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Abstract

Multi-agent systems are systems consisting of several autonomous robots that
usually work under the assumption that they can communicate by sending and
receiving the positions of other robots operating in the network.

The introduction of this type of systems is due to the fact that, in many
situations, it is preferable to use more than one robot to achieve more complex
goals without human help, especially in dangerous situations.

In this thesis, the focus is on a heterogeneous multi-agent system, i.e. a
system whose component robots are heterogeneous with each other in terms
of their implementation capabilities. In particular, a heterogeneous multi-agent
system consisting of two UGVs and two UAVs is developed. In fact, although the
two UGVs and the two UAVs have the same characteristics, the implementation
capabilities of the UAV and those of the UGV are different.

The aim of the thesis is to maintain the formation and have the four agents fol-
low a desired trajectory through a Leader-Follower approach based on the Bear-
ing Rigidity Theory and implemented through Model Predictive Controllers. In
the multi-agent system considered below, one of the two UAVs is assumed to
be the leader, while all the others are followers. The leader’s role is to plot the
desired trajectory, while the followers must train and maintain the training even
while following the leader’s trajectory. However, the followers do not know the
trajectory to be followed, nor the distance to the other agents and the leader.

Therefore, to solve this problem, a decentralised Leader-Follower with Bearing-
Only control approach was implemented. In addition, Model Predictive con-
trollers were chosen because this type of control makes it possible to prevent
critical situations by solving an optimisation problem online at each instant of
time so that the predicted output follows the reference.

The advantage of Model Predictive Control is that it is a multivariable con-
troller that controls the outputs simultaneously, taking into account all the inter-
actions between the system’s variables, even if this involves adjusting numerous
controller gains. Another advantage of Model Predictive Control is that it can
handle constraints that play an important role in avoiding unintended conse-
quences.

The proposed approach has been implemented in MATLAB and SIMULINK
and the results obtained from the simulations will be discussed.





Sommario

I sistemi multi-agente sono sistemi composti da più robot autonomi che, soli-
tamente, lavorano sotto il presupposto di poter comunicare inviando e ricevendo
le posizioni degli altri robot che operano nella rete.

L’introduzione di questo tipo di sistemi è dovuta al fatto che, in molte situ-
azioni, è preferibile utilizzare più di un robot per raggiungere obiettivi più
complessi senza l’aiuto dell’uomo, soprattutto in situazioni di pericolo.

In questa tesi, l’attenzione è rivolta ad un sistema multi-agente eterogeneo,
ovvero un sistema i cui robots che lo compongono sono eterogenei tra loro, in
termini di capacità di attuazione. In particolare, viene sviluppato un sistema
multi-agente eterogeneo composto da due UGV e due UAV. Infatti, anche se i
due UGV e i due UAV hanno le stesse caratteristiche, le capacità di attuazione
dell’UAV e quelle dell’UGV sono differenti.

L’obiettivo della tesi è quello di mantenere la formazione e di far seguire
ai quattro agenti una traiettoria desiderata attraverso un approccio Leader-
Follower basato sulla Bearing Rigidity Theory e implementato attraverso Model
Predictive Controllers. Nel sistema multi-agente considerato in seguito, uno
dei due UAV si assume essere il leader, mentre tutti gli altri sono followers. Il
ruolo del leader è quello di tracciare la traiettoria desiderata, mentre i follower
devono formare e mantenere la formazione anche durante l’inseguimento della
traiettoria del leader. Tuttavia, i follower non conoscono la traiettoria da seguire,
né la distanza dagli altri agenti e dal leader.

Quindi, per risolvere il problema, è stato implementato un approccio basato
sul controllo decentralizzato Leader-Follower with Bearing-Only. Inoltre, è stato
scelto di utilizzare controllori di tipo Model Predictive poichè questo tipo di con-
trollo permette di prevenire le situazioni critiche, risolvendo online un problema
di ottimizzazione ad ogni istante di tempo per far sì che l’uscita prevista segua
il riferimento.

Il vantaggio del Model Predictive Control è che si tratta di un controllore
multivariabile che controlla le uscite simultaneamente tenendo conto di tutte
le interazioni tra le variabili del sistema, anche se ciò comporta la necessità
di regolare numerosi guadagni del controllore. Un altro vantaggio del Model
Predictive Control è che può gestire i vincoli che svolgono un ruolo importante
per evitare conseguenze indesiderate.

L’approccio proposto è stato implementato in MATLAB e SIMULINK e i
risultati ottenuti dalle simulazioni saranno discussi.
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1
Introduction

1.1 State of art

Multi-agent systems (MAS) are systems composed by multiple agents and
they have found a lot of applications in the last years since there exist many
different types of robots and a single agent cannot be used or perform well in all
the circumstances. Hence, MASs are used to solve more complex tasks, in dan-
gerous scenarios but also in market simulation, monitoring, system diagnosis
and remedial actions [19][42].

In details, heterogeneous MAS are characterized by the diversity of the robots
in terms of capabilities such that each one can contribute in a different way. Due
to the different capabilities, a key element in multi-robots system (MRS) is to
assign tasks to robots in order to reach a meaningful division. So, the goal of
task allocation is to find robot-task assignments such that the overall utility is
maximized [11].

In order to control an heterogeneous MRS, the new position feedback based
formation control was though. It is possible to identify three conventional
methods of formation control: Behavior-Based Strategy, Leader-Follower Approach,
Potential Field Approach [24].

Between these, in the thesis, the Leader-Follower approach plays a central
role since, using it, controlling multiple robots in a desired formation is easy
and suitable for describing the formation of robots even though it is difficult to
consider the ability gap in heterogeneous robot teams. Such kind of approach
can be easily implemented based on distance, measuring the relative positions
of the neighbors using GPS and shared via wireless network.

Despite this, the GPS does not satisfy the high accuracy requirements of
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1.2. THESIS STRUCTURE

the formation control tasks and cannot be used indoors, underwater or in deep
space. Hence, to sense the neighbors, it is preferable to use onboard sensors such
as optical cameras for ground and aerial vehicles. These sensors are bearing-
only sensors and, since it is easy for vision to measure bearings, but relatively
difficult to obtain accurate range information, vision can be effectively modeled
as a bearing-only sensing approach in MAS formation control. So, here it
is implemented the Leader-Follower approach based on MPC with bearing,
instead of distance.

Note that the project will be about four robots: two unicycles and two quadro-
tors so that the resulting system is heterogeneous. In order to control this MAS,
the Leader-Follower approach based on MPC with bearing is implemented,
where the MPC is used to indicate the Model Predictive Control.

During the last years, MPC was studied a lot and it is an advanced popular
control method. MPC is used in a lot of different applications thanks to its easily
way to include constraints in the model and to solve nonlinear systems. The
basic idea of MPC is to predict the future behaviour of the controlled system
over a finite time horizon and compute an optimal control input that minimizes
an a priori defined cost functional while ensuring satisfaction of given system
constraints.

1.2 Thesis structure

The thesis is structured in 5 chapters. The first four chapters are about the
theoretical notions used to implement the thesis’ project with some examples in
the between used to better understand the notions. Instead, the fifth chapter is
about the project implementation and results obtained. In particular:

• in Chapter 2, two main notions are presented: the concept of agent and the
concept of multi-agent system. In details, about the concept of agent, the
dynamics and kinematics of a rigid body are demonstrated, with particular
attention to the UGV and UAV tracking models. About the tracking models
of the UGV and the UAV, two relative examples are also shown, one about
the unicycle and the other one about the quadrotor. Then, the basic notions
of graph theory are reported since it constitutes the way used to represent
a MAS.

• in Chapter 3, the different kinds of controllers used in the project are
presented. About the tracking of a single agent, the PID controller is
presented. Then, also the Leader-Follower approach is introduced since it

2



CHAPTER 1. INTRODUCTION

is used in the project, where the cooperation between two UGVs and two
UAVs has to be realized.

• in Chapter 4, the bearing rigidity theory is explained, with particular
attention to this theory applied to the case of the unicycle and of the
quadrotor, being the two types of agents considered in the project. This
theory has been introduced because the main goal of the project consists
in realizing the cooperation between the agents without using the distance
between them, but just the bearing.

• in Chapter 5, the project implementation and results are presented. The
project is about the cooperation between two unicycles and two quadrotors.
About these four agents, just one of them is the leader, while the others
are followers that have to follow the same trajectory of the leader without
knowing it and the distance between themselves.

• in Chapter 6, the conclusions relative to the project and the suggestions
for future works are given.

1.3 Notation

In the thesis, the vectors belonging in R𝑛 are denoted with a bold lowercase
letter, while the matrices in R𝑛×𝑚 are indicated with a bold uppercase letter.

The sets, the graph and the matrices used to describe it (Node degree matrix,
Adjacency matrix, Incidence matrix, Laplacian matrix), other than the Bearing
Laplacian matrix are represented through calligraphic letters.

Then, particular notations to represent a matrix are: 0𝑛×𝑚 used to represent
a null matrix of dimension 𝑛 × 𝑚 and I𝑛 which represents an identity square
matrix of dimension 𝑛.

1𝑛 ∈ R4 represents the unit quaternion vector, while ⊗ denotes the Kronecker
product.

3





2
From single agent to multi-agent

systems

Designing an autonomous robot that can perform well in all the circum-
stances is difficult because of the dynamical and unpredictable nature of the
robot. Due to this and to the variety of robots in terms of shapes, sizes and
capabilities, it is possible to solve efficiently more complex tasks creating a
robotic system. In fact, it is usually preferable to use a more complex robotic
system rather than requiring human-robot cooperation, especially in dangerous
scenarios such as search and rescue missions.

2.1 Single Agent Model

In the literature, there exist multiple definitions of "agent". One of these is:

Definition 2.1.1 (Agent) 1 A single intelligent agent is a physical (robot) or virtual
(software program) entity that can autonomously perform actions on an environment
while perceiving this environment through the sensors connected to it, to accomplish
a goal. A rational agent seeks to perform actions that result in the best outcome. A
cognitive architecture is the "underlying infrastructure for an intelligent agent": the
agents brain. It consists of perception, reasoning, learning, decision making, problem
solving, interaction and communication.

or, another one is:

1Awad M., Rizk Y., Tunstel E., Cooperative Heterogeneous Multi-Robot Systems: A Survey, 20
March 2019
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2.1. SINGLE AGENT MODEL

Definition 2.1.2 (Agent) 2 An agent is an encapsulated computational system that is
situated in some environment and this is capable of flexible, autonomous action in the
environment in order to meet its design objective.

From these, it is possible to observe that the concept of "agent" is rather
generic. Hence, a more generalized definition based on the main abilities and
features of the agents is exploited in Def.2.1.3.

Definition 2.1.3 (Agent) 3 An agent is an entity which is placed in an environment
and senses different parameters that are used to make a decision based on the goal of
the entity. The entity performs the necessary action on the environment based on this
decision.

Looking at Def.2.1.3, five keywords are identified:

1. Entity: it refers to the type of the agent, which can be an hardware, software
or a combination of both.

2. Environment: it refers to the place where the agent is located and the
information sensed from the environment by the agent is used for decision
making. The complexity of an agent-based system is affected by multiple
features which are related to the environment, such as:

• Accessibility: it refers to the accuracy with which agents can sense
data from the environment.

• Determinism: it refers to the predictability of the results of an action.

• Dynamism: it refers to the changes that occur in the environment that
are independent of the actions taken by the agents.

3. Parameters: they refer to the different types of data that an agent can sense
from the environment.

4. Action: it refers to a change in the environment. An agent can perform a
set of discrete or continuous actions. In a continuous set of actions, the
agent can perform unlimited actions while, in a discrete set of actions, the
agent can perform finite set of actions.

2N.R.Jennings, On agent-based software engineering, 21 September 1999
3Dorri A., Salil S. Kanhere, Jurdak R., Multi-Agent Systems: A Survey, pg. 2, in School of

Computer Science and Engineering, University of New South Wales, June 19, 2018, Sydney,
Australia.
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CHAPTER 2. FROM SINGLE AGENT TO MULTI-AGENT SYSTEMS

5. Continuity: the environment can be classified as: continuous or discrete.
In particular, a continuous environment affects the agent’s state through a
continuous function while a discrete environment constraints the agent to
follow a set of known states.

Then, in order to solve more complex tasks, other agents features are:

• Sociability: agents share knowledge and information with each other to
reach the goal.

• Autonomy: each agent can independently execute the decision making
process.

• Proactivity: each agent can predict the possible future actions knowing its
history, sensed parameters, and information of others agents.

Due to this multitude of characteristics, the agent’s evolution is based on domain
specific performance measures, generality, versatility, rationality, optimality, ef-
ficiency, scalability, autonomy and improvability.

2.1.1 Agent categorization

It is possible to identify a lot of agent categorizations. A first classification
distinguishes three types of agents, whose workflow is shown in Fig.2.1:

• reactive agents: they just react to environmental changes. Their workflow
is composed by sense (S) and act (A);

• deliberative agents: they initiate actions based on planning, with no exter-
nal activation. In this case the workflow contains sense (S), plan (P) and
act (A), such that it is called "sense-plan-act" or "sense-model-plan-act";

• hybrid agents: they are agents that can perform actions after a planning
algorithm or reacting to current perceptions.

Instead, a more accurate categorization classifies agents into:

• simple reflex agents: the action performed is due to a sensory input;

• model-based reflex agents: the internal state of the environment is kept;

• goal-based agents: actions are performed to reach a goal;

• utility-based agents: a utility function is maximized.

7



2.1. SINGLE AGENT MODEL

Figure 2.1: MRS architecture: robot, locally connected MRS, group of MRS connected
through the cloud [5].

2.1.2 Kinematics and dynamics of an agent

A single agent acting in the 3D space is considered as a rigid body and its
spatial displacement can be described with respect to two different reference
frames:

• the Body Frame (also called Local Frame) ℱ𝑖 , whose origin 𝑂𝑖 coincides
with the center of mass of the agent and whose axes are identified by the
unit vectors {𝑒1, 𝑒2, 𝑒3}, which define the canonical basis of R3;

• the Inertial World Frame ℱ𝑤 that is fixed, unknown and common to all
agents.

Looking at Fig.2.2, (𝑥𝑊 , 𝑦𝑊 , 𝑧𝑊 ) is used to describe the Inertial World Frame,
while (𝑥𝑎 , 𝑦𝑎 , 𝑧𝑎), (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) and (𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝) indicate the Body Frames of the
rigid bodies 𝑎, 𝑜 and 𝑝, respectively.

Each agent is characterized by a maximal number of controllable DoFs (cD-
oFs) that is equal to 6. Between these 6 cDoFs, 3 are for the translation and 3 are
for the rotation.

In particular, when:

• V𝑖 = Ω𝑖 = R3, the agent is fully actuated and, hence, it can translate
and rotate in any direction of the 3D space having 3 translational and 3
rotational cDoFs;

8
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Figure 2.2: Example of World and Body Reference Frames [8].

• when V𝑖 or Ω𝑖 ⊂ R3, the agent is under actuated and its movement is
constrained only in some direction (it has less than 6 DoFs).

Indicating with 𝑐𝑖 ∈ {0...6} the agent cDoFs, it is suitable to introduce the
agent commands vector 𝛿𝑖 belonging to the agent instantaneous variation do-
main ℐ𝑖 ⊆ R𝑐𝑖 , which specifies the agent actuation capabilities through the
selection map:

S𝑖 : ℐ𝑖 → V𝑖 ×Ω𝑖 𝛿𝑖 ↦→ [𝑣𝑇𝑖 𝜔𝑇𝑖 ]𝑇 (2.1)

At this point, it is possible to consider the decoupling hypothesis, in regard
to the agent translation and rotation movements, that is formally expressed as
in 2.1.1.

Assumption 2.1.1 Any 𝑖 − 𝑡ℎ agent can provide decoupled translation and rotation
commands, meaning that 𝛿𝑖 in 2.1 is made up of two components that can be indepen-
dently assigned. Formally, 𝛿𝑖 = [𝛿𝑇𝑝,𝑖 𝛿𝑇𝑜,𝑖]𝑇 ∈ ℐ𝑖 = ℐ𝑝,𝑖 × ℐ𝑜,𝑖 with 𝛿𝑝,𝑖 and 𝛿𝑜,𝑖
respectively associated to the agent linear and angular velocity ℐ𝑝,𝑖 and ℐ𝑜,𝑖 representing
the 𝑖 − 𝑡ℎ agent instantaneous position and orientation variation domains.

Considering Assumption 2.1.1, the agent total number of cDoFs results:

𝑐𝑖 = 𝑐𝑡 ,𝑖 + 𝑐𝑟,𝑖

with:

• 𝑐𝑡 ,𝑖 = 𝑑𝑖𝑚(ℐ𝑝,𝑖) = 𝑑𝑖𝑚(V𝑖) that represents the translational cDoFs;

• 𝑐𝑟,𝑖 = 𝑑𝑖𝑚(ℐ𝑜,𝑖) = 𝑑𝑖𝑚(Ω𝑖) that indicates the rotational cDoFs.

9



2.1. SINGLE AGENT MODEL

Doing so, the selection map in Eq.2.1 can be splitted into the terms:

S𝑃,𝑖 : ℐ𝑃,𝑖 → V𝑖 𝛿𝑃,𝑖 ↦→ 𝑣𝑖

S𝑂,𝑖 : ℐ𝑂,𝑖 → Ω𝑖 𝛿𝑂,𝑖 ↦→ 𝜔𝑖

where S𝑃,𝑖 is bĳective.
In details, considering the real world scenarios, the structure of the maps

S𝑃,𝑖 and S𝑂,𝑖 is assumed as in 2.1.2.

Assumption 2.1.2 The maps S𝑃,𝑖 , S𝑂,𝑖 are linear, hence it is:

𝑣𝑖 = S𝑃,𝑖(𝛿𝑃,𝑖) = S𝑃,𝑖𝛿𝑃,𝑖 S𝑃,𝑖 ∈ R3×𝑐𝑃,𝑖

𝜔𝑖 = S𝑂,𝑖(𝛿𝑂,𝑖) = S𝑂,𝑖𝛿𝑂,𝑖 S𝑂,𝑖 ∈ R3×𝑐𝑂,𝑖

2.1.3 UGV: unmanned ground vehicle

About the unmanned ground vehicles, the unicycle model is considered in
the following.

The unicycle is a planar vehicle with only one orientable wheel and its pose
in the World Frame can be described through the vector:

q =


𝑥

𝑦

𝜃

 =

[
p
𝜃

]
∈ R𝑛 𝑤𝑖𝑡ℎ 𝑖 = 1, ..., 𝑛 (2.2)

where the first two components ([𝑥, 𝑦]𝑇 = p ∈ R2) indicate the position of robot at
time 𝑡 in Cartesian coordinates, while the third component (𝜃 ∈ (−𝜋,𝜋], 𝜃 ∈ S1)
is the heading direction of the robot in the World Frame.

Alternatively, in order to describe the agent pose, it is possible to use the
vector x𝑖(𝑡) = [p𝑇𝑖 q𝑇𝑖 ]𝑇 ∈ R3 × S3, where:

• the vector p𝑖 ∈ R3 describes the coordinates of 𝑂𝑖 in ℱ𝑤 ;

• the unit quaternion4 q𝑖 = [𝜂𝑖 𝜖𝑇𝑖 ]𝑇 ∈ S3 defines the rotation of ℱ𝑖 with
respect to ℱ𝑤 .

4For more details about the quaternions, read the Appendix A
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At this point, knowing the pose, it is possible to derive the linear (p¤ 𝑖) and
angular (q¤ 𝑖) velocities, both expressed in the Body Frame and considered as
controllable variables of the single agent. So, the single agent kinematics is
described by the relations 2.3:

p¤ 𝑖 = R𝑖𝑣𝑖

q¤ 𝑖 =
1
2M(q𝑖)𝜔𝑖

(2.3)

where:

• 𝑣𝑖 ∈ V𝑖 ⊆ R3 is the linear velocity of 𝑂𝑖 with respect to ℱ𝑤 ;

• 𝜔𝑖 ∈ Ω𝑖 ⊆ R3 is the angular velocity of the Body Frame ℱ𝑖 with respect to
ℱ𝑤 ;

• R𝑖 ∈ SO(3)5 (that is the special orthogonal group) indicates the rotation
matrix associated to q𝑖 ;

• M(q𝑖) ∈ R4×3 maps the agent angular velocity into the time derivative of
its quaternion based on orientation.

Under the assumption of non-holonomic pure rolling constraint, i.e. Φ(q, q¤ ) =
0, and considering the driving (linear) velocity and the steering (angular) veloc-
ity, the kinematic model of the unicycle takes the form:

𝑥¤
𝑦¤
𝜃¤

 =


cos(𝜃)
sin(𝜃)

0

 𝑣 +

0
0
1


[
𝑣

𝜔

]
(2.4)

Considering these relations, the control inputs, i.e. the velocities 𝑣 and 𝜔,
are obtained from the the angular speed 𝜔𝑅 and 𝜔𝐿 of the wheels:

𝑣 =
𝑟(𝜔𝑅 + 𝜔𝐿)

2 𝜔 =
𝑟(𝜔𝑅 − 𝜔𝐿)

𝑑
(2.5)

where 𝑟 represents the wheels radius, while 𝑑 is the distance between the centers
of the wheels.

About the unicycle, three different types of controllers are presented:

• Cartesian control, which drives the unicycle to a desired configuration in
terms of position p regardless the orientation 𝜃.

5For more details about the rotation matrices, read the Appendix
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2.1. SINGLE AGENT MODEL

In this case, without loss of generality, the following desired target config-
uration is considered:

q𝑑𝑒𝑠 =

[
p𝑑𝑒𝑠

∀

]
=


𝑥𝑑𝑒𝑠

𝑦𝑑𝑒𝑠

∀

 =


0
0
∀

 (2.6)

Then, with respect to the current position (𝑥, 𝑦) and orientation 𝜃, the
position error vector e𝑃 and the unit vector sagittal axis n are defined as in
Eq.2.7, while their graphical meaning is presented in Fig.2.3.

e𝑃 =

[
0 − 𝑥
0 − 𝑦

]
=

[
−𝑥
−𝑦

]
n =

[
cos(𝜃)
sin(𝜃)

]
(2.7)

Hence, the projection of the error on the sagittal axis is:

< e𝑃 , n >= e𝑇𝑃n = −𝑥 cos(𝜃) − 𝑦 sin(𝜃) (2.8)

instead, about the angles, it holds that:

𝛼 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) 𝛿 = 𝛼 + 𝜋 𝛾 = 𝛿 − 𝜃 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) + 𝜋 − 𝜃 (2.9)

and the aim of the controller is to take the projection and the angle 𝛾 to
zero.

Figure 2.3: Angles and vectors definitions.

