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Dedicated to the memory of my grandfather Lino.

Knowledge is of no value unless you put it into practice.

—Anton Čechov (1860–1904)





A B S T R A C T

Nowadays, the most widespread approach to fatigue design is based
on S-N curves. Although this approach works in a lot of practi-
cal situations, there are also many others in which it does not give
enough accurate results: The most important exception are probably
the welded joints, which are widely adopted for the connection of
structural parts.

In recent years, many authors suggested to assess the fatigue life
of welds on the basis of the local stress and strain fields in the most
stressed zones, using the concepts of fracture mechanics. It was in
this context that the SED criterion was formulated.

The purpose of this work is to investigate the numerical implemen-
tation of the SED criterion, and to further enhance its efficiency on
the basis of some theoretical observations, as we are going to explain
in details.

S O M M A R I O

Al giorno d’oggi, l’approccio più diffuso alla progettazione a fatica
è basato sulle curve S-N. Sebbene esso si riveli efficace in molte situa-
zioni di interesse pratico, in molti altri casi esso non è in grado di dare
risultati sufficientemente accurati: probabilmente, il caso più eclatan-
te riguarda i giunti saldati, una soluzione ampiamente adottata per
la connessione di elementi strutturali.

Negli ultimi anni, molti autori hanno suggerito di stimare la vita
a fatica delle saldature sulla base dei campi locali di tensione e de-
formazione nelle zone maggiormente sollecitate, piuttosto che su un
approccio in tensione nomale. È in questo contesto che il criterio SED,
formulato sui concetti della meccanica della frattura, è stato proposto.

L’obbiettivo che questo lavoro si prefigge è di indagare l’implemen-
tazione numerica del criterio SED, e di migliorarne l’efficienza sulla
base di alcune osservazioni teoriche, come verrà spiegato in dettaglio.

v





C O N T E N T S

introduction xix

1 plane elasticity 1

1.1 Basic relations 1

1.2 Plane strain 2

1.3 Plane stress 2

1.4 Generalized plane elasticity 2

1.5 Equilibrium and compatibility equations 3

1.5.1 Cartesian coordinates 3

1.5.2 Polar coordinates 4

1.6 Airy stress function 5

1.7 Williams’ equations 6

1.7.1 Stresses and displacements 6

1.7.2 Singularity 8

1.7.3 Alternative notation 11

1.8 Method of complex variables 13

1.8.1 Some definitions 13

1.8.2 Cauchy-Riemann conditions 14

1.8.3 Complex representation of stresses 15

1.8.4 Westergaard’s equations 17

2 the sed criterion 21

2.1 Introduction 21

2.2 Basic equations 21

2.3 Formulation of the criterion 24

3 numerical analysis 27

3.1 Introduction 27

3.2 The Finite Element Method 27

3.2.1 Differential formulation 27

3.2.2 Variational formulation 28

3.2.3 Weak formulation 30

3.2.4 Galerkin method 31

3.2.5 Principle of virtual displacements 32

3.2.6 Finite Element equations 34

3.2.7 Standard element transformations 37

3.3 The extended Finite Element Method 38

vii



contents

3.3.1 Description of interfaces 39

3.3.2 Structure of the XFEM 41

3.4 Numerical quadrature 42

4 numerical procedures 45

4.1 Algorithm for the SED 46

4.2 Validation of the algorithm 47

4.2.1 Plate subjected to a constant stress 48

4.2.2 Plate subjected to a linear stress 50

4.2.3 Beam subjected to an end load 53

4.3 Application of the algorithm 58

4.3.1 Cracked plate 58

4.3.2 Notched plate 68

4.4 Comparison of the formulations 73

4.4.1 Cracked plate 73

4.4.2 Notched plate 73

5 conclusions 75

a shape functions 77

a.1 Lagrange shape functions 77

a.2 Hierarchic shape functions 77

b python scripts 79

b.1 plate_cnst_sed.py 79

b.2 plate_lnr_sed.py 82

b.3 beam_end_sed.py 86

b.4 plate_crack_sed.py 90

c command files 95

c.1 plate_cnst_sed_1d.comm 95

c.2 plate_lnr_sed_1d.comm 101

c.3 beam_end_sed_1d.comm 107

c.4 plate_crack_sed_1d.comm 113

c.5 plate_notch_sed_1d.comm 118

c.6 plate_notch_nsif.comm 123

c.7 plate_crack_sed_2d.comm 126

c.8 plate_xcrack_sed_2d.comm 128

c.9 plate_notch_sed_2d.comm 132

Bibliography 137

Index 141

viii



L I S T O F F I G U R E S

Figure 1.1 Configuration of the notch problem. 6

Figure 1.2 Williams’ eigenvalues as a function of the
opening angle. 9

Figure 1.3 Configuration of the crack problem. 19

Figure 2.1 Polar stress components for an element inside
the control volume. 23

Figure 3.1 One-dimensional bar subjected to a body load
and an end stress. 28

Figure 3.2 Equilibrium of a typical differential element of
the bar. 30

Figure 3.3 An example of the signed-distance function.
40

Figure 3.4 Definition of a crack with the XFEM. 40

Figure 3.5 Crack tip enrichment functions for brittle ma-
terials. 42

Figure 4.1 Schematic illustration of the integration proce-
dure. 46

Figure 4.2 Plate subjected to a constant tensile stress.
49

Figure 4.3 Finite Element model of the plate. 50

Figure 4.4 Plate subjected to a linear tensile stress. 51

Figure 4.5 Definition of the local coordinate system.
52

Figure 4.6 Beam subjected to an end load. 54

Figure 4.7 Finite Element model of the beam. 57

Figure 4.8 Cracked plate subjected to a constant tensile
stress. 59

Figure 4.9 Finite Element model of the cracked plate.
61

Figure 4.10 Trend of the error of SED, for R = 0.3mm.
62

Figure 4.11 Trend of the error of SED, for R = 0.5mm.
63

Figure 4.12 Trend of the error of SED, for R = 1.0mm.
64

ix



Figure 4.13 Trend of the error of SED, for R = 2.0mm.
65

Figure 4.14 Trend of the error of SED for a cracked plate,
with different meshes. 66–67

Figure 4.15 Notched plate subjected to a constant tensile
stress. 68

Figure 4.16 Determination of the plateau by the singular-
ity of σϑ. 70

Figure 4.17 Trend of K1, FEM inside the plateau zone.
70

Figure 4.18 Trend of the error of SED for a notched plate,
with different meshes. 71–72

Figure 4.19 Comparison of the numerical efficiency of 1-D
and 2-D integrals, for the cracked plate. 74

Figure 4.20 Comparison of the numerical efficiency of 1-D
and 2-D integrals, for the notched plate. 74

L I S T O F TA B L E S

Table 1.1 Definitions of the effective elastic constants E ′

and ν ′. 3

Table 1.2 Some values of λ1,2 and χ1,2. 12

Table 2.1 Some values of the integrals I1 and I2. 24

Table 3.1 Some exact values of Gauss-Legendre abscis-
sas and weights. 43

Table 4.1 Values of the elastic constants used in the nu-
merical analyses. 48

Table 4.2 Local strain energy density of a cracked plate
for different radii. 60

Table 4.3 Meshes used for the analysis of the cracked
plate. 66

Table 4.4 Meshes used for the analysis of the notched
plate. 71

x



L I S T O F A LG O R I T H M S

Algorithm 4.1 Pseudocode for the computation of SED.
46

Algorithm B.1 Computation of SED for a plate subjected
to a constant tensile stress. 79

Algorithm B.2 Computation of SED for a plate subjected
to a linear tensile stress. 82

Algorithm B.3 Computation of SED for a beam subjected
to an end load. 86

Algorithm B.4 Computation of SED for a cracked plate sub-
jected to a constant tensile stress. 90

Algorithm C.1 FE computation of SED through a 1-D inte-
gral for a plate subjected to a constant ten-
sile stress. 95

Algorithm C.2 FE computation of SED through a 1-D inte-
gral for a plate subjected to a linear tensile
stress. 101

Algorithm C.3 FE computation of SED through a 1-D inte-
gral for a beam subjected to an end
load. 107

Algorithm C.4 FE computation of SED through a 1-D inte-
gral for a cracked plate. 113

Algorithm C.5 FE computation of SED through a 1-D inte-
gral for a notched plate. 118

Algorithm C.6 FE computation of the mode I-NSIF for a
notched plate. 123

Algorithm C.7 FE computation of SED through a 2-D inte-
gral for a cracked plate. 126

Algorithm C.8 FE computation of SED through a 2-D inte-
gral for a cracked plate with XFEM.

128

Algorithm C.9 FE computation of SED through a 2-D inte-
gral for a notched plate. 132

xi



L I S T O F S Y M B O L S

In order not to overload the reading, only the main symbols were
reported. Although we have tried to avoid repetition as much as
possible, some of them were unavoidable.

Latin alphabet

A area

a crack half length

Cijkl stiffness tensor

C set of complex numbers

E Young’s modulus

E ′ effective Young’s modulus
(
= E
1−ν2

)
eSED, ẽSED relative error

Fi forces

{F} body force vector

G, G ′ shear modulus

I modulus of inertia, set of FE nodes

I∗ subset of FE enriched nodes

I1, I2 angular integrals of mode I and II

Im imaginary part of a complex quantity

i imaginary unit
(
=
√
−1
)

K1, K2 NSIFs of mode I and II

∆K1C critical NSIF of mode I

KI SIF of mode I

L2 square-integrable functions space

m number of Gaussian points

Ni shape functions

n number of subdivisions

ni normal unit vector components

Pn Legendre polynomials

xii



R characteristic radius

R set of real numbers

Re real part of a complex quantity

r, ϑ, z cylindrical coordinates

r, ϑ, ϕ spherical coordinates

S stress ratio
(
=
σmin
σmax

)
SED local strain energy density

∆ SEDC critical strain energy density

Ti traction vector components

ti Gauss-Legendre abscissas

{T } traction vector

U(R) local strain energy

u, v, w Cartesian displacements

{u} displacement vector

W total strain energy density

wi Gauss-Legendre weights

x, y, z Cartesian coordinates

Z(z) Westergaard stress function

Z?(z) primitive of Z
(
=
∫
Z(z)dz

)
z complex variable

(
= x+ i y or r eiϑ

)
z̄ conjugate complex variable

(
= x− i y or r e−iϑ

)
Greek alphabet

α half notch opening angle

Γ12 boundary

Γc crack boundary

γ supplementary angle of α (= π−α)

∆(·) finite variation of a quantity

δij Kronecker symbol

δ(·) first variation of a functional

εij strain tensor components

{ε} strain tensor

xiii



κ Kolosov’s constant

λ1, λ2 Williams’ eigenvalues of mode I and II

ν Poisson’s ratio

ν ′ effective Poisson’s ratio
(
= ν
1−ν

)
ξ, η standard element coordinates

σij stress tensor components

σ̃(I)
ij, σ̃

(II)
ij angular functions of mode I and II

∆σA, ∆σD fatigue life at 2× 106 and 5× 106 cycles

{σ} stress tensor

Φ Airy stress function

Φ(x) signed-distance function

ψcrack(x) crack tip enrichment vector

ψ(I)
notch(x), ψ

(II)
notch(x) notch tip enrichment vectors of mode I and II

Ωst standard element

Other symbols

∇2 Laplacian operator or nabla squared

Acronyms

1-D, 2-D, 3-D one-, two-, and three-dimensional

BC boundary condition

DOF degrees of freedom

FE Finite Element

FEA Finite Element Analysis

FEM Finite Element Method

NSIF Notch Stress Intensity Factor

ODE ordinary differential equation

PDE partial differential equation

PU partition of unity

SED strain energy density

SIF Stress Intensity Factor

XFEM extended Finite Element Method
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I N T R O D U C T I O N

Since its discover in the middle of the 19th century, fatigue has been
a phenomenon extensively studied by engineers. Nowadays, all the
norms on structural design present extensive sections dedicated to fa-
tigue, that take in account of different aspects like variable amplitude
and multiaxial loadings, stress concentration effects, corrosion, etc.

In the vast majority of the norms, the data are given in terms
of nominal stresses, using the S-N curves. Although this approach
works in a lot of practical situations, there are also many others in
which it does not give enough accurate results: The most important
exception are probably the welded joints, which are widely adopted
for the connection of structural parts. To overcome this issue, the In-
ternational Institute of Welding separates the joints on the basis of
their structural details in different fatigue classes (called FAT classes)
and assigns to each one a specific S-N curve [14]; a similar approach
is followed also in the Eurocodes 3 and 9 [9, 10]. This strategy is ob-
viously expensive and time-consuming, since the number of welds
realized in the industrial practice is enormous.

In recent years, considering the substantially brittle behaviour of
the welds, many authors suggested to assess their fatigue life on
the basis of the local stress and strain fields in the most stressed
zones [24]. Since the aim of fracture mechanics is to describe the
perturbation in the local quantities induced by internal defects like
cracks or flaws in a loaded structure, it was natural to employ it in
this context. Nonetheless, it was not the first time that the concepts
of fracture mechanics were applied to fatigue: In the 1960s, Paris et
al. [22, 23] found that it was possible to obtain a good empirical corre-
lation between the crack length and the range of the Stress Intensity
Factor of mode I; Paris’ law is now a standard in the design of aircraft
components.

The biggest difference between these two «waves» of fracture me-
chanics is the enormously higher calculus capabilities of modern com-
puters: If one time it was necessary to rely mainly (if not exclusively)
on experiments, now the trend is to couple the powerful analytical
models developed by fracture mechanics with the flexibility offered
by numerical analysis. Although it is now possible to realize very
sophisticated simulations, the computational costs are still a major
concern. In fact, the short times often available in the industrial prac-
tice tend to favour rapid solutions, whose results have to be accurate
and highly reliable. Therefore, there is still a great interest in finding
easy ways to conduct robust analyses at low computational costs.

xix



introduction

It is from this perspective that the SED criterion was formulated
by Lazzarin and Zambardi [19]. The Authors focused on the fatigue
crack initiation, thus neglecting the path that the crack is going to
follow once it starts to propagate. Although this approach may seem
limiting, it has the great advantage of requiring only a static structural
analysis. This allows (i) to give a rigorous mathematical basis to the
criterion and (ii) to implement it easily in the Finite Element codes.
On the contrary, Paris’ law requires an empirical connection between
the crack length, which increases with time, and the Stress Intensity
Factor, which is a static quantity, requiring ineluctably some data
fitting procedures. As a consequence, a huge number of different
crack propagation laws have been proposed in the years in literature;
in some cases, also because of the scatter of the values measured
experimentally, it was reached the almost paradoxical result that the
same set of data was fitted by apparently contradictory laws, with
no possibility to determine which one was the most correct [4]. In
addition, the related numerical simulations take significantly longer
computational times, since they require a dynamic analysis.

The main purpose of this work is to carry out the numerical im-
plementation of the SED criterion, taking advantage of some recent
theoretical observations to enhance its efficiency, as explained in de-
tails in chapter 4.

The document consist in five chapters and three appendices. The
chapters are thus structured:

in the first chapter, some basic aspects of the theory of elasticity
are recalled.

in the second chapter, the basic equations of the SED criterion
are derived.

in the third chapter, the theory of the Finite Element Method is
briefly discussed.

in the fourth chapter, the numerical procedures adopted are de-
scribed and the related results are commented.

in the fifth chapter, the conclusions are reported and possible
further research hints are proposed.

while for what concerns the appendices:

the appendix a describes briefly the main properties of the shape
functions.

the appendix b reports all the Python scripts used for validating
the algorithm written.

the appendix c reports all the command files used to run the Finite
Element simulations.

xx



1 P L A N E E L A S T I C I T Y

1.1 basic relations

Let us start by recalling the stress-strain relations for a homogeneous,
isotropic material as predicted by linear elasticity. In a Cartesian co-
ordinate system defined by the x, y, and z axes, they are [25, p. 82]:

εx =
1

E

[
σx − ν (σy + σz)

]
, γxy =

τxy

G

εy =
1

E

[
σy − ν (σx + σz)

]
, γyz =

τyz

G

εz =
1

E

[
σz − ν (σx + σy)

]
, γxz =

τxz

G
.

(1.1)

As an alternative, using the tensor notation, one can write [25, p. 82]:

εij =
1+ ν

E
σij −

ν

E
σkk δij (1.2)

where the tensor shear strains are half of the corresponding engineer-
ing strains and δij is the Kronecker symbol:

δij :=

{
1, if i = j

0, if i 6= j .
(1.3)

The elastic behaviour of an isotropic material is completely described
by two parameters. It is in fact possible to demonstrate that the shear
modulus G, the Young’s modulus E and the Poisson’s ratio ν are
related by [30, pp. 8–9]:

G =
E

2 (1+ ν)
. (1.4)

The strain-displacement relations, according to the small deforma-
tion theory, are [25, p. 36]:

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z

γxy =
∂v

∂x
+
∂u

∂y
, γxz =

∂w

∂x
+
∂u

∂z
, γyz =

∂w

∂y
+
∂v

∂z

(1.5)

where u, v, and w are the displacements in the x, y, and z directions,
respectively. In tensor notation, we write [25, p. 37]:

εij =
1

2
(ui,j + uj,i) . (1.6)

1



plane elasticity

Since most of the three-dimensional elasticity problems are not easy
to solve, it is quite common in the engineering practice to further
simplify the equations just presented, as we are now going to explain.

1.2 plane strain

This hypothesis is typical in the case of thick sections, for which the
strains in the z direction are constrained and therefore considered
negligible. Hence, it is possible to write [25, p. 136]:

εz = γxz = γyz = 0 , σz = ν (σx + σy) . (1.7)

It is important to notice that this assumption, in the most general case,
leads to a triaxial stress condition, since σz can differ from zero. Un-
der these hypotheses, the only non-trivial relations in the system (1.1)
are:

εx =
1+ ν

E
(σx − νσy) , εy =

1+ ν

E
(σy − νσx) , γxy =

τxy

G
. (1.8)

1.3 plane stress

This hypothesis is applied to thin sections, where the absence of
stresses at the edges acting in the thickness direction is extended in-
side the body. In other words, only in-plane stresses are admitted.
Mathematically speaking, this means [25, p. 138]:

σz = τxz = τyz = 0 , εz = −
ν

E
(σx + σy) . (1.9)

The system of equations (1.1) then reduces to:

εx =
1

E
(σx − νσy) , εy =

1

E
(σy − νσx) , γxy =

τxy

G
. (1.10)

1.4 generalized plane elasticity

By using the effective elastic constants E ′, ν ′ defined in Table 1.1,
equations (1.8) and (1.10) can be rewritten as:

εx =
1

E ′
(σx − ν

′σy) , εy =
1

E ′
(σy − ν

′σx) , γxy =
τxy

G ′
(1.11)

where the effective shear modulus G ′ coincides with G:

G ′ =
E ′

2 (1+ ν ′)
=

E

2 (1+ ν)
= G . (1.12)

2



1.5 equilibrium and compatibility equations

Table 1.1. Definitions of the effective elastic constants E ′ and ν ′ [2, p. 38].

Plane stress Plane strain

E ′ E
E

1− ν2

ν ′ ν
ν

1− ν

The relations in (1.11) describe the generalized plane elasticity prob-
lem. They can be inverted so to give explicitly the dependence on
the strains of the in-plane stresses σx, σy, and τxy, provided that
ν < 0.5, i.e. for every material which is subjected to a variation in
volume because of the applied loads.1 Equations (1.1) to (1.11) can be
used also in a spherical (or cylindrical) coordinate system, upon sub-
stitution of the tern (x,y, z) with (r, ϑ,ϕ) (respectively (r, ϑ, z)). For
the displacements, the symbols usually adopted are ur, uϑ, and uϕ
(respectively uz).

Despite the fact that both are just an idealization of the real prob-
lems (usually halfway between one condition and the other), these
approximations are widespread in the engineering practice and are
the starting point of a very powerful mathematical formalism which
will be described in details later on.

1.5 equilibrium and compatibility equations

1.5.1 Cartesian coordinates

Once we have defined the stress components acting on the body, we
can derive the equilibrium equations in the planar case, which turn
out to be [25, p. 136]: 

∂σx

∂x
+
∂τxy

∂y
+ Fx = 0

∂τxy

∂x
+
∂σy

∂x
+ Fy = 0

(1.13)

where Fx, Fy are the body forces (e.g. gravity). The system (1.13)
consists of two equations in three unknowns, and cannot be solved
without introducing another condition, which is the congruence of
planar strains. From equation (1.5), for the planar case, the strains
are thus related to the displacements:

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
. (1.14)

1 Rubbers are nearly incompressible materials, with a Poisson’s ratio very close to the
limit value of 0.5 [25, pp. 84–85].

3



plane elasticity

By calculating the mixed derivative of γxy:

∂2γxy

∂x ∂y
=
∂

∂x

(
∂2u

∂y2

)
+
∂

∂y

(
∂2v

∂x2

)
=
∂2εx

∂y2
+
∂2εy

∂x2

(1.15)

we get the so-called compatibility equation [25, p. 137]. Then, by (i)
switching from strains to stresses through equations (1.11), (ii) dif-
ferentiating the first (respectively second) equation of equilibrium
with respect to x (respectively y), and (iii) introducing it into equa-
tion (1.15), one obtains [25, pp. 137, 140]:(

∂2

∂x2
+
∂2

∂y2

)
(σx + σy) = −f(ν)

(
∂Fx

∂x
+
∂Fy

∂y

)
(1.16)

where f(ν) is a function of the Poisson’s ratio:

f(ν) :=


1+ ν , plane stress

1

1− ν
, plane strain .

(1.17)

If we set Fx = Fy = 0 and we introduce the ∇2 notation:

∇2(·) := ∂2(·)
∂x2

+
∂2(·)
∂y2

(1.18)

we can also write:
∇2(σx + σy) = 0 . (1.19)

By noticing that the sum in brackets represents the first fundamental
invariant of the stress tensor [25, p. 66], we can say that in plane elas-
ticity, in the absence of body forces, the first stress invariant is a solution of
Laplace’s equation.

1.5.2 Polar coordinates

In polar coordinates, the planar equilibrium is [25, p. 146]:
∂σr

∂r
+
1

r

∂τrϑ
∂ϑ

+
σr − σϑ
r

+ Fr = 0

∂τrϑ
∂r

+
1

r

∂σϑ
∂ϑ

+
2 τrϑ
r

+ Fϑ = 0 .
(1.20)

The strain-displacement relations are [25, p. 146]:

εr =
∂ur

∂r
, εϑ =

1

r

(
ur +

∂uϑ
∂ϑ

)
, γrϑ =

1

r

∂ur

∂ϑ
+
∂uϑ
∂r

−
uϑ
r
(1.21)
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and the compatibility equations reads [6, p. 460]:

∂

∂r

(
r
∂γrϑ
∂ϑ

− r2
∂εϑ
∂r

)
+ r

∂εr

∂r
−
∂2εr

∂ϑ2
= 0 . (1.22)

Following the same procedure described for the Cartesian coordinate
system, equation (1.22) becomes [25, p. 147]:

∇2(σr + σϑ) = −f(ν)

(
∂Fr

∂r
+
Fr

r
+
1

r

∂Fϑ
∂ϑ

)
(1.23)

where f(ν) is still defined by equation (1.17) and ∇2 is

∇2(·) := ∂2(·)
∂r2

+
1

r

∂(·)
∂r

+
1

r2
∂2(·)
∂ϑ2

. (1.24)

1.6 airy stress function

One of the most powerful tools available for the resolution of plane
elasticity problems is the Airy stress function, denoted by the symbol
Φ, whose definition is [25, p. 144]:2

σx =
∂2Φ

∂y2
, σy =

∂2Φ

∂x2
, τxy = −

∂2Φ

∂x∂y
(1.25)

in Cartesian coordinates and

σr =
1

r

∂Φ

∂r
+
1

r2
∂2Φ

∂ϑ2
, σϑ =

∂2Φ

∂r2
, τrϑ = −

∂

∂r

(
1

r

∂Φ

∂ϑ

)
(1.26)

in polar coordinates [25, p. 147]. It can be easily shown that Φ auto-
matically satisfies the equilibrium equations (1.13) (respectively equa-
tions (1.20)) when no body forces are involved. The condition on
the first invariant, expressed by equation (1.19) or (1.23), turns out to
be [25, pp. 145, 147]:

∇2∇2Φ = 0 . (1.27)

Equation (1.27) means that the Airy stress function is a biharmonic
function. We remember that a function is said to be harmonic when it
is a solution of Laplace’s equation:

∇2u = 0 ⇔ u is harmonic . (1.28)

2 When the body forces are active, by assuming that exists a potential function V , such
that Fx = −∂V∂x and Fy = −∂V∂y , the Airy function can be defined as [25, p. 144]:

σx =
∂2Φ

∂y2
+ V , σy =

∂2Φ

∂x2
+ V , τxy = −

∂2Φ

∂x∂y
.
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γ

2α x
ϑ

r τrϑ

σϑ σr
y

Figure 1.1. Configuration of the notch problem.

This important property is the basis of the method of complex vari-
ables, as will be explained in section 1.8.

1.7 williams’ equations

In this section, we are going to describe Williams’ treatise on sharp
V-shaped notches [34], based on the Airy function formulation.

1.7.1 Stresses and displacements

Because of the configuration of the problem, it is suitable to adopt
a polar coordinate system (see Figure 1.1). The biharmonic equa-
tion (1.27) then reads:(

∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂ϑ2

)(
∂2Φ

∂r2
+
1

r

∂Φ

∂r
+
1

r2
∂2Φ

∂ϑ2

)
= 0 . (1.29)

Exploiting the separation of variables, Williams assumed the follow-
ing form for the stress function [34]:

Φ(r, ϑ) = rλ+1 F(ϑ, λ) (1.30)

which turns the previous PDE into an ODE which depends only on
the ϑ angle:[

(λ− 1)2 +
∂2

∂ϑ2

][
(λ+ 1)2 +

∂2

∂ϑ2

]
F(ϑ, λ) = 0 . (1.31)
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Its general solution is F(ϑ, λ) = emϑ, where m = m(λ) are the roots of
the characteristic equation[

(λ− 1)2 +m2
][
(λ+ 1)2 +m2

]
= 0 . (1.32)

It follows that

mk = ±i (λ± 1) , for k = 1, . . . , 4 (1.33)

and F(ϑ, λ) is given by a linear combination of the elementary func-
tions thus found:

F(ϑ, λ) =
4∑
k=1

Ak Fk(ϑ, λ) =
4∑
k=1

Ak e
mkϑ . (1.34)

Since the Airy function has to be real, by combining pairs of Fk and
exploiting the well-known Euler formula eiϑ = cos ϑ+ i sin ϑ, it is
possible to determine its final form [2, p. 145]:

Φ(r, ϑ) = rλ+1
[
A1 cos(λ+ 1) ϑ+A2 cos(λ− 1) ϑ

+A3 sin(λ+ 1) ϑ+A4 sin(λ− 1) ϑ
]
. (1.35)

By using the definition (1.26) of the Airy stress function in polar co-
ordinates, we can derive the stresses [2, p. 145]:

σr = r
λ−1

[
F ′′(ϑ, λ) + (λ+ 1) F(ϑ, λ)

]
= rλ−1

[
−A1 λ (λ+ 1) cos(λ+ 1)ϑ−A2 λ (λ− 3) cos(λ− 1)ϑ

−A3 λ (λ+ 1) sin(λ+ 1)ϑ−A4 λ (λ− 3) sin(λ− 1)ϑ
]
,

σϑ = rλ−1
[
λ (λ+ 1) F(ϑ, λ)

]
= rλ−1

[
A1 λ (λ+ 1) cos(λ+ 1)ϑ+A2 λ (λ+ 1) cos(λ− 1)ϑ

+A3 λ (λ+ 1) sin(λ+ 1)ϑ+A4 λ (λ+ 1) sin(λ− 1)ϑ
]
,

τrϑ = −rλ−1
[
λ F ′(ϑ, λ)

]
= rλ−1

[
A1 λ (λ+ 1) sin(λ+ 1)ϑ+A2 λ (λ− 1) sin(λ− 1)ϑ

−A3 λ (λ+ 1) cos(λ+ 1)ϑ−A4 λ (λ− 1) cos(λ− 1)
]
.

(1.36)

According to the original paper [34], the plane strain displacements
are defined by the following relations:

2Gur = r
λ

[
−(λ+ 1) F(ϑ) +

1

1+ ν
G ′(ϑ)

]
2Guϑ = rλ

[
−F ′(ϑ) +

λ− 1

1+ ν
G(ϑ)

] (1.37)

where G(ϑ) is

G(ϑ) =
4

λ− 1

[
A2 sin(λ− 1)ϑ−A4 cos(λ− 1)ϑ

]
. (1.38)
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By introducing F(ϑ), G(ϑ), and their first derivatives in the previous
definitions, we obtain [2, p. 39]:

2Gur = r
λ
[
−A1(λ+ 1) cos(λ+ 1)ϑ+A2(κ− λ) cos(λ− 1)ϑ

−A3(λ+ 1) sin(λ+ 1)ϑ+A4(κ− λ) sin(λ− 1)ϑ
]

2Guϑ = rλ
[
A1(λ+ 1) sin(λ+ 1)ϑ+A2(κ+ λ) sin(λ− 1)ϑ

−A3(λ+ 1) cos(λ+ 1)ϑ−A4(κ+ λ) cos(λ− 1)ϑ
] (1.39)

where κ is the Kolosov’s constant [2, p. 151]:

κ :=


3− ν

1+ ν
, plane stress

3− 4ν , plane strain .
(1.40)

1.7.2 Singularity

Looking at the equations derived in the previous subsection, we no-
tice that all the stress tensor components depend on a power of r:
σij ∼ r

λ−1. Under certain conditions that we are going to define
soon, the exponent of r is negative, i.e. the stresses go to infinity
as r approaches zero: When a field shows this behaviour, it is called
singular. The singularity — in this case, λ − 1 — is of great impor-
tance in structural engineering, since it describes the severity of the
local stress field, and of the damage phenomena which are related to
it. For a V-shaped sharp notch, the singularity depends on the pre-
scribed boundary conditions, as we are now going to demonstrate.
More generally, it can be determined also experimentally (for exam-
ple using strain gauges) or numerically (for example with the Finite
Element Method, by getting the slope of the stresses versus r in a
log-log diagram, as explained in subsection 4.3.2).

The exponent λ− 1 can be determined by imposing the boundary
conditions. Although in Williams’ original article [34] the BCs are
applied directly to F(ϑ, λ), we prefer to write them explicitly, using
the trigonometric functions just derived. Under the hypothesis that
both edges are free, i.e. that no stresses are applied, it must be:

σϑ(±γ) = τrϑ(±γ) = 0 =⇒ F(±γ) = F ′(±γ) = 0 . (1.41)

We thus obtain a homogeneous system of four equations, where the
matrix coefficients depend on the angle γ = π−α:[

(λ+ 1) sin(λ+ 1)γ (λ− 1) sin(λ− 1)γ
(λ+ 1) cos(λ+ 1)γ (λ+ 1) sin(λ− 1)γ

]{
A1
A2

}
= 0 (1.42a)

[
(λ+ 1) cos(λ+ 1)γ (λ− 1) cos(λ− 1)γ
(λ+ 1) sin(λ+ 1)γ (λ+ 1) sin(λ− 1)γ

]{
A3
A4

}
= 0 . (1.42b)
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0 20 40 60 80 100 120 140 160 180

0.1

0.2

0.3

0.4

0.5

(1− λ1)

(1− λ2)

2α°

1
−
λ
i

Mode I
Mode II

Figure 1.2. Williams’ eigenvalues as a function of the notch opening an-
gle [38, p. 26].

The coefficients were separated on the basis of the opening mode. In
fact, A1 and A2 are related to mode I (opening mode), A3 and A4 to
mode II (sliding mode): When a symmetric load (traction) is applied,
only the first two coefficients are non-zero, vice versa when the plate
is subjected to an antisymmetric load (pure shear) it follows that A3,
A4 6= 0.

