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Dedicated to the memory of my grandfather Lino.

Knowledge is of no value unless you put it into practice.

—Anton Cechov (1860-1904)






ABSTRACT

Nowadays, the most widespread approach to fatigue design is based
on S-N curves. Although this approach works in a lot of practi-
cal situations, there are also many others in which it does not give
enough accurate results: The most important exception are probably
the welded joints, which are widely adopted for the connection of
structural parts.

In recent years, many authors suggested to assess the fatigue life
of welds on the basis of the local stress and strain fields in the most
stressed zones, using the concepts of fracture mechanics. It was in
this context that the SED criterion was formulated.

The purpose of this work is to investigate the numerical implemen-
tation of the SED criterion, and to further enhance its efficiency on
the basis of some theoretical observations, as we are going to explain
in details.

SOMMARIO

Al giorno d’oggi, 'approccio piti diffuso alla progettazione a fatica
e basato sulle curve S-N. Sebbene esso si riveli efficace in molte situa-
zioni di interesse pratico, in molti altri casi esso non ¢ in grado di dare
risultati sufficientemente accurati: probabilmente, il caso pit eclatan-
te riguarda i giunti saldati, una soluzione ampiamente adottata per
la connessione di elementi strutturali.

Negli ultimi anni, molti autori hanno suggerito di stimare la vita
a fatica delle saldature sulla base dei campi locali di tensione e de-
formazione nelle zone maggiormente sollecitate, piuttosto che su un
approccio in tensione nomale. E in questo contesto che il criterio SED,
formulato sui concetti della meccanica della frattura, € stato proposto.

L’obbiettivo che questo lavoro si prefigge ¢ di indagare I'implemen-
tazione numerica del criterio SED, e di migliorarne 1'efficienza sulla
base di alcune osservazioni teoriche, come verra spiegato in dettaglio.
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LIST OF SYMBOLS

In order not to overload the reading, only the main symbols were
reported. Although we have tried to avoid repetition as much as
possible, some of them were unavoidable.

LATIN ALPHABET

A area

a crack half length

Cijrt stiffness tensor

C set of complex numbers

E Young’s modulus

E’ effective Young’s modulus (: ]_Evz)
€sen, €sen relative error

F; forces

{F} body force vector

G, G’ shear modulus

I modulus of inertia, set of FE nodes
I* subset of FE enriched nodes

I, I, angular integrals of mode I and II
Im imaginary part of a complex quantity
i imaginary unit (= v—1)

K1, K3 NSIFs of mode I and 11

AKyc critical NSIF of mode I

K1 SIF of mode I

L2 square-integrable functions space
m number of Gaussian points

N; shape functions

n number of subdivisions

ng normal unit vector components

Pn Legendre polynomials
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R characteristic radius

R set of real numbers

Re real part of a complex quantity
T,z cylindrical coordinates

T, 9, Q spherical coordinates

S stress ratio (: %)

8ED local strain energy density

ASEDc critical strain energy density

T traction vector components

ty Gauss-Legendre abscissas

{T} traction vector

U(R) local strain energy

u v, w Cartesian displacements

{u} displacement vector

1% total strain energy density

Wy Gauss-Legendre weights

XY,z Cartesian coordinates

Z(z) Westergaard stress function

Z*(z) primitive of Z (= [ Z(z) dz)

z complex variable (= x +1iy or re'?)
z conjugate complex variable (= x —iy orre~ 1Y)
GREEK ALPHABET

o half notch opening angle

2 boundary

I crack boundary

Y supplementary angle of o (= 7m— o)
Al) finite variation of a quantity

dij Kronecker symbol

5(+) first variation of a functional

€ij strain tensor components

{e} strain tensor
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INTRODUCTION

Since its discover in the middle of the 19th century, fatigue has been
a phenomenon extensively studied by engineers. Nowadays, all the
norms on structural design present extensive sections dedicated to fa-
tigue, that take in account of different aspects like variable amplitude
and multiaxial loadings, stress concentration effects, corrosion, etc.

In the vast majority of the norms, the data are given in terms
of nominal stresses, using the S-N curves. Although this approach
works in a lot of practical situations, there are also many others in
which it does not give enough accurate results: The most important
exception are probably the welded joints, which are widely adopted
for the connection of structural parts. To overcome this issue, the In-
ternational Institute of Welding separates the joints on the basis of
their structural details in different fatigue classes (called FAT classes)
and assigns to each one a specific S-N curve [14]; a similar approach
is followed also in the Eurocodes 3 and 9 [9, 10]. This strategy is ob-
viously expensive and time-consuming, since the number of welds
realized in the industrial practice is enormous.

In recent years, considering the substantially brittle behaviour of
the welds, many authors suggested to assess their fatigue life on
the basis of the local stress and strain fields in the most stressed
zones [24]. Since the aim of fracture mechanics is to describe the
perturbation in the local quantities induced by internal defects like
cracks or flaws in a loaded structure, it was natural to employ it in
this context. Nonetheless, it was not the first time that the concepts
of fracture mechanics were applied to fatigue: In the 1960s, Paris et
al. [22, 23] found that it was possible to obtain a good empirical corre-
lation between the crack length and the range of the Stress Intensity
Factor of mode I; Paris” law is now a standard in the design of aircraft
components.

The biggest difference between these two «waves» of fracture me-
chanics is the enormously higher calculus capabilities of modern com-
puters: If one time it was necessary to rely mainly (if not exclusively)
on experiments, now the trend is to couple the powerful analytical
models developed by fracture mechanics with the flexibility offered
by numerical analysis. Although it is now possible to realize very
sophisticated simulations, the computational costs are still a major
concern. In fact, the short times often available in the industrial prac-
tice tend to favour rapid solutions, whose results have to be accurate
and highly reliable. Therefore, there is still a great interest in finding
easy ways to conduct robust analyses at low computational costs.
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INTRODUCTION

It is from this perspective that the SED criterion was formulated
by Lazzarin and Zambardi [19]. The Authors focused on the fatigue
crack initiation, thus neglecting the path that the crack is going to
follow once it starts to propagate. Although this approach may seem
limiting, it has the great advantage of requiring only a static structural
analysis. This allows (i) to give a rigorous mathematical basis to the
criterion and (ii) to implement it easily in the Finite Element codes.
On the contrary, Paris’ law requires an empirical connection between
the crack length, which increases with time, and the Stress Intensity
Factor, which is a static quantity, requiring ineluctably some data
fitting procedures. As a consequence, a huge number of different
crack propagation laws have been proposed in the years in literature;
in some cases, also because of the scatter of the values measured
experimentally, it was reached the almost paradoxical result that the
same set of data was fitted by apparently contradictory laws, with
no possibility to determine which one was the most correct [4]. In
addition, the related numerical simulations take significantly longer
computational times, since they require a dynamic analysis.

The main purpose of this work is to carry out the numerical im-
plementation of the SED criterion, taking advantage of some recent
theoretical observations to enhance its efficiency, as explained in de-
tails in chapter 4.

The document consist in five chapters and three appendices. The
chapters are thus structured:

IN THE FIRST CHAPTER, some basic aspects of the theory of elasticity
are recalled.

IN THE SECOND CHAPTER, the basic equations of the SED criterion
are derived.

IN THE THIRD CHAPTER, the theory of the Finite Element Method is
briefly discussed.

IN THE FOURTH CHAPTER, the numerical procedures adopted are de-
scribed and the related results are commented.

IN THE FIFTH CHAPTER, the conclusions are reported and possible
further research hints are proposed.

while for what concerns the appendices:

THE APPENDIX A describes briefly the main properties of the shape
functions.

THE APPENDIX B reports all the Python scripts used for validating
the algorithm written.

THE APPENDIX C reports all the command files used to run the Finite
Element simulations.

XX



1 PLANE ELASTICITY

1.1 BASIC RELATIONS

Let us start by recalling the stress-strain relations for a homogeneous,
isotropic material as predicted by linear elasticity. In a Cartesian co-
ordinate system defined by the x, y, and z axes, they are [25, p. 82]:

1 T
ex = lox—vioy+oz)],  vo=-—7¢
1 T
&y = E [O'y —v(ox+ GZ)] ’ Yyz = éz (1.1)
1 T
EZ_E[O—Z_V(GX+O—Q):|/ sz:%-

As an alternative, using the tensor notation, one can write [25, p. 82]:

T+v v
& =~ 0ij — ¢ Okk dyj (1.2)

where the tensor shear strains are half of the corresponding engineer-
ing strains and 6y; is the Kronecker symbol:

5 1, ifi=j -
ssoi— 1.
Yo, ifi#j. 3

The elastic behaviour of an isotropic material is completely described
by two parameters. It is in fact possible to demonstrate that the shear
modulus G, the YounG’s modulus E and the PoissoN’s ratio v are
related by [30, pp. 8-9]:
E
The strain-displacement relations, according to the small deforma-
tion theory, are [25, p. 36]:

x] Yooy’ 20z
v  ou ow ou ow  0v (1.5)
'ny:a‘i‘@; 'sz:&‘#ale 'sz:@‘f‘afz

where u, v, and w are the displacements in the x, y, and z directions,
respectively. In tensor notation, we write [25, p. 37]:

(ui,j + uj,i) . (16)



PLANE ELASTICITY

Since most of the three-dimensional elasticity problems are not easy
to solve, it is quite common in the engineering practice to further
simplify the equations just presented, as we are now going to explain.

1.2 PLANE STRAIN

This hypothesis is typical in the case of thick sections, for which the
strains in the z direction are constrained and therefore considered
negligible. Hence, it is possible to write [25, p. 136]:

Ez:sz:sz:O/ GZZV(0x+Gy)- (17)

It is important to notice that this assumption, in the most general case,
leads to a triaxial stress condition, since o, can differ from zero. Un-
der these hypotheses, the only non-trivial relations in the system (1.1)
are:

_1—|—v

14+v
e — _
x E

T
(GX_VGy)r &y = E (Gy_vcx)/ny:%- (1.8)

1.3 PLANE STRESS

This hypothesis is applied to thin sections, where the absence of
stresses at the edges acting in the thickness direction is extended in-
side the body. In other words, only in-plane stresses are admitted.
Mathematically speaking, this means [25, p. 138]:

v
Gz:sz:Tyz:O/ SZZ_E (O-X‘l‘cy)- (19)

The system of equations (1.1) then reduces to:

T
(oy —Vvox), Yxy= % (1.10)

Ex =z (ox—Vvoy), &=

1
E

M| =

1.4 GENERALIZED PLANE ELASTICITY

By using the effective elastic constants E’, v/ defined in Table 1.1,
equations (1.8) and (1.10) can be rewritten as:

1 1 Ty

= E (GX _V/Gy) ; &y = E (Gy _V/Gx)/ Yxy = = (1'11)

Ex G/

where the effective shear modulus G’ coincides with G:
E’ E

= av— 2019 - & (1.12)
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1.5 EQUILIBRIUM AND COMPATIBILITY EQUATIONS

Table 1.1. Definitions of the effective elastic constants E’ and v’ [2, p. 38].

Plane stress Plane strain
E
1—v2
v

E’/ E

1—v

The relations in (1.11) describe the generalized plane elasticity prob-
lem. They can be inverted so to give explicitly the dependence on
the strains of the in-plane stresses oy, 0y, and Ty, provided that
v < 0.5, i.e. for every material which is subjected to a variation in
volume because of the applied loads." Equations (1.1) to (1.11) can be
used also in a spherical (or cylindrical) coordinate system, upon sub-
stitution of the tern (x,y,z) with (r,9, @) (respectively (r,9,z)). For
the displacements, the symbols usually adopted are u,, uy, and u,
(respectively u,).

Despite the fact that both are just an idealization of the real prob-
lems (usually halfway between one condition and the other), these
approximations are widespread in the engineering practice and are
the starting point of a very powerful mathematical formalism which
will be described in details later on.

1.5 EQUILIBRIUM AND COMPATIBILITY EQUATIONS

1.5.1  Cartesian coordinates

Once we have defined the stress components acting on the body, we
can derive the equilibrium equations in the planar case, which turn
out to be [25, p. 136]:

aa& agxy +Fx =0
3 x ay (1.13)
Txy , 00y _

where Fy, Fy are the body forces (e.g. gravity). The system (1.13)
consists of two equations in three unknowns, and cannot be solved
without introducing another condition, which is the congruence of
planar strains. From equation (1.5), for the planar case, the strains
are thus related to the displacements:

ou ov ou Ov

Ex:a/ 51_4:@/ YXUZE—F& (1'14)

Rubbers are nearly incompressible materials, with a Poisson’s ratio very close to the
limit value of 0.5 [25, pp. 84-85].



PLANE ELASTICITY

By calculating the mixed derivative of yyy:
Pra _ 2 (Fu) 2 (2
xdy  ox \ dy? dy \ 0x2

0% ey
oy ox?

(1.15)

we get the so-called compatibility equation [25, p. 137]. Then, by (i)
switching from strains to stresses through equations (1.11), (ii) dif-
ferentiating the first (respectively second) equation of equilibrium
with respect to x (respectively y), and (iii) introducing it into equa-
tion (1.15), one obtains [25, pp. 137, 140]:

02 22 oF,  OF,
(axz + ayz) (O'X + (Ty) = *f(\/) <aX + ay) (1.16)
where f(v) is a function of the Poisson’s ratio:

1+v, plane stress
f(v) = 1 (1.17)

T plane strain.
—v

If we set Fx = Fy = 0 and we introduce the V2 notation:

02(1) . 9%(")
20—
Va(): 2 oy2 (1.18)
we can also write:
VZ%(ox +0y) =0. (1.19)

By noticing that the sum in brackets represents the first fundamental
invariant of the stress tensor [25, p. 66], we can say that in plane elas-
ticity, in the absence of body forces, the first stress invariant is a solution of
LAPLACE's equation.

1.5.2 Polar coordinates

In polar coordinates, the planar equilibrium is [25, p. 146]:

aO'r 1 aTr{) Or — 09

Fr =
or T 09 T +F =0 (1.20)
aTT{) 160‘19 ZTT{) '
- Fsg =0.
or T oo FFo =0

The strain-displacement relations are [25, p. 146]:

87aur
TToor

aua> 10u, Juy 1ug
“Aa 7 YT‘{) -

1
e (a2 s

oY or v
(1.21)



1.6 AIRY STRESS FUNCTION

and the compatibility equations reads [6, p. 460]:

2
0 <TaYT§_ Zasﬁ>+rasr 0°er

ar\"a9 " or o oz (1.22)

Following the same procedure described for the Cartesian coordinate
system, equation (1.22) becomes [25, p. 147]:

1 9Fy

oF, T
or T + T as) (1.23)

V2(0r + o) = —f(v) (

where f(v) is still defined by equation (1.17) and V2 is

o,y 0%() 1d() 1 d%()
Vil=32 T T2 e

(1.24)

1.6 AIRY STRESS FUNCTION

One of the most powerful tools available for the resolution of plane
elasticity problems is the AIRy stress function, denoted by the symbol
®, whose definition is [25, p. 144]:*

_2%0 _?%0 G0

Ox = 617’ oy = P Txy — —m (1.25)
in Cartesian coordinates and
TTror 2092 YT vz VT Tor\r 99 ‘

in polar coordinates [25, p. 147]. It can be easily shown that @ auto-
matically satisfies the equilibrium equations (1.13) (respectively equa-
tions (1.20)) when no body forces are involved. The condition on
the first invariant, expressed by equation (1.19) or (1.23), turns out to
be [25, pp. 145, 147]:

VZV20 =0. (1.27)

Equation (1.27) means that the Airy stress function is a biharmonic
function. We remember that a function is said to be harmonic when it
is a solution of Laplace’s equation:

V2u=0 < uisharmonic. (1.28)

When the body forces are active, by assuming that exists a potential function V, such

that Fi = —% and Fy = —%, the Airy function can be defined as [25, p. 144]:
GRL() R LR
O'X:ayiz-i‘v, O'HZW—FV, Txy:—m.
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Figure 1.1. Configuration of the notch problem.

This important property is the basis of the method of complex vari-
ables, as will be explained in section 1.8.

1.7 WILLIAMS' EQUATIONS

In this section, we are going to describe Williams’ treatise on sharp
V-shaped notches [34], based on the Airy function formulation.

1.7.1  Stresses and displacements

Because of the configuration of the problem, it is suitable to adopt
a polar coordinate system (see Figure 1.1). The biharmonic equa-
tion (1.27) then reads:
02 10 1 2*\/o’0 1020 1 0%0Q
—S+t-—t+s5ll=+-5—+55=]=0. (129
or2  rdr T2 /\0r2 r or 1% d9?

Exploiting the separation of variables, Williams assumed the follow-
ing form for the stress function [34]:

O(r,9) =T FH,A) (1.30)

which turns the previous PDE into an ODE which depends only on
the ¥ angle:
0? 0?

[()\—1)2—1—682] [(?\+1)2+W] F(9,A) =0. (1.31)
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Its general solution is F(9,A) = e™® where m = m(A) are the roots of
the characteristic equation

[(A=1)2+m?][A+1)* +m?] =0. (1.32)
It follows that
mg =xi(A£1), fork=1,...,4 (1.33)

and F(9,A) is given by a linear combination of the elementary func-
tions thus found:

4 4
FOAN) =) AcF®A) =) Are™P. (1.34)
k=1 k=1

Since the Airy function has to be real, by combining pairs of Fi and
exploiting the well-known EULER formula e'® = cos?d +1i sin9, it is
possible to determine its final form [2, p. 145]:

O(1,9) =" [Aycos(A+1)9 + Az cos(A— 1)
—i—Agsin()\—i-1)19+A4sin()\—1)19}. (1.35)

By using the definition (1.26) of the Airy stress function in polar co-
ordinates, we can derive the stresses [2, p. 145]:

or =TT F7(9,A) + (A+1)F(9,A)]
=1 T [=AT A A+ 1) cos(A+T1)9 — Az A (A —3) cos(A — 1)D
—A3AA+T)sin(A+1)d — A4 A (A—3)sin(A —1)9],
op =™ TINA+T1)FE, )]
=1 T[AJA(A+ 1) cos(A+ 1) + Az A(A+ 1) cos(A — 1)d
+A3AA+T)sin(A+1)d+ A4 A (A+1)sin(A —1)9],
Trp = =1 [AF/(9,7)]
= T [AJAA+T)sin(A+ )9 + A2 A (A— 1) sin(A —1)9
—A3AA+T)cos(A+1)d—AsA(A—1)cos(A—1)].
(1.36)
According to the original paper [34], the plane strain displacements
are defined by the following relations:

2Gu, =1 [—(7\+ 1 F®) + ]lv G’(%)]

N A1 (1.37)
2Gug =r [—F (9) + Ty G(ﬁ)}
where G(9) is
G = % [Az sin(A—1)d — Ay Cos()\—1)19]. (1.38)
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By introducing F(¥), G(9), and their first derivatives in the previous
definitions, we obtain [2, p. 39]:

2Guy = 1M [-A7(A+ 1) cos(A+1)8 + Az (k —A) cos(A —1)9
—A3(A+1)sin(A+ )9+ Ag(k —A) sin(A —1)9)]

2Guy = [A1(A+1)sin(A + 1) + Az (k +A) sin(A — 1)9
—Az(A+T1)cos(A+ 1) — Ag(k+A) cos(A —1)9]

(1.39)

where « is the Kolosov’s constant [2, p. 151]:

T14+v
3 —4v, plane strain.

3—v
——, plane stress
K= { (1.40)

1.7.2  Sinqularity

Looking at the equations derived in the previous subsection, we no-
tice that all the stress tensor components depend on a power of r:
oy ~ 1. Under certain conditions that we are going to define
soon, the exponent of r is negative, i.e. the stresses go to infinity
as v approaches zero: When a field shows this behaviour, it is called
singular. The singularity — in this case, A —1 — is of great impor-
tance in structural engineering, since it describes the severity of the
local stress field, and of the damage phenomena which are related to
it. For a V-shaped sharp notch, the singularity depends on the pre-
scribed boundary conditions, as we are now going to demonstrate.
More generally, it can be determined also experimentally (for exam-
ple using strain gauges) or numerically (for example with the Finite
Element Method, by getting the slope of the stresses versus r in a
log-log diagram, as explained in subsection 4.3.2).

The exponent A — 1 can be determined by imposing the boundary
conditions. Although in Williams’ original article [34] the BCs are
applied directly to F(9,A), we prefer to write them explicitly, using
the trigonometric functions just derived. Under the hypothesis that
both edges are free, i.e. that no stresses are applied, it must be:

op(£Y) =Tro(£y) =0 = F(&y)=F(£y)=0.  (141)

We thus obtain a homogeneous system of four equations, where the
matrix coefficients depend on the angle y = m— «:

[(A+1)sinA+1)y (A—DsinA—1)y] (A1) _
A+T)cos(A+T)y (?\+])sin()\_]h,] {Az}_o (1.42a)
(A+1)cos(A+1)y (A—1)cos(A—1)y] [Az

(A+1)sin(A+ 1)y (7\+1)sin()\—])y] {A4}—0 (1.42b)
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Figure 1.2. Williams’ eigenvalues as a function of the notch opening an-
gle [38, p. 26].

The coefficients were separated on the basis of the opening mode. In
fact, A1 and A; are related to mode I (opening mode), A3 and A4 to
mode II (sliding mode): When a symmetric load (traction) is applied,
only the first two coefficients are non-zero, vice versa when the plate
is subjected to an antisymmetric load (pure shear) it follows that A3,
Ay #0.

The only non-trivial solution to the systems (1.42a) and (1.42b), ac-
cording to RoucHE-CAPELLI theorem, is obtained by imposing the
determinant to be zero, i.e. by solving the following eigenvalue prob-
lem:

A1 sin(2y) 4+ sin(2Ay) =0, for mode |

A2 sin(2y) —sin(2A2y) =0, for mode II. (1.43)
A1 and A, are called Williams’ eigenvalues of mode I and II, respec-
tively. By solving numerically the transcendental equations in (1.43),
it is possible to determine the stress singularities for the two modes.

Figure 1.2 reports the trends of the exponents 1 — A7, as a function
of the notch opening angle 2. From this chart, one can infer that:

¢ The eigenvalues A1, are always positive.3

o For both modes, the singularity tends to decrease as the opening
angle 2o increases; it is always greater than or equal to —0.5.

This observation is explained mathematically with the boundedness of the local
strain energy U(R) [2, p. 143]. If we write oy; ~ ¢, the energy related to a circle
of radius R is

1 27 (R R

U(R) = 7J J oijeij Tdrdd = CJ r2eatlgr

2Jo Jo 0
where C is a constant which depends on the elastic constants and the nature of the
stress variation with 9. It follows that a > —1 for the integral to be bounded. In
other words, singular stress fields are acceptable if and only if the exponent on the
stress components exceeds —1.
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e The term 1 — A, decreases rapidly and becomes negative for
200 > 102.6° [2, p. 148]. For greater opening angles, mode II is
no more singular, that is 0 go to zero as r — 0.

o The term 1 —A; decreases more slowly and does not differ sig-
nificantly from 0.5 for angles smaller than 50°. Furthermore, is
always greater than zero.

e When 2a = 0°, the singularity is the same for both mode I and
I(O—A =1—A=0.5).

From an engineering point of view, this means that mode I is more
severe than mode II. In particular, the case 2x = 0° is the worst case
possible, since both modes are singular with the lowest exponent.
The stress field determined by Williams for a sharp V-shaped notch
is then the following:
o —(A1 4+ 1)cos(A; +1)9
{ g}xnh‘{A1 (M+1N%M1+U4
(5N (A1 4+ 1) sin(A; +1)9

—(A1 —3)cos(A1 —1)d
+ A (A1 +1)cos(Aq 1)8] } (1.44a)
(A1 —1)sin(A; —1)8
ol —(A2 +1)sin(A; +1)9
{ g } = Ar27] {Ag (A2 + 1) sin(A + 1)1‘}]
(5% —(A2 4+ 1)cos(A; +1)9

+ Ay

—(A2 —=3)sin(A; —1)9
(A2 4+ 1)sin(A2 —1)9 (1.44b)
(A2 —1)cos(Ar —1)d

while the displacements are:

ufl M A, —(A1 +1)cos(A1 +1)3
N e “(Ar +1)sin(A; +1)9

(k —A71)cos(A1 —1)8
+A4W+MBMM—UJ}(M%)

ul r>‘2 A —(A2 +1)sin(A; +1)9
u%l) —26 7 (A2 +1)cos(Ay +1)9

(k—A2)sin(A; —1)9
A4 l:—(K +A2) cos(Ay — 1)19] } (1.45b)

where the superscripts are referring to mode I and II, respectively.

10
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1.7.3 Alternative notation

The stress and displacement fields derived in the previous subsection
are defined except for two constants, for both modes. Introducing the
quantities [17]:

sin(A; — 1)y

fori= .
Snv T 1)y ori=1,2 (1.46)

Xi =
into the first (respectively second) raw of the system in (1.42a) (re-
spectively (1.42b)), we get the relations:

A —1
A1

A1 =—X1 Ag, A2=-X2A4. (147)

Using these definitions, the stresses turn out to be:

o¥ —(A7 —3)cos(A; —1)
{ <I>}7\1A2r {{ ()\]+1)cos(7\11)19]
0y (A1 —1)sin(A; —1)d

)
cos(A1 +1)
+x1 (A —1) {cos(?n - 1)19] } (1.48a)

—sin(A; +1)8

o —(A2 —3)sin(A; — 1)
%l =N Ay A1 (A2 +1)sin(Az —1)D
T% (A2 —1)cos(Ar —1)d

sin(A; +1)8
+x2 A2+ 1) —sin(A2 + 1)8] } (1.48b)
cos(Az +1)9

while the displacements become:
uf | Agprh (k —A7)cos(A1 —1)9
{I,) 2G| | (k+Aq)sin(A; —1)D

AM+T1)0
+x1 (A1 =1) [ Ziorf(()\: I]))ﬁ] } (1.49a)

u® L‘r?\z (k —A2)sin(A; — 1)9
gl) 2G —(k+2A2)cos(A; —1)9

+x2 (A2 +1) [ zti((};\zzﬂ))z] } . (1.49b)

Some values of A1, and X, are reported in Table 1.2.

11



PLANE ELASTICITY

Table 1.2. Some values of A1, and x12 [18].

20 y/m A A2 X1 X2
(deg) (rad)
0 1 0.5000 0.5000 1.000 1.000

15 23/24 05002 0.5453 1.017 0.981
30 11712 0.5014  0.5982  1.071 0.921
45 7/8 0.5050  0.6597  1.166 0.814
60 5/6 0.5122  0.7309 1.312 0.658
20 3/4 0.5445 0.9085 1.841 0.219
120 2/3 0.6157  1.1489  3.004 —0.314
135 5/8 0.6736  1.3021  4.152 —0.569
150  7/12 0.7520 14858 6.357 —0.787
160 5/9 0.8187 1.6305 9.536 —0.898
170 19/36  0.9000 1.7989 18913 —0.972

The stress field in proximity of the notch tip can be written also in
terms of the Notch Stress Intensity Factors (NSIFs), whose definitions
according to Gross and Mendelson are [13]:

Ky = lim V2mr!' =N G =0), (1.50a)
r—0*+
Ky = 11m V2! =22 (9 = 0). (1.50b)

These quantities depend both on the opening mode, through a stress
component related to the mode considered, and the notch opening an-
gle, through a Williams’ eigenvalue; the eigenvalues determine also
their units: [K; ;] = MPa mm' ~ M2, This fact has important practical
consequences, as we are going to explain later on.