12



CHAPTER 2. FROM SINGLE AGENT TO MULTI-AGENT SYSTEMS

In order to reach the goal, the adopted control law is shown in Eq.2.10 and
acts on the driving and steering velocity.

𝑣 = 𝑘𝑣e𝑇𝑃n = 𝑘𝑣(−𝑥 cos(𝜃)−𝑦 sin(𝜃)) 𝜔 = 𝑘𝜔𝛾 = 𝑘𝜔(𝑎𝑡𝑎𝑛2(𝑦, 𝑥)+𝜋−𝜃)
(2.10)

with 𝑘𝑣 and 𝑘𝜔 positive constant gains chosen through a trial and error
approach by the user.

• Posture control, which aim is to drive the unicycle to a desired configura-
tion in terms of full position p and orientation 𝜃.

In this case, without loss of generality, the desired target configuration
considered is expressed as in Eq.2.11.

q𝑑𝑒𝑠 =

[
p𝑑𝑒𝑠

𝜃𝑑𝑒𝑠

]
=


𝑥𝑑𝑒𝑠

𝑦𝑑𝑒𝑠

𝜃𝑑𝑒𝑠

 =


0
0
0

 (2.11)

With respect to the current position (𝑥, 𝑦) and orientation 𝜃, the position
error vector e𝑃 and the unit vector sagittal axis n are defined as in Eq.2.12.

e𝑃 =

[
0 − 𝑥
0 − 𝑦

]
=

[
−𝑥
−𝑦

]
n =

[
cos(𝜃)
sin(𝜃)

]
(2.12)

The length of the error vector e𝑃 , i.e. 𝜌 =
√
𝑥2 + 𝑦2, together with the

angles 𝛾 and 𝛿 as defined above, allow to obtain a polar representation
of the unicycle pose. The aim of this controller is to bring these polar
quantities to zero. Hence, a possible control law is:

𝑣 = 𝑘𝑣𝜌 cos(𝛾) 𝜔 = 𝑘𝜔𝛾 + 𝑘𝑣 sin 𝛾 cos 𝛾
𝛾

(𝛾 + 𝑘𝛿𝛿) (2.13)

• Tracking control, which aim is to drive the unicycle in such a way it fol-
lows a desired trajectory that is a function of time. In trajectory tracking
approach, the feasible desired and dependent on time trajectory to track
has to be known before the UGV starts to move to the desired pose:

q𝑑𝑒𝑠(𝑡) =
[
p𝑑𝑒𝑠(𝑡)
𝜃𝑑𝑒𝑠(𝑡)

]
=


𝑥𝑑𝑒𝑠(𝑡)
𝑦𝑑𝑒𝑠(𝑡)
𝜃𝑑𝑒𝑠(𝑡)

 (2.14)
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2.1. SINGLE AGENT MODEL

In trajectory tracking, one goal is to minimize the difference between the
reference state vector q𝑑𝑒𝑠 and the current state vector q which is called
tracking error and defined in the World Frame as in Eq.2.15.

e𝑊 =


𝑥𝑑𝑒𝑠 − 𝑥
𝑦𝑑𝑒𝑠 − 𝑦
𝜃𝑑𝑒𝑠 − 𝜃

 (2.15)

or as in Eq.2.16 if defined in the Body Frame.

e𝐵 =


𝑒1
𝑒2
𝑒3

 = R𝑇
𝑧 (𝜃)e𝑊 =


cos(𝜃) sin(𝜃) 0
− sin(𝜃) cos(𝜃) 0

0 0 1

 e𝑊 (2.16)

Hence, deriving Eq.2.16 and considering the invertible input transforma-
tion:

𝑣 = 𝑣𝑑𝑒𝑠 cos(𝑒3)−𝑢1 𝜔 = 𝜔𝑑𝑒𝑠−𝑢2 ⇒ 𝑢1 = −𝑣+𝑣𝑑𝑒𝑠 cos(𝑒3) 𝑢2 = 𝜔𝑑𝑒𝑠−𝜔
(2.17)

it holds that:

e¤𝐵 =


0 𝜔𝑑𝑒𝑠 0

−𝜔𝑑𝑒𝑠 0 0
0 0 0

 e𝐵 +


0
sin(𝑒3)

0

 𝑣
𝑑𝑒𝑠 +


1 −𝑒2
0 𝑒1
0 1


[
𝑢1

𝑢2

]
(2.18)

Linearizing it around the tracking error where e = 0 into Eq.2.19

e¤𝐵 =


0 𝜔𝑑𝑒𝑠 0

−𝜔𝑑𝑒𝑠 0 𝑣𝑑𝑒𝑠

0 0 0

 e𝐵 +

1 0
0 0
0 1


[
𝑢1

𝑢2

]
(2.19)

a possible control law results as in Eq.2.20.[
𝑢1

𝑢2

]
=

[
−𝑘1 0 0
0 −𝑘2 −𝑘3

]
e𝐵 (2.20)
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In this way, the dynamics of the closed-loop error results to be:

e¤𝐵 =


−𝑘1 𝜔𝑑𝑒𝑠 0
−𝜔𝑑𝑒𝑠 0 𝑣𝑑𝑒𝑠

0 −𝑘2 −𝑘3

 e𝐵 (2.21)

where 𝑘1, 𝑘2, 𝑘3 are positive control gains chosen in such a way that the
eigenvalues of the error dynamics matrix asymptotically converge to zero.

2.1.4 Example: UGV trajectory tracking

In this example, the implementation of a UGV trajectory tracking is shown
and the parameters of the unicycle are defined in Tab.2.1.

Parameter’s name Notation Value
wheel radius 𝑟 0.02 [𝑚]

wheel distance 𝑑 0.2 [𝑚]
time constant low pass filter 𝑇𝑑 0.01 [𝑠]

maximum wheel speed 𝜔𝑚𝑎𝑥 20 [𝑟𝑎𝑑/𝑠]
minimum wheel speed 𝜔𝑚𝑖𝑛 −20 [𝑟𝑎𝑑/𝑠]

desired 𝑥 initial position 𝑥𝑑𝑒𝑠 0 [𝑚]
desired 𝑦 initial position 𝑦𝑑𝑒𝑠 0 [𝑚]
desired 𝜃 initial position 𝜃𝑑𝑒𝑠 0 [𝑟𝑎𝑑]

real 𝑥 initial position 𝑥𝑟𝑒𝑎𝑙 0.10 [𝑚]
real 𝑦 initial position 𝑦𝑟𝑒𝑎𝑙 0.10 [𝑚]
real 𝜃 initial position 𝜃𝑟𝑒𝑎𝑙 0 [𝑟𝑎𝑑]

Table 2.1: Unicycle’s parameters.

First of all, the desired trajectory must be defined. In the shown solution,
the desired trajectory is found starting from the desired linear and angular
velocities, imposing different values for them depending on time in order to
obtain a curvilinear trajectory and not just a straight line or a circular path.

The shown results refer to a constant linear velocity (𝑣𝑑𝑒𝑠 = 0.05 𝑚/𝑠) and a
time varying angular velocity. In details, the angular velocity varies depending
on time so that:

• from 0 to 10 𝑠: it is equal to 0 𝑟𝑎𝑑/𝑠;
• from 10 to 20 𝑠: it is equal to 0.02 𝑟𝑎𝑑/𝑠, which implies a curve on the left;

• from 20 to 30 𝑠: it is equal to 0 𝑟𝑎𝑑/𝑠;
• from 30 to 40 𝑠: it is equal to −0.02 𝑟𝑎𝑑/𝑠, which implies a curve on the

right;
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2.1. SINGLE AGENT MODEL

• from 40 to 50 𝑠: it is equal to 0 𝑟𝑎𝑑/𝑠;
Hence, the desired values of the linear and angular velocities so obtained are
represented in Fig.2.4.

Figure 2.4: Desired linear and angular velocities of the unicycle.

Knowing the desired linear and angular velocities, it is possible to compute
the desired trajectory of the unicycle reversing the kinematic model of the UGV
in Eq.2.4.

In fact, integrating the desired angular velocity, the heading angle is obtained.
Knowing the desired linear velocity and the heading angle, all the variables
needed to compute the position (𝑥, 𝑦) are given.

The resulting desired trajectory to track is reported in Fig.2.5.
Then the tracking errors, defined as the difference between the desired values

of the pose of the UGV minus the measured ones as in Eq.2.22, in the Body Frame
have to be computed.

𝑒𝑥 = 𝑥𝑑𝑒𝑠 − 𝑥
𝑒𝑦 = 𝑦𝑑𝑒𝑠 − 𝑦
𝑒𝜃 = 𝜃𝑑𝑒𝑠 − 𝜃

(2.22)

Even if these errors have to be evaluated in the Body Frame, their behaviours
in the World Frame are shown in Fig.2.6 in order to observe their convergence to
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CHAPTER 2. FROM SINGLE AGENT TO MULTI-AGENT SYSTEMS

Figure 2.5: Reference trajectory of the UGV.

zero, according with the expectations since the measured values have to coincide
with the desired ones.

Figure 2.6: Tracking errors of the UGV.

From the errors defined in the Body Frame, the third component related to
the heading angle is extracted and a PID state-tracking controller is applied to

17
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the whole errors’ vector according with Eq.2.20.
So, knowing the control inputs vector, the desired linear and angular veloci-

ties and the third component of the error, a change of input has to be performed
in order to obtain the measured values of the linear and angular velocities. This
is performed following the formula Eq.2.23.

𝑣 = 𝑣𝑑𝑒𝑠 cos(𝑒3) − 𝑢1

𝜔 = 𝜔𝑑𝑒𝑠 − 𝑢2
(2.23)

The measured values of the UGV velocities are shown in Fig.2.7

Figure 2.7: Real linear and angular velocities of the UGV.

Looking at this plot, it is possible to observe that the measured values con-
verge to the desired ones in almost 5 𝑠.

After having performed the change of input and obtained the real values of
the velocities, the wheel speeds saturation must be verified because, if saturation
occurs, it means that the model cannot be implemented in a real simulation.

As it is possible to observe from Fig.2.8, saturation occurs due to the chosen
initial condition of the UGV and to the fact that, at the beginning, it has null
linear and angular velocities.

In the end, knowing the real linear and angular velocity, the measured pose
of the UGV is given by reversing and integrating Eq.2.4, as previously done for
the desired trajectory.

18
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Figure 2.8: Wheel speeds and check of the saturation.

The plot of the real trajectory is shown in Fig.2.9. Looking at this, it is possible
to note that the PID controller implemented performs well since the measured
trajectory reaches quickly the desired values and they coincide except at the
beginning due to the different established initial poses, i.e. the desired and the
real ones.
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Figure 2.9: Comparison between the reference and the measured trajectory of the UGV.

2.1.5 UAV: unmanned aerial vehicle

About the UAVs, the case of quadrotor is considered. First of all it is necessary
to observe that the quadrotor has only four degrees of freedom, from which its
underactuated structure derives. In details, the three positions and the yaw
angle are considered, while the roll and pitch angle are given respectively by
the position (𝑥, 𝑦) controller shown in Fig.2.10.

Figure 2.10: UAV quadrotor cascaded control scheme.

A planar quadrotor can be modeled as a 3D rigid body subjects to the gravi-
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tational force and the thrusts generated by its four propellers. As for every rigid
body, two reference frames are considered: ℱ𝑊 , the common inertial reference
frame, and ℱ𝐵, the reference frame attached to the drone and centered in its cen-
ter of mass. The body to world transformation is expressed through the rotation
matrix R(𝛼) ∈ SO(3) and it is composed by the concatenation of the three basic
rotations.

R(𝛼) = R𝑧(𝜓)R𝑦(𝜃)R𝑥(𝜙) (2.24)

Hence, the quadrotor state can be defined as x = [𝑝𝑇 𝛼𝑇 𝑣𝑇 𝜔𝑇]𝑇 and it is
subject to the following differential equation 𝑥¤ = 𝑓 (𝑥, 𝑢, 𝑓𝑑):

𝑝¤ = 𝑣
𝛼¤ = W−1𝜔

𝑚𝑣¤ = −


0
0
𝑚𝑔

 + R(𝛼)

0
0
𝑇

 + 𝑓𝑑

J𝜔¤ = −𝜔 × J𝜔 +

𝜏𝑥
𝜏𝑦
𝜏𝑧



(2.25)

where 𝑣 is the quadrotor velocity in the Inertial Frame, 𝜔 is the angular rate in
the Body Frame, 𝑔 is the gravitational acceleration, 𝑚 is the quadrotor mass, J is
the quadrotor inertia matrix expressed in the Body Frame and 𝑓𝑑 is an unknown
disturbance thrust.

Considering such a model, the inputs are the common thrust 𝑇, which is
applied along the 𝑧-axis of the Body Reference Frame, and the torques 𝜏𝑥 , 𝜏𝑦 ,
𝜏𝑧 applied on the Body Frame. These inputs can be uniquely obtained from
the four propeller spinning rates squared u2 = [𝜔2

1 𝜔2
2 𝜔2

3 𝜔2
4]𝑇 through

Eq.2.26. 
𝑇

𝜏𝑥
𝜏𝑦
𝜏𝑧


= 𝐹𝑢2 = 𝑐 𝑓


1 1 1 1
𝑝1,𝑦 𝑝2,𝑦 𝑝3,𝑦 𝑝4,𝑦

−𝑝1,𝑥 −𝑝2,𝑥 −𝑝3,𝑥 −𝑝4,𝑥

𝑐1𝑐𝜏 𝑐2𝑐𝜏 𝑐3𝑐𝜏 𝑐4𝑐𝜏



𝜔2

1
𝜔2

2
𝜔2

3
𝜔2

4


(2.26)

where 𝑐 𝑓 is the propeller thrust constant, 𝑐𝜏 is the propeller drag/thrust co-
efficient, 𝑐𝑖 = 1 if the 𝑖 − 𝑡ℎ propeller spins clockwise and 𝑐𝑖 = −1 otherwise
and p𝑖,{𝑥,𝑦} is the (𝑥, 𝑦) - coordinate of the 𝑖 − 𝑡ℎ propeller spinning centre with
respect to the quadrotor center of mass expressed in the Body Reference Frame.
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2.1.6 Example: UAV (quadrotor) trajectory tracking

In this example, the implementation of a trajectory tracking for a quadrotor
is shown and the quadrotor parameters are defined in Tab.2.2.

Parameter’s name Notation Value
gravitational acceleration 𝑔 9.81 [𝑚/𝑠2]

mass 𝑚 𝑚 = 1.5 [𝐾𝑔]

inertia matrix 𝐽


0.029125 0 0

0 0.029125 0
0 0 0.055225

 [𝐾𝑔 ∗ 𝑚2]

quadrotor’s geometry 𝑝𝑚𝑜𝑡


0.13 −0.22 0
−0.13 0.2 0
0.13 0.22 0
−0.13 −0.2 0


rotors’ maximum spinning rate 1100 [rad/s]

thrust coefficient 𝑐 𝑓 5.84 × 10−6 [𝑁/𝑠2]
torque coefficient 𝑐𝜏 0.06𝑐 𝑓 [𝑁𝑚/𝑠2]
rotors’ direction

[−1 −1 1 1
]

force matrix 𝐹


0 0 0 0
0 0 0 0

5.84 × 10−6 5.84 × 10−6 5.84 × 10−6 5.84 × 10−6


moments’ matrix 𝑀


−1.2848 × 10−6 1.1680 × 10−6 1.2848 × 10−6 −1.1680 × 10−6

−7.5920 × 10−7 7.5920 × 10−7 −7.5920 × 10−7 7.5920 × 10−7

−3.5040 × 10−7 −3.5040 × 10−7 3.5040 × 10−7 3.5040 × 10−7


wrench mapper


−2.0385 × 105 −3.2929 × 105 −6.7950 × 105 4.2808 × 104

2.0385 × 105 3.2929 × 105 −7.4745 × 105 4.2808 × 104

2.0385 × 105 −3.2929 × 105 6.7950 × 105 4.2808 × 104

−2.0385 × 105 3.2929 × 105 7.4745 × 105 4.2808 × 104


Table 2.2: Quadrotor’s parameters.

As recalled in section 2.1.5, quadrotors have an underactuated structure.
This means that, in order to reach the goal, 4 of its 6 DoFs have to be established.

The chosen four DoFs are the 𝑥, 𝑦 and 𝑧 positions and the yaw angle (𝜓) and
the same trajectory of the UGV previously shown in the (𝑥, 𝑦)-plane is adopted
as the desired one, with a constant altitude (𝑧 = 2 𝑚). The desired trajectory
that the quadrotor has to track is shown in Fig.2.11.
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Figure 2.11: Desired trajectory of the quadrotor.

Hence, knowing these four values, also the other two DoFs, that are the roll
(𝜙) and pitch (𝜃) angles, have to be computed. In order to do this, the trajectory
errors on the 𝑥, 𝑦 and 𝑧 coordinates have to be known. Then, a PID controller
is applied to such tracking errors (one PID controller for each tracking error)
to obtain the desired values of the linear acceleration along the 𝑥, 𝑦 and 𝑧 axis.
Note that, as the case of the UGV, the tracking errors have to converge to zero
and this goal is reached as presented in Fig.2.12.

So the desired roll and pitch angles are given by the formulas in Eq.2.28.

𝜙𝑑𝑒𝑠 =
1
𝑔
(sin(𝜓𝑑𝑒𝑠)𝑥¥ 𝑑𝑒𝑠 − cos(𝜓𝑑𝑒𝑠)𝑦¥ 𝑑𝑒𝑠) (2.27)

𝜃𝑑𝑒𝑠 =
1
𝑔
(cos(𝜓𝑑𝑒𝑠)𝑥¥ 𝑑𝑒𝑠 + sin(𝜓𝑑𝑒𝑠)𝑦¥ 𝑑𝑒𝑠) (2.28)

Doing so, the desired behaviours of the roll, pitch and yaw angles are shown
in Fig. 2.13.

Later also the errors on the angles, defined as the difference between the
desired and real values, are computed and their behaviour is shown in Fig.2.14.
Looking at these plots, the error relative to 𝜙 and 𝜃 converge to zero, while the
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Figure 2.12: Tracking errors of the quadrotor.

Figure 2.13: Desired angles of the quadrotor.

one relative to 𝜓 oscillates but its of order −18 so that it is possible to consider
this as a right behaviour.

At this point, the elevation and attitude controllers can be applied in order to
have the values of the desired common thrust (𝑇) and the desired body torques
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Figure 2.14: Errors on the 𝜙, 𝜃,𝜓 angles of the UAV.

(𝜏𝜙, 𝜏𝜃, 𝜏𝜓), respectively.
In details, the attitude controllers consist of three independent PID con-

trollers, while the elevation controller is a PID with the addition of a nonlinear
compensation term for gravity and 𝜙 and 𝜃 angles, and a feedforward term. In
both these two cases, the integral term can be neglected.

Mathematically, the controllers are implemented accordingly with formulas
Eq.2.29.

𝑇 = 𝑚𝑔 + 𝐾𝑃𝑒𝑧 − 𝐾𝐷𝑧¤
𝜏𝜙 = 𝐾𝑃𝑒𝜙 − 𝐾𝐷𝜙¤
𝜏𝜃 = 𝐾𝑃𝑒𝜃 − 𝐾𝐷𝜃¤
𝜏𝜓 = 𝐾𝑃𝑒𝜓 − 𝐾𝐷𝜓¤

(2.29)

where 𝑧, 𝜙, 𝜃, 𝜓 indicate the measured value of the altitude, roll, pitch and
yaw angle, respectively.

Hence, from these quantities, the control input vector, which corresponds to
the rotor spinning rates squared, can be found. A wrench mapper, described in
Tab.2.2 is designed to convert the desired common torque and the desired body
torques into the required input vector.

Then, the thrust and torques are computed in the Body Frame and, from
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them, the linear and angular acceleration are obtained. Knowing the linear and
angular acceleration and integrating them (double integration to have the posi-
tion and the angles, while a single integration to obtain the linear and angular
velocities), the values of the position (𝑥, 𝑦, 𝑧 coordinates), linear velocities (𝑣𝑥 ,
𝑣𝑦 , 𝑣𝑧), angular velocities (𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧) and the angles (𝜙, 𝜃, 𝜓) are found. The
measured trajectory results the one shown in Fig.2.15.

Figure 2.15: Measured trajectory of the UAV.

Instead, in order to compare the desired and the real trajectory of the UAV, a
plot of both of them together is shown in Fig.2.16.

From the comparison between the desired and measured trajectory, it is
possible to observe that the measured trajectory reaches the desired one except

at the beginning due to the fact that the real initial position is imposed at


0
0
1

 .

The goal is achieved as expected since the errors previously shown, converge to
zero.
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Figure 2.16: Measured and desired trajectory of the UAV.

2.2 Heterogeneous Multi-Agent System

An heterogeneous multi-robot system is composed by𝑁 autonomous robots,
indexed as 𝑅1, ..., 𝑅𝑁 . Usually these robots work under the assumption that they
can communicate sending own position and receiving positions of other robots
among the team through wireless network.

The main features of MAS are eight6:

1. Leadership: there could be the existence of a leader, i.e. an agent that
defines goals and tasks for the other agents. The presence or absence of
such a leader can be used to categorize MAS as leaderless or Leader-Follower.

In a leaderless MAS, each agent autonomously decides on its actions based

6Dorri A., SALIL S. KANHERE1, JURDAK R., Multi-Agent Systems: A Survey, in School
of Computer Science and Engineering, University of New South Wales, June 19, 2018, Sydney,
Australia.
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on its own goals. The decision of each agent is affected by the decision
of other agents if agents collaborate to reach consensus7 on a particular
feature. Instead, in Leader-Follower, the leader agent establishes actions
for the other agents, called followers. Followers communicate and share
knowledge to find the position of the leader. The leader is either predefined
or is collaboratively chosen by agents. In a MAS, it is possible to have just
a mobile leader, that can move from one position to another, or a group of
agents acting as leaders.

2. Decision function: MASs are categorized based on the proportionality of
the output changes with respect to its input changes. According to this,
MASs are categorized as linear and non-linear.

In a linear MAS, there is a proportional relation between the decision of
an agent and the sensed parameters from the environment. This feature
makes linear agents easier to be analyzed mathematically.

In a non-linear MAS, there is no proportion between the decision of the
agent and the sensed metrics due to the non-linearity of the input to the
decision making process.

3. Heterogeneity: MASs can be divided into two categories: homogeneous and
heterogeneous.

A homogeneous MAS includes agents with the same characteristics and
functionalities, while a heterogeneous MAS includes agents with differ-
ent actuation capabilities and whose components have different DoFs as
controllable variables.

4. Agreement parameters: in some applications of MAS, agents have to be
adjusted depending on particular parameters known as metrics. Based on
the number of metrics, MASs are classified as first, second and higher order.