The only non-trivial solution to the systems (1.42a) and (1.42b), ac-
cording to Rouché-Capelli theorem, is obtained by imposing the
determinant to be zero, i.e. by solving the following eigenvalue prob-
lem: {

λ1 sin(2γ) + sin(2λ1γ) = 0 , for mode I

λ2 sin(2γ) − sin(2λ2γ) = 0 , for mode II .
(1.43)

λ1 and λ2 are called Williams’ eigenvalues of mode I and II, respec-
tively. By solving numerically the transcendental equations in (1.43),
it is possible to determine the stress singularities for the two modes.

Figure 1.2 reports the trends of the exponents 1− λ1,2 as a function
of the notch opening angle 2α. From this chart, one can infer that:

• The eigenvalues λ1,2 are always positive.3

• For both modes, the singularity tends to decrease as the opening
angle 2α increases; it is always greater than or equal to −0.5.

3 This observation is explained mathematically with the boundedness of the local
strain energy U(R) [2, p. 143]. If we write σij ∼ ra, the energy related to a circle
of radius R is

U(R) =
1

2

∫2π
0

∫R
0
σijεij r drdϑ = C

∫R
0
r2a+1dr

where C is a constant which depends on the elastic constants and the nature of the
stress variation with ϑ. It follows that a > −1 for the integral to be bounded. In
other words, singular stress fields are acceptable if and only if the exponent on the
stress components exceeds −1.
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• The term 1 − λ2 decreases rapidly and becomes negative for
2α > 102.6° [2, p. 148]. For greater opening angles, mode II is
no more singular, that is σ(II)

ij go to zero as r→ 0.

• The term 1− λ1 decreases more slowly and does not differ sig-
nificantly from 0.5 for angles smaller than 50°. Furthermore, is
always greater than zero.

• When 2α = 0°, the singularity is the same for both mode I and
II (1− λ1 = 1− λ2 = 0.5).

From an engineering point of view, this means that mode I is more
severe than mode II. In particular, the case 2α = 0° is the worst case
possible, since both modes are singular with the lowest exponent.

The stress field determined by Williams for a sharp V-shaped notch
is then the following:

σ(I)
r

σ(I)
ϑ

τ(I)
rϑ

 = λ1r
λ1−1

A1
−(λ1 + 1) cos(λ1 + 1)ϑ

(λ1 + 1) cos(λ1 + 1)ϑ
(λ1 + 1) sin(λ1 + 1)ϑ


+A2

−(λ1 − 3) cos(λ1 − 1)ϑ
(λ1 + 1) cos(λ1 − 1)ϑ
(λ1 − 1) sin(λ1 − 1)ϑ

 (1.44a)


σ(II)
r

σ(II)
ϑ

τ(II)
rϑ

 = λ2r
λ2−1

A3
−(λ2 + 1) sin(λ2 + 1)ϑ

(λ2 + 1) sin(λ2 + 1)ϑ
−(λ2 + 1) cos(λ2 + 1)ϑ


+A4

−(λ2 − 3) sin(λ2 − 1)ϑ
(λ2 + 1) sin(λ2 − 1)ϑ
(λ2 − 1) cos(λ2 − 1)ϑ

 (1.44b)

while the displacements are:{
u(I)
r

u(I)
ϑ

}
=
rλ1

2G

{
A1

[
−(λ1 + 1) cos(λ1 + 1)ϑ
−(λ1 + 1) sin(λ1 + 1)ϑ

]
+A2

[
(κ− λ1) cos(λ1 − 1)ϑ
(κ+ λ1) sin(λ1 − 1)ϑ

]}
(1.45a)

{
u(II)
r

u(II)
ϑ

}
=
rλ2

2G

{
A3

[
−(λ2 + 1) sin(λ2 + 1)ϑ
(λ2 + 1) cos(λ2 + 1)ϑ

]
+A4

[
(κ− λ2) sin(λ2 − 1)ϑ

−(κ+ λ2) cos(λ2 − 1)ϑ

]}
(1.45b)

where the superscripts are referring to mode I and II, respectively.

10



1.7 williams’ equations

1.7.3 Alternative notation

The stress and displacement fields derived in the previous subsection
are defined except for two constants, for both modes. Introducing the
quantities [17]:

χi =
sin(λi − 1)γ
sin(λi + 1)γ

, for i = 1, 2 (1.46)

into the first (respectively second) raw of the system in (1.42a) (re-
spectively (1.42b)), we get the relations:

A1 = −χ1
λ1 − 1

λ1 + 1
A4 , A2 = −χ2A4 . (1.47)

Using these definitions, the stresses turn out to be:
σ(I)
r

σ(I)
ϑ

τ(I)
rϑ

 = λ1A2 r
λ1−1


−(λ1 − 3) cos(λ1 − 1)ϑ

(λ1 + 1) cos(λ1 − 1)ϑ
(λ1 − 1) sin(λ1 − 1)ϑ


+ χ1 (λ1 − 1)

 cos(λ1 + 1)ϑ
− cos(λ1 + 1)ϑ
− sin(λ1 + 1)ϑ

 (1.48a)


σ(II)
r

σ(II)
ϑ

τ(II)
rϑ

 = λ2A4 r
λ2−1


−(λ2 − 3) sin(λ2 − 1)ϑ

(λ2 + 1) sin(λ2 − 1)ϑ
(λ2 − 1) cos(λ2 − 1)ϑ


+ χ2 (λ2 + 1)

 sin(λ2 + 1)ϑ
− sin(λ2 + 1)ϑ

cos(λ2 + 1)ϑ

 (1.48b)

while the displacements become:{
u(I)
r

u(I)
ϑ

}
=
A2 r

λ1

2G

{[
(κ− λ1) cos(λ1 − 1)ϑ
(κ+ λ1) sin(λ1 − 1)ϑ

]
+ χ1 (λ1 − 1)

[
cos(λ1 + 1)ϑ
sin(λ1 + 1)ϑ

]}
(1.49a)

{
u(II)
r

u(II)
ϑ

}
=
A4 r

λ2

2G

{[
(κ− λ2) sin(λ2 − 1)ϑ

−(κ+ λ2) cos(λ2 − 1)ϑ

]
+ χ2 (λ2 + 1)

[
sin(λ2 + 1)ϑ

− cos(λ2 + 1)ϑ

]}
. (1.49b)

Some values of λ1,2 and χ1,2 are reported in Table 1.2.
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Table 1.2. Some values of λ1,2 and χ1,2 [18].

2α γ/π λ1 λ2 χ1 χ2
(deg) (rad)

0 1 0.5000 0.5000 1.000 1.000
15 23/24 0.5002 0.5453 1.017 0.981
30 11/12 0.5014 0.5982 1.071 0.921
45 7/8 0.5050 0.6597 1.166 0.814
60 5/6 0.5122 0.7309 1.312 0.658
90 3/4 0.5445 0.9085 1.841 0.219
120 2/3 0.6157 1.1489 3.004 −0.314
135 5/8 0.6736 1.3021 4.152 −0.569
150 7/12 0.7520 1.4858 6.357 −0.787
160 5/9 0.8187 1.6305 9.536 −0.898
170 19/36 0.9000 1.7989 18.913 −0.972

The stress field in proximity of the notch tip can be written also in
terms of the Notch Stress Intensity Factors (NSIFs), whose definitions
according to Gross and Mendelson are [13]:

K1 = lim
r→0+

√
2π r1−λ1 σ(I)

ϑ(ϑ = 0) , (1.50a)

K2 = lim
r→0+

√
2π r1−λ2 τ(II)

rϑ(ϑ = 0) . (1.50b)

These quantities depend both on the opening mode, through a stress
component related to the mode considered, and the notch opening an-
gle, through a Williams’ eigenvalue; the eigenvalues determine also
their units: [K1,2] = MPa mm1−λ1,2 . This fact has important practical
consequences, as we are going to explain later on.

By using the definitions (1.50a) and (1.50b), the stresses can be writ-
ten as [17]:

σ(I)
r

σ(I)
ϑ

τ(I)
rϑ

 =
K1 r

λ1−1

√
2π [(λ1 + 1) − χ1 (λ1 − 1)]

−(λ1 − 3) cos(λ1 − 1)ϑ
(λ1 + 1) cos(λ1 − 1)ϑ
(λ1 − 1) sin(λ1 − 1)ϑ

+ χ1 (λ1 − 1)
− cos(λ1 + 1)ϑ

cos(λ1 + 1)ϑ
sin(λ1 + 1)ϑ

 (1.51a)


σ(II)
r

σ(II)
ϑ

τ(II)
rϑ

 =
K2 r

λ2−1

√
2π [(λ2 − 1) + χ2 (λ2 + 1)]

−(λ2 − 3) sin(λ2 − 1)ϑ
(λ2 + 1) sin(λ2 − 1)ϑ
(λ2 − 1) cos(λ2 − 1)ϑ

+ χ2 (λ2 + 1)
− sin(λ2 + 1)ϑ

sin(λ2 + 1)ϑ
− cos(λ2 + 1)ϑ

 (1.51b)
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and the displacements as:{
u(I)
r

u(I)
ϑ

}
=

1

2G

K1 r
λ1

√
2π [(λ1 + 1) − χ1 (λ1 − 1)]

{
[
(κ− λ1) cos(λ1 − 1)ϑ
(κ+ λ1) sin(λ1 − 1)ϑ

]
+ χ1 (λ1 − 1)

[
cos(λ1 + 1)ϑ
sin(λ1 + 1)ϑ

]}
(1.52a)

{
u(II)
r

u(II)
ϑ

}
=

1

2G

K2 r
λ2

√
2π [(λ2 − 1) + χ2 (λ2 + 1)]

{
[

(κ− λ2) sin(λ2 − 1)ϑ
−(κ+ λ2) cos(λ2 − 1)ϑ

]
+ χ2 (λ2 + 1)

[
sin(λ2 + 1)ϑ

− cos(λ2 + 1)ϑ

]}
. (1.52b)

The definitions reported in equations (1.50a) and (1.50b) introduce
two parameters which are very useful for engineering analyses. K1
and K2 do not have a closed form, but can be computed with great ac-
curacy using a Finite Element code, and can be exploited to formulate
failure criteria (see [18] for an application to welded joints).

We conclude the section with an observation: By setting a notch
opening angle 2α = 0°, the stress and displacement fields of a crack
are obtained, as Williams himself demonstrated in a later paper [35].
Because of the great practical relevance of these equations, first ob-
tained by Westergaard following a different approach, they will be
explicitly derived in subsection 1.8.4.4

1.8 method of complex variables

One of the major contributions to the mathematical theory of elastic-
ity in the 20th century is related to the names of Kolosov and Muskhe-
lishvili. Starting from the Airy stress function, they developed an orig-
inal and extremely powerful method to solve the problems of plane
elasticity through the use of complex variables. Without claiming to
be exhaustive, we are going to describe the salient points of their the-
ory, which will be then used for our purposes. The main reference
for this section is [21, pp. 105–115].

1.8.1 Some definitions

We define a complex variable z and its complex conjugate z̄ as:

z = x+ i y, z̄ = x− i y (1.53)

4 It is interesting to notice that Westergaard’s equations (1.92) are derived considering
a central crack, while for 2α > 0° Williams’ equations necessarily describe the local
field associated to an edge notch. The two systems coincide when 2α = 0° because
the boundary conditions on the stresses are applied at infinity.
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where x (the real part) and y (the imaginary part) can be obtained
through the expressions:

x = Re z =
z+ z̄

2

y = Im z =
z− z̄

2
.

(1.54)

The complex derivative of a function f(z) in a point z0 ∈ A (A ⊆ C)
is the limit of the difference quotient as z approaches z0, just like in
the real case. Using formulas:

f ′(z0) := lim
z→z0

f(z) − f(z0)

z− z0
. (1.55)

If the limit thus defined exists, f is said to be a holomorphic function:
These kind of functions has the property of analyticity, that is, the
function is equal to its Taylor series in a neighbourhood of each point
in its domain (f ∈ C∞).

By applying the chain rule, it is easy to determine the first order
partial derivatives: 

∂f(z)

∂x
=

df(z)

dz
= f ′(z)

∂f(z)

∂y
= i

df(z)

dz
= i f ′(z) .

(1.56)

1.8.2 Cauchy-Riemann conditions

Let us suppose to have a complex function of the form:

f(z) = u(x, y) + i v(x, y) . (1.57)

Its partial derivatives are easily obtained:
∂f(z)

∂x
=
∂u(x, y)
∂x

+ i
∂v(x, y)
∂x

∂f(z)

∂y
=
∂u(x, y)
∂y

+ i
∂v(x, y)
∂y

.
(1.58)

By defining h := z− z0 (h ∈ C), it is possible to rewrite equation (1.55)
as:

f ′(z0) = lim
h→0
h∈C

f(z0 + h) − f(z0)

h
. (1.59)

If the limit exists, whether calculating it along the real axis or the
imaginary axis must give the same result. Considering the x axis, we
have:

lim
h→0
h∈R

f(z0 + h) − f(z0)

h
=
∂f

∂x
(z0) (1.60a)
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while along the y axis, it is:

lim
h→0
h∈R

f(z0 + i h) − f(z0)

i h
=
1

i

∂f

∂y
(z0) . (1.60b)

For what we have just said, it must be:

i
∂f

∂x
(z0) =

∂f

∂y
(z0) (1.61)

or, in terms of u and v:

−
∂v

∂x
+ i

∂u

∂x
=
∂u

∂y
+ i

∂v

∂y
. (1.62)

The only way for the derivative to be independent of the direction
chosen to compute the limit is that real and imaginary parts in the
two cases coincide: 

∂u

∂x
=

∂v

∂y

∂u

∂y
= −

∂v

∂x
.

(1.63)

These two conditions are called Cauchy-Riemann conditions after
their discoverers. Calculating the mixed derivatives of u (respectively
v) and summing them, thanks to Schwarz’s theorem, one finds that

∇2u = ∇2v = 0 . (1.64)

In words, the real and imaginary parts of a holomorphic function are solu-
tions of Laplace’s equation. They are therefore called harmonic conjugates.

1.8.3 Complex representation of stresses

In section 1.6, we demonstrated that a planar stress condition can be
expressed in terms of the Airy stress function Φ, which automatically
satisfies the equilibrium conditions. In the absence of body forces, Φ
satisfies equation (1.27), here recalled:

∇2∇2Φ = 0 . (1.27, rep.)

Writing ∇2Φ = P, it follows that ∇2P = 0, i.e. P is a harmonic
function. It is therefore possible to define a function Q which is the
harmonic conjugate of P, and a holomorphic function f(z), such that
P = Re f(z) and Q = Im f(z).

By integrating, one gets the function Ψ(z):

Ψ(z) =
1

4

∫
f(z)dz = p+ i q (1.65)
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which is again a holomorphic function. It follows from Cauchy-
Riemann conditions that:

∂p

∂x
=

∂q

∂y
=

P

4

∂p

∂y
= −

∂q

∂x
= −

Q

4
.

(1.66)

Now, let us define the function p1 := Φ − px − qy. For p1 to be
harmonic, the quantity

∇2p1 = ∇2Φ−

[
∂2

∂x2
(px+ qy) +

∂2

∂y2
(px+ qy)

]
= P −

[
x∇2p+ y∇2q+ 2

(
∂p

∂x
+
∂q

∂y

)] (1.67)

must be zero. Because of the equalities in the first raw of system (1.66),
P and the term in brackets erase each other. The previous condition
then reads: {

x∇2p = 0

y∇2q = 0 .
(1.68)

Both equalities hold for every x and y, because p and q are solutions
of Laplace’s equation. Since as we demonstrated p1 is harmonic, it is
possible to define a new function χ:

χ := p1 + i q1 (1.69)

such that q1 is the harmonic conjugate of p1. If we now combine Ψ
and χ in the following way:

H(z) := z̄ Ψ(z) + χ(z) (1.70)

we obtain the fundamental relation between these complex quantities
and the Airy stress function:

2Φ = 2Re {H(z)} = H(z) +H(z)

= z̄ Ψ(z) + χ(z) + zΨ(z) + χ(z) .
(1.71)

By deriving equation (1.71) with respect to x and y, we obtain:

2
∂Φ

∂x
= z̄ Ψ ′(z) +Ψ(z) + χ ′(z) + zΨ ′(z) +Ψ(z) + χ ′(z)

2
∂Φ

∂y
= i
[
z̄ Ψ ′(z) −Ψ(z) + χ ′(z) − zΨ ′(z) +Ψ(z) − χ ′(z)

] (1.72)

or, equivalently:

∂Φ

∂x
+ i

∂Φ

∂y
= Ψ(z) + zΨ ′(z) + χ ′(z) (1.73)
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1.8 method of complex variables

By deriving equation (1.73) with respect to x and y, and multiplying
by the imaginary unit i the second expression, we find:

∂2Φ

∂x2
+ i

∂2Φ

∂x∂y
= Ψ ′(z) +Ψ ′(z) + zΨ ′′(z) + χ ′′(z)

−
∂2Φ

∂y2
+ i

∂2Φ

∂x∂y
= −Ψ ′(z) −Ψ ′(z) + zΨ ′′(z) + χ ′′(z) .

(1.74)

By summation and subtraction of the equations thus found, we obtain
the so-called fundamental stress combinations [25, p. 268]: σx + σy = 2

[
Ψ ′(z) +Ψ ′(z)

]
= 4ReΨ ′(z)

σy − σx + 2i τxy = 2
[
z̄ Ψ ′′(z) + χ ′′(z)

]
.

(1.75)

Although we do not describe explicitly the procedure to derive such
relation, it can demonstrated that the planar displacements are sub-
ject to the condition [25, p. 267]:

2G (u+ i v) = κΨ(z) − zΨ ′(z) − χ ′(z) (1.76)

where κ is the Kolosov’s constant defined in subsection 1.7.1.

Following Muskhelishvili’s procedure, the final step is to define a
new complex function:

ϕ(z) := χ ′(z) (1.77)

so that the planar stresses become: σx + σy = 2
[
Ψ ′(z) +Ψ ′(z)

]
= 4ReΨ ′(z)

σy − σx + 2i τxy = 2
[
z̄ Ψ ′′(z) +ϕ ′(z)

] (1.78)

and the displacement field is:

2G (u+ i v) = κΨ(z) − zΨ ′(z) −ϕ(z) . (1.79)

We therefore conclude that, according to the method of complex
variables, the exact stresses and displacements in plane elasticity can be
completely determined once that two proper complex functions Ψ(z), ϕ(z)
are defined.

1.8.4 Westergaard’s equations

We will now use the method of complex variables to obtain the well-
known Westergaard’s equations for a central crack in an infinite plate,
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subjected to mode I. The complex functions used in this problem are
the following [31, p. 26]:

Ψ ′(z) = 1
2 Z(z), ϕ ′(z) = −12 zZ

′(z) . (1.80)

The relations in (1.78) then become:{
σx + σy = Z(z) +Z(z) = 2ReZ(z)

σy − σx + 2i τxy = (z̄− z)Z ′(z) = 2y
[
ImZ ′(z) − iReZ ′(z)

]
.

(1.81)
With a simple integration by parts, it is found that [31, p. 26]

ϕ(z) = 1
2 Z

?(z) − 1
2 zZ(z) (1.82)

where Z?(z) :=
∫
Z(z)dz. Hence, equation (1.79) turns out to be:

2G (u+ i v) = 1
2(κ− 1)ReZ?(z) − y ImZ(z)

+ i
[
1
2(κ+ 1) ImZ?(z) − yReZ(z)

]
. (1.83)

In order to determine explicitly stresses and displacements, it is neces-
sary to define Z(z). This stress function is called Westergaard function
after its discoverer, and in this case assumes the form [33]:

Z(z) =
σ · z√
z2 − a2

(1.84)

where σ is the tensile stress acting at an infinite distance from the
crack and a is the crack half length. Consequently, Z?(z) reads:

Z?(z) = σ
√
z2 − a2 . (1.85)

By observing Figure 1.3, adopting the polar form for complex quan-
tities, one can define the following relations:

z = r eiϑ,
√
z2 − a2 =

√
r1r2 e

iϑ (1.86)

where ϑ := 1
2(ϑ1 + ϑ2). Therefore, the stresses turn out to be:
σx + σy =

σ r
√
r1r2

cos(ϑ− ϑ)

σy − σx + 2i τxy = 2
σa2

(r1r2)3/2
r1 sin ϑ1

[
sin(3ϑ) + i cos(3ϑ)

]
(1.87)

while the displacements are:

2G (u+ i v) = 1
2(κ− 1)σ

√
r1r2 cos ϑ− r1 sin ϑ1

σ r
√
r1r2

sin(ϑ− ϑ)

+ i

[
1
2(κ+ 1)σ

√
r1r2 sin ϑ− r1 sin ϑ1

σ r
√
r1r2

cos(ϑ− ϑ)
]

. (1.88)
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1.8 method of complex variables

σ

a a
x

ϑ2 ϑ r ϑ1
r1

σx
r2

τxy
y

σy

σ

Figure 1.3. Configuration of the crack problem.

If we want just to determine the asymptotic fields, i.e. the ones in
proximity of the crack tip, we can introduce the following approxima-
tions:

r ≈ a, ϑ ≈ 0
r2 ≈ 2a, ϑ2 ≈ 0 .

(1.89)

The shear component τxy is the imaginary part of the second equa-
tion:

τxy ≈
σ
√
a√

2 r1
sin

ϑ1
2

cos
ϑ1
2

cos
3ϑ1
2

(1.90)

while the normal stresses are obtained using the relations:
σx + σy ≈ 2

σ
√
a√

2 r1
cos

ϑ1
2

σy − σx ≈
σ
√
a√

2 r1
sin

ϑ1
2

cos
ϑ1
2

sin
3ϑ1
2

.
(1.91)

We conclude that the solution is
σx
σy
τxy

 =
σ
√
a√
2 r


cos ϑ2

[
1− sin ϑ2 sin 3ϑ2

]
cos ϑ2

[
1+ sin ϑ2 sin 3ϑ2

]
sin ϑ2 cos ϑ2 cos 3ϑ2

 (1.92)

for the stresses and

2G (u+ i v) ≈ σ
√
a

√
r1
2

{
(κ− 1) cos

ϑ1
2

+ sin ϑ1 sin
ϑ1
2

+ i

[
(κ+ 1) sin

ϑ1
2

− sin ϑ1 cos
ϑ1
2

]}
(1.93)
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for the displacements. Exploiting again the trigonometric relation
sin ϑ = 2 sin ϑ2 cos ϑ2 , the latter can be also rewritten as:

{
u

v

}
=
σ
√
a

2G

√
r

2

{
cos ϑ2

[
κ− 1+ 2 sin2 ϑ2

]
sin ϑ2

[
κ+ 1− 2 cos2 ϑ2

]} . (1.94)

The subscript was omitted, since the coordinate system was moved
with a rigid translation to the crack tip.

These are the original equations derived by Westergaard [33].
Irwin modified them further by introducing the concept of the Stress
Intensity Factor (SIF), which reads [15]:

KI = lim
r→0+

√
2πr σy(ϑ = 0) . (1.95)

As previously stated, the SIF was then generalized to the notches
by other Authors [13]. For the crack problem, KI has a closed form.
In fact, introducing σy as given by equation (1.92) in the previous
definition, one obtains:

KI = σ
√
πa . (1.96)

Equation (1.96) relates the local field parameter KI to the nominal
stress σ and the crack length a. The stress field then becomes:

σx
σy
τxy

 =
KI√
2πr


cos ϑ2

[
1− sin ϑ2 sin 3ϑ2

]
cos ϑ2

[
1+ sin ϑ2 sin 3ϑ2

]
sin ϑ2 cos ϑ2 cos 3ϑ2

 (1.97)

while the displacements are:{
u

v

}
=
KI
2G

√
r

2

{
cos ϑ2

[
κ− 1+ 2 sin2 ϑ2

]
sin ϑ2

[
κ+ 1− 2 cos2 ϑ2

]} . (1.98)

It is worth noticing that the second equation in (1.94) allows an alter-
native definition of the SIF [1, p. 559]:

KI = lim
r→0+

√
2π

r

E ′

4
v(ϑ = π) (1.99)

where E ′ is the effective Young’s modulus, defined in Table 1.1. The
displacement-based definition of KI is extremely useful for its numer-
ical estimation, since v ∼

√
r as r → 0 and is therefore more easy to

compute than the stresses, which are singular near the crack tip.
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2 T H E S E D C R I T E R I O N

2.1 introduction

Now that the necessary theoretical background has been introduced,
we can describe the SED criterion as formulated by Lazzarin and
Zambardi [19]. For some aspects, it can be seen as an evolution of a
previous criterion, based on the evaluation of the Notch Stress Inten-
sity Factors [18]. The reasons for a change are twofold [16]:

• The NSIFs’ dimensions depend on the notch opening angle, as
shown in subsection 1.7.3. It is therefore not possible to com-
pare them directly when non-similar geometries are considered.

• The volume dominated by the singular stress field decreases
with the thickness. When low thicknesses are considered (for
example the metal sheets extensively used in the automotive
industry, whose thickness is less than 1mm), it is necessary to
take in account also non-singular terms, which cannot be pre-
dicted by Williams’ asymptotic solution.

As the name suggests, the SED criterion is based on the evaluation
of the strain energy density. The use of this quantity allows to over-
come both limits of the NSIFs, since (i) it has always the dimensions
of N mm/mm3 and (ii) can be computed numerically by summing
the contributions of both singular and non-singular terms.

The idea that the quantity controlling the failure of a solid is the
strain energy density was first suggested by Beltrami [12, p. 196].
Instead of considering the strain energy density of the entire struc-
ture, in the SED criterion this quantity is computed locally, in the
zones which are subject to singularities or strong gradients, and av-
eraged on a volume that depends on the material used, according to
the concept of control volume first proposed by Neuber and retrieved
by Peterson [27, p. 197]. This volume is defined by a characteristic
radius, whose order of magnitude is usually 0.1 to 1mm.

2.2 basic equations

In the principal coordinate system, where all the shear stress compo-
nents are zero, the strain energy density is [30, p. 148]:

W =
1

2E

[
σ21 + σ

2
2 + σ

2
3 − 2ν (σ1 σ2 + σ2 σ3 + σ1 σ3)

]
. (2.1)
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If we consider any non-principal polar coordinate system, the SED
turns out to be [30, p. 148]:

W =
1

2E

[
σ2r + σ

2
ϑ + σ

2
z − 2ν (σr σϑ + σr σz + σϑ σz) + 2 (1+ ν) τ

2
rϑ

]
.

(2.2)
Since we are working under the generalized plane elasticity hypothe-
sis, we can exploit the effective elastic constants reported in Table 1.1
to rewrite the strain energy density in a more handy form:

W =
1

2E ′
[
σ2r + σ

2
ϑ − 2ν

′σr σϑ + 2 (1+ ν
′) τ2rϑ

]
. (2.3)

On the basis of the superposition principle, the singular stress field
due to the V-shaped notch can be thus expressed (see Figure 2.1):

σr
σϑ
τrϑ

 = K1r
λ1−1


σ̃(I)
r

σ̃(I)
ϑ

τ̃(I)
rϑ

+K2r
λ2−1


σ̃(II)
r

σ̃(II)
ϑ

τ̃(II)
rϑ

 . (2.4)

This form highlights the most relevant parameters for the stresses,
that are the NSIFs and the singular terms rλ1,2−1; the trigonometric
terms are collected into the angular functions σ̃r, σ̃ϑ, and τ̃rϑ.

Using these equations, it is possible to determine the contributions
of mode I, mode II, and mixed mode to the SED:

W1(r, ϑ) =
K21 r

2(λ1−1)

2E ′

[
σ̃(I)2

r + σ̃(I)2

ϑ − 2ν ′σ̃(I)2

r σ̃
(I)2

ϑ

+ 2 (1+ ν ′) τ̃(I)2

rϑ

]
,

W2(r, ϑ) =
K22 r

2(λ2−1)

2E ′

[
σ̃(II)2

r + σ̃(II)2

ϑ − 2ν ′σ̃(II)2

r σ̃(II)2

ϑ

+ 2 (1+ ν ′) τ̃(II)2

rϑ

]
,

W12(r, ϑ) =
K1K2 r

λ1+λ2−2

E ′

[
σ̃(I)
r σ̃

(II)
r + σ̃(I)

ϑ σ̃
(II)
ϑ

− 2ν ′
(
σ̃(I)
r σ̃

(II)
ϑ + σ̃(I)

ϑ σ̃
(II)
r

)
+ 2 (1+ ν ′) τ̃(I)

rϑ τ̃
(II)
rϑ

]
.

(2.5)

In order to get the local strain energy, one has to integrate the compo-
nents thus found over the area A:

U(R) =

∫
A

WdA =

∫R
0

∫+γ
−γ

[
W1(r, ϑ) +W2(r, ϑ) +W12(r, ϑ)

]
r drdϑ .

(2.6)
Since the term W12 is a combination of the two modes, and since
they are symmetric respect to the notch bisector, its integral is zero.
Therefore, the local strain energy turns out to be:

U(R) =
1

E

[
I1(γ)

4 λ1
K21 R

2λ1 +
I2(γ)

4 λ2
K22 R

2λ2

]
. (2.7)
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2.2 basic equations

γ
σr
τrϑ

ϑ
σϑ

R r

2α

Figure 2.1. Polar stress components for an element inside the control vol-
ume [19].

where I1 and I2 are:

I1 =

∫+γ
−γ

[
σ̃(I)2

r + σ̃(I)2

ϑ − 2ν ′σ̃(I)2

r σ̃
(I)2

ϑ + 2 (1+ ν ′) τ̃(I)2

rϑ

]
r drdϑ ,

I2 =

∫+γ
−γ

[
σ̃(II)2

r + σ̃(II)2

ϑ − 2ν ′σ̃(II)2

r σ̃(II)2

ϑ + 2 (1+ ν ′) τ̃(II)2

rϑ

]
r drdϑ .

(2.8)

These integrals depend both on the notch opening angle and the Pois-
son’s ratio. They are reported in Table 2.1 for some characteristic an-
gles, assuming ν = 0.3 (which is a typical value for structural steels).

The local strain energy density is obtained by averaging U(R) on
the area of integration:

SED =
U(R)

γR2
=
1

E

[
e1(2α)K

2
1 R
2(λ1−1) + e2(2α)K

2
2 R
2(λ2−1)

]
(2.9)

where ei(2α) =
Ii(γ)
4λiγ

, for i = 1, 2. The expression thus obtained has
general validity and relates SED to the notch geometry and the radius
R, which is thought to be a property of the material as welded.

It is interesting to point out some considerations:

• The left-hand side of equation (2.9) plays the same role of the
equivalent stress defined in the classical failure criteria (Tresca,
von Mises, etc.): In fact, this quantity can be easily computed
with a simple tensile test, allowing to gain information about
the quantities on the right-hand side, which may refer to com-
plex loading conditions.

• Under simple stress conditions, SED can be directly related to
the nominal stresses, that are traditionally used in machine de-
sign; the energetic approach allows to relate them with fracture
mechanics parameters such as the NSIFs, thus building a con-
nection between the two design procedures.
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Table 2.1. Some values of the integrals I1 and I2 [19].

2α γ/π Plane stress Plane strain

(deg) (rad) I1(γ) I2(γ) I1(γ) I2(γ)

0 1 1.0250 2.3250 0.8450 2.1450
15 23/24 1.0216 2.1608 0.8431 2.0087
30 11/12 1.0108 2.0091 0.8366 1.8810
45 7/8 0.9918 1.8688 0.8247 1.7610
60 5/6 0.9642 1.7385 0.8066 1.6479
90 3/4 0.8826 1.5018 0.7504 1.4379
120 2/3 0.7701 1.2887 0.6687 1.2437
135 5/8 0.7058 1.1883 0.6201 1.1505
150 7/12 0.6386 1.0908 0.5678 1.0590
160 5/9 0.5930 1.0269 0.5315 0.9986
170 19/36 0.5481 0.9635 0.4957 0.9383

• Equation (2.9) was derived under the linear elastic hypothesis,
i.e. neglecting the plasticity effects that occur in the proximity
of the notch tip when ductile materials are involved (the so-
called small scale yielding condition). A key point of the SED
criterion is that, due to (i) the alterations induced locally by
the process of joining and (ii) the experimental evidences of
elastic behaviour in high cycle fatigue of metals, it is legitimate
to assume a brittle behaviour for the material, and therefore to
use the relation previously derived.1

2.3 formulation of the criterion

After these preliminaries, we can formulate the failure hypothesis:

According to the SED criterion, the fatigue failure of a welded
joint weakened by a V-shaped sharp notch occurs when the
strain energy density averaged over a material-dependent vol-
ume reaches a critical value.

