to give higher ranks to one-product-dependent countries, as it
does not consider the weight that such export has on their basket.

b. An higher correlation with population has been found using RCA binarization, (rg = 0.43)
against (rg = 0.34).

c. The distribution of the entropies computed using RCA binarization is more concentrated
than the other distributions (see |1.19)).

Further studies on the role of RCA can be done by looking at how the basket of a country changes
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Figure. 1.18: Countries with less than 1 milion population

when we apply the filter. The top result that emerges from figure is that RCA filter removes
all the products that have a low contribution in the basket. The red line in the colorbar of the
right panels shows the minimum value of the shares of a product after RCA filtering, while
the black lines are the first, second, and third quantile of the distribution of the shares of the
products that have no revealed comparative advantage. For under and lower-middle developed
countries, these quantiles show that the RCA filter removes all the products that count low in
their basket. For instance, we can consider Sudan, which has the red line over the third quantile,
indicating that the RCA filter erased over a 75% of products indistinctly below the red line.
However, especially if we want to study the dynamics of these countries’ entropies, it seems
incorrect to say that they do not have at all the capabilities and the know-how related to those
products. The evolution in entropy and ranks of these countries should depend primarily on
diversifying and getting more competitive to products that have low importance in their basket.
Therefore, it seems somewhat unclear why we should consider an RCA filter in our approach.
Those plots also show the heterogeneity in the basket among nations. The red lines indicate
the median of ubiquity and total export for each country, and interestingly, we observe that the
more a nation is wealthy, the more its median tends to be the same as that of an ideal world
country.

These considerations corroborate our idea of not using RCA criteria within the construction of
the bipartite graph and so support the adoption of our complexity measure. An analysis of the
dynamics of these different measures will be studied in the next chapter.

Different HS edition BACI provides 6 different editions of the Harmonized System (1992,
1996, 2002, 2007, 2012, 2017), a new edition of 2022 has been recently released, but there are
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still no BACT datasets with this classification. An analysis of how the country’s ranks change
with different editions of the HS has to be made because only for the first edition, we have
a wide range of years from 1995 to 2019. In (a) we can see the correlation of the
measures among the different edition of the HS. The correlation with the next edition is very
high (HS92-HS96: 75 = 0.9999) and it constantly decrease with the new editions (HS92-HS17:
rs = 0.99). Still, a very high correlation among ranks remains.
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Figure. 1.19: In figure (a) we have a scatter plot of the various entropies that can be computed using different
editions of the harmonized system, we have a Spearman coefficient of 0.99 for every edition. In plot (b) we observe
the different distribution of entropy, computed using Gaussian kernel density estimation with a bandwidth of 1,
the distribution of the binarized entropies is more concentrated than the others.

1.8 Comparison with Fitness

Fitness algorithm is commonly accepted, and a lot of ink has been spilled using it. It is therefore
appropriate a direct comparison with this indicator. From 1995 to 2019, we surprisingly obtained
an excellent correlation between fitness (computed using 4 digits of the HS92 and binarization
procedure) and entropy (computed both with full information and 6 digits and binarization
with 4 digits, using HS96), see figure Each color of the scatter plot represents a particular
year, from 1995 to 2019, with the only exception that we had to remove fitness results of 2018
because, for some reason, that dataset showed very poor convergence using the HS edition of
1992. A few country’s measures did not converge using the fitness method, therefore we had
to remove the point smaller the 107 (also for ubiquity) and fitness was taken at 200 iterations
while entropy was taken at 100 iteration steps. The Spearman correlation coefficient rg = 0.94
suggests the following relation F, = exp(aH,. + () and a fit procedure gave as parameters
a=0.995 £+ 0.007 and = —4.39 £+ 0.03.