In first order, agreement on one metric has to be achieved by the agents.
In second-order, agents must agree on two metrics while, in higher-order
MAS, the agents are in agreement if the metrics (either one or two) and
their high-order derivatives converge to a common value.

5. Delay consideration: in performing a task, agents can be affected by mul-
tiple sources of delay. In this case, MASs can be classified into two groups

7In MAS consensus refers to achieving a global agreement over a particular feature of
interest. Multiple MAS features impact the consensus problem as they affect communication
and collaboration between agents.

28



CHAPTER 2. FROM SINGLE AGENT TO MULTI-AGENT SYSTEMS

namely with delay or without delay, depending if the delays are relevant or
negligible, respectively. In the first case, the delay is taken into account
while, in the second case, no delay is considered.

6. Topology: it refers to the location and relations of agents. MAS topology
can be either static or dynamic.

In a static topology, the position and relations of an agent remains un-
changed over the lifetime of the agent. In dynamic topology, the position
and relations of an agent change as the agent moves, leaves or joints the
MAS, or establishes new communications/ relations with other agents.

7. Data Transmission frequency: the data sensed from the environment are
sensed and shared in a time-triggered or an event-triggered manner.

In time-triggered MAS, the agent always senses the environment, collects
data and sends all newly sensed data to other agents in pre-defined time
intervals. In event-triggered MAS, the agent senses the environment and
shares the data only when particular event occurs.

8. Mobility: an agent can be classified as static or mobile agents, depending
on its dynamism.

An agent is static if it is always in the same position in the environment,
while it is mobile if it moves.

The two main tasks, that enable multi-agent systems to reach complex goals,
are: the network localization and the formation control law. The goal of net-
work localization is to estimate the location of each agent in a network through
information perceived or shared by neighbouring agents. Instead, the goal of
formation control is to reach a desired geometric pattern controlling each agent
through local information from neighbors.

The first step that has to be implemented is the network localization. This
task must be completed before a sensor network provides other services like
positioning mobile robots or monitoring areas of interest.

2.2.1 Graph theory

Any formation can be modeled according to the graph based multi-agent
system representation since it is considered as a networked architecture. Doing
so, each vertex of the graph represents an agent, while the edge connecting two
vertices indicates the communication between them.
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So, an heterogeneous formation made up of 𝑁-agents can be associated to
a graph G = (V , ℰ), where V is the set of nodes and ℰ is the set of edges. A
graph can be distinguished into a direct graph and an undirect one.

The node 𝑣𝑖 ∈ V corresponds to the 𝑖 − 𝑡ℎ agent with 𝑖 ∈ {1...𝑛} and
the directed edge 𝑒𝑘 = 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗) ∈ ℰ indicates that the 𝑖 − 𝑡ℎ agent can
communicate with 𝑗− 𝑡ℎ one while, if the edge is undirected, 𝑒𝑘 = 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗) ∈
ℰ means that the 𝑖 − 𝑡ℎ agent can communicate with the 𝑗 − 𝑡ℎ one and also the
opposite, i.e. the 𝑗 − 𝑡ℎ agent can exchange information with the 𝑖 − 𝑡ℎ one. In
addition, if 𝑒𝑖 𝑗 ∈ ℰ, then 𝑣𝑖 and 𝑣 𝑗 are neighbours. So, the set of neighbours of a
given node 𝑣𝑖 is defined as

N(𝑣𝑖) = N𝑖 = {𝑣 𝑗 : 𝑒𝑖 𝑗 ∈ ℰ}

From the number of neighbours, it is possible to define the degree of a given node
𝑣𝑖 since it is equal to the number of its neighbours. In particular, a graph is said
to be regular if all the nodes have the same degree.

Figure 2.17: Examples of directed and undirected graphs.

Hence, considering the examples in Fig.2.17, the graphs number 1, 2 and 3
are directed ones, while the numbers 4, 5, 6 are undirected. Then, in details,
looking at graph 1, A and B are neighbours and also B and C are neighbours since
they are connected through an edge. Instead, note that there is no connection
between A and C. So node A and B have degree equal to 1, while C has degree
equal to 0. Looking at graph 2, A and B are neighbours, B and C are neighbours
and also C and A are neighbours. Hence, all the nodes have degree 1 so that the
graph is regular.

Instead, the graphs number 4, 5 and 6 are undirected ones and, considering
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the graph 5 as an example, A and B are neighbours, B and C are neighbours and
also A and C are neighbours. However, being the graph an undirected one, A
has degree 2, B has degree 2 and C has degree 2, so again the graph is regular.

The formal definition of graph is the one reported in Def.2.2.1

Definition 2.2.1 (Simple graph) 8 A simple graph G consists of a non-empty finite
setV(G) of elements called vertices (or nodes), and a finite setℰ(𝐺) of distinct unordered
pairs of distinct elements of V(G) called edges. We call V(G) the vertex set and ℰ(𝐺)
the edge set of G. An edge 𝑣, 𝑤 is said to join the vertices 𝑣 and 𝑤, and is usually
abbreviated to 𝑣𝑤.

Then, it is also possible to identify some properties of the graphs:

1. Isomorphism

Definition 2.2.2 (Isomorphic graphs) 9 Two graphsG1 andG2 are isomorphic
if there is a one-one correspondence between the vertices of G1 and those of G2 such
that the number of edges joining any two vertices of G1 is equal to the number of
edges joining the corresponding vertices of G2.

2. Connectedness

Definition 2.2.3 (Connection between graphs) 10 If two graphsG1 = (V(G1), ℰ(𝐺1))
andG2 = (V(G2), ℰ(𝐺2)), whereV(G1) andV(G2) are disjoint, then their union
G1 ∪G2 is the graph with vertex set V1 ∪V2 and edge family ℰ1 ∪ℰ2. A graph is
connected if it cannot be expressed as the union of two graphs, and disconnected
otherwise. Clearly any disconnected graph G can be expressed as the union of
connected graphs, each of which is a component of G.

3. Adjacency

Definition 2.2.4 (Adjacency) 11 Two vertices 𝑣 and𝑤 of a graph G are adjacent
if there is an edge 𝑣𝑤 joining them, and the vertices 𝑣 and 𝑤 are then incident
with such an edge. Similarly, two distinct edges 𝑒 and 𝑓 are adjacent if they have
a vertex in common.

4. Subgraphs

8Robin J. Wilson, Introduction to graph theory, Fourth Edition, Prentice Hall, 1998
9ibidem
10ibidem
11ibidem

31



2.2. HETEROGENEOUS MULTI-AGENT SYSTEM

Definition 2.2.5 (Subgraphs) 12 A subgraph of a graph G is a graph: each of
whose vertices belongs to V(G) and each of whose edges belongs to ℰ(G).

5. Matrix representation

A graph can be described through matrices, in particular through the
Node degree matrix (ΔG), Adjacency matrix (𝐴G), Incidence matrix (𝐷G) and
Laplacian matrix (ℒG).

The Node degree matrix of a (non-oriented) graph G is defined as the
diagonal matrix ΔG ∈ R𝑛×𝑛 with entries the degrees of the nodes. For
oriented graphs, the diagonal matrices ΔG𝐼𝑁 and ΔG𝑂𝑈𝑇 are defined,
whose elements are, respectively, the in-degrees (in-coming edges) and
out-degrees (out-going edges) of the nodes.

Hence, if G is a graph with vertices labelled (i.e. the edges are named)
{1, 2, ..., 𝑛}, its adjacency matrix A is the 𝑛 × 𝑛 matrix whose 𝑖 − 𝑡ℎ entry is
the number of edges joining vertex 𝑖 and vertex 𝑗. Hence, for an undirected
graph, it holds that:

𝐴G(𝑖 , 𝑗) =


1 𝑖 𝑓 (𝑖, 𝑗) ∈ ℰ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.30)

while for a directed graph, it is:

𝐴G(𝑖, 𝑗) =


1 𝑖 𝑓 (𝑖 → 𝑗) ∈ ℰ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.31)

In addition, if the edges are labelled {1, 2, ..., 𝑚}, its incidence matrix is
the 𝑛 × 𝑚 matrix whose 𝑖 𝑗 − 𝑡ℎ entry is 1 if vertex 𝑖 is incident to edge 𝑗,
and 0 otherwise. Hence, for an undirected graph it holds that:

𝐷G(𝑖, 𝑘) =


1 𝑖 𝑓 𝑣𝑖 ∈ 𝑒𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.32)

12Robin J. Wilson, Introduction to graph theory, Fourth Edition, Prentice Hall, 1998
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while for a directed one, it is.

𝐷G(𝑖 , 𝑘) =

+1 𝑖 𝑓 𝑣𝑖 𝑡𝑎𝑖𝑙 𝑜 𝑓 𝑒𝑘

−1 𝑖 𝑓 𝑣𝑖 ℎ𝑒𝑎𝑑 𝑜 𝑓 𝑒𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.33)

Knowing the Node degree matrix and the Adjacency matrix, the definition
of Laplacian matrix follows as the difference between the Node degree
matrix and the Adjacency matrix:

ℒG = ΔG − 𝐴G (2.34)

2.2.2 Task taxonomy and Multi-robot system workflow

Task complexity represents the difficulty of a task and, depending on it, the
number and type of robots needed to complete the task can be determined.
Hence, in order to solve a task, it can be decomposed into multiple simpler
sub-tasks.

Single-robot tasks, such as small-scale mapping, pick and place, and naviga-
tion problems, can be accomplished by one robot.

Instead, multi-robot tasks require multiple cooperating robots. In addition,
multi-robot tasks can also be classified according to the level of cooperation
required to achieve the objective, ranging from loosely to tightly coordinated.
Loosely coordinated tasks can be decomposed to be sub-tasks that can be inde-
pendently executed with minimum interaction among robots. Examples include
large-scale exploration and mapping, hazardous material clean-up, tracking and
surveillance. In such scenarios, the environment can be divided into disjoint
areas and the robots operate within their specified areas. Tightly coupled tasks
are not decomposable and require coordinated execution with significant in-
teraction among robots. Examples include robot soccer, object transport and
large-scale construction.

To systematically design MAS capable of accomplishing complex tasks, four
main design blocks are identified:

1. task decomposition: sub-division of complex tasks into simpler and smaller
tasks.

2. coalition formation: formation of agent teams.

3. task allocation: the sub-tasks are assigned to agent teams.
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4. task execution/planning and control: achieving an objective through a
sequence of actions on the environment.

This subdivision is summarized in Fig.2.18.

Figure 2.18: Workflow for the multi-robot system [5].

Looking at the scheme in Fig.2.18, it is possible to see that, in order to
subdivide complex tasks into simpler sub-tasks and to form coalitions of agents
given a set of them, a human designer is required.

Task decomposition consists in dividing a complex task into a set of simpler or
more primitive sub-tasks that are either independent or sequentially dependent
on each other. Then, the simpler tasks have to be executed. Hence, these sub-
tasks should be allocated to a group of robots or a single robot, depending
if the sub-tasks are multi-robot tasks or not, respectively. If the sub-task is a
multi-robot task, first a coalition formation of robots has to be created. Then, the
sub-tasks have to be assigned to them before task execution can be performed.

Note that task allocation and robot planning and control are autonomously
performed by the robot teams. In addition, performing simultaneous coalition
formation and task allocation has also been tried to improve the performance.
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3
Types of controllers

A controller is a dynamical system whose purpose is to minimize an error
defined as the difference between the actual value of the system (called process
variable) and the desired one (called setpoint). Hence, the input of the controller
is the error signal (𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)), while the output results in a control signal
(𝑢(𝑡)). The scheme of a feedback control is shown in Fig.3.1.

Figure 3.1: Generalized scheme of a feedback control, considering a PID controller [2].

In particular, a controller is used for:

• steady-state accuracy improvement by reducing steady-state error so that
stability is also improved;

• reduce unnecessary offsets generated by the system;

• maximum system overshoot control;

• reducing noise generated by the system;
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• speeding up the slow response of an overdamped system.

In details, in the next sections, the PID and MPC controller are explained, since
they are used in the project. Then, it is also presented the Leader-Follower
approach implemented in order to define the cooperation between the agents.

3.1 PID controller

The PID controller is a dynamical mechanism with a predefined struc-
ture, whose efficiency is adjusted through the choice of at most 3 parameters
(𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷), called gains or DoFs of the controller and found through a trial
and error approach. Each parameter represents a different action: proportional,
integral and derivative, respectively.

The general structure of a PID controller is reported mathematically in Eq.3.1
while, graphically, in Fig.3.2.

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼
∫ 𝑡

0
𝑒(𝜏)𝑑𝜏 + 𝐾𝐷 𝑑𝑒(𝑡)𝑑𝑡

(3.1)

Figure 3.2: Generalized scheme of a PID controller [39].

Instead, the details of each action are presented in the following.

3.1.1 Proportional action

The output of this action is proportional to the input signal (the error),
accordingly with the value of the proportional gain 𝐾𝑃 . First of all, consider
the case where only this action influences the system, i.e. 𝐾𝐼 = 𝐾𝐷 = 0. If the
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proportional gain increases, the response speed of the system improves, but the
stability decreases and more oscillations occur. Because of this, it is not possible
to choose any value for 𝐾𝑃 : there is a threshold value beyond which the system
is unstable.

Another drawback of the P controller is due to the fact that it increases the
maximum overshoot of the system.

3.1.2 Integral action

The output of this action is proportional to the integral of the input signal
(the error). The integral gain 𝐾𝐼 is given by the inverse of the integral time
constant 𝑇𝐼 (called reset time) multiplied by 𝐾𝑃 as shown in Eq.3.2.

𝐾𝐼 =
𝐾𝑃
𝑇𝐼

(3.2)

The variable parameter that has to be established is the constant of integration
time 𝑇𝐼 observing that the integral effect increases as 𝑇𝐼 decreases. In particular:

• if 𝑇𝐼 → ∞, the integral effect is negligible;

• if 𝑇𝐼 → 0, the integral reaches quickly the value of the input signal (the er-
ror), with the drawback of the generation of big oscillations which require
some time to stabilize.

The main goal of the integral action is on eliminating the steady-state error
caused by the proportional action.

3.1.3 Derivative action

The output of this action is the first derivative with respect to time of the
error signal, i.e. 𝑒¤(𝑡). The derivative gain 𝐾𝐷 is given by the product between
the proportional gain (𝐾𝑃) and the derivative time constant (𝑇𝐷) as in Eq.3.3.

𝐾𝐷 = 𝐾𝑃𝑇𝐷 (3.3)

The main objective of this action is to anticipate corrective action since, by
deriving the input signal (the error), it is possible to account for rapid signal
changes.

The parameter that determines the efficiency of this action is 𝑇𝐷 , the value
of which determines the rate at which the signal rises. Its main drawback is
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verified in the case of signals with harmonic content at high frequencies since,
in this case, it implies such kind of signals.

3.1.4 PID configurations

In order to control the system and, hence, to have an error converging to
zero, the three actions introduced above can be combined. In details, these can
be combined to generate the following controllers: PI controller, PD controller
and PID controller, while the ID and D controllers are inefficient.

• PI controller: it consists on the combination of a P and I controller. It allows
to obtain a better accuracy and speed of response, without worsening
stability.

• PD controller: it consists on the combination of a P and D controller. It
allows to anticipate the steady-state error.

• PID controller: it consists on the combination of a P, I and D controller. It
is used to avoid/reduce the presence of oscillations but without providing
an immediate stress response.

Note that the presented controllers are the most common kinds of PID controller.

3.2 MPC controller

Model Predictive Control is a feedback control algorithm implemented to
solve an optimization problem. It uses a model to make predictions about
future outputs of a process solving an online optimization problem at each time
instant to select the best control action that drives the predicted output to the
reference.

MPCs have been used in the process industry since the 1980s. With the
increasing computing power of microprocessors, their use has spread to other
fields as: automotive, aerospace, energy, food processing, industrial manufac-
turing (to design technical systems like bridges, cars, aircraft and digital devices),
robotics and metallurgy, business (to allocate the resources in logistic, invest-
ment), science (to estimate and fit of models to measurement data and design
experiments)

The advantage of MPC is that it is a multivariable controller that controls the
outputs simultaneously by taking into account all the interactions between sys-
tem variables, even if this implies the requirement of tuning too many controller
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gains. Another advantage of the MPC is that it can handle constraints that play
an important role in order to avoid undesired consequences. In addition, MPC
can easily incorporate future reference information into the control problem to
improve controller performance.

Even if MPC has all these benefits, it requires a powerful fast processor with
a large memory due to the fact that it solves an online optimization problem at
each time step.

In a control problem, the goal of the controller is to compute the input to the
plant such that the plant output follows a desired reference. The control scheme
of a system with an MPC controller is shown in Fig.3.3.

Figure 3.3: Basic generalized scheme of a MPC controller [34].

Another fundamental aspect to realize the MPC controller is about the choice
of the value of the parameters:

• sample time 𝑇𝑠 , that is the sample time at which the control algorithm is
executed by the controller. If it is too big, when a disturbance comes in,
the controller will not be able to react to the disturbance fast enough. On
the contrary, if the sample time is too small, the controller can react much
faster to disturbances and setpoint changes, but this causes an excessive
computational load. To find the right balance between performance and
computational effort, it is fine to fit 10 to 20 samples within the rise time
of the open loop system response.

• weights. The outputs have to track as close as possible to their setpoints,
but at the same time it is desired to have smooth control moves to avoid
aggressive control maneuvers. The way to achieve a balanced performance
between these competing goals is to weight the input rates and outputs
relative to each other and the relative weights within the groups, too.
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• constraints. These can be either soft or hard constraints. Hard constraints
cannot be violated, while the soft constraints can be violated. Despite
this, having hard constraints on both inputs and outputs is not a good
idea because these constraints may conflict with each other leading to an
unfeasible solution for the optimization problem. The recommendation is
to set output constraints as soft and avoid having hard constraints both on
the inputs and the rate of change of the inputs.

• control horizon. Each control horizon can be thought of as a free variable
that needs to be computed by the optimizer. So, the smaller the control
horizon, the fewer the computations. Increasing the control horizon, it
is possible to have better predictions but at the cost of increasing the
complexity. A good rule of thumb for choosing the control horizon is
setting it to 10 to 20% of the prediction horizon, and having minimum 2-3
steps.

• prediction horizon. The number of predicted future time step is called
the prediction horizon and shows how far the controller predicts into the
future. The recommendation for choosing the prediction horizon is to
have 20 to 30 samples covering the open loop transient system response.

The choice of these parameters is important since they affect the controller
performance and the computational complexity of the MPC algorithm.

An MPC problem that has a linear system, linear constraints and a quadratic
cost function gives rise to a convex optimization problem where the cost function
has a single global optimum and the goal of the optimization is to find this
optimum.

Instead, if the system is not linear (nonlinear), it is possible to use linear MPC
and the benefits from the properties of the convex optimization problem. The
available methods to use in this case are the Adaptive and Gain-scheduled MPC
controllers. The way these controllers deal with a nonlinear system is based on
linearization.

In Adaptive MPC, a linear model is computed on the fly as the operating
conditions change and, at each time step, you update the internal plant model
used by the MPC controller with this linear model. In Adaptive MPC, the struc-
ture of the optimization problem remains the same across different operating
points. This means that the number of states and the number of constraints
do not change for different operating conditions over the prediction horizon.
However, if they do change, then Gain-Scheduled MPC has to be used.
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In Gain-Scheduled MPC, the operating points of interest are linearized on-
line and, for each operating point, a linear MPC controller is designed. Each
controller is independent from each other and therefore may have a different
number of states and of constraints. Note that in this approach, it is also required
to design an algorithm that will switch between the predefined MPC controllers
for different operating conditions. Although, having independent controllers
is an advantage of Gain-Scheduled MPC, it uses more memory than Adaptive
MPC. Hence, the recommendation is to use Adaptive MPC if a linear plant
model can be found at run-time and the structure of the optimization problem
remains fixed across different operating conditions. If they change, then it is
possible to use Gain-Scheduled MPC, where independent MPC controllers are
designed for the changing operating conditions.

Despite this, nonlinear MPC (approximated well by linear model), has to
be used. This method is the most powerful one as it uses the most accurate
representation of the plant, namely a nonlinear plant model. Therefore, the
predictions made by the controller are more accurate, which also lead to better
control actions. In addition, it is also the most challenging one to solve in real
time because when there are nonlinear constraints and a nonlinear cost function,
the optimization problem becomes nonconvex. The cost function may have mul-
tiple local optima and finding the global optimum may be hard. The efficiency
of solving the non convex optimization problem, that requires a large number
of computations, depends on the available nonlinear solver. In fact, MPC is
computationally complex: it is formulated as a QP (Quadratic Programming)
problem that tries to minimize a quadratic cost function. MPC computations
become more complex with the increasing number of states, constraints, the
length of the control and prediction horizons.

In order to solve an optimization problem, the following ingredients have to
be defined:

1. an objective function Φ(𝜔), that shall be minimized or maximized;

2. decision variables (𝜔);

3. constraints that shall be respected. These can be of the form 𝑔1(𝜔) = 0
(equality constraints) or 𝑔2(𝜔) ≥ 0 (inequality constraints).

The mathematical formulation in standard form of the nonlinear program-
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ming problem is shown in Eq.3.4.

min
𝜔

Φ(𝜔)
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔1(𝜔) ≤ 0

𝑔2(𝜔) = 0

(3.4)

where Φ(·), 𝑔1(·), 𝑔2(·) are usually assumed to be differentiable.
In the following it is considered the case of nonlinear dynamic program-

ming since the linear and quadratic cases can be assumed to be special cases
(subproblems) of the nonlinear one. In particular, there is:

• linear programming (LP) when Φ(·), 𝑔1(·), 𝑔2(·) are affine and, hence, these
functions can be expressed as linear combinations of the elements of 𝜔;

• quadratic programming (QP) when 𝑔1(·), 𝑔2(·) are affine but the objective
function Φ(·) is a linear quadratic function

In order to solve the optimization problem, it is necessary to compute the
minimization or maximization of a given objective function. Usually, it is con-
sidered a minimization problem, but it can also be expressed as a maximization
one since maximization can be treated as a minimization of the negative ob-
jective. Hence, the problem to solve is expressed as in Eq.3.5 or, equivalently,
Eq.3.6.

min
𝜔

Φ(𝜔)
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔1(𝜔) ≤ 0

𝑔2(𝜔) = 0

(3.5)

max
𝜔

−Φ(𝜔)
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔1(𝜔) ≤ 0

𝑔2(𝜔) = 0

(3.6)

Despite this, normally, the value of 𝜔 that minimizes the objective expressed
as in Eq.3.5 has to be found. So, the solution has the expression shown in Eq.3.7.

