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Abstract

The modern digital integrated circuit (IC) design flow requires a lot of
verification effort. Furthermore, this effort is expected to grow in the
future. The verification task is fundamentally a race against the clock
as it needs to establish a good level of confidence in the design while
keeping in mind the time to market. One of the most time consuming,
and error prone, aspects of digital verification is the development of the
necessary code infrastructure according to the Universal Verification
Methodology (UVM).

This work is divided into two parts. In the first part we introduce a
widely adopted digital verification toolchain. The latter is composed of
SystemVerilog and UVM. To better understand SystemVerilog, Verilog
is also briefly introduced. In the second part we introduce a common
workflow for Model-Driven Engineering (MDE), a tool that allows us
to automate code development. This workflow comprises the Eclipse
Modeling Framework (EMF), Sirius and Acceleo. The latter are briefly
introduced. Last, we discuss how these tools were used to develop a
project for automating UVM testbench generation.
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Abstract in Italiano

Il moderno flusso di progettazione di circuiti integrati (IC) digitali
richiede un grande sforzo di verifica. Inoltre, ci si aspetta che questo
sforzo cresca in futuro. L’attività di verifica è fondamentalmente una
corsa contro il tempo in quanto deve stabilire un buon livello di fidu-
cia nel design tenendo presente il time to market. Uno degli aspetti
più dispendiosi in termini di tempo e soggetti ad errori della verifica
digitale è lo sviluppo dell’infrastruttura di codice necessaria secondo l’
Universal Verification Methodology (UVM).

Questo lavoro è diviso in due parti. Nella prima parte introduciamo
una toolchain di verifica digitale ampiamente adottata. Quest’ultima
è composta da SystemVerilog e UVM. Per comprendere meglio Sys-
temVerilog, anche Verilog viene presentato brevemente. Nella seconda
parte introduciamo un flusso di lavoro comune per il Model-Driven
Engineering (MDE), uno strumento che ci consente di automatizzare
lo sviluppo del codice. Questo flusso di lavoro comprende Eclipse Mod-
eling Framework (EMF), Sirius ed Acceleo. Questi ultimi sono breve-
mente descritti. Infine, discutiamo di come questi strumenti sono stati
utilizzati per sviluppare un progetto per automatizzare la generazione
di testbench UVM.
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Chapter 1

Introduction

In the early ’70s, at the dawn of the microprocessor, the design flow of digital inte-
grated circuits (ICs) required a single person working both on the logical design,
physical implementation and technology, all at the same time. Many innovations
were made in this field. For example, to manage the design of circuits with tens
of thousands of logic gates and to aid the compatibility of the vendor specific
tools with the design, the standard cell (semi-custom) approach was developed.
Throughout much of this early period, verifying that the design was compliant
with the desired specifications was done post-silicon, i.e. once the chip was fab-
ricated. Thus, chip design was an iterative process that required several design
revisions to iron out the existing bugs. As digital ICs grew in complexity, the need
for Electronic Design Automation (EDA) software was becoming apparent. With
the introduction of Hardware Description Languages (HDLs), such as VHDL and
Verilog, and later on in the ’90s their added capability to synthesize gate netlists,
i.e. translate a digital design described at a higher level of abstraction into a
network of logic gates and basic sequential circuits, verification started to also
be done before the chip was made. This new kind of verification was dubbed
pre-silicon. Designers describe the functionality of the circuit at the level of ab-
straction of the Register Transfer Model (RTL). Pre-silicon verification can check
if the RTL design complies with the specification. Furthermore, once the RTL is
translated into a gate netlist, it is possible to check RTL and netlist equivalence.

Design and verification have evolved throughout the years. One of the inno-
vations was the introduction, at the beginning of the new millennium, of a new
type of language. A Hardware Description and Verification Language (HDVL),
namely SystemVerilog. This new language provides both the capabilities of a
HDL, in fact SystemVerilog is a super set of Verilog, as well as some features

1



2 Chapter 1. Introduction

not found in HDLs, such as Object Oriented Programming (OOP), coverage
constructs, interfaces, etc., that are useful for verification. A common modern
development flow consists in using SystemVerilog for both design and verifica-
tion. With the latter being done in accordance with the Universal Verification
Methodology (UVM). UVM, introduced in 2011, condenses many of the industry
best practices and aids verification by providing a way of developing extensible,
partially automated, reusable and flexible testbenches and verification compo-
nents. In order to develop these, however, a significant amount of code needs to
be written.

This work gives an overview of UVM, SystemVerilog and Verilog, from the
perspective of a reader that is familiar with VHDL, in chapter 4, chapter 3 and
chapter 2 respectively.

As state previously, writing UVM verification components (dubbed UVCs)
and testbenches requires a non-trivial amount of code. Luckily, there is a soft-
ware engineering framework, Model-Driven Engineering (MDE), that can help us
partially automate code development. This framework is based on a very success-
ful idea of computer science, abstraction. As we will later see, UVM has standard
architectures for the components that populate its testbenches. We can abstract
out these architectures. This allows us to provide the user with a way of defining
the desired architecture, not the associated code. The former is then automat-
ically translated into code with the use of a code generator. This can clearly
help us automate the development of the code infrastructure that is needed to
properly set up and use UVM.

A common and open-source set of tools that allows us to work with MDE is
based on the Eclipse IDE. This set is composed on the Eclipse Modeling Frame-
work (EMF), Sirius and Acceleo. EMF allows us to define metamodels, i.e. ab-
stractions of the entities we model with software. These metamodels represent
the possible models that we can develop. Once we have developed metamodels
for the common UVM architectures, we can use these to allow the user to specify
any valid UVM architecture. Acceleo allows us to query the models defined by
the user. That information can then be used, together with specific language con-
structs that are designed for automatic code generation, in code templates that
are translated to the final code files. The last tool, Sirius, allows us to develop a
Graphical User Interface (GUI) for model specification. With it we can allow the
user to work with an intuitive GUI when defining the UVM architecture, instead
of a more cryptic menu based default provided by EMF.
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Metamodeling, EMF and the rest of the tools are briefly covered in chapter 5.
This chapter contains many references to online tutorials that can get you started
with MDE.

The last part of this work, chapter 6, is dedicated to giving an overview of
how the presented MDE tools have been used to develop a tool for automatic
UVM testbench and UVC generation. You can also find some indications on the
problems that were faced during development and the adopted solutions.

This dissertation contains many code examples that are meant to illustrate
the described topics.

References to most of the online material that was used during thesis devel-
opment are included. There is no possibility to guarantee that the referenced
links will not be broken in the future.
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Part I

Primer on Digital Verification
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Chapter 2

Verilog by Difference with VHDL

VHDL and Verilog are the two original, independently developed, HDLs that
permeated (and still do) the modern digital IC design flow started in the ’80.
Many of the features of one language carry over to the other. However, there are
some key differences between the two, both in terms of the provided constructs,
syntax, as well as design philosophy. In this chapter we will explore the Verilog
HDL from the perspective of a VHDL digital designer, as such, it is assumed that
the reader is familiar with the latter. Both the differences between the two HDLs
as well as some of the Verilog specific features will be presented. This guide does
not aim at exhaustively covering Verilog, rather, it hopes to aid the transition
from VHDL.

There are plenty of resources that cover the Verilog HDL, without assuming
prior knowledge of VHDL. One such resource is [1] that provides a clear and con-
cise introduction to the language. For an online introduction consult [2] instead.
[3] provides a more in depth overview of Verilog. Finally, some excellent courses
can be found on Cadence’s website [4].1 To fully appreciate the above cited ma-
terial, it is advised the reader be familiar with digital ICs and digital design (if
that is not the case consult [5]).

As stated before, the reader is assumed to have working knowledge of VHDL.
Nevertheless, I will leave some references to books that cover this topic. [6] is a
textbook covering both VHDL and digital design.[7] provide a more advance look
at how to optimize RTL models in VHDL.

1The courses might not be available for free. They are usually available to employees of
companies that have agreed on a Cadence license.

7



8 Chapter 2. Verilog by Difference with VHDL

2.1 Fundamental Construct: Module

The latest, 2005, Verilog standard (IEEE 1394-2005) and practices will be used
throughout this chapter.

Verilog is a case sensitive2 and loosely typed3 language. Its syntax is
similar to that of the C Programming Language [8][9]. For example, Verilog’s
comment syntax is identical to C’s:

• //this is a single line comment

• /*and this is a multiline comment*/

The fundamental building block of Verilog is the module. It takes the place of
VHDL’s entity-architecture pair in describing the individual components of
a design. Like in VHDL’s case, each module is usually contained in a separate
file, which in Verilog’s case have the .v suffix. Unlike in VHDL, each module has
one, and only one, associated architecture. An example that illustrates module’s
syntax is presented below (Code 2.1).� �

1 module add
2 #(parameter integer N = 8)
3 (input wire en,
4 input wire [N-1:0] a, b,
5 output reg [N-1:0] s,
6 output reg c);
7 ...
8 endmodule
9

10

11

12

13 � �
Code 2.1: Verilog

� �
1 entity add is
2 generic(N: integer := 8);
3 port(en : in std_logic;
4 a, b: in signed(N-1 downto 0);
5 s : out signed(N-1 downto 0);
6 c : out std_logic);
7 end add;
8

9 architecture rtl of add is
10 ...
11 begin
12 ...
13 end rtl;� �

Code 2.2: VHDL

We can see that Verilog appears to be less verbose than VHDL, this holds
true in general.

Note that the Verilog parameter keyword allows us to achieve the same
behaviour as VHDL’s generic keyword.

2Case sensitivity implies that ab, Ab, aB and AB are all distinct variables.
3Being loosely typed implies the existence of language mechanisms that allow the execution

of operations not defined for that specific data type (e.g. performing the logical and of two
floating-point numbers).



2.2 Data Types 9

Code details will become clear in the next section. For now, I will anticipate
that wire and reg are Verilog data types, and can be omitted when declaring a
module. If we do so, the input, inout, and output ports’ data types will be set
to wire.4 Verilog requires input and inout ports to always be of type wire.5

The output port, on the other hand, can be specified as either wire or reg. The
syntax for defining vectors ([W-1:0]) and arrays will also be discussed in the
next section. An important note is that unlike VHDL, Verilog uses 4-state data
types (0, 1, z, x) so we do not need to include external libraries (e.g. VHDL’s
std_logic_1164 and numeric_std) for this feature.

The description of the module’s functionality is carried out between the
module and endmodule keywords, after parameter and port declarations. Both of
these, as in VHDL’s case, can be omitted. The constructs for describing modules
will be presented in the next sections.

2.2 Data Types

Each Verilog definition, declaration or assignment is semicolon (;) terminated.
Thus, line wraps can be used within these.

As was said in the last section, Verilog’s data types are usually 4-state: 1
and 0 are the two logical values, while z and x represent the high-impedance and
unknown values respectively.

2.2.1 Scalar Types

The first category of data types is the net. These types are used to model
interconnections between components. As such, a net data type must be driven
at all times (e.g. through a continuous assignment), and cannot be driven
with procedural assignments (i.e. within procedures).6 The most common
net types are:7

• wire: the default way of representing an interconnection.
4In other words, wire is the default data type for all the ports.
5We can thus omit explicit data type specification for these port types when declaring a

module.
6Both continuous assignments and procedures will be discussed in the next sections.

For now, I will anticipate that continuous assignments are similar to VHDL’s assignments
outside of a process, while procedural assignments are similar to VHDL’s assignments within
a process.

7There are more complex net types, e.g. for modelling Wired-OR or Wired-AND connec-
tions. The full list can easily be found consulting the literature.
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• tri: virtually identical to wire, as a convention, used to represent nets
driven by more than one driver.

• supply1: represents a net connected to VDD.

• supply0: represents a net connected to GND or VSS.

• uwire: a wire that can have only one driver.

As a side note, in Verilog each driver has an associated strength. The net will
be driven to the value of the driver with the highest strength (the other drivers
will be ignored). If there are drivers, with the highest strength, that try to drive
the net to different values, the resulting net value will be x.8 Verilog will assign
default driver strength values (7 for supply1 and supply0, 6 for all the others)
so we don’t need to do so ourselves manually, unless necessary. Consult the
literature for more details on this topic.

The second category of data types is the variable (or sometimes called
register). These types are used to model abstract storage elements. They will
hold the value assigned to them until the next assignment, and can only be driven
inside procedures. The variable types are:

• reg: unsigned 1 bit storage (can also be made signed with an arbitrary
number of bits).

• integer: signed (at least) 32 bit storage.

• time: unsigned (at least) 64 bit storage.

• real: double-precision floating-point value (IEEE 754-1985).

• realtime: same as real, as a convention, used to represent time.

Now that the basic data types have been introduced, we can discuss some of
their details. Both wire and reg can be made signed by adding the signed key-
word after type declaration (i.e. wire signed and reg signed). Furthermore,
only the wire, reg and integer data types can be directly synthesized. We have
previously seen that there are some rules to be followed when declaring a port’s
type, let’s quickly review them:

8This holds true for wire and tri, however, for nets that model Wired-ORs or Wired-
ANDs, the behaviour is the one you would expect. Consult the literature for more details.
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• input ports can only be of type wire.9

• output ports can be of type wire or reg.

• inout ports can only be of type wire.

There are also rules on what types can drive what ports:

• input ports can be driven by a wire or reg type.

• output ports can only be driven by a wire type.

• inout ports can only be driven by a wire type.

Last, let’s briefly introduce parameters.10 We have already encountered them
in the previous section, and have seen that they represents constant variables. The
syntax to declaring a parameter (different from the syntax used in the module
port declarations) is the following:

parameter {<type>} NAME;

Where <type> is optional and can be either integer, time, real or realtime.
See some examples of data types and parameters below (Code 2.3).

� �
1 module dtypes_param_example
2 ...
3 //these are wire declarations
4 wire w1, w2;
5

6 //and these are signed wires
7 wire signed sw1, sw2;
8

9 //these are reg declarations
10 reg r1, r2;
11

12 //and these are signed regs
13 reg signed sr1, sr2;
14

9To be precise, when we talk about the allowed type of a port or the allowed type of a port
driver, I should be using net and variable instead of wire and reg. For example, not only
wire but any net type is allowed as the input port’s type.

10There is more to parameters than what is discussed here. In fact, they represent a third
fundamental Verilog data type. There are ways to redefine parameters (e.g. with defparam),
and there are also different types of parameters (e.g. localparam and specparam). More detail
can be found in the literature.
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15 //these are parameter with no explicit type declarations (their type will
be inferred)

16 parameter INTEGER_P = 3,
17 REAL_P = 3.1415;
18

19 //and these are parameter declarations with an explicit type
20 parameter integer P_OFFSET = 1023,
21 N_OFFSET = -1024;
22 ...
23 endmodule� �

Code 2.3: Verilog Scalar Data Type and Parameter Examples

2.2.2 Vectors and Arrays

In Verilog, vectors represent entities defined by a collection of simple elements of
a specific type. As such, they are always one-dimensional. For example, a 4-bit
port is a vector. A 32-bit reg is also a vector. Arrays, on the other hand, are
usually composed of more complex elements. For example, a collection of 4096
32-bit regs. Note that in this example the array represents two-dimensional data.
The syntax for both vector and array declarations is the following:

<type> [MSB_INDEX:LSB_INDEX] NAME; for a vector.

<type> [MSB_INDEX:LSB_INDEX] NAME [START_INDEX:END_INDEX]; or

<type> NAME [START_INDEX:END_INDEX]; for an array.

An example can be found below (Code 2.4).

� �
1 module vector_array_example
2 ...
3 //these are vector declarations
4 wire signed [7:0] h1, h2;
5

6 //this is the second most significant bit of h1
7 wire signed smsb = h2[6];
8

9 //this is an array
10 reg [31:0] ram [0:4095];
11

12 //this is also an array
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13 realtime samples [0:1024];
14

15 //this is the second 32-bit reg of ram
16 reg [31:0] sram = ram[1];
17

18 //and this is the least significant bit of the last 32-bit reg of ram
19 reg llram = ram[4095][0];
20 ...
21 endmodule� �

Code 2.4: Verilog Vector and Array Examples

2.3 Literals and Initialization

Verilog numerical literals are specified using the following syntax:

{<bit_size>}’<base>VALUE

<bit_size> is the number of bits used to store the literal. It can be omitted, in
which case a default size of (at least) 32 will be set. <base> can be one of: b, o,
d, h, sb, so, sd or sh. The meaning of these is obvious but, as an example, so
stands for signed octal and d for decimal. VALUE is the number that we want to
represent and can also contain the z and x digits if the base is not decimal. The
underscore (_) character can also be used for readability, as long as it is not the
first character. We can also prefix the literal with a minus (-) indicating that it
is a negative (two’s complement) number. Examples of literals and initialization
can be found below (Code 2.5).