We have computed the ubiquity of a product using the first 4 digits of the HS92 through the
coarse-grained procedure. The relation with the complexity measure is shown in
(c), a low absolute correlation is visible as the Spearman correlation coefficient is rg = —0.43
suggesting that complexity and ubiquity catch different aspects about products. The negative
sign of the coeflicient validates the opposite interpretation we can give to those measures: more
complexity is given to less ubiquitous products.
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Figure. 1.20: Each color point represents a particular year from 1995 to 2019, the dataset is BACI with HS
edition 1992. In fig (a) and (b) it is visible a strong correlation between entropy and fitness (Spearman correlator
for figure (a): 0.94, while for figure (b): 0.96), the correlation is stronger if we use the same structure of the
bipartite network as in figure (b). An exponential fit suggests an exponential map between the two measures.
In fig (c) and (d) a smaller correlation is visible between the complexity and ubiquity (Spearman correlator for
figure (c): -0.43, while for figure (d): -0.54), the negative value of the Spearman coefficient validates the opposite
meaning between complexity and ubiquity of a product. We have the following parameters for the fits. An
important note: we had to remove fitness for the year 2018 for convergence problems.

(a): @ =0.995+ 0.007 B =-4.39+0.03

(b): « =1.841 4+ 0.009 B =-9.98+0.04

(¢): a=—0.99 £0.01 B =2.18+0.04

(d): @ =—-1.09 £0.01 £ =3.03+0.04
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Figure. 1.21: Basket composition of countries, black dots represent all products at 6 digits of HS17. We have the
basket distribution in the left panels, represented using a colorbar, while in the right panels, we show the same
distribution after an RCA filter. High, upper-middle, lower-middle, and low developed countries are depicted.
Black lines are the median for the entire dataframe of products, while red lines represent the median of the actual
composition of the basket. Black horizontal lines in the right colorbar are the first, second and third quantile of
the distribution of the removed shares due to filtering, while red lines indicate the minor shares after the filter.



Dynamics in the entropy-monetary
plane

In the previous chapter, we studied how a complexity measure, based on Shannon entropy, of
a complex bipartite network can be constructed from BACI datasets that gather and process
information about worldwide export. The analysis was done only for the most recent year
available (which is 2019) and using the most recent edition of the Harmonized System (HS),
the 2017 edition that at 6 digits level accounts for almost 5400 products. However, within this
edition of the HS data are available only for three years (2017, 2018, and 2019); therefore, it
would not be an excellent choice for the study of the dynamics of the complexity measure. The
richest dataset offered by BACI is the one with the first edition of the HS (1992), which contains
fewer products (about 5000), decreasing over the years, as a consequence of the fact that some
products that had been listed in 1992 were no more exported in the past few years. Within
this edition, we have access to the larger time window from 1995 to 2019. Other editions are
available in BACT (see [52]) but they cover smaller time windows.

We computed entropy measures from 1995 to 2019, the evolution of the ranks is visible in
Figure 2.1} on which we can notice that countries with very high entropy tend to remain in
those positions. Remarkably, Italy turns out to have the highest entropy all over the time
window, indicating a robust export diversification.

The biggest jumps towards high ranks were made by Poland (from 17 to 2), Spain (from 16 to
3), Turkey (from 20 to 6), and Portugal (from 23 to 8). In contrast, the biggest jumps in the
opposite direction were made by Hong Kong (from 13 to 37), the Czech Republic (from 3 to 20),
China (from 4 to 13), and Switzerland (from 15 to 56), the most significant downward jump was
made by Australia (from 40 to 100).

In contrast, countries with the lowest entropic values tend not to change their positions. For
instance, we can consider Iraq, which has the lowest entropy in all the time windows (except in
1995). Its constant low position is a consequence of the fact that its export is mainly charac-
terized by a single product: oil. In the area with low entropy (right panel), there are a lot of
upward movements, which is a sign that poor diversified countries tend to diversify their export.
Big upward jumps were made by Samoa (from 164 to 75), United Arab Emirates (from 121 to
64), Cambodia (from 109 to 54), and Iran (from 160 to 108).

In the middle region, there is much movement in both directions, and an example would be
Egypt (from 76 to 38) and Uruguay (from 51 to 87).

The dynamics in the entropic dimension seems to be rather chaotic, so to better understand it
is necessary to add a new dimension. A first idea could be to couple entropy and export per
capita. We have seen that entropy correlates less with per capita monetary indicators, suggesting
that the two measures embed different information and could be coupled to observe dynamical

patterns [Figure 2.2l We will call this graph entropy-monetary plane.

29
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Figure. 2.2: Dynamics in the entropy - export per capita plane. Dots represent the initial point (1995).