𝜔∗ = min
𝜔

Φ(𝜔) (3.7)

Directly substituting Eq.3.7 in Eq.3.5, the found value of the objective function
is the one reported in Eq.3.8.

Φ(𝜔∗) = Φ(𝜔)|𝜔 = min
𝜔

Φ(𝜔) (3.8)
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More in details, the problem is analyzed starting to consider a SISO system
described by the expression in Eq.3.9.

𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘)) (3.9)

At time 𝑘, a new decision or a new action would like to be taken so that the
state 𝑥 eventually reaches some reference. In MPC, it is looked in the future
for 𝑛 time steps and it is tried to find the best or optimal sequence of control
actions that makes the prediction for the state approaches or actually goes to the
state reference. Then, only the first portion of that sequence of control actions
is applied to the system. So, when this first control action is applied and the
current state is in point 1 in Fig.3.4, it is predicted that the state goes to point 2.
However, what happens in reality does not exactly coincide with the prediction.
This is why, after applying the first portion of the control action, another step of
MPC is solved and a new control sequence is got by applying the first control
action in that sequence.

Figure 3.4: General concept of a discrete MPC [41].

Hence, in MPC, three steps have to be performed:

1. Prediction;

2. Online Optimization (minimizing the difference);

3. Receding Horizon.
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The mathematical formulation of MPC is very similar to LQR. A running
cost (also called stage cost) is defined where the difference between the predicted
state and the reference and the difference between the control action and its
reference value are penalized, as shown in Eq.3.10.

𝑙(𝑥, 𝑢) = | |𝑥𝑢−𝑥𝑟 | |2𝑄+||𝑢−𝑢𝑟 | |2𝑅 = (𝑥𝑢−𝑥𝑟)𝑇𝑄(𝑥𝑢−𝑥𝑟)+(𝑢−𝑢𝑟)𝑇𝑅(𝑢−𝑢𝑟) (3.10)

with | |(·)| | representing the second norm of the difference. Note that it can also
be rewritten as in Eq.3.11.

𝑙(𝑥, 𝑢) = (𝑥𝑢 − 𝑥𝑟)𝑇𝑄(𝑥𝑢 − 𝑥𝑟) + (𝑢 − 𝑢𝑟)𝑇𝑅(𝑢 − 𝑢𝑟) (3.11)

Then, the cost function is defined as a summation of the running cost over
all the steps (along the whole prediction horizon) as shown in Eq.3.12.

𝐽𝑁 (𝑥, 𝑢) =
𝑁−1∑
𝑘=0

𝑙(𝑥𝑢(𝑘), 𝑢(𝑘)) (3.12)

Now, the MPC problem can be formulated as an optimal control problem to
find a minimizing control sequence as in Eq.3.13.

min
𝑢
𝐽𝑁 (𝑥0, 𝑢) =

𝑁−1∑
𝑘=0

𝑙(𝑥𝑢(𝑘), 𝑢(𝑘))

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑢(𝑘 + 1) = 𝑓 (𝑥𝑢(𝑘), 𝑢(𝑘))
𝑥(0) = 𝑥0

𝑢(𝑘) ∈ U , ∀𝑘 ∈ [0, 𝑁 − 1]
𝑥𝑢(𝑘) ∈ X , ∀𝑘 ∈ [0, 𝑁]

(3.13)

Then, the value function that is the minimum of the cost function is computed
as in Eq.3.14.

𝑉𝑁 (𝑥) = min
𝑢
𝐽𝑁 (𝑥0, 𝑢) (3.14)

Note that, even if this strategy is shown for a SISO system, it can also be
generally applied to nonlinear MIMO (multiple input multiple output) systems.

In addition, the main differences between the MPC and PID controllers are:

• PID controller handles only a single input and a single output (SISO sys-
tems);

• MPC controller is a more advanced method of process control used for
MIMO systems (Multiple Inputs, multiple Outputs);
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• In PID controller, there is no knowledge of constraints;

• The primary advantage of MPC is its ability to deal with the constraints;

• PID controller does not have the ability to deal with the constraints;

• PID controller does not require a model of process;

• MPC controller requires the model of a process.

3.3 Leader-Follower Approach

Leader-Follower approach is used to design a controller that allows each
robot to reach its desired geometric shape in the formation. The idea behind
this strategy is based on the natural behaviours of animals operating as a team so
that it is possible to investigate the possibilities of networking a group of systems
to accomplish a given set of tasks without requiring an explicit supervisor.

In the considered case, it is assumed to have formations under decentral-
ized control based on a Leader-Follower approach, which means that the robot
motion coordination is controlled by the individual robot controllers. Hence,
the follower vehicle is controlled maintaining constant the distance between the
leader and the follower and having the orientation angle of the follower almost
the same of the one of the leader.

The Leader-Follower approach is based on the fact that the followers do
not know the trajectory that the leader tracks and have no influence on its
movements. Hence, they can only rely on their own range and bearing sensors
to adjust its linear and angular velocity to follow the leader. In particular, the
focus is about a teleoperation strategy for a MAS and, hence, selection of leaders
in the group of mobile robots, in order to achieve some optimization goals.

3.3.1 Leader-Follower approach based on distance

It is considered the case of an homogeneous MAS composed by two UGVs,
where one of them is the leader and the other one is the follower. In details, the
two vehicles are assumed to be unicycles, whose control inputs are the linear
and angular velocities.

Considering the Cartesian plane, the leader is described by (𝑥𝐿 , 𝑦𝐿 , 𝜃𝐿), while
the follower by (𝑥𝐹 , 𝑦𝐹 , 𝜃𝐹) and there exists a distance between the leader and the
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follower expressed by 𝜌, defined as the Euclidean distance between the center
of mass of the leader and of the follower as in Eq.3.15.

𝜌 =
√
(𝑥𝐿 − 𝑥𝐹)2 + (𝑦𝐿 − 𝑦𝐹)2 (3.15)

Figure 3.5: Graphical representation of the Leader-Follower approach and its parameters
applied to two unicycles [30].

As it is possible to see from Fig.3.5, the follower robot is also defined by the
angle 𝛼, that is the angle between follower’s motion and the new line defined
by 𝜌, mathematically given by Eq.3.16.

𝛼 = tan−1 𝑦𝐿 − 𝑦𝐹
𝑥𝐿 − 𝑥𝐹 − 𝜃𝐹 (3.16)

Instead, the angle describing the leader orientation with respect to the one
of the follower is indicated by 𝜙. Such an angle is defined as the angle between
the motion of the leader and the new line defined by 𝜌 as in Eq.3.17.

𝜙 = 𝛼 + 𝜃𝐹 − 𝜃𝐿 (3.17)

Hence, knowing 𝛼, 𝜌 and 𝜙, it is possible to define the kinematic model
in polar coordinates (𝜌, 𝛼,𝜓), instead of using cartesian coordinates (𝑥, 𝑦, 𝜃),
in order to coordinate the motions of the two vehicles taken into account.The
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kinematic model, used to design the controller, is shown in Eq.3.18.
𝜌¤
𝛼¤
𝜓¤

 =


− cos(𝛼) 0
sin(𝛼/𝜌) −1
sin(𝛼/𝜌) 0


[
𝑣𝐹
𝜔𝐹

]
+


− cos(𝜙) 0
sin(𝜙/𝜌) 0
sin(𝜙/𝜌) −1


[
𝑣𝐿
𝜔𝐿

]
(3.18)

Such formulation of the controller aims to define the inputs 𝑣𝐹 and 𝜔𝐹 of
the follower such that the goal is reached. i.e. the follower follows the leader
maintaining a constant relative distance with the leader.

From Eq.3.18, it is possible to observe that to define the controller and reach
the goal, only the distance with respect to the leader (𝜌) and the angle 𝛼 must be
known. Hence, the desired distance between the leader and the follower (𝜌𝑑𝑒𝑠)
and the desired angle between 𝜌𝑑𝑒𝑠 and the follower’s direction of motion (𝛼𝑑𝑒𝑠)
are chosen. So, the goal is to have that the real values of these two variables
converge to the desired ones as the time goes to infinity, accordingly with the
control law in Eq.3.19. [

𝜌¤
𝛼¤

]
=

[
𝑘 0
0 𝑘

] [
𝜌𝑑𝑒𝑠 − 𝜌

𝛼𝑑𝑒𝑠 − 𝛼

]
(3.19)

where the values of 𝑘 are chosen in such a way that the system eigenvalues have
a negative real part, meaning that the system is stable. In the end, the values of
the linear and angular velocities of the follower (𝑣𝐹 and 𝜔𝐹) are computed as in
Eq.3.20. To reconvert back the result in the Cartesian coordinates, Eq.3.21 holds.[

𝑣𝐹
𝜔𝐹

]
=

[
− 1

cos(𝛼) 0
− tan(𝛼)

𝜌 −1

] [ [
𝜌¤
𝛼¤

]
−

[
− cos(𝜙) 0

sin(𝜙)
𝜌 0

] [
𝑣𝐿
𝜔𝐿

] ]
(3.20)

𝑥𝐹 = 𝑥𝐿 cos(𝜃𝐿) − 𝜌 cos(𝛼) + 𝜃𝐹

𝑦𝐹 = 𝑦𝐿 sin(𝜃𝐿) − 𝜌 sin(𝛼) + 𝜃𝐹

𝜃𝐹 = 𝜙 − 𝛼 + 𝜃𝐿 − 𝜋

(3.21)

3.3.2 Example: Numerical results of the simulation

Consider an homogeneous (with the same actuation capabilities) MAS com-
posed by two UGVs such that one of them is the leader, while the other one is
the follower. The leader knows the trajectory to track and it can be assumed as
the one described in section 2.1.4.

In addition also the initial posture of both the leader and the follower other
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than the values of 𝛼𝑑𝑒𝑠 , 𝜌𝑑𝑒𝑠 and 𝑘 are assumed to be known and they have the
values shown in Tab.3.1.

Parameter’s name Value
𝑥2 0.05 [m]
𝑦2 0.05 [m]
𝜃2 0 [rad]
𝛼𝑑𝑒𝑠 0.3
𝜌𝑑𝑒𝑠 𝜋/6[𝑟𝑎𝑑]
𝑘 1

Table 3.1: Leader-follower approach’s parameters.

Implementing the reasoning explained in section 3.3.1 and considering the
leader as the UGV defined in section 2.1.4, the obtained trajectories of the leader
and of the follower are the ones shown in Fig.3.6.

Figure 3.6: Leader-Follower trajectories obtained applying the Leader-Follower approach
based on distance.

Looking at Fig.3.6, it is possible to note that except at the beginning, the
follower tracks the same trajectory of the leader maintaining a constant distance
with it.
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Despite this, considering the velocities, the ones of the follower are repre-
sented in Fig.3.7. Observing this result, it is possible to note that the velocities
of the follower does not coincide with the ones of the leader since, basing the
approach on distance, it aims at maintaining the same distance and orientation
at each time instant. Distance and orientation are the unique constraints for
the follower. No requirements are on the velocities. To better understand the
difference on the velocities, these are shown in Fig.3.8.

Figure 3.7: Follower velocities obtained applying the Leader-Follower approach based
on distance.

A different way used to implement the Leader-Follower approach is based
just on the knowledge of the bearing vector and of the velocities, instead of the
knowledge of the distance and orientation. This strategy will be used together
with the MPC control and it will be explained in details in Chapter 5.
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Figure 3.8: Leader-Follower velocities obtained applying the Leader-Follower approach
based on distance.
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4
Bearing Rigidity Theory

Instead of considering the distance between agents to formulate a formation
control law, the bearing rigidity theory (also called parallel rigidity theory) can be
taken into account.

This theory was developed because, even if the majority of the existing
techniques for the formation assume that each agent can measure the relative
positions of their nearest agents using GPS, the high accuracy requirements of
the formation control task are not satisfied by this device. In addition, GPS
cannot be employed indoors, underwater or in deep space, for example.

Due to this, it is preferable to use onboard sensors called bearing-only sensors
that are able to measure easily the bearings. Some types of bearing-only sensors
used to measure the relative bearings are: optical cameras for ground and aerial
vehicles, passive radars, passive sonars and sensor arrays.

Specifically, the Bearing Rigidity theory is used to model an heterogeneous
formation as a generalized framework1 and its aim is to find the stiffness proper-
ties of given multi-element systems whose components are mutually constrained
in terms of relative orientation2.

Hence, if the bearing of each edge in the network is fixed, the conditions
that define the uniqueness of the geometric pattern of a network have to be

1

Definition 4.0.1 (Generalized Framework) A generalized framework is an ordered triple (G , 𝑥,ℋ)
consisting of a connected graphG = (V , ℰ)with |V| = 𝑛 ≥ 3 and |ℰ | = 𝑚, a configuration 𝑥 ∈ R3𝑛×S3𝑛

and a collection of instantaneous variation domains ℋ = ℐ1 , ...,ℐ𝑛
2Cenedese A., Michieletto G., Pozzan B., Zelazo D., Heterogeneous Formation Control: a Bearing

Rigidity Approach, in 60th IEEE Conference on Decision and Control (CDC), December 13-15,
2021, Austin, Texas
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established. The bearing rigidity theory is based on the assumption that all the
agents of the considered system are characterized by local communication and
bearing sensing capabilities.

So, the Bearing Rigidity theory studies the conditions such that two networks
have the same geometric pattern if they have the same bearings. In particular,
for a given formation, described by a network (G , 𝑝), the edge and the bearing
vectors for (𝑖, 𝑗) ∈ ℰ are defined as 𝑒𝑖 𝑗 = 𝑝 𝑗 − 𝑝𝑖 and 𝑔𝑖 𝑗 =

𝑒𝑖 𝑗
| |𝑒𝑖 𝑗 | | , respectively. The

bearing vector 𝑔𝑖 𝑗 is the unit vector pointing from 𝑝𝑖 to 𝑝 𝑗 and it represents the
relative bearing of 𝑝𝑖 with respect to 𝑝 𝑗 3.

To better understand this, looking at Fig.4.1(a), the two formations have the
same bearings but different geometric patterns, which imply that they are not
bearing rigid. Instead, looking at Fig.4.1(b), the two formations have the same
bearings and geometric pattern, so they are bearing rigid.

Figure 4.1: Examples of bearing rigid formations [44].

The key ingredients of the Bearing Rigidity theory are the Bearing Function
and the Bearing Rigidity matrix. The Bearing Function summarizes the information
on the available measurements and its formal definition is reported in Def.4.0.2.

Definition 4.0.2 (Bearing Function) 4 Given a formation modeled as a generalized
framework (G , 𝑥,ℋ), the bearing function is the map associating the configuration
𝑥 ∈ R3𝑛 × S3𝑛 to the vector bG(𝑥) = [𝑏𝑇1 ...𝑏𝑇𝑚] ∈ S2𝑚 stacking all the available bearing
measurements.

Instead, the Bearing Rigidity matrix describes the relation between the com-
mand vector and the time derivative of the bearing measurements vector of an
heterogeneous MAS and it is defined as in Def.4.0.3.

3Zelazo D., Zhao S., Bearing Rigidity Theory and its Applications for Control and Estimation
of Network Systems, March 14, 2018

4Cenedese A., Michieletto G., Pozzan B., Zelazo D., Heterogeneous Formation Control: a Bearing
Rigidity Approach, in 60th IEEE Conference on Decision and Control (CDC), December 13-15,
2021, Austin, Texas, Definition 2.2, pg.3

52



CHAPTER 4. BEARING RIGIDITY THEORY

Definition 4.0.3 (Bearing Rigidity matrix) 5 Given a formation modeled as a gen-
eralized framework (G , 𝑥,ℋ), the bearing rigidity matrix is the matrix BG(𝑥) ∈ R3𝑚×𝑐

that satisfies the relation b¤G(𝑥) = BG𝛿.

The computation of such matrix allows to investigate the configurations that
affect the formation shape, defined in Def.4.0.4.

Definition 4.0.4 (Formation shape) 6 Given a formation modeled as a generalized
framework (G , 𝑥,ℋ), its shape is characterized by the collection of all possible bearing
measurements, namely by the vector 𝑏𝑘(𝑥) ∈ S2𝑛(𝑛−1) where K is the complete graph
associated to G.

In addition, about Bearing Rigidity, it is possible to identify three different
notions. These are:

• Bearing Rigidity: A framework (G; p) is bearing rigid if there exists an 𝜖 > 0
such that every framework (G; p’)which is bearing equivalent to (G; p) and
satisfies | |p𝑖 − p′

𝑖 | | < 𝜖 for all 𝑣𝑖 ∈ V , is bearing congruent to (G; p).
• Global Bearing Rigidity: A framework (G; p) is globally bearing rigid if

all bearing equivalent frameworks to (G; p) are also bearing congruent to
(G; p).

• Infinitesimal Bearing Rigidity: A framework (G; p) is infinitesimally bearing
rigid if every possible infinitesimal motion is trivial. The term "infinites-
imal" is due to the fact that the bearing rigidity matrix is the first order
derivative of the bearing vectors with respect to the position of the nodes.

Between them, just the Infinitesimal Bearing rigidity is a global property7
practically used, while the first two cannot ensure unique geometric patterns of
networks.

To allow the definition of a mathematical condition and to ensure a unique
geometric pattern of a network, the Infinitesimal Bearing Rigidity is based on
two main assumptions:

1. The first one is a geometric property: if the network is infinitesimally
bearing rigid, the uniqueness of the positions of the nodes in the network

5Cenedese A., Michieletto G., Pozzan B., Zelazo D., Heterogeneous Formation Control: a Bearing
Rigidity Approach, in 60th IEEE Conference on Decision and Control (CDC), December 13-15,
2021, Austin, Texas, Definition 3.1, pg.3

6ibidem
7It means that the bearings can uniquely determine the geometric pattern of a network.

53



is guaranteed up to a translational and scaling factor. The translational and
scaling motions that guarantee this belong to the vectors in 𝑠𝑝𝑎𝑛{1𝑛⊗𝐼𝑑 , 𝑝}.
According to this, looking at Fig.4.2, the networks are not bearing rigid
because they have nontrivial infinitesimal bearing motions.

Figure 4.2: Examples of nontrivial infinitesimal bearing motions, that imply non-
infinitesimal bearing networks [44].

2. The second property is an algebraic property: a network is infinitesimally
bearing rigid in 𝑑-dimensional space if and only if the bearing rigidity
matrix R𝐵 satisfies Eq.4.1 or, equivalently, Eq.4.2.

𝑁𝑢𝑙𝑙(R𝐵) = 𝑠𝑝𝑎𝑛{1𝑛 ⊗ I𝑑 , p} (4.1)

𝑟𝑎𝑛𝑘(R𝐵) = 𝑑𝑛 − 𝑑 − 1 (4.2)

For example, looking at Fig.4.3, it can be noted that all the networks satisfy
Eq.4.2.

Figure 4.3: Example of infinitesimal bearing networks [44].

Alternatively, the Bearing Laplacian matrix defines a necessary and sufficient
condition to have Infinitesimal Bearing Rigidity. Such matrix of a network can
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CHAPTER 4. BEARING RIGIDITY THEORY

be considered as a Weighted Graph Laplacian matrix. In details, the weights
of this matrix are matrices, too. For this reason, the Bearing Laplacian matrix
provides the values of the edge bearings and describes the topological structure
of the network.

So, considering the Bearing Laplacian matrix, a network is IBR if and only if
Eq.4.3 or, equivalently, Eq.4.4 are satisfied.

𝑁𝑢𝑙𝑙(ℬ) = 𝑠𝑝𝑎𝑛{1𝑛 ⊗ I𝑑 , p} (4.3)

𝑟𝑎𝑛𝑘(ℬ) = 𝑑𝑛 − 𝑑 − 1 (4.4)

The main differences between the Bearing Laplacian matrix and the Bearing
Rigidity matrix are in the case of direct graphs, where these two matrices have
different ranks and null spaces. Instead, for undirect graphs, the Bearing Lapla-
cian matrix is symmetric and positive semi-definite, while the Bearing Rigidity
matrix no.

Another aspect of great interest is the construction of a bearing rigid network
by adding well-placed edges and nodes in a network. This is due to the fact that
the IBR of a network is more dependent on the graph than its configuration,
while a network is described by its graph and configuration, with the same
relevance.

In addition also the concept of generically bearing rigid can be introduced:
given a graph, if there exists at least one configuration such that the network is
IBR, then for almost all configurations the corresponding networks are IBR.

It follows that: if a graph is not generically bearing rigid, then the corre-
sponding network is not IBR for any configuration. Hence, in order to construct
IBR networks, generically bearing rigid graphs have to be constructed. This can
be summarized through Theorem 4.0.1.

Theorem 4.0.1 (Rigidity Properties) 8 For a framework (G; p) in R3, the following
implications are valid

• bearing global rigidity ⇐⇒ bearing rigidity;

• bearing infinitesimally rigidity ⇒ bearing global rigidity;

• bearing infinitesimally rigidity ⇒ bearing rigidity.

8Cenedese A., Franchi A., Michieletto G.,Bearing Rigidity Theory in SE(3), in IEEE 55th Con-
ference on Decision and Control (CDC), December 12-14, 2016, Las Vegas, USA, Theorem 2,
pg.4
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One of the most common methods to construct rigid graph is the Henneberg
construction, originally proposed for the distance rigidity theory. In the par-
ticular case of a network composed by two vertices connected by an edge, the
Henneberg construction results in a Laman graph. In the Bearing Rigidity theory,
the main result about Laman graphs is that:

If the underlying graph of a network is Laman, then the network is infinitesimally
bearing rigid for almost all configurations in an arbitrary dimension. Again, for networks
in the plane, a graph is generically bearing rigid if and only if it is Laman9.

Instead, the general conditions that have to hold to obtain Infinitesimal bear-
ing rigidity are exploited in Theorem 4.0.2.

Theorem 4.0.2 (Condition for Infinitesimal Bearing Rigidity) 10 For a framework
(G; p) in R3, the following statements are equivalent:

1. (G; p) is infinitesimally bearing rigid;

2. 𝑟𝑎𝑛𝑘(B| |,G(p)) = 3𝑛 − 4;

3. N(B| |,G(p)) = span{1 ⊗ I3, p}.

One of the main applications of the Bearing Rigidity theory is the Bearing-
Only Formation Control. The aim of the Bearing Only Formation Control con-
sists in steering a group of mobile agents to form a desired geometric pattern
predefined by inter-neighbor bearings using bearing-only measurements. The
unique requirement is that each agent measures the relative bearings of their
neighbors, while the relative positions cannot be measured or estimated.

