
 

Università degli Studi di Padova
Dipartimento di Ingegneria dell’Informazione
Corso di Laurea Magistrale in Ingegneria
dell’Automazione

Tesi di laurea magistrale

Distributed control based on evolution-
ary game theory: multi-agent experi-
ment

Candidato:
Sofia Filippi
Matricola 1084115

Relatore:
Prof. Mauro Bisiacco

Anno Accademico 2015–2016





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 General objective . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5

3 Case setup 11

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Camera and pattern recognition . . . . . . . . . . . . . . . . . 12

3.2.3 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Control problem scheme . . . . . . . . . . . . . . . . . . . . . . . . . 13

iii



iv CONTENTS

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Revision protocol and mean dynamics . . . . . . . . . . . . . 19

3.3.3 Control of dynamical models . . . . . . . . . . . . . . . . . . . 37

4 Implementation 47

4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Platform operation . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Projection dynamics with USB connection . . . . . . . . . . . 58

4.2.2 Replicator dynamics with USB connection . . . . . . . . . . . 65

4.2.3 Projection dynamics with Bluetooth connection . . . . . . . . 69

4.2.4 Replicator dynamics with Bluetooth connection . . . . . . . . 74

5 Environmental impact 79

6 Budget evaluation 81

7 Conclusions 83

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References 87



List of Figures

3.1 Platform components. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Types of network topology. . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 DPD: graph of interconnections among agents. . . . . . . . . . . . . . 25

3.4 DPD: evolution of x coordinate. . . . . . . . . . . . . . . . . . . . . . 26

3.5 DPD: evolution of y coordinate. . . . . . . . . . . . . . . . . . . . . . 26

3.6 DPD: trajectories of the agents. . . . . . . . . . . . . . . . . . . . . . 26

3.7 Triangular formation to be obtained with distributed consensus control. 28

3.8 Evolution in time of the coordinates with distributed formation control. 29

3.9 Trajectories of the agents with distributed formation control. . . . . . 29

3.10 DRD rendezvous: incomplete graph representing initial agents relation-

ships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.11 DRD rendezvous: evolution of x coordinate with incomplete initial graph. 32

3.12 DRD rendezvous: evolution of y coordinate with incomplete initial graph. 33

3.13 DRD rendezvous: trajectories of the agents with incomplete initial graph. 33

3.14 Triangle and segment formations. . . . . . . . . . . . . . . . . . . . . 34

v



vi LIST OF FIGURES

3.15 DRD formation: incomplete graph representing initial agents relationships. 35

3.16 DRD formation: trajectories of the agents. . . . . . . . . . . . . . . . 36

3.17 DRD formation: evolution of x coordinate. . . . . . . . . . . . . . . . 36

3.18 DRD formation: evolution of y coordinate. . . . . . . . . . . . . . . . 36

3.19 Unicycle: trajectory tracking. . . . . . . . . . . . . . . . . . . . . . . 40

3.20 Unycycle: Position Control. . . . . . . . . . . . . . . . . . . . . . . . 40

3.21 Unicycle: Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.22 Unicycle: projection dynamics . . . . . . . . . . . . . . . . . . . . . . 41

3.23 Unicycle: replicator dynamics . . . . . . . . . . . . . . . . . . . . . . 41

3.24 Mobile robot: velocity loop control. . . . . . . . . . . . . . . . . . . . 43

3.25 Mobile robot: Velocity Control. . . . . . . . . . . . . . . . . . . . . . 44

3.26 Mobile robot: Vehicle Dynamics. . . . . . . . . . . . . . . . . . . . . 44

3.27 Mobile robot: trajectory tracking. . . . . . . . . . . . . . . . . . . . . 45

3.28 Mobile robot: Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.29 Mobile robot: projection dynamics . . . . . . . . . . . . . . . . . . . 46

3.30 Mobile robot: replicator dynamics . . . . . . . . . . . . . . . . . . . . 46

4.1 Vision Acquisition and Vision Assistant tools. . . . . . . . . . . . . . 49

4.2 Different patterns used to distinguish between Mindstorms. . . . . . . 49

4.3 Establish Bluetooth connection. . . . . . . . . . . . . . . . . . . . . . 50

4.4 Put in motion a robot. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Evaluation of distance and direction. . . . . . . . . . . . . . . . . . . 51

4.6 Possible configuration of current position and destination. . . . . . . . 52

4.7 Phase of motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



LIST OF FIGURES vii

4.8 Different cases with current orientation info. . . . . . . . . . . . . . . 57

4.9 Discrete dynamic updating law scheme: projection dynamics. . . . . . 58

4.10 Discrete dynamic updating law scheme: replicator dynamics. . . . . . 59

4.11 PD: rendezvous (USB). . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Projection dynamics rendezvous sequence with Mindstorms (USB). . 60

4.13 PD: triangular formation (USB). . . . . . . . . . . . . . . . . . . . . 61

4.14 Projection dynamics triangular formation sequence with Mindstorms

(USB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.15 PD: alignment (USB). . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.16 Projection dynamics alignment sequence with Mindstorms (USB). . . 63

4.17 Projection dynamics triangular formation sequence with Mindstorms,

external intervention (USB). . . . . . . . . . . . . . . . . . . . . . . . 64

4.18 Triangular formation sequence with Mindstorms with external position

modification (USB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.19 RD: rendezvous (USB). . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.20 Replicator dynamics rendezvous sequence with Mindstorms (USB). . 66

4.21 RD: triangular formation (USB). . . . . . . . . . . . . . . . . . . . . 67

4.22 RD: alignment (USB). . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.23 Replicator dynamics triangular formation sequence with Mindstorms

(USB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.24 Replicator dynamics alignment sequence with Mindstorms (USB). . . 69

4.25 Neighbouring graph in experiments with virtual robot. . . . . . . . . 70

4.26 PD: rendezvous (Bluetooth). . . . . . . . . . . . . . . . . . . . . . . . 70

4.27 Projection dynamics rendezvous sequence with Mindstorms (Bluetooth). 71



viii LIST OF FIGURES

4.28 PD: triangular formation (Bluetooth). . . . . . . . . . . . . . . . . . 72

4.29 PD: alignment (Bluetooth). . . . . . . . . . . . . . . . . . . . . . . . 73

4.30 Projection dynamics triangular formation sequence with Mindstorms

(Bluetooth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.31 Projection dynamics alignment sequence with Mindstorms (Bluetooth). 74

4.32 RD: rendezvous (Bluetooth). . . . . . . . . . . . . . . . . . . . . . . . 74

4.33 Replicator dynamics rendezvous sequence with Mindstorms (Bluetooth). 75

4.34 RD: triangular formation (Bluetooth). . . . . . . . . . . . . . . . . . 76

4.35 RD: alignment (Bluetooth). . . . . . . . . . . . . . . . . . . . . . . . 76

4.36 Replicator dynamics triangular formation sequence with Mindstorms

(Bluetooth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.37 Replicator dynamics alignment sequence with Mindstorms (Bluetooth). 78



Notation

Graph Theory

A: adjacency matrix of a graph

aij: elements of adjacency matrix A

B: incidence matrix

bkij: elements of incidence matrix B

D: degree matrix of a graph

Diag(v): square diagonal matrix with the elements of vector v on the main diagonal

deg(i): degree of the i-th node

E : set of edges of a graph

G: undirected connected graph

L(G): Laplacian of the graph G
λi(L(G)): i-th eigenvalue of L(G)

Ni: set of neighbours of agent i

Υ: matrix with columns the eigenvectors υi of L(G)

υi: i-th eigenvector of L(G) corresponding to eigenvalue λi(L(G))

V : set of nodes of a graph

Population Dynamics

[·]+ := max{0, ·}
arg min f : argument of the function f that minimizes it over its domain and constraint

arg min f : set

ix



x NOTATION

dij: desired displacement among agent i and agent j

dxij: desired displacement among agent i and agent j along axis x

dyij: desired displacement among agent i and agent j along axis y

Dx: matrix of distances in formation with elements dxij
Dy: matrix of distances in formation with elements dyij
∆: radius of the disk

f : potential function

Fi: fitness function of i-th agent

F: column vector of fitness functions Fi

KT (f): Kuhn-Tucker first order conditions on f

L: side of the square environment in simulations

`: side of the triangle or length of the segment in formations

L: Lagrangian

λ: “payoff slack” of strategy i ∈ V
m: population mass

µ: equilibrium payoff in a population

n: number of strategies

NE(F): set of Nash equilibria of F

∇f(x): gradient of f(x)

R: rate at which agents receive a revision opportunity

R+: set of non-negative real numbers

R++: set of positive real numbers

ρ: revision protocol

ρij: conditional switch rate from strategy i to strategy j

V : set of strategies available for all agents

VF(x): mean dynamics of x

x: population state vector

xi: portion of agents selecting strategy i, element of x (unidimensional case)

xi: state of agent i, element of x (multidimensional case)

xji : j-th component of the state of agent i, element of xi (multidimensional case)

X: simplex set of population states



NOTATION xi

Unicycle

α: orientation proportional controller

δ: distance maintained from the pursuit point

e: error when tracking a path

g: control law

h: holonomic constraint

ω: angular velocity

q = [x y θ]T: pose vector

θ: orientation

u = [v ω]T: velocity vector

v: linear velocity

Mobile Robot

Bv, Bω: translational and rotational friction coefficients

d: length of the semi-axis

e: error when tracking a path

J : inertia of the vehicle

Kv, Km, Kω, Kd: constant which map voltages, linear and angular velocities in forces

Kv, Km, Kω, Kd: and torques

M : mass of the vehicle

ω: angular velocity

q = [x y θ]T: pose vector

θ: orientation

Vd, Vm: differential and average voltages applied to the wheels

VL, VR: voltages applied to left and right wheels

vL, vR: linear velocities provided by the left and right wheels

Implementation

β: constant that converts distances in wheels-rotation angle

`: side of the triangle or length of the segment in formations

τ : sampling time

V F
i : mean dynamics of xi





Chapter 1
Introduction

In this Master’s Thesis project a platform that simulates the behaviour of a multi-

agent population has been created. The platform uses LabVIEW as main tool and

Lego Mindstorm robots as agents. Mindstorms can be controlled through the toolkit

NTX of LabVIEW and by implementing algorithms in G language from a PC. The

Mindstorms are going to be associated to agents in order to test, analyse and develop

multi-agents control strategies. The communication between the computer and the

agents is established through USB and Bluetooth connections.

The other important component of the platform is the camera, which is directly

connected to the PC. The role of the camera is to acquire information from the

environment where the Mindstorms are moving in order to identify their positions.

The localization is made by using the pattern matching virtual instrument that is

responsible to recognize and distinguish a pattern attached to each agent. Besides,

the virtual instrument evaluates its coordinates position in the space.

The theoretical aspect of this work is constituted by the selection and design of

algorithms that can control these agents in a distributed manner, using game theory

concepts, and graph-based techniques.

The application of game theory in engineering as control technique permits to model

the interaction among different agents, which make individual local decisions pursuing

a global and common objective, the Nash equilibrium [38]. Moreover, game theory

allows to solve optimization problems because the achievement of the Nash equilibrium

corresponds to the extreme of a potential function [36].

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

In this Master’s Thesis project, the motivation that has determined the choice of

working with evolutionary game theory is that it can be applied to design non-

centralized controllers. These tools are used to coordinate the motion of agents to

perform particular formations in the space or to solve rendezvous problem.

Optimization techniques based on evolutionary game theory allow to model the

behaviour of a population of agents that interact to each other. In this non-cooperative

game approach, each agent pursues its individual benefit. Moreover, under a special

class of games known as potential games, the solution of the game corresponds to a

maximum point of the respective potential function. Consequently, evolutionary game

theory can be used for optimization purposes [54].

The topics studied in this thesis could be adapted and applied to solve more complex

problems that concern large-scale systems. Instead of considering a single population,

a complex system can be seen as a connection of multiple populations. The populations

that compose the system are formed by agents that act according to individual rules.

A system of this kind is characterized by a non-centralized structure and the control

scheme is non-centralized too. The latter is constituted of local controllers that take

decisions independently. The local decisions taken inside the populations can be made

to achieve a global objective, expressed with a cost function.

1.2 Objectives

1.2.1 General objective

The final goal of the project is to control the trajectories a multi-agent population of

robots, Lego Mindstorms EV3, using distributed evolutionary game theory algorithms.

1.2.2 Specific objectives

Considering the specific case of the project, the general objective is developed by

achieving the following points
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� design and implement a working platform that may illustrate the control of

multi-agent systems, where the role of agents is taken by LEGO Mindstorm

EV3 robots;

� design distributed and non-centralized versions of projection and replicator

dynamics equations of evolutionary game theory;

� test with simulations projection and replicator dynamics approaches of evolu-

tionary game theory to solve the rendezvous problem in a multi-agent situation;

� test with simulations projection and replicator dynamics approaches to perform

formation in the space in a multi-agent situation;

� design dynamical models of mobile vehicles to simulate the tracking of the

generated trajectories;

� implement in the developed platform non-centralized control algorithms to make

the Mindstorms perform assigned tasks like reaching a common position in the

space and generate particular formations.