Speaking with formulas, the safety condition is:

∆ SED 6 ∆ SEDC (2.10)

where the subscript C indicates the critical value of a quantity (i.e. the
one that induces the failure initiation) and the symbol ∆ is used to
highlight that only ranges of the quantities are considered.2

1 Since the only requirement in terms of material is a linear elastic behaviour until rup-
ture, the criterion has more general validity and can be applied to other situations,
such as the assessment of static strength for purely brittle materials [19].

2 In the classical approach of mechanical design, the fatigue behaviour is described
in terms of stress range ∆σ = σmax − σmin and stress ratio S =

σmin
σmax

(see e.g. [27,
pp. 59–62]).
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2.3 formulation of the criterion

In order to use the criterion, we have to determine the characteristic
radius R, which can be obtained for a particular (and possibly well-
documented) case. The Authors’ original choice fell on the mode
I-dominated fatigue failure of a 135°-notched welded joint, due to
the big amount of experimental data available in literature for this
configuration [19]. Equation (2.9) then becomes:

∆ SED =
I1(γ)

4 λ1γ

∆K21
E

R2(λ1−1) . (2.11)

A key point in the arguments of the Authors is the following [19]:
While R is a characteristic quantity for a welded material, the critical
strain energy density is thought to be a property of the non-welded
metal. Hence, by considering a fatigue tensile test of non-welded
metal sheets, for which the assumption of uniform stress field is plau-
sible, the critical strain energy density reads:

∆ SEDC ≈
∆σ2A
2E

(2.12)

where the subscript A indicates the category of the structural details,
i.e. its allowed fatigue life at 2× 106 cycles, as Eurocode 3 states [9].
Upon substitution of ∆ SED with ∆ SEDC, we get the critical NSIF:

∆K1C =

√
2λ1γ

I1(γ)
∆σA R

1−λ1 = f1(2α)∆σA R
1−λ1 (2.13)

where f1 is a function of the opening angle. Therefore, the expression
for the radius R is the following:

R =

(
∆K1C

f1(2α)∆σA

) 1
1−λ1

. (2.14)

With (i) a fatigue life ∆σA = 160MPa for S = 0, as reported by
Eurocode 3 [9], and (ii) a critical NSIF ∆K1C = 214MPa mm0.326

for a probability of survivance P.S. = 97.7%, equation (2.14) gives
R = 0.265mm [19]. In some recent papers [16, 20], in order to deter-
mine more accurately the influence of the welding process, the fatigue
tensile test was conducted on a butt ground welded joint, mechani-
cally polished to remove any stress concentration effect. Moreover,
the number of cycles was increased to 5× 106, which according to
Eurocode 3 has to be considered the fatigue limit of metals under con-
stant amplitude load histories [9]. The new data are ∆σD = 155MPa
at S = 0 and ∆K1C = 211MPa mm0.326 for a P.S. = 97.7%, and the
radius predicted by equation (2.14) is R = 0.28mm.

For our analyses, unless otherwise specified, we sat R = 0.3mm,
so to allow the comparison with some values of SED previously com-
puted [8].
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3 N U M E R I C A L A N A LY S I S

3.1 introduction

We already said in the introduction that most of present-day fracture
mechanics-based failure criteria are dealing more or less markedly
with numerical analysis. The main reason is that this branch of math-
ematics presents itself as a practical and reliable way to compute the
local quantities which, according to fracture mechanics, are govern-
ing the structural damage. One of the most widespread techniques
adopted by numerical fracture mechanics to compute rapidly and
accurately such quantities is certainly the Finite Element Analysis
(FEA), whose main concepts are now briefly discussed.

3.2 the finite element method

The Finite Element Analysis is a tool extensively used in structural
engineering for design purposes. Without claiming to be exhaustive,
we are going to outline briefly the fundamental concepts at the basis
of the Finite Element Method (FEM).

3.2.1 Differential formulation

The Finite Element Method is an extremely powerful technique that
allows to obtain approximate solutions of mathematical models de-
scribed by partial differential equations on continuous domains. In
continuum mechanics, an important class of problems can be ex-
pressed in terms of elliptic PDEs, whose general formulation on a
two-dimensional domain is [3, p. 105]:

A(x,y)
∂2u

∂x2
+ 2B(x,y)

∂2u

∂x∂y
+C (x,y)

∂2u

∂y2
= ϕ

(
x,y,u,

∂u

∂x
,
∂u

∂y

)
(3.1)

where B2 −AC < 0. For example, as pointed out in subsection 1.5.1,
the elastostatic problem is governed by a set of three linear partial
differential equations and the prescribed boundary conditions.
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x u(x)

Fx
Tx

L

Figure 3.1. One-dimensional bar subjected to a body load Fx and an end
stress Tx (adapted from [3, p. 109]).

3.2.2 Variational formulation

The problem (3.1) can be expressed in an alternative form, on the ba-
sis of the physics which governs it. In this case, instead of solving
directly a differential equation, we seek an expression for the total
potential associated to the physical system and we impose its station-
arity. In mathematical terms, the condition of stationarity of a func-
tional F(v(x), v ′(x), . . . , v(p)(x)) is expressed through its first variation,
thus defined [3, p. 111]:

δF = lim
ε→0

F[v+ εη, v ′ + εη ′, . . . , v(p) + εη(p)] − F[v, v ′, . . . , v(p)]
ε

(3.2)

where both v(x) and η(x) depend on x, while ε is a constant. Let
us suppose η(x) to be an arbitrary but sufficiently smooth function
which is zero at the essential boundary conditions. We call it a varia-
tion in v and we write η(x) = δv(x). We then notice that, under these
hypothesis, equation (3.2) reads [3, p. 111]:

δF =
∂F

∂v
δv+

∂F

∂(dv/dx)
δ

(
dv

dx

)
+ · · ·+ ∂F

∂(dpv/dxp)
δ

(
dpv

dxp

)
(3.3)

that is, the variational operator δ(·) acts like the differential operator
with respect to the variables v, dv/dx, . . . , dpv/dxp.

That said, indicating the total potential energy with Π, we can
equivalently express the equilibrium condition through the equation:

δΠ(u) = 0 (3.4)

which is called variational formulation, while Π is the functional of the
problem. The condition (3.4) must be coupled with the essential or
Dirichlet boundary conditions, that specify the values that the so-
lution assumes at the boundary of the domain. Comparing equa-
tions (3.1) and (3.4), one may think that the adoption of one method
respect to the other could lead to different results. With the next ex-
ample we want to show that the two formulations are, in all respects,
identical (see the example in [3, pp. 112–113] and following).
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3.2 the finite element method

Let us consider the static response of the one-dimensional elastic
bar shown in Figure 3.1. By truncating to the first order the term
σA
∣∣
x+dx

, the equilibrium of the forces in the x direction of a typical
differential element reads (see Figure 3.2):

σA
∣∣
x
+A

dσ

dx

∣∣∣∣
x

dx+ Fx dx− σA
∣∣
x
= 0 . (3.5)

Introducing the constitutive relation:

σ = E
du

dx
(3.6)

we can write the differential formulation of the problem in its en-
tirety [3, p. 124]:

EA
d2u

dx2
+ Fx = 0 in the bar (3.7a)

u
∣∣
x=0

= 0, EA
du

dx

∣∣∣∣
x=L

= Tx . (3.7b)

The functional associated to this problem is [3, p. 125]:

Π(u) =

∫L
0

1

2
EA

(
du

dx

)2
dx−

∫L
0

uFx dx− uLTx (3.8)

where uL := u
∣∣
x=L

and u0 := u
∣∣
x=0

= 0. By imposing the condi-
tion (3.4), we get:

δΠ(u) =

∫L
0

(
EA

du

dx

)
δ

(
du

dx

)
dx−

∫L
0

δu Fx dx− δuLTx = 0 . (3.9)

Integrating by parts and using the equality δ
(
du
dx

)
= d
dxδu, we obtain

the equation:

−

∫L
0

(
EA

d2u

dx2
+ Fx

)
δudx︸ ︷︷ ︸

1

+

[
EA

du

dx

∣∣∣∣
x=L

− Tx

]
δuL︸ ︷︷ ︸

2

− EA
du

dx

∣∣∣∣
x=0

δu0︸ ︷︷ ︸
3

= 0 . (3.10)

Since there cannot be variations on the prescribed boundary condi-
tions, it must be δu0 = 0, and term 3 disappears. Considering now
term 2 , we notice that δuL is completely arbitrary. Therefore, we can
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dx

σA|x σA|x+dx

Fx dx

Figure 3.2. Equilibrium of a typical differential element of the bar.

assume δu to be zero in all the domain except at x = L. Since the
condition is to hold for any δu, it must be:

EA
du

dx

∣∣∣∣
x=L

= Tx (3.11)

which is the second of the equations in (3.7b), corresponding to the
natural or Neumann boundary condition. Conversely, the argument
that δu 6= 0 everywhere except at x = L requires term 1 to be zero:

EA
d2u

dx2
+ Fx = 0 (3.12)

thus demonstrating that the two approaches lead to the same result.
It is worth noticing that in the variational approach the natural bound-
ary conditions are automatically satisfied.

3.2.3 Weak formulation

In subsection 3.2.2, we showed that a differential problem (which gov-
erns the mathematical model of a physical phenomenon) can be ex-
pressed equivalently with the variational approach. We are now go-
ing to investigate further on the variational formulation, and check if
it can be expressed in a more useful — that is, easily implementable —
way. The procedure followed here is described in [3, pp. 126–127].

The basic idea is to consider the variation δu as a test function v that
satisfies the essential BCs. Equation (3.9) then reads:∫L

0

dv

dx
EA

du

dx
dx =

∫L
0

Fx v dx+ Tx v
∣∣
x=L

= 0 (3.13)

which can be enunciated in the following way:

For u to be the solution of the problem, the left-hand side
of equation (3.13) must be equal to the right-hand side
for any arbitrary test function v that is continuous and
satisfies the prescribed essential boundary conditions.
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3.2 the finite element method

If we denote by L2 the space of square-integrable functions on a
certain domain Ω:

L2(Ω) :=

{
f
∣∣∣ f ∈ Ω,

∫
Ω

| f |2 dΩ <∞} (3.14)

and with V the function space such that

V(L) =

{
v
∣∣∣ v ∈ L2(L), dv

dx
∈ L2(L), v

∣∣
x=0

= 0

}
(3.15)

we can express the previous statement in the form:

Find u ∈ V such that B(u, v) = F(v), ∀v ∈ V

where the left-hand side

B(u, v) :=
∫L
0

dv

dx
EA

du

dx
dx (3.16)

is the bilinear form and the right-hand side

F(v) :=

∫L
0

Fx v dx+ Tx v
∣∣
x=L

(3.17)

is the linear functional of the problem. This approach is called weak
formulation and is the basis of the Galerkin method, which we are now
going to discuss. It should be noted that equation (3.15) corresponds
to the condition of finite energy for a mechanical system [28, p. 34].

3.2.4 Galerkin method

The Galerkin method pertains to a class of methods for the numer-
ical resolution of differential equations called weighted residuals meth-
ods. The basic assumption is that the approximate solution un can be
written as a linear combination of a set of linearly independent trial
functions, that is [3, p. 118]:

un =

n∑
i=1

aiNi (3.18)

where Ni is the i-th function and ai the corresponding coefficient to
be determined. Using the notation introduced in the previous subsec-
tion, we can also state the problem in the following way [3, p. 127]:

Find un ∈ Vn such that B(un, vn) = F(vn), ∀vn ∈ Vn

having defined Vn as

Vn(Ω) =

{
vn

∣∣∣ vn ∈ L2(Ω),
dvn

dx
∈ L2(Ω), vn

∣∣
Su

= 0

}
(3.19)
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where Su is the surface area on which zero displacement is pre-
scribed. In the Galerkin method, the coefficients ai are sought by
imposing the orthogonality (called Galerkin orthogonality) between the
error e := u− un and the trial function vn [28, p. 43]:

B(e, vn) = 0 . (3.20)

Such condition is obviously satisfied when the exact solution is found
(u ≡ un).

3.2.5 Principle of virtual displacements

It is interesting to specialize the previous statements for a particular
yet important class of problems, the elastostatics problems, because of
the physical meaning that the weak formulation assumes [3, pp. 157–
158]. In three dimensions, using Einstein notation, the problem is
given by the equilibrium condition:

σij,j + Fi = 0 (3.21)

that must be coupled with the natural (force) boundary conditions

σijnj = Ti on Sf (3.22a)

and the essential (displacement) boundary conditions

ui = ũi on Su (3.22b)

where S = Sf ∪ Su, Sf ∩ Su = 0. Let us consider any arbitrary chosen
continuous displacement ūi that satisfies

ūi = 0 on Su . (3.23)

Equation (3.21) must hold also in this case:

(σij,j + Fi) ūi = 0 (3.24)

and the equality is preserved also upon integration:∫
V

(σij,j + Fi) ūi dV = 0 . (3.25)

Using the product rule

(σijūi),j= σij,jūi + σijūi,j (3.26)

and applying the divergence theorem∫
V

(σijūi),j dV =

∫
S

(σijūi)nj dS (3.27)
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3.2 the finite element method

we obtain: ∫
V

(−σijūi,j + Fiūi)dV +

∫
S

(σijūi)nj dS (3.28)

that, in light of the boundary conditions (3.22a) and (3.22b), becomes:∫
V

(−σijūi,j + Fiūi)dV +

∫
Sf

Ti ˇ̄ui dS = 0 (3.29)

where ˇ̄ui := ūi
∣∣
Sf

. At this point, we only have (i) to exploit the
symmetry of the stress tensor (σij = σji) so to write

σijūi,j = σij
[
1
2(ūi,j + ūj,i)

]
= σijε̄ij (3.30)

and (ii) to introduce the constitutive equation

σij = Cijklεkl (3.31)

to get the expression∫
V

Cijklεklε̄ij dV =

∫
V

Fiūi dV +

∫
Sf

Ti ˇ̄ui dS (3.32)

which is the enunciation of the principle of virtual displacements for
a linear elastic material.1 In words,

For u to be the solution of the problem, the left-hand side
of equation (3.32) (the internal virtual work) must be equal
to the right-hand side (the external virtual work) for any
virtual displacement ū that is continuous and satisfies the
prescribed boundary conditions.

We have thus demonstrated that the principle of virtual displace-
ments is the emanation of the weak formulation for linear elastostatic
problems.

The principle fulfils all the fundamentals requirements of contin-
uum mechanics [3, pp. 160–161]:

1. Equilibrium clearly holds, since the principle was derived start-
ing from equation (3.21).

2. Compatibility holds because the displacement field is continuous
and satisfies the prescribed essential boundary conditions.

3. The constitutive law holds because the stresses are calculated
from the strains, at their time evaluated from the displacement
field through derivation.

1 The validity of the principle is not limited to linear elasticity. Introducing a different
constitutive law at point (ii), it could be possible to apply it to inelastic materials, as
well [37, p. 55].
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As a concluding remark, we point out that equation (3.32) could
be obtained by imposing the stationarity of the following total poten-
tial [3, p. 160]:

Π({u}) =
1

2

∫
V

{ε}T [C] {ε}dV −

∫
V

{u}T {F}dV −

∫
Sf

{ǔ}T {T }dS (3.33)

confirming again the equivalence between the differential, variational,
and weak formulation.

3.2.6 Finite Element equations

As we said in subsection 3.2.1, a large class of physical problems
can be expressed in terms of differential equations, whose solution is
sought onto a certain domain. When complicated domains are con-
sidered, it is not generally possible to obtain a closed-form solution,
and numerical approximation becomes necessary. The basic idea of
the Finite Element Method is to subdivide the domain into a grid
of elements, called mesh, onto which the Galerkin method is applied.
In this subsection, we are going to derive the basic matrix equations
which govern the Finite Element Method, on the basis of the the-
oretical concepts previously described. Since we are dealing with
two-dimensional problems, the formulation will be derived for this
particular case, although the validity of the method is more general.
The main reference for this subsection is [37, pp. 49–66].

Once again, our starting point are the equilibrium equations, de-
fined in subsection 1.5.1 in a Cartesian coordinate system, and re-
ported here for convenience:

∂σx

∂x
+
∂τxy

∂y
+ Fx = 0

∂τxy

∂x
+
∂σy

∂x
+ Fy = 0 .

(1.13, rep.)

Let us seek a way to write them in a matrix form, which is more easy
to handle numerically. If we define the differential operator matrix [D]

as follows:

[D] =


∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

 (3.34)

and we collect the stresses and the body forces in two vectors, respec-
tively {σ} = {σx, σy, τxy}T and {F} = {Fx, Fy}T , the equations in (1.13)
become:

[D] {σ}+ {F} = 0 . (3.35)

34



3.2 the finite element method

The stress-strain relations in matrix form are:
σx
σy
τxy

 =

E11 E12 E13
E12 E22 E23
E13 E23 E33


εx
εy
γxy

 (3.36)

where the coefficients Eij are obtained by inverting the relations (1.11).
If we collect them in a matrix [E] (which is called elasticity matrix), we
can express the previous relation in the vectorial form:

{σ} = [E] {ε} (3.37)

where {ε} = {εx, εy, γxy}T is the strain vector. We just need to recall
the strain-displacement relations:

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂v

∂x
+
∂u

∂y
(1.14, rep.)

which in vectorial form become

{ε} = [D]T {u} (3.38)

where {u} = {u, v}T is the displacement vector, to reformulate equa-
tion (1.13) as:

[D]([E] [D]T {u}) + {F} = 0 . (3.39)

The boundary conditions read:{
{u} = {ũ} on Su

[L] {σ} = {T } on Sf
(3.40)

where

[L] =

[
cosα 0 sinα
0 sinα cosα

]
(3.41)

is the matrix collecting the components of the outer normal unit vec-
tor to the boundary surface Sf and {T } = {Tx, Ty}T is the traction
vector.

According to what said in subsection 3.2.4, we approximate the
displacement vector {u} as follows:

{u} =

{
N1(x,y)u1 + · · ·+Nn(x,y)un
N1(x,y) v1 + · · ·+Nn(x,y) vn

}
(3.42)

where ui, vi are the displacements at the nodes i = 1, . . . ,n. Ni are
interpolating functions called shape functions. They are described in
some details in Appendix A; in order to continue our discussion, it is
enough to remark their fundamental property:

Ni(x,y) =

{
1, at node i

0, otherwise .
(3.43)
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If we define a shape function matrix [N]:

[N] =

[
N1 0 . . . Nn 0

0 N1 . . . 0 Nn

]
(3.44)

and a nodal displacement vector {u}n = {u1, v1, . . . , un, vn}T , we can
rewrite equation (3.42) in the form:

{u} = [N] {u}n . (3.45)

The target of the Finite Element Method is to compute the vector {u}n,
whose components are called Degrees Of Freedom (DOF).

Introducing a virtual displacement vector {v}, thus defined:

{v} = [N] {v}n (3.46)

and following the procedure described in subsection 3.2.5, we obtain:∫
S

([D]T {v})T {σ}dS =

∫
S

{v}T {F}dS+

∫
lf

{v}T {T }dl (3.47)

which is the principle of virtual displacements in two dimensions.

By defining the matrix [M] such that:

[M] = [D]T [N] (3.48)

equation (3.47) can be rewritten as:

{v}Tn

∫
S

[M]T {σ}dS = {v}Tn

∫
S

[N]T {F}dS+ {v}Tn

∫
lf

[N]T {T }dl (3.49)

where vector vn is a constant and can be simplified. Using equa-
tions (3.37) and (3.38) and introducing the relation

[D]T {u} = [M] {u}n (3.50)

we finally get∫
S

[M]T [E] [M] {u}n dS =

∫
S

[N]T {F}dS+

∫
lf

[N]T {T }dl . (3.51)

Since vector {u}n is a constant, it can be placed outside the integral.
If we denote by [K] the remaining integral:

[K] =

∫
S

[M]T [E] [M]dS (3.52)

and by {F}n the right-hand side:

{F}n =

∫
S

[N]T {F}dS+

∫
lf

[N]T {T }dl (3.53)
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we obtain the fundamental expression of equilibrium of the Finite
Element Method:

[K] {u}n = {F}n . (3.54)

[K] is called the stiffness matrix, while {F}n is the nodal forces vector.

3.2.7 Standard element transformations

Let us define the standard element as follows:

Ωst := {(ξ,η) | − 1 6 ξ 6 1, −1 6 η 6 1} . (3.55)

The shape functions are interpolating functions that allow to map any
two-dimensional element to the standard element, which is a square.
If we consider a four-node quadrilateral element, the mapping reads:

x(ξ,η) =
4∑
i=1

xiNi(ξ,η)

y(ξ,η) =
4∑
i=1

yiNi(ξ,η)

(3.56)

where (xi,yi) are the coordinates of the nodal displacements. The
shape functions Ni in equation (3.56) are the following:2

N1 =
1
4(1− ξ)(1− η), N2 =

1
4(1+ ξ)(1− η)

N3 =
1
4(1+ ξ)(1+ η), N4 =

1
4(1− ξ)(1− η) .

(3.57)

Following the isoparametric approach, the same shape functions are
used also to map the displacements:

u(ξ,η) =
4∑
i=1

uiNi(ξ,η)

v(ξ,η) =
4∑
i=1

viNi(ξ,η) .

(3.58)

The change of variables thus introduced would require to rewrite all
the expressions derived in the previous subsection in terms of inte-
grals of ξ, η defined onto the standard element. Without deriving the
equations explicitly, we just point out that the transformation involves
the Jacobian matrix [J]: 

∂

∂ξ
∂

∂η

 = [J]


∂

∂x
∂

∂y

 (3.59)

2 For further information about how the shape functions can be built, refer to Ap-
pendix A.
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where

[J] =


∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

 =

n∑
k=1


∂Nk
∂ξ

xk
∂Nk
∂ξ

yk

∂Nk
∂η

xk
∂Nk
∂η

yk

 (3.60)

from which follows that
∂Nk
∂x
∂Nk
∂y

 = [J]−1


∂Nk
∂ξ
∂Nk
∂η

 . (3.61)

By denoting [M] = [M(ξ,η)], we can write the stiffness matrix of a
single element as:

[K]e =

∫
e

[M]
T

e [E] [M]e dSe . (3.62)

Since dSe = det [J]dξdη, we have

[K]e =

∫
Ωst

[M]
T

e [E] [M]e det [J]dξdη (3.63)

and the global stiffness matrix reads

[K] =
∑
e

[K]e =
∑
e

∫
Ωst

[M]
T

e [E] [M]e det [J]dξdη . (3.64)

3.3 the extended finite element method

In the standard Finite Element Method, the convergence to a smooth
solution is achieved with a progressive mesh refinement. An a priori
error estimate is given by [28, p. 193]:

‖uEX − uFE‖E ≈
k

Nβ
(3.65)

where N in the number of degrees of freedom, k and β are two con-

stants, and ‖u‖E :=
√
1
2 B(u,u) is the energy norm [28, p. 42].

As seen in section 1.7, there are also many situations of practical
interest where the solution presents high gradients or even singular-
ities. The non-smoothness can drastically decrease the convergence
rate of the FEM, and therefore increase dramatically the computa-
tional cost of the resolution; sometimes it can even lead to incorrect
results [29]. In the standard FEM, the way to overcome this issue is
to refine the mesh in proximity of these sources of discontinuities: In
terms of error adaptivity, this technique is known as h-FEM. More
recently, other techniques were developed, such as p-FEM, where the
degree of the polynomial approximation space is increased, keeping
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the mesh fixed [29], or the eXtended Finite Element Method (XFEM).
In the latter, the polynomial approximation space is enriched with
special functions that take in account of the kind of discontinuity
analysed; non-smooth solutions can be thus modelled independently
of the mesh. In the following two subsections, we are briefly review-
ing the XFEM, taking as a reference [11].

3.3.1 Description of interfaces

Since the XFEM does not involve mesh refinement, it is necessary to
define a strategy to describe an interface within the domain. This
target is achieved with the concept of level set function. A level set
function is any continuous function Φ(x), x ∈ Ω, that is negative in
one subdomain and positive in the other. The closed interface Γ12
corresponds to the zero-level of this function:

Γ12 =
{
x |Φ(x) = 0

}
. (3.66)

A particularly useful function pertaining to this class is the signed-
distance function, thus defined:

Φ(x) = ± min
x?∈Γ12

‖x− x?‖ ∀x ∈ Ω (3.67)

where ‖·‖ denotes the Euclidean norm. The signed-distance function
is sketched in Figure 3.3. For discretized domains, the values of the
level set function are stored at the nodes (Φi = Φ(xi)), and Φ(x) is
interpolated using the standard FE shape functions Ni(x):

Φn(x) =
∑
i∈I

Ni(x)Φi (3.68)

where I is the set of all nodes in Ω.

Until now, we tacitly assumed that the domain Ω ∈ Rd was di-
vided by the interface Γ12 into two different regions Ω1 and Ω2 such
that Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = Γ12, i.e. that Γ12 was a closed in-
terface. Open interfaces, like cracks, dislocations, and shear bands,
usually end inside the domain Ω. For cracks, it is necessary to intro-
duce another level set function γ(x) which defines the position of the
crack tip. The crack is given by:

Γc =
{
x |Φ(x) = 0 and γ(x) 6 0

}
(3.69)

where Φ(x) is the same signed-distance function described above,
now tangentially extended from the crack tip to the entire domain
(so to define a closed interface). γ(x) — which is not necessarily a
signed-distance function — is constructed such that it is orthogonal
to Γc at the crack tip (see Figure 3.4).
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Ω1

Γ12

n
Ω1

Ω2

n

(a) The domain Ω decomposed
into Ω1 and Ω2.

Ω1

Ω1Ω2

(b) The signed-distance function Φ(x).

Figure 3.3. An example of the signed-distance function [11].

crack

Ω

(a)

(b)

(c)

Figure 3.4. Definition of a crack with the XFEM: (a) The domain Ω with
a crack; (b) the signed-distance function Φ(x) for the descrip-
tion of the crack path; (c) the second level set function γ(x) for
defining the crack tips [11].

40



3.3 the extended finite element method

3.3.2 Structure of the XFEM

Let us consider a domain Ω ∈ Rd, discretized in n elements, where
a function u(x), x ∈ Ω, is defined. The global enrichment of the
approximation un(x) reads:

un(x) =
∑
i∈I

Ni(x)ui︸ ︷︷ ︸
Standard FE approx.

+
∑
i∈I

N?
i (x) ·ψ(x)ai︸ ︷︷ ︸

Enrichment term

(3.70)

where I is the set of all the nodes in the domain. Both Ni and N?
i are

standard FE shape functions, that not necessarily coincide, just like
the coefficients ui are the same used in the standard FEM. In addition,
the enrichment term brings other nodal unknowns ai. ψ(x) is the
enrichment function, that incorporates the special knowledge about the
discontinuity in the approximation space. The product N?

i (x) ·ψ(x)
has the same support of the standard FE shape function and leads to
the sparsity of the discrete equations.

A fundamental property of the functions N?
i is the ability to build

a Partition of Unity (PU) over the domain Ω, that means∑
i∈I

N?
i (x) = 1 . (3.71)

As a consequence, the approximation (3.70) can reproduce exactly
any enrichment function in Ω. Since this kind of approximations
generally does not have the Kronecker-δ property, it follows that
uh(xi) 6= ui, thus complicating the imposition of the essential bound-
ary conditions and making more difficult to interpret the results. In
order to recover the δ property, the approximation is shifted:

un(x) =
∑
i∈I

Ni(x)ui +
∑
i∈I

N?
i (x) ·

[
ψ(x) −ψ(xi)

]
ai . (3.72)

It is possible to demonstrate that the shifting does not affect the ability
of reproducing exactly any enrichment function ψ(x).

A global enrichment is computationally demanding because the
number of enriched degrees of freedom is proportional to the number
of nodes in Ω. Since discontinuities and high gradients involve local
phenomena, in many cases it is sufficient to enrich a nodal subset
I? ⊂ I. The approximation then becomes:

un(x) =
∑
i∈I

Ni(x)ui +
∑
i∈I?

N?
i (x) ·

[
ψ(x) −ψ(xi)

]
ai . (3.73)

In local enrichments, three categories of elements can be defined:
The element is (i) a standard FE if none of the element nodes are en-
riched, (ii) a reproducing element if all element nodes are enriched, or
(iii) a blending element if some of the element nodes are enriched. The
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(a)
√
r cos ϑ2 (b)

√
r cos ϑ2 sin ϑ

(c)
√
r sin ϑ2 (d)

√
r sin ϑ2 sin ϑ

Figure 3.5. Crack tip enrichment functions for brittle materials [11].

presence of blending elements is problematic, since although there
the functions N?

i (x) are non-zero, they do not build a PU. As a con-
sequence, (i) the enrichment function cannot be reproduced exactly,
and (ii), additional, parasitic terms are added to the approximation,
which badly affect the convergence properties of the method. Some
techniques were developed to avoid the drawbacks due to the pres-
ence of such elements: The interested reader is recommended to con-
sult the reference [11].

For cracks in brittle materials, that is our case of interest, it was
suggested to use the following enrichment function vector [5]:

ψcrack(x) =
{√
r cos ϑ2 ,

√
r cos ϑ2 sin ϑ,

√
r sin ϑ2 ,

√
r sin ϑ2 sin ϑ

}
(3.74)

which spans the displacement field predicted by Westergaard (see
again equation (1.94) in subsection 1.8.4), for mode I and II; its compo-
nents are represented graphically in Figure 3.5. The definition (3.74)
can be further generalized on the basis of the displacements derived
by Williams (equations (1.45a) and (1.45b) in subsection 1.7.2):

ψ(i)
notch(x) =

{
rλi cos(λi − 1)ϑ, rλi cos(λi + 1)ϑ,

rλi sin(λi − 1)ϑ, rλi sin(λi + 1)ϑ
}

, for i = 1, 2 . (3.75)

3.4 numerical quadrature

Inside a Finite Element code, the integral formulations described in
subsection 3.2.6 are solved numerically. It is worth spending some
words on numerical integration (also called numerical quadrature),
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3.4 numerical quadrature

Table 3.1. Exact values of Gauss-Legendre abscissas and weights, for a num-
ber of integration points up to 5 [32].

n ti wi

1 0 2

2 ±1/
√
3 1

3
0 8/9

±
√
3/5 5/9

4
±
√
(3− 2

√
6/5)/7 (18+

√
30)/36

±
√
(3+ 2

√
6/5)/7 (18−

√
30)/36

5

0 128/225

±13
√
5− 2

√
10/7 (322+ 13

√
70)/900

±13
√
5+ 2

√
10/7 (322− 13

√
70)/900

since the same technique is going to be implemented in the algorithm
for the computation of the local strain energy density. The reference
for this section, unless otherwise stated, is [28, pp. 321–322].

A quadrature rule is an approximation of the definite integral of a
function as a weighted sum of the function values at specific points
of the domain. On the conventional domain of integration [−1,+1], it
takes the form: ∫+1

−1
f(x)dx ≈

n∑
i=1

wi f(ti) . (3.76)

In the Gauss-Legendre quadrature, the weights are calculated with
the Legendre polynomials Pn(x):3

wi =
2

(1− t2i )[P
′
n(ti)]

2
(3.77)

where the evaluation point ti is the i-th root of Pn. If n evaluation
points are used, the rule yields to the exact result (up to round-off
errors) for polynomials of degree 2n − 1. With a simple change of
variables, every interval [a,b] can be traced back to [−1,+1]:∫b

a

f(x)dx =
b− a

2

∫+1
−1
f

(
b− a

2
x+

a+ b

2

)
dx

≈ b− a
2

n∑
i=1

wi f

(
1− ti
2

a+
1+ ti
2

b

)
.