� �
1 module literal_init_example
2 ...
3 reg [7:0] r1 = 8’hAA; //1010 1010
4 reg [7:0] r2 = 8’b0101_0101; //0101 0101
5 reg [7:0] r3 = 8’b10; //0000 0010
6 reg [7:0] r4 = 8’d10; //0000 1010
7 reg signed [7:0] r5 = -8’d10; //1111 0110
8

9 //the literal is truncated after the 3 least significant bits
10 reg [7:0] r6 = 3’hFF; //0000 0111
11

12 //the most significant bit after truncation is interpreted as a sign bit
and is extended
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13 reg [7:0] r7 = 3’shFF; //1111 1111
14

15 //allowed syntax: the literal is interpreted as a signed integer
16 reg [7:0] r8 = 18; //0001 0010
17 ...
18 endmodule� �

Code 2.5: Verilog Literal and Initialization Examples

Explanations of how the minus (-), <base> sign, truncation and implicit con-
versions work are omitted. Details can be found in the literature.

2.4 Operators

Verilog Operators follow a syntax that is very similar to that of C. For this reason
I will first introduce the operators familiar to the reader, that is assumed to have
basic knowledge of C. Subsequently, I will discuss operators with a Verilog specific
syntax.

Verilog shares the following with C:

• Bit-wise operators: ~, &, |, ˆ.

• Logical operators: !, &&, ||.

• Relational operators: ==, !=, >, <, >=, <=.

• Ternary operator: ?:.

• Arithmetic operators: +, -, *, /, %.

Now let’s look at Verilog specific operators:

• Bit-wise operators: ~ˆ.

• Reduction operators: &, |, ˆ, ~&, ~|, ~ˆ.

• Relational operators: ===, !==.

• Arithmetic operator: **.

• Shift operators: <<, >>, <<<, >>>.

• Concatenation and repetition operators: {}, {{}}.



2.4 Operators 15

The logical operators transform their operands into Boolean values: true (1’b1)
if the operand has at least one 1 bit, unknown (1’bx) if the operand has at least
one z or x bit and not a single 1 bit, and false (1’b0) if all the bits of the operand
are 0. The logical operation is then carried out on the Boolean values of the
operands, the result itself is a Boolean value. Bit-wise operators, on the other
hand, perform the logical operations on the single bits of their operands. They
can be unary (as in the case of not (~)) or binary (as in the case of and (&), or
(|) and xor (ˆ)). The reduction operations are performed on a single operand.
It results in the application of the operation on the set of its bits. As such, the
obtained result will always be a Boolean value. For example, ~ˆa will produce a
single bit that is the xnor of all the bits of a.

Both ==, === and !=, !== are used to compare the equality of the operands.
The difference is that the == and != operators can return unknown (1’bx) if
either operand contains a z or x bit. === and !==, on the other hand, will always
compare the bits of the operands (regardless if they are z or x) and return true
(1’b1) if they match and false (1’b0) otherwise. As an example, both 4’b01zx
!= 4’b01zx and 4’b0001 == 4’b000z will return unknown, while 4’b01zx !==
4’b01zx and 4’b0001 === 4’b000z will return false.

Double asterisk (**) represents exponentiation, while the two (<<, >>) and
three (<<<, >>>) angle bracket operators represent the logical and arithmetic
shifts respectively. The {sized_expr_1, sized_expr_2, sized_expr_3, ...}
operator is used to concatenate the comma separated sized expressions inside of
it. The {const_expr{sized_expr}} will concatenate sized_expr, const_expr
number of times.11 Consult Code 2.6 for examples on the use of operators.

� �
1 module operator_example
2 ...
3 reg [3:0] a = 4’hA; //1010
4 reg [3:0] b = 4’h5; //0101
5 reg c;
6 reg [19:0] d;
7 ...
8 a = a ^ b; //1111
9 c = !a || ~^b; //1 (!a is 0, ~^b is 1)

10 b = c ? b : a; //0101

11Sized expressions can be either literals, nets, variables, vectors or slices of vectors. The
literal size must be declared, e.g. ’hFF is not allowed. Constant expressions must be either
literals or parameters.
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11 d = {{2{a[3:2], b}}, a}; //0000_11_0101_11_0101_1111 12

12 ...
13 endmodule� �

Code 2.6: Verilog Operator Examples

2.5 Continuous Assignments

Verilog has a very similar mechanism to VHDL’s assignments for defining con-
current blocks. It is called continuous assignment. Just as in VHDL, continuous
assignments are defined outside of procedural blocks and can have three charac-
teristics: namely being simple, conditional or delayed. Examples of their syntax
can be found below (Code 2.7).� �

1 `timescale 1ns/1ps
2

3 module ca_example
4 ...
5 reg [7:0] a, b;
6 wire [7:0] c;
7 reg en, s;
8

9 assign c = ~(a & b);
10 assign #5 c = ~(a & b);
11 assign c = (en == 0) ? 8’hZZ :
12 (s == 1) ? a :
13 b;
14 ...
15 endmodule
16

17

18

19

20 � �
Code 2.7: Verilog

� �
1 entity ca_example is
2 ...
3 end ca_example;
4

5 architecture rtl of ca_example is
6 ...
7 signal a, b, c: std_logic_vector

(7 downto 0);
8 signal en, s: std_logic;
9 ...

10 begin
11 ...
12 c <= a nand b;
13 c <= a nand b after 5 ns;
14 c <= (others => ’Z’) when en =

’0’ else
15 a when s = ’1’ else
16 b;
17 ...
18 end rtl;� �

Code 2.8: VHDL

As can be seen, assignments have a different syntax but function basically
the same in both languages. Verilog’s simple assignment syntax is:

12a[3:2] is 11, b is 0101. {a[3:2], b} is then 11_0101 and {2{a[3:2], b}} is
11_0101_11_0101. We then add a at the end obtaining 11_0101_11_0101_1111. Finally,
d is a 20-bit number and gets padded with 0s at the beginning.
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assign LHS = RHS;

Where LHS must be a net type. The syntax for delayed assignments is instead:

assign #N LHS = RHS;

N is an integer that represents the number of time units of the delay.13 The
time unit can be specified with the `timescale unit/precision directive.14

If the user does not specify one, the default time unit will be used. To obtain
conditional assignments a sequence of nested ternary (sometimes appropriately
called conditional) operators is used.

2.6 Procedural Statements

Verilog also provides a mechanism that takes place of VHDL’s process. This
mechanism is called procedural block. The latter is a richer construct, compared
to the VHDL counterpart, that provides the user with a larger set of features.
These will be discussed later in this section, but first, let’s look at an example
(Code 2.9).

Verilog has two procedural blocks, namely the initial and the always
blocks. The initial block will be executed only once, at the beginning of the
simulation. It is not used to model synthesizable behaviour but rather in simu-
lations (e.g. setting up the testbench). The always block is executed the same
way as VHDL’s process (i.e. cyclic execution). In fact, it is Verilog’s equivalent
of the VHDL process and is used to model synthesizable logic. The execution
of an always block can be triggered in different ways. The most common one
is through the use of an event control. The latter is represented with the at (@)
symbol. The event control precedes the specification of the event(s) that will
trigger the always block. There are multiple ways of describing events, but here,
I will present some of the simplest ones useful to specify the sensitivity list of a
procedural block:

@(A, B, ...) : the always block will be triggered when any of the sig-
nals (nets or variables) appearing between parentheses (i.e. A, B, etc.)
changes.15

13There are more advance types of delays (e.g. different falling and rising delay times). For
more information consult the literature.

14Verilog directives are very similar to C preprocessor directives. The major difference being
that C’s #directive_name has been replaces by Verilog’s `directive_name.

15There exists an alternative syntax: @(A or B or ...).
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@(*) : the always block will be triggered when any of the signals appearing
on the right hand side of a procedural assignment, or conditional statement,
changes.16

@(posedge CLK) : the always block will be triggered on the positive edge
of the CLK signal.17

On a side note, it is important to remember that the left hand side of a
procedural assignment (i.e. assignment within a procedural block) must be of
variable type. Below (Code 2.11) you can find some examples of the different
procedural blocks and sensitivity lists previously discussed.� �

1 module proc_example
2 ...
3 wire [7:0] a, b;
4 reg [7:0] c;
5 reg d;
6

7 always @(a, b) begin
8 c = ~(a & b);
9 if (a < b)

10 d = 1’b0;
11 else
12 d = 1’b1;
13 end
14 ...
15 endmodule
16

17

18

19

20

21

22 � �
Code 2.9: Verilog

� �
1 entity proc_example is
2 ...
3 end proc_example;
4

5 architecture rtl of proc_example is
6 ...
7 signal a, b, c: std_logic_vector

(7 downto 0);
8 signal d: std_logic;
9 ...

10 begin
11 ...
12 process(a, b) begin
13 c <= a nand b;
14 if a < b then
15 d <= ’0’;
16 else
17 d <= ’1’;
18 end if;
19 end process;
20 ...
21 end rtl;� �

Code 2.10: VHDL

Let’s now introduce one of the most important aspects of procedural blocks.
So far we have completely ignored it, event though it is crucial in properly mod-
elling sequential and combinational blocks. In VHDL we have only one type of

16This should be the default syntax for specifying the sensitivity list of an always block. It
allows us to avoid many mistakes related to unintentional memory element declaration.

17We can use negedge CLK to trigger the always block on the negative edge instead.



2.6 Procedural Statements 19

assignment. Verilog, however, has two types of procedural assignments. The
first type is called procedural nonblocking assignment. It is represented with <=
(i.e. LHS <= RHS;) and is very similar to VHDL’s assignment, which follows the
same syntax. As in VHDL, a nonblocking assignment is not executed imme-
diately, instead it is scheduled for execution in δ time. As such, the order in
which nonblocking assignments appear in a procedural block does not change its
behaviour. This type of assignment must be used to model sequential blocks.
This way we can execute multiple procedural blocks, as well as nonblocking as-
signments, concurrently without warring about race conditions. The second type
of assignment is called procedural blocking assignment and is represented with
= (i.e. LHS = RHS;). As the name suggests, the blocking assignment halts the
execution flow of the procedural block until the assignment has completed. Af-
terwards the execution resumes. This type of assignment is much more similar
to what you typically find in a general purpose programming language (e.g. C).
The closest VHDL equivalence is the assignment to variable (:=). The blocking
assignment can be used when modelling combinational circuits.18 The designer
must be careful, as the order in which the assignments appear does change the
block behaviour.

� �
1 module procedural_blocks_example
2 ...
3 reg [3:0] a, b;
4 reg clk, en;
5

6 //will only be executed once, at the very start of the simulation
7 initial begin
8 a = 4’hA;
9 b = 4’h5;

10 end
11

12 //MISTAKE: forgot to include en into the sensitivity list
13 always @(a, b) begin
14 if (en == 0)
15 a = b;
16 else
17 b = a;
18 end

18Sometimes blocking assignments are also used inside sequential blocks (e.g. for temporary
variables, i.e. variables used only inside the procedural block), but their use should be deliberate
and reasoned. Combinational blocks can use both types of assignments.
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19

20 //equivalent to @(a, b, en)
21 always @(*) begin
22 if (en == 0)
23 a = b;
24 else
25 b = a;
26 end
27

28 //Verilog model of a register
29 always @(posedge clk)
30 a <= b; 19

31 ...
32 endmodule� �

Code 2.11: Verilog Procedural Block Examples

2.6.1 Conditional Statements

Just as in VHDL, Verilog has the if-else and case constructs. The two HDL
versions are basically the same, with slight syntactic differences. I will illustrate
these with some examples below (Code 2.12 for the if-else construct, Code 2.14
for the case construct). Verilog has also the casez and casex constructs that
allow the user to specify "don’t care" bit positions. For example, "2’b?1 : d =
1’b0;" in Code 2.14 would assign 0 to d whenever s was equal to 01 or 11. For
more information on these constructs consult the literature.

19Do not worry about the meaning of <=. It will be discussed later in this section. For now
just think of it as an assignment.
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� �
1 module if_example
2 ...
3 wire [7:0] a, b;
4 reg [7:0] c;
5 reg d;
6

7 always @(*) begin
8 if (d == 0)
9 c = a;

10 else if (d == 1)
11 c = b;
12 else
13 c = 8’hZZ;
14 end
15 ...
16 endmodule
17

18

19

20

21

22

23 � �
Code 2.12: Verilog

� �
1 entity if_example is
2 ...
3 end if_example;
4

5 architecture rtl of if_example is
6 ...
7 signal a, b, c: std_logic_vector

(7 downto 0);
8 signal d: std_logic;
9 ...

10 begin
11 ...
12 process(a, b, d) begin
13 if d = ’0’ then
14 c <= a;
15 elsif d = ’1’ then
16 c <= b;
17 else
18 c <= (others => ’Z’);
19 end if;
20 end process;
21 ...
22 end rtl;� �

Code 2.13: VHDL
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� �
1 module case_example
2 ...
3 reg [1:0] s;
4 reg d;
5

6 always @(*) begin
7 case (s)
8 2’b00 : d = 1’b1;
9 2’b01, 2’b10, 2’b11 : d =

1’b0;
10 default : d = 1’bX;
11 endcase
12 end
13 ...
14 endmodule
15

16

17

18

19

20

21 � �
Code 2.14: Verilog

� �
1 entity case_example is
2 ...
3 end case_example;
4

5 architecture rtl of case_example is
6 ...
7 signal s: std_logic_vector(1

downto 0);
8 signal d: std_logic;
9 ...

10 begin
11 ...
12 process(s) begin
13 case s is
14 when "00" => d <= ’1’;
15 when "01"|"10"|"11" => d <=

’0’;
16 when others => d <= ’X’;
17 end case;
18 end process;
19 ...
20 end rtl;� �

Code 2.15: VHDL

2.6.2 Loops

Verilog has a variety of constructs to define loops. The basic two are the while
and for loops. I will not spend time discussing them since both their syntax
and functionality are basically identical to the C’s counterpart.20 There are two
more loop types. The repeat(n) loop executes its statements n times.21 The
forever loop repeats its statements indefinitely.22 As usual, code examples can
be found below (Code 2.16). Last, let’s briefly digress and introduce some of
Verilog’s synchronization mechanisms. We can suspend execution of a procedural
statement with:

@(<event>) : will halt the execution flow of the procedural block until the
20The major differences being that in Verilog we cannot use the increment (++) and decrement

(–) operators. Furthermore, the constructs require prior declaration of any variables used in
expressions.

21It is equivalent to the for(i = 1; i <= n; i = i + 1) loop, where i in an integer
defined before the loop, and not used within it.

22It is equivalent to the while(1) loop.
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<event> happens.

wait(<expr>) : will suspend the execution flow of the procedural block
until <expr> becomes true.

#DELAY : will halt the execution flow of the procedural block for DELAY time
units.

� �
1 module loops_example
2 ...
3 reg [3:0] a, b;
4 reg clk, en;
5 integer i;
6

7 ...
8 //increment b for each 1 bit of a
9 while (a) begin

10 if (a[0])
11 b = b + 1;
12 a = a >> 1;
13 end
14 ...
15 //barrel shift
16 for (i = 0; i < 4; i = i + 1)
17 a[i] = b[(i + 1) % 4];
18 ...
19 //generate two pulses on en
20 repeat (2) begin
21 #10 en = 1;
22 #10 en = 0;
23 end
24 ...
25 //make a clock signal of period 20
26 forever
27 #10 clk = !clk;
28 ...
29 endmodule� �

Code 2.16: Verilog Loop Examples
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2.7 Structure and Hierarchy

As in VHDL, one of the most important ways of dealing with the complexity of
the design is through hierarchies. As such, the Verilog HDL offers mechanisms
for instantiating modules designed elsewhere. The way this mechanism works is
pretty much identical (except for the syntax) in both languages. Let’s take a look
at an example to illustrate this point (Code 2.17).� �

1 module struct_example
2 ...
3 reg [1:0] s;
4 reg d;
5 reg [7:0] c;
6

7 cu CU_I (.cu_s(s), .cu_d(d));
8 proc #(.N(8)) PROC_I
9 (.proc_output(c));

10 ...
11 endmodule
12

13

14

15

16

17

18

19

20

21 � �
Code 2.17: Verilog

� �
1 entity struct_example is
2 ...
3 end struct_example;
4

5 architecture str of struct_example
is

6 ...
7 signal s: std_logic_vector(1

downto 0);
8 signal d: std_logic;
9 signal c: signed(7 downto 0);

10 ...
11 begin
12 ...
13 CU_I: entity work.cu(rtl) port

map (cu_s => s, cu_d => d);
14 PROC_I: entity work.proc(rtl)

generic map (N => 8)
15 port map (proc_output => c);
16 ...
17 end str;� �

Code 2.18: VHDL

As you can see, the way that components are instantiated follows the syntax:

module_name {INST_ID} (.PORT(SIGNAL) {, .PORT(SIGNAL)})

where module_name is the name of the module that needs to be instantiated.
INST_ID is an optional unique name that identifies that particular instance of
the module. The .PORT(SIGNAL) syntax is pretty self explanatory looking at the
side by side code.