This very first graph already gives some insight. Let us take, for instance, Switzerland (CHE) and
Spain (ESP). Initially, they have a similar entropy, but the first evolves towards smaller entropy
while the other does the opposite. The difference is in their position in the plane: Switzerland
already has a considerable export per capita while Spain does not. Moreover, countries with
similar conditions to Spain (see Poland and Turkey) appear to evolve similarly in the plane. It
is also visible that middle development counties have a more complex dynamics than developed
countries; for example, Italy (ITA) has a more stable dynamics and growth than Cambodia

2.1 Coarse-Graining the Plane

Following the procedure introduced in [35] for the Fitness method, we can investigate the graph
in better by dividing the plane into boxes. For each one we will compute a trend as
an average of all the velocities in that box. In this way, we can extract a flow structure from
the graph and investigate a coarse-grained dynamics.

For each box b, we collected the set of points that lay in that box {Xc,t}Zn where X is a point in
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the entropy-income plane x = (H,, Y'), H, is the entropy and Y is a general monetary indicator
of a nation (in the considered graph Y indicates the logarithm of the total export), while ¢
indicates a country and t a particular year.

Each point in the coarse-grained box has a one-year evolution {X.;41} that could be anywhere
in the plane. The velocity, or trend, can be calculated as a one-year displacement, regardless of
whether or not the evolution is inside the box.

{Xcito — {verts = {Xetr1 — X} X.+ into the b coarse-grained box (2.1)

Whit this construction we get a set of velocities {Vc,t}b for each coarse-grained box b.

Central tendency trend The aim is to compute an unique trend, or central tendency trend,
from this set in order to assign an arrow to each box. To do this we can extract an average from
{Ver}s as done in [35].

Z(c,t)eb Vet

(v)y = el 22)
Where the sum is over the set {Vc,t}b and ny is the cardinality of the set, hence the number of
velocities into the coarse-grained box b.
However, this approach could be uninformative about the middle points of a country’s time
series. For instance, let us consider the case of a country’s time series {Xc,t}t:T07,,,7T (now we fix
c and consider the series in ¢ from the initial time 7{ to the final time 7") remaining into a coarse-
grained box b. If we compute a simple average of its one-year velocities, we will get a normalized
displacement from the initial point X. 7, to the final point X, 7, loosing the information about
the middle evolution. Indicating as (Vv.); the average one-year trend of the country’s time series,
and n(c) the number of points of the time series into the coarse-grained box b, we have indeed

Zteb(xc t+1 — Xct)
Ve)p = ’ ’ 2.3
(V) (@) (2.3)
_ (Xer — Xer—1) + (Xer—1 — Xer—2) + -+ + (Xep41 — Xemp) (2.4)
ny(c) '

Xe T — X, Th
=5 50 2.5
e (2.5)

Moreover, the set of velocities {Vqt}b is affected by outliers that can arise due to particular
economical situations, such as economic crisis. The arithmetic mean in ([2.2)) is greatly influenced
by outliers, making the indicator (v), mostly dependent on large displacements. We decide to
replace this average with the median, which is a robust measure of central tendency and so better
represents a ”typical” trend. In addition, with this indicator we no longer have the problem of
the uninformative middle evolution.

(v)p = median({v.,}s) (2.6)

Collinearity Measure The central tendency trend of a coarse-grained box give information
about the most likely one year evolution of points inside it. However, this information is not
sufficient to properly catch the chaos embedded in the coarse-grained box; it gives only the
overall trend and does not say anything about the distribution of the velocities that it contains.
A possible measure of chaos into a coarse-grained box b consists in taking the trace of the
covariance matrix computed using all the velocities {Vqt}b, normalized with the area of the box
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Y. Since the trace of a covariance matrix is the sum of the variances of the coordinates of the

entropy-monetary plane, we indicate this measure of chaos as O'g.
Tr(Cov({v.sts
o = ZConllvech) (2.7)
b

The higher is JZ the more chaotic dynamics we get in the box, while the lower it is the more
collinear are the velocities in the box. In this sense the chaos’ measure Ug is related to a measure
of collinearity K, of the velocity set. In the following we will use both term to indicate chaos or
collinearity.