By using the definitions (1.50a) and (1.50b), the stresses can be writ-
ten as [17]:

gg _ K] ].?\1—1
< [ V2RI D) = (g = T)
—(A7 —3)cos(A —1)9 —cos(A7 +1)8

{ (A1 + 1) cos(A; — 1)19] +x1 (A1 —1) { cos(Aq —H)S] } (1.51a)

(A1 —1)sin(A7 —1)8 sin(A; +1)d

—(?\2 - 3) Sil’l(?\z - ])‘3
A2+ 1D)sin(Ao — 1) | +x2 (A2 + 1)

(IT)
?H) _ KzT
a0 [ V2RI =T X2 o+ 1)
o
{ (A2 —1)cos(A2 —1)d {

—sin(Ay +1)9
sin(A; + 1)d (1.51b)

—cos(Ax +1)d

12
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and the displacements as:

{i) =2 i
uy S 26 V2r[(a 4+ 1) —x1 (A1 —1)]

(k—A1)cos(A —1)9 cos(A; +1)9
{(Kﬂn)sin(?n — 1)8} +xi (A =1) [ sin(Ay + 1){)]} (1.52a)

{u@} 1 Ky T2 {
uy' S 2G V2rl(Az— 1) +x2 Az +1)]

(k —A2)sin(A; —1)9 sin(A2 +1)9
[_(K +A2) cos(A; — 1)19} Txz(Az 1) [—cos(?\z + 1)19] } - (1:52b)

The definitions reported in equations (1.50a) and (1.50b) introduce
two parameters which are very useful for engineering analyses. Kj
and K; do not have a closed form, but can be computed with great ac-
curacy using a Finite Element code, and can be exploited to formulate
failure criteria (see [18] for an application to welded joints).

We conclude the section with an observation: By setting a notch
opening angle 2« = 0°, the stress and displacement fields of a crack
are obtained, as Williams himself demonstrated in a later paper [35].
Because of the great practical relevance of these equations, first ob-
tained by Westergaard following a different approach, they will be
explicitly derived in subsection 1.8.4.4

1.8 METHOD OF COMPLEX VARIABLES

One of the major contributions to the mathematical theory of elastic-
ity in the 20th century is related to the names of Kolosov and Muskhe-
lishvili. Starting from the Airy stress function, they developed an orig-
inal and extremely powerful method to solve the problems of plane
elasticity through the use of complex variables. Without claiming to
be exhaustive, we are going to describe the salient points of their the-
ory, which will be then used for our purposes. The main reference
for this section is [21, pp. 105-115].

1.8.1  Some definitions
We define a complex variable z and its complex conjugate Z as:

z=x+1y, Z=x-—1y (1.53)

It is interesting to notice that Westergaard’s equations (1.92) are derived considering
a central crack, while for 2oc > 0° Williams’ equations necessarily describe the local
field associated to an edge notch. The two systems coincide when 2« = 0° because
the boundary conditions on the stresses are applied at infinity.

13



PLANE ELASTICITY

where x (the real part) and y (the imaginary part) can be obtained
through the expressions:

x =Rez = Z;Z
o3 (1.54)
y=Imz= >

The complex derivative of a function f(z) in a point zo € A (A C C)
is the limit of the difference quotient as z approaches zo, just like in
the real case. Using formulas:

f'(z9) = lim flz) —f(zo) ) (1.55)
z—zg zZ—2p
If the limit thus defined exists, f is said to be a holomorphic function:
These kind of functions has the property of analyticity, that is, the
function is equal to its Taylor series in a neighbourhood of each point
in its domain (f € C®).
By applying the chain rule, it is easy to determine the first order
partial derivatives:

of(z) df(z)

- SE - )
0x dz
oflz) _ dfl2) _ o (1:50)
ay =1 az =1 Z).

1.8.2 Cauchy-Riemann conditions
Let us suppose to have a complex function of the form:
f(z) =ulx, y) +iv(x, y). (1.57)

Its partial derivatives are easily obtained:

of(z) ou(x,y) .ov(x,y)
= —|— 1
0x 0x 0x (1.58)
of(z)  dulx,y) . v(x, y) B
e —|— 1 .
ay dy dy

By defining h == z—z¢ (h € C), it is possible to rewrite equation (1.55)
as:

(1.59)

If the limit exists, whether calculating it along the real axis or the
imaginary axis must give the same result. Considering the x axis, we
have:

f(zo + h) —f(z9) B of
h—0 h - a

(zo) (1.60a)

14
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while along the y axis, it is:

f(zo +1h) —f(z9) _ 1 of

}lllg}) Th =7 @(Zo) . (1.60b)
heR
For what we have just said, it must be:
of of
ia(zo) = @(ZO) (1.61)
or, in terms of u and v:
ov .o0u Ou . o0v
—a‘f‘la—@—i‘l@ (1.62)

The only way for the derivative to be independent of the direction
chosen to compute the limit is that real and imaginary parts in the
two cases coincide:

ou_ v
ox 0y
o v (1.63)
oy  ox’

These two conditions are called CAUuCHY-RIEMANN conditions after
their discoverers. Calculating the mixed derivatives of u (respectively
v) and summing them, thanks to SCHWARZ's theorem, one finds that

Viu =V =0. (1.64)

In words, the real and imaginary parts of a holomorphic function are solu-
tions of Laplace’s equation. They are therefore called harmonic conjugates.

1.8.3 Complex representation of stresses

In section 1.6, we demonstrated that a planar stress condition can be
expressed in terms of the Airy stress function ®, which automatically
satisfies the equilibrium conditions. In the absence of body forces, ®
satisfies equation (1.27), here recalled:

V2V2ZD =0. (1.27, rep.)

Writing V2® = P, it follows that V2P = 0, i.e. P is a harmonic
function. It is therefore possible to define a function Q which is the

harmonic conjugate of P, and a holomorphic function f(z), such that
P =Ref(z) and Q = Im f(z).

By integrating, one gets the function ¥(z):

Y(z) = ljf(z) dz=p+iq (1.65)

15
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which is again a holomorphic function. It follows from Cauchy-
Riemann conditions that:

o _ 9q_ P
ox  dy 4

1.66
_ 2_ Q (160)
oy ox 4

Now, let us define the function p; = ® —px —qy. For p; to be
harmonic, the quantity

02 02
Vip = V20— [axz (px + qy) +?(PX+ qy)}
(1.67)
op 9q
— . 2 2 2 £ et}
P [XV p+yViq+ 6x+ay

must be zero. Because of the equalities in the first raw of system (1.66),
P and the term in brackets erase each other. The previous condition

then reads:
xV2p =0
) (1.68)
yvVveqg=0.

Both equalities hold for every x and y, because p and q are solutions
of Laplace’s equation. Since as we demonstrated p; is harmonic, it is
possible to define a new function x:

X =P1+id (1.69)

such that q7 is the harmonic conjugate of p;. If we now combine ¥
and x in the following way:

H(z) = zV¥(z) +x(z) (1.70)

we obtain the fundamental relation between these complex quantities
and the Airy stress function:

20 =2Re{H(z)} = H(z) + H(z)

] M (1.71)
=zW¥(z) +x(z) +z¥(z) +x(z).
By deriving equation (1.71) with respect to x and y, we obtain:
oD o ,
2 P zV'(z) +¥(z) + X' (z2) + 2V (z) + ¥(z) +x'(2)
) (1.72)
25, =1 EW(2) —W(z) + X' (2) — 2 ¥ (2) + ¥ (2) —X/(z)}
or, equivalently:
op 00 —
o tig- =Y(z) +2¥'(z) +X'(2) (1.73)
0x oy

16
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By deriving equation (1.73) with respect to x and y, and multiplying
by the imaginary unit i the second expression, we find:

2D R

st = V() +V(2) 2V (2) + X (2)

ox2 0x ay

o e (1.74)
s i =W (2) =V (2) + 27 (2) + X" (2).

dy 0x oy

By summation and subtraction of the equations thus found, we obtain
the so-called fundamental stress combinations [25, p. 268]:

ox+oy = 2[W(z)+W(z)| =4ReW(z)

o (1.75)
Oy — Ox + 21Ty =2 [2‘1’"(2) +x“(z)} )

Although we do not describe explicitly the procedure to derive such
relation, it can demonstrated that the planar displacements are sub-
ject to the condition [25, p. 267]:

2G (u+1iv) =k¥(z) —zV¥/(z) —X'(2) (1.76)
where « is the Kolosov’s constant defined in subsection 1.7.1.

Following Muskhelishvili’s procedure, the final step is to define a
new complex function:

¢(z) =x'(2) (1.77)

so that the planar stresses become:

ox+oy = 2[W(z)+ V(]| =4ReV'(z)
(1.78)
Oy — Ox + 2L Tyy = 2[2‘1’”(2) + (p’(z)}
and the displacement field is:
2G (u+iv) =kV¥(z) —z¥'(z) — o(z). (1.79)

We therefore conclude that, according to the method of complex
variables, the exact stresses and displacements in plane elasticity can be
completely determined once that two proper complex functions ¥(z), @(z)
are defined.

1.8.4 Westergaard's equations

We will now use the method of complex variables to obtain the well-
known Westergaard’s equations for a central crack in an infinite plate,

17
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subjected to mode I. The complex functions used in this problem are
the following [31, p. 26]:

Y(z)=312Z(z), @'(z)=—%2Z'(2). (1.80)

The relations in (1.78) then become:

ox +0y = Z(z) +Z(z) = 2Re Z(z)
Oy —Ox+ 2Ty = (2—2) Z'(z) =2y [ImZ'(z) —iRe Z'(z)] .
(1.81)
With a simple integration by parts, it is found that [31, p. 26]
©(z) = % 7% (z) — % z27Z(2) (1.82)

where Z*(z) := [ Z(z) dz. Hence, equation (1.79) turns out to be:

2G (u+iv) = 3(k—1)Re Z*(z) —yIm Z(2)
+i[3(k+1)ImZ*(z) —yRe Z(z)] . (1.83)

In order to determine explicitly stresses and displacements, it is neces-
sary to define Z(z). This stress function is called Westergaard function
after its discoverer, and in this case assumes the form [33]:
0-z
Z(z) = ﬂ (1.84)
where o is the tensile stress acting at an infinite distance from the
crack and a is the crack half length. Consequently, Z*(z) reads:

Z*(z) = oVz? —a?. (1.85)

By observing Figure 1.3, adopting the polar form for complex quan-
tities, one can define the following relations:

z=re®, Vz22—a2= rme? (1.86)
where 9 = %(81 +95,). Therefore, the stresses turn out to be:
or -
ox +0y = _— cos(d — V)
oa? _ _
Oy — Ox +2iTyxy =2 T2 71 sind; [sin(39) + i cos(39)]
(1.87)
while the displacements are:
. 1 5 . or . 5
— 1k —1 — —
2G (u+1iv) = 5(k—=1) oy/T1T2 COs Y — 17 sin By msm(ﬁ d)
-1 . w . or —
> 1 — — . (1.
+1i|5(k+1)oy/TiT28In Y — 17 sin D4 mcos(ﬁ d) (1.88)

18
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Figure 1.3. Configuration of the crack problem.

If we want just to determine the asymptotic fields, i.e. the ones in
proximity of the crack tip, we can introduce the following approxima-

tions:
TR aq, d~0

T & 2aq, ¥ = 0.

(1.89)

The shear component Ty, is the imaginary part of the second equa-

tion:

L ova 0 30

sin — cos — cos

Ty ¥ T 2 2 2

while the normal stresses are obtained using the relations:

3
Ox + oy ~2 (}/f Cos%
d 39
Oy —O0x = ova 51n—cos—]s'n—1.

V217 2 2 2

We conclude that the solution is

Ox co %[1—smgsm3z‘9]
o
_ova cos 31+ sin § sin 3]

Oy ¢ = —F=—=
vV2r 9 9 319

Txy sin § cos 5 cos

for the stresses and

2G (u+iv) =~ Gﬁwg{(K—U cos%—i—sin%] sin%

(1.90)

(1.91)

(1.92)

+1 |:(K +1) sin 871 —sindq cos 821] } (1.93)
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PLANE ELASTICITY

for the displacements. Exploiting again the trigonometric relation
sind = 2sin % cos %, the latter can be also rewritten as:

(1.94)

vf  2G V2 Sin%[K—l—]—ZCOSZ%]

{u} _ova [r {COS‘%[K—1 +2sin2‘z}}‘

The subscript was omitted, since the coordinate system was moved
with a rigid translation to the crack tip.

These are the original equations derived by Westergaard [33].
Irwin modified them further by introducing the concept of the Stress
Intensity Factor (SIF), which reads [15]:

Ki = lim v2nroy (9 =0). (1.95)
r—0+

As previously stated, the SIF was then generalized to the notches
by other Authors [13]. For the crack problem, Ki has a closed form.
In fact, introducing oy as given by equation (1.92) in the previous
definition, one obtains:

Ki =o+vma. (1.96)

Equation (1.96) relates the local field parameter K; to the nominal
stress 0 and the crack length a. The stress field then becomes:

oy « cos 3 [1 —sin § sin 3]
I . .
oy o= Nor cos%[] —|—sm%sm %] (1.97)
Txy sin 2 cos & cos 32
2 2 2
while the displacements are:

{u} K [r [cos [k =1+ 2sin?3] (1.98)

v 2GV 2 |sind[k+1—2cos?3] . '

It is worth noticing that the second equation in (1.94) allows an alter-
native definition of the SIF [1, p. 559]:

2nE’
Ki= lim {/ ——v(d=m 1.
1= lim /==l ) (1.99)
where E’ is the effective Young’s modulus, defined in Table 1.1. The
displacement-based definition of Ky is extremely useful for its numer-
ical estimation, since v~ /T as r — 0 and is therefore more easy to
compute than the stresses, which are singular near the crack tip.
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2 THE SED CRITERION

21 INTRODUCTION

Now that the necessary theoretical background has been introduced,
we can describe the SED criterion as formulated by Lazzarin and
Zambardi [19]. For some aspects, it can be seen as an evolution of a
previous criterion, based on the evaluation of the Notch Stress Inten-
sity Factors [18]. The reasons for a change are twofold [16]:

o The NSIFs” dimensions depend on the notch opening angle, as
shown in subsection 1.7.3. It is therefore not possible to com-
pare them directly when non-similar geometries are considered.

e The volume dominated by the singular stress field decreases
with the thickness. When low thicknesses are considered (for
example the metal sheets extensively used in the automotive
industry, whose thickness is less than 1 mm), it is necessary to
take in account also non-singular terms, which cannot be pre-
dicted by Williams” asymptotic solution.

As the name suggests, the SED criterion is based on the evaluation
of the strain energy density. The use of this quantity allows to over-
come both limits of the NSIFs, since (i) it has always the dimensions
of Nmm/mm?3 and (ii) can be computed numerically by summing
the contributions of both singular and non-singular terms.

The idea that the quantity controlling the failure of a solid is the
strain energy density was first suggested by BELTRAMI [12, p. 196].
Instead of considering the strain energy density of the entire struc-
ture, in the SED criterion this quantity is computed locally, in the
zones which are subject to singularities or strong gradients, and av-
eraged on a volume that depends on the material used, according to
the concept of control volume first proposed by Neuber and retrieved
by Peterson [27, p. 197]. This volume is defined by a characteristic
radius, whose order of magnitude is usually 0.1 to 1 mm.

2.2 BASIC EQUATIONS

In the principal coordinate system, where all the shear stress compo-
nents are zero, the strain energy density is [30, p. 148]:

1
W:E[cr%—l—(r%—kcr%—b/((ﬁ 02+ 02 03+ 07 03)]. (2.1)
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If we consider any non-principal polar coordinate system, the SED
turns out to be [30, p. 148]:

W = 2]7E [G$+G§+G§—2v(0rc‘9+0r 0,+0g50,)+2(1 —I—V)Tfﬁ} .
(2.2)
Since we are working under the generalized plane elasticity hypothe-
sis, we can exploit the effective elastic constants reported in Table 1.1
to rewrite the strain energy density in a more handy form:

]
W= ol ol —2vorop +2(1+V)th]. (@3)

On the basis of the superposition principle, the singular stress field
due to the V-shaped notch can be thus expressed (see Figure 2.1):

~(ID)

oy oy oy
_ ~ (L — ~(IT

op p =KitM LG b KT Y b (2.4)
=) (1)
Trd Tr{) Trﬁ

This form highlights the most relevant parameters for the stresses,
that are the NSIFs and the singular terms r*12~1; the trigonometric

terms are collected into the angular functions &, &y, and T,s.

Using these equations, it is possible to determine the contributions
of mode I, mode II, and mixed mode to the SED:

Wi(r,9) = K%i(g” 50 4 50 —2v/ 50 6
+2014+v)7%),
Wa(r,9) = K%r;;,z” G0 4 7 — 2y 5 6 s
} 2.
+20+v)2Y ], ’
Wia(r,9) = K‘KZTQIHZ_Z [5@ 50 4 50 5D

1 &0 50D | &0 ~an 1\ &0 D
—2v (O‘r Gy + 0y Oy ) +2(1+v )Tr{)Tr{):|'

In order to get the local strain energy, one has to integrate the compo-
nents thus found over the area A:

R r+v
U(R)—JAWdA—J J (Wi (1,9) + Wa(r,9) + Wia(r,9)]r drdd.

0 J—vy
(2.6)
Since the term W7, is a combination of the two modes, and since
they are symmetric respect to the notch bisector, its integral is zero.
Therefore, the local strain energy turns out to be:

KZ R#A2| (2.7)

1 [11 V) 2 g2y N L(v)

R) = —
U(R) E|4n ! 40,
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2.2 BASIC EQUATIONS

Figure 2.1. Polar stress components for an element inside the control vol-
ume [19].

where 17 and I, are:

Y 2 2 2
I :J [6$>2+6g> —2v'50 5y +2(1 —|—v’)%%}rdrd19,

jy (2.8)
I = J [692 + 50— 2v'6 6 +2(1+ ) ff%z}r drdd.

These integrals depend both on the notch opening angle and the Pois-
son’s ratio. They are reported in Table 2.1 for some characteristic an-
gles, assuming v = 0.3 (which is a typical value for structural steels).

The local strain energy density is obtained by averaging U(R) on
the area of integration:

U(R) 1 2 p2(A—T 2 p2(A—1)
$¢D = Tpz ~E [O R KTRTT )+ ez(2) K3 R2A2 (2.9)
Li(v)

where e; (2x) = Zyvers for i = 1,2. The expression thus obtained has
general validity and relates S€D to the notch geometry and the radius
R, which is thought to be a property of the material as welded.

It is interesting to point out some considerations:

e The left-hand side of equation (2.9) plays the same role of the
equivalent stress defined in the classical failure criteria (TREsCA,
VON Misks, etc.): In fact, this quantity can be easily computed
with a simple tensile test, allowing to gain information about
the quantities on the right-hand side, which may refer to com-
plex loading conditions.

e Under simple stress conditions, S€D can be directly related to
the nominal stresses, that are traditionally used in machine de-
sign; the energetic approach allows to relate them with fracture
mechanics parameters such as the NSIFs, thus building a con-
nection between the two design procedures.
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Table 2.1. Some values of the integrals I; and I, [19].

2 v/TT Plane stress Plane strain
(deg) (rad) Li(y) L(yv) L(y) Ly
0 1 1.0250 2.3250 0.8450 2.1450

15 23/24 1.0216 21608 0.8431 2.0087
30 11/12 1.0108 2.0091 0.8366 1.8810
45 7/8  0.9918 1.8688 0.8247 1.7610
60 5/6  0.9642 1.7385 0.8066 1.6479
20 3/4  0.8826 1.5018 0.7504 1.4379
120 2/3  0.7701 1.2887 0.6687 1.2437
135 5/8 0.7058 1.1883 0.6201 1.1505
150  7/12  0.6386 1.0908 0.5678 1.0590
160 5/9  0.5930 1.0269 0.5315 0.9986
170 19/36  0.5481 0.9635 0.4957 0.9383

e Equation (2.9) was derived under the linear elastic hypothesis,
i.e. neglecting the plasticity effects that occur in the proximity
of the notch tip when ductile materials are involved (the so-
called small scale yielding condition). A key point of the SED
criterion is that, due to (i) the alterations induced locally by
the process of joining and (ii) the experimental evidences of
elastic behaviour in high cycle fatigue of metals, it is legitimate
to assume a brittle behaviour for the material, and therefore to
use the relation previously derived."

2.3 FORMULATION OF THE CRITERION

After these preliminaries, we can formulate the failure hypothesis:

According to the SED criterion, the fatigue failure of a welded
joint weakened by a V-shaped sharp notch occurs when the
strain energy density averaged over a material-dependent vol-
ume reaches a critical value.

Speaking with formulas, the safety condition is:

ASED < ASEDc (2.10)

where the subscript C indicates the critical value of a quantity (i.e. the
one that induces the failure initiation) and the symbol A is used to
highlight that only ranges of the quantities are considered.”

1 Since the only requirement in terms of material is a linear elastic behaviour until rup-
ture, the criterion has more general validity and can be applied to other situations,
such as the assessment of static strength for purely brittle materials [19].

2 In the classical approach of mechanical design, the fatigue behaviour is described
in terms of stress range A0 = Omax — Omin and stress ratio S = Imin (see e.g. [27,

pp- 59-62]).

O'max
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2.3 FORMULATION OF THE CRITERION

In order to use the criterion, we have to determine the characteristic
radius R, which can be obtained for a particular (and possibly well-
documented) case. The Authors” original choice fell on the mode
I-dominated fatigue failure of a 135°-notched welded joint, due to
the big amount of experimental data available in literature for this
configuration [19]. Equation (2.9) then becomes:

L (v) AK{ R2(A1—1)

ASED =
47\]’}/ E

. (2.11)

A key point in the arguments of the Authors is the following [19]:
While R is a characteristic quantity for a welded material, the critical
strain energy density is thought to be a property of the non-welded
metal. Hence, by considering a fatigue tensile test of non-welded
metal sheets, for which the assumption of uniform stress field is plau-
sible, the critical strain energy density reads:

AG%\

ASEDc ~ >t (2.12)
where the subscript A indicates the category of the structural details,
i.e. its allowed fatigue life at 2 x 10° cycles, as Eurocode 3 states [9].
Upon substitution of ASED with ASED, we get the critical NSIF:

2y

AKic =
¢ I (v)

AoaA R'"™ =f;(2a0) AcpA R'™™ (2.13)

where f; is a function of the opening angle. Therefore, the expression
for the radius R is the following:

:
_ AKqc T—A
R= (ﬁ (2x) A0A> ' (2.14)

With (i) a fatigue life Aca = 160MPa for S = 0, as reported by
Eurocode 3 [9], and (ii) a critical NSIF AK;c = 214 MPamm?®32¢
for a probability of survivance P.S. = 97.7%, equation (2.14) gives
R = 0.265mm [19]. In some recent papers [16, 20], in order to deter-
mine more accurately the influence of the welding process, the fatigue
tensile test was conducted on a butt ground welded joint, mechani-
cally polished to remove any stress concentration effect. Moreover,
the number of cycles was increased to 5 x 10°, which according to
Eurocode 3 has to be considered the fatigue limit of metals under con-
stant amplitude load histories [9]. The new data are Ao, = 155MPa
at S = 0 and AK;c = 211 MPamm©®32¢ for a P.S. = 97.7%, and the
radius predicted by equation (2.14) is R = 0.28 mm.

For our analyses, unless otherwise specified, we sat R = 0.3 mm,
so to allow the comparison with some values of €D previously com-
puted [8].
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3 NUMERICAL ANALYSIS

3.1 INTRODUCTION

We already said in the introduction that most of present-day fracture
mechanics-based failure criteria are dealing more or less markedly
with numerical analysis. The main reason is that this branch of math-
ematics presents itself as a practical and reliable way to compute the
local quantities which, according to fracture mechanics, are govern-
ing the structural damage. One of the most widespread techniques
adopted by numerical fracture mechanics to compute rapidly and
accurately such quantities is certainly the Finite Element Analysis
(FEA), whose main concepts are now briefly discussed.

3.2 THE FINITE ELEMENT METHOD

The Finite Element Analysis is a tool extensively used in structural
engineering for design purposes. Without claiming to be exhaustive,
we are going to outline briefly the fundamental concepts at the basis
of the Finite Element Method (FEM).

3.2.1  Differential formulation

The Finite Element Method is an extremely powerful technique that
allows to obtain approximate solutions of mathematical models de-
scribed by partial differential equations on continuous domains. In
continuum mechanics, an important class of problems can be ex-
pressed in terms of elliptic PDEs, whose general formulation on a
two-dimensional domain is [3, p. 105]:

o%u %u %u Jou ou
A’ 4 ZB 4 C 4 - 4 7 4 7
(xy) 5.7 +2B(xy) axay+ (x y)ayz <P<XU 2w ag>

(3-1)
where B2 — AC < 0. For example, as pointed out in subsection 1.5.1,
the elastostatic problem is governed by a set of three linear partial
differential equations and the prescribed boundary conditions.
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L

Tx

—> FX . ——

> x — u(x)

Figure 3.1. One-dimensional bar subjected to a body load Fyx and an end
stress T (adapted from [3, p. 109]).

3.2.2 Variational formulation

The problem (3.1) can be expressed in an alternative form, on the ba-
sis of the physics which governs it. In this case, instead of solving
directly a differential equation, we seek an expression for the total
potential associated to the physical system and we impose its station-
arity. In mathematical terms, the condition of stationarity of a func-
tional F(v(x),v/(x),...,vP)(x)) is expressed through its first variation,
thus defined [3, p. 111]:

! ’ (p) (P / (p)
6F:hmF[\H—sn,v +en',. .., vP 4+ enP —Fv, v/, ..., vP)]

e—0 £

(3-2)

where both v(x) and n(x) depend on x, while ¢ is a constant. Let
us suppose 1n(x) to be an arbitrary but sufficiently smooth function
which is zero at the essential boundary conditions. We call it a varia-
tion in v and we write 1(x) = dv(x). We then notice that, under these
hypothesis, equation (3.2) reads [3, p. 111]:

oF oF dv oF dPy
vV o(dv/dx) <dx> ot o(dPv/dxP) (dxp> (3)

that is, the variational operator §(-) acts like the differential operator
with respect to the variables v, dv/dx, ..., dPv/dxP.