Verilog, similarly to VHDL, has also a positional way of connecting ports to
signals (e.g. in Code 2.17 "cu CU_I (s, d);"). It is however less clear and more
error prone so should be avoided.
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An interesting feature of the Verilog HDL is the presence of gate-level
primitives. These act as modules defined elsewhere, and available globally,
that model the behaviour of basic logic gates. With these, the designer can di-
rectly describe the structure of the logic circuit as a gate netlist. The primitives
are: not, and, nand, or, nor, xor, xnor. They accept an arbitrary number of
inputs and produce a single output. Examples might be: "nand NAND_INST1
(out, in1, in2);", "nand NAND_INST2 (out, in1, in2, in3, in4);", "xor
XOR_INST1 (out, in1, in2);", etc. Furthermore, Verilog allows the users to
define their own primitives by specifying their truth table. This mechanism is
called user-defined primitives (UDP). Details can be fount in the literature.

2.7.1 Functions and Tasks

Just as in VHDL, Verilog has constructs for grouping and reusing frequently
needed code segments. Verilog’s functions and tasks are similar to VHDL’s
functions and procedures respectively. There are however some key differences
that are now going to be descibed.

A Verilog function contains statements that execute in sequence. It has one
or more inputs, and returns a single value. Furthermore, functions are invoked
as expression terms, and must be declared within a module. You can do so
following the syntax:

function {automatic} {signed} {<range_or_type>} FUNCTION_ID

(<function_port_list>);

{<block_item_declaration>}

<function_statement>

endfunction

The easiest way to understand the above is through examples, see Code 2.19. By
default, Verilog functions are static, i.e. there is only one copy of the function’s
variables that are accessed by function calls. This means that function calls
are not recursive by default, and that different function calls can interfere with
each other. The optional automatic keyword makes functions non-static. Thus,
each function call to an automatic function has its own local variables.23 The

23On a side note, static functions can have their internal variables accessed via hierarchical
references (e.g. if we have a module named my_module, and a function my_function with local
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return type of the function is a set to a single bit. You can change that by spec-
ifying <range_or_type>. The latter indicates the return type of the function, it
can be integer, real, realtime, time, or a vector range ([S_INDEX:E_INDEX]).
A vector is by default not signed. You can declare it signed by including the
signed keyword. A function must have at least one input port and must
have no output and inout ports. Only blocking assignments are allowed within
functions, which must not consume any simulation time (i.e. they are not al-
lowed to call the scheduler). Each function has an associated variable, with the
same name (FUNCTION_ID) and same type as the return type. This variable can
be manipulated and is automatically return when the function ends.

� �
1 module function_task_example
2 ...
3 wire [7:0] x, y_1, y_2;
4 reg [3:0] u, v_1, v_2;
5

6 //function declaration
7 function [3:0] count_f (input [7:0] a);
8 integer i;
9 begin

10 count_f = 0;
11 for (i = 0; i < 8; i = i + 1)
12 if (!a[i])
13 count_f = count_f + 1;
14 end
15 endfunction
16

17 //task declaration (automatic, otherwise the two enables below would use
the same parameter set)

18 task automatic count_t (input [7:0] a, output [3:0] c);
19 integer i;
20 begin
21 c = 0;
22 for (i = 0; i < 8; i = i + 1)
23 if (!a[i])
24 c = c + 1;
25 #5; //delay the output (mimics latency)
26 end

variable my_variable, we can access my_variable from within my_module using the syntax:
my_function.my_variable. There is more to hierarchical references. Seek more details in
the literature.). External code cannot however access the internal variables of an automatic
function.
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27 endfunction
28

29 //function call
30 assign x = count_f(u);
31

32 //task enables 24

33 always @(negedge y_1, posedge y_2)
34 count_t(y_1, v_1);
35 count_t(y_2, v_2);
36 ...
37 endmodule� �

Code 2.19: Verilog Function and Task Examples

Verilog tasks contain statements that are executed in sequence. Unlike
functions, they have zero or more inputs and outputs and are invoked as pro-
cedural statements. tasks must be declared within a module using the syntax:

task {automatic} TASK_ID

(<task_port_list>);

{<block_item_declaration>}

<task_statement>

endtask

Once again, refer to Code 2.19 for examples. The automatic keyword works
basically the same way in both tasks and functions, so there is no point in
repeating what was already said previously in this subsection. Aside from this
similarity, there are a couple further ways in which tasks and functions differ.
The first one is that the former can have any number of input, output an inout
ports. The second is that tasks are allowed to invoke the scheduler. This means
that both blocking and nonblocking assignments are permitted. In addition to
that, tasks can use delay mechanisms. In fact, you can rewrite as a function
any task that does not invoke the scheduler.

A few things need to be kept in mind when dealing with functions and
tasks. First, we have seen that by default these are static. Care must be taken
in their design. We must consider whether the function/task needs a separate
set of variables for each call or the ability to call itself recursively. If that is the

24task calls are usually referred to as task enables.



28 Chapter 2. Verilog by Difference with VHDL

case, we must remember to use the automatic keyword. Second, it must be noted
that function/task arguments are passed by value. This means that when a
function/task is called/enabled, a sample of the input arguments is fed to the
function/task. If we enable a task and during it’s execution one of the inputs
changes, the task has no way of knowing that.

2.7.2 Generate Blocks

Verilog has a generate mechanism very similar to VHDL’s counterpart. Used
outside procedural blocks, it allows the repeated execution of statements and can
be used in conjunction with loops and conditional blocks. Specifically, it can be
used with if-else, case and for constructs. Furthermore, a generate block
can declare a genvar which is a positive integer value used only inside the block.
The generate block is wrapped by the generate-endgenerate (optional, but
recommended) keywords. Examples follow below (Code 2.20).

� �
1 module generate_example
2 ...
3 parameter WIDTH = 8;
4 reg [WIDTH-1:0] a, b, c, d;
5 reg clk, en;
6

7 //instantiate the adder based on the WIDTH parameter that might be
modified

8 generate
9 if(WIDTH < 8)

10 add_seq #(WIDTH) ADDER (.IN1(a), .IN2(b), .OUT(c));
11 else
12 add_par #(WIDTH) ADDER (.IN1(a), .IN2(b), .OUT(c));
13 endgenerate
14 ...
15 //xor a and the reverse of b
16 genvar i;
17 generate
18 for(i = 0; i < WIDTH; i = i + 1)
19 assign d[i] = a[i] ^ b[WIDTH-1-i];
20 endgenerate
21 ...
22 endmodule� �

Code 2.20: Verilog Generate Examples



2.8 Modeling Building Blocks of Digital Design 29

2.8 Modeling Building Blocks of Digital Design

Now that we have introduced the basics of the Verilog HDL, we can discuss its use
in modelling digital electronic circuits. I will do so by presenting some examples
of commonly used blocks, namely flip-flops and FSMs. These are presented below
(Code 2.21 to Code 2.26), side by side the VHDL counterpart.

There are several features of Verilog that were omitted in this brief introduc-
tion. One example is the rich set of directives that the language provides. This
feature is somewhat advanced and will not be covered. I will use and explain
some directives, as necessary, in the next section.25

� �
1 module flip_flop_example
2 #(parameter integer N = 8)
3 (input wire R, CLK,
4 input wire [N-1:0] D,
5 output reg [N-1:0] Q);
6

7 always @(posedge CLK) begin
8 if (R == 0)
9 Q <= 0;

10 else
11 Q <= D;
12 end
13 endmodule
14

15

16

17

18

19

20

21

22

23

24

25 � �
Code 2.21: Verilog

� �
1 library IEEE;
2 use IEEE.STD_LOGIC;
3

4 entity flip_flop_example is
5 generic(N: natural := 8);
6 port(R, CLK: in std_logic;
7 D: in std_logic_vector(N-1

downto 0);
8 Q: out std_logic_vector(N-1

downto 0));
9 end flip_flop_example;

10

11 architecture bhv of
flip_flop_example is

12 begin
13 process(CLK) begin
14 if CLK’event and CLK = ’1’ then
15 if R = ’0’ then
16 Q <= (others => ’0’);
17 else
18 Q <= D;
19 end if;
20 end if;
21 end process;
22 end bhv;� �

Code 2.22: VHDL

Below you will see the use of localparam for the first time. The latter de-
fines a constant value. It works just like parameter, except for one property.

25Maybe the most important directive that should be known is `include. The latter works
as C’s #include, copying the code available in another file.
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localparams cannot be redefined (e.g. in a hierarchically higher level module)
and are thus the preferred mechanism for defining FSM states.
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� �
1 module fsm_example
2 (input wire R, CLK,
3 input wire FSM_IN,
4 output reg FSM_OUT);
5

6 localparam A = 1’b0, B = 1’b1;
7 reg [1:0] CURR_STATE, NEXT_STATE

;
8 reg Y;
9

10 always @(CURR_STATE, FSM_IN)
begin: COMB

11 case (CURR_STATE)
12 A: begin
13 Y = 1’b0;
14 NEXT_STATE = (FSM_IN == 0)

? A : B;
15 end
16 B: begin
17 if (FSM_IN == 0) begin
18 Y = 1’b0;
19 NEXT_STATE = A;
20 end else begin
21 Y = 1’b1;
22 NEXT_STATE = B;
23 end
24 end
25 endcase
26 end
27 always @(posedge CLK): SEQ
28 if (!R) begin
29 CURR_STATE <= A;
30 FSM_OUT <= 0;
31 end else begin
32 CURR_STATE <= NEXT_STATE;
33 FSM_OUT <= Y;
34 end
35 endmodule
36

37

38

39

40

41

42

43

44 � �
Code 2.23: Verilog

� �
1 library IEEE;
2 use IEEE.STD_LOGIC;
3

4 entity fsm_example is
5 port(R, CLK: in std_logic;
6 FSM_IN: in std_logic;
7 FSM_OUT: out std_logic);
8 end fsm_example;
9

10 architecture rtl of fsm_example is
11 type fsm_state_t is (A, B);
12 signal CURR_STATE, NEXT_STATE:

fsm_state_t;
13 signal Y: std_logic;
14 begin
15 COMB: process(CURR_STATE, FSM_IN)

begin
16 case CURR_STATE is
17 when A =>
18 Y <= ’0’;
19 if FSM_IN = ’0’ then
20 NEXT_STATE <= A;
21 else
22 NEXT_STATE <= B;
23 end if;
24 when B =>
25 if FSM_IN = ’0’ then
26 Y <= ’0’;
27 NEXT_STATE <= A;
28 else
29 Y <= ’1’;
30 NEXT_STATE <= B;
31 end if;
32 end case;
33 end process COMB;
34 SEQ: process (CLK) begin
35 if CLK’event and CLK = ’1’ then
36 if R = ’0’ then
37 CURR_STATE <= A;
38 FSM_OUT <= ’0’;
39 else
40 CURR_STATE <= NEXT_STATE;
41 FSM_OUT <= Y;
42 end if;
43 end if;
44 end process SEQ;
45 end rtl;� �

Code 2.24: VHDL
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� �
1 module comp_example
2 #(parameter integer N = 8)
3 (input wire R, CLK,
4 input wire A, B,
5 output wire SUCC,
6 output reg [N-1:0] COUNT);
7

8 wire C;
9

10 assign C = A ^ B;
11

12 fsm_example FSM (.R(R), .CLK(
CLK), .FSM_IN(C), .FSM_OUT(SUCC
));

13

14 always @(C)
15 if (C)
16 COUNT = COUNT + 1;
17

18 always @(posedge CLK)
19 if (!R)
20 COUNT <= 0;
21 endmodule
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 � �
Code 2.25: Verilog

� �
1 library IEEE;
2 use IEEE.STD_LOGIC;
3 use IEEE.NUMERIC_STD;
4

5 entity comp_example is
6 generic(N: natural := 8);
7 port(R, CLK: in std_logic;
8 A, B: in std_logic;
9 SUCC: out std_logic;

10 COUNT: out unsigned(N-1
downto 0));

11 end comp_example;
12

13 architecture rtl of comp_example is
14 signal C: std_logic;
15

16 component fsm_example
17 port(R, CLK: in std_logic;
18 FSM_IN: in std_logic;
19 FSM_OUT: out std_logic);
20 end component;
21 begin
22 C <= A xor B;
23

24 FSM: fsm_example port map(R => R,
CLK => CLK, FSM_IN => C,

FSM_OUT => SUCC);
25

26 process(C) begin
27 if C = ’1’ then
28 COUNT <= COUNT + 1;
29 end if;
30 end process;
31

32 process (CLK) begin
33 if CLK’event and CLK = ’1’ then
34 if R = ’0’ then
35 COUNT <= (others => ’0’);
36 end if;
37 end if;
38 end process;
39 end rtl;� �

Code 2.26: VHDL
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2.9 Verilog for Verification

Up to now we have discussed Verilog in general terms. The main constructs and
features were introduced, without going into the details of how to actually used
them in the most effective way to describe digital systems. A deep dive into
these topics would require some time and effort, and are beyond the scope of
this brief introduction. That being said, in this section I will discuss in more
depth the use of Verilog for verification. Many constructs presented below have
been encountered previously. Here, however, I will give a more verification centric
overview.

2.9.1 Fundamental Verilog Tools

Verilog provides a variety of mechanisms that are very useful when verifying a
design. Let’s start with the case equality (===) and case inequality (!==)
operators. These are quite common, since they allow us to also deal with the
z and x bit values. As an example, comparing the values returned by the DUT
and the reference model should be done using case equality/inequality. This
way, event if the return values contain z and x bits we can compare them. See
section 2.4 for a reminder of how these operators work. Next, let’s introduce the
somewhat rare force and release keywords. The former is used to perform a
continuous assignment within a procedural block. For this reason it is called pro-
cedural continuous assignment. Its syntax is force LHS = RHS;. LHS can
be either a net or a variable.26 The procedural continuous assignment overrides
any other assignment until it is released or another procedural continuous assign-
ment is made. To release such an assignment the release keyword is used. A
net subject to a continuous assignment instantly resumes its value. A variable
retains the forced value until its subsequent procedural assignment.

When an identifier is used in a continuous assignment without being previ-
ously declared, a net is implicitly assumed. This can be an unwanted feature
since misspelling a net name does not result into an error or warning, rather in
the declaration of a new net. We can solve this with the `default_nettype
directive. In particular, setting it to none will disable this implicit declaration
allowing us to more easily spot the error.

Testbenches often use events since the latter don’t have an associated binary

26This is quite distinct from the continuous assignment (can only be done on a net) and the
procedural assignment (can only be done on a variable).
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value and don’t need to be scheduled. This makes them more efficient than
nets or variables. To declare one use the event EVENT_NAME; syntax. An
event can be triggered with -> (i.e. -> EVENT_NAME) and caught with @ (i.e. @
(EVENT_NAME)). Events are not synthesizable.

A statement that we have previously encountered and is very useful for ver-
ification is wait(<expr>). If <expr> is true the wait will be ignored as if it
wasn’t there, otherwise the execution flow will be blocked until <expr> becomes
true. Another one is the initial block which is executed only once at the very
beginning of the simulation. It is generally the block that defines the testbench
execution flow.

Verilog provides a mechanism for concurrency. The fork-join block defines
a set of statements, each subject to its own timing controls, that are executed
concurrently. When the execution flow reaches this block, each statement within
it start executing. The execution of the block completes when all the forked
statements have completed.

The last statement that I will introduce in this subsection is disable. The
latter can be used as a C style break to terminate the execution of named blocks
or tasks.27

Since this subsection is fairly dense I have provided examples (Code 2.27) to
illustrate the above.