Hence, it is assumed that the target formation is specified by constant bearing
constraints {g∗

𝑖 𝑗}𝑖, 𝑗∈ℰ and there are no leaders. The control objective is to control
the positions of the agents {p𝑖(𝑡)}𝑖∈V such that g𝑖 𝑗(𝑡) → g∗

𝑖 𝑗 for all (𝑖, 𝑗) ∈ ℰ as
𝑡 → ∞, where all the bearings are defined in the Inertial World Frame.

The nonlinear control law that can be used to solve the bearing-only forma-
tion control problem is in Eq.4.5.

p¤ 𝑖(𝑡) = −
∑

Pg𝑖 𝑗(𝑡)g
∗
𝑖 𝑗 𝑖 ∈ V (4.5)

where Pg𝑖 𝑗(𝑡) = I𝑑 − g𝑖 𝑗(𝑡)g𝑇𝑖𝑗(𝑡).

9H.-S. Ahn, M. H. Trinh, S. Zhao, Z. Sun, D. Zelazo, Laman Graphs are Generically Bearing
Rigid in Arbitrary Dimensions, 11 March 2017

10Cenedese A., Franchi A., Michieletto G.,Bearing Rigidity Theory in SE(3), in IEEE 55th Con-
ference on Decision and Control (CDC), December 12-14, 2016, Las Vegas, USA, Theorem 1,
pg.4
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CHAPTER 4. BEARING RIGIDITY THEORY

The control law Eq.4.5 has three main properties:

• the control of each agent only requires bearing measurements and does
not require distance or position estimation;

• the control input of such control law is always bounded as | |p¤ 𝑖(𝑡)| | ≤∑| |Pg𝑖 𝑗(𝑡) | | | |g∗
𝑖 𝑗 | | = |N𝑖 | since | |Pg𝑖 𝑗(𝑡) | | = | |g∗

𝑖 𝑗 | | = 1;

• the centroid, defined as the average position of the agents, and the scale,
defined as the standard deviation of the distances from the agents to the
centroid, of the formation are invariant under the control law.

4.1 Bearing Rigidity Theory in SE(3)
Bearing Rigidity theory can also be applied to describe the rigidity properties

for frameworks embedded in the 3-dimensional special euclidean space SE(3),
defined as in Def.4.1.1.

Definition 4.1.1 (SE(3) framework) 11 An SE(3) framework is a triple (G , p, a),
where G = (V , ℰ) is a directed graph, p : V → R3 is a function mapping each
node to a point in R3 (position) and a : V → SO(3) is a function associating each node
with an element of SO(3) (attitude).

The goal is to maintain a rigid formation preserving the measurements and
identifying the framework transformations, which implies that the relative poses
among the agents in terms of distance and/or directions are preserved. Hence,
the aim consists in finding the allowed motions that do not modify the whole
system in terms of inter-agent bearings.

Recalling that a MAS is represented through a direct graph and that, inSE(3),
each agent is described by a position and attitude in the 3-dimensional space,
the agents orientation are expressed through rotation matrices, which belong to
the Special Orthogonal Group SO(3)12.

The position and the attitude of node 𝑣𝑖 ∈ V is denoted by (p(𝑣𝑖), a(𝑣𝑖)) =
(p𝑖 ,R𝑖) = (X𝑝(𝑖),X𝑎(𝑖)) = X(𝑖) ∈ SE(3), whereas p(V) = X𝑝(V)) ∈ R3𝑛 and

11Cenedese A., Franchi A., Michieletto G.,Bearing Rigidity Theory in SE(3), in IEEE 55th Con-
ference on Decision and Control (CDC), December 12-14, 2016, Las Vegas, USA, Definition 4,
pg.4

12This group includes all the 3×3 orthogonal matrices having unit determinant. The attitude
of each agent 𝑖 has to be interpreted as a rotation matrix R𝑖 ∈ R3×3 such that R𝑖R𝑇

𝑖 = I3 and
𝑑𝑒𝑡(R𝑖) = +1.
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4.1. BEARING RIGIDITY THEORY IN SE(3)

a(V) = X𝑎(V) ∈ SO(3)𝑛 indicate the position and attitude components of the
complete framework configuration, respectively13.

In addition, in SE(3), the following assumptions14 hold:

1. the underlying graph is direct;

2. the bearing vectors are expressed in the Body Frame of each agent.

Hence, agent 𝑖 accesses the bearing of agent 𝑗 if and only if the directed edge
(𝑣𝑖 , 𝑣 𝑗) belongs to the graph G. Furthermore, the relative bearing b𝑖 𝑗 ∈ S2 is
measured from the Body Frame of the 𝑖 − 𝑡ℎ agent, but it can be expressed in
terms of the relative positions and attitudes of the two points with respect to the
World Frame. So, it holds:

b𝑖 𝑗 = R𝑇
𝑖

p𝑖 − p𝑗
| |p𝑖 − p𝑗 | |

= R𝑇
𝑖 p̄𝑖 𝑗

where:

• the matrix R𝑇
𝑖 is the rotation matrix describing the orientation of the World

Frame with respect to the Body Frame of agent 𝑖;

• p̄𝑖 𝑗 represents the normalized relative position vector from 𝑖 to 𝑗.

The information about bearing measurements can be handled by defining
the SE(3)-rigidity function associated to the framework, namely the function
bG : SE(3)𝑛 → S2𝑚 such that

bG(X(V)) = [b𝑇1 ...b𝑇𝑚]𝑇

where b𝑘 denotes the measurement on the 𝑘 − 𝑡ℎ directed edge in the graph G.
It can be proven that the SE(3)-rigidity function can be rewritten in the more
compact form:

bG(X(V)) = −𝑑𝑖𝑎𝑔({ R𝑇
𝑖

| |p𝑖 − p𝑗 | |
})Ē𝑇X𝑝(V)

13Cenedese A., Michieletto G., Pozzan B., Zelazo D., Heterogeneous Formation Control: a Bearing
Rigidity Approach, in 60th IEEE Conference on Decision and Control (CDC), December 13-15,
2021, Austin, Texas

14These assumptions are justified by real multi-agent scenarios where a robot can gather the
relative bearings between itself and other robots through sensors attached to its Body Frame
such as robots flying in 3D with onboard cameras.
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In such a scenario, a framework (G , p, a) is SE(3)-rigid if and only if for
any X′(V) ∈ SE(3)𝑛 sufficiently close to X(V) with the same bearing measure-
ments, namely bG(X(V)) = bG(X′(V)), there exists a local bearing preserving
transformation taking X(V) to X′(V).

Definition 4.1.2 (Rigidity in SE(3)) 15 A framework (G , p, a) is rigid in SE(3) if
there exists a neighborhood 𝑆 ⊂ SE(3)𝑛 of X(V) such that :

b−1
𝑘𝑛
(b𝑘𝑛 (X(V))) ∩ S = b−1

G (bG(X(V))) ∩ S

where b−1
𝑘𝑛
(b𝑘𝑛 (X(V))) denotes the pre-image of the point b𝑘𝑛 (X(V))) under the SE(3)-

rigidity map.

4.2 Bearing Rigidity theory applied to a group of
UAVs quadrotors

As said in the previous section, Bearing Rigidity theory is used to formulate
a formation control law. Hence, in this section, it is presented the application of
the Bearing Rigidity theory to define a formation control law for a group of 𝑁
quadrotors.

It is assumed that the dynamics of the quadrotor are described by the sim-
plified model in Eq.4.6. [

p¤ 𝑖
𝜙𝑖

]
=

[
R𝑖 0
0 1

] [
u𝑖
𝜔𝑖

]
(4.6)

where p¤ 𝑖 ∈ R3 is the UAV position in ℱ𝑊 , 𝜙𝑖 is the yaw angle and R𝑖 = R𝑧(𝜙𝑖) ∈
SO(3) is the elementary rotation around the 𝑧-axis in ℱ𝑊 , u𝑖 ∈ R3 is the known
and controllable linear velocity in ℱ𝐵 and 𝜔𝑖 ∈ R is the known and controllable
yaw rate in ℱ𝐵. In addition, it is also assumed that each quadrotor is equipped
with onboard cameras able to measure the relative bearings in its Body Frame
with respect to the other UAVs.

A bearing rigid framework (G , q) ∈ R3 × S1 is considered and the Bearing
Rigidity matrix in the World Frame (𝐵𝑊G ), defined as in Eq.4.7, is constructed. In
particular, its 𝑘 − 𝑡ℎ row block associated to the edge 𝑒𝑘 = (𝑖 , 𝑗) is defined as in

15Cenedese A., Franchi A., Michieletto G.,Bearing Rigidity Theory in SE(3), in IEEE 55th Con-
ference on Decision and Control (CDC), December 12-14, 2016, Las Vegas, USA, Definition 7,
pg.5
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Eq.4.8.

B𝑊G (q) = 𝜕𝛽G(q)
𝜕q

∈ R3|ℰ |×4𝑁

𝛽G(q) = [𝛽𝑇𝑒1 ...𝛽𝑇𝑒 |ℰ | ]𝑇
(4.7)

[
−0− −P𝑖 𝑗R𝑇

𝑖
𝑑𝑖 𝑗

−0− P𝑖 𝑗R𝑇
𝑖

𝑑𝑖 𝑗
−0− ... −S𝛽𝑖 𝑗 −0−

]
∈ R3×4𝑁 (4.8)

where −P𝑖 𝑗R𝑇
𝑖

𝑑𝑖 𝑗
is in column 𝑖, P𝑖 𝑗R𝑇

𝑖
𝑑𝑖 𝑗

is in column 𝑗 and −S𝛽𝑖 𝑗 is in column 3𝑁 + 𝑖.
In details, 𝑑𝑖 𝑗 = | |p𝑖 − p𝑗 | |, P𝑖 𝑗 = I3 − 𝛽𝑖 𝑗𝛽𝑇𝑖𝑗 is the orthogonal projector onto the
orthogonal complement of 𝛽𝑖 𝑗 , and S = [[0 0 1]𝑇]𝑥 , where [·]𝑥 represents the
skew-symmetric operator.

Looking at Eq.4.8, it is possible to observe that B𝑊G is function of interdistances
(𝑑𝑖 𝑗), relative bearings (𝛽𝑖 𝑗), and absolute yaw rotations (R𝑇

𝑖 ). This matrix is
employed to describe the relation between the bearing function (𝛽G) and the
World frame velocities (q¤ = (p¤ , 𝜙¤ )) as in Eq.4.9.

𝛽¤G = B𝑊G

[
p¤
𝜙¤
]

(4.9)

The Bearing Rigidity matrix can also be defined in the Body Frame assuming
to know the Body Frame velocity inputs of the quadrotors (u = [...u𝑇𝑖 ...]𝑇 ∈ R3𝑁

and 𝜔 = [...𝜔𝑖 ...]𝑇 ∈ R𝑁 ) as shown in Eq.4.10.

𝛽¤G = B𝑊G

[
𝑑𝑖𝑎𝑔(R𝑖) 0

0 I𝑁

] [
u
𝜔

]
= BG(q)

[
u
𝜔

]
(4.10)

In this case, the 𝑘 − 𝑡ℎ row block of the Body Frame Rigidity matrix 𝐵G(q)
associated to the edge 𝑒𝑘 = (𝑖, 𝑗) is:[

−0− −P𝑖 𝑗
𝑑𝑖 𝑗

−0− P𝑖 𝑗R𝑖
𝑗

𝑑𝑖 𝑗
−0− ... −S𝛽𝑖 𝑗 −0−

]
∈ R3×4𝑁 (4.11)

where R𝑖
𝑗 = R𝑧(𝜙𝑖 𝑗) with 𝜙𝑖 𝑗 = 𝜙 𝑗 − 𝜙𝑖 .

As for the Bearing Rigidity matrix defined in the World Frame, the Body
Frame Bearing Rigidity matrix depends on the measured bearings 𝛽𝑖 𝑗 and in-
terdistances 𝑑𝑖 𝑗 . However, it does not depend anymore on the absolute yaw
rotations, but on the relative orientations 𝜙 𝑗 − 𝜙𝑖 .

Then, the bearing formation control error has to be defined as:

𝑒𝐹(𝑞) = b𝑑G − 𝛽G(𝑞) (4.12)
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and it has to converge to zero to solve the formation stabilization problem. Such
a minimization can be implemented by the scale-free controller based on the
Body Frame rigidity matrix as in Eq.4.13.[

u
𝜔

]
= 𝑘𝑐

[
𝑑𝑖𝑎𝑔(𝑑𝑖 𝑗) 0

0 I𝑁

]
BG(q)𝑇𝑏𝑑G , 𝑘𝑐 > 0 (4.13)

so that the 𝑖 − 𝑡ℎ agent velocity is given by Eq.4.14.


𝑢𝑖 = −𝑘𝑐 ∑(𝑖, 𝑗)∈ℰ P𝑖 𝑗𝛽𝑑𝑖𝑗 + 𝑘𝑐

∑
(𝑗 ,𝑖)∈ℰ R𝑖

𝑗P𝑗𝑖𝛽
𝑑
𝑗𝑖

𝜔𝑖 = 𝑘𝑐
∑

(𝑖 , 𝑗)∈ℰ 𝛽𝑇𝑖𝑗S𝛽
𝑑
𝑖𝑗

(4.14)

From Eq.4.14, it can be observed that the velocities depend on the graph G
and on the relative quantities (P𝑖 𝑗 , 𝛽𝑖 𝑗 , R𝑖

𝑗) according to the requirement about
the communication between agents. Instead, no distance measurements and
World Frame have to be known.

4.3 Bearing Rigidity theory applied to a group of
UGVs unicycles

It is considered a group of 𝑁 mobile agents, in particular UGVs, inR2, where
𝑁 ≥ 2. The position of an agent 𝑖 ∈ {1, ..., 𝑁} at time 𝑡 is represented by the
vector p𝑖(𝑡) ∈ R2, while the configuration of the group of𝑁 UGVs is represented
by p = [𝑝𝑇1 ...𝑝𝑇𝑁]. As said in Chapter 2, a MAS is represented through a graph
G, with the characteristics presented in section 2.2.1. In particular, considering
a generic edge (𝑖, 𝑗) ∈ ℰ, it holds that agent 𝑖 can measure the relative bearing of
agent 𝑗, which means that agent 𝑗 is a neighbor of agent 𝑖. Hence, the formation
denoted as (G , p) is G with its vertex 𝑖 mapped to 𝑝𝑖 for all 𝑖 ∈ V. The edge
vector for (𝑖, 𝑗) is defined as:

𝑒𝑖 𝑗 = 𝑝 𝑗 − 𝑝𝑖 (4.15)

while the bearing vector for the edge (𝑖 , 𝑗), which represents the relative bearing
of 𝑝 𝑗 with respect to 𝑝𝑖 , is defined as:

g𝑖 𝑗 =
𝑒𝑖 𝑗

| |𝑒𝑖 𝑗 | | (4.16)

where | |·| | denotes the Euclidean norm of a vector or the spectral norm of a
matrix. Consequently, for the bearing vector 𝑔𝑖 𝑗 , the orthogonal projection
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matrix is defined as:
Pg𝑖 𝑗 = I2 − g𝑖 𝑗g

𝑇
𝑖𝑗 ∈ R2×2 (4.17)

with 𝐼2 ∈ R2×2 representing the identity matrix. Then, from Eq.4.16, it follows
that the time derivative of 𝑔𝑖 𝑗 is given by:

g¤ 𝑖 𝑗 =
Pg𝑖 𝑗

| |𝑒𝑖 𝑗 | | 𝑒¤ 𝑖 𝑗 (4.18)

In this way, since Pg𝑖 𝑗g𝑖 𝑗 = 0, it holds that g¤ 𝑖 𝑗 is orthogonal to g𝑖 𝑗 and 𝑒𝑖 𝑗 . It
follows that: g𝑇𝑖𝑗g¤ 𝑖 𝑗 = 0 and 𝑒𝑇𝑖𝑗g¤ 𝑖 𝑗 = 0.

Without loss of generality, it is also possible to assume that the first 𝑛𝑙 agents
are leaders belonging to the set V𝑙 = {1, ..., 𝑛𝑙}, while the others 𝑛 𝑓 = 𝑛 − 𝑛𝑙
agents are followers, belonging to the setV𝑓 = V/V𝑙 . The positions of the leader
is denoted as p𝑙 = [𝑝𝑇1 , ..., 𝑝𝑇𝑛𝑙 ]𝑇 , while the ones of the followers are represented
as p 𝑓 = [𝑝𝑇𝑛𝑙+1, ..., 𝑝

𝑇
𝑛 ]𝑇 , so that p = [p𝑇𝑙 p𝑇𝑓 ]𝑇 . From these, it follows that the

velocities of the leaders are p¤ 𝑙 = 𝑣𝑙 , while the ones of the followers are p¤ 𝑓 = 𝑣 𝑓 .
In order to apply the Bearing Rigidity theory to the group of UGVs, a desired

target formation that the agents should achieve has to be defined as in Def.4.3.1,
under the assumption that the leaders move at a constant velocity 𝑣𝑙 ∈ R2.

Definition 4.3.1 (Target Formation) 16 The target formation (G , 𝑝∗(𝑡)) satisfies the
constant interneighbor bearings {g∗𝑖 𝑗}(𝑖, 𝑗)∈ℰ and the time-varying leader positions {p∗

𝑖(𝑡)}𝑖∈V𝑙 .

The bearing Laplacian matrix ℬ ∈ R2𝑛×2𝑛 is now defined in sub-blocks as
shown in Eq.4.19

[ℬ]𝑖 𝑗 =


0𝑑×𝑑 , 𝑖 ≠ 𝑗, (𝑖 , 𝑗) ∉ ℰ
−Pg∗

𝑖 𝑗
, 𝑖 ≠ 𝑗, (𝑖 , 𝑗) ∈ ℰ∑

𝑘∈N𝑖
Pg∗

𝑖𝑘
, 𝑖 = 𝑗 , 𝑖 ∈ V

(4.19)

In addition, according to the partition of leader and follower agents, ℬ can be
partitioned to:

ℬ =

[
ℬ𝑙𝑙 ℬ𝑙 𝑓

ℬ 𝑓 𝑙 ℬ 𝑓 𝑓

]
(4.20)

Given such partition, the condition of uniqueness of the target formation is

16Zhao S., Zhengtao D, Zhenhong Li, Bearing-Only Formation Tracking Control of Multi-
Agent Systems, in IEEE Transactions on Automatic Control, 2019, Manchester
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guaranteed by the following Lemma.

Lemma 4.3.1 (Condition for unique target formation) 17 The target configuration
p∗(𝑡) can be uniquely determined by the bearings {g∗𝑖 𝑗}(𝑖 , 𝑗)∈ℰ and leader positions
{p∗

𝑖}𝑖∈V𝑙 if and only if ℬ 𝑓 𝑓 is nonsingular.

Precisely, if ℬ 𝑓 𝑓 is non-singular, the position and the velocity of the followers in
the target formation are uniquely determined as:

p∗
𝑓 (𝑡) = −ℬ−1

𝑓 𝑓ℬ 𝑓 𝑙p∗
𝑙(𝑡) (4.21)

𝑣∗𝑓 (𝑡) = −ℬ−1
𝑓 𝑓ℬ 𝑓 𝑙𝑣∗𝑙 (𝑡) (4.22)

The control problem that has to be solved is to steer the agents to achieve
the target formation based on the bearing measurements, which can be alter-
natively expressed as designing a control input for agent 𝑖 ∈ V𝑓 based merely
on the bearing measurements {g𝑖 𝑗(𝑡)} 𝑗∈N𝑖 and the varying rate of the bearings
{g¤ 𝑖 𝑗(𝑡)} 𝑗∈N𝑖 such that g𝑖 𝑗 → g∗

𝑖 𝑗 for all (𝑖, 𝑗) ∈ ℰ as 𝑡 → ∞18. In order to solve this
problem, the UGVs are considered as single integrators with model:

p¤ 𝑖(𝑡) = u𝑖(𝑡) (4.23)

where u𝑖(𝑡) is the velocity input to be designed. It is first considered the case of
a stationary formation, where one UGV leader is stationary: 𝑣𝑙 = 0, such that
p¤ 𝑖 = 0 for 𝑖 ∈ V𝑙 . For the other UGVs, i.e. the followers, the relative control law
is:

p¤ 𝑖(𝑡) =
∑
𝑗∈N𝑖

(g𝑖 𝑗(𝑡) − g∗
𝑖 𝑗), 𝑖 ∈ V𝑓 (4.24)

Considering an oriented graph G and its incidence matrix 𝐷G , the bearing
vectors g(𝑡) and the desired bearing vectors g∗(𝑡), the control law in Eq.4.24 can
be rewritten as:

p¤ = −
[
0 0
0 I𝑑𝑛 𝑓

]
𝐷̄
𝑇
G(g − g∗) (4.25)

whose initial state is p(0) = [(p∗
𝑙)𝑇 p𝑇𝑓 (0)]𝑇 , where p 𝑓 (0) can be arbitrary.

Instead, considering the case of a moving formation, which means that the

17Zhao S., Zhengtao D, Zhenhong Li, Bearing-Only Formation Tracking Control of Multi-
Agent Systems, in IEEE Transactions on Automatic Control, 2019, Manchester

18ibidem
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leader moves with nonzero constant velocity 𝑣𝑙 , the control law is:

p¤ 𝑖 = 𝑘𝑃
∑
𝑗∈N𝑖

(g𝑖 𝑗(𝑡) − g∗
𝑖 𝑗) + 𝑘𝐼

∫ 𝑡

0

∑
𝑗∈N𝑖

(g𝑖 𝑗(𝜏) − g∗
𝑖 𝑗)𝑑𝜏, 𝑖 ∈ V𝑓 (4.26)

where 𝑘𝑃 and 𝑘𝐼 are positive constant gains.
Given such control law, the formation stability can be proved by the theorem

Th.4.3.1.

Theorem 4.3.1 (Single integrator formation tracking) Under the assumptions that:

1. the target formation (G , p∗) is unique, i.e. ℬ 𝑓 𝑓 is positive definite;

2. No neighboring agents collide with each other during the formation evolvement

p(𝑡) converges to p∗ asymptotically by the action of control law in Eq.4.26, where p∗(𝑡)
represents the target configuration moving at velocity 𝑣𝑙 with a fixed geometric pattern.

64



5
Leader-Follower approach using MPC

with Bearing

In this project it is implemented the Leader-Follower approach through the
MPC controller for an heterogeneous MAS. It is assumed that the distances
between the robots are unknown. Hence, the MPC is constructed based on
bearing and the velocities.

An heterogeneous MAS composed by four agents is considered. Between
them, two are UGVs and the other two are UAVs, such that the agents are two
by two homogeneous. The leader of the system is one of the two UAVs, while
the other UAV and the two UGVs are the followers. Only the leader knows the
trajectory to track while the followers track the same trajectory of the leader
without knowing the distance with it but just knowing the velocities and the
desired bearing vector.