That said, indicating the total potential energy with T, we can
equivalently express the equilibrium condition through the equation:

STT(u) =0 (3.4)

which is called variational formulation, while TT is the functional of the
problem. The condition (3.4) must be coupled with the essential or
DiricHLET boundary conditions, that specify the values that the so-
lution assumes at the boundary of the domain. Comparing equa-
tions (3.1) and (3.4), one may think that the adoption of one method
respect to the other could lead to different results. With the next ex-
ample we want to show that the two formulations are, in all respects,
identical (see the example in [3, pp. 112-113] and following).
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3.2 THE FINITE ELEMENT METHOD

Let us consider the static response of the one-dimensional elastic
bar shown in Figure 3.1. By truncating to the first order the term
0A|X +ax the equilibrium of the forces in the x direction of a typical
differential element reads (see Figure 3.2):

do

crA}XjLAa dx+Fydx—oA| =0. (3.5)

X

Introducing the constitutive relation:

du
=EFE — .
o ix (3.6)
we can write the differential formulation of the problem in its en-

tirety [3, p. 124]:

pa v g in the b

Aw—l— x =0 in the bar (3.7a)
du

u‘x:o =0, EA a L =Tx. (37b)

The functional associated to this problem is [3, p. 125]:

= [ Tea () e[ T
TT(u :J EA() dxj wFydx —up Ty 8
)2 ™ , L 3.8)

where up = u‘X:L and up = u!X:o = 0. By imposing the condi-
tion (3.4), we get:

L L
du du
STT = EA— )& — Jdx—| buFydx—06urT, =0. .
(u) L( dx) (dx> X JO uFy dx —dup Ty (3.9)

Integrating by parts and using the equality 6 (%) = d%(éu, we obtain
the equation:

L 2
—J (EAd‘j+FX>5udx+[EAdu —Tx]éuL
0 dx X1
@ @
—EAg dup =0. (3.10)
ax o 0o=0V. 3.

®

Since there cannot be variations on the prescribed boundary condi-
tions, it must be dup = 0, and term (3) disappears. Considering now
term (2), we notice that duy is completely arbitrary. Therefore, we can
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Fy dx
o Alx O-A|x+dx
I

Figure 3.2. Equilibrium of a typical differential element of the bar.

assume du to be zero in all the domain except at x = L. Since the
condition is to hold for any du, it must be:

d
A & =T (3.11)
dx x=L
which is the second of the equations in (3.7b), corresponding to the
natural or NEUMANN boundary condition. Conversely, the argument
that du # 0 everywhere except at x = L requires term (7) to be zero:
d*u
EA ol +F=0 (3.12)
thus demonstrating that the two approaches lead to the same result.
It is worth noticing that in the variational approach the natural bound-
ary conditions are automatically satisfied.

3.2.3 Weak formulation

In subsection 3.2.2, we showed that a differential problem (which gov-
erns the mathematical model of a physical phenomenon) can be ex-
pressed equivalently with the variational approach. We are now go-
ing to investigate further on the variational formulation, and check if
it can be expressed in a more useful — that is, easily implementable —
way. The procedure followed here is described in [3, pp. 126-127].

The basic idea is to consider the variation du as a test function v that
satisfies the essential BCs. Equation (3.9) then reads:

L L
J dVEAdudx:J Fevdx+Tev| =0 (3.13)
0 dx dx 0 x=

which can be enunciated in the following way:

For u to be the solution of the problem, the left-hand side
of equation (3.13) must be equal to the right-hand side
for any arbitrary test function v that is continuous and
satisfies the prescribed essential boundary conditions.
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3.2 THE FINITE ELEMENT METHOD

If we denote by L? the space of square-integrable functions on a
certain domain Q:

L2(Q) = {f)feQ,J \fl2 dQ<oo} (3.14)
Q

and with V the function space such that

V(L) = {v(v e L2(L), % e2(L), v],_, = o} (3.15)

we can express the previous statement in the form:
Find u € V such that B(u,v) =F(v), WYweV

where the left-hand side

L

dv du
B(u,v) = —EA —d .16
(u,v) Jo T T X (3.16)

is the bilinear form and the right-hand side

L
F(v) = J Fxv dx—{—TXv]x:L (3.17)
0

is the linear functional of the problem. This approach is called weak
formulation and is the basis of the Galerkin method, which we are now
going to discuss. It should be noted that equation (3.15) corresponds
to the condition of finite energy for a mechanical system [28, p. 34].

3.2.4 Galerkin method

The GALERKIN method pertains to a class of methods for the numer-
ical resolution of differential equations called weighted residuals meth-
ods. The basic assumption is that the approximate solution u, can be
written as a linear combination of a set of linearly independent trial
functions, that is [3, p. 118]:

n
i=1

where N; is the i-th function and a; the corresponding coefficient to
be determined. Using the notation introduced in the previous subsec-
tion, we can also state the problem in the following way [3, p. 127]:

Find u,, € V;, such that B(un,vn) =F(vn), Vvn € Va
having defined V;, as

dvn
Vo (Q) = {vn ‘vn e L?(Q), % e L?(Q), vn’su = o} (3.19)
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where S, is the surface area on which zero displacement is pre-
scribed. In the Galerkin method, the coefficients a; are sought by
imposing the orthogonality (called Galerkin orthogonality) between the
error e :=u — 1, and the trial function vy, [28, p. 43]:

B(e,vn) =0. (3.20)
Such condition is obviously satisfied when the exact solution is found

(u=un).

3.2.5 Principle of virtual displacements

It is interesting to specialize the previous statements for a particular
yet important class of problems, the elastostatics problems, because of
the physical meaning that the weak formulation assumes [3, pp. 157-
158]. In three dimensions, using Einstein notation, the problem is
given by the equilibrium condition:

0y, +Fi =0 (3.21)
that must be coupled with the natural (force) boundary conditions
oyjny =T, onSs (3.22a)
and the essential (displacement) boundary conditions
u; =13 on Sy (3.22b)

where S =S¢ US,, St NSy = 0. Let us consider any arbitrary chosen
continuous displacement ti; that satisfies

;=0 onSy. (3-23)
Equation (3.21) must hold also in this case:
(035 +F)uy =0 (3-24)
and the equality is preserved also upon integration:
JV(Gij,j +F)a;dv =0. (3-25)
Using the product rule
(01jTt),5 = 015, Ti + 0451y (3-26)

and applying the divergence theorem

J (o350i),5 dV :J (o5Ti) ny dS (3-27)
v s
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3.2 THE FINITE ELEMENT METHOD
we obtain:
JV(—O'ijﬂi,j + Fiy) dV + JS(O'ijﬁi) n; ds (3.28)

that, in light of the boundary conditions (3.22a) and (3.22b), becomes:

J (_Gijﬂi,j + Fiy) dV +J Tiﬁi dS=0 (329)
% St
where 1; = ﬂi‘sf' At this point, we only have (i) to exploit the

symmetry of the stress tensor (o = 0j1) so to write
oilti,j = 01 [5 (T +150)] = 048y (330)
and (ii) to introduce the constitutive equation

0ij = Cijkient (3-31)

to get the expression

J Cijklsklzij dVv = J Fitiy dV +J Tilxli ds (332)
\% \% S¢

which is the enunciation of the principle of virtual displacements for
a linear elastic material.? In words,

For u to be the solution of the problem, the left-hand side
of equation (3.32) (the internal virtual work) must be equal
to the right-hand side (the external virtual work) for any
virtual displacement 1 that is continuous and satisfies the
prescribed boundary conditions.

We have thus demonstrated that the principle of virtual displace-
ments is the emanation of the weak formulation for linear elastostatic
problems.

The principle fulfils all the fundamentals requirements of contin-
uum mechanics [3, pp. 160-161]:

1. Equilibrium clearly holds, since the principle was derived start-
ing from equation (3.21).

2. Compatibility holds because the displacement field is continuous
and satisfies the prescribed essential boundary conditions.

3. The constitutive law holds because the stresses are calculated
from the strains, at their time evaluated from the displacement
field through derivation.

1 The validity of the principle is not limited to linear elasticity. Introducing a different
constitutive law at point (ii), it could be possible to apply it to inelastic materials, as

well [37, p. 55].
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As a concluding remark, we point out that equation (3.32) could
be obtained by imposing the stationarity of the following total poten-
tial [3, p. 160]:

M) =3 | (el CHebav—| ' Frav—| w'mas 6.

confirming again the equivalence between the differential, variational,
and weak formulation.

3.2.6 Finite Element equations

As we said in subsection 3.2.1, a large class of physical problems
can be expressed in terms of differential equations, whose solution is
sought onto a certain domain. When complicated domains are con-
sidered, it is not generally possible to obtain a closed-form solution,
and numerical approximation becomes necessary. The basic idea of
the Finite Element Method is to subdivide the domain into a grid
of elements, called mesh, onto which the Galerkin method is applied.
In this subsection, we are going to derive the basic matrix equations
which govern the Finite Element Method, on the basis of the the-
oretical concepts previously described. Since we are dealing with
two-dimensional problems, the formulation will be derived for this
particular case, although the validity of the method is more general.
The main reference for this subsection is [37, pp. 49-66].

Once again, our starting point are the equilibrium equations, de-
fined in subsection 1.5.1 in a Cartesian coordinate system, and re-
ported here for convenience:

0 0
aUx i gxy +F =0

3 x ay (1.13, rep.)
Txy Oy _

Let us seek a way to write them in a matrix form, which is more easy
to handle numerically. If we define the differential operator matrix [D]
as follows:

d d
x O oy

[D] = > 9 (3-34)
oy 0x

and we collect the stresses and the body forces in two vectors, respec-
tively {0} = {0y, 0y, Txy 1T and {F} = {Fy, Fy 1T, the equations in (1.13)
become:

[D{o}+{F}=0. (3.35)
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The stress-strain relations in matrix form are:

Ox Ei1 Eiz2 Eis €x
oy 0= |E12 E22 E23 €y (3-36)
Txy E13 E23 E33] Lvxy

where the coefficients Ey; are obtained by inverting the relations (1.11).
If we collect them in a matrix [E] (which is called elasticity matrix), we
can express the previous relation in the vectorial form:

{o}=[El{e} (3-37)

where {e} = {ex, €y, Yxy 1T is the strain vector. We just need to recall
the strain-displacement relations:

€ _ou € _ —@—I—a—u (1.14, rep.)
axT Yy’ Yo = 5 dy 14 Tep-

which in vectorial form become
{e} =[D]"{u} (3-38)

where {u} = {u, v}" is the displacement vector, to reformulate equa-
tion (1.13) as:
[DI(EID] {u}) +{F} = 0. (339)

The boundary conditions read:

{u} ={tt} on Sy
[L}{o} = {T} onS$, G40
where
cosx 0 sin o
(L= [ 0 sino cosa (5-41)

is the matrix collecting the components of the outer normal unit vec-
tor to the boundary surface S¢ and {T} = {Ty, Ty}T is the traction
vector.
According to what said in subsection 3.2.4, we approximate the
displacement vector {u} as follows:
Ny (X,y) wuy +---+ Nn(X,y) Un
{u}_{Nﬂx,y)w+---+Nn(x,y)vn} G42)

where u, v; are the displacements at the nodes i =1,...,n. Nj are
interpolating functions called shape functions. They are described in
some details in Appendix A; in order to continue our discussion, it is
enough to remark their fundamental property:

1, atnodei

Ni(x,y) = { (3-43)

0, otherwise.
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If we define a shape function matrix [N]:

N7 0 .. Ny 0
[N] = 0 Ny ... 0 Nn (3-44)

and a nodal displacement vector {u},, ={uy, vi,..., un, vn}T, we can
rewrite equation (3.42) in the form:

{u} =[NJ{u},, . (3-45)

The target of the Finite Element Method is to compute the vector {u},,,
whose components are called Degrees Of Freedom (DOF).

Introducing a virtual displacement vector {v}, thus defined:

{v} =[IN}{v}, (3-46)

and following the procedure described in subsection 3.2.5, we obtain:

| O oras = | Pas+ | T Gap
f
which is the principle of virtual displacements in two dimensions.
By defining the matrix [M] such that:
[M]=[DJ'IN] (348)

equation (3.47) can be rewritten as:

% [ IMI" s = )] | INTURas + )] | INTT AU Guao)

L¢

where vector v, is a constant and can be simplified. Using equa-
tions (3.37) and (3.38) and introducing the relation

D] {u} = [M]{u}, (3.50)

we finally get

L [MI'[E][M]{u},, dS = JS IN]T{F}dsS + L INIY{T}dl.  (3.51)

Since vector {u},, is a constant, it can be placed outside the integral.
If we denote by [K] the remaining integral:

K= | vMITEIM)as (552)
and by {F},, the right-hand side:

(F), = L INIT(F}ds + L INI"(T} dl (3.53)
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3.2 THE FINITE ELEMENT METHOD

we obtain the fundamental expression of equilibrium of the Finite
Element Method:

[KJ{u},, ={F},, . (3-54)

[K] is called the stiffness matrix, while {F}, is the nodal forces vector.

3.2.7 Standard element transformations
Let us define the standard element as follows:

The shape functions are interpolating functions that allow to map any
two-dimensional element to the standard element, which is a square.
If we consider a four-node quadrilateral element, the mapping reads:

4
x(&m) =) xiNi(&m)
o (3.56)
y(&m) =) yiNi(Em)
i=1

where (xi,yi) are the coordinates of the nodal displacements. The
shape functions N; in equation (3.56) are the following:*

z
I
IR
—
=
|
&~
=
|
=3
=
S
z

1
2=7 n)

1 (3.57)
4=7 n.

+
&~
_|_
2
pa

Following the isoparametric approach, the same shape functions are
used also to map the displacements:

4
u(E,m) =) wlNi(gn)
o (3.58)
v(EM) =) wiNi(Em).
i=1

The change of variables thus introduced would require to rewrite all
the expressions derived in the previous subsection in terms of inte-
grals of &, n defined onto the standard element. Without deriving the
equations explicitly, we just point out that the transformation involves
the Jacobian matrix [J]:

9 9
aaa =] % (3-59)
on oy

2 For further information about how the shape functions can be built, refer to Ap-
pendix A.
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where
0x ay aNkX aNky
3T Ac n | &7 Xk &7 Yk
_|0& o&| _ 0§ 0§
o on o % o UK
from which follows that
ONy ONy
0 — 0
o ¢ =0 o b (3.61)
dy on

By denoting [M] = [M(&,1)], we can write the stiffness matrix of a
single element as:

K1, :J (M [E][M], dSe . (3.62)

Since dS. = det[J] d&dn, we have

K], =JQ (M7 [E] (M, det[J]dédn (3.63)

and the global stiffness matrix reads

[K]Z[K]eZJ (M} [E][M, det[Jldedn.  (3.64)

e e Qst

3.3 THE EXTENDED FINITE ELEMENT METHOD

In the standard Finite Element Method, the convergence to a smooth
solution is achieved with a progressive mesh refinement. An a priori
error estimate is given by [28, p. 193]:

k

luex —urelle = (5 (3.65)

where N in the number of degrees of freedom, k and 3 are two con-

stants, and |[u|¢ = /% B(u,u) is the energy norm [28, p. 42].

As seen in section 1.7, there are also many situations of practical
interest where the solution presents high gradients or even singular-
ities. The non-smoothness can drastically decrease the convergence
rate of the FEM, and therefore increase dramatically the computa-
tional cost of the resolution; sometimes it can even lead to incorrect
results [29]. In the standard FEM, the way to overcome this issue is
to refine the mesh in proximity of these sources of discontinuities: In
terms of error adaptivity, this technique is known as h-FEM. More
recently, other techniques were developed, such as p-FEM, where the
degree of the polynomial approximation space is increased, keeping
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3.3 THE EXTENDED FINITE ELEMENT METHOD

the mesh fixed [29], or the eXtended Finite Element Method (XFEM).
In the latter, the polynomial approximation space is enriched with
special functions that take in account of the kind of discontinuity
analysed; non-smooth solutions can be thus modelled independently
of the mesh. In the following two subsections, we are briefly review-
ing the XFEM, taking as a reference [11].

3.3.1  Description of interfaces

Since the XFEM does not involve mesh refinement, it is necessary to
define a strategy to describe an interface within the domain. This
target is achieved with the concept of level set function. A level set
function is any continuous function ®(x), x € Q, that is negative in
one subdomain and positive in the other. The closed interface I'i,
corresponds to the zero-level of this function:

I“12 = {X| CD(X) = 0} . (3.66)

A particularly useful function pertaining to this class is the signed-
distance function, thus defined:

®(x) =+ min |x—x*]] ¥xe€Q (3.67)
x*el,
where |-|| denotes the Euclidean norm. The signed-distance function
is sketched in Figure 3.3. For discretized domains, the values of the
level set function are stored at the nodes (®; = ®(x;)), and ®(x) is
interpolated using the standard FE shape functions Nj(x):

O™ (x) =) Ni(x)D; (3.68)

i€l
where I is the set of all nodes in Q.

Until now, we tacitly assumed that the domain Q € RY was di-
vided by the interface I'1; into two different regions ()7 and Q; such
that Q = Q; UQ, and Q1 N Q, = T2, i.e. that I, was a closed in-
terface. Open interfaces, like cracks, dislocations, and shear bands,
usually end inside the domain Q. For cracks, it is necessary to intro-
duce another level set function y(x) which defines the position of the
crack tip. The crack is given by:

Me = {x|®(x) =0and y(x) < 0} (3.69)

where @(x) is the same signed-distance function described above,
now tangentially extended from the crack tip to the entire domain
(so to define a closed interface). y(x) — which is not necessarily a
signed-distance function — is constructed such that it is orthogonal
to I'. at the crack tip (see Figure 3.4).
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Q;

(o}

(a) The domain QO decomposed

into Q7 and Q,.

(b) The signed-distance function ®(x).

Figure 3.3. An example of the signed-distance function [11].

Figure 3.4. Definition of a crack with the XFEM: (a) The domain Q with
a crack; (b) the signed-distance function ®(x) for the descrip-
tion of the crack path; (c) the second level set function y(x) for
defining the crack tips [11].
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3.3 THE EXTENDED FINITE ELEMENT METHOD

3.3.2  Structure of the XFEM

Let us consider a domain Q € R4, discretized in n elements, where
a function u(x), x € Q, is defined. The global enrichment of the
approximation u, (x) reads:

un(x) = Y Nix)ui + Y Nix)-b(x)ai  (3.70)

i€l icl

Standard FE approx. Enrichment term

where [ is the set of all the nodes in the domain. Both N; and N7 are
standard FE shape functions, that not necessarily coincide, just like
the coefficients u; are the same used in the standard FEM. In addition,
the enrichment term brings other nodal unknowns a;i. (x) is the
enrichment function, that incorporates the special knowledge about the
discontinuity in the approximation space. The product N7 (x) - {(x)
has the same support of the standard FE shape function and leads to
the sparsity of the discrete equations.

A fundamental property of the functions N7 is the ability to build
a Partition of Unity (PU) over the domain ), that means

D> Nix)=1. (3.71)

iel

As a consequence, the approximation (3.70) can reproduce exactly
any enrichment function in Q. Since this kind of approximations
generally does not have the Kronecker-6 property, it follows that
un(xi) # uy, thus complicating the imposition of the essential bound-
ary conditions and making more difficult to interpret the results. In
order to recover the § property, the approximation is shifted:

un(x) =) Niui+) Nix)-[p(x)—v(xi)]ai.  (3.72)

iel iel

It is possible to demonstrate that the shifting does not affect the ability
of reproducing exactly any enrichment function \(x).

A global enrichment is computationally demanding because the
number of enriched degrees of freedom is proportional to the number
of nodes in Q). Since discontinuities and high gradients involve local
phenomena, in many cases it is sufficient to enrich a nodal subset
I* C I. The approximation then becomes:

un(x) =Y Nix)ui+ ) Ni(x)-[b(x)—bx)]ai.  (3.73)
i€l iel*

In local enrichments, three categories of elements can be defined:
The element is (i) a standard FE if none of the element nodes are en-
riched, (ii) a reproducing element if all element nodes are enriched, or
(iii) a blending element if some of the element nodes are enriched. The
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(a) /T cos % (b) /T cos % sind
7|
e /‘
_/
(c) rsin$ (d) /rsind sin9

Figure 3.5. Crack tip enrichment functions for brittle materials [11].

presence of blending elements is problematic, since although there
the functions N7 (x) are non-zero, they do not build a PU. As a con-
sequence, (i) the enrichment function cannot be reproduced exactly,
and (ii), additional, parasitic terms are added to the approximation,
which badly affect the convergence properties of the method. Some
techniques were developed to avoid the drawbacks due to the pres-
ence of such elements: The interested reader is recommended to con-
sult the reference [11].

For cracks in brittle materials, that is our case of interest, it was
suggested to use the following enrichment function vector [5]:

Werack (X) = {V/Tcos 3, \/rcos §sind, /rsin §,v/rsin I sind}  (3.74)

which spans the displacement field predicted by Westergaard (see
again equation (1.94) in subsection 1.8.4), for mode I and II; its compo-
nents are represented graphically in Figure 3.5. The definition (3.74)
can be further generalized on the basis of the displacements derived
by Williams (equations (1.45a) and (1.45b) in subsection 1.7.2):

PO L (x) = {1 cos(A; — 1), cos(A; +1)9,
rMisin(A — 1)9, ™ sin(A; + 109}, fori=1,2. (3.75)

3.4 NUMERICAL QUADRATURE
Inside a Finite Element code, the integral formulations described in

subsection 3.2.6 are solved numerically. It is worth spending some
words on numerical integration (also called numerical quadrature),
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Table 3.1. Exact values of Gauss-Legendre abscissas and weights, for a num-
ber of integration points up to 5 [32].

n ti Wi
1 0 2
2 +1/V3 1

0 8/9

++/3/5 5/9

4 EVB-26/5)/7  (18+V30)/36
+4/(3+21/6/5)/7  (18—+/30)/36
128/225
10/7 (3224 13+/70)/900
5+2,/10/7 (322 —13v/70)/900

W= =
o1
'l e
N

+
+

since the same technique is going to be implemented in the algorithm
for the computation of the local strain energy density. The reference
for this section, unless otherwise stated, is [28, pp. 321-322].

A quadrature rule is an approximation of the definite integral of a
function as a weighted sum of the function values at specific points
of the domain. On the conventional domain of integration [—1, +1], it
takes the form:

+1 n

J 1 fx)dx ~ ) wi f(t;). (3.76)
i=1

In the GAuss-LEGENDRE quadrature, the weights are calculated with

the Legendre polynomials P, (x):3

2
(1—t3) [P} ()12

(3-77)

Wi =

where the evaluation point t; is the i-th root of P,. If n evaluation
points are used, the rule yields to the exact result (up to round-off
errors) for polynomials of degree 2n — 1. With a simple change of
variables, every interval [a, b] can be traced back to [—1,+1]:

b +1
b—a b—a a+b
f(x)dx = J f< X+ >dx
Ja 2 ) 2 2

b—a « 11—t T+t

Some exact values of t; and w; are reported in table 3.1.

(3-78)

3 See Appendix A for the definition of Legendre polynomials.
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4 NUMERICAL PROCEDURES

In the previous chapter, we briefly outlined the main theoretical as-
pects of numerical analysis which were useful for our purposes. We
are now using that concepts to build our numerical procedure.

In chapter 2, we explained as the SED criterion can be employed
to assess the fatigue life of welded joints. For what concerns the nu-
merical implementation of the criterion, two important observations
have to be made:

¢ In a recent paper, Lazzarin et al. [16] showed as an accurate eval-
uation of the local strain energy density can be achieved with
meshes much coarser than the ones necessary for the evalua-
tion of other singular field parameters, such as the Notch Stress
Intensity Factors.

o Applying GREEN’s theorem to the elastic energy

‘I R ‘Sb
U(R) = 7 b L J oyjeqj T drdd (4.1)
where b is the constant thickness, Yosibash et al. [36] were able
to express it as a contour integral:

1. (%

U(R) = zbJ [Gijnjui]T:RRdf} (42)

whose evaluation requires significant less computational effort.

From now on, we are referring in the text to equations (4.1)
and (4.2) as the 2-D and 1-D integral formulation, respectively.

That said, our aims can be thus summarized:

1. Implementation of an algorithm for calculating the SED, able to
interface with the FE code that computes the input quantities
(stresses and displacements or stresses and strains).

2. Computation of the local SED for a cracked and notched plate
with the 1-D and 2-D formulations, using the standard FEM.

3. Computation of the local SED for a cracked plate with the 2-D
formulation, using the extended FEM.

4. Comparison of the efficiency of the 2-D and 1-D integral formu-
lation in the two cases.
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Figure 4.1. Schematic illustration of the integration procedure.

4.1 ALGORITHM FOR THE SED

Before introducing the algorithm, we would like to spend some words
on its conception. Let us consider the control volume (an area in two
dimensions) represented by the shaded region in Figure 4.1. Since the
domain is symmetric, the angular interval is 2y. The integration is re-
alized by splitting the arc in n subintervals, and defining m Gaussian
points inside each subinterval. The stresses and displacements are
extrapolated at the n x m integration points from the Finite Element
code. Considering the (k)-th iteration, we can describe the procedure
as follows: Firstly, the traction vectors T; = oyjn; are calculated; then,
the local strain energy is computed:

1
UM(R) = 5> T wk R AD(K) (4.3)
where A} = %(ﬁ(k“] —9)), and summed up with the value

obtained at the previous iteration UM (R) = UR(R) + U=T)(R)).
Once the for loop is concluded, the last value of U(R) is divided by
the area A = yR? to release SED.

All the steps necessary to compute the strain energy density are
reported in the Algorithm 4.1, in guise of a pseudocode; the main
operations are commented.

Algorithm 4.1. Pseudocode for the computation of SED.

READ n, m # Subdivisions and Gaussian points for each subdivision
READ X¢, Yc # Coordinates of the centre [mm]

READ R # Radius of the arc [mm]

READ vy # Half angular interval [rad]

Va =~y

dp =+v

A =73 @ —da)R?

U(R) =0

FOR i=1,...,n:
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91 =da+ 5 (9p —9a)
92 =9a+ L (95—9a)
dd =3 (92— 91)
FOR j=1,...,m:
READ t # Gauss-Legendre abscissa
9= % 1—=t)9 + 12 (14+1t)d, # Curvilinear abscissa [rad]
Ny = cosd
ny =sind
X = X¢ + R cosd
Y =Yc + Rsind
GET ox, Oy, Txy # From the Finite Element code
GET ux, uy # From the Finite Element code

Tx = oxNx +Txy Ny

Ty =Txynx + oymny

READ w # Gauss-Legendre weight
U(R) = U(R) + J (tx Ux + ty uy) WRAD
8&€D =U(R)/A
PRINT 8ED

4.2 VALIDATION OF THE ALGORITHM
The Algorithm 4.1 was validated at two different levels:

1. Firstly, a numerical comparison between the closed-form 2-D
integral and the contour integral built combining the analytical
stresses and displacements was conducted using Python (see
Appendix B for the scripts).