1.3 Thesis structure

The body of the thesis is organized as follows. Chapter 2 presents a general overview

of state of the art regarding distributed control techniques applied in multi-agent

systems. In Chapter 3, the control problem is formulated, the components of the

platform are introduced, and finally, several algorithms are proposed and tested

with simulations. Firstly, the trajectories are generated to reach the goal and then

these trajectories are established as references for local controllers that consider the

dynamical behaviours of the agents. Chapter 4 describes the real implementation with

the Mindstorms and presents the results obtained applying the algorithms introduced

in the previous chapter. Chapters 6 and 7 introduce the environmental impact, and

the budget evaluation related to the realization of this project, respectively. Chapter

8 presents the conclusions. In this section are summarized the work developed, the

results obtained, the contributions, and are proposes some directions for the future

research.





Chapter 2
State of the art

The origin of control theory is related to the control of a single system through different

control methodologies, such as proportional-integral-derivative (PID) control, adaptive

control, intelligent control, and robust control, like in [44] and among many others.

In the past two decades, the attention has shifted to the control of multiple intercon-

nected systems because many benefits can be obtained replacing a unique complex

system with several simple systems [32].

Three approaches are commonly used for the control of multiple interconnected systems:

a centralised, a decentralised, and a distributed approach.

The centralised approach is based on the assumption that a powerful central station is

responsible to control a group of systems and it is a direct extension of the traditional

single-system based control methodology. Instead, the distributed approach does

not require the existence of a central station, but a trade-off is that the design of a

non-centralised control is far more complex than the centralised counterpart and in

case of malfunction the failing point is difficultly detected. The centralised approach

requires the collection of all the information measured from the system in a central

point, then, the costs associated to communication structures can be discussed since

distributed approaches require smaller communication networks. The distributed

approach is the most promising in presence of physical constraints, such as limited

communication/sensing range, low bandwidth, and large number of systems involved

[70].

5



6 CHAPTER 2. STATE OF THE ART

One of the first practical experiments of distributed control applied to mobile robotic

has been done in the Institute for Process Control and Robotics (IPR) of the University

of Karlsruhe [51]. It has been developed the Karlsruhe Autonomous Mobile Robot

(KAMRO) which is a system composed of several subcomponents like two manipulators,

hand-eye-cameras, one overhead-camera and a mobile platform. It uses the distributed

control architecture KAMARA (Karlsruher Multi Agent Robot Architecture) that can

overcome coordination problems such as independent task execution in a decentralised

and distributed manner. With this platform, they solved problems that with centralised

control architectures cannot be overcome. For example, if a system component

obstructs the scene to be examined by the overhead camera, KAMARA requests the

blocking component to leave the scene before the camera mission is started. Moreover,

if the state controller recognizes that a mission cannot be performed by the system

itself, it delivers the mission to the cell planning system, which involves other systems

in the solution process. It is also possible that a system component breaks, in this case

KAMARA recognizes the damaged agent because these components fails during task

execution. This project has three innovative skills: it is hybrid because can intervenes

a centralised in special cases and the independent task execution by agents is used in

the normal case; it solves the problem of deadlocks in communication, cooperation

and coordination; it optimizes the system performance by reallocation of tasks to the

agents [51].

Recently, the control of a group of autonomous agents has been investigated intensively

from different perspectives [19]. The main control objective is to have the agents

work together in a cooperative manner. Cooperation refers to the close relationship

among all agents in a team, where the fundamental characteristic is the sharing of

information. Distributed coordination of multiple autonomous agents has become an

active research topic because many advantages can be obtained with its application,

such as robustness, adaptivity, flexibility, and scalability [26].

The study of distributed control of multiple autonomous agents was motivated by the

work in distributed computing [3], management science [35], and physics [72]. But

more specifically, in controls society, the pioneer work was given in [4] and [71], where

an asynchronous agreement problem has been studied for distributed decision making

problems.
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Some examples of agreement problem in multi-agent scenario solved distributively

are the following. In [11] the authors consider the problem of information agreement

among multiple agents in the presence of limited and unreliable information exchange

with dynamically changing interaction topologies. In [29], they propose a method

for decentralised information exchange between vehicles which realizes a dynamical

system that supplies each vehicle with a common reference to be used for cooperative

motion. In [39] authors propose a distributed approach based on a Newton-type

method for solving minimum cost network optimization problems. In [55] the author

studies a network where agents interact via time-dependent communication links and

each agent updates his current state based upon the current information received

from neighbouring agents. In [56] authors discuss agreement problems for networks of

dynamic agents with directed/undirected and fixed/switching topologies and introduce

two protocols for networks with and without time-delays.

Moreover, remaining in the area cooperative strategies in multi-agent systems, as

explained in [18], the intrinsic distributed feature of the problem allows to use a graph

that models agent-to-agent interactions depending on the relative locations of agents

in space, as in wireless or line-of-sight communication. Given a coordination task

to be performed by the network and a proximity graph representing communication

constraints, the problem can be solved with an approach based on gradient flows,

on the analysis of emergent behaviours (by notion of neighbouring agents and an

interaction law), on optimizing local objective functions to achieve the desired global

task and on the composition of simple behaviours to design more complex strategies.

Going into details, distributed control algorithms are able to solve several specific

problems of motion-coordination tasks such as deployment [16][17], rendezvous [2],

cohesiveness [42], and consensus [5] by using an aggregate objective function. Non-

smooth analysis is used to identify the extreme points of the objective functions.

Moreover, in [18] methods from circulant and Toeplitz tridiagonal matrices and the

invariance principle for set-valued discrete-time dynamical systems are used.

Regarding the game theoretical algorithms that can be implemented to control a

dynamical population of agents, the field that is considered is the evolutionary game

theory [27] and in particular the projection and replicator dynamics equation. Useful

researches in this area can be found in the following sources. In [59], the invariance

property of the simplex set under the replicator dynamics has been used to satisfy a
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coupled constraint in a resource allocation problem. Some works take advantage of this

property for control purposes, e.g., [7]. However, this population dynamics approach is

unable to take into account more constraints besides the positiveness of variables and

the one imposed by the simplex. To overcome this issue, authors in [8] have proposed

a population dynamics approach that may consider multiple constraints by adding

dynamics over population masses. Moreover, a distributed model-free control based

on population dynamics is conceived in [9]. The subject method guarantees that the

feasible region is attractive, so that the distributed control system is robust against

disturbances.

In this Master’s thesis control techniques based on distributed evolutionary game

theory are designed and applied to solve the formulated problem and to achieve the

pre-established control objectives. It follows a brief overview and description of the

sources from which the algorithms have been deduced.

Algorithms of game theory, and in particular of population dynamics, are tested to find

the optimal solution to reach common position in a situation that involves multiple

agents. In [36] stable games are studied. Stable games are a class of population

games characterized by self-defeating externalities1. In [45], a class of matrix games is

considered. Under these games, successful strategies are rewarded by high reproductive

rates and, over time, the strategy mix evolves to a stable state. In [64],[66],[65], and

[67], authors present the notion of an evolutionarily stable strategy and define the

concepts of population games and revision protocol. Starting with a population

game and a revision protocol, a dynamic process can be derived, which describes

how the aggregate behaviour of agents changes over time: the evolutionary game

dynamics. Deterministic differential equation models of game dynamics are considered

and several applications of evolutionary game theory are introduced. Moreover, the

notions of ESS, local stability theorem, and potential games for large population are

defined. Furthermore, an approach to model recurring strategic interactions in large

populations of agents built upon population games is described.

The projection and replicator equations are classic game dynamics used in evolutionary

game theory and they require full information to evolve to the solution. This property

cannot always be observed in multi-agents context because situations in which each

1Self-defeating externalities: when agents revise their strategies, the improvements in the payoffs

of strategies to which agents are switching are always exceeded by the improvements in the payoffs

of strategies which agents are abandoning
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agent can get information only from a neighbourhood defined by a network topology

are taken into account. In these cases, non-centralised controllers are used in order to

consider only local information rather than full-information.

In [60], the authors propose a novel method inspired by the replicator dynamics,

the local replicator dynamics, which uses only local information in neighbourhoods

defined by a connected graph. A game theoretical approach for addressing distributed

optimization problems that permits relaxations in the structure of the communication

graph is proposed in [49]. In particular the graph not need to be time-invariant and

connected, a common condition in representation of multi-agent systems. An overview

of developments of game theoretic methods for distributed control in engineered

systems is provided in [52]. The design of utility functions and learning processes is

also presented. In [8], a methodology for solving constrained optimization problems

distributively is proposed. To this end, dynamics of the population masses to the

population dynamics are added. [48] focuses on obtaining a local control laws for

the individual agents to ensure that the emergent global behaviour is desirable with

respect to a given objective, using game theoretical notions. Finally, in [6], authors

propose a general method that allows us to deduce several distributed population

dynamics, such as replicator, Smith, logit, and projection dynamics.





Chapter 3
Case setup

3.1 Problem formulation

The control objective is to make a population of agents perform optimal trajectories

and reach assigned tasks. Algorithms of distributed projection dynamics and replicator

dynamics are applied to solve these problems.

A fundamental component of the Master’s thesis is the proper selection and the design

of algorithms that can be used to control this multi-agent experiment in empirical

tests.

The experiment is not centralised, even though a PC controls all Mindstorms move-

ments. Instead, the control scheme is distributed because evaluation of the control

action to be applied to each agent is based on local information, determined by

neighbourhood in graph theoretical point of view.

First of all, distributed algorithms of projection and replicator dynamics are applied

in order to generate the ideal trajectories that lead the agents to reach a common

destination point. Secondly, these algorithms are modified so that the agents are

able to position themselves in particular formations in the space, e.g., to generate a

triangular shape or alignment.

Afterwards, the trajectories obtained with the previous controllers are set as references

that agents with dynamical behaviour have to track. The dynamical model that taken

into account are the unicycle and the three-wheels mobile robots, since they are a

suitable representation of the real robots used in practical experiments.

11
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3.2 Tools

3.2.1 Agents

The role of agents is taken by LEGO Mindstorm EV3 robots. The chosen configuration

presents two rear wheels driven by two independent motors and a small back wheel

that has the purpose to keep in balance the robot (unicycle model). Each Mindstorm

is able to move around an environment going forward and backward and rotating.

3.2.2 Camera and pattern recognition

The camera is connected through USB port with the computer. Its position is fixed so

that the reference frame of the pictures taken by the camera is always attached to the

world reference frame. The role of the camera is to film the environment in which the

robots are moving. The sequential images are continuously analysed by the pattern

recognition module that identifies the positions of the robots inside the pictures. The

recognition is made by searching a pattern that contains the image of the robot. At

each time, a correspondence is found and the program returns the coordinates x-y of

the pixel in the center of the rectangular area containing the robot. In this way, the

overall proposed scheme can identify the position of the robots inside the environment.

3.2.3 Bluetooth

The PC and all the robots are equipped with Bluetooth and it is used to remotely

control the actions of the Mindstorms. It is assumed that the robots cannot exchange

informations directly to each other because the commands exchanged through Blue-

tooth go unidirectionally from the PC to them. The Mindstorms are not aware of

their positions and this is the reason why it is necessary to use the camera in order

to have a feedback of their locations. Moreover, the Mindstorm cannot communicate

directly to each other since they are not connected.

Figure 3.1 represents the platform described so far. The experiment set-up in structured

in this manner, with a central unit embodied by the computer, but the control

algorithms respect a distributed topology, i.e., distributed algorithms are tested with

this platform.
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Figure 3.1: Platform components.

3.3 Control problem scheme

3.3.1 Preliminaries

3.3.1.1 Distributed and decentralised control

Before explaining how the non-centralised control is structured and how it is imple-

mented, it is necessary to define which are the features that distinguish centralised,

decentralised, and distributed systems.

A centralised system directly controls the operation of the individual units and

information flow from a single central unit. All agents are directly dependent on

the decisions of the central controller and they are forbidden to coordinate and

work-together among themselves.

In a decentralised system the decision power is not entrusted to a central unit.

According to the graph1 in Figure 3.2, a decentralised system can be represented with

a hierarchical structure composed by a central node that is connected with middle

nodes that in turn control the most external nodes. In such decentralised system

each node controls others directly below it and becomes controlled by the one directly

above it. In doing so, the central node can control the entire system. The external

1A graph is a diagram representing a system of connections or interrelations among entities. These

entities are called nodes and the connections are the links or edges.
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nodes are forbidden to coordinate and work-together among themselves.