� �
1 `default_nettype none
2

3 module verification_tools_example;
4 reg a, b;
5 wire c_dut, c_ref;
6 event mismatch;
7

8 xor DUT(c_dut, a, b);
9

10 /* assign c_raf = a ^ b;
11 * ERROR: misspelled c_ref, detected with `default_nettype set to none
12 * without this directive this statement is equivalent to:
13 * wire c_raf;
14 * assign c_raf = a ^ b;
15 */

27Named blocks are simply blocks that have an associated label. To associate a label to a
block simply write ": LABEL_NAME" after the begin keyword of the block (or after where the
keyword would be, if the block does not have one).
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16

17 assign c_ref = a ^ b;
18

19 initial begin
20 fork
21 //stimulus generating block, executed in parallel with...
22 begin
23 #40;
24 a = 1’b0;
25 b = 1’b0;
26 wait(c_dut == 0); //wait for the signal to settle
27 #10;
28 a = 1’b0;
29 b = 1’b1;
30 wait(c_dut == 1);
31 #10;
32 a = 1’b1;
33 b = 1’b0;
34 wait(c_dut == 1);
35 #10;
36 a = 1’b1;
37 b = 1’b1;
38 wait(c_dut == 0);
39 #10;
40 end
41 //...this named block (with name check_mismatch) that forces a mismatch
42 begin: check_mismatch
43 force c_dut = 0; //continuous assignments to wires
44 force c_ref = 1; //within a procedural block
45 end
46 join
47 end
48

49 /* truth table for the inequalities (equalities are easily derived)
50 * | != c_dut: 0 1 x z | !== c_dut: 0 1 x z |
51 * | c_ref: | c_ref: |
52 * | 0 0 1 x x | 0 0 1 1 1 |
53 * | 1 1 0 x x | 1 1 0 1 1 |
54 * | x x x x x | x 1 1 0 1 |
55 * | z x x x x | z 1 1 1 0 |
56 */
57 always @(c_dut, c_ref)
58 if (c_dut !== c_ref)
59 -> mismatch; //trigger the event
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60

61 //catch the event; another named block (with name display_mismatch)
62 always @(mismatch) begin: display_mismatch
63 $display("Mismatch: t=%f, DUT=%b, Reference=%b", $realtime, c_dut, c_ref);
64 disable check_mismatch; //stop generating the mismatch
65 release c_dut; //release the value so that they can be driven
66 release c_ref; //by the dut and reference model
67 end
68 endmodule� �

Code 2.27: Verilog Fundamental Verification Tools Example

2.9.2 Useful System Tasks and Functions

In the previous example (Code 2.27) you can see that I have used $display()
without really explaining it. The latter is a system task. This section will go
into some detail about these.

The first family of system tasks is composed of the following: $display(),
$write(), $strobe() and $monitor(). All of these allow the user to print in-
formation to the standard output. The difference between them will be discussed
below. There are multiple versions of these tasks and multiple ways/stiles of
using them.28 One such style, that should be quite familiar and I suggest us-
ing, is the C’s printf() way of displaying information. For example, you can
see in Code 2.27 that the $display() task will print "Mismatch: t=<RT_F>,
DUT=<C_DUT_B>, Reference=<C_REF_B>", where <RT_F> is the floating-point rep-
resentation of $realtime, while <C_DUT_B> and <C_REF_B> are the binary repre-
sentations of c_dut and c_ref respectively.29 Here is the list of all the formats:

• %b or %B for binary. E.g. $display("%b", 4’b1010); will print "1010".

• %o or %O for octal. E.g. $display("%o", 4’b1010); will print "12".

• %d or %D for decimal. E.g. $display("%d", 4’b1010); will print "10".30

28Each of these tasks is by default associated with the decimal format. This means that,
when printing signals, they will appear as decimal numbers. There are also versions that
have different default formats (e.g. $displayb(), $displayo() and $displayh() will display
signals in the binary, octal and hexadecimal form respectively). More information on these can
be found at [1]. There are other caveats to these tasks that are rarely encountered and are
beyond the scope of this subsection.

29$realtime is a system function (with no arguments) that returns the current simulation
time.

30To eliminate the leading spaces use %0d instead of %d.
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• %h or %H for hexadecimal. E.g. $display("%h", 4’b1010); will print "a".

• %f or %F for float. E.g. $display("%f", 3.14); will print "3.14".

• %e or %E for exponential. E.g. $display("%e", 3.14); will print "3.14e+00".

• %c or %C for ASCII character. E.g. $display("%c", 86); will print "V".

• %s or %S for strings. E.g. $display("%s", "hello"); will print "hello".31

• %t or %T for time. E.g. $display("%t", $time); will print "3.6 ns".32

There are some further ways to use the above system tasks. For example, %l
or %L can be used to print the library binding of the module. Analogously, %m
or %M can be used to print the hierarchical name. These are somewhat advanced
features and are left here mainly for reference. See also %v, %V, %u, %U, %z, %Z in
the literature if interested in more details.

Verilog supports a set of escape sequences that are very similar to C’s. They
are:

• \n for a new line.

• \t for a tab.

• \\ for a \ character.

• \" for a " character.

• %% for a % character.

Last, before moving to a different family of system tasks, let’s discuss the dif-
ference between $display(), $write(), $strobe() and $monitor(). $write()
works just as C’s printf(), displaying its contents to standard output. $display()
will also append a new line character at the end. Unlike these two, $strobe()
is not executed immediately. It is instead scheduled to display at the end of the
current time step. $monitor() is similar to $strobe(), in that it is executed at

31Verilog allows the definition of string literals and their assignment to regs. As an example,
we need 5 bytes to store "hello" since each character is an ASCII encoded byte. Thus, reg[4:0]
string = "hello"; can be used to define and store a string for later use (e.g. in a $display()
enable).

32$time is a system function that returns the current simulation time (as a time data
type). In this example the simulation time is assumed to be 3.6 ns. Note that unlike $time,
$realtime returns the current time as a real. You can use the $timeformat system task to
set the format in which %t is displayed.
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the end of the time step. Unlike $strobe() however, once $monitor() has been
invoked, it constantly monitors its arguments. If it detects a change in one of
them, except for $time, it acts just as a $strobe() enable. Only one $monitor()
task is active at any given time. Thus, each time a new $monitor() is invoked,
the previous one ceases its execution. You can disable and enable monitoring
with the $monitoroff and $monitoron system tasks.

The second family of system tasks is related to file I/O. Some of these take
inspiration from C’s standard library functions. You can open a file with:

$fopen(FILE_NAME) (e.g. $fopen("samples.txt");), or

$fopen(FILE_NAME, <mode>) (e.g. $fopen("samples.txt", "w");).

Using the first syntax, the function returns a 32-bit unsigned integer called
multi-channel descriptor or MCD. The most significant bit is reserved and always
set to 0. Each of the other 31 bits represents a unique flag, and is associated to
a particular opened file. The MCD with value 1 is reserved for standard output.
Thus, in total, we can have 30 files open simultaneously this way. The system
function returns 0 if it is not able to open the file. To close a file use:

$fclose(MCD_NAME); (e.g. file = $fopen("samples.txt"); $fclose(file);)

You can write to files, via MCDs, using the $fwrite(), $fdisplay(), $fstrobe()
and $fmonitor() tasks. These are analogous to their counterpart without
a leading f, except that they require an MCD as their first argument (e.g.
$fdisplay(file, "Time = %t", $time); instead of $display("Time = %t",
$time);). You can simultaneously write to multiple files by writing to the bit-wise
or of their MCDs (e.g. $fdisplay(file1 | file2, "Time = %t", $time);)

You can read via MCDs by using:

$readmem<f>(FILE_NAME, ARRAY_NAME, [START_ADDRESS, [END_ADDRESS]]);

(e.g. $readmemb("samples.txt", samples_array, 5, 20);)

<f> represents the format and can be either b (binary) or h (hexadecimal).
FILE_NAME and ARRAY_NAME specify the name of the file and the name of the
array where the file contents will be stored. START_ADDRESS is an optional ar-
gument that indicates the starting index of the array where file data should be
stored. If it is specified, you can also indicate the end index of the chunk to be
read with END_ADDRESS. You can add comments (using the // or /**/ syntax)
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inside the file (e.g. inside sample.txt) that will be ignored by $readmem<f>. Fur-
thermore, you can specify the array index where the next line of the file should
be stored with @HEX_INDEX. For example, let sample.txt contain

. . .

//this comment will be ignored

@FF

0110_1001

. . .

then $readmemb("samples.txt", samples_array); will store 01101001 at in-
dex FF (255 in decimal) of the samples_array array.

The other way of opening files ($fopen(FILE_NAME, <mode>)) takes inspi-
ration from C. In fact <mode> works in the same way. With "r", "w", "a",
"r+", etc. indicating whether the file should be read-only, overwritten, appended
or read and written. When calling this function a 32-bit unsigned integer,
called file descriptor or FD, is returned. The most significant bit being reserved
and always set to 1. Each combination of the remaining 31 bits uniquely rep-
resents a file. Thus, we can have 231 distinct files open simultaneously. The
FDs 0, 1 and 2 are reserved for standard input, output and error respectively,
and are pre-opened. The above functions/tasks for closing, writing and read-
ing work analogously for files represented by FDs. Besides these, file descrip-
tors allow other ways to read/write to files that are very similar to C’s. For
example, Verilog provides the $fgetc(FD_NAME), $fgets(STRING, FD_NAME),
$fflush([FD_NAME]), $fscanf(FD_NAME, <format>, <args>), $feof(FD_NAME),
etc. tasks.33 If not familiar with these or if a refresher is needed, consult the
literature.

Other useful system functions/tasks are:

• $realtobits(REAL) : will convert the real value REAL into a binary vector.

• $bitstoreal(BITS) : will convert the bit vector BITS into a real.

• $rtoi(REAL) : will convert the real value REAL into an integer.
33<format> and <args> follow the same syntax as the writing tasks (e.g. $fscanf(file,

"Input_1 = %b, Input_2 = %b", a, b);)
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• $itor(INT) : will convert the integer value INT into a real.

• $dumpfile(FILE_NAME) : will store the value-change data (VCD), indicat-
ing the signal definitions and their changes, into the file named FILE_NAME.34

This task will only dump the VCD of signals that have been selected, to
select signals use...

• $dumpvars (no arguments): indicates that the VCD of all the signals should
be dumped.35

• $stop (no arguments): stops the simulation and enters interactive mode.

• $finish (no arguments): terminates the simulation.

As usual, to clarify the presented notions, consult the examples (Code 2.28).

� �
1 module sys_funcs_tasks_example;
2 $dumpvars;
3 $dumpfile("simulation_data.vcd");
4

5 reg a, b;
6 wire c_ref, c_dut;
7 integer simulation_file, stimulus_file;
8

9 and DUT(c_dut, a, b);
10

11 assign c_ref = a & b;
12

13 initial begin
14 stimulus_file = $fopen("stimulus.txt", "r");
15 /* suppose the stimulus file (stimulus.txt) to simply contain:
16 * 0 0
17 * 0 1
18 * 1 0
19 * 1 1
20 */
21

22 simulation_file = $fopen("simulation_report.txt", "w");
23 $fmonitor(simulation_file, "Time: %t\n-%b AND %b = %b", $time, a, b, c);

34See more ways to manipulate VCD dumps in the literature. Furthermore, you could look
into the extended value-change data (EVCD).

35There are ways of selecting just an arbitrary subset of signals. See the literature if inter-
ested.
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24 /* will print something like:
25 * Time: 0 ns
26 * -0 AND 0 = 0
27 * Time: 10 ns
28 * -0 AND 1 = 0
29 * ...
30 */
31

32 $display("Beginning stimulus retrieval");
33 while(!$feof(stimulus_file)) begin
34 $fscanf(stimulus_file, "%b %b", a, b);
35 #10;
36 end
37 $display("TEST FINISHED");
38

39 $fclose(simulation_file);
40 end
41

42 always @(c_ref, c_dut)
43 if (c_ref !== c_dut) begin
44 $fdisplay(2, "ERROR: mismatch"); //print the mismatch to stderr
45 $stop; //enter the interactive mode if a mismatch has been detected
46 end
47

48 endmodule� �
Code 2.28: Verilog System Functions and Tasks Example

2.9.3 Testbenches

Testbenches can have different degrees of complexity. A simple one will generally
just stimulate the DUT in a deterministic user specified way. It will not interact
with the design, nor simulate the operational environment. Furthermore, DUT
output is analyzed post simulation. A sophisticated testbench on the other hand
will:

• Model and simulate the operational environment of the DUT.

• Check and analyze DUT output during simulation.

• React dynamically to the design, based on its response, and communicate
with it.
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• Generate complex randomized stimuli.

Quite often testbenches require the definition of clocks to sync up the differ-
ent DUTs. Code 2.29 provides examples of how one might go about doing so.

� �
1 module clock_example
2 ...
3 localparam PERIOD = 10;
4 localparam HALF_PERIOD = 7;
5 localparam DUTY_CYCLE = 6/10;
6 localparam DELAY = 2;
7 reg clk_1, clk_2;
8 ...
9 //waits 2 time units before oscillating, is 1 60% of the time

10 initial: clocking_block_1
11 #(DELAY) forever begin
12 #(PERIOD*DUTY_CYCLE) clk_1 = 1;
13 #(PERIOD*(1-DUTY_CYCLE)) clk_1 = 0;
14 end
15

16 //simple clocking block
17 //always does not have an event control (@) thus will always trigger
18 always: clocking_block_2
19 #(HALF_PERIOD) clk_2 = ~clk_2;
20 ...
21 endmodule� �

Code 2.29: Verilog System Clock Examples

Another useful tool in testbenches is the Verilog (pseudo) random number
generator. It is a task that takes in input and outputs (via the same inout port)
an optional 32-bit integer called seed. The seed sequence allows us to track and
re-generate the same (pseudo) random numbers. Each task enable returns a
(pseudo) random 32-bit signed integer. The syntax is:

$random[(seed)].

This task will return one of the possible 32-bit signed integers, picked uniformly
at random. You can change the distribution of the returned (pseudo) random
numbers by using one among the following instead:

• $dist_uniform(seed, start, end) for the uniform distribution.

• $dist_normal(seed, mean, std) for the Gaussian distribution.
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• $dist_poisson(seed, mean) for the Poisson distribution.

• $dist_exponential(seed, mean) for the exponential distribution.

• $dist_erlang(seed, k ,mean) for the Erlang distribution.

• $dist_chi_square(seed, dgf) for the χ2 distribution.

• $dist_t(seed, dgf) for the Student’s t-distribution.

We will look more into randomized stimuli generation in the next chapter ded-
icated to SystemVerilog. This is due to the fact that the latter has much more
powerful tools for this task. The topic of randomized stimuli generation is quite
an important one. Oftentimes randomized inputs can detect errors in one of the
most critical parts of a design: edge cases.

This concludes our brief introduction to the Verilog HDL. Before moving on
to SystemVerilog however, I would like to leave some additional references to
more advance topics that were not covered. Furthermore, I will mention some
terminology and concepts frequently used in verification. Additional topics:

• Getting command line values with the $test$plusargs() and $value$plusargs()
system functions.

• Hierarchical names.

• Test configuration methods.

• Programming Language Interface (PLI).

• Configurations and libraries.

Some useful verification notions:

• Technological advancements increase the complexity of the design more and
more. Higher complexity requires higher verification effort which, to be the
most effective, requires the design and verification teams to be distinct (this
property is sometimes called verification integrity). To achieve the best
verification results a plan must be devised.

• The Design Verification Plan is a crucial step in the verification process
that ensure the best results. It specifies the used technologies, how to test in
accordance with the functional specifications, the scheduling of the design
and verification to ensure synchronicity, and more.



44 Chapter 2. Verilog by Difference with VHDL

• The goal of the Design Verification Plan is progressive testing. It usually
starts with high-level system design verification to endure the correctness
of the design before implementation. Afterward, the component and sub-
system implementations, as well as the hardware/software interaction, are
verified.

• We can asses the state of the verification process through coverage metrics.
Code coverage indicates the amount of "code lines" that has been verified
(e.g. what code blocks, FSM states and transitions, expression terms, etc.
have been encountered during simulation). Functional coverage, on the
other hand, indicates what specific values, ranges of values and transitions
between values have occurred (data oriented coverage) or the sequence
of control signals that have occurred (control oriented coverage). Sys-
temVerilog has some fairly powerful tools to deal with functional coverage
where as Verilog has none.

• A "sweep" test is a test where the same stimulation patterns are used in
multiple runs. What changes from run to run is instead the relative timing
these patterns arrive at.