2. Secondly, the Python code was coupled with the FE code, which
computed the stress tensor {o} and the displacement vector {u}
(see Appendix C for the command files).

This two-step check made it possible to detect bugs of the algorithm
and distinguish whether the errors were due to the FE code or the
post-processing quadrature of the integral.

The Finite Element analyses were conducted with the open source,
freeware code Code_Aster, written by Electricité de France. The user
can interact with the code in two ways:

e At a higher level, by using the native language of the code,
which is the most common approach;

o At a deeper level, by modifying directly the FORTRAN subrou-
tines.
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Table 4.1. Values of the elastic constants used in the numerical analyses.

Quantity Units  Value

E MPa 210000
v 0.3
G MPa 80770

For our purposes, it was enough to work at the first level, since the
strain energy density was computed in post-processing.

For the calculations, we used the elastic constants of a structural
steel, reported in Table 4.1. The reliability of the output data was
measured by computing the relative error esq., thus defined:

L. |S€Drem — 5EDu
seD — SEDy,

(4-4)

where 8EDrpm and 8EDy, are respectively the Finite Element and the
theoretical solution. In some cases, we used also another definition
of the relative error:

SEDrem — SEDy-FEM ‘ (4.5)

é T =

seD ‘ S EDp—FEM
where 8ED, pgym is the value of the local strain energy density com-
puted by a p-FEM code [7].

4.2.1  Plate subjected to a constant stress

The first test case is a square plate of side h with unit thickness, con-
strained as shown in Figure 4.2 and subjected to a constant stress o.
The stress field is therefore simply:

Ox =0, Oy =Txy=0. (4.6)

By introducing the only non-zero stress component into the stress-
strain relations (1.8) for plane strain, we get:

Ex = o

ey = v +v) - (4.7)

Yxy = 0
while the displacements are obtained upon integration:

2

u:JEde: o-x+f1(y)

v(1+v) “8)

v:Jey dy =—— % 9V +fa(x).
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h

X

Y YV Y VYV

>
o)

Figure 4.2. Plate subjected to a constant tensile stress.

Applying the essential boundary conditions, it results:

ul =0 = f1(y)
vl

=0
oy_o =0 = £2(0)=0.

By recalling the compatibility equation

ou v ,

=—+—=f =0
Yxy oy + Ox 2(x)

(4.9)

(4.10)

we conclude that f;(x) = ¢ = f2(0) = 0. Hence, the displacements

are:

The strain energy of a closed circle with radius R is:

1
U(R) = J (Oxex + Oyey + Ty Yxy) dA
A

2

0.2
:(1—VZ)J dA

2E Ja

5 0.2 +7t R

=(1—v )ZEJHJO rdrdd
:(1—\/2)6—271122

2E

and the strain energy density is therefore:

~ U(R) 5. 0?2
SED = —> = (1-v7) 3

(4.11)

(4.12)

(4.13)
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Figure 4.3. Finite Element model of the plate.

independent of the radius and constant over the entire plate. Assum-
ing 0 = 100 MPa, it results SED =W = 0.0216 Nmm/mm?3.

FIRST CHECK:

Because of the easiness of the model, we expect the Python script to
converge rapidly to the exact solution. In fact, 50 samplings in ran-
dom locations of the plate with a number of subdivisions of the cir-
cumference n equal to 3 and one Gaussian point for each subdivision
(m = 1) have lead to a relative error always lower than 1.5 x 107 12%.

SECOND CHECK:

The FE model is represented in Figure 4.3 and consists in a plate of
side h = 100 mm subdivided in 400 quadratic elements of 5 x 5mm.
The total number of nodes is 441. Also in this case, the convergence
was very fast: With n = 3, m = 1 the final error was always less than
1.5 x 107 19%,

4.2.2 Plate subjected to a linear stress

The second test case we are considering is slightly more complex than
the previous one: The plate is now subjected to a linear tensile stress,
which goes from 0 to o, as shown in Figure 4.4. The stress field is
easily determined:

Y

Gx:cr(1—}—1), Oy = Txy =0. (4.14)
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h

X

>

DY YV Y VYV

S L

Figure 4.4. Plate subjected to a linear tensile stress.

From this, using again the relations (1.8) for plane strain, the follow-
ing strain field is derived:

Ex = 3 0(1—%
(1 +v) y (4.15)
)
Yxy =0.

The planar displacements are defined except for two functions, 1 and
f2, which depend respectively on y and x:

1—+v2
u:Jngxz EV G(]—%>X+f1(y)
v(1+v) y (4.16)
v:sz dy :—TGO —ﬁ)y~l—fz(x).
After applying the essential boundary conditions:
u}X:O =0 = fi1(y)=0 (4.17)
V}X:O’yzo =0 = f(0)=0 '

— which correspond to the left edge constrained in the x direction
and the lower left corner constrained in both directions, — f7 is com-

pletely determined, while f; is still unknown. Using the compatibility
equation:

ou ov 1T-v2 x
ny—@‘f‘a——TO—E—i‘fz(X)—o (418)
we obtain 5
1—vs o ,
f2(x) TR (4.19)
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A

Yefp--------- -

Xe > x

Figure 4.5. Definition of the local coordinate system.

where obviously f2(0) = ¢ = 0. So, the displacement field:

(4.20)

1—+v2 x2 v y
VTR G[Zh_]—v (1_2}1)4'
It should be noted that v shows a parabolic dependence on both co-
ordinates x and y.

The calculation of the strain energy on a circle is less immediate
than the previous case, because now the applied stress varies with y.
In order to take in account of this fact, it is necessary to define a local
Cartesian coordinate system (X,Y), related to the global one by the

following relations:
=X+x
o (4.21)
Yy=yYy+yc

where (x,yc) are the coordinates of the center of the circle, as can be
guessed by looking at Figure 4.5. The strain energy is then:

1
U(R) = ZJ (Oxex + Oyey + TxyYxy) dA
A

1—+v2 Y2
= GZJA (1_E) dA (4.22)

1—v2 2 Y+yc 2
- (YY) | aa.
2k ¢ JA [] ( h )] a

In order to compute the integral more easily, it is convenient to switch

to polar coordinates:
X = T1Cosd
L (4-23)
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Since the Jacobian determinant of the transformation is

ox 00X
_lor 09| |cosV —rsind|
detl]] = 9y Jy| |[sind rcosd - (424)
or 09

the strain energy reads

— 2 ; 2
u(R):12EV O'ZJA [1—(%)] rdddr

1T—v2 , (R 27 Tsind 4y, 2
= T—|—
T L L [ < " ﬂ T dodr (4-25)
1—v2 /o2, 5 R\?
T 2E (E) TR (h=ye)”+ <z> '
Hence, the local strain energy density is:

2
(h—yc)? + <§> ] (4.26)

and depends on both the radius R and the ordinate of the center y..
We have thus derived all the analytical expressions that we need to
set our numerical problem.

8ED =

UR)  1—v2 0\2
-2 (%)

nmRZ ~  2E \h

FIRST CHECK:

As one can expect, the convergence of the Python script is not as fast
as in the previous test: With n =4 and m = 2, we still found an error
of 1-2% for a couple of samplings. Only increasing m of another
unity led to an error es. < 0.1% everywhere.

SECOND CHECK:

The FE model used is the same of the previous example. In this case,
using a number of subdivisions n =4 and 2 Gaussian points for each
subdivision, the relative error es., was always lower than 0.5%.

4.2.3 Beam subjected to an end load

The last test case we are going to consider is a two-dimensional beam
with unit thickness subjected to an end load F [30, pp. 35-38]. The
problem is shown schematically in Figure 4.6. Unlike the other two
cases, we are now working under the plane stress hypothesis.

From the beam theory, we expect only two components of the stress
tensor to be active: (i) a non-zero tensile stress oy, induced by the
bending, which depends on both x and y, and (ii), a shear stress Ty,
which results from the superposition of the parabolic stress on the
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Yy
4

y\!

Figure 4.6. Beam subjected to an end load.

pure shear condition.
Having recourse to the stress function method, as explained in
section 1.6, we can then hypothesize the following Airy function:

® = Axy> + Bxy. (4-27)
By applying its definition (1.25), we get:
ox =6Axy, o0y =0, Txy=-B— 3AY2. (4.28)

In order to determine the constants A and B, we have to impose
two boundary conditions. Firstly, the shear stresses must vanish at
the free edges, that is:

Txy|y—in =0 (4.29)

which implies A = —%. Then, by imposing the equilibrium between

the sum of the shearing forces distributed at the edge and F:

+h
—J . Txydy=F (4.30)

F

TR The stress field is now

one obtains B = %%, and therefore A = —
completely determined:

3F 3F y\?
o= F oy oy —0 ot [1—() ] (431

Introducing the moment of inertia I = % bh3, we can write:

Fx F
Ox = _Ty/ Oy = O/ Txy = _ﬁ(hz _Uz) . (432)

The strain field follows from equations (1.10):

Fxy
ST TE
Fxy
&y =V g1 (4-33)
_ F o> 2
Yxy = ZGI(h y°)
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while the displacements are obtained upon integration:

F xzy
2EI

u:JEde: +f1(y)
(4-34)
2

F
v:sz dy=v e +fa(x).

The compatibility equation reads:

FXZ / Fyz / F 2 2
— e )+ S+ () =~ (W2 —y?) (435)
o o e
dy 0x
If we make the following definitions:
Fx? ,
(x) = JEL + f2(x)
Fy> Fy?
—y.- g Yy .36
Gy =v5e 55 THW) (4.36)
__fn?
2GI
equation (4.35) becomes
F(x)+Gly) =C (4-37)

which means that the functions F, G have to be constant. Otherwise,

in fact, we could vary one coordinate keeping the other fixed, and the
equality would be violated.

By introducing two new constants ¢ and c», it is possible to write

the following conditions on the functions fy, f;:

2 2
f1(y) :—V%Jr%Jrcz
F x2

fé(X) — ﬁ +Cq

(4-38)

which upon integration release

F 3 F 3
f1(y):—v%+6im+czy+%
3 (4-39)

Fx
f2(x) ZE+C1X—|—C4.

The displacement field is therefore:

szy Fy3 Fy3
“2e1 Y GEI TeGr T2yt
> 3 (4-40)
Py P xte
2EI | 6EI ' ! 4

U =

v=vy
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In order to determine the constants c; to c4, we need to impose four
BCs. From the conditions

ov
|:u/ v, :| =0 (441)
ox x=L,y=0
] _ _FLZ — _ FL?
we obtain ¢; = —5g7, ¢3 =0, and ¢4 = 3¢7. The last constant can be

derived using the compatibility equation:

FL? Fh?
CZ—C—C1—TEI—TGI (4.42)

The displacements are now completely defined:

Fx2 Fy> Fy® [(FL?2 Fh?
xy_yy+y+< >y

T 2EI 6EI ' 6GI 2Bl 2GI (4.43)
v nyz i Fx3 B FL%x n FL3
~ 2EI 6EI 2EI 3Bl
It is interesting to notice that
FL3 X x\3
vly—0= GEr [2‘3 T+ (D) ] (4-44)

is the deflection of the neutral axis predicted by the Euler-Bernoulli
beam theory, which demonstrates the consistency of our hypotheses.

After the displacements, we calculate the strain energy related to a
circle with radius R:

1
U(R) = = JA(Gan + Ooyey + Ty Yxy) dA

1 FxyFxy F > > F > 5
3 R g A )

1 F 2 XZUZ (hZ _92)2
= () [ e
By following the procedure described in the previous example, which
defines firstly a local coordinate system (X, V), and then a polar coor-

dinate system (r,d) with the same origin, the strain energy turns out
to be:

2
wn-3()
1

+ E[hz — (rsin%—l—yc)z]z} T dodr

R 27
J J {E(rcosﬁ+xc)2(rsinw9+yc)z
0 Jo

(4.46)
1T (F\? (1 .4 2,202 2.2
=g 1) R 2R +60E +yd)R? + 2457 )

+é[R4+3(3y§—h2)R2+6(h2—y§)2]}
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Figure 4.7. Finite Element model of the beam.

Dividing by the area, we obtain the local strain energy density:

U(R) 1 (F\?[1 4 2 2vp2 2.2
=—=_ (= - RZ +24
SED s 48(1) {E(R +6(xg +yc) RT +24xc ye)

+é[R4+3(3y%—h2)R2+6(h2—y%)2}} (4-47)

which depends on the coordinates x., y. of the center of the circle
and on its radius R.

FIRST CHECK:

Since the dependence on the coordinates for both the stresses and the
displacements is not linear, we are expecting the solution to converge
more slowly. In agreement with this prediction, the Python script
required at least 5 subdivisions and 4 Gaussian points to ensure a
relative error es.., on the SED always lower than 0.1%.

SECOND CHECK:

The FE model of the beam is represented in Figure 4.7. Its dimensions
are L = 100mm, h = 10 mm. The model consists in 741 elements of
approximately 1 x 2.6 mm, for a total of 800 nodes.

This time, the calculation of the strain energy density was more
problematic. More precisely, the accuracy was usually comparable
with the previous cases, but there were always a limited number of
points where the convergence was not reached, even when increas-
ing significantly the fineness of the mesh and the integration points.
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This observation was explained with the presence of shear forces. In
fact, the accuracy in the evaluation of the shear components of the
stress tensor depends on the assumptions made in the formulation
of the elements, and is commonly less good in the proximity of the
boundary conditions or in regions where the shear contribution is sig-
nificant. According to this interpretation, all the problematic points
were located either close to the edges or to the neutral axis." When
these points were ignored, setting n = m = 5, it always resulted
esen < 0.5%.

4.3 APPLICATION OF THE ALGORITHM

After validating the algorithm with the previous test cases, we want
to use it in configurations where only the asymptotic solution is
known. When the theory is not enough powerful to give us a com-
parison value, we are using as a reference the results obtained with a
p-FEM code [7]. For our computations, unless specified, we are con-
sidering a radius R of the control volume equal to 0.3 mm, for the
reasons outlined in section 2.3.

4.31  Cracked plate

The first application of the Algorithm 4.1 is the classical Fracture
Mechanics problem discussed in subsection 1.8.4: A (theoretically)
infinite plate weakened by a central crack, as shown in Figure 4.8.
Equations (1.92) and (1.94) allow us to estimate the asymptotic stress
and displacement fields, but they lose rapidly their validity when we
move away from the crack tip. The region of K; dominance depends
on the crack size and the geometry of the plate, but is usually less
than Tmm [26, p. 51]. Outside this region, Westergaard’s solution
should be expanded introducing more terms; alternatively, one can
estimate the stresses and the displacements with other techniques,
like the boundary collocation method or the Finite Element Method,
as we are doing.

Let us derive the strain energy density near the crack tip, as pre-
dicted by linear elastic fracture mechanics. As we stated several times,
the two-dimensional strain energy reads:

U(R) = 5 JA(stx +oyey + TxyYxy) dA. (4-48)

The element shear locking should not be a source of error, since quadrilateral elements
were employed [3, pp. 403—408].
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Figure 4.8. Plate weakened by a central crack subjected to a constant tensile
stress.

Using the stress-strain equations (1.11) under the plane strain hypoth-
esis, U(R) becomes:

1+v
UR) = —¢

JA[Ui+G§v(GX+Gy)Z+2T§U] dA. (4.49)

Introducing equations (1.97) derived in subsection 1.8.4, the integral
turns out to be:

(T+v)KE (Rt , ,
U(R) = 47(EIJ0 Jn . [2cos?3 (1 +sin? sin?32)

+2 COSZ% sinzg cos? % —4v COSZ%] T dddr (4.50)
= 7(] 42_7:%](% RJ':L: COSZ% [1 —2v
+sin?3 (sin®3) + cos?3?)] dd
whose solution is [8]:
U(R) = wK%R. (4.51)

8E

The local strain energy density is obtained dividing U(R) by the area:

UR)  (T+v)(5—8v)K?
2~ 8tR  E (4-52)
With 0 = 100MPa and 2a = 20mm, the Stress Intensity Factor of
mode I turns out to be K; = 560.50 MPay/mm; for the Finite Ele-
ment analyses, the side h was fixed at 200 mm. The theoretical local
strain energy density for R = 0.3, 0.5, 1.0, and 2.0 mm is reported in
Table 4.2, together with the corresponding values predicted by the
p-FEM code (Segp-FEM)-

8ED =

59



NUMERICAL PROCEDURES

Table 4.2. Local strain energy density of a cracked plate for different radii.

R SED, 8ED,rEM
(mm) (Nmm/mm3) (Nmm/mm?)
0.3 0.670635 0.675051
0.5 0.402 381 0.408 650
1.0 0.201190 0.210754
2.0 0.100595 0.112903

The target of the computation is twofold:

o To determine the influence of the singularity-dominated zone
on the convergence of the algorithm, fixing the fineness of the
mesh and calculating §ED for different radii.

» To analyse the influence of gradually coarser meshes on the
accuracy of the computation, for the case R = 0.3 mm.

Also in this case, a Python script was written (see Appendix B).
Since the computation is based on the analytical expressions for {o}
and {u} derived in subsection 1.8.4, the convergence is very fast: Set-
ting n = 3 and m = 1 allows to get a relative error esg» ~10~14%, for
every radius considered. This demonstrates the consistency between
the 2-D integral formulation and the numerically computed contour
integral, but ignores totally the effect of non-singular terms.

When the FE computation is involved, we expect the solution to
converge more slowly: From subsection 1.7.2 we know in fact that
cracks induce the strongest singularity possible in elasticity problems,
and in section 3.3 we said that such singularity can drastically affect
the efficiency of the standard Finite Element Method.

Let us start with the first problem. Thanks to the symmetry of the
geometry and the loads, it was possible to analyse only to one fourth
of the plate: The mesh consists of 716 quadratic elements for a total
of 1505 nodes (see Figure 4.9). The radii investigated are R = 0.3, 0.5,
1.0, and 2.0mm. The subdivisions n are 3, 5, 10, 20, and 40; m goes
from 1 to 3.

By looking at the results reported in graphical form in figures 4.10
to 4.13, we can highlight some common aspects:

e The error with respect to the theoretical solution tends to in-
crease with higher radii, while the agreement with the p-FEM
solution is always good: This means that non-singular terms are
becoming predominant.> The case R = 0.3 mm is completely Ki-
dominated, while for R equal to 0.5 mm one can already notice
a slightly higher error (about 1%) in es.s which is not observed

2 The only case in which &s:5 is higher than 1% is for R = 0.3mm. This can be
explained with the little difference (0.66%) between SEDy, and 8€D, ppy, which
adds to the actual error.
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L.
Figure 4.9. Finite Element model of the cracked plate.

when &s:4 is considered. For R = 1.0 and 2.0 mm, the plots of
esep and &s:p are almost identical, but translated of a constant
quantity due to non-singular terms (whose contribution on 8D
is of 3.4 and 11.9%, respectively). This means that these terms
are computed exactly with few integration points, and the most
significant source of error comes from the singular terms.

The convergence is quite fast. With a number of integration
points equal to 10, the relative error is lower than 1%, except
for the case R = 0.3 mm, where the closeness to the singularity
requires n x m to be slightly higher (between 15 and 20).

The minimum error is in the neighbourhood of n x m = 20,
with slightly better results when m = 1. Increasing the number
of integration points to 50 or more allows to stabilize the error
to values which are a bit higher, although still very small.
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Figure 4.10. Trend of the relative error of €D as the number of integration
points increases, for R = 0.3 mm.
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Figure 4.11. Trend of the relative error of SED as the number of integration
points increases, for R = 0.5 mm.
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Figure 4.12. Trend of the relative error of SED as the number of integration
points increases, for R = 1.0 mm.
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Figure 4.13. Trend of the relative error of SED as the number of integration
points increases, for R = 2.0 mm.
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Table 4.3. Meshes used for the analysis of the cracked plate.

Mesh Elements Nodes

1 716 1505
2 596 1263
3 487 1042

Our next aim is to determine the influence of the mesh on the ac-
curacy of the computation. To do so, we fix the radius at 0.3 mm and
we calculate 8D with gradually coarser meshes. The characteristics
of the meshes adopted are reported in Table 4.3; in all the analyses,
quadratic elements were employed. The subdivisions chosen are the
same of the previous analysis (n = 3, 5, 10, 20, and 40), while m
goes from 1 to 5. Since the closed-form solution gives an accurate
prediction of S€D, we are considering only the relative error es.

We can summarize the following results (see figures 4.14a to 4.14c):

o With meshes 1 and 2, the convergence is reached quite rapidly;
20 integration points are enough to get a relative error lower
than 1%, and better results are obtained when m is between 2
and 4. For n x m > 50, the error does not vary significantly.

e With mesh 3, the same trend is observed, although es: is al-
ways higher than 2%. Hence, the mesh is not enough fine to
give the same accuracy in the results.

——m =1
-+ m=2
——m =3
——m =4
——m=>5
— e
| |

| | | | | |
0 20 40 60 80 100 120 140 160 180 200
nxm

(a) Mesh 1.

Figure 4.14. Trend of the relative error of SED for a cracked plate, with
different meshes. (cont.)
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Figure 4.14. Trend of the relative error of SED for a cracked plate, with

different meshes.
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DPAAAAA

Figure 4.15. Plate weakened by a double 135° sharp V-shaped notch sub-
jected to a constant tensile stress.

4.3.2 Notched plate

After the cracked plate, we use the Algorithm 4.1 to compute the
strain energy density of a plate weakened by a double sharp V-shaped
notch with an opening angle of 135° (Figure 4.15). The height h is
50mm, the width of the net section is w = 40 mm, and the length of
the re-entrant corner’s edge is | = 5mm.

Since the singularity exponent is higher than —0.5, it may be that
the Kj-dominance region is smaller than the one of the crack. It is
therefore necessary to compare €Dy, with €D, pm to check how
much they differ one from the other.

The theoretical strain energy density over a control volume with
radius R for a mode I-loaded V-shaped notch is given by the first
term in the right-hand side of equation (2.9):

1 _
$ED1 = = [e1 K2 R2(A—1) (4.53)

where e; and Ay can be obtained using the data in tables 1.2 and 2.1.

As stated in subsection 1.7.3, the NSIFs do not have a closed-form
solution, and their evaluation necessarily requires to use a Finite Ele-
ment code or other numerical strategies.

In our case, exploiting the symmetry of the geometry and the loads,
the analysis was conducted on one fourth of the plate. The mesh
consisted in 100915 elements and 203 950 nodes, and was therefore
much more fine than the ones used for computing the local strain
energy density.

The procedure followed can be summarized in the following steps:
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1. Firstly, the plateau region for the NSIFs was determined. This is
the most delicate step, since this region cannot include neither
the stresses at the nodes very close to the tip, which are not
accurately computed by the FEM, nor the ones too far from it,
because of the increasing significance of non-singular terms. On
the basis of the singularity of oy in correspondence of the notch
bisector, we identified this zone with the range from 0.01 to
0.3mm, where the singularity exponent resulted to be —0.3277
(see Figure 4.16); this value differs for less than 0.4% from the
one that can be calculated by solving Williams’ eigenvalue prob-
lem (1 —A; = —0.3264).

2. Secondly, we computed K; ggm at each nodal point. The defini-
tion of this quantity is similar to the one given in (1.50a), but
without the limit:

K1, pEM = VZWTESM 09, (1)(® =0) (4-54)

where (i) represents the node considered. It is important that
K1,rEm does not vary significantly in the selected range: By look-
ing at Figure 4.17, we see that this condition was satisfied.

3. Finally, the estimate of K; was obtained by averaging Kj rgm
calculated at each node of the range:

N

Kgl,%:EM =S \/277”21)% oy, (1))(d=0) (455
— iz

1
Ki~ —
1 N
1

where N is the number of nodes inside the plateau.

In this way, we obtained K; = 379.56 MPa mm©-326; together with
A1 = 0.6736 and e; = 0.1172, it results SED; = 0.176460 N mm/mm?,
which is almost identical to the value of 0.176347 Nmm/mm?> pre-
dicted by the p-FEM code. It is therefore completely legitimate to use
the theoretical strain energy density as a reference value.
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Figure 4.16. Determination of the plateau by the singularity of o (d = 0).
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Figure 4.17. Trend of K1 pgyv inside the plateau zone.
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Table 4.4. Meshes used for the analysis of the notched plate.

Mesh Elements Nodes

1 674 1423
539 1152
3 428 923

As in the previous case, we want to determine the influence of the
element size on the results. For this reason, three different meshes
were constructed, using quadratic elements. The number of elements
and nodes for each mesh is reported in Table 4.4. Looking at the
trends of the error reported in figures 4.18a to 4.18c, we deduce that:

o The relative error is subjected to a slight decrease when coarser
meshes are adopted. This may be explained with the fact that
(i) the stresses at the source of a singularity increase when the
mesh is locally refined and (ii) the singularity induced by a
notch is weaker than the one induced by a crack: Therefore,
not too fine meshes allow to compute satisfactorily the stresses
at a certain distance from the tip, and at the same time are less
affected from the error originated at the tip, which gets redis-
tributed to the neighbouring nodes.

e The best results are obtained with meshes 2 and 3, when 20
integration points are used and m =1 or 2. The error stabilizes
when n x m > 50.
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(a) Mesh 1.

Figure 4.18. Trend of the relative error of S€D for a notched plate, with
different meshes. (cont.)
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Figure 4.18. Trend of the relative error of 8€D for a notched plate, with
different meshes.
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4.4 COMPARISON OF THE FORMULATIONS

Once determined the local strain energy density of a cracked and
notched plate, for a radius R = 0.3mm, we want to compare the
numerically efficiency of the 1-D integral formulation, reported in
equation (4.2), with respect to the 2-D one, given by equation (4.1).

4.4.1  Cracked plate

For the case of the crack, 8D was computed both with the stan-
dard FEM and the extended XFEM. The comparison was realized
analysing the relative error es.» as the number of degrees of freedom
increases. For the XFEM analyses, the DOF were estimated directly
from the size of the stiffness matrix.

From the comparison shown in Figure 4.19, one can infer that:

¢ The computation of the contour integral is much more efficient
than the one of the 2-D integral. About 3000 degrees of free-
dom are enough to get a relative error lower than 1%, while the
double integral formulation requires at least 10> DOF.

o The coupling of 5 Gaussian points with 40 subdivisions gives
better results with coarser meshes, while m =1 and n = 20 is
slightly more efficient when 3000 DOF are employed.

o Although neither of the simulations based on the 2-D integral
formulation allow to lower the error to less than 1%, the ex-
tended FEM is more advantageous than the standard FEM. In
fact, (i) the XFEM requires less DOF to reach the same error
(esen = 2.64% for 299 304 DOF against eseq, = 2.70% for 635518
DOF with standard FEM) and (ii) the decreasing trend with the
XFEM starts at ~ 10%, while with the standard FEM it increases
of more than 1% in the last simulation, thus demonstrating that
the convergence is not yet stable.