Unlike centralised and decentralised systems, a distributed system has not a central unit

control. Referring once more to the graphical representation of the system in Figure

3.2, all the nodes have equal decision-making power. Each node can interact with its

neighbouring nodes using commonly agreed protocols, building reliable networks that

can be many times more resilient than centralised or decentralised systems. In case

one of the nodes fails, with a distributed structure the risk of isolate a subset of nodes

is lower. The reliability of the system grows with the increase in the number of nodes.

Each node and its neighbours coordinate and work-together among themselves.

Figure 3.2: Types of network topology.

When the considered system involves a large number of states with multiple constraints,

it is disadvantageous to solve the optimization problem with a centralised control

because of the amount of variables that have to be taken in consideration. A solution is

to adopt a distributed control that can solve effectively the problems of dimensionality

and information structure constraints.

Distributed optimization algorithms can be based on convex optimization [10], New-

ton method [12][40][41], gradient and subgradient methods [4][13][43][58], proximal

procedures [13][14], consensus algorithms [20][47] and game theory [48][49][62].

In particular, in this Master’s thesis, the interest is to apply evolutionary game

theoretical algorithms to solve constrained optimization problems in a distributed way
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by the use of population dynamics. System is seen as a set of interconnected subsystems

that allows to obtain a global optimal solution by exploiting local information and

the use of local information also improves computational efficiency.

3.3.1.2 Graph theory

Network science is applied to study multi-agent coordination and control, and it is

important in order to understand the role that interactions among single entities play

in the collective functionality of systems.

Distributed multi-agent networks are constituted of agents that require to operate in

concert with each other in order to achieve a global objective, while having access to

limited computational resources and local informations.

Systems not completely connected have problems of communication among agents,

then it is important to find a way to control the global system with limited connections

and local decision-making.

An useful tool to describe networks where agents are not all connected to each other

is graph theory, where agents are represented with nodes in a graph and an edge

symbolizes the existence of an interaction among nodes it connects.

Consider a network constituted of n dynamical nodes, or vertices, labelled as 1, 2, . . . , n,

interconnected via information-exchange links, or edges. The network that de-

scribes the relationships among nodes can be represented with an undirected graph

G = {V , E ,A}, where V = {1, . . . , n} is the set of nodes and E ⊆ {(i, j) : i, j ∈ V}
is the set of links of the form (i, j) with i 6= j. If a link connect two nodes they are

considered adjacent. From this definition, the adjacency matrix A = [aij] can be

defined as

aij =

{
1 if (i, j) ∈ E ,
0 otherwise.

Furthermore, the set of neighbours of node i is defined as Ni = {j ∈ V : (i, j) ∈ E}.

Another fundamental concept of graph theory is the degree of a node that represent

the number of edges connected to a node, and it is denoted by deg(i), i ∈ V. The

degree matrix D is the diagonal matrix with elements equal to deg(i) along the main

diagonal and zero outside, i.e., D = Diag
(
[deg(i) . . . deg(n)]T

)
.
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Besides, the graph G should be connected, i.e., for every pair of vertices in V , there is

a path that has them as its end vertices. Since G is undirected, then the information

flow through all the links is bi-directional and (i, j) = (j, i).

Given a graph G with n vertices, its Laplacian matrix denoted by L(G) = [lij] is

defined as L = D−A.

According to [74], the spectrum of the Laplacian for a connected undirected graph

assumes the form

0 = λ1(L(G)) < λ2(L(G)) ≤ . . . ≤ λn(L(G)), (3.1)

where λi(L(G)), i = 1, . . . , n, are the eigenvalues of L(G) and in particular λ1(L(G))

is the zero eigenvalue with corresponding eigenvector equal to 1.

Let υi be the eigenvector that corresponds to the eigenvalue λi(L(G)). These

eigenvector are normalized and mutually orthogonal and define the matrix Υ =

[υ1 υ2 . . . υn].

The incidence matrix B of dimension |E| × |V| has elements bkij where (i, j) is the edge

connecting nodes i, j ∈ V and k ∈ V . The elements of the B are defined as

bkij =

{
1 if k = i or j,

0 otherwise,

and the Laplacian matrix L(G) can be expressed by using the incidence matrix as

L(G) = BTB. Consider the i-th eigenvalue λi(L(G)) and the corresponding eigenvector

υi, then

λi(L(G)) = υT
i L(G)υi

= υT
i BTBυi

= (Bυi)
T(Bυi).

Due to the fact that λi(L(G)) can be written as the inner product of the vector

Bυi with itself, this shows that λi(L(G)) ≥ 0 and so the eigenvalues of L(G) are all

non-negative.

The graphical representation of a network is used throughout the document to show

the features of population dynamics and describe the relationships between agents. In

particular, the notion of adjacency matrix is useful to represent the set of neighbours

of the agents in distributed control algorithms.
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3.3.1.3 Population dynamics

The following sections about evolutionary game theory a nd population dynamics

are based on the approaches proposed in [67] and [64] for notation, math definitions,

theorems and propositions.

Consider a population composed of a large and finite number of rational decision

makers (agents2). All the decision makers can select among a set of strategies denoted

by V = {1, . . . , n}, which represent the actions that the agents can make. The scalar

xi ∈ R+ represents the portion of decision makers selecting strategy i ∈ V . The vector

x = [x1 . . . xn]T ∈ Rn
+ is the population state or strategic distribution, whose

entries are non-negative real numbers.

The set of possible states is

X =

{
x ∈ Rn

+ :
∑
i∈V

xi = m

}
,

where m > 0 is the population mass.

Agents playing the i-th strategy obtain a reward given by a fitness function denoted

by Fi(x), where Fi : X 7→ R is a continuous map that specifies the payoff associated

with the strategy i ∈ V. The population game is completely characterized by the

fitness function vector F(x) = [F1(x) . . . Fn(x)]T.

The fundamental solution concept of noncooperative game theory is Nash equilibrium,

the requirement that each agent choose a strategy that is optimal given the choices of

the others.

Definition 3.3.1. Population state x∗ is a Nash equilibrium of F, denoted by NE(F),

if no agent can improve his payoff by unilaterally switching strategies. More explicitly,

x∗ is a Nash equilibrium if

x∗i > 0 =⇒ Fi(x) > Fj(x) ∀ j ∈ V .

Nash equilibria always exists as affirmed in Theorem 3.3.1 by [67].

Theorem 3.3.1. Every population game admits at least one Nash equilibrium.

2Agents are rational in the sense they make decisions pursuing an improvement of their benefits.
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The existence of equilibria could not be sufficient because these results can be only

locals. It is necessary to look for global convergence properties, which establish that

equilibrium is achieved starting from any initial state. Potential games and stable

games are classes of dynamics that converge to equilibrium from all initial conditions

[67].

Definition 3.3.2. Let F : Rn
+ 7→ Rn be a population game, if there exists a continu-

ously differentiable potential function f : Rn
+ 7→ R that satisfies ∇f(x) = F(x), for all

x ∈ Rn
+, then F is a full potential game.

In potential games, all information about payoffs can be captured in the single

scalar-valued function f .

Consider the population state x ∈ X such that Fj(x) > Fi(x). This assumption means

that for the agents would be better choosing strategy j ∈ V rather than strategy i ∈ V .

If a small subset of agents switch from strategy i to strategy j, the impact that these

switches have on the value of potential is equal to

∂f

∂xj
− ∂f

∂xi
= Fj(x)− Fi(x) > 0.

This means that switching to a advantageous strategy increase the potential.

Given this, can be shown that Nash equilibria of full potential games correspond to

the local maxima of the potential. Consider the nonlinear constrained optimization

problem

max f(x) s.t.
∑
i∈V

xi = m, xi ≥ 0, ∀ i ∈ V

with associated Lagrangian with the following form:

L(x, µ,λ) = f(x) + µ

(
m−

∑
i∈V

xi

)
+
∑
i∈V

λixi, λ ∈ Rn, µ ∈ R. (3.2)

The necessary Kuhn-Tucker first-order conditions [46] related to (3.2) can be derived

and are
∂f

∂xi
= µ− λi ∀ i ∈ V . (3.3)

λixi = 0 ∀ i ∈ V , (3.4)

λi ≥ 0 ∀ i ∈ V . (3.5)
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Definition 3.3.3. The Kuhn-Tucker first order conditions on f(x) under µ and λ

are

KT (f) = {x ∈ X : (x, µ,λ) satisfies (3.3)− (3.5) for some λ ∈ Rn and µ ∈ R}.

The multiplier µ represents the equilibrium payoff in population, and λ the “payoff

slack” of strategy i ∈ V .

The validity of the Kuhn-Tucker conditions is necessary for local maximization of

the full potential function. Considering that a continuous function on a compact set

achieves its maximum, Theorem 3.3.2 proves that exists the Nash equilibrium of the

full potential games.

The Kuhn-Tucker conditions are necessary but not sufficient for maximizing potential

in X, therefore, can exists Nash equilibria that do not maximize f . On the other

hand, if the full potential function f is concave, the Kuhn-Tucker conditions are not

only necessary but also sufficient condition for maximizing f .

The following theorem shows that the Kuhn-Tucker first-order conditions for maxi-

mizing f on X characterize the Nash equilibria of F.

Theorem 3.3.2. If F is a full potential game with full potential function f , then

NE(F) = KT (f).

This means that satisfying the Kuhn-Tucker conditions for f on X is equivalent to

maximizing the linearised version of f on X.

Definition 3.3.4. The population game F : X 7→ Rn is a stable game if: (y −
x)T(F(y)− F(x)) ≤ 0 for all x,y ∈ X.

In this case, if F ≡ ∇f(x) is also a potential, Definition 3.3.4. is the requirement that

the potential function f be concave [67].

3.3.2 Revision protocol and mean dynamics

Population games involve large numbers of agents, and the equilibrium assumption is

quite strong. Therefore, is necessary to relax this requirement and suppose that agents

gradually adjust their choices inside the available strategy set in order to generate

trajectories that converge to Nash equilibrium.
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If a population game F describes a strategic environment; a revision protocol denoted

by ρ describes the procedures that agents follow in order to adapt their behaviour

in the environment. F combined with ρ defines an evolutionary process, which is

represented by the population dynamics [67].

Definition 3.3.5. The revision protocol is a function ρ : Rn × X 7→ Rn×n
+ that

describes the timing and the result of the decisions of agents in the strategic interaction.

The revision protocol takes as inputs the payoff vector F(x) and a population state

x ∈ X, and returns as output a non–negative matrix, whose element of the i-th row

and j-th column ρij(F(x); x) represents the conditional switch rate from strategy i ∈ V
to strategy j ∈ V.

Depending on the revision protocol used by the agents, different kinds of population

dynamics can be defined, e.g., replicator dynamics [45], and projection dynamics [57].

According to [67], consider a population composed by N agents receiving a revision

opportunity given by an exponential distribution with rate R. Then, the revision

opportunity received by each agent during a small interval of time dt is given by

Rdt. When the current state is x, the number of revision opportunities received by

agents playing strategy i in this interval is equal to NxiRdt, because the value of xi is

considered constant during time interval [0, dt] if dt is small.

Agents selecting strategy i switches to strategy j with probability ρij/R, and the

expected number of such switches during the next interval of length dt is Nxiρijdt.

The expected change that involve strategy i during the next interval time of length dt

is

N

(∑
j∈V

xjρij − xi
∑
j∈V

ρij

)
dt, ∀i ∈ V , (3.6)

The first term of (3.6) contain switches to strategy i from other strategies, and the

second term captures switches from strategy i to other strategies. Dividing (3.6) by

N , the expected change in the proportion of agents choosing strategy i is obtained.

The differential equation for the social state xi is given deriving (3.6), i.e.,

ẋi =
∑
j∈V

xjρij − xi
∑
j∈V

ρij, ∀i ∈ V , (3.7)

and the differential equation in (3.7) represents the mean dynamics corresponding to

revision protocol ρ. Denote the mean dynamics of a population as ẋ = VF(x).
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Before defining the relationship between revision protocol and Nash equilibria, let

introduce four desiderata for revision protocols

(C) Continuity: ρ is Lipschitz continuous3.

(SC) Scarcity of data: ρij only depends on Fi, Fj, and xj.

(NS) Nash stationarity: VF(x) = 0 ⇔ x ∈ NE(F).

(PC) Positive correlation: VF(x) 6= 0 ⇒ VF(x)TF(x) > 0.

As a consequence of (C), small changes in aggregate behaviour do not cause large

changes in responses of the agents. (SD) means that the switch rate from strategy

i ∈ V to strategy j ∈ V only depends on the payoffs of these two strategies and on the

state of strategy j. Accordingly to (NS), the equilibrium points of the mean dynamics

corresponds the Nash equilibria of the game, as affirmed in Proposition 3.3.3. Finally,

(PC) requires that in all the other points the mean dynamics be positively correlated

with the payoffs.