• A regression test is usually a fully automated test (e.g. through tcl
scripts) that verifies the integrity of the design after the addition or modi-
fication of some features.
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SystemVerilog

SystemVerilog (SV) is an extension of the Verilog HDL. In fact, it is a super
set. As such, any Verilog code is also fully compatible with SV. First introduced
in 2002 and later standardized by IEEE as IEEE 1800-2005, SystemVerilog is a
HDVL (Hardware Description and Verification Language) as it combines both
features of a HDL as well as a HVL (Hardware Verification Language) in a sin-
gle language. The latest standard is the IEEE 1800-2017. On the HDL level
SystemVerilog introduces many improvements to Verilog. Enhanced data types,
procedural blocks, constructs, etc. allow for more readable, less error prone and
more efficiently synthesizable RTL that can be developed at a higher level of ab-
straction with less code. On the HVL side, SystemVerilog has extensive features
for developing layered testbenches (based on OOP), for coverage-driven verifica-
tion, constrained random verification and assertion-based verification.36 SV is a
truly vast language and its full description is beyond the scope and capability of
this work. Here I will give an overview of the language, presenting both HDL
and HVL constructs, with an emphasis on the latter. Many of the features will
be presented at a higher level, without spending too much time on technicalities,
since they are borrowed from other languages (e.g. Java) that the reader is as-
sumed to be familiar with. For an online introduction to SystemVerilog consult
[10] [11]. For a more thorough dive into the HDL and HVL sides of SystemVerilog

36Layered testbenches are testbenches that allow verification at different levels of abstraction.
They usually have some common structure and will be explored in the next chapter when we
introduce UVM. Constrained random verification and coverage-driven verification go hand in
hand. In the former DUT stimulus is generated in a random way according to some constraints.
In the latter the verification progress is monitored based on functional coverage and stimulus
is generated to try and improve it. Last, assertion-based verification (ABV) uses assertions to
improve the verification process. Randomized stimulus, coverage and assertions will be covered
in later sections.

45
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see [12] and [13] respectively. Cadence [4] also offers excellent material on this
topic.

3.1 Data Types

The first key improvement that SystemVerilog makes over Verilog is the intro-
duction of a new data type that replaces its nets and registers. This new data
type is logic and can be used in place of the other two, making it similar to
VHDL’s signal. You no longer have to remember the sometimes confusing rules
for declaring ports and signals as nets or registers. The only limitation of this
new data type is that it can be driven by at most one source. If you need a data
type that can have multiple drivers you need to use Verilog’s nets.

SystemVerilog introduces 2-state (1 and 0) variables, namely: bit, byte,
short, int and longint. These are represented with 1, 8, 16, 32 and 64 bits
respectively. The 2-state data types are not very useful for design but, since they
require less memory and are more efficient to work with, are extensively used in
verification. Some care must be taken when converting from 2-state to 4-state
data types and vice versa. When converting from 4-state to 2-state the Xs and Zs
will be converted to a 2-state 0 and information will be lost. A 2-state 0 clearly
gets converted into a 4-state 0.

3.1.1 Arrays

In SystemVerilog Arrays have two main attributes. They can be packed or un-
packed, fixed size or dynamic. Packed arrays can be interpreted as both a
single scalar as well as a set of value. For example, if we want to have a data
element that we can treat both as a byte and a set of 8 bits, we could use packed
arrays. This way we could assign it values directly, or work on the bit level. These
types of arrays are specified by providing the array range before the array name.
Unpacked arrays, on the other hand, are seen only as a collection of data and not
as a single entity. As such, you cannot assign a value directly to an unpacked
array. These types of arrays are specified by providing the array range after the
array name. You can declare arrays to have both packed and unpacked dimen-
sions, furthermore, you can specify the array range using the [size] syntax with
is equivalent to [0:size-1]. Fixed size arrays are, as the name suggests, arrays
whose size was declared once and cannot change. Dynamic arrays, on the other
hand, are unpacked arrays that do not have a defined size as the user can change
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it during run time. For an illustration of these types of arrays consult the code
below (Code 3.1). Find out more technicalities in the literature.

� �
1 module arrays_example
2 ...
3 //this is a packed array
4 bit [7:0] my_byte_packed;
5

6 //this is an unpacked array
7 bit my_byte_unpacked [8];
8

9 //this array has both packed and unpacked dimensions
10 bit [3:0][7:0] ram [1024][32];
11

12 //this is a dynamic array
13 bit bit_dynamic[];
14

15 ...
16 my_byte_packed[3] = 1’b0; //legal
17 my_byte_packed = 8’hFA; //legal
18

19 my_byte_unpacked[3] = 1’b0; //legal
20 my_byte_unpacked = 8’hFA; //illegal
21

22 ram[1023][31][3] = 8’hAA; //note the proper dimension order
23

24 bit_dynamic = new[8]; //new array of size 8
25 foreach(bit_dynamic[i])
26 bit_dynamic[i] = i;
27

28 //copy the old 8 bit array into a new 16 bit array
29 bit_dynamic = new[16](bit_dynamic);
30 ...
31

32 ...
33 endmodule : arrays_example� �

Code 3.1: SystemVerilog Array Examples
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3.1.2 Queues, Associative Arrays and User Defined Data
Types

SystemVerilog provides some build in data structures of common use. Queues are
doubly linked-lists where, thanks to references to all the elements of the list, you
can access any element in constant time without the need to sequentially scan
the entire list. Adding elements at the head or tail of the list is computationally
efficient, however, adding elements close to the middle takes linear time. Asso-
ciative arrays are maps, often used to model large memories that are accessed
sparsely. See Code 3.2� �

1 module qs_and_aas_example
2 ...
3 int i;
4

5 //this is a queue
6 int q[$];
7

8 //this is an associative array with key int and value byte
9 byte aa[int];

10

11 ...
12 q.push_front(1); //add element to the front of the queue
13 i = q.pop_front; //remove element from the front of the queue
14

15 //initialized the associative array
16 do begin
17 aa[i] = i;
18 i <<= 1;
19 end while (i > 0);
20

21 //iterate over the elements of the associative array
22 foreach(aa[i])
23 aa[i]--;
24 ...
25 ...
26 endmodule : qs_and_aas_example� �

Code 3.2: SystemVerilog Queue and Associative Array Examples

SystemVerilog carries over many of the constructs of the C programming
languages for defining custom data types. typedef, struct, union and enum
are all common to both C and SV. These work basically the same with marginal
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differences. Later on we will see that SV also supports defining custom data types
using the OOP principles, i.e. through classes. Data Types in SystemVerilog is
an extensive topic, here I have provided but the mention of the existence of these
language features. Still, the working principle of most of these should be fairly
familiar to a reader with prior knowledge of C. For the technicalities, such as the
syntax, consult the references provided at the beginning of this chapter.

3.2 Operators

SV adopts many of the modern short-cut operators from other programming
languages. For example, +=, ˆ=, etc. which have the familiar meaning. The
increment (++) and decrement (——) operators find their way into SystemVerilog,
both in their pre and post forms.

New operators, specific to HDLs get introduced. For example the ==? and
!=? treat the Z and X values of the RHS of the operators as don’t care conditions.
This results in, for example, 4’b1010 ==? 4’b1XZ0 being true. Another one is
the inside operator which follows the syntax:

expression inside {range {, range}}

with range being either an expression or a range of type [start:end]. The
value of this operator is true if the expression is contained inside the range and
false otherwise. For example, "my_signal inside {0, [2:4], 7, [9:11]}" is
true only when my_signal takes the values 0, 2, 3, 4, 7, 9, 10, 11.

3.3 Procedural Statements and Blocks

Unlike in Verilog, SV allows you to put the named begin...end block’s label also
at the end of block. Furthermore, you can add labels on keyword that identify
the end of a standard block (e.g. endmodule) for improved readability. See the
code below (Code 3.3) for an example.

You can declare the for loop’s variable directly in the loop (as is done for
example in C) without needing to declare it in a preceding named block. In fact,
SystemVerilog allows the user to define variables even inside unnamed blocks.
The conclusion is that in SystemVerilog the familiar syntax for (int i = 0;

...; ...) is now legal and works pretty much the same way as it does in
other programming languages. Additionally, SystemVerilog supports the foreach
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loop that can be found in languages such as Java. An important note is that
if we want to iterate over multiple variables of an array, the correct syntax is
foreach(array[i, j]) and not foreach(array[i][j]). Further loop con-
structs, found in other programming languages, that make their way to SV are
the do...while loops and the break and continue statements.

� �
1 module named_blocks_example
2 ...
3 begin : my_block
4 ...
5 begin : my_block2
6 ...
7 end : my_block 2
8 ...
9 end : my_block

10 ...
11 endmodule : named_blocks_example� �

Code 3.3: SystemVerilog Named Block Examples

SystemVerilog adds the priority and unique modifiers for the if-else and
case statements. The former modifier generates a simulation time warning if no
matching branch is found, the latter if a number of matching branches different
than one is found. Note that using default and else in case and if-else
statements makes the priority modifier redundant as there will always be at
least one matching branch.37

SystemVerilog introduces constructs that allow for a more clear and less error
prone modeling of combinational logic, registers and latches. These are based on
Verilog’s always block and are: always_comb, always_ff and always_latch.
These should always be preferred to Verilog’s alternative. Find out more about
these HDL features in the literature.

Below you can find a code example (Code 3.4) that uses some of the intro-
duced constructs.

� �
1 module procedural_constructs_example
2 ...
3 bit [7:0] mat [8][8];
4 logic [1:0] sel;

37You can find out more about these modifiers in the literature and, in particular, how they
map to Verilog constructs.
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5 logic [31:0] a;
6 ...
7 foreach(mat[i, j])
8 Mat[i][j] = 10*i + j;
9 ...

10 unique casez (sel)
11 2’b1?: a = ’1;
12 2’b?1: a = ’0;
13 endcase
14 ...
15 endmodule : procedural_constructs_example� �

Code 3.4: SystemVerilog Procedural Constructs Examples

3.4 Tasks and Functions

There are a few changes to tasks and functions that improve their usability.
First, to reduce verbosity, remember you do need to use the begin...end key-
words to delimit functions and tasks as in Verilog. Instead you can simply use
the function...endfunction and task...endtask keywords to delimit these.
This fact was already mentioned in a previous section, together with the fact that
you can put the block label at its end and SV will check for consistency. That
being said, the first major addition of SystemVerilog to tasks and functions are
the void functions. These are specified by declaring void as their return type.
As the name suggests, these functions are not expected to return any value
directly.38 You can specify to SV that the return value of a function should be
ignored by casting it to void. See details in the code example below (Code 3.5).
Even though function and task arguments have a default type and direction,
you should never rely on that. Always explicitly declare both the direction, as
well as the type, of an argument. Failing to do so can often lead to hard to debug
errors.

SystemVerilog allows you to specify the direction of a function argument
to be input, output or inout. This extends Verilog’s function, making this
construct a general-purpose, synthesizable routine without timing commands.

SystemVerilog also allows you to define a default value for function and task
arguments. See Code 3.5 for an example. Furthermore, you can use the return
statement as in other programming languages. This allows you to have more

38They might still return values through output ports as we will see later.
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control over when the functions and tasks terminate their execution and the
value they return.

Remember that Verilog passes argument by value. In SystemVerilog you can
specify that you want to pass an argument by reference instead. This features
works similarly to C++’s passing by reference. In particular, any argument
passed by reference will be transparent to that function or task. This means
that, if a passed by reference argument is modified outside the function or
task, this change will be visible immediately inside the subroutine. Analogously,
changing an argument, that was passed by reference, inside the function or task
body, will make the change detectable immediately outside. This contrasts Ver-
ilog where any changes to the output arguments was visible only at the end of the
subroutine. You can pass argument by reference only to automatic function
and task. Additionally, only variables and not nets can be passed this way. To
specify that an argument is passed by reference use the ref keyword in place of
the argument direction. If you do not want the passed by reference argument to
be modified use const ref instead. See Code 3.5 for an example.

� �
1 module functions_tasks_example
2 ...
3 int i;
4

5 //the function returns void but can modify the out argument
6 //default value for in is 1
7 function void my_void_function(input int in = 1, output int out);
8 ...
9 return;

10 ...
11 endfunction : my_void_function
12

13 function int my_int_function(input int in);
14 ...
15 return 1;
16 ...
17 endfunction : my_int_function
18

19 //both argument passed by reference, the first one (in) cannot be modified
20 task automatic my_task(const ref int in, ref int out);
21 ...
22 endtask : my_task
23 ...
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24

25 //ignoring the return value by casting to void
26 void’(my_int_function(.in(i)));
27

28 //equivalent to my_void_function(1, .out(i));
29 my_void_function(, .out(i));
30 ...
31 endmodule : functions_tasks_example� �

Code 3.5: SystemVerilog Functions and Tasks Examples

3.5 OOP in SystemVerilog

SystemVerilog supports the Object Oriented Programming (OOP) paradigm. It’s
implementation takes inspiration from different programming languages such as
C++ and Java. This feature is particularly useful for building testbenches that
allow verification at different levels of abstraction. Many of the topics presented
here should already be familiar to the reader, that is assumed to have experi-
ence in the aforementioned C++ and Java. As such, many technicalities will be
omitted.39

As in other programming languages that support OOP, the central construct
that allows this paradigm in SV is the class. The latter can contain data and
methods and can be declared in modules, interfaces, packages or other design
blocks. It is defined, similarly to other blocks in SV, using the class-endclass
keyword pair. For an example see Code 3.6. classes can contain one, and only
one, constructor method. This method’s name is always new() and is a func-
tion without a return type. The constructor supports default argument values.40

When instantiating an object of a given class, use the constructor method new().
This is quite different from other languages, such as C++, where the constructor
has the class name and new is a keyword for memory management. On the topic
of memory management, SV has automatic garbage collection, similarly to Java,
so the user does not need to worry about manually allocating and deallocating
memory.

When you define an object handle, without initializing it, SV automatically
sets the handle to null.

39Also, some more advanced features of SV, like generic programming through parameterized
classes, are omitted. You can find these topics in the provided reference material.

40SystemVerilog does not support method overloading in general but, as we have seen, sup-
ports default argument values.
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Subroutines can be declared external, which means that the class contains
only the subroutine declaration, the definition will be found outside the class.
When defining an external subroutine you must match the declaration signature,
but also include the class name with the scoping operator (::). This means that,
for example, an external method called my_method declared in my_class should
be implemented using the name my_class::my_method. See the example below
(Code 3.6).

SystemVerilog classes also support static variables and methods. They
work similarly to other programming languages, with static variables being
common to all (0 or more) instances of the class. static methods, similarly,
are not specific to an object, but rather to all (0 or more) objects of that class.
As such, static methods can only refer to static variables and other static
methods.

� �
1 module oop_example
2 ...
3 //class definition
4 class my_class;
5 logic [15:0] data;
6

7 //all of the objects manipulate this same variable since its static
8 static int num_objects;
9 ...

10 //constructor: always function with ’new’ as name
11 function new(data = 16’h0000);
12 ...
13 endfunction
14 ...
15 task t1( ...);
16 ...
17 endtask
18 ...
19 static task t2( ...);
20 ...
21 endtask
22 ...
23 //external function declaration, will be defined outside the class
24 external function int f1( ...);
25 ...
26 endclass
27 ...
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28 //definition of an external function
29 function int my_class::f1( ...);
30 ...
31 endfunction
32 ...
33 //creating an object handle: initialized to null
34 my_class object;
35

36 //creating new object, equivalent to: object = new(16’h0000);
37 object = new();
38

39 //calling a class method
40 object.t1( ...);
41

42 //calling a static method
43 my_class::t2( ...);
44

45 //directly accessing a non-encapsulated class variable (bad practice)
46 object.data = 16’bFFFF;
47 ...
48 endmodule : oop_example� �

Code 3.6: SystemVerilog Class Examples

3.5.1 Encapsulation

SystemVerilog implements encapsulation and information hiding analogously to
most of the other programming languages that support this feature. The main
difference is that SV does not have the public keyword found in many of the
other languages. SystemVerilog class data and methods are public by default.
If we want to make data or methods private (private methods and data in other
languages such as C++ or Java) we use the local keyword. Protected data and
methods use the protected keyword.41 See Code 3.7 for a brief example of the
encapsulation syntax.

� �
1 module encapsulation_example
2 ...