4.4.2 Notched plate

The considerations made for the previous case are still valid, except
for two things:

e In the last three simulations, the relative error is subjected to
minor variations. This means that the convergence is probably
reached, and a further decrease of es: should not be expected
when finer meshes are constructed.

e For the 1-D integral formulation, the error increases of approx-
imately 1% when the mesh is locally refined. A possible expla-
nation for this observation was given in subsection 4.3.2.
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5 CONCLUSIONS

The purpose of this work was to improve the numerical efficiency
of the computation of the local strain energy density in presence
of elastic singularities. The average of such quantity on a material
dependent-volume, according to the SED criterion, can be used to
assess the fatigue life of welded joints.

In order to achieve this target, a twofold approach was followed:

¢ On one side, an extensive study on the theory of singularities
in elasticity was conducted; in particular, the well-known solu-
tions of Westergaard and Williams were derived and analysed
in view of their numerical implementation.

¢ On the other side, a numerical procedure that allowed to per-
form the computation of the two-dimensional strain energy den-
sity on a finite volume, based on a contour integral formulation,
was realized and implemented inside the code used for the Fi-
nite Element analyses.

The resulting algorithm was checked in three different test cases, for
which the analytical expressions of stresses and displacements were
derived. Three Python scripts were written, in order to compare the
theoretical strain energy density with the one obtained with the al-
gorithm. Once verified that the results were matching, the algorithm
was coupled with the commands of the Finite Element code, so to
switch from the exact stresses and displacements to the approximated
ones. All the checks were then repeated, confirming the previous
trend.

At this point, the combination of the algorithm with the Finite El-
ement code was applied to two different configurations of practical
interest: A plate weakened respectively by a central crack and a 135°
V-shaped edge notch. For the case of the crack, the local strain en-
ergy density was computed for different radii, so to determine the
contributions of singular and non-singular terms to the error. It was
thus noticed that the Finite Element Method allows to compute easily
non-singular terms, and that the main source of error is therefore due
to the singularity. The analysis of the influence of the mesh on the
accuracy of the numerical solution demonstrated that the algorithm
is not very sensible to the size of the local elements. The same result
was confirmed when the notched plate was considered, although a
slight increase of the error for finer meshes was observed; in this
case, the calculation of the theoretical value for comparison required
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to estimate numerically the Notch Stress Intensity Factor of mode L.
In both cases, the influence of the number of integration points was
also taken in account, leading to the same conclusion in terms of the
best combination of number of subdivisions and Gaussian points.

Finally, the comparison of the contour integral and double inte-
gral formulation highlighted the better efficiency of the first. In fact,
the contour integral formulation (i) showed a faster convergence, (ii)
required a number of degrees of freedom about three orders of mag-
nitude lower than the one based on the double integral and (iii) led
to a lower final error. For the case of the cracked plate, the double in-
tegral was computed both with the standard and the extended FEM:
The latter was more advantageous than the first, because it converged
more stably and with greater accuracy.

This approach demonstrated thus to be flexible, efficient, and reli-
able:

It is flexible, because the algorithm was adapted to different con-
figurations with only minor changes;

It is efficient, since it requested a narrow number of integration
points to get the convergence;

It is reliable, since the final error with respect to the reference
solution (theoretical or numerical, depending on the case) was
always almost negligible.

We conclude this work with some suggestions for the possible fur-
ther research in this topic:

GENERALIZING THE XFEM: Because of some limitations of the Finite
Element code adopted, it was not possible to implement the
enrichment functions for the case of the notch. Although the
singularity in this case is less severe than the one induced by
a crack, this could lead to better results, especially in view of
three-dimensional simulations.

COMBINING XFEM AND CONTOUR INTEGRAL: Another improvement
could be the combination of the extended FEM with the contour
integral formulation proposed in this work; this may require
to modify directly the Finite Element code used, since for the
moment it allows to use the XFEM only for the computation of
double integrals.

SWITCHING To 3-D: It is well known that the efficiency of the Finite
Element Method in three dimensions is not as good as in two
dimensions. Using Green’s theorem to switch from a volume
integral to a a surface integral could probably improve signifi-
cantly the convergence of the method.
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A SHAPE FUNCTIONS

In this appendix, we are going to describe briefly some properties
of the shape functions. For the sake of simplicity, we are referring
to the p-dimensional space 8P (Is¢), where Iy = {&] —1 < & < 41}
The definitions can be easily extended to higher dimensions using the
space product.

A1 LAGRANGE SHAPE FUNCTIONS

The first shape functions that we describe are LAGRANGE polynomials,
defined as:

p+1
E—& :
Ni(&) =] , fori=1,2,...,p+1 (A1)
! & — &k

These polynomials have the KRONECKER-b property:

N(gj) =8y =4 M (A2)
(E) = &8s = 2
ST TY 00, ifi#].

Another fundamental property of these polynomials is the ability to
build a partition of unity over the domain 8P (Is¢):

p+1

D Ni(g)=1. (A3)
i=1

Thanks to the simplicity of their construction, Lagrange shape func-
tions are implemented in every Finite Element code.

A.2 HIERARCHIC SHAPE FUNCTIONS

The increase of order of a Lagrange shape function is usually achieved
by adding mid-side nodes within the elements, thus switching from
linear to quadratic elements. A different approach is to build a high-
order shape function by adding high-order terms. This procedure
leads to the formulation of the so-called hierarchic shape functions. This
name comes from the fact that the low-order components are not af-
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fected by the introduction of new higher order terms, contrary to
Lagrange shape functions [37, p. 70].

One of the methods used to build hierarchic shape functions is
based on the Legendre polynomials. The Legendre polynomial of

order p is:
1 dp

- 2rp! diip
Given the first two polynomials, respectively Po(&) = 1 and P (&) =&,

we can introduce an alternative definition, based on the recursive
formula

Py (&) [(E2—1)"]. (A.4)

(P+1)Pp1(&) = (2p+ 1) EPH(E) —p Pp—1(E). (A.5)

The corresponding shape functions are obtained upon integration:

2i—3 (¢
Ni(E) = 4/ 123J1Piz(t)dt, fori=34,....p+1. (A6)

The hierarchical shape functions are orthogonal, that is:

+1
dN; dN j . .
—d& =06;;, fori,j>3 A.
L dE dt i j (A7)
which is an extremely useful property for Finite Elements, since it
allows to reduce significantly the non-zero components of the [B] ma-
trix (see subsection 3.2.6). The first five shape functions are here re-

ported [37, pp. 72-73]:

Ni(e) =5 (1-8),

Na(e) =5 (148,

3(6)—2@(62—1), (A.8)
N4(a)=2ga(az—n,
N5(£)=£(554—6a2+1).

It is interesting to notice that for i > 3 they become zero at the ex-
trema of the interval:

Ni(—1) = Ny(+1) =0. (A.9)
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PYTHON SCRIPTS

In this appendix, we report all the Python scripts used for validating
the Algorithm 4.1; the script for the cracked plate is also included,
since in this case the asymptotical stresses and displacements are
known (see subsection 1.8.4). In order to save some space, we omitted
to write the Gauss-Legendre abscissas and weights.

B.1 PLATE_CNST_SED.PY

Algorithm B.1. Computation of SED for a plate subjected to a constant ten-
sile stress (subsection 4.2.1).

f = open(’py_plate_cnst_sed.dat’,'w’)

import math
import random

# Definition of the Gauss-Legendre abscissas

T

N o=l

{
:[-0.0],
... 1,

}

# Definition of the Gauss-Legendre weights

W= {

1:[2.0],

2:[...1,
}
print >> f, ’ \n’
print >> f, ’ SCRIPT FOR THE COMPUTATION OF THE LOCAL STRAIN ENERGY\n\

DENSITY OF A STEEL PLATE SUBJECTED TO A CONSTANT\n\
TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’

print >> f, ’ \n’

print >> f, '\
\n\
| --->\n\
>| | --->\n\
|
|
|
|
|
|
|

--->\n\
--->\n\
---> SO = 100 MPa\n\
--->\n\
--->\n\
--->\n\
--->\n\

DX =0 >|

UL
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DY = @\n\n’
# Input for the values R, q, n, m
print >> f, "INPUT VALUES:\n\n’
R = input(’Enter the radius of the circles onto which compute the SED: ')
print >> f, ’Radius of the circles: R =', R, ’'\n’
q = input(’Enter the number of random points: ')
print >> f, ’Number of random points: q =', q, ’'\n’
n = input('Enter the number of subdivisions for each circumference: ')
print >> f, ’Number of subdivisions for each circumference: n =", n, ’'\n’
m = input(’Enter the number of Gaussian points for each subdivision: ')

print >> f, ’Number of Gaussian points for each subdivision: m =', m, ’'\n’

# Definition of some parameters of the problem

# Material

E = 210000.0 # Young modulus of steel [MPa]

NU = 0.3 # Poisson ratio of steel []

# Geometry

h = 100.0 # Length of the plate’s edge [mm]

# Boundary conditions

SO0 = 100.0 # Applied tensile stress [MPal

# Definition of the initial values and constants
theta_a = -math.pi

theta_b = math.pi

A = 0.5 x (theta_b - theta_a) * R *x 2

for k in range(q):

# Definition of the point coordinates

X_C
y_c

random.uniform(R, h - R)
random.uniform(R, h - R)

# Definition of the initial values

SE = 0.0
SED .0

0
p=20.0

@ |

print >> f, ’ \n’
print >> f, ’ CIRCLE’, k + 1, '\n’
print >> f, ’ \n’

for i in range(1l, n + 1):

print >> f, ' e \n’
print >> f, ’ SUBDIVISION’, i, '\n’
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print >> f, ’

# Definition of the angular quantities

theta_1l = theta_a + (i - 1) * (theta_b - theta_a) / n
theta_2 = theta_a + i * (theta_b - theta_a) / n
dtheta = 0.5 * (theta_2 - theta_1)
print >> f, ’theta_l =’, theta_1l, ’\n’
print >> f, ’'theta_2 =’, theta_2, ’'\n’
print >> f, ’'dtheta =', dtheta, ’'\n’
for j in range(m):
print >> f, '-----oo-oo
print >> f, ’ ITERATION', j + 1,
print >> f, oo

B.1 PLATE_CNST_SED.PY

\n’

# Calculation of the desired quantities

# Theta angle

t =T.get(m)[m - j - 1]

theta = 0.5 * (1.0 - t) * theta_1l + 0.5 % (1.0 + t) * theta_2

# Normals

n_x = math.cos(theta)

n_y = math.sin(theta)

# Point coordinates

X = x_C + R *x math.cos(theta)
y = y_c + R * math.sin(theta)
# Stresses

S_xx = S0

S_yy = 0.0

S_xy = 0.0

# Displacements

u_
u_

X
y

(1.0 - NU ** 2) * SO x x / E
-NU * (1.0 + NU) = SO xy / E

# Traction vectors

T
T

X
y

S_XX * N_X + S_Xy * n_y
S_Xy * n_X + S_yy * n_y

# Strain energy

SE = 0.5 * (T_x * u_x + T_y * u_y) * R *x dtheta * W.get(m)[a]

# Strain energy density

SED += SE / A

# Perimeter

p += R * dtheta * W.get(m)[a]

print >> f, ’Gaussian coordinate t =

print >> f, ’'theta =’, theta, ’'\n’
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print >> f, 'n_x =', n_x, '\n’

print >> f, 'n_y =’, n_y, '\n’

print >> f, 'x =', x, '\n’

print >> f, 'y =’, y, '\n’

print >> f, ’'S_xx =', S_xx, '\n’

print >> f, ’'S_.yy =', S_yy, '\n’

print >> f, ’'S_xy =', S_xy, '\n’

print >> f, 'u_x =', u_x, '\n’

print >> f, ’'u.y =', u.y, ’'\n’

print >> f, 'T_x =', T_x, '\n’

print >> f, 'T_y =’, T_y, '\n’

print >> f, ’Strain Energy =’, SE, ’'\n’
print >> f, ’Strain Energy Density =', SED,
print >> f, ’Perimeter =’, p, ’'\n’
a+=1

# Definition of the theoretical value for the SED

REF = 0.5 * (1.0 - NU **x 2) * SO *x 2 / E

# Printing of the final values

print >> f, ’'\n

print >> f, ’ RESULTS FOR CIRCLE’, k + 1

print >> f, ’'\n

print >> f, ' x.c =", x.c, ', y_.c =", y_c, '\n’

print >> f, ’ Computed SED =', SED, '\n’

print >> f, ’ Theoretical SED =', REF, ’'\n’

print >> f, ’ Percentual error =', abs(SED / REF - 1.0) * 100.0,
print >> f, ’ Length of the path =", p

print >> f, ’'\n

f.close()

rog
©

\n’

\n\n\n’

B.2 PLATE_LNR_SED.PY

Algorithm B.2. Computation of 8D for a plate subjected to a linear tensile

stress (subsection 4.2.2).

f = open(’'py_plate_lnr_sed.dat’,'w’)

import math
import random

# Definition of the Gauss-Legendre abscissas

T=A
:[-0.0],

H A I

Nl
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B.2 PLATE_LNR_SED.PY

# Definition of the Gauss-Legendre weights

W={
1:[2.0],
2:[...1,
}
print >> f, ’ \n’
print >> f, ’ SCRIPT FOR THE COMPUTATION OF THE LOCAL STRAIN ENERGY\n\
DENSITY OF A STEEL PLATE SUBJECTED TO A LINEAR\n\
TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’
print >> f, ’ \n’
print >> f, ’ SMIN = 0 MPa\n\
\n\

>| [ \\\n\

>| [ >\\\n\

>| [ ->\\\n\

>| [ -->\\\n\

DX = 0 >| | --->\\\n\

>| | ---->\\\n\

>| | ----- >\\\n\

>| | ------ >\\\n\

>| | ==----- >\\\n\

~\n\

DY = 0 SMAX = 100 MPa\n\n’
# Input for the values R, g, n, m
print >> f, "INPUT VALUES:\n\n’
R = input(’Enter the radius of the circles onto which compute the SED: ')
print >> f, ’Radius of the circles: R =', R, ’'\n’
g = input('Enter the number of random points: ')
print >> f, ’'Number of random points: q =', g, ’'\n’
n = input(’Enter the number of subdivisions for each circumference: ')
print >> f, ’'Number of subdivisions for each circumference: n =', n, ’'\n’
m = input(’Enter the number of Gaussian points for each subdivision: ')
print >> f, ’'Number of Gaussian points for each subdivision: m =', m, ’'\n’

# Definition of some parameters

# Material
E = 210000.0 # Young modulus
NU = 0.3 # Poisson ratio
# Geometry
h = 100.0 # Length of the

# Boundary conditions

SM = 100.0

of the problem

of steel [MPa]
of steel []

plate’s edge [mm]

# Maximum applied tensile stress [MPa]
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# Definition of the initial values and constants

theta_a -math.p
theta_b = math.pi
A = 0.5 x (theta_
for k in range(q)

# Definition

X_C = random.
y_C random.

# Definition

SE = 0.0
SED .0

0
p=20.0

(o3|

’

print >> f,
print >> f,
print >> f,

’

for i in rang

print >>
print >>
print >>

# Definition of the angular quantities

theta_1
theta 2 =
dtheta =

print >>
print >>
print >>

for j in
print

print
print

i

b - theta_a) * R *x 2

of the point coordinates

uniform(R, h - R)
uniform(R, h - R)

of the initial values

CIRCLE’, k + 1, "\n’
e(l, n+ 1):
S
f, SUBDIVISION’, i, ’'\n’
F T e e

theta_a + (i - 1) * (theta_b - theta_a) / n

theta_a + i * (theta_b - theta_a) / n

0.5 x (theta_2 - theta_1)

f, 'theta_1l =", theta_1l, ’'\n’
f, 'theta_2 =’, theta_2, ’'\n’
f, 'dtheta =’, dtheta, ’'\n’

range(m):

>> f, e \n’
> f, ! ITERATION’, j + 1, '\n’
e P \n’

# Calculation of the desired quantities

# The

t=T
theta

# Nor

# Poi

X =X
y =y

# Str

84

ta angle

.get(m)[m - j - 1]

=0.5 % (1.0 - t) * theta_1l + 0.5 x (1.0 + t) * theta_2

mals

= math.cos(theta)

math.sin(theta)

nt coordinates

_c + R x math.cos(theta)
_c + R x math.sin(theta)

esses

\n’

\n’



B.2 PLATE_LNR_SED.PY

S_xx =SM % (1.0 -y / h)
S.yy = 0.0
S_xy = 0.0

# Displacements

(1.0 - NU *x 2) * SM * (1.0 -y / h) * x / E

u_Xx
uy =0.5% x *x 2 / h

u_y -=NU * (1.0 - 0.5 xy / h) xy / (1.0 - NU)
u_y *= (1.0 - NU *x 2) *x SM / E

# Traction vectors

T_X = S_XX * n_X + S_Xy * n_y
Ty=SXy *nx+S.yy*ny

# Strain energy

SE = 0.5 * (T_x * u_x + T_y * u_y) * R *x dtheta * W.get(m)[a]

# Strain energy density
SED += SE / A
# Perimeter

p += R * dtheta * W.get(m)[al]

print >> f, ’Gaussian coordinate t =’, t, ’\n’
print >> f, ’'theta =’, theta, ’'\n’

print >> f, 'n_x =', n_x, '\n’

print >> f, 'n_y =’, n_y, ’'\n’

print >> f, 'x =’, x, '\n’

print >> f, 'y =’, y, '\n’

print >> f, 'S xx =', S_xx, '\n’

print >> f, ’'S_yy =', S_yy, ’'\n’

print >> f, ’'S_xy =', S_xy, '\n’

print >> f, ’'u_x =', u_x, '\n’

print >> f, ’'u_y =’, u_y, '\n’

print >> f, 'T_x =", T_x, '\n’

print >> f, 'T_y =’, T_y, '\n’

print >> f, ’Strain Energy =’, SE, ’'\n’

print >> f, ’'Strain Energy Density =’, SED, ’\n’
print >> f, 'Perimeter =’, p, ’\n’

a+=1

# Definition of the theoretical value for the SED

REF = 0.25 %« R *x 2 + (h - y_c) *x 2
REF *= 0.5 * (1.0 - NU *x 2) * (SM / h) *x 2 / E

# Printing of the final values

print >> f, '\n

print >> f, ’ RESULTS FOR CIRCLE’, k + 1

print >> f, '\n

\n’

\n’
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209 print > f, ' x.c =", x.c, ', y.c=", yc, '\n’

210

211 print >> f, ’ Computed SED =', SED, ’'\n’

212 print >> f, ’ Theoretical SED =’, REF, ’\n’

213 print >> f, ’ Percentual error =', abs(SED / REF - 1.0) * 100.0, ’%\n’
214

215 print >> f, ’ Length of the path =", p

216

217 print >> f, '\ \n\n\n’
218

219 f.close()

B.3 BEAM_END_SED.PY

Algorithm B.3. Computation of 8D for a beam subjected to an end load
(subsection 4.2.3).

1 f = open(’'py_beam_end_sed.dat’,’'w’)

import math
import random

T={
:[-0.0],

H R

3
4
5
6 # Definition of the Gauss-Legendre abscissas
7
8
9

N o=l

11 .

12}

13

14 # Definition of the Gauss-Legendre weights
15

16 W={

17 1:[2.0],

18 2:[...1,

19 .

20 }

21

22 print > f, ’ \
23 =============\n'

24 print >> f, ' SCRIPT FOR THE COMPUTATION OF THE LOCAL STRAIN ENERGY \

25 DENSITY\n\

26 OF A STEEL BEAM SUBJECTED TO A END LOAD THROUGH A CONTOUR INTEGRAL\n’
27  print >> f, ’ \
28 =============\n’

29

30 print >> f, '\

31 \n\

32 | [/\n\

33 Il | [/\n\

34 |l [ [/\n\

35 [ | |/ DX = 0,\n\

36 [l | [/\n\

37 1= |/ DY = 0\n\

38 \ / | | /\n\

39 \/ | | /\n\

40 | | /\n\

41 F = 100 N\n’

42

43 # Input for the values R, g, n, m
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print >> f, "INPUT VALUES:\n\n’

R = input(’Enter the radius of the circles onto which compute the SED: ')
print >> f, ’Radius of the circles: R =', R, ’'\n’

q = input('Enter the number of random points: ')

print >> f, ’'Number of random points: q =', q, ’'\n’

n = input(’Enter the number of subdivisions for each circumference: ')
print >> f, ’'Number of subdivisions for each circumference: n =', n, ’'\n’
m = input(’Enter the number of Gaussian points for each subdivision: ')

print >> f, ’'Number of Gaussian points for each subdivision: m =', m, ’'\n’

# Definition of some parameters of the problem

# Material

E = 210000.0 # Young modulus of steel [MPa]
NU = 0.3 # Poisson ratio of steel []

G =0.5*E/ (1.0 + NU) # Shear modulus of steel [MPa]l
# Geometry

b=1.0 # Thickness of the beam [mm]

L = 100.0 # Length of the beam [mm]

h = 10.0 # Height of half beam [mm]
I=2.0*«b=x*xh=xxx3/3.0 # Moment of inertia [mm ~ 4]

# Boundary conditions

F = 100.0 # Applied end load [N]
# Definition of the initial values and constants
theta_a = -math.pi

theta_b = math.pi

A = 0.5 x (theta_b - theta_a) * R *x 2

for k in range(q):

# Definition of the point coordinates

X_c = random.uniform(R, L - R)
y_c = random.uniform(-h + R, h - R)

# Definition of the initial values

print >> f, ’ \n’
print >> f, ’ CIRCLE’", k + 1, "\n’
print >> f, ’ \n’
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88

print >> f, ’

SUBDIVISION’, i,
print >> f, '---cii i

# Definition of the angular quantities

theta_1l = theta_a + (i - 1) % (theta_b - theta_a) / n

theta_2 = theta_a + 1 * (theta_b - theta_a) / n
dtheta = 0.5 * (theta_2 - theta_1)

print >> f, ’theta_l =’, theta_1l, ’'\n’
print >> f, ’'theta_2 =’, theta_2, ’\n’
print >> f, ’dtheta =’, dtheta, ’\n’

for j in range(m):

print >> f,
print >> f,
print >> f,

ITERATION', j + 1,

"\n’

# Calculation of the desired quantities

# Theta angle

t =T.get(m)[m - j - 1]

theta = 0.5 * (1.0 - t) * theta_1l + 0.5 x (1.0 + t) * theta_2

# Normals

n-x
n_y

math.cos(theta)
math.sin(theta)

# Point coordinates

X = x_C + R * math.cos(theta)

y:

# Stresses
S_XX =
S_yy = 0.0
S_xy =

y_c + R x math.sin(theta)

Fxxx*xy /1

# Displacements

ux =0.5x*F *xx*xx2x*xy/ (ExI)
UX +=NU x F xy xx 3/ (6.0 xEx* I)
_Xx -=F *xy *x 3/ (6.0 x G x I)

ux -=0.5*«xFx (L*x2/E-h=x*xx2/G) *xy /I

CFCC
<K K K <
'
1}
m - X

= - 0.5 %« NU * X * y **x 2

** 3 /6.0 - 0.5 x L *xx 2 x x
**x 3 / 3.0

/ (E % I)

# Traction vectors

T_X = S_XX * n_X + S_Xy * n_y

Ty

S Xy * n_X + S_yy * n_y

# Strain energy

SE = 0.5 % (T_x * ux + T_y * u_y) * R *x dtheta * W.get(m)[a]

# Strain energy density

SED += SE / A

0.5 «x F *x (h xx 2 -y *xx2) /I
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B.3 BEAM_END_SED.PY

# Perimeter

p += R x dtheta * W.get(m)[al

print >> f, ’Gaussian coordinate t =’, t, ’\n’
print >> f, ’theta =’, theta, '\n’

print >> f, 'n_x =', n_x, '\n’

print >> f, 'n_y =’, n_y, '\n’

print >> f, 'x =', x, '\n’

print >> f, 'y =', y, '\n’

print >> f, ’'S_xx =', S_xx, ’'\n’

print >> f, 'S_yy =', S_yy, ’'\n’

print >> f, 'S_xy =', S_xy, ’'\n’

print >> f, ’'u_x =", u_x, '\n’

print >> f, ’'u_y =’, u_y, '\n’

print >> f, 'T_x =", T_x, '\n’

print >> f, 'T_y =’, T_y, '\n’

print >> f, ’Strain Energy =’, SE, ’'\n’

print >> f, ’'Strain Energy Density =', SED, '\n’
print >> f, 'Perimeter =’, p, ’\n’

a+=1

# Definition of the theoretical value for the SED

REF1 = (6.0 * (Xx_C *kx 2 + y_C ** 2) + R *xx 2) % R *xx 2

REF1 += 24.0 % X_C ** 2 x y_C %% 2
REF1 /= E

REF2 = (3.0 * (3.0 *x y_Cc ** 2 - h *xx 2) + 0.75 * R *x 2) * R *x 2

REF2 += 6.0 * (h *%x 2 - y_cC *x 2) *x 2
REF2 /= G

REF = REF1 + REF2
REF = (F / I) *x 2 / 48.0

# Printing of the final values

print >> f, '\n \n’

print >> f, ’ RESULTS FOR CIRCLE’, k + 1

print >> f, '\n \n’

print >> f, ' x.c =', x.c, ', y.c=", y.c, '\n’

print >> f, ’ Computed SED =', SED, '\n’

print >> f, ’ Theoretical SED =’, REF, ’\n’

print >> f, ’ Percentual error =', abs(SED / REF - 1.0) % 100.0, '%\n’
print >> f, ’ Length of the path =', p

print >> f, '\n \n\n\n’

f.close()
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B.4 PLATE_CRACK_SED.PY

Algorithm B.4. Computation of SED for a cracked plate subjected to a con-
stant tensile stress (subsection 4.3.1).
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f = open(’py_plate_crack_sed.dat’, 'w’

import math
import random

# Definition of the Gauss-Legendre ab

T={
:[-0.0],

H R I

N o=l

# Definition of the Gauss-Legendre we

{
:[2.0]1,
H A I

N o=l

’

print >> f,

)

scissas

ights

print >> f, ’ SCRIPT FOR THE COMPU
DENSITY OF A CRACKED STEEL PLA
CONSTANT TENSILE STRESS THROUGH

TATION OF THE LOCAL STRAIN ENERGY\n\
TE SUBJECTED TO A\n\
A CONTOUR INTEGRAL\n’

print >> f, ’

print >> f, '\

AAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA

DY = 0\n\n’

# Input for the values R, n, m

print >> f, ’"INPUT VALUES:\n\n’

R = input(’Enter the radius of the ci
print >> f, ’Radius of the circle: R

n = input('Enter the number of subdiv
print >> f, ’Number of subdivisions:

m = input('Enter the number of Gaussi

print >> f, ’Number of Gaussian point
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B.4 PLATE_CRACK_SED.PY

# Definition of some parameters of the problem

# Material

E = 210000.0 # Young modulus of steel [MPa]
NU = 0.3 # Poisson ratio of steel []

G =0.5%E / (1.0 + NU) # Shear modulus of steel [MPa]
# Geometry

h = 100.0 # Length of the plate’s edge [mm]

c =10.0 # Half crack length [mm]

# Boundary conditions

SO = 100.0 # Applied tensile stress [MPa]

# Definition of the initial values and constants
theta_a = -math.pi

theta_b = math.pi

A 0.5 * (theta_b - theta_a) * R xx 2

K_

I = SO * math.sqrt(math.pi * c)

# Definition of the point coordinates

0.5 x h +c
0.5 x h

X_C
y_c

# Definition of the initial values

SE = 0.0
SED = 0.0
p=20.0

for i in range(1l, n + 1):

a=20

pPrint >> f, "ccceomm e \n’
print >> f, ’ SUBDIVISION’, i, ’\n’

print >> f, 'ccee o \n’

# Definition of the angular quantities

theta_1l = theta_a + (i - 1) * (theta_b - theta_a) / n
theta_2 = theta_a + 1 * (theta_b - theta_a) / n
dtheta = 0.5 * (theta_2 - theta_1)

print >> f, ’theta_l =’, theta_1, ’\n’
print >> f, ’theta_2 =’, theta_2, ’\n’
print >> f, ’dtheta =', dtheta, ’\n’

for j in range(m):

print >> f, - \n’
print >> f, ’ ITERATION’, j + 1, '\n’
print >> f, - \n’

# Calculation of the desired quantities

# Theta angle

t =T.get(m)[m - j - 1]

theta = 0.5 * (1.0 - t) * theta_1l + 0.5 x (1.0 + t) * theta_2
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math.

math.

math.

math.

math.