Proposition 3.3.3. If VF(x) satisfies (PC), then x ∈ NE(F) implies that VF(x) = 0.

3.3.2.1 Distributed mean dynamics

The populations described so far consider well–mixed4 populations described by a

complete graph, whereas non–well–mixed populations are the ones represented with

non–complete graphs [6]. The concept introduced so far regarding population dynamics

can be adapted to non–well–mixed populations in order to consider systems with

distributed information-exchange structures.

As seen before, interactions among agents selecting different strategies can be repre-

sented by a graph G = {V , E ,A}, that may be interpreted as a population structure,

where the set of nodes V is associated with the available strategies and the set of links

E represents the possible interaction among agents selecting certain strategies. More

precisely, the elements of the adjacency matrix A = [aij ] are aij = 1 if strategies i and

j can encounter each other, while aij = 0 if not.

In non–well–mixed populations should be taken in consideration the fact that only

neighbouring strategies can interact. For this reason the switch rate ρij from strategy

4In well-mixed populations any pair of agents playing any pair of strategies can interact with each

other.
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i to strategy j is pre-multiplied by aij to indicates that can happen only if i and j are

neighbours in the graph. Then, the probability with which agents selecting strategy

i ∈ V switch to strategy j ∈ V becomes aijρij/R. Finally, the expected number of

agents switching from strategy i ∈ V to strategy j ∈ V during time dt is Nxiaijρijdt.

The expected change in the use of strategy i during the next dt time units become

N

(∑
j∈V

xjaijρij − xi
∑
j∈V

aijρij

)
dt, ∀i ∈ V , (3.8)

and the differential equation for the social state that corresponds to the distributed

mean dynamics is

ẋi =
∑
j∈Ni

xjρij − xi
∑
j∈Ni

ρij, ∀i ∈ V . (3.9)

3.3.2.2 Projection dynamics

The projection dynamics are deduced from the mean dynamics (3.7) and using the

modified pairwise comparison revision protocol

ρij =
[Fj − Fi]+

xi
, (3.10)

with [·]+ := max{0, ·}.

Substituting (3.10) in (3.7), the projection dynamics equation is obtained

ẋi =
∑
j∈V

xj
[Fi(x)− Fj(x)]+

xj
− xi

∑
j∈V

[Fj(x)− Fi(x)]+
xi

=
∑
j∈V

(Fi(x)− Fj(x))

= nFi(x)−
∑
j∈V

Fj(x), ∀ i ∈ V .

(3.11)

Distributed projection dynamics (DPD) are deduced from the distributed mean

dynamics (3.9) and revision protocol (3.10)

ẋi = |Ni|Fi(x)−
∑
j∈Ni

Fj(x), ∀ i ∈ V , (3.12)
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where |Ni| denotes the cardinality of the set Ni, which is the number of neighbours of

i-th node. The equilibrium points in (3.15) are given by Fi = Fj, for all i, j ∈ V .

The following algorithms refer to a particular choice of fitness functions:

Fi(x) = −xi, ∀ i ∈ V . (3.13)

In a graph, the strategies are represented by the nodes. Denoting the scalar state of

strategy i as xi ∈ R+ for all i ∈ V, the rate of change of each state is assumed to be

governed by the sum of its relative states with respect to a subset of neighbours.

The differential equation that represents these dynamics is

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)), ∀ i ∈ V . (3.14)

Th expression in (3.14) has been obtained by substituting (3.13) in (3.15).

The equilibrium point of (3.14) is obtained when ẋi = 0 for all i ∈ V and this happen

when xi = xj for for all i, j ∈ V. The fact that the equilibrium is reached when all

the state component converge to a common value solves the problem agreement. In

other words, if the states are used to represent the coordinates of mobile agents, with

(3.14) the convergence to a common position in the space is obtained. This is called

rendezvous problem.

3.3.2.2.1 Rendezvous with projection dynamics

Considering the practical application of these algorithms, mobile robots can be seen as

agents that compose a multi-agent system. The network that describes the system can

be represented with a graph where each agent occupies a node and the links represent

the connections among agents.

If the communication between mobile robots has a limited range due to technolog-

ical limitations, it is useful to introduce the concept of time-variant graph G(t) =

{V , E(t),A(t)}. In particular if the presence of a link between two nodes is determined

by the distance between the corresponding agents, the graph is a ∆-disk proximity

graph [28], where

(i, j) ∈ E(t) ⇐⇒ ‖xi(t)− xj(t)‖ ≤ ∆, ∀ i, j ∈ V , t ≥ 0.
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Here, ∆ ∈ R++ is a positive scalar value that represents the threshold distance among

two agents to guarantee the establishment of a connection link among them.

Such graphs are dynamic in nature, as edges may appear or disappear when agents

move in or out of the communication range of each other. The p-dimensional position

of agent i ∈ V is given by

xi(t) = [x1
i (t) . . . xpi (t)]

T, ∀ i ∈ V ,

thus, the overall state becomes equal to x(t) = [x1(t)T . . . xn(t)T]T.

The control goal is to achieve the position agreement, i.e., to make the states agents

reach a common value in a non-centralised manner5, taking the geometric range

constraints into account in an explicit way.

Applying the considerations with respect to the vector positions, the distributed

projection dynamics (3.14) assumes the form

ẋki (t) =
∑
j∈Ni

(xkj (t)− xki (t)), ∀ i ∈ V , and k = 1, . . . , p. (3.15)

The dynamical equation in (3.15) can be applied to solve problems of agents aggregation

because its equilibrium point corresponds to the agreement position that the agents

should reach. The following simulations give a practical example of this affirmation.

3.3.2.2.1.1 Rendezvous simulations with projection dynamics 6

The algorithm just presented has been implemented with MatLab. In the simulations

the number of agents involved is arbitrarily selected to be to n = 6 and the environment

is represented by a square area with side L = 50 m. In the first case ∆ = 20 m and in

the second ∆ = 30 m in order to generate two different scenarios and compare the

results. Both these choices of ∆ guarantee the connectivity of the graph G, since the

initial conditions are selected in a manner such that there are no isolated nodes, as

presented in Figure 3.3.

5Non-centralised since it is desired that each agent only has partial information about other

agents.
6The following simulations and all the others presented in the document refers to the bi-dimensional

case. In the previous theoretical part the state or position of agent i was expressed with the p-

dimensional variable xi. To maintain a consistent notation it should have been chose xi = [x1
i x2

i ]T,

i = 1, . . . , n, but to reduce the complexity of the indices, the position of each agent is expressed with

[xi yi]
T where xi ≡ x1

i and yi ≡ x2
i . Moreover, x = [x1 . . . xn]T and y = [y1 . . . yn]T.
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Figure 3.3 presents the initial positions of the agents in the space and the red arcs are

the interconnections determined by distance ∆. In Figure 3.3(a), ∆ = 20 m and the

adjacency matrix related to the graph is sparse. Instead, in Figure 3.3(b), ∆ = 30 m

and the graph has a bigger number of links.

When there are more links in the graph, then the velocity of convergence of the agents

to the equilibrium in higher. This can be seen in Figures 3.4 and 3.5 where the agents

need more time to reach the common point when they are less connected to each

other.

Different evolutions in time of the coordinates generate different trajectories represented

in Figure 3.6, starting from the initial positions to the final destination, which is the

equilibrium point.
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Figure 3.3: DPD: graph of interconnections among agents.
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Figure 3.4: DPD: evolution of x coordinate.
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Figure 3.5: DPD: evolution of y coordinate.
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Figure 3.6: DPD: trajectories of the agents.
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3.3.2.2.2 Formation with projection dynamics

Now consider a procedure to solve the distributed formation control problem. The

inter-agent distance constraints can be described by a connected edge-labelled graph

Gd = {V , Ed,Ad}, where the subscript d means “desired”, Ed encodes the desired

robot interconnections and the edge labels d define the desired relative inter-agent

displacements, with ‖dij‖ < ∆, for all i, j ∈ V, dij ∈ Rp, such that (i, j) ∈ Ed. The

graph Gd is the one that is established at the end of the motion of the agents, when

they all reach the desired formation determined by the inter-agent displacements

dij = [d1
ij . . . dpij]

T.

The goal of the distributed formation control is to find the dynamical equations that

respect the following conditions

1. The dynamic interaction graph G(t) converges to a graph that is a subgraph

of the desired graph Gd in finite time: Ed ⊆ E(t), ∀ 0 ≤ t <∞.

2. The pairwise distances ‖xi(t)− xj(t)‖ converge asymptotically to ‖dij‖
for all i, j ∈ V such that (i, j) ∈ Ed.

3. Each equation utilises only local information.

The modified version of (3.15) to perform formation is

ẋki (t) =
∑
j∈Ni

(xkj (t) + dkij − xki (t)), ∀ i ∈ V , and k = 1, . . . , p. (3.16)

3.3.2.2.2.1 Formation simulations with projection dynamics

It follows a MatLab simulation that performs the distributed control problem with

the particular task of obtaining a triangular formation. It is selected ∆ = 30 m and

the initial condition for the positions of agents are chosen inside a square area of side

L = 50 m. Agents involved are n = 6 and the value of the side of the triangle has

been fixed equal to ` = 15 m. Also the final positions that constitute the triangular

formation are inside the square area.

In order to reach the formation represented in Figure 3.7, before applying the algorithm,

it is necessary to assign the desired mutual distances dij = [dxij dyij]
T that the agents

should have at the end of the motion. These values are listed in Tables 3.1 and 3.2

and they refer to inter-agents distances along x and y directions.
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Figure 3.7: Triangular formation to be obtained with distributed consensus control.

Table 3.1: Distances along x direction.

dxij = xi − xj
agents 1 2 3 4 5 6

1 0 − `
2
−` −3`

4
− `

2
− `

4

2 `
2

0 − `
2
− `

4
0 `

4

3 ` `
2

0 `
4

`
2

3`
4

4 3`
4

`
4

− `
4

0 `
4

`
2

5 `
2

0 − `
2
− `

4
0 `

4

6 `
4
− `

4
−3`

4
− `

2
− `

4
0

Table 3.2: Distances along y direction.

dyij = yi − yj
agents 1 2 3 4 5 6

1 0 0 0 −
√

3`
4
−
√

3`
2
−
√

3`
4

2 0 0 0 −
√

3`
4
−
√

3`
2
−
√

3`
4

3 0 0 0 −
√

3`
4
−
√

3`
2
−
√

3`
4

4
√

3`
4

√
3`
4

√
3`
4

0 −
√

3`
4

0

5
√

3`
2

√
3`
2

√
3`
2

√
3`
4

0
√

3`
4

6
√

3`
4

√
3`
4

√
3`
4

0 −
√

3`
4

0

Figure 3.8 shows how the coordinates converge to the final desired values. Finally, in

Figure 3.9 the trajectories of the agents are represented and the triangular formation

that they perform is highlighted.
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Figure 3.8: Evolution in time of the coordinates with distributed formation control.
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Figure 3.9: Trajectories of the agents with distributed formation control.

3.3.2.3 Replicator dynamics

The replicator dynamic are deduced from the mean dynamics (3.7) and using the

pairwise proportional imitation protocol

ρij = xi[Fj − Fi]+, (3.17)
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Substituting (3.17) in (3.7) the replicator dynamics equation is obtained

ẋi =
∑
j∈V

xjxi[Fi(x)− Fj(x)]+ − xi
∑
j∈V

xj[Fj(x)− Fi(x)]+

=
∑
j∈V

xjxi(Fi(x)− Fj(x))

= xi

(
mFi(x)−

n∑
j=1

Fj(x)xj

)
, ∀ i ∈ V

(3.18)

Similarly as with the projection dynamics, if the considered population is non-well-

mixed, it is necessary to adopt a distributed version of (3.18).

The distributed replicator dynamics (DRD) are deduced from the distributed mean

dynamics (3.9) and revision protocol (3.17)

ẋi = xi

(
Fi(x)

∑
j∈Ni

xj −
∑
j∈Ni

xjFj(x)

)
, ∀ i ∈ V . (3.19)

As with projection dynamics, the equilibrium point of (3.19) is obtained when xi = xj

for for all i, j ∈ V. The rendezvous problem can be solved also with replicator

dynamics and the common position to which agents converge corresponds to the Nash

equilibrium.

3.3.2.3.1 Rendezvous with replicator dynamics

It follows an example where potential games Fi(x) and Fi(y) describe distinctly

the evolutionary behaviour of coordinates of the agents x = [x1 . . . xn]T and

y = [y1 . . . yn]T in the bi-dimensional space.

The potential games are obtained from the expression of the potential function f(x,y)

f(x,y) = −
n∑
i=1

n∑
j=1

((xj − xi)2 + (yj − yi)2), ∀ i, j ∈ V . (3.20)

The expression of the potential function 3.20 is directly dependent to the Euclidean

distances among agents, where the distance in the bi-dimensional case is given by√
(xj − xi)2 + (yj − yi)2.