(3.78)

Some exact values of ti and wi are reported in table 3.1.

3 See Appendix A for the definition of Legendre polynomials.
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4 N U M E R I C A L P R O C E D U R E S

In the previous chapter, we briefly outlined the main theoretical as-
pects of numerical analysis which were useful for our purposes. We
are now using that concepts to build our numerical procedure.

In chapter 2, we explained as the SED criterion can be employed
to assess the fatigue life of welded joints. For what concerns the nu-
merical implementation of the criterion, two important observations
have to be made:

• In a recent paper, Lazzarin et al. [16] showed as an accurate eval-
uation of the local strain energy density can be achieved with
meshes much coarser than the ones necessary for the evalua-
tion of other singular field parameters, such as the Notch Stress
Intensity Factors.

• Applying Green’s theorem to the elastic energy

U(R) =
1

2
b

∫R
0

∫ϑb
ϑa

σijεij r drdϑ (4.1)

where b is the constant thickness, Yosibash et al. [36] were able
to express it as a contour integral:

U(R) =
1

2
b

∫ϑb
ϑa

[σijnjui]r=R Rdϑ (4.2)

whose evaluation requires significant less computational effort.
From now on, we are referring in the text to equations (4.1)
and (4.2) as the 2-D and 1-D integral formulation, respectively.

That said, our aims can be thus summarized:

1. Implementation of an algorithm for calculating the SED, able to
interface with the FE code that computes the input quantities
(stresses and displacements or stresses and strains).

2. Computation of the local SED for a cracked and notched plate
with the 1-D and 2-D formulations, using the standard FEM.

3. Computation of the local SED for a cracked plate with the 2-D
formulation, using the extended FEM.

4. Comparison of the efficiency of the 2-D and 1-D integral formu-
lation in the two cases.
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−γ

n
ϑγ

m

Figure 4.1. Schematic illustration of the integration procedure.

4.1 algorithm for the sed

Before introducing the algorithm, we would like to spend some words
on its conception. Let us consider the control volume (an area in two
dimensions) represented by the shaded region in Figure 4.1. Since the
domain is symmetric, the angular interval is 2γ. The integration is re-
alized by splitting the arc in n subintervals, and defining m Gaussian
points inside each subinterval. The stresses and displacements are
extrapolated at the n×m integration points from the Finite Element
code. Considering the (k)-th iteration, we can describe the procedure
as follows: Firstly, the traction vectors Ti = σijnj are calculated; then,
the local strain energy is computed:

U(k)(R) =
1

2
Ti uiw

(k) R∆ϑ(k) (4.3)

where ∆ϑ(k) = 1
2(ϑ

(k+1) − ϑ(k)), and summed up with the value
obtained at the previous iteration (U(k)(R) = U(k)(R) + U(k−1)(R)).
Once the for loop is concluded, the last value of U(R) is divided by
the area A = γR2 to release SED.

All the steps necessary to compute the strain energy density are
reported in the Algorithm 4.1, in guise of a pseudocode; the main
operations are commented.

Algorithm 4.1. Pseudocode for the computation of SED.

READ n, m # Subdivisions and Gaussian points for each subdivision

READ xc, yc # Coordinates of the centre [mm]

READ R # Radius of the arc [mm]

READ γ # Half angular interval [rad]

ϑa = −γ

ϑb = +γ

A = 1
2 (ϑb − ϑa)R

2

U(R) = 0

FOR i = 1, . . . ,n:
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4.2 validation of the algorithm

ϑ1 = ϑa + i−1
n (ϑb − ϑa)

ϑ2 = ϑa + i
n (ϑb − ϑa)

dϑ = 1
2 (ϑ2 − ϑ1)

FOR j = 1, . . . ,m:

READ t # Gauss-Legendre abscissa

ϑ = 1
2 (1− t) ϑ1 +

1
2 (1+ t) ϑ2 # Curvilinear abscissa [rad]

nx = cos ϑ

ny = sin ϑ

x = xc + R cos ϑ

y = yc + R sin ϑ

GET σx, σy, τxy # From the Finite Element code

GET ux, uy # From the Finite Element code

Tx = σx nx + τxy ny

Ty = τxy nx + σy ny

READ w # Gauss-Legendre weight

U(R) = U(R) + 1
2 (tx ux + ty uy)wRdϑ

SED = U(R)/A

PRINT SED

4.2 validation of the algorithm

The Algorithm 4.1 was validated at two different levels:

1. Firstly, a numerical comparison between the closed-form 2-D
integral and the contour integral built combining the analytical
stresses and displacements was conducted using Python (see
Appendix B for the scripts).

2. Secondly, the Python code was coupled with the FE code, which
computed the stress tensor {σ} and the displacement vector {u}
(see Appendix C for the command files).

This two-step check made it possible to detect bugs of the algorithm
and distinguish whether the errors were due to the FE code or the
post-processing quadrature of the integral.

The Finite Element analyses were conducted with the open source,
freeware code Code_Aster, written by Électricité de France. The user
can interact with the code in two ways:

• At a higher level, by using the native language of the code,
which is the most common approach;

• At a deeper level, by modifying directly the FORTRAN subrou-
tines.
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Table 4.1. Values of the elastic constants used in the numerical analyses.

Quantity Units Value

E MPa 210 000
ν 0.3
G MPa 80 770

For our purposes, it was enough to work at the first level, since the
strain energy density was computed in post-processing.

For the calculations, we used the elastic constants of a structural
steel, reported in Table 4.1. The reliability of the output data was
measured by computing the relative error eSED, thus defined:

eSED :=

∣∣∣∣SEDFEM − SEDth

SEDth

∣∣∣∣ (4.4)

where SEDFEM and SEDth are respectively the Finite Element and the
theoretical solution. In some cases, we used also another definition
of the relative error:

ẽSED :=

∣∣∣∣SEDFEM − SEDp-FEM

SEDp-FEM

∣∣∣∣ (4.5)

where SEDp-FEM is the value of the local strain energy density com-
puted by a p-FEM code [7].

4.2.1 Plate subjected to a constant stress

The first test case is a square plate of side h with unit thickness, con-
strained as shown in Figure 4.2 and subjected to a constant stress σ.
The stress field is therefore simply:

σx = σ, σy = τxy = 0 . (4.6)

By introducing the only non-zero stress component into the stress-
strain relations (1.8) for plane strain, we get:

εx =
1− ν2

E
σ

εy = −
ν (1+ ν)

E
σ

γxy = 0

(4.7)

while the displacements are obtained upon integration:
u =

∫
εx dx =

1− ν2

E
σ · x+ f1(y)

v =

∫
εy dy = −

ν (1+ ν)

E
σ · y+ f2(x) .

(4.8)

48



4.2 validation of the algorithm

σ
x

y

h

Figure 4.2. Plate subjected to a constant tensile stress.

Applying the essential boundary conditions, it results:{
u
∣∣
x=0

= 0 =⇒ f1(y) = 0

v
∣∣
x=0,y=0 = 0 =⇒ f2(0) = 0 .

(4.9)

By recalling the compatibility equation

γxy =
∂u

∂y
+
∂v

∂x
= f ′2(x) = 0 (4.10)

we conclude that f2(x) = c = f2(0) = 0. Hence, the displacements
are: 

u =
1− ν2

E
σ · x

v = −
ν (1+ ν)

E
σ · y .

(4.11)

The strain energy of a closed circle with radius R is:

U(R) =
1

2

∫
A

(σxεx + σyεy + τxyγxy)dA

= (1− ν2)
σ2

2E

∫
A

dA

= (1− ν2)
σ2

2E

∫+π
−π

∫R
0

rdrdϑ

= (1− ν2)
σ2

2E
πR2

(4.12)

and the strain energy density is therefore:

SED =
U(R)

πR2
= (1− ν2)

σ2

2E
(4.13)
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Figure 4.3. Finite Element model of the plate.

independent of the radius and constant over the entire plate. Assum-
ing σ = 100MPa, it results SED ≡W = 0.0216 N mm/mm3.

First check:

Because of the easiness of the model, we expect the Python script to
converge rapidly to the exact solution. In fact, 50 samplings in ran-
dom locations of the plate with a number of subdivisions of the cir-
cumference n equal to 3 and one Gaussian point for each subdivision
(m = 1) have lead to a relative error always lower than 1.5× 10−12%.

Second check:

The FE model is represented in Figure 4.3 and consists in a plate of
side h = 100mm subdivided in 400 quadratic elements of 5× 5mm.
The total number of nodes is 441. Also in this case, the convergence
was very fast: With n = 3, m = 1 the final error was always less than
1.5× 10−10%.

4.2.2 Plate subjected to a linear stress

The second test case we are considering is slightly more complex than
the previous one: The plate is now subjected to a linear tensile stress,
which goes from 0 to σ, as shown in Figure 4.4. The stress field is
easily determined:

σx = σ
(
1−

y

h

)
, σy = τxy = 0 . (4.14)
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σ
x

y

h

Figure 4.4. Plate subjected to a linear tensile stress.

From this, using again the relations (1.8) for plane strain, the follow-
ing strain field is derived:

εx =
1− ν2

E
σ
(
1−

y

h

)
εy = −

ν(1+ ν)

E
σ
(
1−

y

h

)
γxy = 0 .

(4.15)

The planar displacements are defined except for two functions, f1 and
f2, which depend respectively on y and x:

u =

∫
εx dx =

1− ν2

E
σ
(
1−

y

h

)
x+ f1(y)

v =

∫
εy dy = −

ν(1+ ν)

E
σ
(
1−

y

2h

)
y+ f2(x) .

(4.16)

After applying the essential boundary conditions:{
u
∣∣
x=0

= 0 =⇒ f1(y) = 0

v
∣∣
x=0,y=0 = 0 =⇒ f2(0) = 0

(4.17)

— which correspond to the left edge constrained in the x direction
and the lower left corner constrained in both directions, — f1 is com-
pletely determined, while f2 is still unknown. Using the compatibility
equation:

γxy =
∂u

∂y
+
∂v

∂x
= −

1− ν2

E
σ
x

h
+ f ′2(x) = 0 (4.18)

we obtain

f2(x) =
1− ν2

E

σ

2h
x2 + c (4.19)
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xc x

R
x

yc
ϑ

y r

y

Figure 4.5. Definition of the local coordinate system.

where obviously f2(0) = c = 0. So, the displacement field:
u =

1− ν2

E
σ
(
1−

y

h

)
x

v =
1− ν2

E
σ

[
x2

2h
−

ν

1− ν

(
1−

y

2h

)
y

]
.

(4.20)

It should be noted that v shows a parabolic dependence on both co-
ordinates x and y.

The calculation of the strain energy on a circle is less immediate
than the previous case, because now the applied stress varies with y.
In order to take in account of this fact, it is necessary to define a local
Cartesian coordinate system (x,y), related to the global one by the
following relations: {

x = x+ xc

y = y+ yc
(4.21)

where (xc,yc) are the coordinates of the center of the circle, as can be
guessed by looking at Figure 4.5. The strain energy is then:

U(R) =
1

2

∫
A

(σxεx + σyεy + τxyγxy)dA

=
1− ν2

2E
σ2
∫
A

(
1−

y

h

)2
dA

=
1− ν2

2E
σ2
∫
A

[
1−

(
y+ yc
h

)]2
dA .

(4.22)

In order to compute the integral more easily, it is convenient to switch
to polar coordinates: {

x = r cos ϑ

y = r sin ϑ .
(4.23)
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Since the Jacobian determinant of the transformation is

det[J] =

∣∣∣∣∣∣∣
∂x

∂r

∂x

∂ϑ
∂y

∂r

∂y

∂ϑ

∣∣∣∣∣∣∣ =
∣∣∣∣cos ϑ −r sin ϑ
sin ϑ r cos ϑ

∣∣∣∣ = r (4.24)

the strain energy reads

U(R) =
1− ν2

2E
σ2
∫
A

[
1−

(
r sin ϑ+ yc

h

)]2
r dϑdr

=
1− ν2

2E
σ2
∫R
0

∫2π
0

[
1−

(
r sin ϑ+ yc

h

)]2
r dϑdr

=
1− ν2

2E

(σ
h

)2
πR2

[
(h− yc)

2 +

(
R

2

)2]
.

(4.25)

Hence, the local strain energy density is:

SED =
U(R)

πR2
=
1− ν2

2E

(σ
h

)2 [
(h− yc)

2 +

(
R

2

)2]
(4.26)

and depends on both the radius R and the ordinate of the center yc.
We have thus derived all the analytical expressions that we need to
set our numerical problem.

First check:

As one can expect, the convergence of the Python script is not as fast
as in the previous test: With n = 4 and m = 2, we still found an error
of 1–2% for a couple of samplings. Only increasing m of another
unity led to an error eSED < 0.1% everywhere.

Second check:

The FE model used is the same of the previous example. In this case,
using a number of subdivisions n = 4 and 2 Gaussian points for each
subdivision, the relative error eSED was always lower than 0.5%.

4.2.3 Beam subjected to an end load

The last test case we are going to consider is a two-dimensional beam
with unit thickness subjected to an end load F [30, pp. 35–38]. The
problem is shown schematically in Figure 4.6. Unlike the other two
cases, we are now working under the plane stress hypothesis.

From the beam theory, we expect only two components of the stress
tensor to be active: (i) a non-zero tensile stress σx, induced by the
bending, which depends on both x and y, and (ii), a shear stress τxy,
which results from the superposition of the parabolic stress on the
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y
L

F

x h

Figure 4.6. Beam subjected to an end load.

pure shear condition.
Having recourse to the stress function method, as explained in

section 1.6, we can then hypothesize the following Airy function:

Φ = Axy3 +Bxy . (4.27)

By applying its definition (1.25), we get:

σx = 6Axy, σy = 0, τxy = −B− 3Ay2 . (4.28)

In order to determine the constants A and B, we have to impose
two boundary conditions. Firstly, the shear stresses must vanish at
the free edges, that is:

τxy
∣∣
y=±h = 0 (4.29)

which impliesA = − B
3h2

. Then, by imposing the equilibrium between
the sum of the shearing forces distributed at the edge and F:

−

∫+h
−h

τxy dy = F (4.30)

one obtains B = 3
4
F
h , and therefore A = − F

4h3
. The stress field is now

completely determined:

σx = −
3

2

F

h3
xy, σy = 0, τxy = −

3

4

F

h

[
1−

(y
h

)2]
. (4.31)

Introducing the moment of inertia I = 2
3 bh

3, we can write:

σx = −
F xy

I
, σy = 0, τxy = −

F

2 I
(h2 − y2) . (4.32)

The strain field follows from equations (1.10):
εx = −

F xy

EI

εy = ν
F xy

EI

γxy = −
F

2GI
(h2 − y2)

(4.33)
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while the displacements are obtained upon integration:
u =

∫
εx dx = −

F x2y

2EI
+ f1(y)

v =

∫
εy dy = ν

F xy2

2EI
+ f2(x) .

(4.34)

The compatibility equation reads:

−
F x2

2EI
+ f ′1(y)︸ ︷︷ ︸
∂u

∂y

+ν
Fy2

2EI
+ f ′2(x)︸ ︷︷ ︸
∂v

∂x

= −
F

2GI
(h2 − y2)︸ ︷︷ ︸
γxy

. (4.35)

If we make the following definitions:

F(x) := −
F x2

2EI
+ f ′2(x)

G(y) := ν
Fy2

2EI
−
F y2

2GI
+ f ′1(y)

C := −
Fh2

2GI

(4.36)

equation (4.35) becomes

F(x) +G(y) = C (4.37)

which means that the functions F, G have to be constant. Otherwise,
in fact, we could vary one coordinate keeping the other fixed, and the
equality would be violated.

By introducing two new constants c1 and c2, it is possible to write
the following conditions on the functions f1, f2:

f ′1(y) = −ν
Fy2

2EI
+
F y2

2GI
+ c2

f ′2(x) =
F x2

2EI
+ c1

(4.38)

which upon integration release

f1(y) = −ν
Fy3

6EI
+
F y3

6GI
+ c2 y+ c3

f2(x) =
F x3

6EI
+ c1 x+ c4 .

(4.39)

The displacement field is therefore:
u = −

F x2y

2EI
− ν

Fy3

6EI
+
F y3

6GI
+ c2 y+ c3

v = ν
F xy2

2EI
+
F x3

6EI
+ c1 x+ c4 .

(4.40)
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In order to determine the constants c1 to c4, we need to impose four
BCs. From the conditions[

u, v,
∂v

∂x

]
x=L,y=0

= 0 (4.41)

we obtain c1 = −FL
2

2EI , c3 = 0, and c4 = FL3

3EI . The last constant can be
derived using the compatibility equation:

c2 = C− c1 =
F L2

2EI
−
Fh2

2GI
(4.42)

The displacements are now completely defined:
u = −

F x2y

2EI
− ν

Fy3

6EI
+
F y3

6GI
+

(
F L2

2EI
−
Fh2

2GI

)
y

v = ν
F xy2

2EI
+
F x3

6EI
−
F L2x

2EI
+
F L3

3EI
.

(4.43)

It is interesting to notice that

v
∣∣
y=0

=
F L3

6EI

[
2− 3

x

L
+
(x
L

)3]
(4.44)

is the deflection of the neutral axis predicted by the Euler-Bernoulli
beam theory, which demonstrates the consistency of our hypotheses.

After the displacements, we calculate the strain energy related to a
circle with radius R:

U(R) =
1

2

∫
A

(σxεx + σyεy + τxyγxy)dA

=
1

2

∫
A

[
F xy

I

F xy

EI
+
F

2 I
(h2 − y2)

F

2GI
(h2 − y2)

]
dA

=
1

2

(
F

I

)2 ∫
A

[
x2y2

E
+

(h2 − y2)2

4G

]
dA .

(4.45)

By following the procedure described in the previous example, which
defines firstly a local coordinate system (x,y), and then a polar coor-
dinate system (r, ϑ) with the same origin, the strain energy turns out
to be:

U(R) =
1

2

(
F

I

)2 ∫R
0

∫2π
0

{
1

E
(r cos ϑ+ xc)2(r sin ϑ+ yc)2

+
1

4G

[
h2 − (r sin ϑ+ yc)2

]2}
r dϑdr

=
1

48

(
F

I

)2
πR2
{
1

E
(R4 + 6 (x2c + y

2
c)R

2 + 24 x2c y
2
c)

+
1

G

[
R4 + 3 (3 y2c − h

2)R2 + 6 (h2 − y2c)
2
]}

(4.46)
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Figure 4.7. Finite Element model of the beam.

Dividing by the area, we obtain the local strain energy density:

SED =
U(R)

πR2
=
1

48

(
F

I

)2{
1

E
(R4 + 6 (x2c + y

2
c)R

2 + 24 x2c y
2
c)

+
1

G

[
R4 + 3 (3 y2c − h

2)R2 + 6 (h2 − y2c)
2
]}

(4.47)

which depends on the coordinates xc, yc of the center of the circle
and on its radius R.

First check:

Since the dependence on the coordinates for both the stresses and the
displacements is not linear, we are expecting the solution to converge
more slowly. In agreement with this prediction, the Python script
required at least 5 subdivisions and 4 Gaussian points to ensure a
relative error eSED on the SED always lower than 0.1%.

Second check:

The FE model of the beam is represented in Figure 4.7. Its dimensions
are L = 100mm, h = 10mm. The model consists in 741 elements of
approximately 1× 2.6mm, for a total of 800 nodes.

This time, the calculation of the strain energy density was more
problematic. More precisely, the accuracy was usually comparable
with the previous cases, but there were always a limited number of
points where the convergence was not reached, even when increas-
ing significantly the fineness of the mesh and the integration points.
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This observation was explained with the presence of shear forces. In
fact, the accuracy in the evaluation of the shear components of the
stress tensor depends on the assumptions made in the formulation
of the elements, and is commonly less good in the proximity of the
boundary conditions or in regions where the shear contribution is sig-
nificant. According to this interpretation, all the problematic points
were located either close to the edges or to the neutral axis.1 When
these points were ignored, setting n = m = 5, it always resulted
eSED < 0.5%.

4.3 application of the algorithm

After validating the algorithm with the previous test cases, we want
to use it in configurations where only the asymptotic solution is
known. When the theory is not enough powerful to give us a com-
parison value, we are using as a reference the results obtained with a
p-FEM code [7]. For our computations, unless specified, we are con-
sidering a radius R of the control volume equal to 0.3mm, for the
reasons outlined in section 2.3.

4.3.1 Cracked plate

The first application of the Algorithm 4.1 is the classical Fracture
Mechanics problem discussed in subsection 1.8.4: A (theoretically)
infinite plate weakened by a central crack, as shown in Figure 4.8.
Equations (1.92) and (1.94) allow us to estimate the asymptotic stress
and displacement fields, but they lose rapidly their validity when we
move away from the crack tip. The region of KI dominance depends
on the crack size and the geometry of the plate, but is usually less
than 1mm [26, p. 51]. Outside this region, Westergaard’s solution
should be expanded introducing more terms; alternatively, one can
estimate the stresses and the displacements with other techniques,
like the boundary collocation method or the Finite Element Method,
as we are doing.

Let us derive the strain energy density near the crack tip, as pre-
dicted by linear elastic fracture mechanics. As we stated several times,
the two-dimensional strain energy reads:

U(R) =
1

2

∫
A

(σxεx + σyεy + τxyγxy)dA . (4.48)

1 The element shear locking should not be a source of error, since quadrilateral elements
were employed [3, pp. 403–408].
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2a
x h

y

σ

Figure 4.8. Plate weakened by a central crack subjected to a constant tensile
stress.

Using the stress-strain equations (1.11) under the plane strain hypoth-
esis, U(R) becomes:

U(R) =
1+ ν

2E

∫
A

[
σ2x + σ

2
y − ν

(
σx + σy

)2
+ 2 τ2xy

]
dA . (4.49)

Introducing equations (1.97) derived in subsection 1.8.4, the integral
turns out to be:

U(R) =
(1+ ν)K2I
4πE

∫R
0

∫+π
−π

1

r

[
2 cos2 ϑ2

(
1+ sin2 ϑ2 sin2 3ϑ2

)
+ 2 cos2 ϑ2 sin2 ϑ2 cos2 3ϑ2 − 4ν cos2 ϑ2

]
r dϑdr

=
(1+ ν)K2I
2πE

R

∫+π
−π

cos2 ϑ2
[
1− 2ν

+ sin2 ϑ2
(
sin2 3ϑ2 + cos2 3ϑ2

)]
dϑ

(4.50)

whose solution is [8]:

U(R) =
(1+ ν)(5− 8ν)

8E
K2I R . (4.51)

The local strain energy density is obtained dividing U(R) by the area:

SED =
U(R)

πR2
=

(1+ ν)(5− 8ν)

8πR

K2I
E

. (4.52)

With σ = 100MPa and 2a = 20mm, the Stress Intensity Factor of
mode I turns out to be KI = 560.50MPa

√
mm; for the Finite Ele-

ment analyses, the side h was fixed at 200mm. The theoretical local
strain energy density for R = 0.3, 0.5, 1.0, and 2.0mm is reported in
Table 4.2, together with the corresponding values predicted by the
p-FEM code (SEDp-FEM).
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Table 4.2. Local strain energy density of a cracked plate for different radii.

R SEDth SEDp-FEM
(mm) (N mm/mm3) (N mm/mm3)

0.3 0.670 635 0.675 051
0.5 0.402 381 0.408 650
1.0 0.201 190 0.210 754
2.0 0.100 595 0.112 903

The target of the computation is twofold:

• To determine the influence of the singularity-dominated zone
on the convergence of the algorithm, fixing the fineness of the
mesh and calculating SED for different radii.

• To analyse the influence of gradually coarser meshes on the
accuracy of the computation, for the case R = 0.3mm.

Also in this case, a Python script was written (see Appendix B).
Since the computation is based on the analytical expressions for {σ}

and {u} derived in subsection 1.8.4, the convergence is very fast: Set-
ting n = 3 and m = 1 allows to get a relative error eSED ∼10−14%, for
every radius considered. This demonstrates the consistency between
the 2-D integral formulation and the numerically computed contour
integral, but ignores totally the effect of non-singular terms.

When the FE computation is involved, we expect the solution to
converge more slowly: From subsection 1.7.2 we know in fact that
cracks induce the strongest singularity possible in elasticity problems,
and in section 3.3 we said that such singularity can drastically affect
the efficiency of the standard Finite Element Method.

Let us start with the first problem. Thanks to the symmetry of the
geometry and the loads, it was possible to analyse only to one fourth
of the plate: The mesh consists of 716 quadratic elements for a total
of 1505 nodes (see Figure 4.9). The radii investigated are R = 0.3, 0.5,
1.0, and 2.0mm. The subdivisions n are 3, 5, 10, 20, and 40; m goes
from 1 to 3.

By looking at the results reported in graphical form in figures 4.10

to 4.13, we can highlight some common aspects:

• The error with respect to the theoretical solution tends to in-
crease with higher radii, while the agreement with the p-FEM
solution is always good: This means that non-singular terms are
becoming predominant.2 The case R = 0.3mm is completely KI-
dominated, while for R equal to 0.5mm one can already notice
a slightly higher error (about 1%) in eSED which is not observed

2 The only case in which ẽSED is higher than 1% is for R = 0.3mm. This can be
explained with the little difference (0.66%) between SEDth and SEDp-FEM, which
adds to the actual error.
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Figure 4.9. Finite Element model of the cracked plate.

when ẽSED is considered. For R = 1.0 and 2.0mm, the plots of
eSED and ẽSED are almost identical, but translated of a constant
quantity due to non-singular terms (whose contribution on SED

is of 3.4 and 11.9%, respectively). This means that these terms
are computed exactly with few integration points, and the most
significant source of error comes from the singular terms.

• The convergence is quite fast. With a number of integration
points equal to 10, the relative error is lower than 1%, except
for the case R = 0.3mm, where the closeness to the singularity
requires n×m to be slightly higher (between 15 and 20).

• The minimum error is in the neighbourhood of n ×m = 20,
with slightly better results when m = 1. Increasing the number
of integration points to 50 or more allows to stabilize the error
to values which are a bit higher, although still very small.
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Figure 4.10. Trend of the relative error of SED as the number of integration
points increases, for R = 0.3mm.
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Figure 4.11. Trend of the relative error of SED as the number of integration
points increases, for R = 0.5mm.
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Figure 4.12. Trend of the relative error of SED as the number of integration
points increases, for R = 1.0mm.
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Figure 4.13. Trend of the relative error of SED as the number of integration
points increases, for R = 2.0mm.
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Table 4.3. Meshes used for the analysis of the cracked plate.

Mesh Elements Nodes

1 716 1505
2 596 1263
3 487 1042

Our next aim is to determine the influence of the mesh on the ac-
curacy of the computation. To do so, we fix the radius at 0.3mm and
we calculate SED with gradually coarser meshes. The characteristics
of the meshes adopted are reported in Table 4.3; in all the analyses,
quadratic elements were employed. The subdivisions chosen are the
same of the previous analysis (n = 3, 5, 10, 20, and 40), while m
goes from 1 to 5. Since the closed-form solution gives an accurate
prediction of SED, we are considering only the relative error eSED.

We can summarize the following results (see figures 4.14a to 4.14c):

• With meshes 1 and 2, the convergence is reached quite rapidly;
20 integration points are enough to get a relative error lower
than 1%, and better results are obtained when m is between 2
and 4. For n×m > 50, the error does not vary significantly.

• With mesh 3, the same trend is observed, although eSED is al-
ways higher than 2%. Hence, the mesh is not enough fine to
give the same accuracy in the results.
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(a) Mesh 1.

Figure 4.14. Trend of the relative error of SED for a cracked plate, with
different meshes. (cont.)
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Figure 4.14. Trend of the relative error of SED for a cracked plate, with
different meshes.
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Figure 4.15. Plate weakened by a double 135° sharp V-shaped notch sub-
jected to a constant tensile stress.

4.3.2 Notched plate

After the cracked plate, we use the Algorithm 4.1 to compute the
strain energy density of a plate weakened by a double sharp V-shaped
notch with an opening angle of 135° (Figure 4.15). The height h is
50mm, the width of the net section is w = 40mm, and the length of
the re-entrant corner’s edge is l = 5mm.

Since the singularity exponent is higher than −0.5, it may be that
the K1-dominance region is smaller than the one of the crack. It is
therefore necessary to compare SEDth with SEDp-FEM to check how
much they differ one from the other.

The theoretical strain energy density over a control volume with
radius R for a mode I-loaded V-shaped notch is given by the first
term in the right-hand side of equation (2.9):

SED1 =
1

E

[
e1 K

2
1 R
2(λ1−1)

]
(4.53)

where e1 and λ1 can be obtained using the data in tables 1.2 and 2.1.

As stated in subsection 1.7.3, the NSIFs do not have a closed-form
solution, and their evaluation necessarily requires to use a Finite Ele-
ment code or other numerical strategies.

In our case, exploiting the symmetry of the geometry and the loads,
the analysis was conducted on one fourth of the plate. The mesh
consisted in 100 915 elements and 203 950 nodes, and was therefore
much more fine than the ones used for computing the local strain
energy density.

The procedure followed can be summarized in the following steps:
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1. Firstly, the plateau region for the NSIFs was determined. This is
the most delicate step, since this region cannot include neither
the stresses at the nodes very close to the tip, which are not
accurately computed by the FEM, nor the ones too far from it,
because of the increasing significance of non-singular terms. On
the basis of the singularity of σϑ in correspondence of the notch
bisector, we identified this zone with the range from 0.01 to
0.3mm, where the singularity exponent resulted to be −0.3277
(see Figure 4.16); this value differs for less than 0.4% from the
one that can be calculated by solving Williams’ eigenvalue prob-
lem (1− λ1 = −0.3264).

2. Secondly, we computed K1, FEM at each nodal point. The defini-
tion of this quantity is similar to the one given in (1.50a), but
without the limit:

K1, FEM =
√
2π r1−λ1(i) σϑ, (i)(ϑ = 0) (4.54)

where (i) represents the node considered. It is important that
K1, FEM does not vary significantly in the selected range: By look-
ing at Figure 4.17, we see that this condition was satisfied.

3. Finally, the estimate of K1 was obtained by averaging K1, FEM

calculated at each node of the range:

K1 ≈
1

N

N∑
i=1

K
(i)
1, FEM =

1

N

N∑
i=1

√
2π r1−λ1(i) σϑ, (i)(ϑ = 0) (4.55)

where N is the number of nodes inside the plateau.

In this way, we obtained K1 = 379.56MPa mm0.326; together with
λ1 = 0.6736 and e1 = 0.1172, it results SED1 = 0.176 460N mm/mm3,
which is almost identical to the value of 0.176 347N mm/mm3 pre-
dicted by the p-FEM code. It is therefore completely legitimate to use
the theoretical strain energy density as a reference value.
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Figure 4.16. Determination of the plateau by the singularity of σϑ(ϑ = 0).
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Figure 4.17. Trend of K1, FEM inside the plateau zone.
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Table 4.4. Meshes used for the analysis of the notched plate.

Mesh Elements Nodes

1 674 1423
2 539 1152
3 428 923

As in the previous case, we want to determine the influence of the
element size on the results. For this reason, three different meshes
were constructed, using quadratic elements. The number of elements
and nodes for each mesh is reported in Table 4.4. Looking at the
trends of the error reported in figures 4.18a to 4.18c, we deduce that:

• The relative error is subjected to a slight decrease when coarser
meshes are adopted. This may be explained with the fact that
(i) the stresses at the source of a singularity increase when the
mesh is locally refined and (ii) the singularity induced by a
notch is weaker than the one induced by a crack: Therefore,
not too fine meshes allow to compute satisfactorily the stresses
at a certain distance from the tip, and at the same time are less
affected from the error originated at the tip, which gets redis-
tributed to the neighbouring nodes.