1
o = — (2.8)

The Gf represents a scalar field in the coarse-grained entropy-monetary plane that can be
pictured as a color in the arrows representing the central tendency trend . In figure we
performed a coarse-graining on the entropy-log export plane using 256 boxes of equal area, the
arrows are computed using while the color indicates the chaos measure .

A clear separation in colors, therefore in collinearity, and in trend dynamics can be seen: high
entropic countries have high collinearity while low entropic countries have the opposite. The
meaning is that countries with high entropy evolve similarly, while the others do not.
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Figure. 2.3: Flows in the entropy-export per capita plane
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Figure. 2.4: Flow in the entropy - GDPpcPPP plane, the right panel has a fine grained double than the left
panel

We also notice that the arrows are more collinear in the high entropy region, indicating that
there is also global high collinearity for regions with high entropy. On the other hand, low
entropy regions show high variability in the arrows, suggesting that the in-box low collinearity
is also present at bigger coarse-grained scales.

The problem of outliers is present also in the chaos measure as they were found in the distribution
of {UZ}; this brought some problems in picturing the arrow’s color, as the colorbar was entirely
overwhelmed by a few outliers. To solve this and properly picture the gradient in color among
low and high entropy regions, we removed these outliers by projecting them on a threshold value
computed as the quantile of the distribution of the chaos measures corresponding to 0.95: we
project 5% of the highest values. In the following we will omit the pedix b that indicates that

the chaos measure is related to the b box, hence Jg = o2,

A new monetary measure Despite having extracted some information with this dynamics,
we have to highlight some problems in this analysis. Firstly, BACI datasets give export data in
current dollars; this means that the export per capita we have computed is affected by inflation.
Moreover, inflation is different for each country, and to properly compare monetary values within
countries is necessary to consider export (or GDP) weighted by the Purchased Power Parz'tyﬂ
If PPP solves the problem of comparing monetary values within different countries, it remains
the problem of the dynamics of those values that can be affected by world inflation. Therefore,
current dollars have to be replaced by constant dollars. Fortunately, World Bank provides a
dataset of GDP per capita weighted by PPP in constant 2017 international dollar. From now
on, we will use this monetary measure in the plane, indicating it as GDPpcPPP (gross domestic
product per capita in purchased power parity). All the measure in GDPpcPPP will be reported
in a logarithmic scale, so often we will omit this indication.

We show the results with two different choice for the number of coarse-grained boxes for the
entropy - GDPpcPPP plane in[Figure 2.4l Clearly, with a smaller number of boxes the dynamics

!Purchased Power Parity (PPP) is the measurement of prices in different countries that uses the prices of
specific goods to compare the absolute purchasing power of the countries’ currencies.
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Figure. 2.5: Flow in the entropy - GDPpcPPP plane, left panel is with the binarized version of entropy, while
the right one is with the weighted entropy (the one computed using the complete biadjacency matrix X, filtered
with RCA).

seem less chaotic, but still, important information remains: o2 is smaller for countries with high

entropy, so in that region (if we have to trace a line, we would say for H. >= 4.5) the dynamics
is approximately laminar. This distinction among two different dynamical region was pointed
out in for the Fitness method, allowing to separate a Predictable form an Unpredictable
one. Remarkably, also with our measure we observe this separation. This region is even more
evident if we use RCA approaches to filter out products not revealing comparative advantage in
a country’s export basket .

In particular, the binarized entropy can picture the best predictability region, which is a conse-
quence of the binarized nature of the bi-adjacency matrix and the consequent loss of information.
Countries with a high diversification tend to be stable in the revealed comparative advantage of
their products, yielding a more stable complexity than the full information entropy. The filtered
RCA entropy seems to not have an advantage over the full information entropy.

A density plot of the collinearity measure, with the same bounds for each colorbar, is helpful to
understand better the dynamics . We obtain similar collinearity measures for the
full information entropy and the filtered RCA one, while the binarized RCA entropy shows a
less chaotic behavior.

Entropy construction allows coarse-graining products to get, in principle, more stable country’s
complexity measures. We observe the dynamics of the coarse-grained entropy
by performing the same analysis using the 4 digits aggregation on products (the first level of
aggregation offered by the Harmonized System). In the following we will try to understand if
we get a less chaotic entropy measure using an aggregation in product from 6 digits to 4 digits.