By computing the partial derivatives of f(x,y) the fitness functions are obtained
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Fi(x) =
∂f(x,y)

∂xi
= 2

∑n
j=1(xj − xi),

Fi(y) =
∂f(x,y)

∂yi
= 2

∑n
j=1(yj − yi),

∀ i ∈ V . (3.21)

Substituting the expressions of the fitness functions, the replicator equations are

obtained as follows:

ẋi = xi

(
Fi(x)

∑
j∈Ni

xj −
∑
j∈Ni

Fj(x)xj

)
, ∀ i ∈ V ,

ẏi = yi

(
Fi(y)

∑
j∈Ni

yj −
∑
j∈Ni

Fj(y)yj

)
, ∀ i ∈ V .

3.3.2.3.1.1 Rendezvous simulations with replicator dynamics

Simulations have been made with MatLab and the number of agents has been fixed

n = 4. As in the previous experiments, the environment is represented by a square

area with side L = 50 m.

The experiments are of two types: the first uses an algorithm based on time-invariant

graph, more precisely the incidence matrix that represents the neighbouring relation-

ships among agents is fixed and it depends only on the initial positions of the agents.

If two agents are not neighbours before starting moving because their distance is

higher than the threshold value ∆ = 30 m, they will not become neighbours even if

during the motion their distance decrease under the value of ∆.

On the other hand, the second experiment works with an algorithm that uses a

time-variant incidence matrix that is redefined at each time instant. For this reason,

agents can establish new neighbouring connections during the motion or existing

interactions can blow up.

In Figure 3.10 the graph that describes the neighbouring relationships among agents

when they are in the initial positions is represented. The graph is not complete and,

as explained before, this is determined by the initial condition of the positions of the

agents and by the value of ∆.
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Figure 3.10: DRD rendezvous: incomplete graph representing initial agents relationships.

In Figures 3.11 and 3.12 the evolutions in time of the coordinates of the agents are

compared. The convergence speed is considerably higher when the algorithm that

uses a time-varying incidence matrix is applied if compared with the one based on

time-invariant graph. Finally, Figure 3.13 represents the different trajectories that the

agents follow in the two cases.
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Figure 3.11: DRD rendezvous: evolution of x coordinate with incomplete initial graph.
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Figure 3.12: DRD rendezvous: evolution of y coordinate with incomplete initial graph.
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Figure 3.13: DRD rendezvous: trajectories of the agents with incomplete initial graph.

3.3.2.3.2 Formation with replicator dynamics

The problem of formation with multi-agent system can be also solved with a game

theoretical approach applying the distributed replicator dynamics equation. To convert

the rendezvous solution into formation task it is only necessary to modify the expression

of the potential function f .

Starting from (3.20), the new expression of the potential function takes the following

form:

f(x,y) = −
n∑
i=1

n∑
j=1

((xj + dxij − xi)2 + (yj + dxij − yi)2),
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where dxij and dyij represent respectively the distances, with sign, along the axes that

agent i should maintain from agent j when they reach the equilibrium, in order to

perform the desired formation.

With the same steps carried out in the previous paragraph, the potential games can

be obtained

Fi(x) =
∂f(x,y)

∂xi
= 2

n∑
j=1

(xj + dxij − xi), ∀ i ∈ V ,

Fi(y) =
∂f(x,y)

∂yi
= 2

n∑
j=1

(yj + dyij − yi), ∀ i ∈ V ,

which have to be substituted inside the replicator dynamics equation in (3.19).

3.3.2.3.2.1 Formation simulations with replicator dynamics

Figure 3.14: Triangle and segment formations.

In order to generate the triangular formation or linear formation represented in Figure

3.14, in the case of three agents, the values of the parameter dxij and dyij should be the

ones indicated by the elements of the following matrices:
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Triangle : Dx = [dxij] =

 0 − `
2

`
2

`
2

0 `

− `
2
−` 0

 , Dy = [dyij] =

 0 −
√

3`
2
−
√

3`
2√

3`
2

0 0
√

3`
2

0 0

 .

Segment : Dx = [dxij] =

 0 `
2

`

− `
2

0 `
2

−` − `
2

0

 , Dy = [dyij] =

 0 0 0

0 0 0

0 0 0

 .
MatLab simulations, in which the number of agents has been fixed n = 3, are taken in

the usual square environment with side L = 50 m. The experiments use the algorithm

based on time-variant graph with neighbouring relationship redefined at each instant

depending on current distances among agents. The following results are obtained with

threshold sensing distance equal to ∆ = 30 m and parameter ` = 20 m.

In Figure 3.15 the initial graph that describes the neighbouring relationships among

agents at the beginning of the experiment is represented. Initially the graph is not

complete but it is connected so the distance-based time-varying algorithm can be

applied.
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Figure 3.15: DRD formation: incomplete graph representing initial agents relationships.

Figure 3.16 represents the two different formation situation with the agents starting

from the same initial positions. In Figure 3.17 and 3.18 are compared the evolutions

in time of the coordinates of the agents.
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Figure 3.16: DRD formation: trajectories of the agents.
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Figure 3.17: DRD formation: evolution of x coordinate.
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Figure 3.18: DRD formation: evolution of y coordinate.
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3.3.3 Control of dynamical models

In this section dynamical models of two vehicles are taken in consideration in order to

generate simulations that are closer to the real experiments that will be performed

with the Mindstorms.

Ideal trajectories generated in the previous sections are established as references for

local controllers that consider the dynamical behaviours of the agents.

The models mentioned above are the one of the unicycle and of the three-wheels

mobile robot.

3.3.3.1 Unicycle model

The unicycle is the simplest model of a wheeled vehicle and its system is equivalent to

the one of the shopping cart. The shopping cart has two independent motor drives at

the rear wheels. The centre of mass is at centre of the axle.

Considering the unicycle moving in an x-y plane, denote with v its forward velocity

and with θ the heading angle. The unicycle or shopping cart can move only in the

direction it is heading. That is, there is a no-slip condition

[
ẋ

ẏ

]
⊥

[
sin θ

− cos θ

]
=⇒ ẋ sin θ − ẏ cos θ = 0.

The last condition is called nonholonomic constraint.

In general, a constraint with the form h(q) = 0, where q is the position vector is called

holonomic. A constraint of the form h(q)q̇ = 0, where q̇ is the velocity vector, cannot

be integrated into a position constraint so it is called nonholonomic. Considering the

unicycle

ẋ sin θ − ẏ cos θ =
[

sin θ − cos θ 0
] ẋ

ẏ

θ̇

 = 0,
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the kinematic model of the unicycle is the following:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(3.22)

and defining the configuration vector as q :=

 x

y

θ

 and input vector u :=

[
v

ω

]
, the

model takes the compact form q̇ = g(q,u) where

g(q,u) = g(x, y, θ; v, ω) =

 v cos θ

v sin θ

ω

 ,
or equally

q̇ = vg1(q) + ωg2(q) =
[
g1(q) g2(q)

] [ v

ω

]
,

where

g1(q) = f(x, y, θ; 1, 0) =

 v cos θ

v sin θ

0

 , g2(q) = f(x, y, θ; 0, 1) =

 0

0

1

 .
The complete unicycle model, linear in the input, is ẋ

ẏ

θ̇

 = v

 v cos θ

v sin θ

0

+ ω

 0

0

1

 .
3.3.3.1.0.2 Trajectory tracking with unicycle

It is necessary to create an outer loop that can control the motion of the robot in

order to make it tracking a path. The input of the control is the desired trajectory

(xd(t), yd(t)), while a negative feedback is obtained extracting the coordinates of the

robot in terms of position in the space (x, y) and its orientation (θ) from the kinematic

model given by (3.22).
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To reach a destination point, it is sufficient to apply a proportional controller that

controls the velocity of the robot to be proportional to its distance from the goal.

Instead, when the vehicle has to follow a trajectory, the target can be considered as a

moving point, therefore a simple proportional controller cannot be enough to satisfy

the request. In order to lead the error of the velocity to zero, it is necessary use a PI

controller [21].

The robot is assumed to maintain a distance δ behind the pursuit point that is moving

along the reference trajectory and the error between the current position and this

pursuit point is

e =
√

(xd − x)2 + (yd − y)2 − δ,

and it has to be regulated to zero with the PI controller given by

v∗ = KvP e+KvI

∫
e dt.

The integral term is required to provide a finite velocity demand v∗ when the error is

zero.

The second controller steers the robot toward the target that is at the relative angle

θ∗ = arctan

(
yd − y
xd − x

)
,

and a simple proportional controller

α = KωP (θ∗ − θ),

turns the steering wheel so as to drive the robot toward the target.

Here, θ is constrained to lie in the angular interval [−π, π).

Figure 3.19 represents the complete modelling of the mobile robot and in Figures

3.20 and 3.21 are represented respectively the content of Position Control block and

Kinematics block.
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Figure 3.19: Unicycle: trajectory tracking.

Figure 3.20: Unycycle: Position Control.

Figure 3.21: Unicycle: Kinematics.

In the following figures are put in comparison the behaviours of trajectories obtained

with ideal point agents and the ones obtained with the dynamical model of the unicycle.

The top figures represent the reference trajectories that the unicycles have to track.

Instead, bottom images are actually the trajectories of the unicycles. In Figure 3.22

the references are obtained with projection dynamics equation, while the references in

Figure 3.23 belongs to replicator dynamics.
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Figure 3.22: Unicycle: projection dynamics
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Figure 3.23: Unicycle: replicator dynamics
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3.3.3.2 Mobile robot model

The kinematic equation of the mobile robot [21] are given by



ẋ = 1
2
(vL + vR) cos(θ),

ẏ = 1
2
(vL + vR) sin(θ),

θ̇ = 1
2d

(vR − vL),

(3.23)

where x, y, θ is the pose of the vehicle, e.g. position and orientation in the plane, vR

and vL are the linear speed provided by the right and left wheel, while d is the length

of the semi-axis of the vehicle.

The dynamic of the vehicle is


M
dv

dt
= −Kvv +KmVm −Bvv,

J
dω

dt
= −Kωω +KdVd −Bωω,

(3.24)

where v, ω are the linear and angular velocities of the vehicle, M and J are the mass

and the inertia of the vehicle, respectively. Vm and Vd are the average and differential

voltages applied to the wheels. The constants Kv, Km, Kω, Kd map voltages, linear

and angular velocities in forces and torques. here, Bv and Bω are the translational

and rotational friction coefficients, respectively. Finally, VR and VL are the voltages

applied to the wheels and Vm =
VR + VL

2
and Vd = VR − VL.

The relation among the linear velocities of the wheel and the linear and angular

velocities of the vehicle is {
vR = v + ωd,

vL = v − ωd.
(3.25)
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3.3.3.2.0.3 Control of the velocities of the vehicle

Figure 3.24: Mobile robot: velocity loop control.

The control has to be built knowing the linear velocities of the wheels. They can be

computed using the equations

vR = v + ωd, (3.26)

vL = v − ωd. (3.27)

From the dynamic model of the vehicle can be derived the corresponding transfer

functions in order to obtain the linear and angular velocities of the vehicle v and ω


M
dv

dt
= −Kvv +KmVm −Bvv,

J
dω

dt
= −Kωω +KdVd −Bωω,

L−−→


MsV (s) = −KvV (s) +KmVm −BvV (s),

JsΩ(s) = −KωΩ(s) +KdVd −BωΩ(s),

V (s) =
Km

Ms+Kv +Bv

Vm, (3.28)

Ω(s) =
Kd

Js+Kω +Bω

Vd. (3.29)
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The construction of the velocity loop is based in the measurements of the velocities of

the wheels so the linear and angular velocities of the vehicle have to be evaluated in

this way:

v =
vR + vL

2
, (3.30)

ω =
vR − vL

2d
. (3.31)

In the scheme in Figure 3.25 is represented the relationship between mean and

differential voltages and voltages applied to the wheels

VR = Vm +
Vd
2
,

VL = Vm −
Vd
2
.

Figure 3.25: Mobile robot: Velocity Control.

The transfer functions of (3.28) and (3.29) are implemented in Figure 3.26 followed by

(3.30) and (3.31).

Figure 3.26: Mobile robot: Vehicle Dynamics.
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Here, KPm and KPd are the proportional controllers inside the velocity control loop

in Figure 3.26.

3.3.3.2.0.4 Trajectory tracking with mobile robot

Figure 3.27 represents the complete modelling of the mobile robot, the Position Control

block used in this case is exactly the same one that is applied for the unicycle in

Figure 3.20. Instead, the Kinematics of the vehicle is different and is reported in (3.23)

and represented in Figure 3.28.

Figure 3.27: Mobile robot: trajectory tracking.

Figure 3.28: Mobile robot: Kinematics.