• The best results are obtained with meshes 2 and 3, when 20

integration points are used and m = 1 or 2. The error stabilizes
when n×m > 50.
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(a) Mesh 1.

Figure 4.18. Trend of the relative error of SED for a notched plate, with
different meshes. (cont.)
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Figure 4.18. Trend of the relative error of SED for a notched plate, with
different meshes.
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4.4 comparison of the formulations

Once determined the local strain energy density of a cracked and
notched plate, for a radius R = 0.3mm, we want to compare the
numerically efficiency of the 1-D integral formulation, reported in
equation (4.2), with respect to the 2-D one, given by equation (4.1).

4.4.1 Cracked plate

For the case of the crack, SED was computed both with the stan-
dard FEM and the extended XFEM. The comparison was realized
analysing the relative error eSED as the number of degrees of freedom
increases. For the XFEM analyses, the DOF were estimated directly
from the size of the stiffness matrix.

From the comparison shown in Figure 4.19, one can infer that:

• The computation of the contour integral is much more efficient
than the one of the 2-D integral. About 3000 degrees of free-
dom are enough to get a relative error lower than 1%, while the
double integral formulation requires at least 105 DOF.

• The coupling of 5 Gaussian points with 40 subdivisions gives
better results with coarser meshes, while m = 1 and n = 20 is
slightly more efficient when 3000 DOF are employed.

• Although neither of the simulations based on the 2-D integral
formulation allow to lower the error to less than 1%, the ex-
tended FEM is more advantageous than the standard FEM. In
fact, (i) the XFEM requires less DOF to reach the same error
(eSED = 2.64% for 299 304 DOF against eSED = 2.70% for 635 518
DOF with standard FEM) and (ii) the decreasing trend with the
XFEM starts at ∼ 104, while with the standard FEM it increases
of more than 1% in the last simulation, thus demonstrating that
the convergence is not yet stable.

4.4.2 Notched plate

The considerations made for the previous case are still valid, except
for two things:

• In the last three simulations, the relative error is subjected to
minor variations. This means that the convergence is probably
reached, and a further decrease of eSED should not be expected
when finer meshes are constructed.

• For the 1-D integral formulation, the error increases of approx-
imately 1% when the mesh is locally refined. A possible expla-
nation for this observation was given in subsection 4.3.2.
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Figure 4.19. Comparison of the numerical efficiency of 1-D and 2-D inte-

grals, for the cracked plate. In the smaller chart, a magnifica-
tion of the curves inside the dashed box.
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5 C O N C L U S I O N S

The purpose of this work was to improve the numerical efficiency
of the computation of the local strain energy density in presence
of elastic singularities. The average of such quantity on a material
dependent-volume, according to the SED criterion, can be used to
assess the fatigue life of welded joints.

In order to achieve this target, a twofold approach was followed:

• On one side, an extensive study on the theory of singularities
in elasticity was conducted; in particular, the well-known solu-
tions of Westergaard and Williams were derived and analysed
in view of their numerical implementation.

• On the other side, a numerical procedure that allowed to per-
form the computation of the two-dimensional strain energy den-
sity on a finite volume, based on a contour integral formulation,
was realized and implemented inside the code used for the Fi-
nite Element analyses.

The resulting algorithm was checked in three different test cases, for
which the analytical expressions of stresses and displacements were
derived. Three Python scripts were written, in order to compare the
theoretical strain energy density with the one obtained with the al-
gorithm. Once verified that the results were matching, the algorithm
was coupled with the commands of the Finite Element code, so to
switch from the exact stresses and displacements to the approximated
ones. All the checks were then repeated, confirming the previous
trend.

At this point, the combination of the algorithm with the Finite El-
ement code was applied to two different configurations of practical
interest: A plate weakened respectively by a central crack and a 135°
V-shaped edge notch. For the case of the crack, the local strain en-
ergy density was computed for different radii, so to determine the
contributions of singular and non-singular terms to the error. It was
thus noticed that the Finite Element Method allows to compute easily
non-singular terms, and that the main source of error is therefore due
to the singularity. The analysis of the influence of the mesh on the
accuracy of the numerical solution demonstrated that the algorithm
is not very sensible to the size of the local elements. The same result
was confirmed when the notched plate was considered, although a
slight increase of the error for finer meshes was observed; in this
case, the calculation of the theoretical value for comparison required
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to estimate numerically the Notch Stress Intensity Factor of mode I.
In both cases, the influence of the number of integration points was
also taken in account, leading to the same conclusion in terms of the
best combination of number of subdivisions and Gaussian points.

Finally, the comparison of the contour integral and double inte-
gral formulation highlighted the better efficiency of the first. In fact,
the contour integral formulation (i) showed a faster convergence, (ii)
required a number of degrees of freedom about three orders of mag-
nitude lower than the one based on the double integral and (iii) led
to a lower final error. For the case of the cracked plate, the double in-
tegral was computed both with the standard and the extended FEM:
The latter was more advantageous than the first, because it converged
more stably and with greater accuracy.

This approach demonstrated thus to be flexible, efficient, and reli-
able:

• It is flexible, because the algorithm was adapted to different con-
figurations with only minor changes;

• It is efficient, since it requested a narrow number of integration
points to get the convergence;

• It is reliable, since the final error with respect to the reference
solution (theoretical or numerical, depending on the case) was
always almost negligible.

We conclude this work with some suggestions for the possible fur-
ther research in this topic:

generalizing the xfem: Because of some limitations of the Finite
Element code adopted, it was not possible to implement the
enrichment functions for the case of the notch. Although the
singularity in this case is less severe than the one induced by
a crack, this could lead to better results, especially in view of
three-dimensional simulations.

combining xfem and contour integral: Another improvement
could be the combination of the extended FEM with the contour
integral formulation proposed in this work; this may require
to modify directly the Finite Element code used, since for the
moment it allows to use the XFEM only for the computation of
double integrals.

switching to 3-d: It is well known that the efficiency of the Finite
Element Method in three dimensions is not as good as in two
dimensions. Using Green’s theorem to switch from a volume
integral to a a surface integral could probably improve signifi-
cantly the convergence of the method.
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A S H A P E F U N C T I O N S

In this appendix, we are going to describe briefly some properties
of the shape functions. For the sake of simplicity, we are referring
to the p-dimensional space Sp(Ist), where Ist = {ξ | − 1 6 ξ 6 +1}.
The definitions can be easily extended to higher dimensions using the
space product.

a.1 lagrange shape functions

The first shape functions that we describe are Lagrange polynomials,
defined as:

Ni(ξ) =

p+1∏
k=1
k6=i

ξ− ξk
ξi − ξk

, for i = 1, 2, . . . ,p+ 1 (A.1)

These polynomials have the Kronecker-δ property:

Ni(ξj) = δij =

{
1, if i = j

0, if i 6= j .
(A.2)

Another fundamental property of these polynomials is the ability to
build a partition of unity over the domain Sp(Ist):

p+1∑
i=1

Ni(ξ) = 1 . (A.3)

Thanks to the simplicity of their construction, Lagrange shape func-
tions are implemented in every Finite Element code.

a.2 hierarchic shape functions

The increase of order of a Lagrange shape function is usually achieved
by adding mid-side nodes within the elements, thus switching from
linear to quadratic elements. A different approach is to build a high-
order shape function by adding high-order terms. This procedure
leads to the formulation of the so-called hierarchic shape functions. This
name comes from the fact that the low-order components are not af-
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fected by the introduction of new higher order terms, contrary to
Lagrange shape functions [37, p. 70].

One of the methods used to build hierarchic shape functions is
based on the Legendre polynomials. The Legendre polynomial of
order p is:

Pp(ξ) =
1

2pp!
dp

dξp
[(ξ2 − 1)n] . (A.4)

Given the first two polynomials, respectively P0(ξ) = 1 and P1(ξ) = ξ,
we can introduce an alternative definition, based on the recursive
formula

(p+ 1)Pp+1(ξ) = (2p+ 1) ξPp(ξ) − pPp−1(ξ) . (A.5)

The corresponding shape functions are obtained upon integration:

Ni(ξ) =

√
2i− 3

2

∫ξ
−1
Pi−2(t)dt , for i = 3, 4, . . . ,p+ 1 . (A.6)

The hierarchical shape functions are orthogonal, that is:∫+1
−1

dNi
dξ

dNj

dξ
dξ = δij , for i, j > 3 (A.7)

which is an extremely useful property for Finite Elements, since it
allows to reduce significantly the non-zero components of the [B] ma-
trix (see subsection 3.2.6). The first five shape functions are here re-
ported [37, pp. 72–73]:

N1(ξ) =
1

2
(1− ξ) ,

N2(ξ) =
1

2
(1+ ξ) ,

N3(ξ) =

√
3

2
√
2
(ξ2 − 1) ,

N4(ξ) =

√
5

2
√
2
ξ (ξ2 − 1) ,

N5(ξ) =

√
7

8
√
2
(5 ξ4 − 6 ξ2 + 1) .

(A.8)

It is interesting to notice that for i > 3 they become zero at the ex-
trema of the interval:

Ni(−1) = Ni(+1) = 0 . (A.9)
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B P Y T H O N S C R I P T S

In this appendix, we report all the Python scripts used for validating
the Algorithm 4.1; the script for the cracked plate is also included,
since in this case the asymptotical stresses and displacements are
known (see subsection 1.8.4). In order to save some space, we omitted
to write the Gauss-Legendre abscissas and weights.

b.1 plate_cnst_sed.py

Algorithm B.1. Computation of SED for a plate subjected to a constant ten-
sile stress (subsection 4.2.1).

1 f = open(’py_plate_cnst_sed.dat’,’w’)

2

3 import math

4 import random

5

6 # Definition of the Gauss-Legendre abscissas

7

8 T = {

9 1:[-0.0],

10 2:[. . . ],

11

.

.

.

12 }

13

14 # Definition of the Gauss-Legendre weights

15

16 W = {

17 1:[2.0],

18 2:[. . . ],

19

.

.

.

20 }

21

22 print >> f, ’=============================================================\n’

23 print >> f, ’ SCRIPT FOR THE COMPUTATION OF THE LOCAL STRAIN ENERGY\n\

24 DENSITY OF A STEEL PLATE SUBJECTED TO A CONSTANT\n\

25 TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’

26 print >> f, ’=============================================================\n’

27

28 print >> f, ’\

29
_____________________\n\

30 >| | --->\n\

31 >| | --->\n\

32 >| | --->\n\

33 >| | --->\n\

34 DX = 0 >| | ---> S0 = 100 MPa\n\

35 >| | --->\n\

36 >| | --->\n\

37 >| | --->\n\

38 >|_____________________| --->\n\

39 ^\n\
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40 DY = 0\n\n’

41

42 # Input for the values R, q, n, m

43

44 print >> f, ’INPUT VALUES:\n\n’

45

46 R = input(’Enter the radius of the circles onto which compute the SED: ’)

47

48 print >> f, ’Radius of the circles: R =’, R, ’\n’

49

50 q = input(’Enter the number of random points: ’)

51

52 print >> f, ’Number of random points: q =’, q, ’\n’

53

54 n = input(’Enter the number of subdivisions for each circumference: ’)

55

56 print >> f, ’Number of subdivisions for each circumference: n =’, n, ’\n’

57

58 m = input(’Enter the number of Gaussian points for each subdivision: ’)

59

60 print >> f, ’Number of Gaussian points for each subdivision: m =’, m, ’\n’

61

62 # Definition of some parameters of the problem

63

64 # Material

65

66 E = 210000.0 # Young modulus of steel [MPa]

67 NU = 0.3 # Poisson ratio of steel []

68

69 # Geometry

70

71 h = 100.0 # Length of the plate’s edge [mm]

72

73 # Boundary conditions

74

75 S0 = 100.0 # Applied tensile stress [MPa]

76

77 # Definition of the initial values and constants

78

79 theta_a = -math.pi

80 theta_b = math.pi

81 A = 0.5 * (theta_b - theta_a) * R ** 2

82

83 for k in range(q):

84

85 # Definition of the point coordinates

86

87 x_c = random.uniform(R, h - R)

88 y_c = random.uniform(R, h - R)

89

90 # Definition of the initial values

91

92 SE = 0.0

93 SED = 0.0

94 p = 0.0

95

96 print >> f, ’==================================================\n’

97 print >> f, ’ CIRCLE’, k + 1, ’\n’

98 print >> f, ’==================================================\n’

99

100 for i in range(1, n + 1):

101

102 a = 0

103

104 print >> f, ’----------------------------------------\n’

105 print >> f, ’ SUBDIVISION’, i, ’\n’
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b.1 plate_cnst_sed.py

106 print >> f, ’----------------------------------------\n’

107

108 # Definition of the angular quantities

109

110 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

111 theta_2 = theta_a + i * (theta_b - theta_a) / n

112 dtheta = 0.5 * (theta_2 - theta_1)

113

114 print >> f, ’theta_1 =’, theta_1, ’\n’

115 print >> f, ’theta_2 =’, theta_2, ’\n’

116 print >> f, ’dtheta =’, dtheta, ’\n’

117

118 for j in range(m):

119

120 print >> f, ’------------------------\n’

121 print >> f, ’ ITERATION’, j + 1, ’\n’

122 print >> f, ’------------------------\n’

123

124 # Calculation of the desired quantities

125

126 # Theta angle

127

128 t = T.get(m)[m - j - 1]

129 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

130

131 # Normals

132

133 n_x = math.cos(theta)

134 n_y = math.sin(theta)

135

136 # Point coordinates

137

138 x = x_c + R * math.cos(theta)

139 y = y_c + R * math.sin(theta)

140

141 # Stresses

142

143 S_xx = S0

144 S_yy = 0.0

145 S_xy = 0.0

146

147 # Displacements

148

149 u_x = (1.0 - NU ** 2) * S0 * x / E

150 u_y = -NU * (1.0 + NU) * S0 * y / E

151

152 # Traction vectors

153

154 T_x = S_xx * n_x + S_xy * n_y

155 T_y = S_xy * n_x + S_yy * n_y

156

157 # Strain energy

158

159 SE = 0.5 * (T_x * u_x + T_y * u_y) * R * dtheta * W.get(m)[a]

160

161 # Strain energy density

162

163 SED += SE / A

164

165 # Perimeter

166

167 p += R * dtheta * W.get(m)[a]

168

169 print >> f, ’Gaussian coordinate t =’, t, ’\n’

170 print >> f, ’theta =’, theta, ’\n’

171
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172 print >> f, ’n_x =’, n_x, ’\n’

173 print >> f, ’n_y =’, n_y, ’\n’

174

175 print >> f, ’x =’, x, ’\n’

176 print >> f, ’y =’, y, ’\n’

177

178 print >> f, ’S_xx =’, S_xx, ’\n’

179 print >> f, ’S_yy =’, S_yy, ’\n’

180 print >> f, ’S_xy =’, S_xy, ’\n’

181

182 print >> f, ’u_x =’, u_x, ’\n’

183 print >> f, ’u_y =’, u_y, ’\n’

184

185 print >> f, ’T_x =’, T_x, ’\n’

186 print >> f, ’T_y =’, T_y, ’\n’

187

188 print >> f, ’Strain Energy =’, SE, ’\n’

189 print >> f, ’Strain Energy Density =’, SED, ’\n’

190

191 print >> f, ’Perimeter =’, p, ’\n’

192

193 a += 1

194

195 # Definition of the theoretical value for the SED

196

197 REF = 0.5 * (1.0 - NU ** 2) * S0 ** 2 / E

198

199 # Printing of the final values

200

201 print >> f, ’\n==================================================\n’

202 print >> f, ’ RESULTS FOR CIRCLE’, k + 1

203 print >> f, ’\n==================================================\n’

204

205 print >> f, ’ x_c =’, x_c, ’, y_c =’, y_c, ’\n’

206

207 print >> f, ’ Computed SED =’, SED, ’\n’

208 print >> f, ’ Theoretical SED =’, REF, ’\n’

209 print >> f, ’ Percentual error =’, abs(SED / REF - 1.0) * 100.0, ’%\n’

210

211 print >> f, ’ Length of the path =’, p

212

213 print >> f, ’\n==================================================\n\n\n’

214

215 f.close()

b.2 plate_lnr_sed.py

Algorithm B.2. Computation of SED for a plate subjected to a linear tensile
stress (subsection 4.2.2).

1 f = open(’py_plate_lnr_sed.dat’,’w’)

2

3 import math

4 import random

5

6 # Definition of the Gauss-Legendre abscissas

7

8 T = {

9 1:[-0.0],

10 2:[. . . ],

11

.

.

.
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12 }

13

14 # Definition of the Gauss-Legendre weights

15

16 W = {

17 1:[2.0],

18 2:[. . . ],

19

.

.

.

20 }

21

22 print >> f, ’=============================================================\n’

23 print >> f, ’ SCRIPT FOR THE COMPUTATION OF THE LOCAL STRAIN ENERGY\n\

24 DENSITY OF A STEEL PLATE SUBJECTED TO A LINEAR\n\

25 TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’

26 print >> f, ’=============================================================\n’

27

28 print >> f, ’ SMIN = 0 MPa\n\

29
_____________________\n\

30 >| | \\\n\

31 >| | >\\\n\

32 >| | ->\\\n\

33 >| | -->\\\n\

34 DX = 0 >| | --->\\\n\

35 >| | ---->\\\n\

36 >| | ----->\\\n\

37 >| | ------>\\\n\

38 >|_____________________| ------->\\\n\

39 ^\n\

40 DY = 0 SMAX = 100 MPa\n\n’

41

42 # Input for the values R, q, n, m

43

44 print >> f, ’INPUT VALUES:\n\n’

45

46 R = input(’Enter the radius of the circles onto which compute the SED: ’)

47

48 print >> f, ’Radius of the circles: R =’, R, ’\n’

49

50 q = input(’Enter the number of random points: ’)

51

52 print >> f, ’Number of random points: q =’, q, ’\n’

53

54 n = input(’Enter the number of subdivisions for each circumference: ’)

55

56 print >> f, ’Number of subdivisions for each circumference: n =’, n, ’\n’

57

58 m = input(’Enter the number of Gaussian points for each subdivision: ’)

59

60 print >> f, ’Number of Gaussian points for each subdivision: m =’, m, ’\n’

61

62 # Definition of some parameters of the problem

63

64 # Material

65

66 E = 210000.0 # Young modulus of steel [MPa]

67 NU = 0.3 # Poisson ratio of steel []

68

69 # Geometry

70

71 h = 100.0 # Length of the plate’s edge [mm]

72

73 # Boundary conditions

74

75 SM = 100.0 # Maximum applied tensile stress [MPa]

76
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77 # Definition of the initial values and constants

78

79 theta_a = -math.pi

80 theta_b = math.pi

81 A = 0.5 * (theta_b - theta_a) * R ** 2

82

83 for k in range(q):

84

85 # Definition of the point coordinates

86

87 x_c = random.uniform(R, h - R)

88 y_c = random.uniform(R, h - R)

89

90 # Definition of the initial values

91

92 SE = 0.0

93 SED = 0.0

94 p = 0.0

95

96 print >> f, ’==================================================\n’

97 print >> f, ’ CIRCLE’, k + 1, ’\n’

98 print >> f, ’==================================================\n’

99

100 for i in range(1, n + 1):

101

102 a = 0

103

104 print >> f, ’----------------------------------------\n’

105 print >> f, ’ SUBDIVISION’, i, ’\n’

106 print >> f, ’----------------------------------------\n’

107

108 # Definition of the angular quantities

109

110 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

111 theta_2 = theta_a + i * (theta_b - theta_a) / n

112 dtheta = 0.5 * (theta_2 - theta_1)

113

114 print >> f, ’theta_1 =’, theta_1, ’\n’

115 print >> f, ’theta_2 =’, theta_2, ’\n’

116 print >> f, ’dtheta =’, dtheta, ’\n’

117

118 for j in range(m):

119

120 print >> f, ’------------------------\n’

121 print >> f, ’ ITERATION’, j + 1, ’\n’

122 print >> f, ’------------------------\n’

123

124 # Calculation of the desired quantities

125

126 # Theta angle

127

128 t = T.get(m)[m - j - 1]

129 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

130

131 # Normals

132

133 n_x = math.cos(theta)

134 n_y = math.sin(theta)

135

136 # Point coordinates

137

138 x = x_c + R * math.cos(theta)

139 y = y_c + R * math.sin(theta)

140

141 # Stresses

142
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143 S_xx = SM * (1.0 - y / h)

144 S_yy = 0.0

145 S_xy = 0.0

146

147 # Displacements

148

149 u_x = (1.0 - NU ** 2) * SM * (1.0 - y / h) * x / E

150

151 u_y = 0.5 * x ** 2 / h

152 u_y -= NU * (1.0 - 0.5 * y / h) * y / (1.0 - NU)

153 u_y *= (1.0 - NU ** 2) * SM / E

154

155 # Traction vectors

156

157 T_x = S_xx * n_x + S_xy * n_y

158 T_y = S_xy * n_x + S_yy * n_y

159

160 # Strain energy

161

162 SE = 0.5 * (T_x * u_x + T_y * u_y) * R * dtheta * W.get(m)[a]

163

164 # Strain energy density

165

166 SED += SE / A

167

168 # Perimeter

169

170 p += R * dtheta * W.get(m)[a]

171

172 print >> f, ’Gaussian coordinate t =’, t, ’\n’

173 print >> f, ’theta =’, theta, ’\n’

174

175 print >> f, ’n_x =’, n_x, ’\n’

176 print >> f, ’n_y =’, n_y, ’\n’

177

178 print >> f, ’x =’, x, ’\n’

179 print >> f, ’y =’, y, ’\n’

180

181 print >> f, ’S_xx =’, S_xx, ’\n’

182 print >> f, ’S_yy =’, S_yy, ’\n’

183 print >> f, ’S_xy =’, S_xy, ’\n’

184

185 print >> f, ’u_x =’, u_x, ’\n’

186 print >> f, ’u_y =’, u_y, ’\n’

187

188 print >> f, ’T_x =’, T_x, ’\n’

189 print >> f, ’T_y =’, T_y, ’\n’

190

191 print >> f, ’Strain Energy =’, SE, ’\n’

192 print >> f, ’Strain Energy Density =’, SED, ’\n’

193

194 print >> f, ’Perimeter =’, p, ’\n’

195

196 a += 1

197

198 # Definition of the theoretical value for the SED

199

200 REF = 0.25 * R ** 2 + (h - y_c) ** 2

201 REF *= 0.5 * (1.0 - NU ** 2) * (SM / h) ** 2 / E

202

203 # Printing of the final values

204

205 print >> f, ’\n==================================================\n’

206 print >> f, ’ RESULTS FOR CIRCLE’, k + 1

207 print >> f, ’\n==================================================\n’

208
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209 print >> f, ’ x_c =’, x_c, ’, y_c =’, y_c, ’\n’

210

211 print >> f, ’ Computed SED =’, SED, ’\n’

212 print >> f, ’ Theoretical SED =’, REF, ’\n’

213 print >> f, ’ Percentual error =’, abs(SED / REF - 1.0) * 100.0, ’%\n’

214

215 print >> f, ’ Length of the path =’, p

216

217 print >> f, ’\n==================================================\n\n\n’

218

219 f.close()

b.3 beam_end_sed.py

Algorithm B.3. Computation of SED for a beam subjected to an end load
(subsection 4.2.3).

1 f = open(’py_beam_end_sed.dat’,’w’)

2

3 import math

4 import random

5

6 # Definition of the Gauss-Legendre abscissas

7

8 T = {

9 1:[-0.0],

10 2:[. . . ],

11

.

.

.

12 }

13

14 # Definition of the Gauss-Legendre weights

15

16 W = {

17 1:[2.0],

18 2:[. . . ],

19

.

.

.

20 }

21

22 print >> f, ’==========================================================\

23 =============\n’

24 print >> f, ’ SCRIPT FOR THE COMPUTATION OF THE LOCAL STRAIN ENERGY \

25 DENSITY\n\

26 OF A STEEL BEAM SUBJECTED TO A END LOAD THROUGH A CONTOUR INTEGRAL\n’

27 print >> f, ’==========================================================\

28 =============\n’

29

30 print >> f, ’\

31
______________________________\n\

32 | |/\n\

33 || | |/\n\

34 || | |/\n\

35 || | |/ DX = 0,\n\

36 || | |/\n\

37
_||_ | |/ DY = 0\n\

38 \ / | |/\n\

39 \/ | |/\n\

40 |______________________________|/\n\

41 F = 100 N\n’

42

43 # Input for the values R, q, n, m
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44

45 print >> f, ’INPUT VALUES:\n\n’

46

47 R = input(’Enter the radius of the circles onto which compute the SED: ’)

48

49 print >> f, ’Radius of the circles: R =’, R, ’\n’

50

51 q = input(’Enter the number of random points: ’)

52

53 print >> f, ’Number of random points: q =’, q, ’\n’

54

55 n = input(’Enter the number of subdivisions for each circumference: ’)

56

57 print >> f, ’Number of subdivisions for each circumference: n =’, n, ’\n’

58

59 m = input(’Enter the number of Gaussian points for each subdivision: ’)

60

61 print >> f, ’Number of Gaussian points for each subdivision: m =’, m, ’\n’

62

63 # Definition of some parameters of the problem

64

65 # Material

66

67 E = 210000.0 # Young modulus of steel [MPa]

68 NU = 0.3 # Poisson ratio of steel []

69 G = 0.5 * E / (1.0 + NU) # Shear modulus of steel [MPa]

70

71 # Geometry

72

73 b = 1.0 # Thickness of the beam [mm]

74 L = 100.0 # Length of the beam [mm]

75 h = 10.0 # Height of half beam [mm]

76 I = 2.0 * b * h ** 3 / 3.0 # Moment of inertia [mm ^ 4]

77

78 # Boundary conditions

79

80 F = 100.0 # Applied end load [N]

81

82 # Definition of the initial values and constants

83

84 theta_a = -math.pi

85 theta_b = math.pi

86 A = 0.5 * (theta_b - theta_a) * R ** 2

87

88 for k in range(q):

89

90 # Definition of the point coordinates

91

92 x_c = random.uniform(R, L - R)

93 y_c = random.uniform(-h + R, h - R)

94

95 # Definition of the initial values

96

97 SE = 0.0

98 SED = 0.0

99 p = 0.0

100

101 print >> f, ’==================================================\n’

102 print >> f, ’ CIRCLE’, k + 1, ’\n’

103 print >> f, ’==================================================\n’

104

105 for i in range(1, n + 1):

106

107 a = 0

108

109 print >> f, ’----------------------------------------\n’
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110 print >> f, ’ SUBDIVISION’, i, ’\n’

111 print >> f, ’----------------------------------------\n’

112

113 # Definition of the angular quantities

114

115 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

116 theta_2 = theta_a + i * (theta_b - theta_a) / n

117 dtheta = 0.5 * (theta_2 - theta_1)

118

119 print >> f, ’theta_1 =’, theta_1, ’\n’

120 print >> f, ’theta_2 =’, theta_2, ’\n’

121 print >> f, ’dtheta =’, dtheta, ’\n’

122

123 for j in range(m):

124

125 print >> f, ’------------------------\n’

126 print >> f, ’ ITERATION’, j + 1, ’\n’

127 print >> f, ’------------------------\n’

128

129 # Calculation of the desired quantities

130

131 # Theta angle

132

133 t = T.get(m)[m - j - 1]

134 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

135

136 # Normals

137

138 n_x = math.cos(theta)

139 n_y = math.sin(theta)

140

141 # Point coordinates

142

143 x = x_c + R * math.cos(theta)

144 y = y_c + R * math.sin(theta)

145

146 # Stresses

147

148 S_xx = F * x * y / I

149 S_yy = 0.0

150 S_xy = 0.5 * F * (h ** 2 - y ** 2) / I

151

152 # Displacements

153

154 u_x = 0.5 * F * x ** 2 * y / (E * I)

155 u_x += NU * F * y ** 3 / (6.0 * E * I)

156 u_x -= F * y ** 3 / (6.0 * G * I)

157 u_x -= 0.5 * F * (L ** 2 / E - h ** 2 / G) * y / I

158

159 u_y = - 0.5 * NU * x * y ** 2

160 u_y -= x ** 3 / 6.0 - 0.5 * L ** 2 * x

161 u_y -= L ** 3 / 3.0

162 u_y *= F / (E * I)

163

164 # Traction vectors

165

166 T_x = S_xx * n_x + S_xy * n_y

167 T_y = S_xy * n_x + S_yy * n_y

168

169 # Strain energy

170

171 SE = 0.5 * (T_x * u_x + T_y * u_y) * R * dtheta * W.get(m)[a]

172

173 # Strain energy density

174

175 SED += SE / A
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176

177 # Perimeter

178

179 p += R * dtheta * W.get(m)[a]

180

181 print >> f, ’Gaussian coordinate t =’, t, ’\n’

182 print >> f, ’theta =’, theta, ’\n’

183

184 print >> f, ’n_x =’, n_x, ’\n’

185 print >> f, ’n_y =’, n_y, ’\n’

186

187 print >> f, ’x =’, x, ’\n’

188 print >> f, ’y =’, y, ’\n’

189

190 print >> f, ’S_xx =’, S_xx, ’\n’

191 print >> f, ’S_yy =’, S_yy, ’\n’

192 print >> f, ’S_xy =’, S_xy, ’\n’

193

194 print >> f, ’u_x =’, u_x, ’\n’

195 print >> f, ’u_y =’, u_y, ’\n’

196

197 print >> f, ’T_x =’, T_x, ’\n’

198 print >> f, ’T_y =’, T_y, ’\n’

199

200 print >> f, ’Strain Energy =’, SE, ’\n’

201 print >> f, ’Strain Energy Density =’, SED, ’\n’

202

203 print >> f, ’Perimeter =’, p, ’\n’

204

205 a += 1

206

207 # Definition of the theoretical value for the SED

208

209 REF1 = (6.0 * (x_c ** 2 + y_c ** 2) + R ** 2) * R ** 2

210 REF1 += 24.0 * x_c ** 2 * y_c ** 2

211 REF1 /= E

212

213 REF2 = (3.0 * (3.0 * y_c ** 2 - h ** 2) + 0.75 * R ** 2) * R ** 2

214 REF2 += 6.0 * (h ** 2 - y_c ** 2) ** 2

215 REF2 /= G

216

217 REF = REF1 + REF2

218 REF *= (F / I) ** 2 / 48.0

219

220 # Printing of the final values

221

222 print >> f, ’\n==================================================\n’

223 print >> f, ’ RESULTS FOR CIRCLE’, k + 1

224 print >> f, ’\n==================================================\n’

225

226 print >> f, ’ x_c =’, x_c, ’, y_c =’, y_c, ’\n’

227

228 print >> f, ’ Computed SED =’, SED, ’\n’

229 print >> f, ’ Theoretical SED =’, REF, ’\n’

230 print >> f, ’ Percentual error =’, abs(SED / REF - 1.0) * 100.0, ’%\n’

231

232 print >> f, ’ Length of the path =’, p

233

234 print >> f, ’\n==================================================\n\n\n’

235

236 f.close()
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b.4 plate_crack_sed.py

Algorithm B.4. Computation of SED for a cracked plate subjected to a con-
stant tensile stress (subsection 4.3.1).

1 f = open(’py_plate_crack_sed.dat’,’w’)

2

3 import math

4 import random

5

6 # Definition of the Gauss-Legendre abscissas

7

8 T = {

9 1:[-0.0],

10 2:[. . . ],

11

.

.

.

12 }

13

14 # Definition of the Gauss-Legendre weights

15

16 W = {

17 1:[2.0],

18 2:[. . . ],

19

.

.

.