92

# Normals

n_x
n_y

ma
ma

th.cos(theta)
th.sin(theta)

# Stresses

math.cos(0.5 * theta) * (1.0 - math.sin(0.5 * theta) * \

sin(1.5 * theta))
S_xx *= K_I / math.sqrt(2.0 * math.pi * R)

math.cos(0.5 * theta) * (1.0 + math.sin(0.5 x theta) * \

sin(1.5 * theta))
S_yy *= K_.I / math.sqrt(2.0 * math.pi * R)

S_Xxy

math.sin(0.5 x theta) * math.cos(0.5 *x theta) * \

cos(1.5 x theta)
S_xy *= K_I / math.sqrt(2.0 * math.pi x R)

# Displacements

u_x =
sin(0.5 *
U_X *x=

uy =
cos (0.5 *
u_y *=

math.cos (0.5 x theta) *x (1.0 - 2.0 x NU + \

t

heta) *xx 2)

K.I * math.sqrt(0.5 * R / math.pi) / G

math.sin(0.5 x theta) * (2.0 - 2.0 * NU - \

t

heta) *xx 2)

K_I * math.sqrt(0.5 * R / math.pi) / G

# Traction vectors

T_x
Ty

S_
S_

XX * N_X + S_Xy * n_y
Xy * n_X + S_yy * n_y

# Strain energy

SE = 0.5 * (T_x * u_x + T_y * u_y) * R x dtheta * W.get(m)[a]

# Strain energy density

SED += SE / A

# Perimeter

p +=R

print
print

print
print

print
print
print

print
print

print
print

print
print

*

>>
>>

>>
>>

>>
>>
>>

>>
>>

>>
>>

>>
>>

dtheta * W.get(m)[a]

f, 'Gaussian coordinate t =', t, '\n’

f, 'theta =’, theta, ’'\n’

f, 'n_x =", n_x, '\n’
f, 'n_y =", n_y, '\n’

f, 'S_xx =", S_xx, '\n’
f, 'S.yy =", S.yy, '\n’
f, 'S.xy =", S_xy, '\n’

f, 'ux =", u_x, '\n’
f, 'uy =", uy, "\n’
f, 'T_x =", T_x, '\n’

f, 'T_y =", T_y, '\n’

f, ’'Strain Energy =', SE, ’'\n’
f, 'Strain Energy Density =', SED,

"\n’
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216

B.4 PLATE_CRACK_SED.PY

’

print >> f, ’Perimeter =’, p, ’\n’

a+=1

# Definition of the theoretical value for the SED

REF

(1.0 + NU) * (5.0 - 8.0 * NU) * K_.I *x 2
REF /= 8.0 * math.pi * R x E

# Printing of the final values

print
print
print

print
print
print

print

print

>>
>>

>>

>>

>>

>>

>>

print >> f,

f.close()

"\n \n’

! RESULTS’

\r \n’

! x_c =", x.¢c,’, y-¢ =", yc, '\n’

! Computed SED =', SED, '\n’

! Theoretical SED =', REF, ’'\n’

! Percentual error =', abs(SED / REF - 1.0) * 100.0, '%\n’
! Length of the path =", p

"\n \n\n\n’
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COMMAND FILES

This appendix collects all the command files used in the Finite Ele-
ment Analyses. As in the previous appendix, the Gauss-Legendre
abscissas and weights were omitted.

C1 PLATE_CNST_SED_1D.COMM

Algorithm C.1. Finite Element computation of SED through a contour inte-
gral for a plate subjected to a constant tensile stress (subsec-
tion 4.2.1).

# File PLATE_CNST_SED_1D.COMM

# Computes the local strain energy density in random
# points for a plate subjected to a constant tensile
# stress through a contour integral

# Utilizes the MACR_LIGN_COUPE command

DEBUT (PAR_LOT="NON") ;
import math

import random as rnd
import os

WORKING_DIR = "...’

exportfile = os.path.join(WORKING_DIR, 'fe_plate_cnst_sed_1ld.dat’)
f = open(exportfile,’'w’)

f.write(’ \
=—=======\n")

f.write(’ \
=========\n’)

f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \
ENERGY\n\

DENSITY IN RANDOM POINTS FOR A PLATE SUBJECTED TO A\n\
CONSTANT TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)

N o=l

# Definition of the Gauss-Legendre weights

W={
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:[2.0],
.1

N =

# Definition of some parameters of the problem

# Material

E 210000.0 # Young's modulus of steel [MPa]
NU = 0.3 # Poisson’s ratio of steel [

# Boundary conditions

SO = 100.0 # Applied tensile stress [MPal

# Input for the values R, q, n, m

f.write(’INPUT VALUES:\n\n')

R = input(’Enter the radius of the circles onto which compute the SED:
f.write(’Radius of the circles: R = ' + '{0:2.2f}’.format(R) + "\n\n’)
q = input(’Enter the number of random points: ’)

f.write(’Number of random points: q = ' + str(q) + ’'\n\n’)

n = input('Enter the number of subdivisions for each circumference: ')

’

f.write(’Number of subdivisions for each circumference: n = ' + \
str(n) + '\n\n")

m = input(’Enter the number of Gaussian points for each subdivision: ')
f.write(’'Number of Gaussian points for each subdivision: m = ' + \

str(m) + '\n\n")
f.write(’ \

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
NU=NU,),);

# Reading of the mesh
MAIL=LIRE_MAILLAGE (FORMAT="MED’,);
# Reorientation of the normals towards the outside
MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,
ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1','Edge_2',),),);
# Application of the plane strain conditions
MODE=AFFE_MODELE (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI’,
PHENOMENE="MECANIQUE’,
MODELISATION='D_PLAN’,),);

# Application of the material properties to the domain

MATE=AFFE_MATERIAU (MAILLAGE=MAIL,
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C.1 PLATE_CNST_SED_1D.COMM

AFFE=_F(TOUT="0UI’,
MATER=STEEL,),);

# Application of the constraints

SYMM=AFFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F(GROUP_MA="Edge_1’,

DX=0.0,),
_F(GROUP_NO="Vertex_1",
DY=6.0,),),);

# Application of the external loads

LOAD=AFFE_CHAR_MECA (MODELE=MODE,
PRES_REP=_F (GROUP_MA="Edge_2",
PRES=-S0,),);

# Definition of the linear elastic static model

RESU=MECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=SYMM, ),

_F(CHARGE=LOAD, ),),);

# Calculation of the nodal solutions
# WARNING: For nodes shared between more than one
# element, the nodal values are calculated separately

RESU=CALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=(’'SIGM_ELNO’,'SIEQ_ELNO’, 'ENEL_ELNO’,),);

# Calculation of the nodal solutions
# The nodal values from each element sharing
# that node are averaged

RESU=CALC_NO(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU’,’SIEQ_NOEU’, ENEL_NOEU’,),);

# Definition of the initial values and constants

theta_a = -math.pi
theta_b = math.pi
b=20

# Definition of the empty arrays

CX =[]

CyY =11l

STRESS = [None] * q * n x m
DISPL = [None] * g * n * m
n_x [None] * g * n * m
n_y [None] * g * n *x m

for k in range(q):

a=-1

# Definition of the coordinates of the points
= rnd.uniform(R, 100.0 - R)
= rnd.uniform(R, 100.0 - R)

= Xx_c + R x math.cos(theta_a)
y_c + R * math.sin(theta_a)

| |
© © N n
|

< X < X
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COMMAND FILES

# Appending the coordinates to the corresponding vectors

C_X.append(x_c)
C_Y.append(y_c)

# Interpolation of the desired quantities onto the path
for i in range(1l, n + 1):
theta_1l = theta_a + (i - 1) * (theta_b - theta_a) / n

theta_2 = theta_a + i * (theta_b - theta_a) / n
dtheta = 0.5 * (theta_2 - theta_1)

for j in range(m):

t =T.get(m)[m - j - 1]

theta = 0.5 * (1.0 - t) * theta_l + 0.5 * (1.0 + t) * theta_2
n_x[i + j + k + a + b] = math.cos(theta)

n_y[i + j + k + a + b] = math.sin(theta)

Xx_1 = x_c + R *x math.cos(theta)

y-1 =y c + R *x math.sin(theta)

# Stresses

STR=MACR_LIGN_COUPE (RESULTAT=RESU,
NOM_CHAM="SIGM_NOEU"',
LIGN_COUPE=_F (INTITULE='STRESSES’,
TYPE="SEGMENT"’,
NB_POINTS=2,
COOR_ORIG=(x_0,y_0),
COOR_EXTR=(x_1,y_1),),);

# Displacements
DIS=MACR_LIGN_COUPE (RESULTAT=RESU,
NOM_CHAM='DEPL",
LIGN_COUPE=_F (INTITULE='DISPLACEMENTS’,
TYPE='SEGMENT’,
NB_POINTS=2,
COOR_ORIG=(x_0,y_0),
COOR_EXTR=(x-1,y-1),),);

# Definition of the tables from the concepts

STRESS[i + j + k + a + b] = STR.EXTR_TABLE()
DISPL[i + j + k + a + b] = DIS.EXTR_TABLE()

# Destruction of the concepts

DETRUIRE(CONCEPT=(_F(NOM=STR),
_F(NOM=DIS),),);

a+=m-1

b+=nsx*xm-1

# Saving the output in MED format

IMPR_RESU(FORMAT='MED",

RESU=_F (MAILLAGE=MAIL,
RESULTAT=RESU, ), );

# Python script for SED calculation
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C.1 PLATE_CNST_SED_1D.COMM

# Definition of the initial values and constants

A=0.5
a=20
b=20

* (theta_b - theta_a) * R *x 2

# Definition of the empty arrays

SED
per

(1
[1

for s in range(q):

# Definition of the initial values for the given point

SEth =
SE = 0.

p =

for

str(s +

0.0

0

0.0

i in range(n * m):

# Definition of the arrays from the tables

coor_x = STRESS[i
coor_y = STRESS[i
S_xx = STRESS[i +
S_yy = STRESS[i +
S_xy = STRESS[i +
u_x DISPL[i + s
u_y = DISPL[i + s

s + b].values()['COOR_X"]
s + b].values()['COOR_Y']
+ b].values()['SIXX']

+ bl.values()['SIYY']

+ bl.values()['SIXY’]
b].values()[’'DX’]
b].values()['DY’]

+ 4+ v v v + +

k = len(S_xx) - 1
1 = len(u_x) -1

# Calculation of the theoretical quantities

# Displacements

u_xth
u_yth

(1.0 - NU %% 2) *x SO * coor_x[k] / E
-NU % (1.0 + NU) * SO * coor_y[k] / E

# Strain energy
SEth += 0.5 * SO * n_x[i + s + b] * u_xth * R x dtheta * W.get(m)[a]
# Calculation of the FE quantities

# Traction vectors

T_x S_xx[k] * n_x[1 + s + b] + S_xy[k] * n_y[i + s + b]
Ty = S_xy[k] * n_x[i + s + b] + S_yy[k] * n_y[i + s + b]

# Strain energy
SE += 0.5 x (T_x * u_x[1l] + T_y * u_y[l]) * R * dtheta x W.get(m)[a]
# Perimeter

p += R x dtheta * W.get(m)[a]

f.write(’\n \n')
f.write(’ Iteration ' + str(i + 1) + ' for circle " + \
1) + ')

f.write(’\n \n\n")
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f.write(’'Coordinates: x ="+ '{0:3.10f}'.format(coor_x[k]) + '\n")
f.write(’ y ="+ "{0:3.10f}’.format(coor_y[k]) + \
"\n\n")
f.write(’'Stresses: Sxx = " + '{0:3.2f}'.format (S_xx[k]) + '\n")
f.write(’ Syy = " + '{0:3.2f}’.format(S_yy[k]) + '\n")
f.write(’ Sxy = " + '{0:3.2f}'.format(S_xy[k]) + ’'\n\n’)
f.write(’'Displacements: Ux = " + '{0:2.10e}’.format(u_x[1l]) + '\n")
f.write(’ Uy = " + "{0:2.10e}’'.format(u_y[l]) + '\n\n’")
f.write(’Normal vector: nx =" + '{0:1.10f}".format(n_x[1i + s + b]) + \
"\n")
f.write(’ ny = ' + '{0:1.10f}’".format(n_y[i + s + b]) + \
"\n\n")
f.write(’'Traction vector: Tx = ' + '{0:1.10f}’.format(T_x) + ’'\n’)
f.write(’ Ty = ' + '{0:1.10f}’.format(T_y) + '\n\n’)
f.write(’Strain energy: SE = ' + '{0:2.10e}’'.format(SE) + '\n’")
f.write(’'SED: SED = ' + '{0:2.10e}’'.format(SE / A) + '\n’)
f.write(’\n \n\n")
ifa==m- 1:
a=20
else:
a+=1
# Appending the results to the corresponding vectors
SED.append(SE/A)
per.append(p)
b+=nx*xm-1
# Printing of the final values
# Definition of the theoretical value for the SED
REF = 0.5 * (1.0 - NU *x 2) x SO *x 2 / E
for i in range(q):
f.write(’\n \n")
f.write(’ RESULTS FOR CIRCLE ' + str(i + 1))
f.write(’\n \n\n")
f.write(’ Coordinates of the center: x_.c = ' + "{0:3.10f}’.format(C_X[i]) + \
\n")
f.write(’ y.c ="+ "{0:3.10f} " .format(C_Y[i]) + \
"\n\n")
f.write(’ Computed SED = ' + '{0:2.10e}’.format(SED[i]) + ’'\n’)
f.write(’ Theoretical SED = ' + '{0:2.10e}’'.format(REF) + '\n’)
f.write(’ Percentual error = ' + "{0:4.2e}’.format((abs(SED[i] / REF - \
1.0) * 100.0)) + '%\n\n’)
f.write(’ Length of the path = ' + ’{0:1.10f}’.format(per[i]) + '\n\n’")
f.write(’ \n")
f.close()
FIN();

100



36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57

C.2 PLATE_LNR_SED_1D.COMM

C.2 PLATE_LNR_SED_1D.COMM

Algorithm C.2. Finite Element computation of SED through a contour inte-
gral for a plate subjected to a linear tensile stress (subsec-
tion 4.2.2).

# File PLATE_LNR_SED_1D.COMM

# Computes the local strain energy density in random
# points for a plate subjected to a linear tensile
# stress through a contour integral

# Utilizes the MACR_LIGN_COUPE command

DEBUT (PAR_LOT="NON") ;
import math

import random as rnd
import os

WORKING_DIR = "...’

exportfile = os.path.join(WORKING_DIR, 'fe_plate_lnr_sed_1ld.dat’)
f = open(exportfile,’'w’)

f.write(’ \
\

f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

ENERGY\n\

DENSITY IN RANDOM POINTS FOR A PLATE SUBJECTED TO A\n\
LINEAR TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n'")

f.write(’ \

=========\n")

f.write(’ \

=========\n\n")

# Definition of the Gauss-Legendre abscissas

N o=l

{
:[-0.0],
[...1,

# Definition of the Gauss-Legendre weights

N o=l

{
:[2.0],
i I

# Definition of some parameters of the problem

# Material

E = 210000.0 # Young's modulus of steel [MPa]
NU = 0.3 # Poisson’s ratio of steel []

# Geometry

h = 100.0 # Length of the plate’s edge [mm]
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# Boundary conditions
SM = 100.0 # Maximum applied tensile stress [MPa]

# Input for the values R, g, n, m

f.write(’INPUT VALUES:\n\n’)

R = input('Enter the radius of the circles onto which compute the SED:

f.write('Radius of the circles: R ="' + '{0:2.2f}’.format(R) + ’'\n\n’)

g = input(’Enter the number of random points: ')

’

f.write(’Number of random points: q =

n = input(’'Enter the number of subdivisions for each circumference:

f.write('Number of subdivisions for each circumference:
str(n) + '\n\n’)

m = input(’Enter the number of Gaussian points for each subdivision:

f.write('Number of Gaussian points for each subdivision:

str(m) + '\n\n’)

+ str(q) + '\n\n’)

n

’

+\

f.write(’

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
NU=NU,),);

# Reading of the mesh

MAIL=LIRE_MAILLAGE(FORMAT="MED’,);

# Reorientation of the normals towards the outside

MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,

ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1', 'Edge_2',),),);

# Application of the plane strain conditions

MODE=AFFE_MODELE (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI’,
PHENOMENE="MECANIQUE",
MODELISATION='D_PLAN’,),);

# Application of the material properties to the domain
MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI"’,
MATER=STEEL,),);

# Application of the constraints

SYMM=AFFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F(GROUP_MA="Edge_1",

DX=0.0,),
_F(GROUP_NO="'Vertex_1",
DY=0.0,),),);

# Application of the external loads
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C.2 PLATE_LNR_SED_1D.COMM

SX=FORMULE (NOM_PARA="Y’ ,VALE="(-SM * (1.0 - Y / h))’");

LOAD=AFFE_CHAR_MECA_F (MODELE=MODE,
PRES_REP=_F (GROUP_MA="Edge_2",
PRES=SX,),);

# Definition of the linear elastic static model

RESU=MECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=SYMM, ),

_F(CHARGE=LOAD, ),),);

# Calculation of the nodal solutions
# WARNING: For nodes shared between more than one
# element, the nodal values are calculated separately

RESU=CALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_ELNO’,'SIEQ_ELNO’, ENEL_ELNO’,),);

# Calculation of the nodal solutions
# The nodal values from each element sharing
# that node are averaged

RESU=CALC_NO(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU’,'SIEQ_NOEU’, 'ENEL_NOEU',),);

# Definition of the initial values and constants

theta_a = -math.pi
theta_b = math.pi
b=20

# Definition of the empty arrays

CX =1l
Yy =11l
STRESS = [None] * g * n *m

DISPL = [None] * g * n * m
n_x = [None] * g * n xm
n_y = [None] * g * n *xm

for k in range(q):

a=-1

# Definition of the coordinates of the points
= rnd.uniform(R, 100.0 - R)
= rnd.uniform(R, 100.0 - R)

= x_c + R * math.cos(theta_a)
y_c + R * math.sin(theta_a)

< ‘>< < X
© o0 0
([

# Appending the coordinates to the corresponding vectors

C_X.append(x_c)
C_Y.append(y_c)

# Interpolation of the desired quantities onto the path
for i in range(1l, n + 1):

theta_1l = theta_a + (i - 1) x (theta_b - theta_a) / n
theta_2 = theta_a + 1 * (theta_b - theta_a) / n
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dtheta =
for j in

t=T
theta
n_x[1i
n_y[i
x_1 =
y-1=

# Str

0.5 * (theta_2 - theta_1)

range(m):

.get(m)[m - j - 1]

=0.5 % (1.0 - t) * theta_1l + 0.5 x (1.0 + t) * theta_2
+Jj + k + a+ bl = math.cos(theta)

+ j + k+ a+ b] =math.sin(theta)

X_c + R * math.cos(theta)

y_c + R * math.sin(theta)

esses

STR=MACR_LIGN_COUPE (RESULTAT=RESU,

# Dis

NOM_CHAM="SIGM_NOEU’,

LIGN_COUPE=_F (INTITULE='STRESSES’,
TYPE="SEGMENT’,
NB_POINTS=2,
COOR_ORIG=(x_0,y_0),
COOR_EXTR=(x_1,y_1),),);

placements

DIS=MACR_LIGN_COUPE (RESULTAT=RESU,

# Def

STRES
DISPL

# Des

DETRU

NOM_CHAM="DEPL",

LIGN_COUPE=_F (INTITULE='DISPLACEMENTS’,
TYPE="SEGMENT’,
NB_POINTS=2,
COOR_ORIG=(x_0,y_0),
COOR_EXTR=(x_1,y_1),),);

inition of the tables from the concepts

S[i+ j + k +a+ b] = STR.EXTR_TABLE()
[i+3j+k+a+b] =DIS.EXTR_TABLE()

truction of the concepts

IRE(CONCEPT=(_F(NOM=STR) ,
_F(NOM=DIS),),);

x_0 = x_1

a+=m -

b+=nx*m-

# Saving the outp

ut in MED format

IMPR_RESU(FORMAT="MED’,

RESU=_F

(MAILLAGE=MAIL,
RESULTAT=RESU, ), );

# Python script for SED calculation

# Definition of the initial values and constants

0 >

0.5 * (theta_b - theta_a) * R xx 2

=0
=0

# Definition of the empty arrays

SED
per
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for s in range(q):
# Definition of the initial values for the given point
SEth

SE = 0.
p=20.0

0.0
0

for i in range(n * m):
# Definition of the arrays from the tables
coor_x = STRESS[i

coor_y = STRESS[i
S_xx = STRESS[i +

s + b].values()['COOR_X"]
s + b].values()['COOR_Y"]
+ b].values()['SIXX"]
+

+ + 0 v v + +

S_yy = STRESS[i + b].values()[’SIYY']
S_xy = STRESS[i + + b]l.values()[’SIXY’']
u_x = DISPL[i + s b].values()['DX"]
u_y = DISPL[i + s b].values()[’'DY’]

k = len(S_xx) - 1
1 = len(u_x) -1

# Calculation of the theoretical quantities

# Stresses

S_xxth = SM * (1.0 - coor_y[k] / h)
S_yyth = 0.0

S_xyth = 0.0

# Displacements

u_xth

(1.0 - NU *x 2) * SM * (1.0 - coor_y[k] / h) x coor_x[k] / E
u_yth = 0.5 * coor_x[k] *x 2 / h

u_yth -= NU * (1.0 - 0.5 * coor_y[k] / h) x coor_y[k] / (1.0 - NU)
u_yth *= (1.0 - NU **x 2) * SM / E

# Traction vectors

T_xth
T_yth

S xxth * n_x[i + s + bl + S_xyth * n_y[i + s + b]
S_xyth * n_x[i + s + b] + S_yyth * n_y[i + s + b]

# Strain energy

SEth += 0.5 * (T_xth * u_xth + T_yth * u_yth) * R % dtheta * W.get(m)[a]

# Calculation of the FE quantities
# Traction vectors

T_Xx
Ty

S_xx[k] * n_x[1 + s + b] + S_xy[k] * n_y[i + s + b]
S xy[k] * n_x[1 + s + b] + S_yy[k] * n_y[i + s + b]

# Strain energy

SE += 0.5 % (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[a]
# Perimeter

p += R x dtheta x W.get(m)[a]

f.write(’'\n \n")
f.write(’ Iteration ' + str(i + 1) + ' for circle ' + \
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323
324
325

327
328
329
330
331
332
333
334
335
336
337
338
339

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
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str(s + 1) + ":")
f.write(’\n

\n\n")

f.write(’Coordinates: x ="+ "{0:3.10f}’.format(coor_x[k]) + '\n")
f.write(’ y ="+ '{0:3.10f}’.format(coor_y[k]) + \
"\n\n")
f.write(’Stresses: Sxx = " + '{0:3.2f}’.format(S_xx[k]) + '\n")
f.write(’ Syy = ' + '{0:3.2f}'.format(S_yy[k]l) + '\n")
f.write(’ Sxy = " + '{0:3.2f}'.format(S_xy[k]) + '\n\n’)
f.write(’'Displacements: Ux = " + "{0:2.10e}’.format(u_x[1]) + '\n")
f.write(’ Uy = ' + "{0:2.10e}'.format(u_y[l]) + ’"\n\n’")
f.write(’Normal vector: nx ="' + '{0:1.10f}’'.format(n_x[1i + s + b]) + \
\n")
f.write(’ ny = ' + '{0:1.10f}'.format(n_y[i + s + b]) + \
"\n\n")
f.write(’'Traction vector: Tx = ' + '{0:1.10f}'.format(T_x) + '\n’)
f.write(’ Ty = " + "{0:1.10f}’.format(T_y) + ’'\n\n’)
f.write(’Strain energy: SE =" + '{0:2.10e}’.format(SE) + '\n’)
f.write(’SED: SED = ' + '{0:2.10e}’.format(SE / A) + '\n’)
f.write(’\r \n\n")
ifa==m- 1:
a=2=0
else:
a+=1
# Appending the results to the corresponding vectors
SED.append (SE/A)
per.append(p)
b+=nxm-1
# Printing of the final values
for i in range(q):
# Definition of the theoretical value for the SED
REF = 0.25 * R **x 2 + (h - C_Y[1]) *x* 2
REF = 0.5 * (SM / h) *x 2 x (1.0 - NU *xx 2) / E
f.write(’\n \n")
f.write(’ RESULTS FOR CIRCLE ' + str(i + 1))
f.write(’\n \n\n")

"+ '{0:3.10f}".format(C_X[i]) + \

"+ '{0:3.10f}" . format(C_Y[i]) + \

.10e}’ . format(SED[i]) + '\n’)
.2e}’.format((abs(SED[i] / REF - \

.10f}’ . format(per[i]) + '\n\n")

\n")

f.write(' Coordinates of the center: x_c =
"\n")

f.write(’ y_Cc =
"\n\n")

f.write(’ Computed SED = ' + "{0:2

f.write(’ Theoretical SED = ' + '{0:2.10e}’'.format(REF) + '\n’)

f.write(’ Percentual error = ' + '{0:4
1.0) * 100.0)) + "S\n\n')

f.write(’ Length of the path = ' + '{0:1

f.write(’
f.close()
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C.3 BEAM_END_SED_1D.COMM

FIN();

C.3 BEAM_END_SED_1D.COMM

Algorithm C.3. Finite Element computation of §¢D through a contour inte-
gral for a beam subjected to an end load (subsection 4.2.3).