To obtain the final result, the system is constructed by steps:

1. the UAV leader trajectory is implemented as shown in section 2.1.6;

2. the first UAV follower is added;

3. the two UGVs followers are added. Note that they depend on the leader
and there is no relation between themselves;

4. a noise is added to the Leader-Follower approach between the UAV leader
and the 2 UGVs followers.

In order to implement the MPC controller, an open source MATMPC tool-
box, that is a MATLAB based toolbox for real-time non linear model predictive
control, is used.
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Using MATMPC, a NLP is formulated by applying direct multiple shooting
to an OCP over the prediction horizon 𝑇 = [𝑡0, 𝑡 𝑓 ], which is divide in N shooting
intervals [𝑡0, 𝑡1, ..., 𝑡𝑁] as:

min
𝑥𝑘 ,𝑢𝑘

𝑁−1∑
𝑘=0

1
2 | |ℎ𝑘(𝑥𝑘 , 𝑢𝑘)| |

2
𝑊 + 1

2 | |ℎ𝑁 (𝑥𝑁 )| |
2
𝑊𝑁

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥0 − 𝑥̂0 = 0

𝑥𝑘+1 − 𝜙𝑘(𝑥𝑘 , 𝑢𝑘) = 0, 𝑘 = 0, 1, ..., 𝑁 − 1

𝑟𝑘 ≤ 𝑟𝑘(𝑥𝑘 , 𝑢𝑘) ≤ 𝑟𝑘 , 𝑘 = 0, 1, ..., 𝑁 − 1

𝑟𝑁 ≤ 𝑟𝑁 (𝑥𝑁 ) ≤ 𝑟𝑁

(5.1)

where 𝑥̂0 is the measurement of the current state. The system states 𝑥𝑘 ∈ R𝑛𝑥
are defined at the discrete time point 𝑡𝑘 for 𝑘 = 0, ..., 𝑁 and the control inputs
𝑢𝑘 ∈ R𝑛𝑢 for 𝑘 = 0, ..., 𝑁 − 1 are piecewise constant. It also holds that 𝑟(𝑥𝑘 , 𝑢𝑘) :
R𝑛𝑥 × R𝑛𝑢 → R𝑛𝑟 and 𝑟(𝑥𝑁 ) : R𝑛𝑥 → R𝑛𝑙 , with lower and upper bound 𝑟𝑘 , 𝑟𝑘 .
𝜙𝑘(𝑥𝑘 , 𝑢𝑘) is a numerical integration operator that solves the following initial
value problem (IVP) and returns the solution at 𝑡𝑘+1 1.

0 = 𝑓 (𝑥¤ (𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑥(0) = 𝑥𝑘

.

5.1 Leader-Follower approach between the 2 UAVs

In order to construct the Leader-Follower approach between the 2 UAVs,
first an MPC controller based just on the bearing vector (composed by three
components along the 𝑥, 𝑦, 𝑧 axis) and velocities (linear velocities along 𝑥, 𝑦,
𝑧 axis and angular velocities around 𝑥, 𝑦, 𝑧 axis) is considered. Then, in order
to improve the quality of such a controller, a new MPC controller based on the
bearing vector, velocities, angles, thrust (𝑇) and torques (𝜏𝜙, 𝜏𝜃, 𝜏𝜓) is used.

As already explained in section 3.2, the necessary ingredients for a well-
defined MPC are essentially three: cost function, dynamic system and con-
straints.

In addition, also the states and control inputs have to be defined such that

1Beghi A., Bruschetta M., Chen Y., Picotti E., MATMPC - A MATLAB Based Toolbox for Real-
time Nonlinear Model Predictive Control, 2019 18th European Control Conference (ECC), Napoli,
Italy, June 25-28, 2019
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the states can be expressed as a function of the control inputs in the dynamic
system.

Before starting to solve the problem, the following assumptions are done:

• the two UAVs considered are quadrotors described by the same character-
istics given in Tab.2.2, since they are assumed to be homogeneous. Instead,
they have different initial positions that are known and shown in Tab.5.1.
It has to be observed that the initial position of the UAV follower is chosen
paying attention to the fact that this must be different from the one of the
leader because, otherwise, the dynamical system cannot be solved.

Parameter Value
𝑥𝑙 0[𝑚]
𝑦𝑙 0[𝑚]
𝑧𝑙 1[𝑚]
𝑥 𝑓 −0.15[𝑚]
𝑦 𝑓 0[𝑚]
𝑧 𝑓 1.04[𝑚]

Table 5.1: Initial positions of the UAV leader and UAV follower.

• the UAV leader knows its trajectory, that is the one presented in section
2.1.6.

• the desired bearing vector (g∗) is imposed. In details, it is:
𝑔∗𝑥
𝑔∗𝑦
𝑔∗𝑧

 =


0.6
0.6

0.52915


The values of such vector are chosen so that its Euclidean norm is equal to
1 since, as explained in Chapter 4, it is required that g𝑖 𝑗 is a unit vector.

• the UAV follower knows the linear and angular velocities of the UAV leader:
𝑣𝑥,𝑙 , 𝑣𝑦,𝑙 , 𝑣𝑧,𝑙 , 𝜔𝑥,𝑙 , 𝜔𝑦,𝑙 , 𝜔𝑧,𝑙 .

• the UAV follower knows the thrust and torques of the UAV leader: 𝑇𝑙 , 𝜏𝜙,𝑙 ,
𝜏𝜃,𝑙 , 𝜏𝜓,𝑙 .

The resolution has to be based on a graph since the system considered is a
MAS composed by two UAVs. In details, a direct graph, as shown in Fig.5.1, is
taken into account, where node 2 represents the follower, node 1 represents the
leader and g21 represents the unknown bearing vector from follower to leader
(from node 2 to node 1).
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Figure 5.1: Directed graph considered for the Leader-Follower approach between two
UAVs.

Recalling that the general formulation of the MPC controller is the one ex-
pressed in Eq.5.2, in the case of interest the cost function is given by the sum of
other four cost functions that have to be minimized as shown in Eq.5.3. These
minimisations are related to the bearing error vector, the angle error vector, the
motion error vector relative to the velocities and the error vector on thrust and
torques.

𝑢̂∗ = min
𝑢
𝐽

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥¤ = 𝑓 (𝑥, 𝑢)
𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(5.2)

𝑢̂∗ = min
𝑢
𝐽 = min

𝑢
𝐽𝑔 + 𝐽𝑚 + 𝐽𝑟𝑝𝑦 + 𝐽𝑎𝑐𝑡

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥̄¤ = 𝑓 (𝑥̄ , 𝑢)
𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(5.3)
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In details, the definitions of these errors are:

e𝑔 = g∗ − g21 =


𝑔∗𝑥
𝑔∗𝑦
𝑔∗𝑧

 −

𝑔21,𝑥

𝑔21,𝑦

𝑔21,𝑧

 ∈ R3×1 (5.4)

e𝑚 = m𝑙 − m 𝑓 =



𝑣𝑥,𝑙
𝑣𝑦,𝑙
𝑣𝑧,𝑙
𝜔𝑥,𝑙

𝜔𝑦,𝑙

𝜔𝑧,𝑙


−



𝑣𝑥, 𝑓
𝑣𝑦, 𝑓
𝑣𝑧, 𝑓
𝜔𝑥, 𝑓

𝜔𝑦, 𝑓

𝜔𝑧, 𝑓


∈ R6×1 (5.5)

e𝑟𝑝𝑦 = rpy𝑙 − rpy 𝑓 =


𝜙𝑙
𝜃𝑙
𝜓𝑙

 −

𝜙 𝑓

𝜃 𝑓
𝜓 𝑓

 ∈ R3×1 (5.6)

e𝑎𝑐𝑡 = act𝑙 − act 𝑓 =


𝜏𝜙,𝑙
𝜏𝜃,𝑙
𝜏𝜓,𝑙
𝑇𝑙


−


𝜏𝜙, 𝑓
𝜏𝜃, 𝑓
𝜏𝜓, 𝑓
𝑇𝑓


∈ R4×1 (5.7)

Considering this formulation, the states are the three components of the
bearing vector (g21), the linear and angular velocities of the follower and the roll
(𝜙), pitch (𝜃) and yaw (𝜓) angles of the follower. Instead, the control inputs are
the thrust and torques of the follower.

Then, the states and the control inputs have, as time-varying references, the
desired bearing vector, the linear and angular velocities of the leader, the angles
of the leader and the thrust and torques of the leader, respectively.

So, following the order of the sum as in Eq.5.3, the cost function 𝐽 is defined
as in Eq.5.8:

𝐽 = e𝑇𝑔Ce𝑔 + e𝑇𝑚De𝑚 + e𝑇𝑟𝑝𝑦Ee𝑟𝑝𝑦 + e𝑇𝑎𝑐𝑡Fe𝑎𝑐𝑡 (5.8)

where C ∈ R3×3, D ∈ R6×6, E ∈ R3×3, F ∈ R4×4 are tuning gain matrices (also
called weighting matrices).

Having defined the cost function that has to be minimized, a dynamic system
relating the states with the control inputs must be defined. So, an augmented
system is created and, mathematically, it holds that the vector of unknowns
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related to the states is as in Eq. 5.9.

x̄ =


g21
v

rpy

 =



𝑔21𝑥

𝑔21𝑦

𝑔21𝑧

𝑣𝑥 𝑓
𝑣𝑦 𝑓
𝑣𝑧 𝑓
𝑤𝑥 𝑓
𝑤𝑦 𝑓

𝑤𝑧 𝑓
𝜙 𝑓

𝜃 𝑓
𝜓 𝑓



∈ R12×1 (5.9)

since

g21 =


𝑔21𝑥

𝑔21𝑦

𝑔21𝑧

 ∈ R3×1 (5.10)

v =

[
p¤

rpy¤

]
=



𝑣𝑥 𝑓
𝑣𝑦 𝑓
𝑣𝑧 𝑓
𝑤𝑥 𝑓
𝑤𝑦 𝑓

𝑤𝑧 𝑓


∈ R6×1 (5.11)

rpy =


𝜙 𝑓

𝜃 𝑓
𝜓 𝑓

 ∈ R3×1 (5.12)

(5.13)

Instead, the unknown control inputs vector is defined as in Eq.5.14.

u =


𝜏𝜙, 𝑓
𝜏𝜃, 𝑓
𝜏𝜓, 𝑓
𝑇𝑓


∈ R4×1 (5.14)
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Hence, the dynamic system has to be of the form as in Eq.5.15.

x̄¤ = Bx̄ + Au (5.15)

To construct the matrices A and B, the dynamics of the bearing vector in
Eq.5.16 and the ones of the UAV reported in Eq.5.24, 5.25, 5.26 must be recalled.

g¤ = ℬ𝑊v (5.16)

where:

• v is the ordered vector containing the linear velocities of the leader, the
linear velocities of the follower, the angular velocities of the leader and the
angular velocities of the follower, formally defined as in Eq.5.17.

v =



𝑣𝑥,𝑙
𝑣𝑦,𝑙
𝑣𝑧,𝑙
𝑣𝑥, 𝑓
𝑣𝑦, 𝑓
𝑣𝑧, 𝑓
𝜔𝑥,𝑙

𝜔𝑦,𝑙

𝜔𝑧,𝑙

𝜔𝑥, 𝑓

𝜔𝑦, 𝑓

𝜔𝑧, 𝑓



∈ R12×1 (5.17)

• ℬ𝑊 is the Bearing Laplacian Matrix defined in the World Frame and math-
ematically expressed as in Eq.5.18.

ℬ𝑊 =
[
−0− −P𝑖 𝑗R𝑇

𝑖
𝑑𝑖 𝑗

−0− P𝑖 𝑗R𝑇
𝑖

𝑑𝑖 𝑗
−0− ... −𝑆𝑔𝑖 𝑗 −0−

]
(5.18)

where:

– −P𝑖 𝑗R𝑇
𝑖

𝑑𝑖 𝑗
is in position 𝑖,

– P𝑖 𝑗R𝑇
𝑖

𝑑𝑖 𝑗
is in position 𝑗

– −Sg𝑖 𝑗 is in position 3𝑁 + 𝑖.
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In details:

𝑑𝑖 𝑗 = | |p𝑖 − p𝑗 | | ⇒ 𝑑21 = | |p2 − p1 | | (5.19)

g𝑖 𝑗 = R𝑇
𝑖

p𝑗 − p𝑖
𝑑𝑖 𝑗

⇒ g21 = R𝑇
2

p1 − p2
𝑑21

∈ R3×1 (5.20)

P𝑖 𝑗 = I3 − g𝑖 𝑗g
𝑇
𝑖𝑗 ⇒ P21 = I3 − g21g𝑇21 ∈ R3×3 (5.21)

R𝑖(𝜓𝑖) = R2(𝜓2) ∈ R3×3 (5.22)

ℬ ∈ R3×8 (5.23)

𝑑
𝑑𝑡


𝑥¤
𝑦¤
𝑧¤

 = R𝑊𝐵
𝑇
𝑚


0
0
1

 −

0
0
𝑔

 (5.24)

where:

• 𝑇 is the thrust component;

• 𝑚 is the mass of the quadrotor;

• 𝑔 is the gravity acceleration, i.e. 𝑔 = 9.81[𝑚/𝑠2]

• R𝑊𝐵 is the rotation matrix from Body to World Reference Frame, defined
as:

R𝑊𝐵(𝜙, 𝜃,𝜓) = R𝑧(𝜓)R𝑦(𝜃)R𝑥(𝜙) =

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃


where 𝑐 = 𝑐𝑜𝑠(·) and 𝑠 = 𝑠𝑒𝑛(·).


𝜔¤ 𝑥
𝜔¤ 𝑦
𝜔¤ 𝑧

 = I−1

(
𝜏𝜙
𝜏𝜃
𝜏𝜓

 −


0 −𝜔𝑧 𝜔𝑥

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0

 I


𝜔𝑥

𝜔𝑦

𝜔𝑧


)

(5.25)

where I ∈ R3×3 is the inertial matrix.


𝜙¤
𝜃¤
𝜓¤

 =


𝑐𝜃𝑐𝜓 𝑠𝜓 0
−𝑐𝜃𝑠𝜓 𝑐𝜓 0
𝑠𝜃 0 1


−1 

𝜔𝑥

𝜔𝑦

𝜔𝑧

 (5.26)

Hence, matrix A and B result to be constructed as given in Eq.5.27 and
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Eq.5.28.

A =


03×3 03×1

03×3 A1

A2 03×1

03×3 03×1


∈ R12×4 (5.27)

with

A1 =
R𝑊𝐵, 𝑓

𝑚


0
0
1

 ∈ R3×1

A2 = I−1 ∈ R3×3

B =


03×3 ℬ 03×3

03×3 03×12 03×3

03×12 B1 03×3

03×12 B2 03×3


∈ R12×18 (5.28)

with

ℬ =
[

P21R𝑇
2

𝑑21
−P21R𝑇

2
𝑑21

03×5 −Sg21

]
∈ R3×12, 𝑤𝑖𝑡ℎ S =


0 −1 0
1 0 0
0 0 0


B1 = −I−1


0 −𝜔𝑧 𝑓 𝜔𝑦 𝑓

𝜔𝑧 𝑓 0 −𝜔𝑥 𝑓

−𝜔𝑦 𝑓 𝜔𝑥 𝑓 0

 𝐼 ∈ R
3×3

B2 =


𝑐𝜃𝑐𝜓 𝑠𝜓 0
−𝑐𝜃𝑠𝜓 𝑐𝜓 0
𝑠𝜃 0 1


−1

∈ R3×3

Combining these results, the dynamics of the system can be summarized in
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Eq.5.29.



𝑔¤ 21𝑥
𝑔¤ 21𝑦
𝑔¤ 21𝑧
𝑣¤ 𝑥 𝑓
𝑣¤ 𝑦 𝑓
𝑣¤ 𝑧 𝑓
𝑤¤ 𝑥 𝑓
𝑤¤ 𝑦 𝑓
𝑤¤ 𝑧 𝑓
𝜙¤ 𝑓
𝜃¤ 𝑓
𝜓¤ 𝑓



=


03×3 ℬ 03×3

03×3 03×12 03×3

03×12 B1 03×3

03×12 B2 03×3





𝑔21𝑥

𝑔21𝑦

𝑔21𝑧

𝑣𝑥𝑙
𝑣𝑦𝑙
𝑣𝑧𝑙
𝑣𝑥 𝑓
𝑣𝑦 𝑓
𝑣𝑧 𝑓
𝑤𝑥𝑙
𝑤𝑦𝑙

𝑤𝑧𝑙
𝑤𝑥 𝑓
𝑤𝑦 𝑓

𝑤𝑧 𝑓
𝜙 𝑓

𝜃 𝑓
𝜓 𝑓



+


03×3 03×1

03×3 A1

A2 03×1

03×3 03×1



𝜏𝜙, 𝑓
𝜏𝜃, 𝑓
𝜏𝜓, 𝑓
𝑇𝑓


−



0
0
0
0
0
𝑔

0
0
0
0
0
0



(5.29)

About the constraints, a constraint for each control input (𝜏𝜙, 𝑓 , 𝜏𝜃, 𝑓 , 𝜏𝜓, 𝑓
and 𝑇𝑓 ) is imposed. In particular the chosen upper and lower bounds for these
quantities are:

−1[𝑁𝑚] ≤ 𝜏𝜙, 𝑓 ≤ 1[𝑁𝑚] (5.30)

−1[𝑁𝑚] ≤ 𝜏𝜃, 𝑓 ≤ 1[𝑁𝑚] (5.31)

−1[𝑁𝑚] ≤ 𝜏𝜓, 𝑓 ≤ 1[𝑁𝑚] (5.32)

6[𝑁] ≤ 𝑇𝑓 ≤ 35[𝑁] (5.33)

(5.34)

The choice of them is based on the observed values of 𝜏𝜙, 𝜏𝜃, 𝜏𝜓 and 𝑇 of the
leader. Instead, no constraints are established on the states.

Summarizing the MPC problem that has to be solved is the one presented in
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Eq.5.35.

min
𝑁−1∑
𝑘=0

1
2

(
e𝑇𝑔Ce𝑔 + e𝑇𝑚De𝑚 + e𝑇𝑟𝑝𝑦Ee𝑟𝑝𝑦 + e𝑇𝑎𝑐𝑡Fe𝑎𝑐𝑡

)
+ 1

2

(
e𝑇𝑔Ge𝑔 + e𝑇𝑚He𝑚 + e𝑇𝑟𝑝𝑦Ie𝑟𝑝𝑦

)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡



𝑔¤ 21𝑥
𝑔¤ 21𝑦
𝑔¤ 21𝑧
𝑣¤ 𝑥 𝑓
𝑣¤ 𝑦 𝑓
𝑣¤ 𝑧 𝑓
𝑤¤ 𝑥 𝑓
𝑤¤ 𝑦 𝑓
𝑤¤ 𝑧 𝑓
𝜙¤ 𝑓
𝜃¤ 𝑓
𝜓¤ 𝑓



=


03×3 ℬ 03×3

03×3 03×12 03×3

03×12 B1 03×3

03×12 B2 03×3





𝑔21𝑥

𝑔21𝑦

𝑔21𝑧

𝑣𝑥𝑙
𝑣𝑦𝑙
𝑣𝑧𝑙
𝑣𝑥 𝑓
𝑣𝑦 𝑓
𝑣𝑧 𝑓
𝑤𝑥𝑙
𝑤𝑦𝑙

𝑤𝑧𝑙
𝑤𝑥 𝑓
𝑤𝑦 𝑓

𝑤𝑧 𝑓
𝜙 𝑓

𝜃 𝑓
𝜓 𝑓



+


03×3 03×1

03×3 A1

A2 03×1

03×3 03×1



𝜏𝜙, 𝑓
𝜏𝜃, 𝑓
𝜏𝜓, 𝑓
𝑇𝑓


−



0
0
0
0
0
𝑔

0
0
0
0
0
0



−1[𝑁𝑚] ≤ 𝜏𝜙, 𝑓 ≤ 1[𝑁𝑚]
−1[𝑁𝑚] ≤ 𝜏𝜃, 𝑓 ≤ 1[𝑁𝑚]
−1[𝑁𝑚] ≤ 𝜏𝜓, 𝑓 ≤ 1[𝑁𝑚]

6[𝑁] ≤ 𝑇𝑓 ≤ 35[𝑁]

(5.35)
After having defined the dynamical system, from the implementation point

of view, other parameters have to be chosen. Between them, it has been chosen
to set:

• the number of shooting intervals (𝑁) equal to 80. This number represents
the prediction horizon that is used to minimize the error between the
measurement and the reference.

• The shooting interval time 𝑇𝑠 is set to 0.001 𝑠. This is chosen in such a way
that the model can be solved. In fact, if it is too big, some errors arise due
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to the fact that the prediction cannot be performed.

• the algorithm used to solve the non-linear least squares problems is the
Gauss-Newton. This method is an extension of the Newton algorithm
used to find a minimum of a non-linear function.

• the chosen integrator is 𝐸𝑅𝐾4 (𝑂𝑑𝑒4 is used in MATLAB with fixed step
size equal to the shooting interval time) which uses the Runge-Kutta algo-
rithm to solve Ordinary Differential Equations;

• the solver is the 𝑞𝑝𝑜𝑎𝑠𝑒𝑠;

• the weighting matrices C, D, E and F are diagonal matrices chosen by trial
and error. These matrices are used to weight the contribution of each term
to the cost index itself. The greater the weight, the smaller the deviation
from the tolerated reference signal. The choice of these weights is not
immediate since it is the result of an iterative procedure that starts from
the choice of the initial matrices and then proceeding by adjusting the
starting values depending on the optimal solutions obtained. Note that
varying the values of the weights influences the dynamics of the signals in
terms of shape and amplitude and makes it possible to model the accuracy
of the tracking of the reference in such a way as to achieve the objective.
In particular, the results shown in the following are obtained considering:

C =


1050 0 0

0 1050 0
0 0 1050



D =



16500 0 0 0 0 0
0 16500 0 0 0 0
0 0 30500 0 0 0
0 0 0 700 0 0
0 0 0 0 700 0
0 0 0 0 0 18250


E =


700 0 0
0 700 0
0 0 18250


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F =


50 0 0 0
0 50 0 0
0 0 50 0
0 0 0 50


G =


1050 0 0

0 1050 0
0 0 1050


H =



16500 0 0 0 0 0
0 16500 0 0 0 0
0 0 21500 0 0 0
0 0 0 700 0 0
0 0 0 0 700 0
0 0 0 0 0 18250


I =


700 0 0
0 700 0
0 0 18250


Implementing the MPC controller as explained above, the final UAV follower

trajectory is the one shown in Fig.5.2, while the comparison between the UAV
leader and UAV follower trajectories is shown in Fig.5.3.
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Figure 5.2: UAV follower trajectory.