Predictability and unpredictability regions Qualitatively, we can set a vertical line to
discriminate between two regions with low collinearity and high collinearity, in the same fashion
of . For 6 digits full information entropy and filtered RCA one we take a line at H. = 4.5
while for binarized RCA entropy we consider H, = 6; instead, for 4 digits full information
entropy and filtered RCA one we take a line at H. = 4 while for binarized RCA entropy
we consider H, = 5. Computing the average o2 in these two different regions will return a
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Figure. 2.6: Countour density plot of o2 for the different measures. The higher bound of each colorbar is the
same. A streamplot is visible to capture better the underlying dynamics.

measures Unpredictable 62 | Predictable o2 || Total o2

entropy 3.3+0.3 0.84+0.2 25+0.2

filtered RCA entropy 2.84+0.2 1.0+ 0.3 244+0.2
binarized RCA entropy 2.54+0.3 0.54+0.2 1.8+0.2

4 digits entropy 3.24+0.3 0.8+0.1 25+0.2

4 digits filtered RCA entropy 34404 0.94+0.2 2.8+0.3
4 digits binarized RCA entropy 29+0.3 0.57 £0.09 2.0+0.2

Table. 2.1: For 6 sigits entropy the predictable region is defined for H. > 4.5 (H. > 6 for binarized RCA entropy),
instead for 4 digits entropy the definitions are H. > 4 (H. > 5 for binarized RCA entropy). A distinction in
collinearity is present.
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Figure. 2.7: Variance of GDPpcPPP growth, variance of entropy, and collinearity. On the x-axis we find the full
information entropy. rg is the Spearman coefficient, while R? is computed using a linear fit.

quantitative insight about the level of chaos in these two regions. We collected this information
in a table 2.1l

There is a clear separation in collinearity among these two regions, as we get three times higher
average o2 in the unpredictability region with respect to the predictable one. Remarkably,
the binarized RCA entropy shows lower collinearity in both regions. If we analyze the role of
macro aggregation in products for collinearity, we observe that for the 4 digits RCA entropies
we get higher o2, especially in the unpredictable region, while the full information entropy is
not affected by this change. Full information entropy is more stable than RCA entropies when

we aggregate products, and this corroborates its use against the other measures with RCA.
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Variability of the dynamics as a function of entropy To take the information about
entropy and GDPpcPPP variations as a function of entropy, we collect all the coarse-grained
boxes that share the same middle entropy and compute the mean variance of their trends. In
this way, we can smooth out the noise focusing only on the average contribution of entropy to
those quantities. We do the same thing for collinearity.

From [Figure 2.7| we observe that low entropy countries have a high variance in GDPpcPPP; the
same thing happens in a middle region of entropy, in between 4 and 5, indicating a relatively
higher variance in growth for middle-developed countries at the border of the predictability
region (H, = 4.5 for 6 digits entropy). The variance in entropy is much more significant than
the one we observe in GDPpcPPP, indicating that the collinearity is entirely overwhelmed by
entropy dynamics. We find a negative correlation in both the axes, corroborating the idea that
high entropic countries have a more stable economy. We studied also the variance of the two axis
for the other entropy measures finding that the negative correlation still remains (figure .
Remarkably, using the binarized entropy we do not find the local peak in the middle developed
region of countries.

The 4 digits entropy has a different range, as it is bounded from above (log(/N)) by a smaller
amount of products, this explain the translation of the peaks in the graphs. The similar results
in 0 in table and the comparable shape of the graphs in [Figure 2.7/ and [Figure 2.8| suggest
that with the aggregation in products from 6 to 4 digits we do not obtain a less chaotic dynamics.
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Figure. 2.8: Variance of GDPpcPPP growth, variance of entropy. On the x-axis we find respectively the filtered
RCA entropy and the binarized RCA entropy. 7 is the Spearman coefficient, while R? is computed using a linear
fit.
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2.1.1 1, 5 and 10 years trend