# File BEAM_END_SED_1D.COMM

# Computes the local strain energy density in random
# points for a two-dimensional beam subjected to an
# end load through a contour integral

# Utilizes the MACR_LIGN_COUPE command

DEBUT (PAR_LOT="NON") ;
import math

import random as rnd
import os

WORKING_DIR = "...’

exportfile = os.path.join(WORKING_DIR, 'fe_beam_end_sed_1d.dat’)
f = open(exportfile,’'w’)

f.write(’ \
=========\n")

f.write(’ \
=========\n')

f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \
ENERGY\n\

DENSITY IN RANDOM POINTS FOR A TWO-DIMENSIONAL BEAM\n\
SUBJECTED TO AN END LOAD THROUGH A CONTOUR INTEGRAL\n')
f.write(’ \

f.write(’ \
====\n\n")

# Definition of the Gauss-Legendre abscissas

# Definition of the Gauss-Legendre weights

W

N o=l

{
:[2.0],
H I

# Definition of some parameters of the problem

# Material
E = 210000.0 # Young’'s modulus of steel [MPa]
NU = 0.3 # Poisson’s ratio of steel []
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G =0.5%E/ (1.0 + NU) # Shear modulus of steel [MPa]

# Geometry

b=1.0 # Thickness of the beam [mm]
L = 100.0 # Length of the beam [mm]

h =10.0 # Height of half beam [mm]
I=2.0%«bx*h=x3/ 3.0 # Moment of inertia [mm ~ 4]

# Boundary conditions

F = 100.0 # Applied end load [N]

# Input for the values R, g, n, m

f.write('INPUT VALUES:\n\n")

R = input('Enter the radius of the circles onto which compute the SED: ')
f.write(’Radius of the circles: R =" + '{0:2.2f}’.format(R) + '\n\n’)

g = input(’Enter the number of random points: )

f.write('Number of random points: q = ' + str(gq) + '\n\n’)

n = input(’Enter the number of subdivisions for each circumference: ')

f.write('Number of subdivisions for each circumference: n = ' + \
str(n) + '\n\n’)

m = input(’Enter the number of Gaussian points for each subdivision: ')

f.write('Number of Gaussian points for each subdivision: m = ' + \
str(m) + '\n\n’)
f.write(’ \

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
NU=NU, ), );

# Reading of the mesh
MAIL=LIRE_MAILLAGE(FORMAT='MED’,);
# Reorientation of the normals towards the outside
MAIL=MODI_MAILLAGE(reuse =MAIL,

MAILLAGE=MAIL,

ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1', 'Edge_2',),),);
# Application of the plane stress conditions
MODE=AFFE_MODELE (MAILLAGE=MAIL,

AFFE=_F(TOUT="0UI’,
PHENOMENE="MECANIQUE",
MODELISATION='C_PLAN’,),);

# Application of the material properties to the domain
MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",

MATER=STEEL, ), );

# Application of the constraints

108
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CONST=AFFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F(GROUP_MA="Edge_1’,
DX=0.0,
DY=0.0,),),);

# Application of the external loads
FY = -0.5 x F / (b * h)

LOAD=AFFE_CHAR_MECA (MODELE=MODE,
FORCE_CONTOUR=_F (GROUP_MA="Edge_2",
FY=FY,),);

# Definition of the linear elastic static model

RESU=MECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=CONST,),

_F(CHARGE=LOAD, ),),);

# Calculation of the nodal solutions
# WARNING: For nodes shared between more than one
# element, the nodal values are calculated separately

RESU=CALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_ELNO’,'SIEQ_ELNO’, 'ENEL_ELNO',),);

# Calculation of the nodal solutions
# The nodal values from each element sharing
# that node are averaged

RESU=CALC_NO(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU’,'SIEQ_NOEU’, 'ENEL_NOEU’,),);

# Definition of the initial values and constants
theta_a = -math.pi

theta_b = math.pi
b=20

# Definition of the empty arrays

CX =1l
cCyYy =1l
STRESS = [None] * g * n *x m
DISPL [None] * g *x n * m

[None] * g * n *m
[None] * g *x n * m

n_x =
n_y =
for k in range(q):

a=-1

# Definition of the coordinates of the points

X_C rnd.uniform(0.15 * L + R, 0.9 = L - R)
y_c = rnd.uniform(-h + R, h - R)
X_0 = x_c + R * math.cos(theta_a)
y_0 =y c + R *x math.sin(theta_a)

# Appending the coordinates to the corresponding vectors

C_X.append(x_c)
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C_Y.append(y_c)
# Interpolation of the desired quantities onto the path
for i in range(1l, n + 1):

theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

theta_2 theta_a + i * (theta_b - theta_a) / n
dtheta = 0.5 * (theta_2 - theta_1l)

for j in range(m):

t = T.get(m)[m - j - 1]

theta = 0.5 * (1.0 - t) * theta_1l + 0.5 % (1.0 + t) * theta_2
n_x[i + j + k + a + b] = math.cos(theta)

n_y[i + j + k + a + b] = math.sin(theta)

x_1 = x_c + R * math.cos(theta)

y_-1 =y _c + R % math.sin(theta)

# Stresses

STR=MACR_LIGN_COUPE (RESULTAT=RESU,
NOM_CHAM="SIGM_NOEU',
LIGN_COUPE=_F (INTITULE='STRESSES’,
TYPE="SEGMENT’,
NB_POINTS=2,
COOR_ORIG=(x_0,y_0),
COOR_EXTR=(x_-1,y-1),),);

# Displacements
DIS=MACR_LIGN_COUPE (RESULTAT=RESU,
NOM_CHAM='DEPL’,
LIGN_COUPE=_F (INTITULE='DISPLACEMENTS’,
TYPE='SEGMENT’,
NB_POINTS=2,
COOR_ORIG=(x_0,y_0),
COOR_EXTR=(x_1,y_1),),);

# Definition of the tables from the concepts

STRESS[i + j + k + a + b] = STR.EXTR_TABLE()
DISPL[i + j + k + a + b] = DIS.EXTR_TABLE()

# Destruction of the concepts

DETRUIRE (CONCEPT=(_F(NOM=STR),
_F(NOM=DIS),),);

x_0 = x_1
y0=y1

a+=m-1

b+=n=xm-1

# Saving the output in MED format

IMPR_RESU(FORMAT='MED",

RESU=_F (MAILLAGE=MAIL,
RESULTAT=RESU, ), ) ;

# Python script for SED calculation

# Definition of the initial values and constants
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C.3 BEAM_END_SED_1D.COMM

ta_b - theta_a) * R xx 2

# Definition of the empty arrays

SED
per

for

[1
(1

s in range
# Definiti
SEth

SE = 0.
p=20.0

0.0
0

for i in r
# Defi

coor_x
coor_y
S_Xx =
S_yy =
S xy =
u_X =
uy

k = le
1=1e

# Calc
# Stre
S_xxth
S_yyth
S_xyth
# Disp
u_xth
u_xth
u_xth
u_xth
u_yth
u_yth
u_yth
u_yth

# Trac

T_xth
T_yth

# Stra

(a):

on of the initial values for the given point

ange(n * m):

nition of the arrays from the tables

= STRESS[i + s + b].values()[’COOR_X']

= STRESS[i + s + b]l.values()[’COOR_Y"]

STRESS[i + s + bl.values()['SIXX']

STRESS[i + s + b].values()[’SIYY']

STRESS[i + s + b].values()['SIXY’']

DISPL[i + s + b].values()['DX"]

DISPL[i + s + b].values()['DY’]

n(S_xx) -1

n(u_x) -1

ulation of the theoretical quantities

sses

= F * coor_x[k] * coor_y[k] / I

= 0.0

=0.5 % F x (h x»x 2 - coor_y[k] *x 2) / I
lacements

= 0.5 x F x coor_x[k] ** 2 *x coor_y[k] / (E * I)
+= NU * F * coor_y[k] »x 3 / (6.0 x E x I)

-= F % coor_y[k] ** 3 / (6.0 *x G * I)

-= 0.5 F*x (L*x2 /E-h=xx2/G) * coor_y[k] / I
= -0.5 * NU * coor_x[k] * coor_y[K] *x* 2

-= coor_x[k] *»x 3 /6.0 - 0.5 x L *x 2 *x coor_x[k]
==L *x 3/ 3.0

*= F / (E * I)

tion vectors
= S xxth * n_x[1 + s + b] + S_xyth * n_y[i + s + b]
= S_xyth * n_x[1 + s + b] + S_yyth = n_y[i + s + b]
in energy

SEth += 0.5 * (T_xth * u_xth + T_yth * u_yth) * R % dtheta * W.get(m)[a]

# Calc

# Trac

T_x =

ulation of the FE quantities
tion vectors

S_xx[k] * n_x[i + s + b] + S_xy[k] * n_y[i + s + b]
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str(s +

"\n\n")

"\n")

"\n\n")

# Ap

SED.
per.

b +=

T_y = S_xy[k] * n_x[1 + s + b] + S_yy[k] * n_y[i + s + b]

# Strain energy

SE += 0.5 * (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[a]

# Perimeter

p += R x dtheta * W.get(m)[al

f.write(’'\n \n’)
f.write(’ Iteration ' + str(i + 1) + ' for circle ' + \

1) + ')

f.write(’\r \n\n")
f.write(’Coordinates: x ="+ "{0:3.10f}’.format(coor_x[k]) + '\n")
f.write(’ y ="+ '{0:3.10f}’.format(coor_y[Kk]) + \
f.write(’Stresses: Sxx = " + '{0:3.2f}’.format(S_xx[k]) + '\n’)
f.write(’ Syy = ' + '{0:3.2f}’.format(S_yy[k]) + '\n’")
f.write(’ Sxy = ' + '{0:3.2f}'.format(S_xy[k]) + '\n\n’")
f.write(’'Displacements: Ux = " + '{0:2.10e}’.format(u_x[1]) + '\n")
f.write(’ Uy = ' + "{0:2.10e}'.format(u_y[l]) + '\n\n’")
f.write(’Normal vector: nx =" + '{0:1.10f}’".format(n_x[1 + s + b]) + \
f.write(’ ny = ' + '{0:1.10f}’".format(n_y[i + s + b]) + \
f.write(’'Traction vector: Tx = ' + '{0:1.10f}’.format(T_x) + ’'\n’)
f.write(’ Ty = ' + "{0:1.10f}’.format(T_y) + ’'\n\n’)
f.write(’Strain energy: SE ="'+ '{0:2.10e}’.format(SE) + ’'\n")
f.write(’'SED: SED = ' + '{0:2.10e}’.format(SE / A) + '\n’)

f.write(’\n
ifa==m- 1:
a=20
else:
a+=1

pending the results to the corresponding vectors

append (SE/A)
append(p)

n* m-1

# Printing of the final values

for i in range(q):
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# De

REF1
REF1
REF1

REF2
REF2
REF2
REF2

finition of the theoretical value for the SED
= (6.0 x (C_X[i] *x 2 + C_Y[1i] ** 2) + R xx 2) % R *x 2
+= 24.0 x C_X[1] ** 2 x C_Y[i] **x 2
/=E
= 3.0 x (3.0 x C_Y[i] ** 2 - h %% 2) + R xx 2
%= R % 2
+= 6.0 x (h *xx 2 - C_Y[1] *%x 2) =*x 2
/=G

\n\n")
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32

C.4 PLATE_CRACK_SED_1D.COMM

REF = REF1 + REF2
REF *= (F / I) *x 2

REF /= 48.0

f.write(’'\n \n")

f.write(’ RESULTS FOR CIRCLE ' + str(i + 1))

f.write(’\n \n\n")

f.write(’ Coordinates of the center: x_.c = ' + "{0:3.10f}’.format(C_X[i]) + \
\n")

f.write(’ y_¢c ="+ "{0:3.10f}".format(C_Y[i]) + \
"\n\n")

f.write(’ Computed SED = ' + '{0:2.10e}’.format(SED[i]) + '\n’)

f.write(’ Theoretical SED = ' + '{0:2.10e}’.format(REF) + ’'\n’)

f.write(’ Percentual error = ' + '{0:4.2e}’'.format((abs(SED[i] / REF - \
1.0) * 100.0)) + "%\n\n')

f.write(’ Length of the path = ' + ’'{0:1.10f}'.format(per[i]) + '\n\n’)

f.write(’ \n")
f.close()
FIN();

C.4 PLATE_CRACK_SED_1D.COMM

Algorithm C.4. Finite Element computation of SED through a contour inte-
gral for a cracked plate.

# File PLATE_CRACK_SED_1D.COMM

# Computes the local strain energy density

# for a cracked plate subjected to a constant
# tensile stress through a contour integral
# Utilizes the MACR_LIGN_COUPE command

DEBUT (PAR_LOT="NON") ;

import math
import os

WORKING_DIR = "..."'

exportfile = os.path.join(WORKING_DIR,’'fe_plate crack sed 1d.dat’)
f = open(exportfile, 'w’)

f.write(’ \
=========\n")

f.write(’ \
=========\n')

f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \
ENERGY\n\

DENSITY FOR A CRACKED PLATE SUBJECTED TO A CONSTANT\n\
TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n')
f.write(’ \

# Definition of the Gauss-Legendre abscissas

T=4
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:[-0.0],
-1

N =

# Definition of the Gauss-Legendre weights

N o=l
. N
(=]

# Definition of some parameters of the problem

# Material

E = 210000.0 # Young's modulus of steel [MPal
NU = 0.3 # Poisson’s ratio of steel [

# Geometry

c =10.0 # Half crack length [mm]

# Boundary conditions

SO = 100.0 # Applied tensile stress [MPal

# Input for the values R, n, m

f.write('INPUT VALUES:\n\n")

R = input('Enter the radius of the circle onto which compute the SED:

f.write('Radius of the circles: R ="' + '{0:2.2f}'.format(R) + ’"\n\n’)

n = input('Enter the number of subdivisions for each circumference:

f.write('Number of subdivisions for each circumference:
str(n) + '\n\n’)

m = input('Enter the number of Gaussian points for each subdivision:

f.write('Number of Gaussian points for each subdivision:

str(m) + ’'\n\n’)

+\

f.write(’

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
NU=NU,),);

# Reading of the mesh

MAIL=LIRE_MAILLAGE(FORMAT='MED’,);

# Reorientation of the normals towards the outside

MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,

ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1', 'Edge_2’',’Edge_3',),),);

# Application of the plane strain conditions
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MODE=AFFE_MODELE (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",
PHENOMENE="MECANIQUE',
MODELISATION='D_PLAN’,),);

# Application of the material properties to the domain
MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",
MATER=STEEL,),);

# Application of the constraints

SYMM=AFFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F(GROUP_MA="Edge_1’,

DX=0.0,),
_F(GROUP_MA="Edge_2",
DY=0.0,),),);

# Application of the external loads

LOAD=AFFE_CHAR_MECA (MODELE=MODE,
PRES_REP=_F (GROUP_MA="Edge_3",
PRES=-S0,),);

# Definition of the linear elastic static model

RESU=MECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=SYMM, ),

_F(CHARGE=LOAD,),),);

# Calculation of the nodal solutions
# WARNING: For nodes shared between more than one
# element, the nodal values are calculated separately

RESU=CALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_ELNO’,’SIEQ_ELNO’, ENEL_ELNO’,),);

# Calculation of the nodal solutions
# The nodal values from each element sharing
# that node are averaged

RESU=CALC_NO(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU’,’SIEQ_NOEU’, 'ENEL_NOEU’,),);

# Definition of the initial values and constants

theta_a = 0.0
theta_b = math.pi
a=-1

# Definition of the empty arrays

STRESS = [None] * n *x m

DISPL = [None] * n *m
n_x = [None] * n * m
n_y = [None] * n * m

# Definition of the coordinates of the points

C
0.0
X_c + R * math.cos(theta_a)

x “< x
@ N0 0
U}

115



COMMAND FILES

164 Y0 =y c + R * math.sin(theta_a)

165

166 # Interpolation of the desired quantities onto the path
167

168 for i in range(l, n + 1):

169

170 theta_1l = theta_a + (i - 1) * (theta_b - theta_a) / n

171 theta_2 = theta_a + i * (theta_b - theta_a) / n

172 dtheta = 0.5 * (theta_2 - theta_1l)

173

174 for j in range(m):

175

176 t =T.get(m)[m - j - 1]

177 theta = 0.5 % (1.0 - t) * theta_l + 0.5 % (1.0 + t) * theta_2
178 n_x[i + j + al] = math.cos(theta)

179 n_y[i + j + al = math.sin(theta)

180 x_-1 = x_c + R * math.cos(theta)

181 y_-1 =y _c + R % math.sin(theta)

182

183 # Stresses

184

185 STR=MACR_LIGN_COUPE (RESULTAT=RESU,

186 NOM_CHAM='"SIGM_NOEU’,

187 LIGN_COUPE=_F (INTITULE="STRESSES’,
188 TYPE='"SEGMENT’,

189 NB_POINTS=2,

190 COOR_ORIG=(x_0,y_0),
191 COOR_EXTR=(x_1,y_1),),);
192 # Displacements

193

194 DIS=MACR_LIGN_COUPE (RESULTAT=RESU,

195 NOM_CHAM='DEPL",

196 LIGN_COUPE=_F(INTITULE='DISPLACEMENTS’,
197 TYPE="SEGMENT’,

198 NB_POINTS=2,

199 COOR_ORIG=(x_0,y_0),
200 COOR_EXTR=(x_1,y_1),),);
201

202 # Definition of the tables from the concepts

203

204 STRESS[i + j + a] = STR.EXTR_TABLE()

205 DISPL[i + j + a] = DIS.EXTR_TABLE()

206

207 # Destruction of the concepts

208

209 DETRUIRE (CONCEPT=(_F(NOM=STR),

210 _F(NOM=DIS),),);

211

212 Xx_0 = x_1

213 y 0 =y1

214

215 a+=m-1

216

217 # Saving the output in MED format

218

219 IMPR_RESU(FORMAT="MED’,

220 RESU=_F (MAILLAGE=MAIL,

221 RESULTAT=RESU, ), );

223 # Python script for SED calculation

224
225 # Definition of the initial values and constants
226

227 K_I = SO * math.sqrt(math.pi * c)

228 = 0.5 x (theta_b - theta_a) * R xx 2

229 a =0
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# Definition of the initial values for the given point

SED = 0.0
SE = 0.0
p=20.0

for i in range(n * m):

# Definition of the arrays from the tables

coor_
coor_
S_XX

S_yy
S_xy

~ X
U}

# Calculation of the FE quantities

X
y

= STRESS[i].values()[’COOR_X']
= STRESS[i].values()[’COOR_Y"]

STRESS[i].values()['SIXX']
STRESS[i].values()[’'SIYY’]
STRESS[i].values()['SIXY']
u_x = DISPL[i].values()['DX"]
u_y = DISPL[i].values()['DY"]

len(S_xx) - 1
len(u_x) -1

# Traction vectors

T_Xx
Ty

# Strain energy

S_xx[k] * n_x[i] + S_xy[k] * n_y[i]
S_xy[k] * n_x[i] + S_yy[k] * n_y[i]

SE 4= 0.5 * (T_x * u_x[1l] + T_y * u_y[l]) * R x dtheta * W.get(m)[a]

# Perimeter

p += R x dtheta * W.get(m)[a]

f.write(’\n \n")
f.write(’ Iteration ' + str(i + 1) + ':")

f.write(’\n \n\n")
f.write(’'Coordinates: ="' + '{0:3.10f}’.format(coor_x[k]) + '\n’)
f.write(’ = '{0:3.10f}’.format(coor_y[k]) + '\n\n")
f.write('Stresses: SXX = '{0:3.2f}’ . format (S_xx[k]) + ’'\n")
f.write(’ Syy = ' + '{0:3.2f}'.format(S_yy[k]) + '\n’)
f.write(’ Sxy = " + '{0:3.2f}’'.format(S_xy[k]) + '\n\n")
f.write(’'Displacements: Ux = " + "{0:2.10e}’.format(u_x[1]) + "\n")
f.write(’ Uy = + '{0:2.10e}’.format(u_y[1l]) + '\n\n")
f.write(’Normal vector: nx = + '{0:1.10f}’.format(n_x[i]) + '\n")
f.write(’ ny = '{0:1.10f}".format(n_y[i]) + ’\n\n’)
f.write(’'Traction vector: Tx = '{0:1.10f}'.format(T_x) + '\n’")
f.write(’ Ty = + '{0:1.10f}’.format(T_y) + ’\n\n’)
f.write('Strain energy: SE = + '{0:2.10e}’.format(SE) + '\n’)
f.write('SED: SED = '{0:2.10e}’.format(SE / A) + '\n’)

f.write(’'\n

ifa==m- 1:

a
else:

0

a+=1

\n\n")
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SED = SE

/ A

# Printing of the final values

# Definition of the asymptotic value for the SED

REF = (1.0 + NU) * (5.0 - 8.0 * NU) * K.I **x 2
REF /= 8.0 x math.pi * R x E

fowrite(’\r \n')

f.write(’ RESULTS ")

f.write(’\n \n\n")

f.write(' Coordinates of the center: x.c = ' + '{0:3.10f}'.format(x_c) + '\n")
f.write(’ y_c ="+ '{0:3.10f}'.format(y_c) + '\n\n’)
f.write(’ Computed SED = ' + '{0:2.10e}’.format(SED) + '\n’)

f.write(’ Theoretical SED = ' + '{0:2.10e}’.format(REF) + ’'\n’)

f.write(’ Percentual error = ' + '{0:4.2e}’'.format((abs(SED / REF - \

1.0) * 100.0)) + "%\n\n")

f.write(’ Length of the path = ' + ’{0:1.10f}’'.format(p) + "\n\n’)

f.write(’ \n’)

f.close()

FIN();

C5 PLATE_NOTCH_SED_1D.COMM

Algorithm C.5. Finite Element computation of SED through a contour inte-

gral for a notched plate.

# File PLATE_NOTCH_SED_1D.COMM

# Computes the local strain energy density for
# a 135°-notched plate subjected to a constant
# tensile stress through a contour integral

# Utilizes the MACR_LIGN_COUPE command

DEBUT(PAR_LOT="NON") ;

import ma
import os

WORKING_DIR =

exportfil

th

e =

’

os.path.join(WORKING_DIR, 'fe_plate_notch_sed_1ld.dat’)
f = open(exportfile,’'w’)

f.write(’ \
=========\n")
f.write(’ \
=========\n')
f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \
ENERGY\n\
DENSITY FOR A 135°-NOTCHED PLATE SUBJECTED TO A\n\

CONSTANT TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)
f.write(’ \
=========\n")
f.write(’ \
=========\n\n")
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57
58
59
60
61
62
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65
66
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# Definition of the Gauss-Legendre abscissas

N =l

{
:[-0.0],
[...1,

# Definition of the Gauss-Legendre weights

{
:[2.0],
... 1,

N o=l

# Definition of some parameters of the problem

# Material

E 210000.0  # Young's modulus of steel [MPal
NU = 0.3 # Poisson’s ratio of steel []

# Boundary conditions

SO = 100.0 # Applied tensile stress [MPal

# Input for the values R, n, m

f.write(’INPUT VALUES:\n\n’)

R = input('Enter the radius of the circle onto which compute the SED: ')
f.write(’Radius of the circles: R = ' + '{0:2.2f}’.format(R) + "\n\n’)

n = input(’Enter the number of subdivisions for each circumference: ')

f.write('Number of subdivisions for each circumference: n = ' + \
str(n) + '\n\n’)

m = input(’Enter the number of Gaussian points for each subdivision: ’)
f.write('Number of Gaussian points for each subdivision: m = ' + \

str(m) + '\n\n’)
f.write('’ \

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F(E=E,
NU=NU,),);

# Reading of the mesh
MAIL=LIRE_MAILLAGE(FORMAT='MED’,);
# Reorientation of the normals towards the outside
MAIL=MODI_MAILLAGE(reuse =MAIL,

MAILLAGE=MAIL,

ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1','Edge_2",),),);

# Application of the plane strain conditions
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COMM

MODE=A

# Appl

MATE=A

# Appl

SYMM=A

# Appl

LOAD=A

# Defi

RESU=M

# Calc
# WARN
# elem

RESU=C

# Calc
# The
# that

RESU=C

# Defi
theta_
theta_
a=-1

# Defi

STRESS
DISPL

n_x =
ny =

# Defi

x “< x
[N elNe]
U}
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FFE_MODELE (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",
PHENOMENE="MECANIQUE',
MODELISATION='D_PLAN’,),);

ication of the material properties to the domain

FFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI"’,
MATER=STEEL, ), );

ication of the constraints

FFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F(GROUP_MA='Edge_1",
DY=0.0,),
_F(GROUP_NO="'Vertex_1",
DX=0.0,),),);

ication of the external loads

FFE_CHAR_MECA (MODELE=MODE,
PRES_REP=_F (GROUP_MA="Edge_2",
PRES=-S0,),);

nition of the linear elastic static model

ECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=SYMM, ),

_F(CHARGE=LOAD, ),),);

ulation of the nodal solutions
ING: For nodes shared between more than one
ent, the nodal values are calculated separately

ALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_ELNO’,’SIEQ_ELNO’, ENEL_ELNO’,),);

ulation of the nodal solutions
nodal values from each element sharing
node are averaged

ALC_NO(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU’,'SIEQ_NOEU’, 'ENEL_NOEU',),);

nition of the initial values and constants

a
b =

0.0
5.0 x math.pi / 8.0

nition of the empty arrays

= [None] * n x m
= [None] * n x m
[None] * n xm
[None] * n x m

nition of the coordinates of the points
0.0

0.0
Xx_c + R * math.cos(theta_a)



C.H PLATE_NOTCH_SED_1D.COMM

60 Yy 0 =y c+ R * math.sin(theta_a)

161

162 # Interpolation of the desired quantities onto the path

163

164 for i in range(l, n + 1):

165

166 theta_1l = theta_a + (i - 1) * (theta_b - theta_a) / n

167 theta_2 = theta_a + i * (theta_b - theta_a) / n

168 dtheta = 0.5 * (theta_2 - theta_1l)

169

170 for j in range(m):

171

172 t =T.get(m)[m - j - 1]

173 theta = 0.5 % (1.0 - t) * theta_l + 0.5 x (1.0 + t) * theta_2
174 n_x[i + j + al] = math.cos(theta)

175 n_y[i + j + al] = math.sin(theta)

176 x_1 = x_c + R x math.cos(theta)

177 y_-1 =y c + R * math.sin(theta)