As with the example of the unicycle, also with the mobile robot model it is possible

to compare the behaviours obtained with ideal trajectories the ones generated by the

real dynamical model. Simulations in Figures 3.29 and 3.30 refer to rendezvous and

formation.
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Figure 3.29: Mobile robot: projection dynamics
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Figure 3.30: Mobile robot: replicator dynamics



Chapter 4
Implementation

4.1 Experimental setup

4.1.1 Platform operation

Before evaluating the efficiency of the application of game theory in distributed control,

it is necessary to describe in practice which is the framework of the experiments

performed.

The environment is constituted by an uniform plain rectangular area without obstacles.

A fixed camera positioned above the area constantly films the events that occur. The

camera is directly connected to the PC through an USB cable so the top view of the

area can be see in real time from the computer monitor.

When the three LEGO Mindstorm robots are introduced into the environment, the

next step is to establish a connection between the Mindstorms and the PC. This

connection can be wireless and implemented through the Bluetooth protocol, or can

be performed with USB connection with cables. Each agent has a specific name use

ad identification, therefore the computer is able to send commands distinctly to the

different robots.

A pattern matching tool, implemented with LabVIEW 2012, is responsible of the

recognition of each robot inside the environment. The identification is made by

comparison with a pattern that has been defined before starting the experiments.

47
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Each Mindstorm is associated with a different shape pattern and this allows the

software to distinguish between them.

In practice, the LabVIEW developed routine receives a continuous stream of images

from the camera and returns in real time the position of the center of the pattern

attached to the detected robot. The position is expressed in x-y coordinates of the

central pixel, in the reference frame fixed with the image which has the origin in the

upper left corner.

After setting the task to achieve, for example a point in space to reach, the software

evaluates the distance from the current position and the desired one and sends the

command to one of the Mindstorms, selecting it by choosing its specific Bluetooth ID.

As mentioned above, the position of the agents is given in pixels but the commands

that the computer sends to the motors driving the wheels of the robots are expressed

in rotation angle. For this reason a conversion is made passing through a first function

that maps the pixel into centimetres and a second function that maps centimetres

into degrees of rotation.

In the setup phase, one of the side the environment plane has been measured both in

centimetres, with a meter in the real world, and in pixels simply considering the size

of the image returned by the camera. With the following proportion it is possible to

obtain the number of pixels in the image that correspond to the length of 1 centimetre

in the real environment

#pixel/cm =
1 cm

length[pixel]

. (4.1)

The constant value obtained with the previous ratio is used to convert the distances

from pixels scale to centimetres scale.

The last step consists in evaluating the rotation angle that the wheels must rotate

in order to cover the given distance. That value can is obtained by considering the

radius Rw of the wheels:

β =
distance[cm] · 360o

2πRw

. (4.2)
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4.1.1.1 Pattern recognition

Going into details, Figure 4.1 shows the structure of the LabVIEW component designed

to perform pattern matching. The Vision Acquisition module is responsible of the

video streaming and it is inserted into a while loop in order to acquire an image at

each loop, in this way a rapid sequence of frames is performed.

Figure 4.1: Vision Acquisition and Vision Assistant tools.

On the other hand, the Vision Assistant is the module that actually implements the

patter matching by taking as input the image returned by the Vision Acquisition

block. By setting a pattern image, this module can identify and localize the pattern

inside the input image. Finally, the coordinates in pixels of the center of the pattern

are returned as output.

In Figure 4.2 are reported the three different patterns used to identify the Mindstorms.

The shapes have been chosen to be distinguishable to each.

EV3 03 EV3 09 EV3 10

Figure 4.2: Different patterns used to distinguish between Mindstorms.

The Vision Assistants support the possibility of recognizing a particular pattern even

if it is rotated of a certain range of degree. The interval of rotation is imposted as a

parameter, in this case the admissible rotation belongs to [−π; π].

The impossibility of evaluating the current orientation of the Mindstorms with the

Vision Assistants requires to make an assumption: the starting orientation of the
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Robots must be known. For this reason, every time the Mindstorms move, the angle of

rotation are evaluated and new values of the orientations saved inside specific variables.

When these variables are used in the next iteration, they represent the new current

orientations.

4.1.1.2 USB and Bluetooth connections

When the robots are localized into the acquired image, it is necessary to establish a

connection between them and the PC.

The first time the Mindstorms connect with the computer through Bluetooth it is

necessary to perform the devices association. Moreover, different identification names

are assigned to the Mindstorms in order to distinguish among them when commands

are sent to the motors.

In Figure 4.3 is represented the LabVIEW implementation of this operation. The first

step is to assign a name to the searched Mindstorm, EV3 in this case, and the type of

connection, Bluetooth, USB or WiFi. When the Bluetooth of the PC find a device,

it asks to set up the connection indicating the passkey (1234). Once the connection

is established, the Bluetooth address of the Mindstorm is obtained and also it has

been assigned to it the identification name EV3. When the moment of controlling

the action of the robots arrives, it is sufficient to select the Minstorm by using its

identification name and type of connection as inputs.

Figure 4.3: Establish Bluetooth connection.

Once the identification names are assigned to the Mindstorms, it is no more necessary

to execute these operations, it is enough to indicate the name and the connection

type. USB connection can be established selecting the USB option in the control that

specifies the connection type.



4.1. EXPERIMENTAL SETUP 51

4.1.1.3 Robots motion

4.1.1.3.1 Setup operations

The LabVIEW scheme in Figure 4.4 performs a forward rotation for 10s of the wheels

attached to motor A and C and than stops the motion.

Figure 4.4: Put in motion a robot.

In Figure 4.5 are represented the computations done to evaluate the distance that one

robot has to cover in order to reach an assigned destination, starting from is current

position. This value is obtained in pixels because the coordinates are expressed in

pixels too, therefore, it is necessary to apply the conversion from pixels to centimetres

dividing by 13.05. This number has been found applying (4.1).

Figure 4.5: Evaluation of distance and direction.

Moreover, the angle of rotation that the wheels have to turn in order to align the

Mindstorm to the destination point is computed. The function used to evaluate this

angle is the atan2 of the absolute value of the distances along horizontal and vertical

directions. In this way the result is always between 0 and
π

2
.

To distinguish the four possible cases that can occur regarding the mutual position

between current location and destination, two boolean variables are created. One for

the horizontal distance and the other one for the vertical distance. In Figure 4.6 are

explained in detail the four possible scenarios and the corresponding actions associated

to each choice.
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Configuration A

Configuration B

Configuration C

Configuration D

Figure 4.6: Possible configuration of current position and destination.
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Port C of the brick is connected to the motor that drives the left wheel thus the

backward rotation of this motor produces an anticlockwise rotation of the Mindstorm

around itself. Analogously the backward rotation of the other wheel driven by motor

A produces the clockwise rotation of the Mindstorm. When the rotation is performed

and the robot is finally oriented in the direction of the destination point, it can start

moving in straight direction. The distance that it has to cover has been already

computed in Figure 4.5 but it is necessary to convert this value in degree of rotation

of the wheels. The conversion number 20, 99737532808 is obtained applying (4.2). If

the name of the port is not specified, like in Figure 4.7(b), all the motors attached to

the brick are started.

(a) Turning around (b) Straight advance

Figure 4.7: Phase of motion.

4.1.1.3.2 Reaching a destination: Solution A

The first experiment consists in moving the Mindstorm from its current position to a

final destination in the environment. The program, during the stream of the camera,

continuously locates and returns the current position of each agent. After choosing

one of the Mindstorm, by assigning a desired position target, the application evaluates

automatically the distances along x and y directions that the robot has to cover to

reach the destination.

At the beginning of the experiment the Mindstorms are oriented in the same way facing

the y direction. Every time one of them is activated, it turns of 90o in the correct

verso, determined by the position of the target, than goes straight along x direction,

turns again of 90o and finally follows the y direction until it reaches the destination.

At the end of the motion, when the target is reached, the robot repositions itself in

the initial orientation.

Solution A reports the pseudo-code of the algorithm that discriminates between the

possible motion solutions according to the current position of the robot with respect
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to the destination.

Solution A

(xc; yc)← current position

(xd; yd)← desired position

if xc − xd > 0

then if yc − yd > 0

then rotate of 90o counterclockwise

go straight for |xc − xd|
rotate of 90o clockwise

go straight for |yc − yd|
else rotate of 90o counterclockwise

go straight for |xc − xd|
rotate of 90o counterclockwise

go straight for |yc − yd|
rotate of 180o

end

else if yc − yd > 0

then rotate of 90o clockwise

go straight for |xc − xd|
rotate of 90o counterclockwise

go straight for |yc − yd|
else rotate of 90o clockwise

go straight for |xc − xd|
rotate of 90o clockwise

go straight for |yc − yd|
rotate of 180o

end

end

4.1.1.3.3 Reaching a destination: Solution B

A simple evolution of the previous solution is to drive the Mindstorms directly in the

correct direction of the target. In order to perform this procedure, it is necessary

to evaluate the angle of rotation between the current orientation and the one that
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permits to align with the destination point. The pseudo-code of this algorithm is

reported in Solution B.

Solution B

(xc; yc)← current position

(xd; yd)← desired position

d←
√

(xc − xd)2 + (yc − yd)2

α← arctandeg(|yc − yd|/|xc − xd|)
if xc − xd > 0

then if yc − yd > 0

then rotate of (90− α)o counterclockwise

go straight for d

rotate of (90− α)o clockwise

else rotate of (90 + α)o counterclockwise

go straight for d

rotate of (90 + α)o clockwise

end

else if yc − yd > 0

then rotate of (90− α)o clockwise

go straight for d

rotate of (90− α)o counterclockwise

else rotate of (90 + α)o clockwise

go straight for d

rotate of (90 + α)o counterclockwise

end

end

4.1.1.3.4 Reaching a destination: Solution C

The choice of resetting initial orientation every time one of the Mindstorm reach the

destination is only a convention that can be easily modified by taking in memory the

current orientation that the robot has when it stops.

As mentioned before, the Vision Assistant is set in a way that it can recognize the

patterns even if they are rotated during the motion. A drawback is that the angle

of rotation is not returned as output by the Vision Assistant module. This is a
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disadvantage of pattern recognition because that application can only return the

positions in the space of the agents but not how they are oriented.

Pseudo-code in Solution C shows how the algorithms works when the orientation is

not reset at the end of every motion.

Solution C

(xc; yc)← current position

αc ← current orientation

(xd; yd)← desired position

d←
√

(xc − xd)2 + (yc − yd)2

αd ← arctandeg(|yc − yd|/|xc − xd|)
if αc − αd > 0

then rotate of (αc − αd)o clockwise
go straight for d

αc ← αd

else rotate of (αd − αc)o clockwise
go straight for d

αc ← αd

end

Figure 4.8 represents the two possible cases that can occur when the information

about the current angle is taken in memory. This figure refers to the configuration

A already explained in Figure 4.6, however, with the other three configurations the

content of the innermost case structure is identical.
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(a) αc > αd

(b) αc < αd

Figure 4.8: Different cases with current orientation info.

4.1.1.4 USB connection and virtual robot

During these simple experiments emerged a critical problem related to physical limi-

tation of Bluetooth technology. The LabVIEW NTX Terminal is able to maintain

connected only two Mindstorms per time with Bluetooth. This drawback is incom-

patible with the objective of the project because the central aim is to implement

multi-agent experiments.

The solution adopted is twofold. The first choice is to discard Bluetooth and establish

USB connection between the Mindstorms and the PC. This solution does not require

to modify the code and the structure of the platform because it is only necessary

to change the constant parameter that identifies the connection type. The only

disadvantage is given by the encumbrance caused by the physical cables and their

limited lengths.

The second option is to connect two of the Mindstorms with Bluetooth and to simulate

the presence of the third one. It is assumed that the virtual robot has an ideal

behaviour, thus it follows the reference that indicates the position to reach without

error.
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4.1.2 Discretisation

In order to generate the trajectories that the Mindstorms have to follow, has been

necessary to discretise the continuous dynamic equations used in Section 3.3.2.

If xi is one of the coordinates of the robots, the continuous dynamic equation is given

by ẋi = V F
i (x), where in this case V F(x) represents the expression of projection or

replicator dynamics defined in the previous chapter. In the discrete case, the related

updating law is

xi(t+ τ) = xi(t) + τV F
i (x), (4.3)

where the sampling time is denoted with τ .

In Figure 4.9 is represented the LabVIEW implementation of equation (4.3) in the

case when V F
i stands for projection dynamics. The number of robots is n = 3, then

x = [x1 x2 x3]
T. The analogous scheme for the replicator dynamics differential

equation is shown in Figure 4.10.

Figure 4.9: Discrete dynamic updating law scheme: projection dynamics.