To further study the dynamics of the flow, we can augment the temporal range on which we
compute velocities. For economic purpose, it is interesting to study middle and long term
dynamics; in this sense we repeat the analysis for 5 and 10 years by
computing the velocities using and (2.10). We previously observed that we do not obtain
a less chaotic plane using the 4 digits entropy, so for this analysis we will only consider the 6

digits one.
{Xeato — {verts = {Xcits — Xct} Xy into the b coarse-grained box (2.9)
{Xetto — {Verts = {Xctt10 — Xer}  Xcp into the b coarse-grained box (2.10)
5 Year Trend

measures Unpredictable 02 | Predictable o2 || Total o2

entropy 7.1£0.7 2.9+0.3 5.4+0.5

filtered RCA entropy 6.8 0.6 2.8+0.4 5.44+0.4

binarized RCA entropy 45+04 1.1£0.3 3.3+£03

Table. 2.2: Different value of o2 for different entropies, highlighting the two regions of predictability

10 Year Trend

measures Unpredictable o2 | Predictable o2 || Total o
entropy 7.9+£0.7 4.14+0.5 6.3 £0.5

filtered RCA entropy 8.8+0.9 4.240.6 7.24+0.6
binarized RCA entropy 5.6 +0.6 1.6 +0.3 41+04

Table. 2.3: Different value of o2 for different entropies, highlighting the two regions of predictability

As expected, the tables show an increase in 02, indicating more chaotic dynamics for middle and
long term views. In addition to the analysis made in the previous section, we consider also the
logarithmic growth in GDPpcPPP as a function of entropy. As growth can be very heterogeneous
for countries sharing similar entropy but different GDPpcPPP, there is the possibility to get
outliers in their distribution. Therefore, we also computed the median of the median growth
(see equation ([2.6))), to smooth out the effect of these outliers. For the 5 year growth
we obtain an encouraging positive correlation that gets stronger if we look at the long term
growth. The correlation at 10-year growth between entropy and growth is very
high (Spearman coefficient rg = 0.82) and an R? = .66 suggests that a linear relation can
in average explain the 66% of the economic growth of a nation. Surprisingly, we get a better
correlation and linear fit if we look at the median.

A comparison with the binarized RCA entropy measures on 10-year growth unveils a better
correlation using the full information entropy Countries with very low binarized
entropy are not described well by the measure, as they move away significantly from the 10
years growth trend, corroborating our hypothesis that a diversification in revealed comparative
advantage is not a good indicator for under-developed countries. The same consideration for
the variance in GDPpcPPP and entropy remain for the middle and long term view, as we can
see from the graphs.

It is interesting to notice that we obtain very similar dynamics using the filtered RCA entropy.
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We can conclude that the RCA filters the data that contribute most to the entropy measure.
Still, at the same time, the full information entropy is stable to the noisy data, capturing
essentially the same information as the RCA.

5 Year Trend
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Figure. 2.9: 5 year variance in GDPpcPPP, entropy and logarithmic growth
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Figure. 2.10: 10 year variance in GDPpcPPP, entropy and logarithmic growth
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Figure. 2.11: 10 year logarithmic growth for filtered RCA entropy and binarized RCA entropy.
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2.2 Patterns in the Macroeconomic Landscape

We better highlight the different dynamical regions that can be found for the 5-year trend, by
removing countries with a population smaller than 1 million. Together with the vertical pre-
dictability line at H, = 4.5 we plot also the linear trend of entropy-GDPpcPPP.

Interestingly, in the region of risky economy, we get smaller o if we remove small countries
(this can be seen by confronting [Figure 2.14] with [Figure 2.12)), indicating that the most chaos
found in that region is due to them. We can argue that small countries with high GDPpcPPP
have a high entropy variance because their population constrains diversification. For instance, a
nation like San Marino or Monaco cannot reach the level of diversification of countries like Italy
or Germany, simply because they do not have the labor capacity to produce and export a high
number of products. Moreover, their small population yields a high relative export variability,
causing high variance in entropy. In this sense, this type of country is fated to remain in high-
income and low entropy regions.

We find an high stability for well developed countries, while we observe a considerable growth
for emergent countries. In contrast, under developed countries are affected by an high unpre-
dictability of their economy.

In the next chapter, we will investigate a new algorithm to infer GDPpcPPP growth using the
heterogeneous dynamics found in th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>