41As a quick reminder, public data and methods (SV default, no keyword required) are
accessible/visible from anywhere. Protected data and methods (protected keyword) are ac-
cessible/visible only in sub-classes. Private data and methods (local keyword) are not acces-
sible/visible anywhere but in the class they are defined in.
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3 class my_class;
4 //public variable
5 int a;
6

7 //protected variable
8 protected int b;
9

10 //private variable
11 local int c;
12 ...
13 //public subroutine
14 task t1( ...);
15 ...
16 endtask
17

18 //protected subroutine
19 protected task t2( ...);
20 ...
21 endtask
22

23 //private subroutine
24 local task t3( ...);
25 ...
26 endtask
27 ...
28 endclass
29 ...
30 endmodule : encapsulation_example� �

Code 3.7: SystemVerilog Encapsulation Examples

3.5.2 Inheritance

SystemVerilog inheritance is pretty straight forward. It is basically identical to
Java’s implementation, so only singe inheritance is supported.42 Even the syntax
is identical to Java’s, with the keyword extends to indicate a sub-class and
super to call the parent class’s data and methods.

There is one thing we need to pay attention to however, the sub-class’s
constructor. There are two important things to know about this topic: (i) the
constructor is not inherited from the parent class, unlike the other methods. (ii)

42Single inheritance means that a class can extend only another class. It is not possible
to have one class extending multiple parent classes like in C++.
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the sub-class’s constructor will always invoke super.new(); as the first state-
ment. Even if you have not specified it. And even if the new() function is not
compatible with the parent class. For example, if the parent defines the con-
structor to be new(int a), without a default value, the sub-class’s constructor
will still invokes new(). This will lead to an error since an int argument is ex-
pected. It is then a good practice, that is highly recommended, to always define
constructors, even if their behaviour is the default one. Furthermore, begin the
sub-class’s constructor with an explicit super.new(...) call that is compatible
with the parent constructor. This call will overwrite the default parent construc-
tor call. See Code 3.8 for an example.

� �
1 module inheritance_example
2 ...
3 //parent class
4 class my_class_a;
5 ...
6 int a;
7 ...
8 function new(int a);
9 ...

10 this.a = a;
11 ...
12 endfunction
13 ...
14 endclass
15 ...
16 //sub-class that extends the parent class
17 class my_class_b extends my_class_a;
18 ...
19 int b;
20 ...
21 function new(int a, int b);
22 //note that the first statement is a call to the parent constructor
23 //if we had not included this call,
24 //SV would have automatically called super.new();
25 //since the parent constructor expects an int argument,
26 //an error would have occurred
27 super.new(a);
28 ...
29 this.b = b;
30 ...
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31 endfunction
32 ...
33 endclass
34 ...
35 endmodule : inheritance_example� �

Code 3.8: SystemVerilog Inheritance Examples

3.5.3 Polymorphism

While SystemVerilog inheritance is virtually identical to Java’s implementation,
polymorphism is very much C++ like. By default method virtuality is not en-
abled, just like in C++. Given an object handle that contains an instance of a
sub-class, the methods that are going to be called are determined based on the
handle type and not the actual object type. In other words, suppose we have
a class my_class_a, a sub-class my_class_b that extends my_class_a, and
suppose that both of these classes implement the my_method() method. If we
now declare an object of child type (my_class_b object = new(...);) and a
handle of the parent type that is assigned that object (my_class_a my_handle =
object;), what happens when we call my_method() on that handle? The answer
is that my_method() defined in my_class_a is called because the handle is of
that type, even though the the object is actually of type my_class_b. To call the
method based on the object type and not the handle type, we need to declare
that method virtual. See an example below (Code 3.9).

Even though once we have declared a method to be virtual, all of the meth-
ods that overwrite it in sub-classes are virtual as well without needing to ex-
plicitly specify it with the virtual keyword, it is good practice to always include
the virtual keyword for readability and documentation.

Another important tool for polymorphism is the $case(dst, src) subrou-
tine.43 This subroutine allows us to assign the contents of a parent class handle
to a sub-class handle. The operation is successful only if the contents are of the
sub-class handle’s type.

43There are two versions of this subroutine. A function and a task. Both of them will
check if the content of the src handle is of the same type as the dst handle. If that is the case
the content of src will be copied into dst. The task throws a run-time error if the content
of src does not match the dst handle and does not complete the cast. The function, on the
other hand, return a 0 in this case and 1 if the cast was successful. Since the function allows
us to recover from failed casts, it is preferred.
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� �
1 module polymorphism_example
2 ...
3 //parent class
4 class my_class_a;
5 ...
6 function int f1( ...);
7 ...
8 endfunction
9

10 virtual function int f2( ...);
11 ...
12 endfunction
13 ...
14 endclass
15 ...
16 //sub-class that extends the parent class
17 class my_class_b extends my_class_a;
18 ...
19 function int f1( ...);
20 ...
21 endfunction
22

23 //the virtual keyword is optional since the parent method is virtual
24 //it is highly recommended to include it nonetheless
25 virtual function int f2( ...);
26 ...
27 endfunction
28 ...
29 endclass
30 ...
31 my_class_b b = new( ...);
32 my_class_a a = b;
33

34 //the method in my_class_a will be called
35 a.f1( ...);
36

37 //the method in my_class_b will be called
38 a.f2( ...);
39

40 //try assigning to b the contents of a
41 //since the contents of the a handle are actually of type my_class_b
42 //the cast will succeed
43 if($cast(b, a))
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44 b.f1( ...); //the method in my_class_b will be called
45 ...
46 endmodule : polymorphism_example� �

Code 3.9: SystemVerilog Polymorphism Examples

Finally, I will mention that SV has a mechanism for defining virtual (or ab-
stract) classes. These cannot be instantiated. They are instead used to define
abstract entities from which we can extend classes that represent objects that
can be instantiated. virtual classes can declare pure virtual methods. These
are not implemented directly in the virtual class (only declared) but must be
defined in any sub-class that extends the virtual class. See Code 3.10.

� �
1 module virtual_classes_example
2 ...
3 //virtual class
4 virtual class my_class_a;
5 ...
6 //pure virtual subroutine, note that it lacks the task body
7 pure virtual task t1( ...);
8

9 virtual task t2( ...);
10 ...
11 endtask
12

13 task f3( ...);
14 ...
15 endtask
16 ...
17 endclass
18 ...
19 //extends the virtual class
20 class my_class_b extends my_class_a;
21 ...
22 //we can omit defining t2 and/or t3
23 //but we cannot omit t1, it must be defined since it is pure virtual
24 virtual task t1( ...);
25 ...
26 endtask
27 ...
28 endclass
29 ...
30 endmodule : virtual_classes_example
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� �
Code 3.10: SystemVerilog Virtual Class Examples

3.6 Interfaces

SystemVerilog introduces a mechanism that allows users to work at a higher
level of abstraction when dealing with module interconnections. This mecha-
nism is called an interface. At its core an interface is just a set of signals.
These can have associated constructs, e.g. subroutines, as we will see later.
What interfaces allow you to do is working with a single entity that represents
the entire module interconnection, instead of working with the single nets or
variables.

An interface is similar to a module in that it needs to be declared as a
separate entity (e.g. in a separate file) and instantiated when we want to use it.
An interface block is delimited by the interface...endinterface keywords
and contains, at the very least, a set of variables and/or nets. See Code 3.11 for
a more concrete example of how to declare and instantiate an interface. When
you declare a module, you can declare an interface for its the port list. Now,
instead of declaring the port list of that module with all the necessary signals,
you can simply pass the newly declared interface as you would any other port
argument, without specifying the direction (see Code 3.11).44 Inside the module
you will have access to all the signals defined in the interface using the dot
notation (interface_name.interface_signal).

3.6.1 Ports and Parameters

Besides containing a set of signals, interfaces support other functionality. One
of these is the ability to interact with signals not directly defined inside the
interface. This is done with interface ports. An interface port is simply
a port list for the interface, and is defined in the same way as for modules.
When instantiating the interface, we connect the external signal to it the same
way we do for modules. See Code 3.11. Another way in which modules and
interfaces are similar is their support for parameterization. In particular, they

44You can also pass a generic interface that does not have any restriction on signals.
Then, when you instantiate the module and pass an interface instance, you must make sure
that the latter defines the signals you have used in the module. See details in the literature
after you have finished this section.
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are parameterized using the same syntax and rules (e.g. using parameter).

� �
1 module interfaces_example
2 ...
3 logic res, clk;
4 ...
5

6 //declaration of an interface named my_if
7 //interface port for the clk signal
8 interface my_if(input logic clk);
9 parameter SIZE = 32;

10 logic en;
11 logic [7:0] in;
12 logic [7:0] out;
13 ...
14 endinterface : my_if
15

16 //declaring my_if in the port list will make all the signals defined in the
interface visible

17 //this way there is no need to specify every single signal of the port (en,
in, out, ...)

18 module a (my_if bus, input logic res);
19 ...
20 //accessing signals defined in the interface via dot notation
21 val = bus.in;
22 ...
23 endmodule : a
24

25 module b (my_if bus, input logic res);
26 ...
27 //accessing signals defined in the interface via dot notation
28 bus.in = val;
29 ...
30 endmodule : b
31 ...
32

33 //instantiation of an interface of type my_if named if_inst
34 //connect the external signal clk to the interface port
35 my_if #(.SIZE(64)) if_inst(.clk(clk));
36

37 //we have connected module instances a_inst and b_inst with the same
interface instance

38 //they are now connected via the nets and variables defined in the interface
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39 a a_inst(.bus(if_inst), .res(res));
40 b b_inst(.bus(if_inst), .res(res));
41 ...
42 endmodule : interfaces_example� �

Code 3.11: SystemVerilog Interface Examples

3.6.2 Subroutines and modports

The interface construct we have discussed up to now allows all of the modules
connected with it to access its signals. This makes the interface connection
symmetric. In practice, however, we often want to model asymmetric connections
between modules. For example when modeling a master-slave relation. SV has
an interface construct that allows us to model asymmetry, the modport. The
latter allows us to specify which of the interface signals are visible to the module
and what is their direction. The syntax for specifying a modport is:

modport MODPORT_NAME(<direction> NAME {, <direction> NAME})

where direction is the signal direction and NAME is the signal name.
When you want to specify that a module has a specific view of the interface

defined in a modport, you can follow two approaches. The first one consists in
specifying the modport directly in the declaration of the module and then, when
instantiating the module, passing the interface. In the second one, during
module declaration you only specify the interface and then, when you instanti-
ate the module, pass the modport via the dot notation (if_inst_name.modport_name).
See Code 3.12 for a clarifying example.

Another capability of interfaces is containing subroutines, dubbed interface
methods. This is very useful for defining functions and tasks that are specific
to the interface, as there would be a single place where these need to be writ-
ten and maintained. Without this capability, each module would have to have
its own copy of these subroutines. Writing subroutine for interfaces is identi-
cal to writing subroutines for modules. interface method are accessed via the
dot notation (if_name.method_name). By default, no subroutine defined in the
interface is visible via modports. To make a method visible, you must import
it as shown in the code below (Code 3.12).

� �
1 module modport_example
2 ...
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3 interface my_if;
4 logic en;
5 logic [7:0] in;
6 logic [7:0] out;
7 logic [15:0] comm;
8 ...
9

10 function read( ...);
11 ...
12 endfunction : read
13

14 task write( ...);
15 ...
16 endtask : write
17 ...
18

19 //declaration of two modports to model the different views of the
connection a master and slave have

20 //note that slave does not see the comm signal and write task
21 modport master(input in, output out, en, inout comm, import read, import

write);
22 modport slave(input out, en, output in, import read);
23 ...
24 endinterface : my_if
25

26 //specifying the modport in the declaration
27 module a (my_if.master bus);
28 ...
29 //accessing intarface method
30 bus.write( ...);
31 ...
32 endmodule : a
33

34 //not specifying the modport in the declaration
35 module b (my_if bus);
36 ...
37 //accessing intarface method
38 but.read( ...);
39 ...
40 endmodule : b
41 ...
42

43 my_if if_inst();
44
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45 //passing the interface
46 a a_inst(.bus(if_inst));
47

48 //passing the modport
49 b b_inst(.bus(if_inst.slave));
50 ...
51 endmodule : modport_example� �

Code 3.12: SystemVerilog Interface Modport and Subroutine Examples

3.6.3 Virtual Interfaces

So far the interfaces we have seen cannot be directly assigned to or referenced.
It is however very useful in practice to be able to pass interface references
around, especially in testbenches that follow UVM, as we will later see. We
need some sort of interface handle, just like there are object handles. This
interface handle (or, more appropriately, reference) is called in SV a virtual
interface. When you declare the latter, you specify that the variable of that
type will hold a reference to the interface and not the interface itself. This
way, we can assign to a virtual interface an interface instance, passed as
an argument, in a subroutine. This is not possible without virtual interfaces.
For an example see Code 3.13.

� �
1 module virtual_interfaces_example
2 ...
3 interface my_if;
4 ...
5 endinterface
6 ...
7 class my_class;
8 ...
9 //declaring a virtual interface (works like an interface reference)

10 //initialized to null
11 virtual interface my_if bus;
12 ...
13 function new(virtual interface my_if if_inst);
14 ...
15 //this assignment would have not been possible
16 //cannot assign to an interface variable another interface variable
17 bus = if_inst;
18 ...
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19 endfunction
20 endclass
21 ...
22 //interface instance
23 my_if bus();
24

25 //the interface instance is passed to the class instance
26 //now the object has access to the interface instance
27 my_class my_object = new(.if_inst(bus));
28 ...
29 endmodule : virtual_interfaces_example� �

Code 3.13: SystemVerilog Virtual Interface Examples

3.7 Clocking Blocks

Unlike VHDL, Verilog can have race conditions between its clock and data sig-
nals. SystemVerilog introduces a mechanism to prevent this from happening and
to allow the user to model signal skews during simulation/verification. This mech-
anism is the clocking block which, always from the perspective of a testbench
that drives a DUT, can define a delay on the outgoing signals with respect to a
reference signal (usually the clock). Furthermore, clocking blocks allow the user
to define a set delay for testbench response sampling. That is, given a testbench
that samples the DUT output at specific events (e.g. positive edges of the clock)
we can specify that the signal should be sampled a fixed amount of time before
that event.45 clocking blocks can be defined in modules or interfaces. They
defined the clocking event to which all the signals in the clocking block will be
synchronized, the signals that must be synchronized, with their directions and
the input and output delays.46 Delays can be specified for individual signals or
for all the outgoing and incoming signals. These two types of delay specifications
can be mixed with individual delays (delay on single signals) having precedence
over group delays (delays on all the input signals and output signals). For an

45This means that the sampled signal can change between sampling and the triggering event.
For example, suppose we sample the DUT on each positive edge of the clock and that this
sampling is done 10% of the clock period before the positive edge. We sample the signal after
90% of the clock period has elapsed but in the remaining 10%, before the next positive edge of
the clock, the sampled signal could have changed.

46Note that a clocking block does not define new nets or variables but only declares the
ones that need to be synchronized to the clocking event. On top of that, it specifies whether
the signal should be considered as going from the testbench to the DUT (output signals) or
coming from the DUT to the testbench (input signals)
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example see Code 3.14. When driving or sampling signals defined in a clocking
block, you can synchronize to events. For example, you could wait for the clock-
ing event before interacting with the signals defined in the clocking block as
in Code 3.14. Driving clocking block signals should always be done with non-
blocking assignments. Furthermore, try to avoid mixing driving signals both with
clocking blocks and without them.

� �
1 module clocking_blocks_example
2 ...
3 logic clk;
4 logic a, b, c, d, e, f, g, h, i;
5 ...
6

7 //note that the clocking block does not reference signals h and i
8 //these signals are not part of the clocking block
9 clocking my_cb @(posedge clk);

10 //specifies default delays for inputs and outputs
11 //inputs will be sampled 1ns before the rising edge of the clock
12 //outputs will be driven to the DUT 2ns after the rising edge of the clock
13 default input #1ns output #2ns;
14

15 //the default 1ns delay will be applied to a and b
16 input a, b;
17

18 //a delay of 3ns will be applied to c
19 input #3ns c;
20

21 //the default 2ns delay will be applied to d and e
22 output d, e;
23

24 //a delay of 1ns will be applied to f
25 output #1ns f;
26

27 //same as:
28 //input g;
29 //output g;
30 //the default 1ns delay will be applied when sampling g
31 //the default 2ns delay will be applied when driving g
32 inout g;
33 endclocking : my_cb
34 ...
35



68 Chapter 3. SystemVerilog

36 //synchronize the following statements to the clocking event
37 @(my_cb);
38

39 //drive the signal through the clocking block
40 my_cb.a <= 1’b1;
41

42 //sample the signal through the clocking block
43 h <= my_cb.d;
44 ...
45 endmodule : clocking_blocks_example� �

Code 3.14: SystemVerilog Clocking Block Examples

You can define multiple clocking blocks in the same module or interface
to model different delays, group different signal or, for example, synchronize to
different signals (e.g. clocking blocks that have different clock signals as their
clocking event). One, and only one, of these clocking blocks can be defined as
the default (see how in Code 3.15). Default clocking blocks allow you to work
cycle delays, see how in the literature.