20 }

21

22 print >> f, ’=============================================================\n’

23 print >> f, ’ SCRIPT FOR THE COMPUTATION OF THE LOCAL STRAIN ENERGY\n\

24 DENSITY OF A CRACKED STEEL PLATE SUBJECTED TO A\n\

25 CONSTANT TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’

26 print >> f, ’=============================================================\n’

27

28 print >> f, ’\

29 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ S0 = 100 MPa\n\

30 | | | | | | | | | | |\n\

31
_____________________\n\

32 | |\n\

33 | |\n\

34 | |\n\

35 | |\n\

36 | _____ |\n\

37 | |\n\

38 | |\n\

39 | |\n\

40 DX = 0 >|_____________________|\n\

41 ^^^^^^^^^^^^^^^^^^^^^\n\

42 DY = 0\n\n’

43

44 # Input for the values R, n, m

45

46 print >> f, ’INPUT VALUES:\n\n’

47

48 R = input(’Enter the radius of the circle onto which compute the SED: ’)

49

50 print >> f, ’Radius of the circle: R =’, R, ’\n’

51

52 n = input(’Enter the number of subdivisions: ’)

53

54 print >> f, ’Number of subdivisions: n =’, n, ’\n’

55

56 m = input(’Enter the number of Gaussian points for each subdivision: ’)

57

58 print >> f, ’Number of Gaussian points for each subdivision: m =’, m, ’\n’
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59

60 # Definition of some parameters of the problem

61

62 # Material

63

64 E = 210000.0 # Young modulus of steel [MPa]

65 NU = 0.3 # Poisson ratio of steel []

66 G = 0.5 * E / (1.0 + NU) # Shear modulus of steel [MPa]

67

68 # Geometry

69

70 h = 100.0 # Length of the plate’s edge [mm]

71 c = 10.0 # Half crack length [mm]

72

73 # Boundary conditions

74

75 S0 = 100.0 # Applied tensile stress [MPa]

76

77 # Definition of the initial values and constants

78

79 theta_a = -math.pi

80 theta_b = math.pi

81 A = 0.5 * (theta_b - theta_a) * R ** 2

82 K_I = S0 * math.sqrt(math.pi * c)

83

84 # Definition of the point coordinates

85

86 x_c = 0.5 * h + c

87 y_c = 0.5 * h

88

89 # Definition of the initial values

90

91 SE = 0.0

92 SED = 0.0

93 p = 0.0

94

95 for i in range(1, n + 1):

96

97 a = 0

98

99 print >> f, ’----------------------------------------\n’

100 print >> f, ’ SUBDIVISION’, i, ’\n’

101 print >> f, ’----------------------------------------\n’

102

103 # Definition of the angular quantities

104

105 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

106 theta_2 = theta_a + i * (theta_b - theta_a) / n

107 dtheta = 0.5 * (theta_2 - theta_1)

108

109 print >> f, ’theta_1 =’, theta_1, ’\n’

110 print >> f, ’theta_2 =’, theta_2, ’\n’

111 print >> f, ’dtheta =’, dtheta, ’\n’

112

113 for j in range(m):

114

115 print >> f, ’------------------------\n’

116 print >> f, ’ ITERATION’, j + 1, ’\n’

117 print >> f, ’------------------------\n’

118

119 # Calculation of the desired quantities

120

121 # Theta angle

122

123 t = T.get(m)[m - j - 1]

124 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2
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125

126 # Normals

127

128 n_x = math.cos(theta)

129 n_y = math.sin(theta)

130

131 # Stresses

132

133 S_xx = math.cos(0.5 * theta) * (1.0 - math.sin(0.5 * theta) * \

134 math.sin(1.5 * theta))

135 S_xx *= K_I / math.sqrt(2.0 * math.pi * R)

136

137 S_yy = math.cos(0.5 * theta) * (1.0 + math.sin(0.5 * theta) * \

138 math.sin(1.5 * theta))

139 S_yy *= K_I / math.sqrt(2.0 * math.pi * R)

140

141 S_xy = math.sin(0.5 * theta) * math.cos(0.5 * theta) * \

142 math.cos(1.5 * theta)

143 S_xy *= K_I / math.sqrt(2.0 * math.pi * R)

144

145 # Displacements

146

147 u_x = math.cos(0.5 * theta) * (1.0 - 2.0 * NU + \

148 math.sin(0.5 * theta) ** 2)

149 u_x *= K_I * math.sqrt(0.5 * R / math.pi) / G

150

151 u_y = math.sin(0.5 * theta) * (2.0 - 2.0 * NU - \

152 math.cos(0.5 * theta) ** 2)

153 u_y *= K_I * math.sqrt(0.5 * R / math.pi) / G

154

155 # Traction vectors

156

157 T_x = S_xx * n_x + S_xy * n_y

158 T_y = S_xy * n_x + S_yy * n_y

159

160 # Strain energy

161

162 SE = 0.5 * (T_x * u_x + T_y * u_y) * R * dtheta * W.get(m)[a]

163

164 # Strain energy density

165

166 SED += SE / A

167

168 # Perimeter

169

170 p += R * dtheta * W.get(m)[a]

171

172 print >> f, ’Gaussian coordinate t =’, t, ’\n’

173 print >> f, ’theta =’, theta, ’\n’

174

175 print >> f, ’n_x =’, n_x, ’\n’

176 print >> f, ’n_y =’, n_y, ’\n’

177

178 print >> f, ’S_xx =’, S_xx, ’\n’

179 print >> f, ’S_yy =’, S_yy, ’\n’

180 print >> f, ’S_xy =’, S_xy, ’\n’

181

182 print >> f, ’u_x =’, u_x, ’\n’

183 print >> f, ’u_y =’, u_y, ’\n’

184

185 print >> f, ’T_x =’, T_x, ’\n’

186 print >> f, ’T_y =’, T_y, ’\n’

187

188 print >> f, ’Strain Energy =’, SE, ’\n’

189 print >> f, ’Strain Energy Density =’, SED, ’\n’

190
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191 print >> f, ’Perimeter =’, p, ’\n’

192

193 a += 1

194

195 # Definition of the theoretical value for the SED

196

197 REF = (1.0 + NU) * (5.0 - 8.0 * NU) * K_I ** 2

198 REF /= 8.0 * math.pi * R * E

199

200 # Printing of the final values

201

202 print >> f, ’\n==================================================\n’

203 print >> f, ’ RESULTS’

204 print >> f, ’\n==================================================\n’

205

206 print >> f, ’ x_c =’, x_c,’, y_c =’, y_c, ’\n’

207

208 print >> f, ’ Computed SED =’, SED, ’\n’

209 print >> f, ’ Theoretical SED =’, REF, ’\n’

210 print >> f, ’ Percentual error =’, abs(SED / REF - 1.0) * 100.0, ’%\n’

211

212 print >> f, ’ Length of the path =’, p

213

214 print >> f, ’\n==================================================\n\n\n’

215

216 f.close()
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C C O M M A N D F I L E S

This appendix collects all the command files used in the Finite Ele-
ment Analyses. As in the previous appendix, the Gauss-Legendre
abscissas and weights were omitted.

c.1 plate_cnst_sed_1d.comm

Algorithm C.1. Finite Element computation of SED through a contour inte-
gral for a plate subjected to a constant tensile stress (subsec-
tion 4.2.1).

1 # File PLATE_CNST_SED_1D.COMM

2 # Computes the local strain energy density in random

3 # points for a plate subjected to a constant tensile

4 # stress through a contour integral

5 # Utilizes the MACR_LIGN_COUPE command

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import random as rnd

11 import os

12

13 WORKING_DIR = ’. . . ’

14

15 exportfile = os.path.join(WORKING_DIR,’fe_plate_cnst_sed_1d.dat’)

16 f = open(exportfile,’w’)

17

18 f.write(’==========================================================\

19 =========\n’)

20 f.write(’==========================================================\

21 =========\n’)

22 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

23 ENERGY\n\

24 DENSITY IN RANDOM POINTS FOR A PLATE SUBJECTED TO A\n\

25 CONSTANT TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)

26 f.write(’==========================================================\

27 =========\n’)

28 f.write(’==========================================================\

29 =========\n\n’)

30

31 # Definition of the Gauss-Legendre abscissas

32

33 T = {

34 1:[-0.0],

35 2:[. . . ],

36

.

.

.

37 }

38

39 # Definition of the Gauss-Legendre weights

40

41 W = {
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42 1:[2.0],

43 2:[. . . ],

44

.

.

.

45 }

46

47 # Definition of some parameters of the problem

48

49 # Material

50

51 E = 210000.0 # Young’s modulus of steel [MPa]

52 NU = 0.3 # Poisson’s ratio of steel []

53

54 # Boundary conditions

55

56 S0 = 100.0 # Applied tensile stress [MPa]

57

58 # Input for the values R, q, n, m

59

60 f.write(’INPUT VALUES:\n\n’)

61

62 R = input(’Enter the radius of the circles onto which compute the SED: ’)

63

64 f.write(’Radius of the circles: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

65

66 q = input(’Enter the number of random points: ’)

67

68 f.write(’Number of random points: q = ’ + str(q) + ’\n\n’)

69

70 n = input(’Enter the number of subdivisions for each circumference: ’)

71

72 f.write(’Number of subdivisions for each circumference: n = ’ + \

73 str(n) + ’\n\n’)

74

75 m = input(’Enter the number of Gaussian points for each subdivision: ’)

76

77 f.write(’Number of Gaussian points for each subdivision: m = ’ + \

78 str(m) + ’\n\n’)

79 f.write(’==========================================================\

80 =========\n\n’)

81

82 # Definition of the material

83

84 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

85 NU=NU,),);

86

87 # Reading of the mesh

88

89 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

90

91 # Reorientation of the normals towards the outside

92

93 MAIL=MODI_MAILLAGE(reuse =MAIL,

94 MAILLAGE=MAIL,

95 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,),),);

96

97 # Application of the plane strain conditions

98

99 MODE=AFFE_MODELE(MAILLAGE=MAIL,

100 AFFE=_F(TOUT=’OUI’,

101 PHENOMENE=’MECANIQUE’,

102 MODELISATION=’D_PLAN’,),);

103

104 # Application of the material properties to the domain

105

106 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,
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107 AFFE=_F(TOUT=’OUI’,

108 MATER=STEEL,),);

109

110 # Application of the constraints

111

112 SYMM=AFFE_CHAR_MECA(MODELE=MODE,

113 DDL_IMPO=(_F(GROUP_MA=’Edge_1’,

114 DX=0.0,),

115
_F(GROUP_NO=’Vertex_1’,

116 DY=0.0,),),);

117

118 # Application of the external loads

119

120 LOAD=AFFE_CHAR_MECA(MODELE=MODE,

121 PRES_REP=_F(GROUP_MA=’Edge_2’,

122 PRES=-S0,),);

123

124 # Definition of the linear elastic static model

125

126 RESU=MECA_STATIQUE(MODELE=MODE,

127 CHAM_MATER=MATE,

128 EXCIT=(_F(CHARGE=SYMM,),

129
_F(CHARGE=LOAD,),),);

130

131 # Calculation of the nodal solutions

132 # WARNING: For nodes shared between more than one

133 # element, the nodal values are calculated separately

134

135 RESU=CALC_ELEM(reuse =RESU,

136 RESULTAT=RESU,

137 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

138

139 # Calculation of the nodal solutions

140 # The nodal values from each element sharing

141 # that node are averaged

142

143 RESU=CALC_NO(reuse =RESU,

144 RESULTAT=RESU,

145 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

146

147 # Definition of the initial values and constants

148

149 theta_a = -math.pi

150 theta_b = math.pi

151 b = 0

152

153 # Definition of the empty arrays

154

155 C_X = []

156 C_Y = []

157 STRESS = [None] * q * n * m

158 DISPL = [None] * q * n * m

159 n_x = [None] * q * n * m

160 n_y = [None] * q * n * m

161

162 for k in range(q):

163

164 a = -1

165

166 # Definition of the coordinates of the points

167

168 x_c = rnd.uniform(R, 100.0 - R)

169 y_c = rnd.uniform(R, 100.0 - R)

170 x_0 = x_c + R * math.cos(theta_a)

171 y_0 = y_c + R * math.sin(theta_a)

172
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173 # Appending the coordinates to the corresponding vectors

174

175 C_X.append(x_c)

176 C_Y.append(y_c)

177

178 # Interpolation of the desired quantities onto the path

179

180 for i in range(1, n + 1):

181

182 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

183 theta_2 = theta_a + i * (theta_b - theta_a) / n

184 dtheta = 0.5 * (theta_2 - theta_1)

185

186 for j in range(m):

187

188 t = T.get(m)[m - j - 1]

189 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

190 n_x[i + j + k + a + b] = math.cos(theta)

191 n_y[i + j + k + a + b] = math.sin(theta)

192 x_1 = x_c + R * math.cos(theta)

193 y_1 = y_c + R * math.sin(theta)

194

195 # Stresses

196

197 STR=MACR_LIGN_COUPE(RESULTAT=RESU,

198 NOM_CHAM=’SIGM_NOEU’,

199 LIGN_COUPE=_F(INTITULE=’STRESSES’,

200 TYPE=’SEGMENT’,

201 NB_POINTS=2,

202 COOR_ORIG=(x_0,y_0),

203 COOR_EXTR=(x_1,y_1),),);

204

205 # Displacements

206

207 DIS=MACR_LIGN_COUPE(RESULTAT=RESU,

208 NOM_CHAM=’DEPL’,

209 LIGN_COUPE=_F(INTITULE=’DISPLACEMENTS’,

210 TYPE=’SEGMENT’,

211 NB_POINTS=2,

212 COOR_ORIG=(x_0,y_0),

213 COOR_EXTR=(x_1,y_1),),);

214

215 # Definition of the tables from the concepts

216

217 STRESS[i + j + k + a + b] = STR.EXTR_TABLE()

218 DISPL[i + j + k + a + b] = DIS.EXTR_TABLE()

219

220 # Destruction of the concepts

221

222 DETRUIRE(CONCEPT=(_F(NOM=STR),

223
_F(NOM=DIS),),);

224

225 x_0 = x_1

226 y_0 = y_1

227

228 a += m - 1

229

230 b += n * m - 1

231

232 # Saving the output in MED format

233

234 IMPR_RESU(FORMAT=’MED’,

235 RESU=_F(MAILLAGE=MAIL,

236 RESULTAT=RESU,),);

237

238 # Python script for SED calculation
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239

240 # Definition of the initial values and constants

241

242 A = 0.5 * (theta_b - theta_a) * R ** 2

243 a = 0

244 b = 0

245

246 # Definition of the empty arrays

247

248 SED = []

249 per = []

250

251 for s in range(q):

252

253 # Definition of the initial values for the given point

254

255 SEth = 0.0

256 SE = 0.0

257 p = 0.0

258

259 for i in range(n * m):

260

261 # Definition of the arrays from the tables

262

263 coor_x = STRESS[i + s + b].values()[’COOR_X’]

264 coor_y = STRESS[i + s + b].values()[’COOR_Y’]

265 S_xx = STRESS[i + s + b].values()[’SIXX’]

266 S_yy = STRESS[i + s + b].values()[’SIYY’]

267 S_xy = STRESS[i + s + b].values()[’SIXY’]

268 u_x = DISPL[i + s + b].values()[’DX’]

269 u_y = DISPL[i + s + b].values()[’DY’]

270

271 k = len(S_xx) - 1

272 l = len(u_x) - 1

273

274 # Calculation of the theoretical quantities

275

276 # Displacements

277

278 u_xth = (1.0 - NU ** 2) * S0 * coor_x[k] / E

279 u_yth = -NU * (1.0 + NU) * S0 * coor_y[k] / E

280

281 # Strain energy

282

283 SEth += 0.5 * S0 * n_x[i + s + b] * u_xth * R * dtheta * W.get(m)[a]

284

285 # Calculation of the FE quantities

286

287 # Traction vectors

288

289 T_x = S_xx[k] * n_x[i + s + b] + S_xy[k] * n_y[i + s + b]

290 T_y = S_xy[k] * n_x[i + s + b] + S_yy[k] * n_y[i + s + b]

291

292 # Strain energy

293

294 SE += 0.5 * (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[a]

295

296 # Perimeter

297

298 p += R * dtheta * W.get(m)[a]

299

300 f.write(’\n==================================================\n’)

301 f.write(’ Iteration ’ + str(i + 1) + ’ for circle ’ + \

302 str(s + 1) + ’:’)

303 f.write(’\n==================================================\n\n’)

304
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305 f.write(’Coordinates: x = ’ + ’{0:3.10f}’.format(coor_x[k]) + ’\n’)

306 f.write(’ y = ’ + ’{0:3.10f}’.format(coor_y[k]) + \

307 ’\n\n’)

308

309 f.write(’Stresses: Sxx = ’ + ’{0:3.2f}’.format(S_xx[k]) + ’\n’)

310 f.write(’ Syy = ’ + ’{0:3.2f}’.format(S_yy[k]) + ’\n’)

311 f.write(’ Sxy = ’ + ’{0:3.2f}’.format(S_xy[k]) + ’\n\n’)

312

313 f.write(’Displacements: Ux = ’ + ’{0:2.10e}’.format(u_x[l]) + ’\n’)

314 f.write(’ Uy = ’ + ’{0:2.10e}’.format(u_y[l]) + ’\n\n’)

315

316 f.write(’Normal vector: nx = ’ + ’{0:1.10f}’.format(n_x[i + s + b]) + \

317 ’\n’)

318 f.write(’ ny = ’ + ’{0:1.10f}’.format(n_y[i + s + b]) + \

319 ’\n\n’)

320

321 f.write(’Traction vector: Tx = ’ + ’{0:1.10f}’.format(T_x) + ’\n’)

322 f.write(’ Ty = ’ + ’{0:1.10f}’.format(T_y) + ’\n\n’)

323

324 f.write(’Strain energy: SE = ’ + ’{0:2.10e}’.format(SE) + ’\n’)

325 f.write(’SED: SED = ’ + ’{0:2.10e}’.format(SE / A) + ’\n’)

326

327 f.write(’\n==================================================\n\n’)

328

329 if a == m - 1:

330 a = 0

331 else:

332 a += 1

333

334 # Appending the results to the corresponding vectors

335

336 SED.append(SE/A)

337 per.append(p)

338

339 b += n * m - 1

340

341 # Printing of the final values

342

343 # Definition of the theoretical value for the SED

344

345 REF = 0.5 * (1.0 - NU ** 2) * S0 ** 2 / E

346

347 for i in range(q):

348

349 f.write(’\n==================================================\n’)

350 f.write(’ RESULTS FOR CIRCLE ’ + str(i + 1))

351 f.write(’\n==================================================\n\n’)

352

353 f.write(’ Coordinates of the center: x_c = ’ + ’{0:3.10f}’.format(C_X[i]) + \

354 ’\n’)

355 f.write(’ y_c = ’ + ’{0:3.10f}’.format(C_Y[i]) + \

356 ’\n\n’)

357

358 f.write(’ Computed SED = ’ + ’{0:2.10e}’.format(SED[i]) + ’\n’)

359 f.write(’ Theoretical SED = ’ + ’{0:2.10e}’.format(REF) + ’\n’)

360 f.write(’ Percentual error = ’ + ’{0:4.2e}’.format((abs(SED[i] / REF - \

361 1.0) * 100.0)) + ’%\n\n’)

362 f.write(’ Length of the path = ’ + ’{0:1.10f}’.format(per[i]) + ’\n\n’)

363

364 f.write(’==================================================\n’)

365

366 f.close()

367

368 FIN();
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c.2 plate_lnr_sed_1d.comm

Algorithm C.2. Finite Element computation of SED through a contour inte-
gral for a plate subjected to a linear tensile stress (subsec-
tion 4.2.2).

1 # File PLATE_LNR_SED_1D.COMM

2 # Computes the local strain energy density in random

3 # points for a plate subjected to a linear tensile

4 # stress through a contour integral

5 # Utilizes the MACR_LIGN_COUPE command

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import random as rnd

11 import os

12

13 WORKING_DIR = ’. . . ’

14

15 exportfile = os.path.join(WORKING_DIR,’fe_plate_lnr_sed_1d.dat’)

16 f = open(exportfile,’w’)

17

18 f.write(’==========================================================\

19 =========\n’)

20 f.write(’==========================================================\

21 =========\n’)

22 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

23 ENERGY\n\

24 DENSITY IN RANDOM POINTS FOR A PLATE SUBJECTED TO A\n\

25 LINEAR TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)

26 f.write(’==========================================================\

27 =========\n’)

28 f.write(’==========================================================\

29 =========\n\n’)

30

31 # Definition of the Gauss-Legendre abscissas

32

33 T = {

34 1:[-0.0],

35 2:[. . . ],

36

.

.

.

37 }

38

39 # Definition of the Gauss-Legendre weights

40

41 W = {

42 1:[2.0],

43 2:[. . . ],

44

.

.

.

45 }

46

47 # Definition of some parameters of the problem

48

49 # Material

50

51 E = 210000.0 # Young’s modulus of steel [MPa]

52 NU = 0.3 # Poisson’s ratio of steel []

53

54 # Geometry

55

56 h = 100.0 # Length of the plate’s edge [mm]

57
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58 # Boundary conditions

59

60 SM = 100.0 # Maximum applied tensile stress [MPa]

61

62 # Input for the values R, q, n, m

63

64 f.write(’INPUT VALUES:\n\n’)

65

66 R = input(’Enter the radius of the circles onto which compute the SED: ’)

67

68 f.write(’Radius of the circles: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

69

70 q = input(’Enter the number of random points: ’)

71

72 f.write(’Number of random points: q = ’ + str(q) + ’\n\n’)

73

74 n = input(’Enter the number of subdivisions for each circumference: ’)

75

76 f.write(’Number of subdivisions for each circumference: n = ’ + \

77 str(n) + ’\n\n’)

78

79 m = input(’Enter the number of Gaussian points for each subdivision: ’)

80

81 f.write(’Number of Gaussian points for each subdivision: m = ’ + \

82 str(m) + ’\n\n’)

83 f.write(’==========================================================\

84 =========\n\n’)

85

86 # Definition of the material

87

88 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

89 NU=NU,),);

90

91 # Reading of the mesh

92

93 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

94

95 # Reorientation of the normals towards the outside

96

97 MAIL=MODI_MAILLAGE(reuse =MAIL,

98 MAILLAGE=MAIL,

99 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,),),);

100

101 # Application of the plane strain conditions

102

103 MODE=AFFE_MODELE(MAILLAGE=MAIL,

104 AFFE=_F(TOUT=’OUI’,

105 PHENOMENE=’MECANIQUE’,

106 MODELISATION=’D_PLAN’,),);

107

108 # Application of the material properties to the domain

109

110 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

111 AFFE=_F(TOUT=’OUI’,

112 MATER=STEEL,),);

113

114 # Application of the constraints

115

116 SYMM=AFFE_CHAR_MECA(MODELE=MODE,

117 DDL_IMPO=(_F(GROUP_MA=’Edge_1’,

118 DX=0.0,),

119
_F(GROUP_NO=’Vertex_1’,

120 DY=0.0,),),);

121

122 # Application of the external loads

123
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124 SX=FORMULE(NOM_PARA=’Y’,VALE=’(-SM * (1.0 - Y / h))’);

125

126 LOAD=AFFE_CHAR_MECA_F(MODELE=MODE,

127 PRES_REP=_F(GROUP_MA=’Edge_2’,

128 PRES=SX,),);

129

130 # Definition of the linear elastic static model

131

132 RESU=MECA_STATIQUE(MODELE=MODE,

133 CHAM_MATER=MATE,

134 EXCIT=(_F(CHARGE=SYMM,),

135
_F(CHARGE=LOAD,),),);

136

137 # Calculation of the nodal solutions

138 # WARNING: For nodes shared between more than one

139 # element, the nodal values are calculated separately

140

141 RESU=CALC_ELEM(reuse =RESU,

142 RESULTAT=RESU,

143 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

144

145 # Calculation of the nodal solutions

146 # The nodal values from each element sharing

147 # that node are averaged

148

149 RESU=CALC_NO(reuse =RESU,

150 RESULTAT=RESU,

151 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

152

153 # Definition of the initial values and constants

154

155 theta_a = -math.pi

156 theta_b = math.pi

157 b = 0

158

159 # Definition of the empty arrays

160

161 C_X = []

162 C_Y = []

163 STRESS = [None] * q * n * m

164 DISPL = [None] * q * n * m

165 n_x = [None] * q * n * m

166 n_y = [None] * q * n * m

167

168 for k in range(q):

169

170 a = -1

171

172 # Definition of the coordinates of the points

173

174 x_c = rnd.uniform(R, 100.0 - R)

175 y_c = rnd.uniform(R, 100.0 - R)

176 x_0 = x_c + R * math.cos(theta_a)

177 y_0 = y_c + R * math.sin(theta_a)

178

179 # Appending the coordinates to the corresponding vectors

180

181 C_X.append(x_c)

182 C_Y.append(y_c)

183

184 # Interpolation of the desired quantities onto the path

185

186 for i in range(1, n + 1):

187

188 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

189 theta_2 = theta_a + i * (theta_b - theta_a) / n
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190 dtheta = 0.5 * (theta_2 - theta_1)

191

192 for j in range(m):

193

194 t = T.get(m)[m - j - 1]

195 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

196 n_x[i + j + k + a + b] = math.cos(theta)

197 n_y[i + j + k + a + b] = math.sin(theta)

198 x_1 = x_c + R * math.cos(theta)

199 y_1 = y_c + R * math.sin(theta)

200

201 # Stresses

202

203 STR=MACR_LIGN_COUPE(RESULTAT=RESU,

204 NOM_CHAM=’SIGM_NOEU’,

205 LIGN_COUPE=_F(INTITULE=’STRESSES’,

206 TYPE=’SEGMENT’,

207 NB_POINTS=2,

208 COOR_ORIG=(x_0,y_0),

209 COOR_EXTR=(x_1,y_1),),);

210

211 # Displacements

212

213 DIS=MACR_LIGN_COUPE(RESULTAT=RESU,

214 NOM_CHAM=’DEPL’,

215 LIGN_COUPE=_F(INTITULE=’DISPLACEMENTS’,

216 TYPE=’SEGMENT’,

217 NB_POINTS=2,

218 COOR_ORIG=(x_0,y_0),

219 COOR_EXTR=(x_1,y_1),),);

220

221 # Definition of the tables from the concepts

222

223 STRESS[i + j + k + a + b] = STR.EXTR_TABLE()

224 DISPL[i + j + k + a + b] = DIS.EXTR_TABLE()

225

226 # Destruction of the concepts

227

228 DETRUIRE(CONCEPT=(_F(NOM=STR),

229
_F(NOM=DIS),),);

230

231 x_0 = x_1

232 y_0 = y_1

233

234 a += m - 1

235

236 b += n * m - 1

237

238 # Saving the output in MED format

239

240 IMPR_RESU(FORMAT=’MED’,

241 RESU=_F(MAILLAGE=MAIL,

242 RESULTAT=RESU,),);

243

244 # Python script for SED calculation

245

246 # Definition of the initial values and constants

247

248 A = 0.5 * (theta_b - theta_a) * R ** 2

249 a = 0

250 b = 0

251

252 # Definition of the empty arrays

253

254 SED = []

255 per = []
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256

257 for s in range(q):

258

259 # Definition of the initial values for the given point

260

261 SEth = 0.0

262 SE = 0.0

263 p = 0.0

264

265 for i in range(n * m):

266

267 # Definition of the arrays from the tables

268

269 coor_x = STRESS[i + s + b].values()[’COOR_X’]

270 coor_y = STRESS[i + s + b].values()[’COOR_Y’]

271 S_xx = STRESS[i + s + b].values()[’SIXX’]

272 S_yy = STRESS[i + s + b].values()[’SIYY’]

273 S_xy = STRESS[i + s + b].values()[’SIXY’]

274 u_x = DISPL[i + s + b].values()[’DX’]

275 u_y = DISPL[i + s + b].values()[’DY’]

276

277 k = len(S_xx) - 1

278 l = len(u_x) - 1

279

280 # Calculation of the theoretical quantities

281

282 # Stresses

283

284 S_xxth = SM * (1.0 - coor_y[k] / h)

285 S_yyth = 0.0

286 S_xyth = 0.0

287

288 # Displacements

289

290 u_xth = (1.0 - NU ** 2) * SM * (1.0 - coor_y[k] / h) * coor_x[k] / E

291

292 u_yth = 0.5 * coor_x[k] ** 2 / h

293 u_yth -= NU * (1.0 - 0.5 * coor_y[k] / h) * coor_y[k] / (1.0 - NU)

294 u_yth *= (1.0 - NU ** 2) * SM / E

295

296 # Traction vectors

297

298 T_xth = S_xxth * n_x[i + s + b] + S_xyth * n_y[i + s + b]

299 T_yth = S_xyth * n_x[i + s + b] + S_yyth * n_y[i + s + b]

300

301 # Strain energy

302

303 SEth += 0.5 * (T_xth * u_xth + T_yth * u_yth) * R * dtheta * W.get(m)[a]

304

305 # Calculation of the FE quantities

306

307 # Traction vectors

308

309 T_x = S_xx[k] * n_x[i + s + b] + S_xy[k] * n_y[i + s + b]

310 T_y = S_xy[k] * n_x[i + s + b] + S_yy[k] * n_y[i + s + b]

311

312 # Strain energy

313

314 SE += 0.5 * (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[a]

315

316 # Perimeter

317

318 p += R * dtheta * W.get(m)[a]

319

320 f.write(’\n==================================================\n’)

321 f.write(’ Iteration ’ + str(i + 1) + ’ for circle ’ + \
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322 str(s + 1) + ’:’)

323 f.write(’\n==================================================\n\n’)

324

325 f.write(’Coordinates: x = ’ + ’{0:3.10f}’.format(coor_x[k]) + ’\n’)

326 f.write(’ y = ’ + ’{0:3.10f}’.format(coor_y[k]) + \

327 ’\n\n’)

328

329 f.write(’Stresses: Sxx = ’ + ’{0:3.2f}’.format(S_xx[k]) + ’\n’)

330 f.write(’ Syy = ’ + ’{0:3.2f}’.format(S_yy[k]) + ’\n’)

331 f.write(’ Sxy = ’ + ’{0:3.2f}’.format(S_xy[k]) + ’\n\n’)

332

333 f.write(’Displacements: Ux = ’ + ’{0:2.10e}’.format(u_x[l]) + ’\n’)

334 f.write(’ Uy = ’ + ’{0:2.10e}’.format(u_y[l]) + ’\n\n’)

335

336 f.write(’Normal vector: nx = ’ + ’{0:1.10f}’.format(n_x[i + s + b]) + \

337 ’\n’)

338 f.write(’ ny = ’ + ’{0:1.10f}’.format(n_y[i + s + b]) + \

339 ’\n\n’)

340

341 f.write(’Traction vector: Tx = ’ + ’{0:1.10f}’.format(T_x) + ’\n’)

342 f.write(’ Ty = ’ + ’{0:1.10f}’.format(T_y) + ’\n\n’)

343

344 f.write(’Strain energy: SE = ’ + ’{0:2.10e}’.format(SE) + ’\n’)

345 f.write(’SED: SED = ’ + ’{0:2.10e}’.format(SE / A) + ’\n’)

346

347 f.write(’\n==================================================\n\n’)

348

349 if a == m - 1:

350 a = 0

351 else:

352 a += 1

353

354 # Appending the results to the corresponding vectors

355

356 SED.append(SE/A)

357 per.append(p)

358

359 b += n * m - 1

360

361 # Printing of the final values

362

363 for i in range(q):

364

365 # Definition of the theoretical value for the SED

366

367 REF = 0.25 * R ** 2 + (h - C_Y[i]) ** 2

368 REF *= 0.5 * (SM / h) ** 2 * (1.0 - NU ** 2) / E

369

370 f.write(’\n==================================================\n’)

371 f.write(’ RESULTS FOR CIRCLE ’ + str(i + 1))

372 f.write(’\n==================================================\n\n’)

373

374 f.write(’ Coordinates of the center: x_c = ’ + ’{0:3.10f}’.format(C_X[i]) + \

375 ’\n’)

376 f.write(’ y_c = ’ + ’{0:3.10f}’.format(C_Y[i]) + \

377 ’\n\n’)

378

379 f.write(’ Computed SED = ’ + ’{0:2.10e}’.format(SED[i]) + ’\n’)

380 f.write(’ Theoretical SED = ’ + ’{0:2.10e}’.format(REF) + ’\n’)

381 f.write(’ Percentual error = ’ + ’{0:4.2e}’.format((abs(SED[i] / REF - \

382 1.0) * 100.0)) + ’%\n\n’)

383 f.write(’ Length of the path = ’ + ’{0:1.10f}’.format(per[i]) + ’\n\n’)

384

385 f.write(’==================================================\n’)

386

387 f.close()
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388

389 FIN();

c.3 beam_end_sed_1d.comm

Algorithm C.3. Finite Element computation of SED through a contour inte-
gral for a beam subjected to an end load (subsection 4.2.3).