Figure 5.3: Comparison between the UAV leader and the UAV follower trajectories.

Looking at Fig.5.3, the UAV follower trajectory follows the UAV leader one
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even if they starts from two different initial positions as given in Tab.5.1. How-
ever, it must be noted that the UAV leader stabilizes at an altitude equal to 2 𝑚,
while the UAV follower reaches an altitude of almost 2.5𝑚. This is due to the fact
that the linear velocity along the 𝑧 direction stabilizes at a really small positive
value different from 0, as it is possible to observe in Fig.5.8(c). In addition, the
UAV follower oscillates more along the 𝑧 coordinate with respect to the UAV
leader.

The behaviour of the obtained result can be studied more through the anal-
ysis of the thrust and torques, other than linear, angular velocities and angles.
The control inputs, given by the MPC, assume the form shown in Fig.5.4, which
are also compared to the ones of the leader as shown in Fig.5.5 and 5.6.

Figure 5.4: UAV follower thrust and torques.

Looking at Fig.5.5, the UAV follower’s torques oscillate more than the ones
relative to the UAV leader even if the first ones reach the values of the ones of
the leader in almost 30 𝑠. According to the trajectory, every time the trajectory
changes, i.e. every 10 𝑠, an effect in the torques of both the agents is visible due
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(a) 𝜏𝜙 UAVs leader and follower. (b) Detail: 𝜏𝜙 UAVs leader and follower.

(c) 𝜏𝜃 UAVs leader and follower. (d) Detail: 𝜏𝜃 UAVs leader and follower.

(e) 𝜏𝜓 UAVs leader and follower. (f) Detail: 𝜏𝜓 UAVs leader and follower.

Figure 5.5: UAV leader and UAV follower torques.
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(a) 𝑇 UAVs leader and follower. (b) Detail: 𝑇 UAVs leader and follower.

Figure 5.6: UAV leader and UAV follower thrust.

to the fact that the UAVs have to align with the new direction to follow.
Instead, looking at Fig.5.6, the thrusts of the two UAVs start from a value that

is different from the force of gravity given by 𝑚𝑔 = 14.715 𝑁 . This behaviour is
due to the fact both the UAV leader and UAV follower start from 𝑧 = 1 𝑚, but
they have to reach the altitude of 𝑧 = 2 𝑚. Hence, they must apply an upward
force greater than the force of gravity because if these two forces were equal,
the quadrotors would maintain a constant height of 1 𝑚. In fact, after having
reached the desired altitude, the UAVs leader and follower stabilize, equalising
the thrust with the force of gravity.

So, knowing the values of 𝜏𝜙, 𝑓 , 𝜏𝜃, 𝑓 , 𝜏𝜓, 𝑓 and 𝑇𝑓 , the rotor spinning rates

squared


𝜔2

1, 𝑓
𝜔2

2, 𝑓
𝜔2

3, 𝑓
𝜔2

4, 𝑓


are given by the application of the wrench mapper (defined in

Tab.2.2) to the vector


𝜏𝜙, 𝑓
𝜏𝜃, 𝑓
𝜏𝜓, 𝑓
T 𝑓


. Hence, from the rotor spinning rates squared, the

linear and angular accelerations are computed and then, integrating them, the
linear and angular velocities are obtained.

The linear velocities’ behaviour are shown in Fig.5.8, while a comparison
between the UAV leader and UAV follower linear velocities are presented in
Fig.5.8.
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Figure 5.7: UAV follower linear velocities.

Looking at Fig.5.8, the linear velocities of the UAV follower almost follow the
ones of the leader even if with a more oscillatory behaviour, especially in the
first 20 𝑠, due to the fact that the starting positions of the two agents are different

and the linear velocities of the follower are initialized to


0.1
0

−0.46

 [𝑚/𝑠], while

the ones of the leader to


0.1
0
0

 [𝑚/𝑠].

In particular, considering the trajectory that the UAV has to track, 𝑣𝑥 ≠ 0
and 𝑣𝑦 = 0 from 0 to 10𝑠 according to the fact that the drone moves only along
the 𝑥 direction. Then, from 10 to 20𝑠, 𝑣𝑥 decreases, while 𝑣𝑦 increases since the
curve is on the left. From 20 to 30𝑠, 𝑣𝑥 and 𝑣𝑦 stabilize while, from 30 to 40𝑠, 𝑣𝑥
increases and 𝑣𝑦 decreases in order to have a curve on the right. In the end, as
seen for the first 10𝑠 of the simulation, from 40 to 50𝑠, 𝑣𝑥 remains constant to a
value different from 0, while 𝑣𝑦 is almost null since the UAV follower performs
a straight line path along the 𝑥 direction.
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(a) 𝑣𝑥 UAVs leader and follower. (b) 𝑣𝑦 UAVs leader and follower.

(c) 𝑣𝑧 UAVs leader and follower.

Figure 5.8: UAV leader and UAV follower linear velocities.

Instead, the angular velocities behaviour is shown in Fig.5.9, while a compar-
ison between the UAV leader and UAV follower angular velocities are presented
in Fig.5.10.

Looking at Fig.5.10, as for the case of the linear velocities, it is possible to
note the oscillatory behaviour during the first 20 𝑠 of the simulation. Then, the
angular velocities of the UAV follower along the 𝑥 and 𝑦 direction reaches the
values of the UAV leader’s angular velocities. Instead, about the angular velocity
around the 𝑧 component of the UAV follower, it diverges. To avoid this problem,
two possible solutions are:

1. the weights relative to the torques and to the angular velocities have to be
changed, accordingly with Eq.5.25;

2. a constraint on the state relative to the angular velocity around the 𝑧
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Figure 5.9: UAV follower angular velocities.

component has to be added.
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(a) 𝜔𝑥 UAVs leader and follower. (b) 𝜔𝑦 UAVs leader and follower.

(c) 𝜔𝑧 UAVs leader and follower.

Figure 5.10: UAV leader and UAV follower angular velocities.

In the end, the 𝑥, 𝑦 and 𝑧 position and the 𝜙, 𝜃, 𝜓 angles are given by
integrating the linear and angular velocities, respectively. The UAV follower
position is shown in Fig.5.11, while the angles in Fig.5.12.

Hence about the angles, considering the Cartesian plane, from 0 to 10𝑠 the
UAV follower has to track a straight line path how it is possible to note from the
fact that 𝜙 is null and 𝜃 oscillates around zero since 𝜃0 = 0 𝑟𝑎𝑑. Then, from
10 to 20𝑠 a curve on the left is performed accordingly with the fact that 𝜙 < 0
𝑟𝑎𝑑. Then, from 20 to 30𝑠, there is again a straight line path and the angles try
to reach a constant value, while from 30 to 40𝑠 a curve on the right is performed
accordingly with 𝜙 > 0 𝑟𝑎𝑑. In the end, at 40𝑠 the UAV follower repositions
itself to follow a straight line up to 50𝑠, when the simulation ends. Summarizing,
about the 𝜙 angle, it holds that:

• if 𝜙 < 0 𝑟𝑎𝑑, then the UAV follower performs a left turn;

• if 𝜙 > 0 𝑟𝑎𝑑, then the UAV follower performs a right turn.

In addition, the value of 𝜃 is always small but never equal to zero since the
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Figure 5.11: UAV leader and UAV follower trajectories in 𝑥, 𝑦 and 𝑧 directions.

UAV follower must follow the trajectory. In fact, it holds that:

• if 𝜃 < 0 𝑟𝑎𝑑, then the UAV follower goes forward;

• if 𝜃 > 0 𝑟𝑎𝑑, then the UAV follower goes backward.

Despite this, when there is a change in the manoeuvre, the angles oscillates
since the UAV follower has to change its orientation.

Instead, looking at the plot relative to 𝜓, for the UAV leader, it is really
small (oscillates around zero with an amplitude of order 10−16), while the one
of the UAV follower degenerate accordingly with the fact that it is computed by
deriving the angular velocity around the 𝑧 direction that degenerates, too.

All the results strongly depend on the weights chosen. Such values are
chosen by a trial and error approach, even if it possible to observe some rules
about this choice. In fact, choosing bigger values for the controls than the ones
for the states, the results saturate. Hence, smaller weights are chosen than the
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(a) 𝜙 UAVs leader and follower. (b) 𝜃 UAVs leader and follower.

(c) 𝜓 UAVs leader and follower.

Figure 5.12: UAV follower angles.

ones of the states, even if the greater the weight is, the smaller the deviation
from the tolerated reference signal is.

Then, also a dependence between the weights can be found. In fact, the
weights that adjust the angular acceleration, influence the behaviour of the
angular velocities, too. In this way, in order to improve the performance of the
system, the weights have to be changed. As an example, choosing the weighting
matrices as:

C =


1050 0 0

0 1050 0
0 0 1050


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D =



16500 0 0 0 0 0
0 16500 0 0 0 0
0 0 31000 0 0 0
0 0 0 25500 0 0
0 0 0 0 25500 0
0 0 0 0 0 900000


E =


700 0 0
0 700 0
0 0 31000


F =


50 0 0 0
0 50 0 0
0 0 30500 0
0 0 0 50


G =


1050 0 0

0 1050 0
0 0 1050


H =



16500 0 0 0 0 0
0 16500 0 0 0 0
0 0 21500 0 0 0
0 0 0 700 0 0
0 0 0 0 700 0
0 0 0 0 0 18250


I =


700 0 0
0 700 0
0 0 18250


the UAV follower stabilizes at an altitude of 2 𝑚, 𝜔𝑧 and 𝜓 do not degenerate
anymore. However, a more oscillatory behaviour in the (𝑥, 𝑦)-plane appears.
Hence, in order to improve the performance of the system, a better weights
combination must be found.

5.2 Leader-Follower approach between a UAV and a
UGV

To implement the Leader-Follower approach for the heterogeneous MAS
composed by a UGV and a UAV, the following assumptions are considered:
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• the UGV follower is assumed to be a UAV. Hence, the reasoning is per-
formed in the 3-dimensional space neglecting the behaviour of thrust and
torques and imposing the 𝑧 position component equal to 0 𝑚, since the
UGV moves in the 2-dimensional space.

• the UAV is the leader and the UGV is the follower. The UAV characteristics
are described in Tab.2.2, while the UGV ones are in Tab.2.1. However, the
initial positions of the UAV leader and of the UGV follower are given in
Tab.5.2.

Parameter Value
𝑥𝑙 0 [𝑚]
𝑦𝑙 0 [𝑚]
𝑧𝑙 1 [𝑚]

𝑥 𝑓 ,𝑈𝐺𝑉1 −0.3 [𝑚]
𝑦 𝑓 ,𝑈𝐺𝑉1 0 [𝑚]
𝑧 𝑓 ,𝑈𝐺𝑉1 1 [𝑚]

Table 5.2: Initial positions of the UAV leader and UGV1 follower.

• the UAV leader knows its trajectory, that is the one shown in section 2.1.6.

• the desired bearing vector (g∗) is known and it is:
𝑔∗𝑥
𝑔∗𝑦
𝑔∗𝑧

 =


0.6
0.6
0.52


• the UGV follower knows the UAV leader velocities: 𝑣𝑥,𝑙 , 𝑣𝑦,𝑙 , 𝑣𝑧,𝑙 , 𝜔𝑧,𝑙 .

As done in the previous case for the 2 UAVs, it is dealing again with a MAS
even if, in this case, it is heterogeneous. Hence, it must be defined a graph to
describe it.

As before, for the case of two UAVs, a directed graph is considered and its
representation is in Fig.5.13, where it is assumed that node 1 is the leader, node
2 is the follower and g21 is the bearing vector from follower to leader.

An MPC controller for the Leader-Follower approach has to be constructed in
order to have that the UGV follows the UAV leader. This controller is constructed
based on the bearing vector and on the velocities. As explained before, to
construct the MPC, it is necessary to define the cost function, the dynamic
system and, eventually, the constraints.

About the cost function that has to be minimized, it is defined as in Eq.5.38.
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Figure 5.13: Directed graph considered for the Leader-Follower approach between a
UAV and a UGV.

𝑢̂∗ = min
𝑢
𝐽 = min

𝑢
𝐽𝑔 + 𝐽𝑚 (5.36)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥¤ = 𝑓 (𝑥, 𝑢) (5.37)

𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (5.38)

In this scenario, the states are represented by the bearing vector (g21), while
the control inputs are the linear velocities along the 𝑥,𝑦 and 𝑧 direction and the
angular velocity around the 𝑧 axis (𝜙¤ ). Instead, the time-varying references are
the desired bearing vector (g∗) and the linear and angular velocities of the leader.
Mathematically, the definitions of such errors are:

e𝑔 = g∗ − g =


𝑔∗21,𝑥
𝑔∗21,𝑦
𝑔∗21,𝑧

 −

𝑔21,𝑥

𝑔21,𝑦

𝑔21,𝑧

 ∈ R3×1 (5.39)

e𝑚 =


𝑥¤ 𝑙
𝑦¤ 𝑙
𝑧¤ 𝑙
𝜙¤ 𝑙


−


𝑥¤ 𝑓
𝑦 𝑓
𝑧¤ 𝑓
𝜙¤ 𝑓


∈ R4×1 (5.40)

Hence, following the order in Eq.5.38, the cost function becomes as in Eq.5.41.

𝐽 = e𝑇𝑔Le𝑔 + e𝑇𝑚Me𝑚 (5.41)

where L ∈ R3×3, M ∈ R4×4 are weighting diagonal matrices, whose gains are
established by trial and error as previously explained in section 5.1.

Defined the cost function, a dynamic system has to be created to relate the
dynamics of the bearing vector with the control inputs. As known, Eq.5.42 holds
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and represents the system dynamics.

g¤ = ℬ𝑊u (5.42)

where:

•

g¤ =

𝑔¤ 𝑥
𝑔¤ 𝑦
𝑔¤ 𝑧


• ℬ𝑊 is the Bearing Laplacian matrix defined for a direct graph and ex-

pressed in the World Frame as in Eq.5.18.

•

u =



𝑥¤ 𝑙
𝑦¤ 𝑙
𝑧¤ 𝑙
𝑥¤ 𝑓
𝑦¤ 𝑓
𝑧¤ 𝑓
𝜓¤ 𝑙
𝜓¤ 𝑓


∈ R8×1

where 𝑥¤ 𝑙 , 𝑦¤ 𝑙 , 𝑧¤ 𝑙 and 𝜓¤ 𝑙 are known, while 𝑥¤ 𝑓 , 𝑦¤ 𝑓 , 𝑧¤ 𝑓 and 𝜓¤ 𝑓 are given by the
control inputs that have to follow the reference given by the linear velocity
and the angular velocity around the 𝑧 axis of the leader.

Hence, knowing 𝑥¤ 𝑓 , 𝑦¤ 𝑓 , 𝑧¤ 𝑓 it is possible to obtain the pose of the UGV follower
just integrating such values as in Eq.5.46.

𝑥 𝑓 =
∫

𝑥¤ 𝑓 𝑑𝑡 (5.43)

𝑦 𝑓 =
∫

𝑦¤ 𝑓 𝑑𝑡 (5.44)

𝑧 𝑓 =
∫

𝑧¤ 𝑓 𝑑𝑡 (5.45)

(5.46)

Note that, since the UGV moves in the 2-dimensional space, the 𝑧 component
will be later set to zero.

In this definition, no constraints are imposed on the states and on the control
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inputs. So, the final formulation of the MPC can be summarized as in Eq.5.47.

min
𝑁−1∑
𝑘=0

1
2

(
e𝑇𝑔Le𝑔 + e𝑇𝑚Me𝑚

)
+ 1

2

(
e𝑇𝑔Ne𝑔

)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡


𝑔𝑥¤
𝑔𝑦¤
𝑔𝑧¤

 = ℬ𝑊



𝑥¤ 𝑙
𝑦¤ 𝑙
𝑧¤ 𝑙
𝑥¤ 𝑓
𝑦¤ 𝑓
𝑧¤ 𝑓
𝜓¤ 𝑙
𝜓¤ 𝑓



(5.47)

As done before for the case of the two UAVs, from the implementation point
of view, some parameters used to define the MPC controller have to be set:

• the number of shooting intervals (𝑁) equal to 80;

• The shooting interval time 𝑇𝑠 is set to 0.001[𝑠];
• the algorithm used to solve the non-linear least squares problem is the

Gauss-Newton;

• the chosen integrator is 𝐸𝑅𝐾4;

• the solver is the 𝑞𝑝𝑜𝑎𝑠𝑒𝑠;

• the weighting matrices G, H are diagonal matrices whose entries are cho-
sen by trial and error. In particular:

L =


1000 0 0

0 1000 0
0 0 1000


M =


0.001 0 0 0

0 0.001 0 0
0 0 100000 0
0 0 0 100000


N =


1000 0 0

0 1000 0
0 0 1000


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Doing so, the trajectory of the UGV follower is the one shown in Fig.5.14,
while the comparison between the UAV leader and the UGV follower trajectories
is presented in Fig.5.15.

Figure 5.14: UGV Follower trajectory.
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Figure 5.15: Leader-Follower trajectories: UAV leader and UGV follower.

Looking at Fig.5.15, it is possible to observe that the UGV follows the UAV
leader even if, due to the different starting positions, the UGV has to reach the
formation. After having reached such position, it starts to follow the trajectory
of the UAV leader.

In detail, the velocities’ behaviour of the UGV follower is shown in Fig.5.16,
while a comparison between the UAV leader and UGV follower velocities is
given in Fig.5.17.

Looking at Fig.5.17, both the linear velocities of the UGV follower oscillate
during the first 5 𝑠 of the simulation due to the weights’ choice and the different
initial position chosen with respect to the one of the UAV leader. After the
first 5 𝑠 of the simulation, the linear velocities coincide according to the fact
that the UGV follower tracks the UAV leader trajectory after having reached the
formation.

In addition, as explained in section 5.1, the weights can be tuned better
through the trial and error approach in order to avoid the big oscillations in the
starting instants. To improve the performance of such approach, also the initial
position of the UGV can be chosen in such a way to satisfy the condition relative
to bearing vector.
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Figure 5.16: UGV follower linear velocities.

5.3 Leader-Follower approach between a UAV and
two UGVs

In the next step, it was added another UGV follower so that the heterogeneous
MAS is now composed by a UAV leader and two UGVs followers.

It is important to observe that the two considered UGVs have the same
actuation capabilities (they are homogeneous) given in Tab.2.1, but the initial
positions are different and shown in Tab.5.3.

Parameter Value
𝑥𝑙 0 [𝑚]
𝑦𝑙 0 [𝑚]
𝑧𝑙 1 [𝑚]

𝑥 𝑓 ,𝑈𝐺𝑉1 −0.3 [𝑚]
𝑦 𝑓 ,𝑈𝐺𝑉1 0 [𝑚]
𝑧 𝑓 ,𝑈𝐺𝑉1 1 [𝑚]
𝑥 𝑓 ,𝑈𝐺𝑉2 0.3 [𝑚]
𝑦 𝑓 ,𝑈𝐺𝑉2 0 [𝑚]
𝑧 𝑓 ,𝑈𝐺𝑉2 1 [𝑚]

Table 5.3: Initial positions of the UAV leader and UGVs followers.

So the two UGVs are controlled separately but they satisfy the same dynamic
model, described by the same parameters’ values. Therefore, for each UGV, an
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5.3. LEADER-FOLLOWER APPROACH BETWEEN A UAV AND TWO UGVS

(a) 𝑣𝑥 UAV leader and UGV follower. (b) Detail: 𝑣𝑥 UAV leader and UGV follower.

(c) 𝑣𝑦 UAV leader and UGV follower. (d) Detail: 𝑣𝑦 UAV leader and UGV follower.

Figure 5.17: UAV leader and UGV follower linear velocities.

MPC controller defined as in Eq.5.47 is implemented.

Hence, the trajectory of the second UGV follower is shown in Fig.5.18, while
the final result of the simulation comprising a UAV leader and two UGVs fol-
lowers is shown in Fig.5.19.

According to what previously noted in section 5.2, also the second UGV
follower first reaches the position in the formation and then follows the leader
trajectory. Despite this, the result can be improved by tuning the weights as
explained in section 5.2.
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Figure 5.18: UGV2 follower trajectory.

5.4 Final results considering 2 UGVs and 2 UAVs

The final goal is reached by joining together the results obtained in sections
5.1 and 5.3 and it is shown in Fig.5.20.

The main problem, in obtaining the final goal, is due to a MATMPC limita-
tion. In fact, this MATLAB Toolbox is created for embedded real-time systems
and just one model at the time can be defined. Hence, if in a system there are
more than one model and all of them are run, just the last one is considered.

In order to solve this problem, since the model between the two UAVs is
different from the one between the UAV and the UGV, considering the UAV
as the leader and the other UAV and the two UGVs as followers, two different
SIMULINK files are created.

In the first one it is considered the Leader-Follower Approach between the
two UAVs and the relative model is defined, while in the second one the Leader-
Follower Approach between the UAV and the UGV is considered and the relative
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Figure 5.19: UAV leader and UGVs followers trajectories.

model is defined.
Then, the results in the scopes of the first SIMULINK file are saved into a file

.𝑚 and used in the main code together with the results obtained by the second
SIMULINK file.

5.5 Adding the disturbance

In order to verify the robustness of the obtained results, some white noises
are added to the model. In particular the white noises are added to the linear
velocities of the UAV leader, in the simulation relative to the Leader-Follower
approach between the UAV and the UGV. To better understand the reaction to
the disturbances:

• considering the model of the first UGV follower, a white noise of amplitude
0.001 and sample time equal to the shooting time 0.001 𝑠 is added to the
linear velocity of the UAV leader along the 𝑥 direction.
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Figure 5.20: Final trajectories of the MAS without noise.

• considering the model of the first UGV follower, a white noise of amplitude
0.001 and sample time equal to the shooting time 0.001 𝑠 is added to the
linear velocity of the UAV leader along the 𝑥 and 𝑦 directions.

Considering the first UGV follower with noise, the obtained trajectory, com-
pared to the one of the UAV leader, is the one shown in Fig.5.21.

Instead, taking into account the second UGV follower, the obtained trajectory,
compared to the one of the UAV leader, is shown in Fig.5.22.

As before, the UAV follower is then added without considering any noise in
this case so that the final result of the entire system is the one shown in Fig.5.23.