� �
1 module default_clocking_blocks_example
2 ...
3 logic clk1, clk2;
4 ...
5 clocking my_cb1 @(posedge clk1);
6 ...
7 endclocking
8

9 clocking my_cb2 @(posedge clk2);
10 ...
11 endclocking
12

13 //specifying that my_cb2 is the default clocking
14 default clocking my_cb2;
15 ...
16 endmodule : default_clocking_blocks_example� �

Code 3.15: SystemVerilog Default Clocking Block Examples
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3.8 Randomized Stimulus

Verifying a design often involves sending stimulus to the DUT and checking the
response to make sure that we obtained the desired behaviour. There are different
strategies for generating stimulus. One of the simplest involves looping through
the possible inputs in a predefined way (e.g. writing loops that iterate over all the
inputs). This strategy might cover all possible inputs, however, it has a significant
drawback. Since the stimulus was generated by iterating over the possible inputs
an a deterministic way, with each input combination being generated only once,
we have covered very few state transitions. For example, consider a module that
takes in input two 8-bit numbers and returns their sum. We might stimulate
this module by writing an external loop that iterates over all the possible 8-bit
numbers and an internal loop that does the same. The generated stimulus will
then be the sequence: (00, 00), (00, 01), . . . , (00, FF ), (01, 00), . . . , (01, FF ), . . ..
Even though with this sequence we might cover all the possible pairs of two 8-bit
numbers, we will never see, for example, the input sequence (00, 00), (FF, FF ).
Writing directed tests that cover all the possible state transitions is much more
involved. Furthermore, the number of transitions grows exponentially (or even
worse) with the number of possible inputs.

Constrained random verification (CRV) keeps in mind these limitations of
writing directed tests and tries to improve the verification process. The aim is
that of allowing verification of as many state transitions as possible, with the
minimal amount of code needed. The idea is generating stimulus in a pseudo-
random way that conform to some user specified constrains. The latter are used
to make sure that the stimulus is legal and respects the verification needs. Since
the state transitions are random with this approach, we are likely to see many
state transitions that were not included in the directed tests.

3.8.1 Randomizing Variables

The first tool used in CRV is randomization of variables. This is done with the
randomize() system function. This function takes in input a list of variables
and randomizes them according to the constraints. If the constraints do not
contradict each other and randomization was successful, the function returns 1,
0 otherwise. See an example below (Code 3.16). You can specify the random
number generator’s seed using the process::self.srandom() method. Addi-
tionally, the random seed can be set from the command line argument with the



70 Chapter 3. SystemVerilog

+svseed=SEED, where SEED is a positive integer number.
We can add constraints to randomization in various ways. The simplest

one is by specifying the constraints directly after the randomize() call. This
can be done using the with clause followed by brackets ({}) that contain the
constraints. Constraints are semicolon (;) separated. They can be relational ex-
pressions (e.g. a >= b;), contain value ranges using the inside keyword (e.g. a
inside {[0:100]};) or define distributions over the possible values. The latter
is achieved by using the dist keyword. This keyword can be thought of as an
extension of inside that also allows the user to specify the weight of each element
that can be selected. The probability of an element to be selected is then equal
to its weight divided by the sum of the weights of all selectable elements (e.g.
a dist {[0:50]:=2, [51:100]:=1}; has probability of generating 0 equal to
2/(2*51 + 1*50), while the probability of generating 100 is 1/(2*51 + 1*50)).47

Last, I will mention that it is also possible to use if-else constructs when defin-
ing constraints. For a clarifying example of the above discussion see Code 3.16.
You can find out more about writing constraints in the literature.

� �
1 module randomizing_variables_example
2 ...
3 typedef enum bit[1:0] {IDLE, START, S1, S2} fsm_state_e;
4 logic [15:0] data;
5 fsm_state_e state;
6 int ok;
7 ...
8 //set random seed to 1
9 process::self.srandom(1);

10

11 //if randomization fails report it
12 if (!randomize(data, state))
13 $display("randomization failed");
14 ...
15 //constraints that use relational expressions
16 ok = randomize(data) with {data >= 100;};
17 ...
18 //constraints that use ranges
19 ok = randomize(data) with {data inside {[100:130], 135, [140:170]};};
20 ...
21 //constraints that use dist

47Note that if you specify all the weights to be 1 you will obtain the same result you would
with inside.
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22 ok = randomize(data) with {data dist {[100:130]:=5, 135:= 15,
[145:170]:=3};};

23 ...
24 //constraints that use if-else
25 ok = randomize(data) with {if (state == IDLE) data <=200;
26 else if (state == START) data >= 200;};
27 ...
28 //combination of different constraints
29 ok = randomize(data) with {if (state == S1) {data >= 64; data <= 128;}
30 else if (state == S2) data dist {[0:10]:=1,

[20:30]:=2};};
31 ...
32 endmodule : randomizing_variables_example� �

Code 3.16: SystemVerilog Variable Randomization Examples

3.8.2 Randomizing Properties

For class-based verification, that is verification where both the testbench as
well as the stimulus is represented through classes, it is important to be able to
randomize class properties, in particular data. SystemVerilog has mechanisms
specifically dedicated to that. Integral data items in classes can be declared rand
or randc. Then, using the familiar randomize() function we can randomize all
the properties that include these keywords. rand variables can be randomized to
any legal value (picked uniformly at random). randc variables are obtained by
cycling through the possible values in a random order, a specific value can appear
only once per cycle. In other words, if a randc variable has been randomized to
a specific value, that value can only be seen again once all the other legal values
have been seen.

When you call the randomize() function two additional void functions
are implicitly called. pre_randomize() just before the randomize() call and
post_randomize() just after. By default these functions do not perform any ac-
tion, but you can overwrite them (an only them, you cannot overwrite randomize())
inside the class to obtain some desired behaviour.

If you have an aggregate class, randomization will not propagate to the con-
tained class instances.48 To make the randomizable data items of the contained
class instances react to randomize() you must declare the contained class

48As a reminder, an aggregate class is a class that contains other class objects as data
items.
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instance rand. See an example below (Code 3.17).
If you want to only randomize a subset of the randomizable data items of an

object, pass those data items as arguments to the randomize() function call.
Last, it useful to know that it is possible to enable/disable randomization

for individual class data items. This is done with the rand_mode() subroutine.
The task version of this subroutine expects as argument either a 1 (indicat-
ing that randomization should be enable) or a 0 (indicating that randomization
should be disabled). The function version does not expect any argument and
instead returns an int indicating the randomization status. This subroutine can
be called on the entire object or on single data items. For a clarifying example
see Code 3.17.

� �
1 module randomizing_properties_example
2 ...
3 class my_class_a;
4 rand bit [7:0] var1;
5 bit [7:0] var2;
6 endclass
7

8 class my_class_b;
9 //will not be randomized

10 int a;
11

12 //will be randomized
13 rand int b;
14

15 //will be randomized
16 //with each value appearing exactly once per randomization cycle
17 randc int c;
18

19 //without including the rand keyword the var1 variable of obj
20 //would not be randomized by the randomize() call
21 rand my_class_a obj;
22 ...
23 //after randomization, make sure that a is always equal to b+c
24 function void post_randomize()
25 a = b+c;
26 endfunction
27 ...
28 endclass
29 ...
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30 my_class_b my_object = new();
31 ...
32 //disables randomization for the variable c
33 my_object.c.rand_mode(0);
34

35 //enables randomization for all the variables (will affect only c)
36 my_object.rand_mode(1);
37

38 //check if c can be randomized
39 int status = my_object.c.rand_mode();
40 if (status)
41 $display("c can be randomized");
42 ...
43 //will randomize var1, b and c
44 if (!my_object.randomize())
45 $display("randomization failed");
46

47 //will only randomize b
48 if (my_object.randomize(b))
49 $display("randomization failed");
50 ...
51 endmodule : randomizing_properties_example� �

Code 3.17: SystemVerilog Class Randomization Examples

3.8.3 Constraint Blocks

Until now we only have see how to apply constraints to variable randomization.
We still need to discuss how constraints are declared when randomizing class
instances. This is done by declaring constraint blocks inside the class. These
contain semicolon separated constraint defined as described previously. For an
example of the syntax see Code 3.18. constraint blocks are inherited and can
be overwritten, just like methods. You can also enable/disable constraints us-
ing the constraint_mode() subroutine the same way you use rand_mode() for
randomizable data items.

It is important to understand how randomization and constraints work. When
you call randomize(), all the randc data items are randomized simultaneously.
Then, all the rand data items are also randomized simultaneously. At this point
the randomized data items are checked to see if all constraints are respected.
If that is the case, randomization succeeds and return. Otherwise, a new set of
value is randomly generated in the same way and checked against the constraints.
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This continues until either a valid random combination is found (success) or the
randomization space has been exhausted (randomization failure). Upon random-
ization failure a warning message will be generated. If randomization fails, even
for one variable, all variables are not changed. What this randomization process
implies is that there is no order in which random variables of the same type (i.e.
randc or rand) are generated. All of them are generated simultaneously. So,
if we have a desired order in which data items should be randomized, as in the
case where one variable depends on another, we need to explicitly indicate that.
This is done by including in the constraint block a statement that indicates
a precedence. This statement is solve VAR1 before VAR2; and indicates that
VAR1 should be randomized before VAR2. See Code 3.18 for an example. More
details can be found in the literature.

� �
1 module constraint_blocks_example
2 ...
3 class my_class;
4 rand bit [1:0] a;
5 rand bit [1:0] b;
6

7 //constraint block
8 constraint ab_diff {a != b;}
9

10 //constraint block
11 constraint const_1 {a > 2’b10; b > 2’b01;}
12

13 //a will be >= 2’b10 1/8 of the time
14 //since only 2/16 possible combinations of a and b satisfy the constraint
15 //a=00,b=00 | a=00,b=01 | a=00,b=10 | a=00,b=11 | -> invalid
16 //a=01,b=00 | a=01,b=01 | a=01,b=10 | a=01,b=11 | -> invalid
17 //a=10,b=00 -> valid
18 //a=10,b=01 | a=10,b=10 | a=10,b=11 | -> invalid
19 //a=11,b=00 -> valid
20 //a=11,b=01 | a=11,b=10 | a=11,b=11 | -> invalid
21 constraint const_bug {if (a >= 2’b10) b = 2’b00;}
22

23 //a will be >= 2’b10 1/2 of the time
24 //since a is randomized before b
25 constraint const_fix {if (a >= 2’b10) b = 2’b00; solve a before b;}
26 ...
27 endclass
28 ...
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29 my_class my_object = new();
30

31 //disable the const_1 and const_bug constraints
32 my_object.const_1.constraint_mode(0);
33 my_object.const_bug.constraint_mode(0);
34

35 //the randomized values will respect the ab_diff and const_fix constraints
36 void’(my_object.randomize());
37 ...
38 endmodule : constraint_blocks_example� �

Code 3.18: SystemVerilog Constraint Block Examples

3.9 Coverage

In CRV stimulus is not directly specified by the verification engineer. Instead,
it is randomly generated according to some constraints. Since test are random-
ized, we need a way of checking whether the generated stimulus verifies some
functionality of the circuit. The number of features verified by the stimulus is
called functional coverage. In directed test there was no need for features that
support it since the checked functionality was implicit in the test. In random-
ized tests we might have certain runs that verify some specific functionality and
others that do not. Coverage is an extensive topic, here I present some basics of
data-oriented functional coverage. For a more exhaustive dive into SystemVerilog
coverage consult, for example, [14].

3.9.1 The Basic Constructs

The basic building block of functional coverage is the covergroup block. The
latter can identify a sampling event, which specifies the instance when coverage
should be updated, and a list of coverpoints, which are signals to be tracked. A
covergroup is enclosed in the covergroup-endgroup delimiters and is an object-
like construct. You can define it in modules, classes, interfaces, etc. Once you
declared a covergroup, you need to instantiate it. This is done similarly to
objects by calling the new() function. As stated before, covergroups contain
coverpoints. These are expressions that can optionally contain a condition that
guards their sampling. Each coverpoint has a number of associated bins, which
are counters for subsets of the values the expression can take. By default, if
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you specify a coverpoint without specifying the associated bins, one bin will
be generated for each possible value of the expression.49 If the user manually
defines the bins, the default ones will not be generated. See an example of these
constructs below (Code 3.19). Each time the sampling event occurs, the values
of the coverpoints are checked. If there is a bin that contains that value it is
incremented. In the end, we can check the count for each bin.

It is also possible, as shown below (Code 3.19), to define more complex bins.
illegal_bins defines the values that are illegal for the expression. ignore_bins
defines the values that should be ignored. Illegal bins have precedence over ig-
nored bins. This means that, if a value is part of illegal_bins, it will not be
ignored even if it is also part of ignore_bins. You can also define vector bins.
These can be of constrained or unconstrained sizes. Vector bins of unconstrained
size will generate a separate bin for each unique value. Those of constrained size
will generated a number of bins equal to the specified size and populated them
with the values that you indicate (duplicates will be retained).50 Last, if you de-
fine a bin as default, all the values not part of other bins will be part of that bin.

� �
1 module coverage_constructs_example
2 ...
3 logic clk,
4 logic [8:0] var1;
5 logic [15:0] var2;
6

7 //definition of a covergroup named my_cove_g
8 //the coverpoints will be sampled at each rising edge of the clk,
9 //which is the sampling event

10 covergroup my_cov_g @(posedge clk);
11 //coverpoint for var1,
12 //indicates that the expression (signal) should be tracked by coverage
13 //a default bin generated for each of the possible 256 values of var1
14 va1_cp: coverpoint var1;
15

16 //a more complex coverpoint
17 //the expression to be tracked is var1+var2
18 //this expression should be sampled only if the guarding condition (var1 >

0 && var2 > 0) is met
19 sum_cp: coverpoint (var1+var2) iff (var1 > 0 && var2 > 0){
20 //this bin will be hit if var1+var2 is equal to 0 or 1 or ... or 64 or

49The number of individual bins for each value has a limit. It can be changed by the user.
50To see how duplicates, illegal and ignored values are removed from bins see the literature.
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128
21 bins low = {[0:64], 128};
22

23 //this bin will be hit if var1+var2 is equal to 129 or 130 or ... up to
the maximum possible value

24 bins high = {[129:$]};
25

26 //note that since no bin contains the values 65, 66, ..., 127
27 //these values will be ignored
28 }
29

30 //a coverpoint that illustrates some of the possible bins
31 var2_cp: coverpoint var2{
32 //a single bin that contains values 0, 1, ..., 10
33 bins b1 = {[0:10]};
34

35 //vector bins of unconstrained size
36 //a different bin for each value 20, 21, ..., 30
37 bins b2[] = {[20:30]};
38

39 //vector bins of constrained size
40 //6 different bins
41 //first contains 30 and 31, second contains 32 and 33, ..., sixth

contains 39 and 40
42 bins b3[6] = {[40:50]};
43

44 //a single bin that specifies the illegal values
45 illegal_bins b4 = {0, 20, 40};
46

47 //a single bin that specifies the values to be ignored
48 ignore_bins b5 = {10, 30, 50};
49

50 //a single bin containing all the other values
51 bins b6 = default;
52 }
53 endgroup : my_cov_g
54

55 //instantiating a covergroup
56 //each time the sampling event occurs for this covergroup
57 //the values of the tracked expressions will be checked
58 //if they match any bins, those will be incremented
59 my_cov_g cov_inst = new();
60 ...
61 endmodule : coverage_constructs_example
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� �
Code 3.19: SystemVerilog Coverage Constructs Examples

You can also have even more complex bins. Ones that keep track of the
intersection of other bins. These are called cover crosses. You can also have
bins that do not keep track of the specific values an expression has taken, rather,
of the transition between values that expression takes. Once the reader has
familiarized with the simple coverage bins presented here, it is suggested to
consult the literature to find out more about these more advanced constructs.

3.9.2 covergroups in Classes and covergroup Methods and
Options

As stated previously, it is also possible to define covergroups in classes. This
way we can define the coverage model for that specific class. The syntax for
this type of covergroup is slightly different from what we have seen the previ-
ous example (Code 3.19). In particular, each declaration creates an anonymous
covergroup instance. This instance has access to all the variables of that class,
even the local and protected ones.