Figure 4.10: Discrete dynamic updating law scheme: replicator dynamics.
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4.2 Results

4.2.1 Projection dynamics with USB connection

4.2.1.1 Rendezvous with PD and USB

The first consistent experiments with the Mindstorms using a distributed control has

been made applying the projection dynamics algorithm simulated in Section 3.3. The

goal is to make the robots converge to a common position in the space.

In this experiment τ = 0.2s and the dynamics has been split in six phases of length

equal to τ . The sequential positions detected with the camera during the motion are

the one reported in Table 4.1. Moreover, Figure 4.11 represents the discrete evolution

in time of the coordinates of the Mindstorms and their real trajectories during the

experiment.

Table 4.1: Coordinates in pixels of the Mindstorms in projection dynamics rendezvous

experiment with USB connection.

PD rendezvous

time EV310 EV309 EV303

t = 0 (247,479) (1039,739) (1028,178)

t = τ (629,455) (860,654) (981,450)

t = 2τ (709,504) (855,610) (922,460)

t = 3τ (772,516) (825,579) (898,488)

t = 4τ (782,530) (818,593) (890,508)

t = 5τ (777,530) (808,599) (884,521)

The numerical values of the final positions of the Mindstorms need an explanation.

These experiments are performed with real robots that occupy a volume in the space,

then it is impossible to make them reach exactly the same position without collide.

This is the reason why the coordinates of the Mindstorms cannot coincide perfectly at

the end of the motion.

Figure 4.12 represents the sequence of images captured during the experiment by the

camera. The positions occupied by the Mindstorms in these images are exactly the
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Figure 4.11: PD: rendezvous (USB).

ones reported in Table 4.1.

Figure 4.12: Projection dynamics rendezvous sequence with Mindstorms (USB).

4.2.1.2 Formation with PD and USB

Formation experiments with projection dynamics produced the desired results because

the numerical values obtained are consistent with theoretical ones. In these case, the

non-null dimension of the robots do not influence the experiment because in formation

the final distance between Mindstorms has been chosen grater than their size.

The formation performed are the same of the simulations in the previous chapter,

triangle and segment with ` = 350 pixels side.
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Table 4.2 refers to triangular formation and alignment. The first one adopts τ = 0.3s

and the graphical representation of the correspondent numerical values in the table

are represented in Figure 4.13. On the other hand, Figure 4.15 is related to alignment

with τ = 0.2s.

Table 4.2: Coordinates in pixels of the Mindstorms in Projection Dynamics formation

experiment with USB connection.

PD triangular formation PD alignment

time EV310 EV309 EV303 EV310 EV309 EV303

t = 0 (266,536) (943,759) (1112,150) (274,571) (958,718) (1089,121)

t = τ (595,348) (810,764) (1005,271) (510,469) (840,620) (1106,393)

t = 2τ (565,377) (856,735) (1081,239) (524,507) (842,579) (1057,405)

t = 3τ (608,334) (819,685) (1043,274) (575,507) (814,546) (1017,459)

t = 4τ (628,339) (797,638) (1007,268) (604,511) (809,530) (996,489)

t = 5τ (578,337) (815,653) (1008,276) (616,517) (804,517) (986,494)
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Figure 4.13: PD: triangular formation (USB).
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Figure 4.14: PD: alignment (USB).
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Figure 4.14 represents the sequence of actions performed by the Mindstorms during

experiments in order to reach the triangular formation with projection dynamics.

Figure 4.15: Projection dynamics triangular formation sequence with Mindstorms (USB).

In Figure 4.16 are shown the steps of the motion that the robots execute to align

themselves along a line with projection dynamics.

Figure 4.16: Projection dynamics alignment sequence with Mindstorms (USB).
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4.2.1.3 External intervention in triangular formation with PD and USB

The code was also modified to solve a different problem. When the Mindstorms reach

their final positions to perform triangular or linear formation, an external agent moves

manually one of the robots and change its position. In that case, the Vision Assistant

detects that the coordinates of this Mindstorm changed. After that, the program

re-activates the robot and brings him back to the position that he left in order to

restore the previous formation.

In Table 4.3 are reported the coordinates of the Mindstorms obtained in the experiment

of triangular formation. The new positions are the one detected by the Vision Assistant

when the Mindstorm EV303 has been moved from its final position that it reached

at time t = 5τ . The program detects that the coordinates of the Mindstorm EV303

changed and brings him back to the right position. Finally, at the end of the

experiments, the positions detected are the ones that occupy the last line of the table.

Also in this case, the error between positions at time t = 5τ and final positions is

acceptable for practical purposes.

Table 4.3: Coordinates in pixels of the Mindstorms in triangular formation experiment

with external intervention and USB connection.

PD triangular formation

time EV310 EV309 EV303

t = 0 (276,536) (974,756) (1014,132)

t = τ (612,390) (796,773) (989,233)

t = 2τ (596,378) (754,638) (1100,228)

t = 3τ (633,342) (779,695) (1045,290)

t = 4τ (582,385) (769,663) (1048,277)

t = 5τ (578,350) (776,666) (995,295)

new positions (578,350) (776,666) (1102,109)

final positions (578,350) (776,666) (1002,301)

In Figure 4.17 the dashed lines represent the displacement caused by the external

agent.
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Figure 4.17: Projection dynamics triangular formation sequence with Mindstorms, external

intervention (USB).

Figure 4.18 represents the sequence of positions that the Mindstorms occupy during

the experiments of triangular formation with projection dynamics. In the first picture

the robots are in the initial positions, in the sixth in the final positions, in the seventh

they are in the new positions generated after the moving of robot EV303, and finally,

the last picture shows the new final positions. The Mindstorm EV303 returns to the

correct position, indeed, the sixth and the last situations look alike.

Figure 4.18: Triangular formation sequence with Mindstorms with external position modi-

fication (USB).

4.2.2 Replicator dynamics with USB connection

4.2.2.1 Rendezvous with RD and USB

The convergence speed of replicator dynamics is higher than the one of projection

dynamics with the choice of fitness function made in Chapter 3 in (3.13) and (3.21).

This fact has already been shown with MatLab simulations where the convergence
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time with projection is in the order of seconds and with replicator of hundredths of

a second. Because of this, the choice of the sampling time in replicator dynamics

experiments is shorter and equal to τ = 0.0001s.

Figure 4.19 shows the real behaviour of the Mindstorms during the rendezvous

experiment with replicator dynamics. The convergence of y coordinates seems to

be not achieved. The reason is that the robots are positioned in a way that if they

continued to get closer they collide. It is important to remind that the results of these

experiments are always related to real agents with non-null dimensions.

Table 4.4: Coordinates in pixels of the Mindstorms in replicator dynamics rendezvous

experiment with USB connection.

RD rendezvous

time EV310 EV309 EV303

t = 0 (269,356) (974,745) (1122,107)

t = τ (453,418) (968,736) (1071,234)

t = 2τ (572,406) (953,719) (1008,252)

t = 3τ (629,461) (949,706) (960,305)

t = 4τ (721,494) (940,672) (949,345)

t = 5τ (783,519) (918,639) (925,390)

t = 6τ (825,531) (896,607) (920,426)

t = 7τ (833,534) (896,595) (913,421)
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Figure 4.19: RD: rendezvous (USB).

In Figure 4.20 is represented the sequence of positions covered by the Mindstorms

during the path that brings them from the initial positions to the destination during

replicator dynamics experiment.
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Figure 4.20: Replicator dynamics rendezvous sequence with Mindstorms (USB).

4.2.2.2 Formation with RD and USB

As with projection dynamics, the length of the triangle side and of the segment in

formation problem is equal to ` = 350 pixels. In Table 4.5 are reported the phases

in which the trajectories have been split. The effectiveness of control can be better

seen from Figures 4.21 and 4.22, where the achievement of the desired formation is

highlighted in black.

Table 4.5: Coordinates in pixels of the Mindstorms in replicator dynamics triangular

formation experiment with USB connection.

RD triangular formation RD alignment

time EV310 EV309 EV303 EV310 EV309 EV303

t = 0 (282,268) (926,736) (1108,124) (312,490) (950,725) (1108,112)

t = τ (425,250) (903,745) (1137,217) (468,484) (928,697) (1106,220)

t = 2τ (491,268) (916,740) (1094,252) (531,500) (906,648) (1083,264)

t = 3τ (546,286) (891,725) (1076,280) (574,506) (886,607) (1060,309)

t = 4τ (588,300) (878,709) (1058,305) (601,505) (866,571) (1049,346)

t = 5τ (609,316) (864,694) (1047,313) (621,498) (859,551) (1040,377)

t = 6τ (629,326) (858,685) (1037,336) (638,497) (852,534) (1033,400)

t = 7τ (636,330) (854,680) (1031,331) (644,493) (849,523) (1029,422)

t = 8τ - - - (652,491) (844,510) (1029,436)



4.2. RESULTS 67

0 1 2 3 4 5 6 7

x 10−4

0

200

400

600

800

1000

1200

x coordinates

x(
t)

time [s]
0 1 2 3 4 5 6 7

x 10−4

0

100

200

300

400

500

600

700

800

900

y coordinates

y(
t)

time [s]
0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

900

trajectories

x(t)

y(
t)

Figure 4.21: RD: triangular formation (USB).
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Figure 4.22: RD: alignment (USB).

Figures 4.23 and 4.24 represent the sequence of positions occupied by the Mindstorms

during triangular formation and alignment with replicator dynamics, respectively.

Figure 4.23: Replicator dynamics triangular formation sequence with Mindstorms (USB).
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Figure 4.24: Replicator dynamics alignment sequence with Mindstorms (USB).

4.2.3 Projection dynamics with Bluetooth connection

As mentioned before, with the NXT LabVIEW Terminal is impossible to maintain

the connection of more than two Mindstorms per time using the Bluetooth. In the

experiments with Bluetooth the behaviour of the third Mindstorm that cannot be

connected is simulated. The interesting fact associated with this solution is that

the virtual robot has the role of connecting the other two that cannot communicate

directly. To be more clear, the neighbouring graph that explains the relationships

between the agents is the one represented in Figure 4.25. The Mindstorm EV310 is

the virtual agent, instead, the EV303 and the EV309 are effectively connected to the

PC with Bluetooth.
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Figure 4.25: Neighbouring graph in experiments with virtual robot.

The initial position of the Mindstorm EV310 has been chosen randomly, instead, the

initial positions of the other two robots are detected by the Vision Assistant as in the

previous experiments.

4.2.3.1 Rendezvous with PD and Bluetooth

Table 4.6 and Figure 4.26 report the results of an experiment with the virtual agent.

The goal is to make the Mindstorms reach a common position in the environment

using the projection dynamics equation. In this case the sampling time is equal to

τ = 0.2s and the trajectories have been split in nine phases.

It is possible to compare the results obtained in this experiment with the ones of the

correspondent experiment with USB connection. The consistency of the extracted

values is higher because with the virtual agent the error produced is lower. Moreover,

the distances between EV310 and the other two Mindstorms are negligible due to its

null dimensions.
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Figure 4.26: PD: rendezvous (Bluetooth).
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Table 4.6: Coordinates in pixels of the Mindstorms in projection dynamics rendezvous

experiment with Bluetooth connection.

PD rendezvous

time EV310 EV309 EV303

t = 0 (300,400) (1121,721) (1123,192)

t = τ (629,423) (956,698) (1010,346)

t = 2τ (770,462) (913,648) (942,377)

t = 3τ (833,482) (909,620) (926,408)

t = 4τ (867,495) (906,596) (922,414)

t = 5τ (886,499) (902,565) (927,424)

t = 6τ (897,497) (898,537) (928,437)

t = 7τ (904,493) (899,539) (930,449)

t = 8τ (908,494) (900,537) (905,540)

Figure 4.27 shows the sequential positions that the two real Mindstorms occupy during

the experiment described in Table 4.6.

Figure 4.27: Projection dynamics rendezvous sequence with Mindstorms (Bluetooth).

4.2.3.2 Formation with PD and Bluetooth

The same experiments of formation performed with 3 real robots, have been done also

with two Mindstorms connected with Bluetooth and the third one simulated.
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In the triangular formation experiment τ = 0.3s, instead, for the alignment the

sampling time is equal to τ = 0.2s. In both cases the motion is divided in six steps.

The sides of the triangle and of the segment are always fixed at ` = 350 pixels.

Table 4.7 shows the sequence of coordinates that the robots occupy during the

experiments and, as mentioned before, these positions are the ones detected with

pattern matching with the camera.

Figures 4.28 and 4.29 show the evolution of the coordinates and the trajectories of

the Mindstorms in triangular formation ad alignment, respectively. The numerical

values in the graphs are the ones extracted from Table 4.7.

The results can be considered acceptable for practical purposes, as underlined by the

final formations that have been obtained.

Table 4.7: Coordinates in pixels of the Mindstorms in projection dynamics triangular

formation experiment with Bluetooth connection.