178

179 # Stresses

180

181 STR=MACR_LIGN_COUPE (RESULTAT=RESU,

182 NOM_CHAM="SIGM_NOEU’,

183 LIGN_COUPE=_F (INTITULE="STRESSES’,
184 TYPE='"SEGMENT’,

185 NB_POINTS=2,

186 COOR_ORIG=(x_0,y_0),
187 COOR_EXTR=(x_1,y-1),),);
188 # Displacements

189

190 DIS=MACR_LIGN_COUPE(RESULTAT=RESU,

191 NOM_CHAM='"DEPL",

192 LIGN_COUPE=_F (INTITULE="DISPLACEMENTS’,
193 TYPE="SEGMENT’,

194 NB_POINTS=2,

195 COOR_ORIG=(x_0,y_0),
196 COOR_EXTR=(x_1,y_1),),);
197

198 # Definition of the tables from the concepts

199

200 STRESS[i + j + a] = STR.EXTR_TABLE()

201 DISPL[i + j + a] = DIS.EXTR_TABLE()

202

203 # Destruction of the concepts

204

205 DETRUIRE (CONCEPT=(_F(NOM=STR),

206 _F(NOM=DIS),),);

207

208 Xx_0 = x_1

209 y_-0=y.1

210

211 a+=m-1

213 # Saving the output in MED format

214
215 IMPR_RESU(FORMAT="MED’,

216 RESU=_F (MAILLAGE=MAIL,

217 RESULTAT=RESU, ), );
218

219 # Python script for SED calculation

221 # Definition of the initial values and constants

223 = 5.0 x math.pi * R *xx 2 / 16.0
224 a =0
225
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226 # Definition of the initial values for the given point

227

228 SED = 0.0

229 SE = 0.0

230 p = 0.0

231

232 for i in range(n * m):

233

234 # Definition of the arrays from the tables

235

236 coor_x = STRESS[i].values()['COOR_X"]

237 coor_y = STRESS[i].values()['COOR_Y"]

238 S_xx = STRESS[i].values()[’'SIXX’]

239 S_yy = STRESS[i].values()[’'SIYY']

240 S_xy = STRESS[i].values()[’SIXY']

241 u_x = DISPL[i].values()['DX"]

242 u_y = DISPL[i].values()[’'DY"]

243

244 k = len(S_xx) - 1

245 1 = len(u_x) - 1

246

247 # Calculation of the FE quantities

248

249 # Traction vectors

250

251 T_x = S_xx[k] * n_x[i] + S_xy[k] * n_y[i]

252 T_y = S_xy[k] * n_x[i] + S_yy[k] * n_y[i]

253

254 # Strain energy

255

256 SE += 0.5 * (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[al
257

258 # Perimeter

259

260 p += R * dtheta * W.get(m)[a]

261

262 f.write('\n \n")

263 f.write(’ Iteration ' + str(i + 1) + ':")

264 f.write(’\n \n\n")
265

266 f.write(’Coordinates: X ="+ '"{0:3.10f}’".format(coor_x[k]) + '\n")
267 f.write(’ y ="+ '{0:3.10f}’.format(coor_y[k]) + '\n\n’)
268

269 f.write(’'Stresses: Sxx = " + "{0:3.2f}’.format(S_xx[k]) + '\n")
270 f.write(’ Syy = ' + '{0:3.2f}'.format(S_yy[k]) + '\n’)
271 f.write(’ Sxy = " + '{0:3.2f}’".format(S_xy[k]) + '"\n\n")
272

273 f.write('Displacements: Ux = " + "{0:2.10e}’.format(u_x[1]) + '\n")
274 f.write(’ Uy = ' + ’'{0:2.10e}’.format(u_y[l]) + "\n\n’)
275

276 f.write(’Normal vector: nx = " + "{0:1.10f}’.format(n_x[i]) + '\n")
277 f.write(’ ny = ' + '{0:1.10f}’'.format(n_y[i]) + '\n\n’)
278

279 f.write(’'Traction vector: Tx = ' + '{0:1.10f}’'.format(T_x) + '\n’)
280 f.write(’ Ty = " + "{0:1.10f}’.format(T_y) + ’'\n\n’)
281

282 f.write(’Strain energy: SE = ' + '{0:2.10e}’.format(SE) + '\n’)

283 f.write('SED: SED = ' + '{0:2.10e}’.format(SE / A) + '\n")
284

285 f.write(’\n \n\n")
286

287 if a==m- 1:

288 a=20

289 else:

290 a+=1

291
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SED = SE / A

# Printing of the final values

f.write(’\n \n")

f.write(’ RESULTS")

f.write(’\n \n\n")

f.write(’ Coordinates of the center: x_.c = ' + "{0:3.10f}’.format(x_c) + '\n’)
f.write(’ y_c ="+ "{0:3.10f}'.format(y_c) + '\n\n’)
f.write(’ Computed SED = ' + ’{0:2.10e}’.format(SED) + '\n\n’)

f.write(’ Length of the path = ' + ’'{0:1.10f}'.format(p) + '\n\n’)

f.write(’ \n’)

f.close()

FIN();

C.OH PLATE_NOTCH_NSIF.COMM

Algorithm C.6. Finite Element computation of the mode I-NSIF for a notched
plate.

# File PLATE_NOTCH_NSIF.COMM

# Computes the Notch Stress Intensity Factor
# of mode I for a 135°-notched plate

# subjected to a constant tensile stress

# Utilizes the POST_RELEVE_T command

DEBUT (PAR_LOT="NON") ;

import math
import os

WORKING_DIR = "...'

exportfile = os.path.join(WORKING_DIR, 'fe_plate_notch_nsif.dat’)
f = open(exportfile, 'w’)

f.write(’ \
=========\n\n")

f.write(’ \
=========\n')

f.write(’ FINITE ELEMENT COMPUTATION OF THE NOTCH STRESS \
INTENSITY\n\

FACTOR FOR A 135°-NOTCHED PLATE SUBJECTED TO A\n\
CONSTANT TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)
f.write(’ \

# Definition of some parameters of the problem
# Material

E 210000.0 # Young's modulus of steel [MPa]
NU = 0.3 # Poisson’s ratio of steel []

# Boundary conditions
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SO = 100.0 # Applied tensile stress [MPal
# Definition of the notch tip coordinates

x_c =0.0
y_-c = 0.0

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
NU=NU,),);

# Reading of the mesh
MAIL=LIRE_MAILLAGE(FORMAT='MED’,);
# Creation of the group of nodes
MAIL=DEFI_GROUP(reuse =MAIL,
MAILLAGE=MAIL,
CREA_GROUP_NO=_F (GROUP_MA="Edge_1",
NOM='Bisector’,),);
# Reorientation of the normals towards the outside
MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,
ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1', 'Edge_2’,'Edge_3",),),);
# Application of the plane strain conditions
MODE=AFFE_MODELE (MAILLAGE=MAIL,

AFFE=_F(TOUT="0UI’,
PHENOMENE="MECANIQUE’,
MODELISATION='D_PLAN’,),);

# Application of the material properties to the domain
MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",
MATER=STEEL,),);

# Application of the constraints

SYMM=AFFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F(GROUP_MA=('Edge_1','Edge_2',),

DY=0.0,),
_F(GROUP_NO="'Vertex_2"',
DX=0.0,),),);

# Application of the external loads

LOAD=AFFE_CHAR_MECA (MODELE=MODE,
PRES_REP=_F (GROUP_MA="Edge_3",
PRES=-S0,),);

# Definition of the linear elastic static model
RESU=MECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=SYMM, ),
_F(CHARGE=LOAD, ),),);

# Calculation of the nodal solutions
# WARNING: For nodes shared between more than one
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# element, the nodal values are calculated separately
RESU=CALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_ELNO’,'SIEQ_ELNO’, "ENEL_ELNO’,),);

# Calculation of the nodal solutions

# The nodal values from each element sharing

# that node are averaged

RESU=CALC_NO(reuse =RESU,

RESULTAT=RESU,
OPTION=('SIGM_NOEU’,'SIEQ_NOEU’, 'ENEL_NOEU’,),);

# Extrapolation of the stresses along the bisector

STR=POST_RELEVE_T (ACTION=_F (OPERATION="EXTRACTION’,
INTITULE="STRESSES’,
RESULTAT=RESU,
NOM_CHAM="SIGM_NOEU",
GROUP_NO='"Bisector’,
TOUT_CMP="0UIL’,),);

# Definition of the table

STRESS = STR.EXTR_TABLE()

# Printing of the tables

IMPR_TABLE(TABLE=STR, ) ;

# Saving the output in MED format

IMPR_RESU(FORMAT="MED’,

RESU=_F (MAILLAGE=MAIL,
RESULTAT=RESU, ), ) ;

# Python script for the NSIF calculation

# Definition of the initial values and constants
lambda_1 = 0.6736

# Definition of the arrays from the tables

coor_x = STRESS.values()['COOR_X"]
S_yy = STRESS.values()[’SIYY']

k = len(S_yy) - 1

f.write(’\n \n")
f.write(’ Extrapolation of K.1'")

f.write(’\r \n\n")
f.write(’ X S_yy K_1\n")

for i in range(k):

K.1 = math.sqrt(2.0 * math.pi) * S_yy[i] * coor_x[i] ** (1.0 - lambda_1)

f.write(’ "+ '{0:1.3f}'.format(coor_x[i]) + '
'{0:3.2f}' . format(S_yy[i]) + '

f.close()

FIN();

N

"+ '{0:3.2f}’.format(K_1) + ’'\n’)
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C.7 PLATE_CRACK_SED_2D.COMM

Algorithm C.7. Finite Element computation of 8D through a double inte-

gral for a cracked plate.

# File PLATE_CRACK_SED_2D.COMM

# Computes the local strain energy density

# for a cracked plate subjected to a constant

# tensile stress through a double integral

# Utilizes the DEFI_GROUP and POST_ELEM commands

DEBUT(PAR_LOT="NON") ;

import math
import os

WORKING_DIR = "...’

exportfile = os.path.join(WORKING_DIR, 'fe_plate_crack_sed_2d.dat’)

f = open(exportfile,’'w’)

f.write(’ \
=========\n")
f.write(’ \
=========\n')
f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \
ENERGY\n\

DENSITY FOR A CRACKED PLATE SUBJECTED TO A CONSTANT\n\

TENSILE STRESS THROUGH A DOUBLE INTEGRAL\n')

f.write(’ \
=========\n")
f.write(’ \
=========\n\n")

# Definition of some parameters of the problem

# Material

E = 210000.0 # Young's modulus of steel [MPal
NU = 0.3 # Poisson’s ratio of steel [

# Geometry

c =10.0 # Half crack length [mm]

# Boundary conditions

SO0 = 100.0 # Applied tensile stress [MPal

# Definition of the crack tip coordinates

X_C = ¢
y_c = 0.0

# Input for the value R

f.write('INPUT VALUES:\n\n’)

R = input('Enter the radius of the circle onto which compute the SED:

f.write(’Radius of the circle: R
# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
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'+ '{0:2.2f}’.format(R) + '\n\n’)

")



63

126

C.7 PLATE_CRACK_SED_2D.COMM

NU=NU, ), );
# Reading of the mesh
MAIL=LIRE_MAILLAGE (FORMAT="MED’,);
# Creation of the group of elements

MAIL=DEFI_GROUP(reuse =MAIL,
MAILLAGE=MAIL,
CREA_GROUP_MA=(_F(NOM="Circle’,
TYPE_MAILLE='2D’,
OPTION='SPHERE’,
POINT=(x_c,y_c),
RAYON=R),),);

# Reorientation of the normals towards the outside

MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,
ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1’, 'Edge_2’,
'Edge_3',’Edge_4',),),);

# Application of the plane strain conditions

MODE=AFFE_MODELE (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI’,
PHENOMENE="MECANIQUE’,
MODELISATION='D_PLAN’,),);

# Application of the material properties to the domain

MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",
MATER=STEEL,),);

# Application of the constraints

SYMM=AFFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F (GROUP_MA="Edge_1’,
DX=0.0,),
_F(GROUP_MA=('Edge_2", 'Edge_3",),
DY=0.0,),),):

# Application of the external loads

LOAD=AFFE_CHAR_MECA (MODELE=MODE,
PRES_REP=_F (GROUP_MA="Edge_4",
PRES=-50,),);

# Definition of the linear elastic static model

RESU=MECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=SYMM, ),

_F(CHARGE=LOAD, ),),);

# Calculation of the nodal solutions
# WARNING: For nodes shared between more than one
# element, the nodal values are calculated separately

RESU=CALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_ELNO’,’'SIEQ_ELNO’, ENEL_ELNO’,),);

# Calculation of the nodal solutions
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# The nodal values from each element sharing
# that node are averaged

RESU=CALC_NO(reuse =RESU,
RESULTAT=RESU,
OPTION=('SIGM_NOEU’, 'SIEQ_NOEU’, 'ENEL_NOEU’,),);
# Calculation of the strain energy density
SED_CA=POST_ELEM(INTEGRALE=_F (GROUP_MA='Circle’,
NOM_CHAM="ENEL_ELNO',
NOM_CMP="TOTALE"’,),
RESULTAT=RESU, ) ;
# Printing of the table
IMPR_TABLE (TABLE=SED_CA,);
# Saving the output in MED format
IMPR_RESU(FORMAT="MED’,
RESU=_F (MAILLAGE=MAIL,
RESULTAT=RESU, ), );
# Printing of the final values
# Definition of the asymptotic value for the SED

K_.I = SO * math.sqrt(math.pi * c)

REF = (1.0 + NU) * (5.0 - 8.0 x NU) * K.I ** 2
REF /= 8.0 * math.pi * R * E

# Extraction of the values from the table
SED_TAB = SED_CA.EXTR_TABLE()

SED = SED_TAB.values()['MOYE_TOTALE’]

f.write(’'\n \n")
f.write(’ RESULTS")

f.write(’\n \n\n")

f.write(
"\n")

f.write(’ y_c ="+ '{0:3.10f}'.format(y_c) + \

"\n\n")

write(’ Computed SED
write(’ Theoretical SED
.write(’ Percentual error
.0) * 100.0)) + '%\n\n’)

= —h —h —h

—

write(’ \n")

f.close()

FIN();

C.8 PLATE_XCRACK_SED_2D.COMM
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C.8 PLATE_XCRACK_SED_2D.COMM

Algorithm C.8. Finite Element computation of 8D through a double inte-
gral for a cracked plate with XFEM.

# File PLATE_XCRACK_SED_2D.COMM

# Computes the local strain energy density for
# a XFEM cracked plate subjected to a constant
# tensile stress through a double integral

# Utilizes the DEFI_GROUP and POST_ELEM commands

DEBUT (PAR_LOT="NON") ;

import math
import os

WORKING_DIR = "...~’

exportfile = os.path.join(WORKING_DIR, 'fe_plate_xcrack_sed_2d.dat’)
f = open(exportfile,’'w’)

f.write(’ \

f.write(’ \
====\n")
f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \
ENERGY\n\
DENSITY FOR A XFEM CRACKED PLATE SUBJECTED TO A\n\
CONSTANT TENSILE STRESS THROUGH A DOUBLE INTEGRAL\n')

# Definition of some parameters of the problem

# Material

E = 210000.0 # Young’'s modulus of steel [MPa]
NU = 0.3 # Poisson’s ratio of steel []

# Geometry

c =10.0 # Half crack length [mm]

# Boundary conditions

SO0 = 100.0 # Applied tensile stress [MPa]

# Definition of the crack tip coordinates

X_C = C

y_-c =0.0

# Input for the value R

f.write(’INPUT VALUES:\n\n’)

R = input('Enter the radius of the circle onto which compute the SED: ')
f.write(’Radius of the circle: R =" + '{0:2.2f}’.format(R) + "\n\n’)

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
NU=NU,),);

# Reading of the mesh
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MAIL=LIRE_MAILLAGE(FORMAT='MED’,);

# Reorientation of the normals towards the outside

MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,

ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1', 'Edge_2",),),);

# Application of the plane strain conditions

MODE=AFFE_MODELE (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",
PHENOMENE="MECANIQUE',
MODELISATION='D_PLAN’,),);

# Definition of the XFEM crack

CRACK=DEFI_FISS_XFEM(MODELE=MODE,
DEFI_FISS=_F(FORM_FISS='SEGMENT’,
PFON_ORIG=(-x_c,y_c,0.0,),
PFON_EXTR=(x_c,y_¢,0.0,),),);

# Introduction of the crack into the model

MODEX=MODI_MODELE_XFEM(MODELE_IN=MODE,
FISSURE=CRACK, ) ;

# Application of the material properties to the domain

MATE=AFFE_MATERIAU (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI"’,
MATER=STEEL,),);

# Application of the constraints

CONST=AFFE_CHAR_MECA (MODELE=MODEX,
LIAISON_XFEM="0UI’,
DDL_IMPO=(_F(GROUP_NO=('Node_1’, 'Node_2",),
DX=0.0,),
_F(GROUP_NO=('Node_3", 'Node_4",),
DY=0.0,),),);

# Application of the external loads
LOAD=AFFE_CHAR_MECA (MODELE=MODEX,
LIATISON_XFEM="0UI’,
PRES_REP=_F (GROUP_MA=("Edge_1", '"Edge_2",),
PRES=-S0,),);
# Definition of the linear elastic static model
RESU=MECA_STATIQUE (MODELE=MODEX,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=CONST,),
_F(CHARGE=LOAD, ),),);
# Definition of the mesh in postprocessing
MA_XFEM=POST_MAIL_XFEM(MODELE=MODEX, ) ;
# Creation of the groups of elements
MA_XFEM=DEFI_GROUP(reuse =MA_XFEM,
MAILLAGE=MA_XFEM,

CREA_GROUP_MA=(_F(NOM="Face_2",
TYPE_MAILLE="2D",
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131 OPTION='SPHERE’,
132 POINT=(-x_c,y_c),
133 RAYON=R) ,

134 _F(NOM="'Face_3",

135 TYPE_MAILLE="2D"’,
136 OPTION='SPHERE’,
137 POINT=(x_c,y_c),
138 RAYON=R),),);

140 # Definition of the visualization model

142 MOD_VISU=AFFE_MODELE (MAILLAGE=MA_XFEM,

143 AFFE=_F(TOUT="0UI’,

144 PHENOMENE="MECANIQUE’,

145 MODELISATION='D_PLAN’,),);
146

147 # Definition of the XFEM field

148

149 RES_XFEM=POST_CHAM_XFEM(MODELE_VISU=MOD_VISU,

150 RESULTAT=RESU, ) ;

152 # Calculation of the XFEM nodal solutions
153 # WARNING: For nodes shared between more than one
154 # element, the nodal values are calculated separately

156 RES_XFEM=CALC_ELEM(reuse =RES_XFEM,
157 RESULTAT=RES_XFEM,
158 OPTION=('SIGM_ELNO’, ’SIEQ_ELNO’, ’ETOT_ELNO'),);

160 # Calculation of the XFEM nodal solutions
161 # The nodal values from each element sharing
162 # that node are averaged

163

164 RES_XFEM=CALC_NO(reuse =RES_XFEM,

165 RESULTAT=RES_XFEM,

166 OPTION=('SIGM_NOEU’, 'SIEQ_NOEU’,),);
167

168 # Calculation of the strain energy density

169

170  # Left crack tip

172 SEL_CA=POST_ELEM(INTEGRALE=_F (GROUP_MA="Face_2’,

173 NOM_CHAM="ETOT_ELNO" ,
174 NOM_CMP='TOTALE", ),
175 RESULTAT=RES_XFEM, ) ;
176

177 # Right crack tip

178

179 ~SER_CA=POST_ELEM(INTEGRALE=_F (GROUP_MA='Face_3",
180 NOM_CHAM="ETOT_ELNO"',
181 NOM_CMP='TOTALE",),
182 RESULTAT=RES_XFEM, ) ;
183

184 # Printing of the tables

185

186 IMPR_TABLE(TABLE=SEL_CA,);

187

188 IMPR_TABLE(TABLE=SER_CA,);

189

190 # Saving the output in MED format

192 IMPR_RESU(FORMAT="MED’,

193 UNITE=80,

194 RESU=_F (MAILLAGE=MA_XFEM,

195 RESULTAT=RES_XFEM, ), );
196
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# Printing of the final values
# Definition of the asymptotic value for the SED
K_I = S0 * math.sqrt(math.pi * c)

REF = (1.0 + NU) * (5.0 - 8.0 * NU) * K.I **x 2
REF /= 8.0 = math.pi * R x E

# Extraction of the values from the tables

SEDL_TAB = SEDL_CA.EXTR_TABLE()
SEDR_TAB = SEDR_CA.EXTR_TABLE()
SEDL = SEDL_TAB.values()['MOYE_TOTALE']

SEDR = SEDR_TAB.values()['MOYE_TOTALE’]

f.write(’'\n \n")

f.write(’ RESULTS ")

f.write(’\n \n\n")

f.write(’ Coordinates of the crack tip: x_.c = " + "{0:3.10f}’.format(-x_c) + \
"\n")

f.write(’ y_c ="+ '{0:3.10f}'.format(y_c) + \
"\nm\n")

f.write(’ Computed SED = ' + '{0:2.5e}’.format(SEDL[O]) + '\n’")
f.write(’ Theoretical SED = ' + '{0:2.10e}’'.format(REF) + '\n’)

f.write(’ Percentual error = ' + '{0:4.2e}’.format((abs(SEDL[O] / REF - \

1.0) * 100.0)) + "%\n\n’)

f.write(’ Coordinates of the crack tip: x.c = ' + "{0:3.10f}’.format(x_c) + \
"\n")

f.write(’ y_c ="+ '{0:3.10f}'.format(y_c) + \
"\n\n")

f.write(’ Computed SED = ' + '{0:2.5e}’.format(SEDR[O]) + '\n’")
f.write(’ Theoretical SED = ' + '{0:2.10e}’.format(REF) + ’'\n’)
f.write(’ Percentual error = ' + '{0:4.2e}’.format((abs(SEDR[O] / REF - \
1.0) * 100.0)) + '%\n\n’)

f.write(’ \n")

f.close()

FIN();

C.g PLATE_NOTCH_SED_2D.COMM

Algorithm C.9. Finite Element computation of 8€D through a double inte-
gral for a notched plate.

# File PLATE_NOTCH_SED_2D.COMM

# Computes the local strain energy density for
# a 135°-notched plate subjected to a constant
# tensile stress through a double integral

# Utilizes the DEFI_GROUP and POST_ELEM commands

DEBUT (PAR_LOT="NON") ;

import os
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C. PLATE_NOTCH_SED_2D.COMM

WORKING_DIR = "..."'

exportfile = os.path.join(WORKING_DIR, 'fe_plate_notch_sed _2d.dat’)
f = open(exportfile, 'w’)

f.write(’ \
\
f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \
ENERGY\n\
DENSITY FOR A 135°-NOTCHED PLATE SUBJECTED TO A\n\
CONSTANT TENSILE STRESS THROUGH A DOUBLE INTEGRAL\n'")
f.write(’ \
=========\n')
f.write(’ \
=========\n\n")

# Definition of some parameters of the problem

# Material

E 210000.0 # Young's modulus of steel [MPa]
NU = 0.3 # Poisson’s ratio of steel []

# Boundary conditions

SO0 = 100.0 # Applied tensile stress [MPa]

# Definition of the notch tip coordinates

x_c = 0.0

y_c = 0.0

# Input for the value R

f.write(’INPUT VALUES:\n\n')

R = input(’Enter the radius of the circle onto which compute the SED: ')
f.write(’Radius of the circle: R =" + '{0:2.2f}’.format(R) + "\n\n’)

# Definition of the material

STEEL=DEFI_MATERIAU(ELAS=_F (E=E,
NU=NU,),);

# Reading of the mesh
MAIL=LIRE_MAILLAGE(FORMAT='MED’,);
# Creation of the group of elements

MAIL=DEFI_GROUP(reuse =MAIL,
MAILLAGE=MAIL,
CREA_GROUP_MA=(_F(NOM="Circle’,
TYPE_MAILLE='2D’,
OPTION='SPHERE’,
POINT=(x_c,y_c),
RAYON=R),),);

# Reorientation of the normals towards the outside

MAIL=MODI_MAILLAGE(reuse =MAIL,
MAILLAGE=MAIL,

ORIE_PEAU_2D=_F(GROUP_MA=('Edge_1', 'Edge_2’,’Edge_3',),),);
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# Application of the plane strain conditions

MODE=AFFE_MODELE (MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI",
PHENOMENE="MECANIQUE’,
MODELISATION='D_PLAN’,),);

# Application of the material properties to the domain
MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
AFFE=_F(TOUT="0UI"’,
MATER=STEEL,),);

# Application of the constraints

SYMM=AFFE_CHAR_MECA (MODELE=MODE,
DDL_IMPO=(_F(GROUP_MA=('Edge_1','Edge_2',),

DY=0.0,),
_F(GROUP_NO="'Vertex_2"',
DX=0.0,),),);

# Application of the external loads

LOAD=AFFE_CHAR_MECA (MODELE=MODE,
PRES_REP=_F (GROUP_MA="Edge_3",
PRES=-S0,),);

# Definition of the linear elastic static model

RESU=MECA_STATIQUE (MODELE=MODE,
CHAM_MATER=MATE,
EXCIT=(_F(CHARGE=SYMM, ),

_F(CHARGE=LOAD, ),),);

# Calculation of the nodal solutions
# WARNING: For nodes shared between more than one
# element, the nodal values are calculated separately

RESU=CALC_ELEM(reuse =RESU,
RESULTAT=RESU,
OPTION=(’'SIGM_ELNO’,’'SIEQ_ELNO’, 'ENEL_ELNO’,),);
# Calculation of the nodal solutions
# The nodal values from each element sharing
# that node are averaged
RESU=CALC_NO(reuse =RESU,
RESULTAT=RESU,
OPTION=(’SIGM_NOEU’,’'SIEQ_NOEU’, 'ENEL_NOEU’,),);
# Calculation of the strain energy density
SED_CA=POST_ELEM(INTEGRALE=_F (GROUP_MA='Circle’,
NOM_CHAM="ENEL_ELNO"',
NOM_CMP="TOTALE’, ),
RESULTAT=RESU, ) ;
# Printing of the table
IMPR_TABLE (TABLE=SED_CA,);

# Saving the output in MED format

IMPR_RESU(FORMAT="MED’,
RESU=_F (MAILLAGE=MAIL,
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143 RESULTAT=RESU, ), );

144

145 # Printing of the final values

146

147 SED_TAB = SED_CA.EXTR_TABLE()

148

149 SED = SED_TAB.values()['MOYE_TOTALE’]

150

151 f.write(’\n \n")

152 f.write(’ RESULTS")

153 T.write('\r \n\n")

154

155 f.write(' Coordinates of the notch tip: x.c = ' + '{0:3.10f}'.format(x_c) + \
156 '\n")

157 f.write(’ y_c ="+ '{0:3.10f}’.format(y_c) + \
158  "\n\n")

159

160 Tf.write(’ Computed SED = ' + '{0:2.5e}’.format(SED[O]) + '\n\n’)
161

162 f.write(’ \n")

163

164 T.close()

165

166 FIN();
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And remember...

Ghost Figure. Multiaxial fatigue crack propagated inside a viscoelastic ma-
terial component (the author’s slipper).

...Cracks are everywhere!
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