Looking at the final plot in Fig.5.23, it is possible to observe that the system
react to the disturbances in such a way that the UGVs follow the trajectory even
if with some errors, more visible along the curves in both the cases. In details,
considering the first UGV follower, the trajectory is more disturbed with respect
to the one tracked by the second UGV follower since the amplitude of the noise
is bigger in this case.
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Figure 5.21: Comparison between the UAV leader trajectory and the first UGV follower
trajectory with noise.
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Figure 5.22: Comparison between the UAV leader trajectory and the UGVs followers
trajectories with noise.
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Figure 5.23: Final system result with noise.
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6
Conclusions

In this thesis, the Leader-Follower approach based on MPC with bearing
applied to a MAS, composed by two quadrotors and two unicycles, is studied.

In implementing such approach, instead of considering the Leader-Follower
approach based on the distance between the agents, the trajectory tracking for the
followers relies on a Model Predictive Controller defined differently depending
on the agent considered.

Being the MAS composed by four agents (two UAvs and two UGVs) with
different kinematics and dynamics, the problem is studied dividing the MAS in
pairs and hence different direct graphs are taken into account.

First the Leader-Follower approach between the UAV leader and UAV fol-
lower is implemented. Then, the approach is applied to the UAV leader and a
UGV follower and, later, to the UAV leader and the other UGV follower.

In particular, for the case of the Leader-Follower approach applied to a
UAV leader and UAV follower, the MPC is based on the bearing vector, linear
and angular velocities, angles and thrust and torques in order to develop a
more accurate system being agents moving in the 3-dimensional space. In
implementing this control system, it is chosen to create an augmented system in
order to add the control on thrust and torques to take into account the coupling
effect between the attitude and translational dynamics of the quadrotors.

Instead, the Leader-Follower approach applied to the UAV leader and the
UGV follower is based on the bearing vector and on the linear velocities being
the UGV a 2-dimensional agent.

The implemented MAS works as required since the followers track the same
trajectory of the UAV leader after having reached the formation. However,
the solution found strongly depends on the desired trajectory to track and on
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the weights chosen in the weighting matrices’ definitions and on the starting
positions of the followers. Hence, changing the starting positions, the weighting
matrices have to be adjusted appropriately. In another way, considering the same
starting positions of the followers as defined in the previous chapters, in order
to improve the performance, different combinations of the weighting matrices
can be chosen, paying attention to the fact that some weights influence not only
the state or the control input referred to but also other states, as explained in
section 5.1.

To verify the robustness of the created system, a noise on the 𝑣𝑥 coordinate
of amplitude equal to 0.001 and sample time 0.001 𝑠 is added in the dynamic
system defined for the first UGV follower. Instead, a noise of amplitude 0.001
and sample time 0.001 𝑠 is added to 𝑣𝑥 and 𝑣𝑦 in the dynamic system defined
for the second UGV follower. In both these cases, as seen in section 5.5, even if
the action of the noises is visible, the followers track the same trajectory of the
leader reaching the goal also in this case.

Some future works related to this project may concern:

1. the insertion of obstacles in the trajectory to track. In fact, if the obstacle
appears in the UAV leader trajectory, the leader avoids it and, consequently,
also the followers change their trajectories. Instead, if the obstacle appears
in the followers’ trajectory, they cannot avoid the obstacle according with
the system created. To realize this improvement, a camera on each agent
must be added.

2. the consideration of a trajectory to be tracked for UGVs that is not limited
to the Cartesian plane but that is developed in a mountainous scenery.
In order to realize this improvement, a more convenient definition is on
considering a UGV as the leader, the other UGV as the follower and the
UAVs as followers, too. Then, the distance between the UGV leader altitude
and the UAV follower one has to be taken into account.
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A
Quaternions

The quaternion is an hyper complex entity that represents the extension of a

complex number in an higher dimensional space and it is defined as q =

[
𝜂

𝜖

]
∈

S3, where:
𝜂 = cos(𝜃2 )

𝜖 = e sin(𝜃2 )
so that:

q =

[
𝜂

𝜖

]
=

[
cos(𝜃2 )
e sin(𝜃2 )

]
(A.1)

where e represents a unit vector. Hence, q represents the rotation of 𝜃 around
e. The definition of quaternion can also be rewritten as:

q = 𝜂 + 𝑖𝜖𝑖 + 𝑗𝜖 𝑗 + 𝑘𝜖𝑘 = 𝜂 + 𝜖 =

[
𝜂

𝜖

]
(A.2)

where 𝜂 is the scalar real part of the quaternion, 𝜖 = [𝜖𝑖 𝜖 𝑗 𝜖𝑘]𝑇 is the complex
vector part of the quaternion and (𝑖 , 𝑗 , 𝑘) is a coordinate frame abiding the
Hamilton’s rules:

𝑖2 = 𝑗2 = 𝑘2 = 𝑖 𝑗𝑘 = −1

𝑖 𝑗 = 𝑘 𝑗𝑘 = 𝑖 𝑘𝑖 = 𝑗

𝑗𝑖 = −𝑘 𝑘 𝑗 = −𝑖 𝑖𝑘 = −𝑗
(A.3)

The scalar and vector part of the quaternion are constrained by:

𝜂2 + 𝜖2
𝑖 + 𝜖2

𝑗 + 𝜖2
𝑘 = 1 (A.4)
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from which, the name of unit quaternion derives. Accordingly with this, the
norm computation of the quaternion results:

| |q| |2 = cos2(𝜃2 ) + sin2(𝜃2 ) = 𝜂2 + 𝜖𝑇𝜖 = 1 (A.5)

In addition, the quaternion conjugate is defined as in Eq.A.6, while the
quaternion inverse as in Eq.A.7.

q̄ = 𝜂 − 𝑖𝜖𝑖 − 𝑗𝜖 𝑗 − 𝑘𝜖𝑘 = 𝜂 − 𝜖 =

[
𝜂

−𝜖

]
(A.6)

q−1 =
q̄

| |q| |2 (A.7)

Considering a unit quaternion, the inverse of it is defined as in Eq.A.8.

q−1 =
q̄
1 = q̄ (A.8)

Then, the inner and outer product between quaternions result as shown in
Eq.A.9 and Eq.A.10, respectively.

q = q1 · q2 = (𝜂1 + 𝜖1) · (𝜂2 + 𝜖2) = 𝜂1𝜂2 + 𝜖1 · 𝜖2 =

[
𝜂1𝜂2 + 𝜖𝑇1 𝜖2

0

]
(A.9)

q = q1 ×q2 = (𝜂1 + 𝜖1)× (𝜂2 + 𝜖2) = 𝜂1𝜖2 +𝜂2𝜖1 + 𝜖1 × 𝜖2 =

[
0

𝜂1𝜖2 + 𝜂2𝜖1 + 𝜖1 × 𝜖2

]
(A.10)

where the inner product is defined in the domain:

S3 × S3 → R

while the outer product in:
S3 × S3 → R3

Instead, the quaternion combination is defined as in Eq.A.11.

q𝑡𝑜𝑡 = q1 ◦ q2 = 𝜂1𝜂2 − 𝜖𝑇1 𝜖2 + 𝜂1𝜖2 + 𝜂2𝜖1 + 𝜖1 × 𝜖2 (A.11)

where 𝜂1𝜂2−𝜖𝑇1 𝜖2 is the real part, while 𝜂1𝜖2+𝜂2𝜖1+𝜖1×𝜖2 is the hyper-complex
part.
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APPENDIX A. QUATERNIONS

In a compact form, the quaternion combination can be written as in Eq.A.12.

q𝑡𝑜𝑡 = q1 ◦ q2 =

[
𝜂1

𝜖1

]
◦

[
𝜂2

𝜖2

]
= M(q1)q2 = N(q2)q1 (A.12)

where:

M(q1) =
[
𝜂1 −𝜖𝑇1
𝜖1 𝜂1I3 + [𝜖1]𝑥

]

N(q2) =
[
𝜂2 −𝜖𝑇2
𝜖2 𝜂2I3 − [𝜖2]𝑥

]
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B
Rotation matrices

Alternatively to the quaternion, another way used to represent the relative
orientation between two different reference frames as, for example, the Fixed In-
ertial World Frame ℱ𝑊 and the Body Frame ℱ𝐵 consists on the rotation matrices,
i.e. R ∈ SO(𝑛) with 𝑛 = 2 for planar rotations and 𝑛 = 3 for full 3D rotations.

Considering two different reference frames as shown in Fig.B.1, the vectors
in the Body Frame can be described by the ones defined in the World Frame
through the relation in Eq.B.1.

Figure B.1: World and Body Frames.

x′ = 𝑥′𝑥x + 𝑥′𝑦y + 𝑥′𝑧z
y′ = 𝑦′𝑥x + 𝑦′𝑦y + 𝑦′𝑧z
z′ = 𝑧′𝑥x + 𝑧′𝑦y + 𝑧′𝑧z

(B.1)
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The relations in Eq.B.1 can be rewritten in a 3 × 3 matrix to have a compact
formulation as shown in Eq.B.2. Such matrix is called rotation matrix.

R =
[
x′ y′ z′

]
=


𝑥′𝑥 𝑦′𝑥 𝑧′𝑥
𝑥′𝑦 𝑦′𝑦 𝑧′𝑦
𝑥′𝑧 𝑦′𝑧 𝑧′𝑧

 =


x′𝑇x y′𝑇x z′𝑇x
x′𝑇y y′𝑇y z′𝑇y
x′𝑇z y′𝑇z z′𝑇z

 (B.2)

Since R is an orthogonal matrix, this means that:

R𝑇R = I3

where I3 represents the (3 × 3) identity matrix.
Another property of the rotation matrix is theta its transpose coincide with

its inverse, i.e. R𝑇 = R−1.
In addition, it holds that:

• 𝑑𝑒𝑡(R) = 1 if the frame is right-handed;

• 𝑑𝑒𝑡(R) = −1 if the frame is left-handed.

Here, the elementary rotations are recalled since the frames can be obtained
through such rotations of the reference frame about one of the coordinate axes,
where these rotations are positive if they are made counter-clockwise and neg-
ative if they are made clockwise.

So:

• the rotation of an angle 𝛼 around the 𝑧 axis is expressed as in Eq.B.3.

R𝑧(𝛼) =

cos(𝛼) − sin(𝛼) 0
sin(𝛼) cos(𝛼) 0

0 0 1

 (B.3)

• the rotation of an angle 𝛽 around the 𝑦 axis is expressed as in Eq.B.4.

R𝑧(𝛼) =


cos(𝛽) 0 sin(𝛽)
0 1 0

− sin(𝛽) 0 cos(𝛽)

 (B.4)

• the rotation of an angle 𝛾 around the 𝑥 axis is expressed as in Eq.B.5.

R𝑧(𝛼) =

1 0 0
0 cos(𝛾) − sin(𝛾)
0 sin(𝛾) cos(𝛾)

 (B.5)
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APPENDIX B. ROTATION MATRICES

Considering the elementary rotations, it holds that:

R𝑘(−𝜃) = R𝑇
𝑘 (𝜃) 𝑘 = 𝑥, 𝑦, 𝑧

Because of the orthogonality condition of the rotation matrices, they give a
redundant description of the orientation since the element of each matrix are
nine but they are related by six constraints. Due to this three parameters, i.e.
three angles, are sufficient to describe the orientation of a rigid body in space.

Hence, a generic rotation matrix can be obtained as the combination of three
elementary rotations under the assumption that two successive rotations are not
made around parallel axes. This implies that 12 distinct set of angles are allowed
out of all 27 combinations, each representing a triplet of Euler Angles.

The two most common triplets of Euler angles are the ZYZ angles and ZYX
angles (also called Roll-Pitch-Yaw angles).

The ZYZ angles’ rotation is obtained by:

• rotation of the reference frame by the angle 𝜙 about axis z: R𝑧(𝜙);

• rotation of the current frame by the angle 𝜃 about axis y’: R𝑦′(𝜃);

• rotation of the current frame by the angle 𝜓 about axis z”: R𝑧′′(𝜓);

In this way, the resulting frame is given by the composition of rotations with
respect to the current frame obtained post-multiplying the elementary rotations
as shown in Eq.B.6.

R = R𝑧(𝜙)R𝑦′(𝜃)R𝑧′′(𝜓) =

𝑐𝜙𝑐𝜃𝑐𝜓 − 𝑠𝜙𝑠𝜓 −𝑐𝜙𝑐𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑠𝜃
𝑠𝜙𝑐𝜃𝑐𝜓 + 𝑐𝜙𝑠𝜓 −𝑠𝜙𝑐𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑠𝜃

−𝑠𝜃𝑐𝜓 𝑠𝜃𝑠𝜓 𝑐𝜃

 (B.6)

Another commonly used triplet of Euler angles are the RPY angles (ZYX
angles). In this case, the final rotation is obtained as the combination of the
following elementary rotations:

• rotation of the reference frame by an angle 𝜙 about axis x: R𝑥(𝜙), yaw;

• rotation of the reference frame by an angle 𝜃 about axis y: R𝑦(𝜃), pitch;

• rotation of the reference frame by an angle 𝜓 about axis z: R𝑧(𝜓), roll;
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Doing so, the resulting frame is given by the composition of rotations with
respect to the fixed frame obtained pre-multiplying the elementary rotations as
shown in Eq.B.7.

R = R𝑧(𝜓)R𝑦(𝜃)R𝑥(𝜙) =

𝑐𝜙𝑐𝜃 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑠𝜙𝑐𝜃 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓
−𝑠𝜃 𝑐𝜃𝑠𝜓 𝑐𝜃𝑐𝜓

 (B.7)
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C
Relation between quaternions and

rotation matrices

Considering a given quaternion, defined as in AppendixA, the rotation ma-
trix associated to it is expressed as in Eq.C.1.

R(𝜂, 𝜖) =

2(𝜂2 + 𝜖2

𝑖 ) − 1 2(𝜖𝑖𝜖 𝑗 − 𝜂𝜖𝑘) 2(𝜖𝑖𝜖𝑘 + 𝜂𝜖 𝑗)
2(𝜖𝑖𝜖 𝑗 + 𝜂𝜖𝑘) 2(𝜂2 + 𝜖2

𝑗 ) − 1 2(𝜖 𝑗𝜖𝑘 − 𝜂𝜖𝑖)
2(𝜖𝑖𝜖𝑘 − 𝜂𝜖 𝑗) 2(𝜖 𝑗𝜖𝑘 + 𝜂𝜖𝑖) 2(𝜂2 + 𝜖2

𝑘) − 1

 (C.1)

Looking at it, it is possible to observe that the rotation R(q) can be represented
by both q and −q. In a more compact form, the rotation matrix can also be
computed as in Eq.C.2.

R(q) = I + 2𝜂[𝜖]𝑥 + 2[𝜖]2𝑥 (C.2)

where I ∈ R3×3 represents the identity matrix and [𝜖]𝑥 represents the skew-
symmetric operator defined as:

[𝜖]𝑥 =


0 −𝜖𝑘 𝜖 𝑗
𝜖𝑘 0 −𝜖𝑖
−𝜖 𝑗 𝜖𝑖 0


Instead, in order to solve the inverse problem, i.e. from a given rotation

matrix to the associated quaternion, it holds that the rotation matrix is generically
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defined as in Eq.C.3 and the corresponding quaternion as in Eq.C.4.

R =


𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

 (C.3)

𝜂 =
1
2
√
𝑟11 + 𝑟22 + 𝑟33 + 1

𝜖 =
1
2


𝑠𝑔𝑛(𝑟32 − 𝑟23)√𝑟11 − 𝑟22 − 𝑟33 + 1
𝑠𝑔𝑛(𝑟13 − 𝑟31)√𝑟22 − 𝑟11 − 𝑟33 + 1
𝑠𝑔𝑛(𝑟21 − 𝑟12)√𝑟33 − 𝑟11 − 𝑟22 + 1


(C.4)

where conventionally it is 𝑠𝑔𝑛(𝑥) = 1 for 𝑥 ≥ 0 and 𝑠𝑔𝑛(𝑥) = −1 for 𝑥 < 0. In
addition it is assumed that 𝜂 ≥ 0, which means that 𝜃 ∈ [−𝜋,𝜋] and any rotation
can be described.

The analogy between the inverse of the quaternion and the inverse of the
rotation matrix is exploited in the expression Eq.C.5.

R(q) → R(q)−1 = R(q)𝑇 ⇐⇒ q → q−1 = q̄ (C.5)

In the same way, the analogy between the rotation composition with matrices
and quaternions is shown in Eq.C.6.

R(q𝑡𝑜𝑡) = R(q1)R(q2) ⇐⇒ q𝑡𝑜𝑡 = q1 ◦ q2 (C.6)
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D
Leader-Follower approach based on

MPC with bearing between two UGVs

In the main project, the Leader-Follower approach between two UAVs and a
UAV and a UGV are presented. Instead, in this appendix, the Leader-Follower
approach using the MPC with bearing between two UGVs is presented. One of
the two UGVs is the leader and knows the trajectory to track, while the other
UGV is the follower and does not know the trajectory of the leader neither
the distance with it. The two UGVs have the same characteristics: wheel radius,
wheel distance, time constant of the low pass filter and maximum and minimum
wheel speed described in Tab.2.1. Instead, about the initial poses of the two
unicycles, the initial conditions of the UGV leader are the ones shown in Tab.2.1,
while the coordinates of the initial pose of the UGV follower are shown in
Tab.D.1. where all these parameters are assumed to be known. In addition, it

Parameter’s name Value
𝑥𝑑𝑒𝑠𝑓 0.15 [𝑚]
𝑦𝑑𝑒𝑠𝑓 0.15 [𝑚]
𝜃𝑑𝑒𝑠𝑓 0 [𝑟𝑎𝑑]

Table D.1: Coordinates of the initial pose of the unicycle follower.

is also assumed that the UGV follower knows the linear and angular velocities
of the UGV leader. Hence, the MAS described is modeled as an undirect graph,
whose graphical representation is presented in Fig.D.1.

Looking at Fig.D.1, the two vectors represented with the red arrows, i.e. 𝑔12

and 𝑔21, represent the bearing vectors from leader to follower and from follower
to leader, respectively.
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Figure D.1: Undirect graph representing the MAS composed by two unicycles: node 1
represents the leader, while node 2 represents the follower.

The leader knows its trajectory and it has been found as shown in section 2.1.4
instead, in order to define the MPC controller to implement the Leader-Follower
Approach, three different ingredients have to be defined:

1. cost function;

2. dynamics;

3. eventually constraints.

Considering the definition of the cost function, it is given by the sum of other
two cost functions as given by Eq.D.1.

𝑢̂∗ = min
𝑢
𝐽 𝑤𝑖𝑡ℎ 𝐽 = 𝐽𝑔 + 𝐽𝑣𝜔 (D.1)

with:

𝐽𝑔 =
𝑁∑
𝑘=1

(g∗ − g)𝑇A(g∗ − g) (D.2)

𝐽𝑣𝜔 =
𝑁∑
𝑘=1

(v𝜔𝑙 − v𝜔 𝑓 )𝑇B(v𝜔𝑙 − v𝜔 𝑓 ) (D.3)

where (g∗ − g) represents the bearing error vector, g∗ ∈ R4×1 represents the de-

sired value of the bearing vector, g =


𝑔12,𝑥

𝑔12,𝑦

𝑔21,𝑥

𝑔21,𝑦


∈ R4×1 is the measured bearing

vector, A ∈ R4×4 and B ∈ R2×2 are tuning gain matrices and (v𝜔𝑙 − v𝜔 𝑓 ) rep-

resents the formation motion error vector, where v𝜔𝑙 =

[
𝑣𝑙
𝜔𝑙

]
gives the linear
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and angular velocities of the leader and v𝜔 𝑓 =

[
𝑣 𝑓
𝜔 𝑓

]
represents the linear and

angular velocities of the follower. Hence, the aim of 𝐽𝑔 consists in penalizing the
bearing error, while 𝐽𝑣𝜔 has to penalize the formation motion error.

Having provided the cost function that must be minimized, the state and
control input of the system and its dynamics have to be defined. In this case, the
state corresponds to the bearing error vector (g∗ − g), while the control input is
the formation motion error vector (v𝜔𝑙 − v𝜔 𝑓 ).

About the dynamics, the relation in Eq.D.4 holds, where ℬ𝑊 is the Bearing

Laplacian matrix defined in the World Frame, while u =


𝑣𝑙
𝑣 𝑓
𝜔𝑙

𝜔 𝑓


.

g¤ = ℬ𝑊u (D.4)

In details, the Bearing Laplacian matrix can be computed as:

[ℬ]𝑖 𝑗 =


0𝑑×𝑑 𝑖 ≠ 𝑗 , (𝑖, 𝑗) ∉ ℰ
−P𝑔𝑖 𝑗 𝑖 ≠ 𝑗, (𝑖 , 𝑗) ∈ ℰ∑
𝑗∈N𝑖

P𝑔𝑖 𝑗 𝑖 = 𝑗 , (𝑖, 𝑗) ∈ V
(D.5)

Doing so, a block structure of the ℬ𝑊 matrix can be observed as in Eq.D.6.

ℬ =

[
P𝑔12 −P𝑔12

−P𝑔21 P𝑔21

]
(D.6)

where P𝑔𝑖 𝑗 is the orthogonal projection of the bearing vector g𝑖 𝑗 such that:

P𝑔12 = I2 − g12g𝑇12

P𝑔21 = I2 − g21g𝑇21
(D.7)

Hence, the bearing vectors g12 and g21 are defined in the World Frame as in
Eq.D.8.

g12 = R𝑇
1

p12
𝑑12

= R𝑇
1

p2 − p1
| |p2 − p1 | |

g21 = R𝑇
2

p21
𝑑21

= R𝑇
2

p1 − p2
| |p1 − p2 | |

(D.8)
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Defining the dynamics of the system as in Eq.D.4, the errors (defined as the
difference between the known leader’s velocities and the unknown follower’s
velocities) on the velocities are given. So, the value of the linear and angular
velocities of the follower can be obtained as the difference between the linear and
angular velocity of the leader and the errors on the linear and angular velocity,
respectively. The behaviours of the linear and angular velocities of the follower
are shown in Fig.D.2. Instead, a comparison between the velocities of the leader

Figure D.2: Linear and angular velocities of the unicycle follower.

and the ones of the follower are given in Fig.D.3, from which it is possible to
observe that the follower’s velocities reach the values of the leader’s ones except
at the starting instants.

Knowing the velocities of the followers, it is possible to compute the 𝑥,
𝑦 positions and the 𝜃 angle such that the resulting trajectory of the unicycle
follower is presented in Fig.D.4.

So, a comparison between the trajectories of the leader and of the follower
is visible in Fig.D.5. Looking at this plot, it is possible to note that the follower
tracks the same trajectory of the leader from a different initial pose. This is
confirmed according to the fact that the follower’s velocities converge to the
leader’s ones.
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Figure D.3: Comparison between the linear and angular velocities of the unicycle leader
and follower.

Figure D.4: Trajectory of the UGV follower.
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Figure D.5: Trajectories of the leader and follower UGV.
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