1 # File BEAM_END_SED_1D.COMM

2 # Computes the local strain energy density in random

3 # points for a two-dimensional beam subjected to an

4 # end load through a contour integral

5 # Utilizes the MACR_LIGN_COUPE command

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import random as rnd

11 import os

12

13 WORKING_DIR = ’. . . ’

14

15 exportfile = os.path.join(WORKING_DIR,’fe_beam_end_sed_1d.dat’)

16 f = open(exportfile,’w’)

17

18 f.write(’==========================================================\

19 =========\n’)

20 f.write(’==========================================================\

21 =========\n’)

22 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

23 ENERGY\n\

24 DENSITY IN RANDOM POINTS FOR A TWO-DIMENSIONAL BEAM\n\

25 SUBJECTED TO AN END LOAD THROUGH A CONTOUR INTEGRAL\n’)

26 f.write(’==========================================================\

27 =========\n’)

28 f.write(’==========================================================\

29 =========\n\n’)

30

31 # Definition of the Gauss-Legendre abscissas

32

33 T = {

34 1:[-0.0],

35 2:[. . . ],

36

.

.

.

37 }

38

39 # Definition of the Gauss-Legendre weights

40

41 W = {

42 1:[2.0],

43 2:[. . . ],

44

.

.

.

45 }

46

47 # Definition of some parameters of the problem

48

49 # Material

50

51 E = 210000.0 # Young’s modulus of steel [MPa]

52 NU = 0.3 # Poisson’s ratio of steel []
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53 G = 0.5 * E / (1.0 + NU) # Shear modulus of steel [MPa]

54

55 # Geometry

56

57 b = 1.0 # Thickness of the beam [mm]

58 L = 100.0 # Length of the beam [mm]

59 h = 10.0 # Height of half beam [mm]

60 I = 2.0 * b * h ** 3 / 3.0 # Moment of inertia [mm ^ 4]

61

62 # Boundary conditions

63

64 F = 100.0 # Applied end load [N]

65

66 # Input for the values R, q, n, m

67

68 f.write(’INPUT VALUES:\n\n’)

69

70 R = input(’Enter the radius of the circles onto which compute the SED: ’)

71

72 f.write(’Radius of the circles: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

73

74 q = input(’Enter the number of random points: ’)

75

76 f.write(’Number of random points: q = ’ + str(q) + ’\n\n’)

77

78 n = input(’Enter the number of subdivisions for each circumference: ’)

79

80 f.write(’Number of subdivisions for each circumference: n = ’ + \

81 str(n) + ’\n\n’)

82

83 m = input(’Enter the number of Gaussian points for each subdivision: ’)

84

85 f.write(’Number of Gaussian points for each subdivision: m = ’ + \

86 str(m) + ’\n\n’)

87 f.write(’==========================================================\

88 =========\n\n’)

89

90 # Definition of the material

91

92 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

93 NU=NU,),);

94

95 # Reading of the mesh

96

97 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

98

99 # Reorientation of the normals towards the outside

100

101 MAIL=MODI_MAILLAGE(reuse =MAIL,

102 MAILLAGE=MAIL,

103 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,),),);

104

105 # Application of the plane stress conditions

106

107 MODE=AFFE_MODELE(MAILLAGE=MAIL,

108 AFFE=_F(TOUT=’OUI’,

109 PHENOMENE=’MECANIQUE’,

110 MODELISATION=’C_PLAN’,),);

111

112 # Application of the material properties to the domain

113

114 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

115 AFFE=_F(TOUT=’OUI’,

116 MATER=STEEL,),);

117

118 # Application of the constraints
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119

120 CONST=AFFE_CHAR_MECA(MODELE=MODE,

121 DDL_IMPO=(_F(GROUP_MA=’Edge_1’,

122 DX=0.0,

123 DY=0.0,),),);

124

125 # Application of the external loads

126

127 FY = -0.5 * F / (b * h)

128

129 LOAD=AFFE_CHAR_MECA(MODELE=MODE,

130 FORCE_CONTOUR=_F(GROUP_MA=’Edge_2’,

131 FY=FY,),);

132

133 # Definition of the linear elastic static model

134

135 RESU=MECA_STATIQUE(MODELE=MODE,

136 CHAM_MATER=MATE,

137 EXCIT=(_F(CHARGE=CONST,),

138
_F(CHARGE=LOAD,),),);

139

140 # Calculation of the nodal solutions

141 # WARNING: For nodes shared between more than one

142 # element, the nodal values are calculated separately

143

144 RESU=CALC_ELEM(reuse =RESU,

145 RESULTAT=RESU,

146 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

147

148 # Calculation of the nodal solutions

149 # The nodal values from each element sharing

150 # that node are averaged

151

152 RESU=CALC_NO(reuse =RESU,

153 RESULTAT=RESU,

154 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

155

156 # Definition of the initial values and constants

157

158 theta_a = -math.pi

159 theta_b = math.pi

160 b = 0

161

162 # Definition of the empty arrays

163

164 C_X = []

165 C_Y = []

166 STRESS = [None] * q * n * m

167 DISPL = [None] * q * n * m

168 n_x = [None] * q * n * m

169 n_y = [None] * q * n * m

170

171 for k in range(q):

172

173 a = -1

174

175 # Definition of the coordinates of the points

176

177 x_c = rnd.uniform(0.15 * L + R, 0.9 * L - R)

178 y_c = rnd.uniform(-h + R, h - R)

179 x_0 = x_c + R * math.cos(theta_a)

180 y_0 = y_c + R * math.sin(theta_a)

181

182 # Appending the coordinates to the corresponding vectors

183

184 C_X.append(x_c)
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185 C_Y.append(y_c)

186

187 # Interpolation of the desired quantities onto the path

188

189 for i in range(1, n + 1):

190

191 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

192 theta_2 = theta_a + i * (theta_b - theta_a) / n

193 dtheta = 0.5 * (theta_2 - theta_1)

194

195 for j in range(m):

196

197 t = T.get(m)[m - j - 1]

198 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

199 n_x[i + j + k + a + b] = math.cos(theta)

200 n_y[i + j + k + a + b] = math.sin(theta)

201 x_1 = x_c + R * math.cos(theta)

202 y_1 = y_c + R * math.sin(theta)

203

204 # Stresses

205

206 STR=MACR_LIGN_COUPE(RESULTAT=RESU,

207 NOM_CHAM=’SIGM_NOEU’,

208 LIGN_COUPE=_F(INTITULE=’STRESSES’,

209 TYPE=’SEGMENT’,

210 NB_POINTS=2,

211 COOR_ORIG=(x_0,y_0),

212 COOR_EXTR=(x_1,y_1),),);

213

214 # Displacements

215

216 DIS=MACR_LIGN_COUPE(RESULTAT=RESU,

217 NOM_CHAM=’DEPL’,

218 LIGN_COUPE=_F(INTITULE=’DISPLACEMENTS’,

219 TYPE=’SEGMENT’,

220 NB_POINTS=2,

221 COOR_ORIG=(x_0,y_0),

222 COOR_EXTR=(x_1,y_1),),);

223

224 # Definition of the tables from the concepts

225

226 STRESS[i + j + k + a + b] = STR.EXTR_TABLE()

227 DISPL[i + j + k + a + b] = DIS.EXTR_TABLE()

228

229 # Destruction of the concepts

230

231 DETRUIRE(CONCEPT=(_F(NOM=STR),

232
_F(NOM=DIS),),);

233

234 x_0 = x_1

235 y_0 = y_1

236

237 a += m - 1

238

239 b += n * m - 1

240

241 # Saving the output in MED format

242

243 IMPR_RESU(FORMAT=’MED’,

244 RESU=_F(MAILLAGE=MAIL,

245 RESULTAT=RESU,),);

246

247 # Python script for SED calculation

248

249 # Definition of the initial values and constants

250
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251 A = 0.5 * (theta_b - theta_a) * R ** 2

252 a = 0

253 b = 0

254

255 # Definition of the empty arrays

256

257 SED = []

258 per = []

259

260 for s in range(q):

261

262 # Definition of the initial values for the given point

263

264 SEth = 0.0

265 SE = 0.0

266 p = 0.0

267

268 for i in range(n * m):

269

270 # Definition of the arrays from the tables

271

272 coor_x = STRESS[i + s + b].values()[’COOR_X’]

273 coor_y = STRESS[i + s + b].values()[’COOR_Y’]

274 S_xx = STRESS[i + s + b].values()[’SIXX’]

275 S_yy = STRESS[i + s + b].values()[’SIYY’]

276 S_xy = STRESS[i + s + b].values()[’SIXY’]

277 u_x = DISPL[i + s + b].values()[’DX’]

278 u_y = DISPL[i + s + b].values()[’DY’]

279

280 k = len(S_xx) - 1

281 l = len(u_x) - 1

282

283 # Calculation of the theoretical quantities

284

285 # Stresses

286

287 S_xxth = F * coor_x[k] * coor_y[k] / I

288 S_yyth = 0.0

289 S_xyth = 0.5 * F * (h ** 2 - coor_y[k] ** 2) / I

290

291 # Displacements

292

293 u_xth = 0.5 * F * coor_x[k] ** 2 * coor_y[k] / (E * I)

294 u_xth += NU * F * coor_y[k] ** 3 / (6.0 * E * I)

295 u_xth -= F * coor_y[k] ** 3 / (6.0 * G * I)

296 u_xth -= 0.5 * F * (L ** 2 / E - h ** 2 / G) * coor_y[k] / I

297

298 u_yth = -0.5 * NU * coor_x[k] * coor_y[k] ** 2

299 u_yth -= coor_x[k] ** 3 / 6.0 - 0.5 * L ** 2 * coor_x[k]

300 u_yth -= L ** 3 / 3.0

301 u_yth *= F / (E * I)

302

303 # Traction vectors

304

305 T_xth = S_xxth * n_x[i + s + b] + S_xyth * n_y[i + s + b]

306 T_yth = S_xyth * n_x[i + s + b] + S_yyth * n_y[i + s + b]

307

308 # Strain energy

309

310 SEth += 0.5 * (T_xth * u_xth + T_yth * u_yth) * R * dtheta * W.get(m)[a]

311

312 # Calculation of the FE quantities

313

314 # Traction vectors

315

316 T_x = S_xx[k] * n_x[i + s + b] + S_xy[k] * n_y[i + s + b]
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317 T_y = S_xy[k] * n_x[i + s + b] + S_yy[k] * n_y[i + s + b]

318

319 # Strain energy

320

321 SE += 0.5 * (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[a]

322

323 # Perimeter

324

325 p += R * dtheta * W.get(m)[a]

326

327 f.write(’\n==================================================\n’)

328 f.write(’ Iteration ’ + str(i + 1) + ’ for circle ’ + \

329 str(s + 1) + ’:’)

330 f.write(’\n==================================================\n\n’)

331

332 f.write(’Coordinates: x = ’ + ’{0:3.10f}’.format(coor_x[k]) + ’\n’)

333 f.write(’ y = ’ + ’{0:3.10f}’.format(coor_y[k]) + \

334 ’\n\n’)

335

336 f.write(’Stresses: Sxx = ’ + ’{0:3.2f}’.format(S_xx[k]) + ’\n’)

337 f.write(’ Syy = ’ + ’{0:3.2f}’.format(S_yy[k]) + ’\n’)

338 f.write(’ Sxy = ’ + ’{0:3.2f}’.format(S_xy[k]) + ’\n\n’)

339

340 f.write(’Displacements: Ux = ’ + ’{0:2.10e}’.format(u_x[l]) + ’\n’)

341 f.write(’ Uy = ’ + ’{0:2.10e}’.format(u_y[l]) + ’\n\n’)

342

343 f.write(’Normal vector: nx = ’ + ’{0:1.10f}’.format(n_x[i + s + b]) + \

344 ’\n’)

345 f.write(’ ny = ’ + ’{0:1.10f}’.format(n_y[i + s + b]) + \

346 ’\n\n’)

347

348 f.write(’Traction vector: Tx = ’ + ’{0:1.10f}’.format(T_x) + ’\n’)

349 f.write(’ Ty = ’ + ’{0:1.10f}’.format(T_y) + ’\n\n’)

350

351 f.write(’Strain energy: SE = ’ + ’{0:2.10e}’.format(SE) + ’\n’)

352 f.write(’SED: SED = ’ + ’{0:2.10e}’.format(SE / A) + ’\n’)

353

354 f.write(’\n==================================================\n\n’)

355

356 if a == m - 1:

357 a = 0

358 else:

359 a += 1

360

361 # Appending the results to the corresponding vectors

362

363 SED.append(SE/A)

364 per.append(p)

365

366 b += n * m - 1

367

368 # Printing of the final values

369

370 for i in range(q):

371

372 # Definition of the theoretical value for the SED

373

374 REF1 = (6.0 * (C_X[i] ** 2 + C_Y[i] ** 2) + R ** 2) * R ** 2

375 REF1 += 24.0 * C_X[i] ** 2 * C_Y[i] ** 2

376 REF1 /= E

377

378 REF2 = 3.0 * (3.0 * C_Y[i] ** 2 - h ** 2) + R ** 2

379 REF2 *= R ** 2

380 REF2 += 6.0 * (h ** 2 - C_Y[i] ** 2) ** 2

381 REF2 /= G

382
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383 REF = REF1 + REF2

384 REF *= (F / I) ** 2

385 REF /= 48.0

386

387 f.write(’\n==================================================\n’)

388 f.write(’ RESULTS FOR CIRCLE ’ + str(i + 1))

389 f.write(’\n==================================================\n\n’)

390

391 f.write(’ Coordinates of the center: x_c = ’ + ’{0:3.10f}’.format(C_X[i]) + \

392 ’\n’)

393 f.write(’ y_c = ’ + ’{0:3.10f}’.format(C_Y[i]) + \

394 ’\n\n’)

395

396 f.write(’ Computed SED = ’ + ’{0:2.10e}’.format(SED[i]) + ’\n’)

397 f.write(’ Theoretical SED = ’ + ’{0:2.10e}’.format(REF) + ’\n’)

398 f.write(’ Percentual error = ’ + ’{0:4.2e}’.format((abs(SED[i] / REF - \

399 1.0) * 100.0)) + ’%\n\n’)

400 f.write(’ Length of the path = ’ + ’{0:1.10f}’.format(per[i]) + ’\n\n’)

401

402 f.write(’==================================================\n’)

403

404 f.close()

405

406 FIN();

c.4 plate_crack_sed_1d.comm

Algorithm C.4. Finite Element computation of SED through a contour inte-
gral for a cracked plate.

1 # File PLATE_CRACK_SED_1D.COMM

2 # Computes the local strain energy density

3 # for a cracked plate subjected to a constant

4 # tensile stress through a contour integral

5 # Utilizes the MACR_LIGN_COUPE command

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import os

11

12 WORKING_DIR = ’. . . ’

13

14 exportfile = os.path.join(WORKING_DIR,’fe_plate_crack_sed_1d.dat’)

15 f = open(exportfile,’w’)

16

17 f.write(’==========================================================\

18 =========\n’)

19 f.write(’==========================================================\

20 =========\n’)

21 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

22 ENERGY\n\

23 DENSITY FOR A CRACKED PLATE SUBJECTED TO A CONSTANT\n\

24 TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)

25 f.write(’==========================================================\

26 =========\n’)

27 f.write(’==========================================================\

28 =========\n\n’)

29

30 # Definition of the Gauss-Legendre abscissas

31

32 T = {
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33 1:[-0.0],

34 2:[. . . ],

35

.

.

.

36 }

37

38 # Definition of the Gauss-Legendre weights

39

40 W = {

41 1:[2.0],

42 2:[. . . ],

43

.

.

.

44 }

45

46 # Definition of some parameters of the problem

47

48 # Material

49

50 E = 210000.0 # Young’s modulus of steel [MPa]

51 NU = 0.3 # Poisson’s ratio of steel []

52

53 # Geometry

54

55 c = 10.0 # Half crack length [mm]

56

57 # Boundary conditions

58

59 S0 = 100.0 # Applied tensile stress [MPa]

60

61 # Input for the values R, n, m

62

63 f.write(’INPUT VALUES:\n\n’)

64

65 R = input(’Enter the radius of the circle onto which compute the SED: ’)

66

67 f.write(’Radius of the circles: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

68

69 n = input(’Enter the number of subdivisions for each circumference: ’)

70

71 f.write(’Number of subdivisions for each circumference: n = ’ + \

72 str(n) + ’\n\n’)

73

74 m = input(’Enter the number of Gaussian points for each subdivision: ’)

75

76 f.write(’Number of Gaussian points for each subdivision: m = ’ + \

77 str(m) + ’\n\n’)

78 f.write(’==========================================================\

79 =========\n\n’)

80

81 # Definition of the material

82

83 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

84 NU=NU,),);

85

86 # Reading of the mesh

87

88 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

89

90 # Reorientation of the normals towards the outside

91

92 MAIL=MODI_MAILLAGE(reuse =MAIL,

93 MAILLAGE=MAIL,

94 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,’Edge_3’,),),);

95

96 # Application of the plane strain conditions

97
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98 MODE=AFFE_MODELE(MAILLAGE=MAIL,

99 AFFE=_F(TOUT=’OUI’,

100 PHENOMENE=’MECANIQUE’,

101 MODELISATION=’D_PLAN’,),);

102

103 # Application of the material properties to the domain

104

105 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

106 AFFE=_F(TOUT=’OUI’,

107 MATER=STEEL,),);

108

109 # Application of the constraints

110

111 SYMM=AFFE_CHAR_MECA(MODELE=MODE,

112 DDL_IMPO=(_F(GROUP_MA=’Edge_1’,

113 DX=0.0,),

114
_F(GROUP_MA=’Edge_2’,

115 DY=0.0,),),);

116

117 # Application of the external loads

118

119 LOAD=AFFE_CHAR_MECA(MODELE=MODE,

120 PRES_REP=_F(GROUP_MA=’Edge_3’,

121 PRES=-S0,),);

122

123 # Definition of the linear elastic static model

124

125 RESU=MECA_STATIQUE(MODELE=MODE,

126 CHAM_MATER=MATE,

127 EXCIT=(_F(CHARGE=SYMM,),

128
_F(CHARGE=LOAD,),),);

129

130 # Calculation of the nodal solutions

131 # WARNING: For nodes shared between more than one

132 # element, the nodal values are calculated separately

133

134 RESU=CALC_ELEM(reuse =RESU,

135 RESULTAT=RESU,

136 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

137

138 # Calculation of the nodal solutions

139 # The nodal values from each element sharing

140 # that node are averaged

141

142 RESU=CALC_NO(reuse =RESU,

143 RESULTAT=RESU,

144 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

145

146 # Definition of the initial values and constants

147

148 theta_a = 0.0

149 theta_b = math.pi

150 a = -1

151

152 # Definition of the empty arrays

153

154 STRESS = [None] * n * m

155 DISPL = [None] * n * m

156 n_x = [None] * n * m

157 n_y = [None] * n * m

158

159 # Definition of the coordinates of the points

160

161 x_c = c

162 y_c = 0.0

163 x_0 = x_c + R * math.cos(theta_a)
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164 y_0 = y_c + R * math.sin(theta_a)

165

166 # Interpolation of the desired quantities onto the path

167

168 for i in range(1, n + 1):

169

170 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

171 theta_2 = theta_a + i * (theta_b - theta_a) / n

172 dtheta = 0.5 * (theta_2 - theta_1)

173

174 for j in range(m):

175

176 t = T.get(m)[m - j - 1]

177 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

178 n_x[i + j + a] = math.cos(theta)

179 n_y[i + j + a] = math.sin(theta)

180 x_1 = x_c + R * math.cos(theta)

181 y_1 = y_c + R * math.sin(theta)

182

183 # Stresses

184

185 STR=MACR_LIGN_COUPE(RESULTAT=RESU,

186 NOM_CHAM=’SIGM_NOEU’,

187 LIGN_COUPE=_F(INTITULE=’STRESSES’,

188 TYPE=’SEGMENT’,

189 NB_POINTS=2,

190 COOR_ORIG=(x_0,y_0),

191 COOR_EXTR=(x_1,y_1),),);

192 # Displacements

193

194 DIS=MACR_LIGN_COUPE(RESULTAT=RESU,

195 NOM_CHAM=’DEPL’,

196 LIGN_COUPE=_F(INTITULE=’DISPLACEMENTS’,

197 TYPE=’SEGMENT’,

198 NB_POINTS=2,

199 COOR_ORIG=(x_0,y_0),

200 COOR_EXTR=(x_1,y_1),),);

201

202 # Definition of the tables from the concepts

203

204 STRESS[i + j + a] = STR.EXTR_TABLE()

205 DISPL[i + j + a] = DIS.EXTR_TABLE()

206

207 # Destruction of the concepts

208

209 DETRUIRE(CONCEPT=(_F(NOM=STR),

210
_F(NOM=DIS),),);

211

212 x_0 = x_1

213 y_0 = y_1

214

215 a += m - 1

216

217 # Saving the output in MED format

218

219 IMPR_RESU(FORMAT=’MED’,

220 RESU=_F(MAILLAGE=MAIL,

221 RESULTAT=RESU,),);

222

223 # Python script for SED calculation

224

225 # Definition of the initial values and constants

226

227 K_I = S0 * math.sqrt(math.pi * c)

228 A = 0.5 * (theta_b - theta_a) * R ** 2

229 a = 0
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230

231 # Definition of the initial values for the given point

232

233 SED = 0.0

234 SE = 0.0

235 p = 0.0

236

237 for i in range(n * m):

238

239 # Definition of the arrays from the tables

240

241 coor_x = STRESS[i].values()[’COOR_X’]

242 coor_y = STRESS[i].values()[’COOR_Y’]

243 S_xx = STRESS[i].values()[’SIXX’]

244 S_yy = STRESS[i].values()[’SIYY’]

245 S_xy = STRESS[i].values()[’SIXY’]

246 u_x = DISPL[i].values()[’DX’]

247 u_y = DISPL[i].values()[’DY’]

248

249 k = len(S_xx) - 1

250 l = len(u_x) - 1

251

252 # Calculation of the FE quantities

253

254 # Traction vectors

255

256 T_x = S_xx[k] * n_x[i] + S_xy[k] * n_y[i]

257 T_y = S_xy[k] * n_x[i] + S_yy[k] * n_y[i]

258

259 # Strain energy

260

261 SE += 0.5 * (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[a]

262

263 # Perimeter

264

265 p += R * dtheta * W.get(m)[a]

266

267 f.write(’\n==================================================\n’)

268 f.write(’ Iteration ’ + str(i + 1) + ’:’)

269 f.write(’\n==================================================\n\n’)

270

271 f.write(’Coordinates: x = ’ + ’{0:3.10f}’.format(coor_x[k]) + ’\n’)

272 f.write(’ y = ’ + ’{0:3.10f}’.format(coor_y[k]) + ’\n\n’)

273

274 f.write(’Stresses: Sxx = ’ + ’{0:3.2f}’.format(S_xx[k]) + ’\n’)

275 f.write(’ Syy = ’ + ’{0:3.2f}’.format(S_yy[k]) + ’\n’)

276 f.write(’ Sxy = ’ + ’{0:3.2f}’.format(S_xy[k]) + ’\n\n’)

277

278 f.write(’Displacements: Ux = ’ + ’{0:2.10e}’.format(u_x[l]) + ’\n’)

279 f.write(’ Uy = ’ + ’{0:2.10e}’.format(u_y[l]) + ’\n\n’)

280

281 f.write(’Normal vector: nx = ’ + ’{0:1.10f}’.format(n_x[i]) + ’\n’)

282 f.write(’ ny = ’ + ’{0:1.10f}’.format(n_y[i]) + ’\n\n’)

283

284 f.write(’Traction vector: Tx = ’ + ’{0:1.10f}’.format(T_x) + ’\n’)

285 f.write(’ Ty = ’ + ’{0:1.10f}’.format(T_y) + ’\n\n’)

286

287 f.write(’Strain energy: SE = ’ + ’{0:2.10e}’.format(SE) + ’\n’)

288 f.write(’SED: SED = ’ + ’{0:2.10e}’.format(SE / A) + ’\n’)

289

290 f.write(’\n==================================================\n\n’)

291

292 if a == m - 1:

293 a = 0

294 else:

295 a += 1
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296

297 SED = SE / A

298

299 # Printing of the final values

300

301 # Definition of the asymptotic value for the SED

302

303 REF = (1.0 + NU) * (5.0 - 8.0 * NU) * K_I ** 2

304 REF /= 8.0 * math.pi * R * E

305

306 f.write(’\n==================================================\n’)

307 f.write(’ RESULTS’)

308 f.write(’\n==================================================\n\n’)

309

310 f.write(’ Coordinates of the center: x_c = ’ + ’{0:3.10f}’.format(x_c) + ’\n’)

311 f.write(’ y_c = ’ + ’{0:3.10f}’.format(y_c) + ’\n\n’)

312

313 f.write(’ Computed SED = ’ + ’{0:2.10e}’.format(SED) + ’\n’)

314 f.write(’ Theoretical SED = ’ + ’{0:2.10e}’.format(REF) + ’\n’)

315 f.write(’ Percentual error = ’ + ’{0:4.2e}’.format((abs(SED / REF - \

316 1.0) * 100.0)) + ’%\n\n’)

317 f.write(’ Length of the path = ’ + ’{0:1.10f}’.format(p) + ’\n\n’)

318

319 f.write(’==================================================\n’)

320

321 f.close()

322

323 FIN();

c.5 plate_notch_sed_1d.comm

Algorithm C.5. Finite Element computation of SED through a contour inte-
gral for a notched plate.

1 # File PLATE_NOTCH_SED_1D.COMM

2 # Computes the local strain energy density for

3 # a 135°-notched plate subjected to a constant

4 # tensile stress through a contour integral

5 # Utilizes the MACR_LIGN_COUPE command

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import os

11

12 WORKING_DIR = ’. . . ’

13

14 exportfile = os.path.join(WORKING_DIR,’fe_plate_notch_sed_1d.dat’)

15 f = open(exportfile,’w’)

16

17 f.write(’==========================================================\

18 =========\n’)

19 f.write(’==========================================================\

20 =========\n’)

21 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

22 ENERGY\n\

23 DENSITY FOR A 135°-NOTCHED PLATE SUBJECTED TO A\n\

24 CONSTANT TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)

25 f.write(’==========================================================\

26 =========\n’)

27 f.write(’==========================================================\

28 =========\n\n’)
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29

30 # Definition of the Gauss-Legendre abscissas

31

32 T = {

33 1:[-0.0],

34 2:[. . . ],

35

.

.

.

36 }

37

38 # Definition of the Gauss-Legendre weights

39

40 W = {

41 1:[2.0],

42 2:[. . . ],

43

.

.

.