PD triangular formation PD alignment

time EV310 EV309 EV303 EV310 EV309 EV303

t = 0 (300,400) (952,687) (1150,185) (300,400) (1028,733) (1136,202)

t = τ (593,331) (836,700) (1028,298) (543,427) (894,601) (1111,429)

t = 2τ (639,341) (886,701) (1058,274) (622,462) (889,559) (1081,437)

t = 3τ (681,338) (865,659) (1055,256) (662,477) (878,520) (1077,459)

t = 4τ (691,319) (857,634) (1044,266) (683,482) (882,512) (1069,472)

t = 5τ (689,306) (849,628) (1064,270) (695,486) (881,501) (1064,473)
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Figure 4.28: PD: triangular formation (Bluetooth).
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Figure 4.29: PD: alignment (Bluetooth).

In Figure 4.30 is represented the sequence of images captured during the triangular

formation experiment performed with projection dynamics equation.

Figure 4.30: Projection dynamics triangular formation sequence with Mindstorms (Blue-

tooth).

The sequential positions of the Mindstorms in Figure 4.31 correspond to the alignment

experiment with projection dynamics described in Table 4.7.
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Figure 4.31: Projection dynamics alignment sequence with Mindstorms (Bluetooth).

4.2.4 Replicator dynamics with Bluetooth connection

4.2.4.1 Rendezvous with RD and Bluetooth

All the following experiments apply the discretised equation of replicator dynamics

with sampling time τ = 0.0001s.

In rendezvous experiment, the motion has been stopped after eight intervals. The

Mindstorms approach gradually the meeting point and this is an indicator of the

efficiency of the control but also of the correctness in the choice of the sampling time.

In Table 4.8 and Figure 4.32 are reported the numerical and graphical results of the

experiment.
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Figure 4.32: RD: rendezvous (Bluetooth).
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Table 4.8: Coordinates in pixels of the Mindstorms in replicator dynamics rendezvous

experiment with Bluetooth connection.

RD rendezvous

time EV310 EV309 EV303

t = 0 (300,400) (1090,716) (1091,189)

t = τ (425,434) (1023,694) (1093,315)

t = 2τ (560,460) (991,646) (1019,357)

t = 3τ (677,476) (944,613) (966,411)

t = 4τ (760,487) (905,585) (928,453)

t = 5τ (811,495) (888,590) (908,471)

t = 6τ (840,503) (892,587) (899,485)

t = 7τ (859,511) (893,579) (909,492)

Figure 4.33 shows with a sequence of images the real behaviours of the Mindstorms

during the experiment reported in Table 4.8.

Figure 4.33: Replicator dynamics rendezvous sequence with Mindstorms (Bluetooth).

4.2.4.2 Formation with RD and Bluetooth

In formation experiments the Mindstorms can be left to perfect their positions in

order to achieve the goal. For this reason the motion has been stopped after nine or

eight steps. From Figure 4.34 can be concluded that in triangular formation would be
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enough less steps to reach de final formation, especially regarding the convergence of

y coordinates. As a whole, looking at the trajectories and at the numerical values in

Table 4.9, the final result is acceptable taking into account the physical nature of the

experiment.
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Figure 4.34: RD: triangular formation (Bluetooth).
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Figure 4.35: RD: alignment (Bluetooth).
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Table 4.9: Coordinates in pixels of the Mindstorms in replicator dynamics triangular

formation experiment with Bluetooth connection.

RD triangular formation RD alignment

time EV310 EV309 EV303 EV310 EV309 EV303

t = 0 (300,400) (924,724) (1128,161) (300,400) (945,707) (1081,190)

t = τ (387,437) (911,664) (1115,257) (370,433) (900,680) (1154,289)

t = 2τ (458,419) (941,727) (1083,296) (446,456) (914,657) (1107,301)

t = 3τ (523,413) (946,714) (1077,307) (512,473) (885,617) (1090,345)

t = 4τ (579,407) (914,708) (1067,331) (564,482) (875,590) (1059,381)

t = 5τ (619,403) (894,703) (1061,332) (601,487) (859,559) (1052,414)

t = 6τ (646,398) (891,699) (1056,353) (627,489) (859,552) (1045,431)

t = 7τ (665,396) (879,695) (1049,356) (645,491) (855,532) (1039,456)

t = 8τ - - - (656,492) (853,523) (1041,460)

In Figure 4.36 is represented the sequence of images captured during the previous

triangular formation experiment and, also in this case, the positions of the Mindstorms

in the images are the ones reported in Table 4.9.

Figure 4.36: Replicator dynamics triangular formation sequence with Mindstorms (Blue-

tooth).
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Finally, Figure 4.37 represents the sequential positions of Mindstorms EV303 and

EV309 during the last alignment experiment with replicator dynamics.

Figure 4.37: Replicator dynamics alignment sequence with Mindstorms (Bluetooth).





Chapter 5
Environmental impact

The term environment is used to indicate groups of people, ecosystems, goods, cultures,

socio-economic structures, etc. that constitute the operational framework, not only

the environment intended as physical space.

Regarding the effects of integration of mobile robots in the environment, it is necessary

to distinguish between interaction and cohabitation with human people and produced

pollution in the environment.

In the last twenty years the use of robots in working environment has led to significant

changes for what it concerns the productivity. In particular robots led to an increase

in both total factory productivity and wages. The use of robots also increased labour

productivity and value added from labour In other words, each human worker was

more productive and added more value to the economy than before the implementation

of industrial robots.

Robots had no effect on the hours worked by high-skilled workers, while low-skilled

and middle-skilled workers can be employed in new and hard-less applications such as

maintenance and supervising of the robots. If manual and repetitive jobs are occupied

by the robots, human workers can improve their positions in the workplace with a

consequent increase of salary.

Mobile robots can also be introduced to assist humans and in such a way it is possible

to reduce fatigue, increase precision, and improve quality; whereas the human can

bring experience, global knowledge, and understanding to the execution of tasks.
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During an assistance task, the robot must be capable of performing basic autonomous

operations involving both navigation and manipulation. For more elaborate and

delicate operations, the assistant, in its supporting role, must be able to interact and

cooperate with the human when performing a guided task.

Regarding the problem of safety inside a workspace shared by humans and robots,

the prevention of accidents is entrusted to algorithms of collision avoidance that can

be implemented with the use of proximity, pattern matching or movement sensors.

On the other hand, mobile robots generally do not affect the environment with air

pollution but the areas in witch the contents of this project can be applied, may

employ robots that produce noise and light pollution.

The advantages of using a distributed strategy to control the trajectories of the vehicles

are several. Compared with centralised control strategy, the number of connections and

elements of the network is reduced and this decreases the impact on the environment

where the robots are moving. Moreover, game theoretical approaches are based on

the achievement of optimal solution, therefore, the agents can reach the task with less

time covering the shortest path, also ensuring energy saving.



Chapter 6
Budget evaluation

This chapter considers the total expense of execution of the project considering the

cost of the equipment, licences and human resources employed. The wage for a student

to realise the Master’s Thesis Project (TFM) is of 8e/h, that is the indicative price

that the Technical University of Catalonia (UPC) fixes as remuneration for a student

for the realisation of a traineeships in a company.

1. SOFTWARE

Licence MATLAB R2014a 1.200,00e

Licence LabVIEW 2012 SP1 1.450e

Licence Texmaker 4.1 0,00e

TOTAL SOFTWARE 1.510,00e

2. HARDWARE

HP Pavilion dv6 Notebook Laptop 1.200,00e

n.3 Lego Mindstorm EV3 1.049,97e

Webcal Logitech C310 44,99e

TOTAL HARDWARE 2.294,96e

3. SALARY

Remuneration for a student of TFM 8e/h

Total number of hours 600h

TOTAL SALARY 4.800,00e

TOTAL BUDGET 8.604,96e
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Chapter 7
Conclusions

7.1 Conclusion

Evolutionary game theoretical distributed techniques are presented to control the

motion of a population of robots in order to perform different tasks, such as rendezvous

and formation. To an in-depth initial analysis of the state of the art in this field, has

followed a research of the most suitable algorithms that can be applied to the specific

object of study.

Initially the work is developed on the implementation of the algorithms with MatLab

and Simulink with the goal of generating simulations gradually more complex and

realistic.

When the simulations have led to desired results, a LabVIEW platform has been

developed to apply the algorithms even in real robots experiments.

The platform is constituted of various components such as a PC, a camera and three

robots Lego Mindstorms EV3. The connections between the laptop and the other

elements are initially established via USB cables and then with Bluetooth. Problems

with multiple Bluetooth connections emerged during the experiments, therefore in this

case the behaviour of one of the Mindstorms has been simulated with a virtual robot.

The LabVIEW developed routine includes a tool of pattern recognition that permits

to localize in real time the positions of the robots in the workplace and, starting from

this information, has been developed a control scheme in LabVIEW that reproduces

83



84 CHAPTER 7. CONCLUSIONS

the one implemented with Simulink but in discrete version.

The discretisation of the model is necessary to generate in a sequential manner the

real command to be sent to the brick of the Mindstorms in order to make them cover

the right distance in the correct direction.

The practical experiments includes the convergence to a common position using control

techniques based on distributed projection and replicator dynamics and also tests of

triangular formation and alignment in the space have been done.

7.2 Contributions

The results obtained in this Master’s thesis project could be adapted to solve more

complex engineering problems with large-scale complex systems. These kind of systems

can be partitioned in populations and controlled with distributed techniques like the

ones introduced in this work, in order to reduce the complexity of the controller. Each

population is modelled as a group of agents which are interconnected accordingly to

a graph-based topology that constitute a network, like in the experiments done so

far. Populations can be associated to an individual rule and decisions taken by local

controllers. The global objective that the entire large-scale system has to reach, is

associated to a cost function that regulate the local decisions by imposing resource

constraints.

This research gives a contribution to different applications that are modelled as a

multi-agent system. In the universe of mobile robots and vehicles, the results obtained

can be applied to generate optimal trajectories in order to avoid traffic congestion or

to reach targets in the shortest possible time, in particular utilising the distance-based

projection and replicator dynamics equations.

However, there is a huge variety of fields that can take advantages to the distributed

solutions adopted in the multi-agent experiments. An example can be the problem

of sensor coverage, where mobile sensors are modelled as agents of a population and

the main objective is to properly assign the motion to the mobile sensors in order to

maximise the detection probability.

Furthermore, another alternative application sector can be the one of mobile weapons

connected to form a network. The weapons can be controlled in a distributed way to
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choose the optimal targets to strike in order to obtain the maximum global damage.

7.3 Further work

Even if the theoretical study and experimental validation have solved many problems

in distributed multi-agent coordination and game theoretical approach to this field,

there is still a huge number of researching areas that deserve further investigation.

Some examples are the following:

� Quantisation effect in distributed coordination problems. Until now, researches

have been focused on the study of distributed coordination problems by assuming

that both control inputs and measurements are continuous values. The use of

digital signal processing techniques, that are more commonly diffused, requires

discrete inputs and measurements. Therefore, it would be useful to shift the focus

of researches on the quantisation effect in distributed coordination problems.

� Optimisation with combination of individual and global cost functions. The

optimisation problem in distributed multi-agent coordination has been studied

in the presence of either an individual or a global cost function but in real

systems, each agent must comply with both local and global objectives that

have their corresponding cost functions. The further studies should be focused

on the combination of these objectives in order to investigate the relationship

between the individual cost function and the global cost function and also to

balance their reciprocal weight.

� Intelligent coordination. An issue which is still an open problem in this field is

the understanding of group behaviour in the presence of intelligence. In other

world, how to interpret complex networks and stabilise them when intelligent

entities are present.

� Centralisation and decentralisation. Decentralisation brings advantages in sense

of scalability and robustness of the system. However, a not negligible drawback

of decentralisation is the impossibility of single agents or subsystems to predict

the group behaviour because they are in possession only of local information.

An interesting direction of studies could be to find the optimal way to balance

decentralisation and centralisation to improve the system performance.
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Concerning the experiments done so far in this particular project, there are several

possible directions of development.

An example could be the extension of the population of robots by adding other agents

and the consequent enlargement of the environment may require the inclusion of

additional cameras to be able to cover the whole area.

At this point, with a larger number of agents involved, it becomes necessary to establish

wireless connections between the PC and the Mindstorms and, if Bluetooth technology

is not powerful enough, Wi-Fi could be the adapt solution to the problem.

Another important aspect related to generation of trajectories for robots involved in

multiple-agents experiments is the guarantee to avoid collisions among them. In the

future it could be possible to modify the distributed controllers used so far in order to

solve this problem.

Finally, different evolutionary dynamics strategies could be tested to achieve the same

tasks, like the BNN dynamics [15], the best response dynamics [33], the logit dynamics

[31], and the Smith dynamics [68]. In this context, would be interesting to compare

the performances of all these differential equations that describe the dynamics.
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