44 }

45

46 # Definition of some parameters of the problem

47

48 # Material

49

50 E = 210000.0 # Young’s modulus of steel [MPa]

51 NU = 0.3 # Poisson’s ratio of steel []

52

53 # Boundary conditions

54

55 S0 = 100.0 # Applied tensile stress [MPa]

56

57 # Input for the values R, n, m

58

59 f.write(’INPUT VALUES:\n\n’)

60

61 R = input(’Enter the radius of the circle onto which compute the SED: ’)

62

63 f.write(’Radius of the circles: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

64

65 n = input(’Enter the number of subdivisions for each circumference: ’)

66

67 f.write(’Number of subdivisions for each circumference: n = ’ + \

68 str(n) + ’\n\n’)

69

70 m = input(’Enter the number of Gaussian points for each subdivision: ’)

71

72 f.write(’Number of Gaussian points for each subdivision: m = ’ + \

73 str(m) + ’\n\n’)

74 f.write(’==========================================================\

75 =========\n\n’)

76

77 # Definition of the material

78

79 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

80 NU=NU,),);

81

82 # Reading of the mesh

83

84 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

85

86 # Reorientation of the normals towards the outside

87

88 MAIL=MODI_MAILLAGE(reuse =MAIL,

89 MAILLAGE=MAIL,

90 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,),),);

91

92 # Application of the plane strain conditions

93
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94 MODE=AFFE_MODELE(MAILLAGE=MAIL,

95 AFFE=_F(TOUT=’OUI’,

96 PHENOMENE=’MECANIQUE’,

97 MODELISATION=’D_PLAN’,),);

98

99 # Application of the material properties to the domain

100

101 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

102 AFFE=_F(TOUT=’OUI’,

103 MATER=STEEL,),);

104

105 # Application of the constraints

106

107 SYMM=AFFE_CHAR_MECA(MODELE=MODE,

108 DDL_IMPO=(_F(GROUP_MA=’Edge_1’,

109 DY=0.0,),

110
_F(GROUP_NO=’Vertex_1’,

111 DX=0.0,),),);

112

113 # Application of the external loads

114

115 LOAD=AFFE_CHAR_MECA(MODELE=MODE,

116 PRES_REP=_F(GROUP_MA=’Edge_2’,

117 PRES=-S0,),);

118

119 # Definition of the linear elastic static model

120

121 RESU=MECA_STATIQUE(MODELE=MODE,

122 CHAM_MATER=MATE,

123 EXCIT=(_F(CHARGE=SYMM,),

124
_F(CHARGE=LOAD,),),);

125

126 # Calculation of the nodal solutions

127 # WARNING: For nodes shared between more than one

128 # element, the nodal values are calculated separately

129

130 RESU=CALC_ELEM(reuse =RESU,

131 RESULTAT=RESU,

132 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

133

134 # Calculation of the nodal solutions

135 # The nodal values from each element sharing

136 # that node are averaged

137

138 RESU=CALC_NO(reuse =RESU,

139 RESULTAT=RESU,

140 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

141

142 # Definition of the initial values and constants

143

144 theta_a = 0.0

145 theta_b = 5.0 * math.pi / 8.0

146 a = -1

147

148 # Definition of the empty arrays

149

150 STRESS = [None] * n * m

151 DISPL = [None] * n * m

152 n_x = [None] * n * m

153 n_y = [None] * n * m

154

155 # Definition of the coordinates of the points

156

157 x_c = 0.0

158 y_c = 0.0

159 x_0 = x_c + R * math.cos(theta_a)
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160 y_0 = y_c + R * math.sin(theta_a)

161

162 # Interpolation of the desired quantities onto the path

163

164 for i in range(1, n + 1):

165

166 theta_1 = theta_a + (i - 1) * (theta_b - theta_a) / n

167 theta_2 = theta_a + i * (theta_b - theta_a) / n

168 dtheta = 0.5 * (theta_2 - theta_1)

169

170 for j in range(m):

171

172 t = T.get(m)[m - j - 1]

173 theta = 0.5 * (1.0 - t) * theta_1 + 0.5 * (1.0 + t) * theta_2

174 n_x[i + j + a] = math.cos(theta)

175 n_y[i + j + a] = math.sin(theta)

176 x_1 = x_c + R * math.cos(theta)

177 y_1 = y_c + R * math.sin(theta)

178

179 # Stresses

180

181 STR=MACR_LIGN_COUPE(RESULTAT=RESU,

182 NOM_CHAM=’SIGM_NOEU’,

183 LIGN_COUPE=_F(INTITULE=’STRESSES’,

184 TYPE=’SEGMENT’,

185 NB_POINTS=2,

186 COOR_ORIG=(x_0,y_0),

187 COOR_EXTR=(x_1,y_1),),);

188 # Displacements

189

190 DIS=MACR_LIGN_COUPE(RESULTAT=RESU,

191 NOM_CHAM=’DEPL’,

192 LIGN_COUPE=_F(INTITULE=’DISPLACEMENTS’,

193 TYPE=’SEGMENT’,

194 NB_POINTS=2,

195 COOR_ORIG=(x_0,y_0),

196 COOR_EXTR=(x_1,y_1),),);

197

198 # Definition of the tables from the concepts

199

200 STRESS[i + j + a] = STR.EXTR_TABLE()

201 DISPL[i + j + a] = DIS.EXTR_TABLE()

202

203 # Destruction of the concepts

204

205 DETRUIRE(CONCEPT=(_F(NOM=STR),

206
_F(NOM=DIS),),);

207

208 x_0 = x_1

209 y_0 = y_1

210

211 a += m - 1

212

213 # Saving the output in MED format

214

215 IMPR_RESU(FORMAT=’MED’,

216 RESU=_F(MAILLAGE=MAIL,

217 RESULTAT=RESU,),);

218

219 # Python script for SED calculation

220

221 # Definition of the initial values and constants

222

223 A = 5.0 * math.pi * R ** 2 / 16.0

224 a = 0

225
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226 # Definition of the initial values for the given point

227

228 SED = 0.0

229 SE = 0.0

230 p = 0.0

231

232 for i in range(n * m):

233

234 # Definition of the arrays from the tables

235

236 coor_x = STRESS[i].values()[’COOR_X’]

237 coor_y = STRESS[i].values()[’COOR_Y’]

238 S_xx = STRESS[i].values()[’SIXX’]

239 S_yy = STRESS[i].values()[’SIYY’]

240 S_xy = STRESS[i].values()[’SIXY’]

241 u_x = DISPL[i].values()[’DX’]

242 u_y = DISPL[i].values()[’DY’]

243

244 k = len(S_xx) - 1

245 l = len(u_x) - 1

246

247 # Calculation of the FE quantities

248

249 # Traction vectors

250

251 T_x = S_xx[k] * n_x[i] + S_xy[k] * n_y[i]

252 T_y = S_xy[k] * n_x[i] + S_yy[k] * n_y[i]

253

254 # Strain energy

255

256 SE += 0.5 * (T_x * u_x[l] + T_y * u_y[l]) * R * dtheta * W.get(m)[a]

257

258 # Perimeter

259

260 p += R * dtheta * W.get(m)[a]

261

262 f.write(’\n==================================================\n’)

263 f.write(’ Iteration ’ + str(i + 1) + ’:’)

264 f.write(’\n==================================================\n\n’)

265

266 f.write(’Coordinates: x = ’ + ’{0:3.10f}’.format(coor_x[k]) + ’\n’)

267 f.write(’ y = ’ + ’{0:3.10f}’.format(coor_y[k]) + ’\n\n’)

268

269 f.write(’Stresses: Sxx = ’ + ’{0:3.2f}’.format(S_xx[k]) + ’\n’)

270 f.write(’ Syy = ’ + ’{0:3.2f}’.format(S_yy[k]) + ’\n’)

271 f.write(’ Sxy = ’ + ’{0:3.2f}’.format(S_xy[k]) + ’\n\n’)

272

273 f.write(’Displacements: Ux = ’ + ’{0:2.10e}’.format(u_x[l]) + ’\n’)

274 f.write(’ Uy = ’ + ’{0:2.10e}’.format(u_y[l]) + ’\n\n’)

275

276 f.write(’Normal vector: nx = ’ + ’{0:1.10f}’.format(n_x[i]) + ’\n’)

277 f.write(’ ny = ’ + ’{0:1.10f}’.format(n_y[i]) + ’\n\n’)

278

279 f.write(’Traction vector: Tx = ’ + ’{0:1.10f}’.format(T_x) + ’\n’)

280 f.write(’ Ty = ’ + ’{0:1.10f}’.format(T_y) + ’\n\n’)

281

282 f.write(’Strain energy: SE = ’ + ’{0:2.10e}’.format(SE) + ’\n’)

283 f.write(’SED: SED = ’ + ’{0:2.10e}’.format(SE / A) + ’\n’)

284

285 f.write(’\n==================================================\n\n’)

286

287 if a == m - 1:

288 a = 0

289 else:

290 a += 1

291
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292 SED = SE / A

293

294 # Printing of the final values

295

296 f.write(’\n==================================================\n’)

297 f.write(’ RESULTS’)

298 f.write(’\n==================================================\n\n’)

299

300 f.write(’ Coordinates of the center: x_c = ’ + ’{0:3.10f}’.format(x_c) + ’\n’)

301 f.write(’ y_c = ’ + ’{0:3.10f}’.format(y_c) + ’\n\n’)

302

303 f.write(’ Computed SED = ’ + ’{0:2.10e}’.format(SED) + ’\n\n’)

304 f.write(’ Length of the path = ’ + ’{0:1.10f}’.format(p) + ’\n\n’)

305

306 f.write(’==================================================\n’)

307

308 f.close()

309

310 FIN();

c.6 plate_notch_nsif.comm

Algorithm C.6. Finite Element computation of the mode I-NSIF for a notched
plate.

1 # File PLATE_NOTCH_NSIF.COMM

2 # Computes the Notch Stress Intensity Factor

3 # of mode I for a 135°-notched plate

4 # subjected to a constant tensile stress

5 # Utilizes the POST_RELEVE_T command

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import os

11

12 WORKING_DIR = ’. . . ’

13

14 exportfile = os.path.join(WORKING_DIR,’fe_plate_notch_nsif.dat’)

15 f = open(exportfile,’w’)

16

17 f.write(’==========================================================\

18 =========\n\n’)

19 f.write(’==========================================================\

20 =========\n’)

21 f.write(’ FINITE ELEMENT COMPUTATION OF THE NOTCH STRESS \

22 INTENSITY\n\

23 FACTOR FOR A 135°-NOTCHED PLATE SUBJECTED TO A\n\

24 CONSTANT TENSILE STRESS THROUGH A CONTOUR INTEGRAL\n’)

25 f.write(’==========================================================\

26 =========\n’)

27 f.write(’==========================================================\

28 =========\n\n’)

29

30 # Definition of some parameters of the problem

31

32 # Material

33

34 E = 210000.0 # Young’s modulus of steel [MPa]

35 NU = 0.3 # Poisson’s ratio of steel []

36

37 # Boundary conditions
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38

39 S0 = 100.0 # Applied tensile stress [MPa]

40

41 # Definition of the notch tip coordinates

42

43 x_c = 0.0

44 y_c = 0.0

45

46 # Definition of the material

47

48 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

49 NU=NU,),);

50

51 # Reading of the mesh

52

53 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

54

55 # Creation of the group of nodes

56

57 MAIL=DEFI_GROUP(reuse =MAIL,

58 MAILLAGE=MAIL,

59 CREA_GROUP_NO=_F(GROUP_MA=’Edge_1’,

60 NOM=’Bisector’,),);

61

62 # Reorientation of the normals towards the outside

63

64 MAIL=MODI_MAILLAGE(reuse =MAIL,

65 MAILLAGE=MAIL,

66 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,’Edge_3’,),),);

67

68 # Application of the plane strain conditions

69

70 MODE=AFFE_MODELE(MAILLAGE=MAIL,

71 AFFE=_F(TOUT=’OUI’,

72 PHENOMENE=’MECANIQUE’,

73 MODELISATION=’D_PLAN’,),);

74

75 # Application of the material properties to the domain

76

77 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

78 AFFE=_F(TOUT=’OUI’,

79 MATER=STEEL,),);

80

81 # Application of the constraints

82

83 SYMM=AFFE_CHAR_MECA(MODELE=MODE,

84 DDL_IMPO=(_F(GROUP_MA=(’Edge_1’,’Edge_2’,),

85 DY=0.0,),

86
_F(GROUP_NO=’Vertex_2’,

87 DX=0.0,),),);

88

89 # Application of the external loads

90

91 LOAD=AFFE_CHAR_MECA(MODELE=MODE,

92 PRES_REP=_F(GROUP_MA=’Edge_3’,

93 PRES=-S0,),);

94

95 # Definition of the linear elastic static model

96

97 RESU=MECA_STATIQUE(MODELE=MODE,

98 CHAM_MATER=MATE,

99 EXCIT=(_F(CHARGE=SYMM,),

100
_F(CHARGE=LOAD,),),);

101

102 # Calculation of the nodal solutions

103 # WARNING: For nodes shared between more than one
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104 # element, the nodal values are calculated separately

105

106 RESU=CALC_ELEM(reuse =RESU,

107 RESULTAT=RESU,

108 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

109

110 # Calculation of the nodal solutions

111 # The nodal values from each element sharing

112 # that node are averaged

113

114 RESU=CALC_NO(reuse =RESU,

115 RESULTAT=RESU,

116 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

117

118 # Extrapolation of the stresses along the bisector

119

120 STR=POST_RELEVE_T(ACTION=_F(OPERATION=’EXTRACTION’,

121 INTITULE=’STRESSES’,

122 RESULTAT=RESU,

123 NOM_CHAM=’SIGM_NOEU’,

124 GROUP_NO=’Bisector’,

125 TOUT_CMP=’OUI’,),);

126

127 # Definition of the table

128

129 STRESS = STR.EXTR_TABLE()

130

131 # Printing of the tables

132

133 IMPR_TABLE(TABLE=STR,);

134

135 # Saving the output in MED format

136

137 IMPR_RESU(FORMAT=’MED’,

138 RESU=_F(MAILLAGE=MAIL,

139 RESULTAT=RESU,),);

140

141

142 # Python script for the NSIF calculation

143

144 # Definition of the initial values and constants

145 lambda_1 = 0.6736

146

147 # Definition of the arrays from the tables

148

149 coor_x = STRESS.values()[’COOR_X’]

150 S_yy = STRESS.values()[’SIYY’]

151

152 k = len(S_yy) - 1

153

154 f.write(’\n==================================================\n’)

155 f.write(’ Extrapolation of K_1’)

156 f.write(’\n==================================================\n\n’)

157 f.write(’ x S_yy K_1\n’)

158

159 for i in range(k):

160

161 K_1 = math.sqrt(2.0 * math.pi) * S_yy[i] * coor_x[i] ** (1.0 - lambda_1)

162

163 f.write(’ ’ + ’{0:1.3f}’.format(coor_x[i]) + ’ ’ + \

164 ’{0:3.2f}’.format(S_yy[i]) + ’ ’ + ’{0:3.2f}’.format(K_1) + ’\n’)

165

166 f.close()

167

168 FIN();
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c.7 plate_crack_sed_2d.comm

Algorithm C.7. Finite Element computation of SED through a double inte-
gral for a cracked plate.

1 # File PLATE_CRACK_SED_2D.COMM

2 # Computes the local strain energy density

3 # for a cracked plate subjected to a constant

4 # tensile stress through a double integral

5 # Utilizes the DEFI_GROUP and POST_ELEM commands

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import os

11

12 WORKING_DIR = ’. . . ’

13

14 exportfile = os.path.join(WORKING_DIR,’fe_plate_crack_sed_2d.dat’)

15 f = open(exportfile,’w’)

16

17 f.write(’==========================================================\

18 =========\n’)

19 f.write(’==========================================================\

20 =========\n’)

21 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

22 ENERGY\n\

23 DENSITY FOR A CRACKED PLATE SUBJECTED TO A CONSTANT\n\

24 TENSILE STRESS THROUGH A DOUBLE INTEGRAL\n’)

25 f.write(’==========================================================\

26 =========\n’)

27 f.write(’==========================================================\

28 =========\n\n’)

29

30 # Definition of some parameters of the problem

31

32 # Material

33

34 E = 210000.0 # Young’s modulus of steel [MPa]

35 NU = 0.3 # Poisson’s ratio of steel []

36

37 # Geometry

38

39 c = 10.0 # Half crack length [mm]

40

41 # Boundary conditions

42

43 S0 = 100.0 # Applied tensile stress [MPa]

44

45 # Definition of the crack tip coordinates

46

47 x_c = c

48 y_c = 0.0

49

50 # Input for the value R

51

52 f.write(’INPUT VALUES:\n\n’)

53

54 R = input(’Enter the radius of the circle onto which compute the SED: ’)

55

56 f.write(’Radius of the circle: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

57

58 # Definition of the material

59

60 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,
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61 NU=NU,),);

62

63 # Reading of the mesh

64

65 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

66

67 # Creation of the group of elements

68

69 MAIL=DEFI_GROUP(reuse =MAIL,

70 MAILLAGE=MAIL,

71 CREA_GROUP_MA=(_F(NOM=’Circle’,

72 TYPE_MAILLE=’2D’,

73 OPTION=’SPHERE’,

74 POINT=(x_c,y_c),

75 RAYON=R),),);

76

77 # Reorientation of the normals towards the outside

78

79 MAIL=MODI_MAILLAGE(reuse =MAIL,

80 MAILLAGE=MAIL,

81 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,

82 ’Edge_3’,’Edge_4’,),),);

83

84 # Application of the plane strain conditions

85

86 MODE=AFFE_MODELE(MAILLAGE=MAIL,

87 AFFE=_F(TOUT=’OUI’,

88 PHENOMENE=’MECANIQUE’,

89 MODELISATION=’D_PLAN’,),);

90

91 # Application of the material properties to the domain

92

93 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

94 AFFE=_F(TOUT=’OUI’,

95 MATER=STEEL,),);

96

97 # Application of the constraints

98

99 SYMM=AFFE_CHAR_MECA(MODELE=MODE,

100 DDL_IMPO=(_F(GROUP_MA=’Edge_1’,

101 DX=0.0,),

102
_F(GROUP_MA=(’Edge_2’,’Edge_3’,),

103 DY=0.0,),),);

104

105 # Application of the external loads

106

107 LOAD=AFFE_CHAR_MECA(MODELE=MODE,

108 PRES_REP=_F(GROUP_MA=’Edge_4’,

109 PRES=-S0,),);

110

111 # Definition of the linear elastic static model

112

113 RESU=MECA_STATIQUE(MODELE=MODE,

114 CHAM_MATER=MATE,

115 EXCIT=(_F(CHARGE=SYMM,),

116
_F(CHARGE=LOAD,),),);

117

118 # Calculation of the nodal solutions

119 # WARNING: For nodes shared between more than one

120 # element, the nodal values are calculated separately

121

122 RESU=CALC_ELEM(reuse =RESU,

123 RESULTAT=RESU,

124 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

125

126 # Calculation of the nodal solutions
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127 # The nodal values from each element sharing

128 # that node are averaged

129

130 RESU=CALC_NO(reuse =RESU,

131 RESULTAT=RESU,

132 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

133

134 # Calculation of the strain energy density

135

136 SED_CA=POST_ELEM(INTEGRALE=_F(GROUP_MA=’Circle’,

137 NOM_CHAM=’ENEL_ELNO’,

138 NOM_CMP=’TOTALE’,),

139 RESULTAT=RESU,);

140

141 # Printing of the table

142

143 IMPR_TABLE(TABLE=SED_CA,);

144

145 # Saving the output in MED format

146

147 IMPR_RESU(FORMAT=’MED’,

148 RESU=_F(MAILLAGE=MAIL,

149 RESULTAT=RESU,),);

150

151 # Printing of the final values

152

153 # Definition of the asymptotic value for the SED

154

155 K_I = S0 * math.sqrt(math.pi * c)

156

157 REF = (1.0 + NU) * (5.0 - 8.0 * NU) * K_I ** 2

158 REF /= 8.0 * math.pi * R * E

159

160 # Extraction of the values from the table

161

162 SED_TAB = SED_CA.EXTR_TABLE()

163

164 SED = SED_TAB.values()[’MOYE_TOTALE’]

165

166 f.write(’\n==================================================\n’)

167 f.write(’ RESULTS’)

168 f.write(’\n==================================================\n\n’)

169

170 f.write(’ Coordinates of the crack tip: x_c = ’ + ’{0:3.10f}’.format(x_c) + \

171 ’\n’)

172 f.write(’ y_c = ’ + ’{0:3.10f}’.format(y_c) + \

173 ’\n\n’)

174

175 f.write(’ Computed SED = ’ + ’{0:2.5e}’.format(SED[0]) + ’\n’)

176 f.write(’ Theoretical SED = ’ + ’{0:2.10e}’.format(REF) + ’\n’)

177 f.write(’ Percentual error = ’ + ’{0:4.2e}’.format((abs(SED[0] / REF - \

178 1.0) * 100.0)) + ’%\n\n’)

179

180 f.write(’==================================================\n’)

181

182 f.close()

183

184 FIN();

c.8 plate_xcrack_sed_2d.comm
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Algorithm C.8. Finite Element computation of SED through a double inte-
gral for a cracked plate with XFEM.

1 # File PLATE_XCRACK_SED_2D.COMM

2 # Computes the local strain energy density for

3 # a XFEM cracked plate subjected to a constant

4 # tensile stress through a double integral

5 # Utilizes the DEFI_GROUP and POST_ELEM commands

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import math

10 import os

11

12 WORKING_DIR = ’. . . ’

13

14 exportfile = os.path.join(WORKING_DIR,’fe_plate_xcrack_sed_2d.dat’)

15 f = open(exportfile,’w’)

16

17 f.write(’==========================================================\

18 =========\n’)

19 f.write(’==========================================================\

20 =========\n’)

21 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

22 ENERGY\n\

23 DENSITY FOR A XFEM CRACKED PLATE SUBJECTED TO A\n\

24 CONSTANT TENSILE STRESS THROUGH A DOUBLE INTEGRAL\n’)

25 f.write(’==========================================================\

26 =========\n’)

27 f.write(’==========================================================\

28 =========\n\n’)

29

30 # Definition of some parameters of the problem

31

32 # Material

33

34 E = 210000.0 # Young’s modulus of steel [MPa]

35 NU = 0.3 # Poisson’s ratio of steel []

36

37 # Geometry

38

39 c = 10.0 # Half crack length [mm]

40

41 # Boundary conditions

42

43 S0 = 100.0 # Applied tensile stress [MPa]

44

45 # Definition of the crack tip coordinates

46

47 x_c = c

48 y_c = 0.0

49

50 # Input for the value R

51

52 f.write(’INPUT VALUES:\n\n’)

53

54 R = input(’Enter the radius of the circle onto which compute the SED: ’)

55

56 f.write(’Radius of the circle: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

57

58 # Definition of the material

59

60 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

61 NU=NU,),);

62

63 # Reading of the mesh

64
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65 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

66

67 # Reorientation of the normals towards the outside

68

69 MAIL=MODI_MAILLAGE(reuse =MAIL,

70 MAILLAGE=MAIL,

71 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,),),);

72

73 # Application of the plane strain conditions

74

75 MODE=AFFE_MODELE(MAILLAGE=MAIL,

76 AFFE=_F(TOUT=’OUI’,

77 PHENOMENE=’MECANIQUE’,

78 MODELISATION=’D_PLAN’,),);

79

80 # Definition of the XFEM crack

81

82 CRACK=DEFI_FISS_XFEM(MODELE=MODE,

83 DEFI_FISS=_F(FORM_FISS=’SEGMENT’,

84 PFON_ORIG=(-x_c,y_c,0.0,),

85 PFON_EXTR=(x_c,y_c,0.0,),),);

86

87 # Introduction of the crack into the model

88

89 MODEX=MODI_MODELE_XFEM(MODELE_IN=MODE,

90 FISSURE=CRACK,);

91

92 # Application of the material properties to the domain

93

94 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

95 AFFE=_F(TOUT=’OUI’,

96 MATER=STEEL,),);

97

98 # Application of the constraints

99

100 CONST=AFFE_CHAR_MECA(MODELE=MODEX,

101 LIAISON_XFEM=’OUI’,

102 DDL_IMPO=(_F(GROUP_NO=(’Node_1’,’Node_2’,),

103 DX=0.0,),

104
_F(GROUP_NO=(’Node_3’,’Node_4’,),

105 DY=0.0,),),);

106

107 # Application of the external loads

108

109 LOAD=AFFE_CHAR_MECA(MODELE=MODEX,

110 LIAISON_XFEM=’OUI’,

111 PRES_REP=_F(GROUP_MA=(’Edge_1’,’Edge_2’,),

112 PRES=-S0,),);

113

114 # Definition of the linear elastic static model

115

116 RESU=MECA_STATIQUE(MODELE=MODEX,

117 CHAM_MATER=MATE,

118 EXCIT=(_F(CHARGE=CONST,),

119
_F(CHARGE=LOAD,),),);

120

121 # Definition of the mesh in postprocessing

122

123 MA_XFEM=POST_MAIL_XFEM(MODELE=MODEX,);

124

125 # Creation of the groups of elements

126

127 MA_XFEM=DEFI_GROUP(reuse =MA_XFEM,

128 MAILLAGE=MA_XFEM,

129 CREA_GROUP_MA=(_F(NOM=’Face_2’,

130 TYPE_MAILLE=’2D’,
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131 OPTION=’SPHERE’,

132 POINT=(-x_c,y_c),

133 RAYON=R),

134
_F(NOM=’Face_3’,

135 TYPE_MAILLE=’2D’,

136 OPTION=’SPHERE’,

137 POINT=(x_c,y_c),

138 RAYON=R),),);

139

140 # Definition of the visualization model

141

142 MOD_VISU=AFFE_MODELE(MAILLAGE=MA_XFEM,

143 AFFE=_F(TOUT=’OUI’,

144 PHENOMENE=’MECANIQUE’,

145 MODELISATION=’D_PLAN’,),);

146

147 # Definition of the XFEM field

148

149 RES_XFEM=POST_CHAM_XFEM(MODELE_VISU=MOD_VISU,

150 RESULTAT=RESU,);

151

152 # Calculation of the XFEM nodal solutions

153 # WARNING: For nodes shared between more than one

154 # element, the nodal values are calculated separately

155

156 RES_XFEM=CALC_ELEM(reuse =RES_XFEM,

157 RESULTAT=RES_XFEM,

158 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ETOT_ELNO’),);

159

160 # Calculation of the XFEM nodal solutions

161 # The nodal values from each element sharing

162 # that node are averaged

163

164 RES_XFEM=CALC_NO(reuse =RES_XFEM,

165 RESULTAT=RES_XFEM,

166 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,),);

167

168 # Calculation of the strain energy density

169

170 # Left crack tip

171

172 SEL_CA=POST_ELEM(INTEGRALE=_F(GROUP_MA=’Face_2’,

173 NOM_CHAM=’ETOT_ELNO’,

174 NOM_CMP=’TOTALE’,),

175 RESULTAT=RES_XFEM,);

176

177 # Right crack tip

178

179 SER_CA=POST_ELEM(INTEGRALE=_F(GROUP_MA=’Face_3’,

180 NOM_CHAM=’ETOT_ELNO’,

181 NOM_CMP=’TOTALE’,),

182 RESULTAT=RES_XFEM,);

183

184 # Printing of the tables

185

186 IMPR_TABLE(TABLE=SEL_CA,);

187

188 IMPR_TABLE(TABLE=SER_CA,);

189

190 # Saving the output in MED format

191

192 IMPR_RESU(FORMAT=’MED’,

193 UNITE=80,

194 RESU=_F(MAILLAGE=MA_XFEM,

195 RESULTAT=RES_XFEM,),);

196
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197 # Printing of the final values

198

199 # Definition of the asymptotic value for the SED

200

201 K_I = S0 * math.sqrt(math.pi * c)

202

203 REF = (1.0 + NU) * (5.0 - 8.0 * NU) * K_I ** 2

204 REF /= 8.0 * math.pi * R * E

205

206 # Extraction of the values from the tables

207

208 SEDL_TAB = SEDL_CA.EXTR_TABLE()

209 SEDR_TAB = SEDR_CA.EXTR_TABLE()

210

211 SEDL = SEDL_TAB.values()[’MOYE_TOTALE’]

212 SEDR = SEDR_TAB.values()[’MOYE_TOTALE’]

213

214 f.write(’\n==================================================\n’)

215 f.write(’ RESULTS’)

216 f.write(’\n==================================================\n\n’)

217

218 f.write(’ Coordinates of the crack tip: x_c = ’ + ’{0:3.10f}’.format(-x_c) + \

219 ’\n’)

220 f.write(’ y_c = ’ + ’{0:3.10f}’.format(y_c) + \

221 ’\n\n’)

222

223 f.write(’ Computed SED = ’ + ’{0:2.5e}’.format(SEDL[0]) + ’\n’)

224 f.write(’ Theoretical SED = ’ + ’{0:2.10e}’.format(REF) + ’\n’)

225 f.write(’ Percentual error = ’ + ’{0:4.2e}’.format((abs(SEDL[0] / REF - \

226 1.0) * 100.0)) + ’%\n\n’)

227

228 f.write(’ Coordinates of the crack tip: x_c = ’ + ’{0:3.10f}’.format(x_c) + \

229 ’\n’)

230 f.write(’ y_c = ’ + ’{0:3.10f}’.format(y_c) + \

231 ’\n\n’)

232

233 f.write(’ Computed SED = ’ + ’{0:2.5e}’.format(SEDR[0]) + ’\n’)

234 f.write(’ Theoretical SED = ’ + ’{0:2.10e}’.format(REF) + ’\n’)

235 f.write(’ Percentual error = ’ + ’{0:4.2e}’.format((abs(SEDR[0] / REF - \

236 1.0) * 100.0)) + ’%\n\n’)

237

238 f.write(’==================================================\n’)

239

240 f.close()

241

242 FIN();

c.9 plate_notch_sed_2d.comm

Algorithm C.9. Finite Element computation of SED through a double inte-
gral for a notched plate.

1 # File PLATE_NOTCH_SED_2D.COMM

2 # Computes the local strain energy density for

3 # a 135°-notched plate subjected to a constant

4 # tensile stress through a double integral

5 # Utilizes the DEFI_GROUP and POST_ELEM commands

6

7 DEBUT(PAR_LOT=’NON’);

8

9 import os

10
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11 WORKING_DIR = ’. . . ’

12

13 exportfile = os.path.join(WORKING_DIR,’fe_plate_notch_sed_2d.dat’)

14 f = open(exportfile,’w’)

15

16 f.write(’==========================================================\

17 =========\n’)

18 f.write(’==========================================================\

19 =========\n’)

20 f.write(’ FINITE ELEMENT COMPUTATION OF THE LOCAL STRAIN \

21 ENERGY\n\

22 DENSITY FOR A 135°-NOTCHED PLATE SUBJECTED TO A\n\

23 CONSTANT TENSILE STRESS THROUGH A DOUBLE INTEGRAL\n’)

24 f.write(’==========================================================\

25 =========\n’)

26 f.write(’==========================================================\

27 =========\n\n’)

28

29 # Definition of some parameters of the problem

30

31 # Material

32

33 E = 210000.0 # Young’s modulus of steel [MPa]

34 NU = 0.3 # Poisson’s ratio of steel []

35

36 # Boundary conditions

37

38 S0 = 100.0 # Applied tensile stress [MPa]

39

40 # Definition of the notch tip coordinates

41

42 x_c = 0.0

43 y_c = 0.0

44

45 # Input for the value R

46

47 f.write(’INPUT VALUES:\n\n’)

48

49 R = input(’Enter the radius of the circle onto which compute the SED: ’)

50

51 f.write(’Radius of the circle: R = ’ + ’{0:2.2f}’.format(R) + ’\n\n’)

52

53 # Definition of the material

54

55 STEEL=DEFI_MATERIAU(ELAS=_F(E=E,

56 NU=NU,),);

57

58 # Reading of the mesh

59

60 MAIL=LIRE_MAILLAGE(FORMAT=’MED’,);

61

62 # Creation of the group of elements

63

64 MAIL=DEFI_GROUP(reuse =MAIL,

65 MAILLAGE=MAIL,

66 CREA_GROUP_MA=(_F(NOM=’Circle’,

67 TYPE_MAILLE=’2D’,

68 OPTION=’SPHERE’,

69 POINT=(x_c,y_c),

70 RAYON=R),),);

71

72 # Reorientation of the normals towards the outside

73

74 MAIL=MODI_MAILLAGE(reuse =MAIL,

75 MAILLAGE=MAIL,

76 ORIE_PEAU_2D=_F(GROUP_MA=(’Edge_1’,’Edge_2’,’Edge_3’,),),);
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77

78 # Application of the plane strain conditions

79

80 MODE=AFFE_MODELE(MAILLAGE=MAIL,

81 AFFE=_F(TOUT=’OUI’,

82 PHENOMENE=’MECANIQUE’,

83 MODELISATION=’D_PLAN’,),);

84

85 # Application of the material properties to the domain

86

87 MATE=AFFE_MATERIAU(MAILLAGE=MAIL,

88 AFFE=_F(TOUT=’OUI’,

89 MATER=STEEL,),);

90

91 # Application of the constraints

92

93 SYMM=AFFE_CHAR_MECA(MODELE=MODE,

94 DDL_IMPO=(_F(GROUP_MA=(’Edge_1’,’Edge_2’,),

95 DY=0.0,),

96
_F(GROUP_NO=’Vertex_2’,

97 DX=0.0,),),);

98

99 # Application of the external loads

100

101 LOAD=AFFE_CHAR_MECA(MODELE=MODE,

102 PRES_REP=_F(GROUP_MA=’Edge_3’,

103 PRES=-S0,),);

104

105 # Definition of the linear elastic static model

106

107 RESU=MECA_STATIQUE(MODELE=MODE,

108 CHAM_MATER=MATE,

109 EXCIT=(_F(CHARGE=SYMM,),

110
_F(CHARGE=LOAD,),),);

111

112 # Calculation of the nodal solutions

113 # WARNING: For nodes shared between more than one

114 # element, the nodal values are calculated separately

115

116 RESU=CALC_ELEM(reuse =RESU,

117 RESULTAT=RESU,

118 OPTION=(’SIGM_ELNO’,’SIEQ_ELNO’,’ENEL_ELNO’,),);

119

120 # Calculation of the nodal solutions

121 # The nodal values from each element sharing

122 # that node are averaged

123

124 RESU=CALC_NO(reuse =RESU,

125 RESULTAT=RESU,

126 OPTION=(’SIGM_NOEU’,’SIEQ_NOEU’,’ENEL_NOEU’,),);

127

128 # Calculation of the strain energy density

129

130 SED_CA=POST_ELEM(INTEGRALE=_F(GROUP_MA=’Circle’,

131 NOM_CHAM=’ENEL_ELNO’,

132 NOM_CMP=’TOTALE’,),

133 RESULTAT=RESU,);

134

135 # Printing of the table

136

137 IMPR_TABLE(TABLE=SED_CA,);

138

139 # Saving the output in MED format

140

141 IMPR_RESU(FORMAT=’MED’,

142 RESU=_F(MAILLAGE=MAIL,
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143 RESULTAT=RESU,),);

144

145 # Printing of the final values

146

147 SED_TAB = SED_CA.EXTR_TABLE()

148

149 SED = SED_TAB.values()[’MOYE_TOTALE’]

150

151 f.write(’\n==================================================\n’)

152 f.write(’ RESULTS’)

153 f.write(’\n==================================================\n\n’)

154

155 f.write(’ Coordinates of the notch tip: x_c = ’ + ’{0:3.10f}’.format(x_c) + \

156 ’\n’)

157 f.write(’ y_c = ’ + ’{0:3.10f}’.format(y_c) + \

158 ’\n\n’)

159

160 f.write(’ Computed SED = ’ + ’{0:2.5e}’.format(SED[0]) + ’\n\n’)

161

162 f.write(’==================================================\n’)

163

164 f.close()

165

166 FIN();
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And remember...

Ghost Figure. Multiaxial fatigue crack propagated inside a viscoelastic ma-
terial component (the author’s slipper).

...Cracks are everywhere!
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