You can also call methods on covergroups, coverpoints or bins that per-
form some specific action. Those can, for example, specify that a covergroup
should be sampled at this moment of time or that the count of certain bins
should be returned. covergroups, coverpoints and bins are also parameter-
ized. These parameters are called options and can specify, for example, the name
or relative weight of bins. The user can modify the options to customize the cov-
erage constructs. For an exhaustive list of all the options and methods consult
the literature. For an example of covergroups in classes and the use of options
and methods see Code 3.20.

� �
1 module coverage_in_classes_example
2 ...
3 class my_class;
4 logic [7:0] var1;
5 logic [15:0] var2;
6 ...
7 //anonymous covergroup instance
8 covergroup my_cg;
9 var1_cp: coverpoint var1;
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10 var2_cp: coverpoint var2{
11 bins b1 = {[0:10], 12};
12 bins b2[] = {[20:30], 32};
13 }
14 endgroup
15 ...
16 function new()
17 //note that when we instantiate the covergroup we do not specify the

name since it is anonymous
18 //as a consequence only one instance can exist per covergroup type
19 my_cg = new();
20 endfunction
21 endclass
22 ...
23 my_class my_object = new();
24 ...
25 //option that specifies that the weight of the b1 bin should be 12 (the

other bins have weight 1, which is the default)
26 my_object.my_cg.b1.option.weight = 12;
27

28 //method that indicates that the covergroup should be sampled at this
instance

29 my_object.my_cg.sample();
30

31 //display the coverage that is obtained by calling the get_inst_coverage()
method

32 $display("my_cg coverage: %0.2f %%", my_object.my_cg.get_inst_coverage());
33 endmodule : coverage_in_classes_example� �

Code 3.20: SystemVerilog Coverage Constructs with Classes Examples

3.10 Assertions

An important language tool are assertions, especially for verification engineers.
These constructs are usually ignored by the synthesis tool and, if used systemat-
ically and with care, can be the basis for a verification strategy. This approach
to verification is called Assertion-Based Verification (ABV). There are different
types of assertions that fulfill some specific purposes. The basic idea of assertions
is simple: evaluate a condition, if it is true pass, otherwise fail. Usually we are
interested in fails as they might indicate an error in our design. In its most basic
form an assertion is similar to an if-else statement. Assertions are another



80 Chapter 3. SystemVerilog

extensive topic that requires some time and effort. Here I will be presenting the
basics. For a more in depth coverage consult [15] [14].

3.10.1 Immediate Assertions

The simplest kind of assertion is the immediate assertion. The latter evaluates
a boolean expression. The assertion passes if the expression evaluates to 1 and
fails for any other value (0, X, Z). Each time an assertion fails and error message
is generated. Labeling your assertions with meaningful names is highly recom-
mended as upon failure the error message will contain the assertion label. With
carefully chosen names debugging and error comprehension can be much easier.
If you do not specify assertion labels default one will be generated and are usually
harder to understand.

You can specify actions to be executed on assertion pass and/or fail (usually
only fails are of interest). The syntax for doing so is very similar to that of an
if-else statement but uses the assert keyword. See Code 3.21 for an exam-
ple. The set of statements that is executed upon pass or fail is called an action
block. The latter has access to the assertion label via the %m format specifier.51

If you need to print something in the action block of an assertion fail do not use
the $display() subroutine. Instead, use $info(), $warning(), $error() and
$fatal(). These follow the same syntax as $display() but also allow you to
specify the severity level of the fail. If severity level is fatal the simulation will
be terminated. Note that the printed message will follow the error message of
the assertion fail and not overwrite it.

� �
1 module immediate_assertions_example
2 ...
3 logic en_low, en_high;
4 ...
5

6 //immediate assertion labeled BOTH_EN_NOT_ON
7 BOTH_EN_NOT_ON: assert (!(en_low && en_high)) begin
8 $display("%m passed"); //executed upon pass
9 end else begin

10 $error("assertion failed"); //executed upon fail
11 end
12 ...

51Note that upon failure the assertion label will be printed automatically so %m is primarily
useful in the action block of the pass.
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13 endmodule : immediate_assertions_example� �
Code 3.21: SystemVerilog Immediate Assertion Examples

3.10.2 Concurrent Assertions

Often we need to monitor behaviour that spans multiple clock cycles. With the
immediate assertions we have just seen we cannot achieve this. Luckily, SV has
another type of assertions that allows us to do just that. This type of assertions
are called concurrent assertions. They verify a property, which is composed of
a temporal condition and a boolean expression. The temporal condition specifies
the event that triggers the evaluation of the boolean expression. This expression
can span multiple clock cycles. It can also be any single cycle expression usable
as the condition of an if-else statement. Later we will see how to specify
expressions that span over time. The property is specified, usually in a module
or interface, with the property-endproperty block and can be labeled. See
an example below (Code 3.22). To then assert the property we must use the
assert keyword in conjunction with the property keyword as in the example of
Code 3.22. It is important to remember to label your assertions.

Let’s now see some constructs for defining expressions that are evaluated
over time. I will present them first and then we will go over their meaning. The
constructs are:

• expr1 ##N expr2 : cycle delay.

• expr[*N] : repeat.

• expr[*n:N] : range repeat.

• expr1 |-> expr2 : same cycle implication.

• expr1 |=> expr2 : next cycle implication.

The cycle delay expr1 ##N expr2 specifies that expr1 should be evaluated,
then, after N (with N ∈ N) clock cycles, expr2 should also be evaluated. This
sequence passes when both evaluations pass, and fails in any other case. expr1
##0 expr2 is also legal and indicates that the two conditions should be evaluated
in the same clock cycle.

expr[*N] is equivalent to evaluating N (with N ∈ N) times expr, with a cycle
delay of one between each evaluation. For example, expr[*3] is equivalent to
expr ##1 expr ##1 expr.
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expr[*n:N] (with n, N ∈ N) is equivalent to ∪N
i=nexpr[*i]. For example,

expr[*1:3] will pass if either expr, expr ##1 expr or expr ##1 expr ##1
expr passes. In other words, this expression indicates that we expect a sequence
composed of a minimum of 1 to a maximum of 3 exprs. It is also possible to
specify n as 0, indicating that the sequence may never occur.

expr1 |-> expr2 indicates that if expr1 is true, then expr2 must also be
true in the same clock cycle. expr1 |-> expr2 will pass if either expr1 is false,
or both expr1 and expr2 are true in the same clock cycle.

expr1 |=> expr2 indicates that if expr1 is true, then expr2 must also be
true in the next clock cycle.

Below (Code 3.22) you can see examples of properties that use the constructs
presented above to define expressions that span multiple clock cycles.

� �
1 module concurrent_assertions_example
2 ...
3 logic clk, en, rst;
4 logic a, b, c;
5 ...
6 //definition of a simple property named MY_PROPERTY
7 //the event that will trigger the evaluation of the assertion is the posedge

of clk
8 //the expression that is evaluated is that en and rst should not be both 1
9 //note that this is not an expression that spans multiple clock cycles

10 property MY_PROPERTY;
11 @(posedge clk) !(en && rst);
12 endproperty
13

14 //asserting MY_PROPERTY
15 MY_ASSERTION: assert property (MY_PROPERTY);
16 ...
17 //this is a more complex assertion that uses sequences, let’s break it down
18 //the assertion will be evaluated at the posedge of the clk, but only if en

is 1
19 //if during the assertion evaluation rst is 1, the assertion will not be

evaluated and any sequence that was in the process of evaluation will be
aborted

20 //the sequence that needs to be asserted is:
21 //if c is 1 than in the next clock cycle a should be 1 and after two

additional clock cycle we expect b to be 1 for between 0 to 5 clock cycles
22 //once the sequence of b=1’s finishes, if the sequence up to this point is

correct, after 5 additional clock cycles c should be 1 for 2 clock cycles
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23 property MY_PROPERTY_2;
24 @(posedge clk iff (en)) disable iff (rst)
25 c |=> a ##2 b[*0:5] |-> ##5 c[*2];
26 endproperty
27

28 MY_ASSERTION2: assert property (MY_PROPERTY_2)
29 ...
30 endmodule : concurrent_assertions_example� �

Code 3.22: SystemVerilog Concurrent Assertion Examples

3.11 Threads and Interprocess Synchronization

SystemVerilog introduces several modifications to enhance Verilog’s support and
capabilities for multi-threaded programming. First, it introduces two new con-
structs that team up with fork-join in defining concurrent blocks. These are
fork-join_any and fork-join_none. As a reminder, when a fork-join block is
encountered, the main execution flow is split with each statement of the block be-
ing executed concurrently. When all the statements are executed, the main execu-
tion thread is resumed from the join statement onward. With fork-join_none
the main execution thread does not wait for all the statements within the con-
current block to be executed. It continues its execution concurrently with all
forked threads as if they had not been spun off. A fork-join_any block, on
the other hand, does stop the execution flow of the main thread. However, the
flow is stopped not until all the statement in the concurrent block are executed
(as in the case of a fork-join), but until any of the concurrent statements has
finished. Once this has happened, the main execution thread resumes running
(concurrently with the remaining threads of the fork-join_any).

Since now the main thread that spun off the concurrent block’s sub-threads
can run concurrently with them, we need a way of synchronizing the main thread
and its sub-threads. This is done in SV with two statements: wait fork and
disable fork. Upon encountering the former, the main thread stops execution
until all of its sub-threads have executed and then resumes. Upon encountering
the latter, the main thread kills all of its sub-threads and resumes execution.52

For an example see Code 3.23.
52You can also disable a single sub-thread and not all of them. To do so, give the statement

you want to disable a label (say LABEL), then, use disable LABEL; instead of disable fork;
to kill only the sub-thread associated with that label.
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� �
1 module concurrent_blocks_example
2 ...
3 $display("main thread 1: executing");
4 fork
5 $display("main thread 2 = sub-thread 1 of main thread 1: executing");
6 $display("main thread 3 = sub-thread 2 of main thread 1: executing");
7 begin : sub_3
8 $display("main thread 4 = sub-thread 3 of main thread 1: executing");
9 end

10 join_any
11

12 //once any of the 3 sub-threads finishes main thread 1 resumes from here
13 //2 sub-threads still running concurrently with main thread 1
14 $display("main thread 1: executing");
15

16 //kill sub-thread 3 (if it was not the first sub-thread to finish executing)
17 disable sub_3;
18

19 //main thread 1 could be running concurrently with 0, 1 or 2 of its sub-
threads

20 $display("main thread 1: executing");
21

22 //wait for the remaining sub-threads to finish
23 wait fork;
24

25 //main thread 1 is running alone
26 $display("main thread 1: executing");
27 ...
28 endmodule : concurrent_blocks_example� �

Code 3.23: SystemVerilog Concurrent Block Examples

3.11.1 semaphores

SystemVerilog provides a built-in construct for managing inter-processor synchro-
nization, the semaphore. This synchronization mechanism works analogously to
semaphores in other programming languages like Java. It is essentially a container
of tokens, which can be added or removed atomically.53 SV semaphores are an
object-like mechanism that requires declaring a handle of type semaphore and

53An operations is said to be atomic if it cannot be interrupted by other processes, as if it
were executed in the same fetch-decode-execute cycle.
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initializing it with the new(n) constructor. This function expects an argument
n that indicates the semaphore size, if not specified, a default value of 0 will be
used. The other subroutines that are supported by this mechanism are:

• get(n): task that extracts n semaphore tokens. If n is not specified, a
default value of 1 will be used. This task blocks if the specified number of
tokens is not available.

• try_get(n): function that extracts n semaphore tokens. If n is not spec-
ified, a default value of 1 will be used. This function does not block if
the specified number of tokens is not available. Instead, it simply returns 0
without modifying the number of tokens.

• put(n): function that adds n semaphore tokens. If n is not specified a
default value of 1 will be used.

It is the responsibility of the user to make sure that the number of tokens returned
by a process is equal to the number of tokens taken. SV does not perform this
check. For an example of semaphores see Code 3.24.

� �
1 module semaphores_example
2 ...
3 //declaring a semaphore named my_semaphore
4 semaphore my_semaphore;
5 ...
6 //initializing the semaphore with 2 tokens
7 my_semaphore = new(2);
8 ...
9 fork

10 begin : process_1
11 //asking for a token
12 //since there are 2 tokens, only two processes can execute concurrently,

the other will be blocked waiting for a token
13 my_semaphore.get();
14 ...
15 //returning the token
16 my_semaphore.put();
17 end
18 begin : process_2
19 my_semaphore.get();
20 ...
21 my_semaphore.put();
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22 end
23 begin : process_3
24 my_semaphore.get();
25 ...
26 my_semaphore.put();
27 end
28 join
29 ...
30 endmodule : semaphores_example� �

Code 3.24: SystemVerilog Semapthore Examples

3.11.2 mailboxes

Often times we might need a way of synchronously passing messages between
processes in our testbenches. Luckily, we do not need to figure out ourselves how
to best implement a mechanisms that enables us to do that. SV has a build-in
inter-process communication construct, the mailbox. The latter can be seen as
a FIFO that allows us to atomically add, inspect or remove elements from it.
This FIFO can be of a fixed or unlimited size. It can also be specified to accept
operations on a specific data type or on any data type. mailboxes are an object-
like construct that requires declaring a handle of type mailbox and initializing it
with new(n). The constructor expects an argument n that specifies the mailbox
size, if no value is provided, a default value of 0 will be used indicating a mailbox
of unlimited size. The other subroutines supported by this construct are:

• num(): function returning an int indicating the number of messages cur-
rently in the mailbox.

• get(message): task that retrieves the head of the FIFO in the message
argument that is passed as a ref. If the head of the FIFO is not of a type
compatible with message’s type, an error is generated and the message is
not retrieved. Blocks if the mailbox is empty.

• try_get(message): function that retrieves the head of the FIFO in the
message argument that is passed as a ref. Returns an int. If retrieving
was successful the return value is positive. If the head of the FIFO is not
of a type compatible with message’s type, returns a negative value and the
message is not retrieved. Does not block if the mailbox is empty. Instead,
it simply returns 0.



3.11 Threads and Interprocess Synchronization 87

• peek(message): task that copies the head of the FIFO in the message
argument that is passed as a ref. If the head of the FIFO is not of a type
compatible with message’s type, an error is generated and the message is
not copied. Blocks if the mailbox is empty.

• try_peek(message): function that copies the head of the FIFO in the
message argument that is passed as a ref. Returns an int. If retrieving
was successful the return value is positive. If the head of the FIFO is not
of a type compatible with message’s type, returns a negative value and the
message is not copied. Does not block if the mailbox is empty. Instead, it
simply returns 0.

• put(message): task that adds message at the tail of the FIFO. Blocks if
the mailbox is full.54

• try_put(message): function that adds message at the tail of the FIFO.
It does not blocks if the mailbox is full. Instead, it simply returns 0.

mailboxes can be parameterized indicating the type of data that it is allowed to
operate on. The syntax is:

mailbox #(<data_type>) MAILBOX_NAME;

See Code 3.25 for an example of this construct.

� �
1 module mailboxes_example
2 ...
3 int a, b;
4 logic c, d;
5 ...
6 //declaring a mailbox named my_mailbox_1 that can operate on any data type
7 mailbox my_mailbox_1;
8

9 //declaring a mailbox named my_mailbox_2 that can operate only on int data
10 mailbox #(int) my_mailbox_2;
11 ...
12 //initializing my_mailbox_1 to be of unlimited size
13 my_mailbox_1 = new();
14

15 //initializing my_mailbox_2 to be of size 5
16 my_mailbox_2 = new(5);

54Note that for mailboxes of unlimited size this subroutine will never block.
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17 ...
18 fork
19 begin : process_1
20 ...
21 my_mailbox_1.put(c);
22 void’(my_mailbox_2.try_put(a));
23 ...
24 end
25 begin : process_2
26 ...
27 my_mailbox_1.get(d);
28 void’(my_mailbox_2.try_get(b));
29 ...
30 end
31 join
32 ...
33 endmodule : mailboxes_example� �

Code 3.25: SystemVerilog Mailbox Examples

3.12 Further Topics

In this chapter we have see only a quick introduction to SystemVerilog. Many
of the topics presented above can be covered in much more detail. Furthermore,
there are a few major topics that were not covered. In this brief section I would
like to mention some of these topics, inviting the reader to consul the reference
material [13] [12] [14] [15] [4].

• strings.

• events and event triggers.

• randcases.

• packages.

• program blocks.

• interface classes.

• Hierarchy and Connectivity.

• Direct Programming Interface (DPI).
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• SystemVerilog Simulation Cycle and Event Scheduler.

• SystemVerilog Scoping.



90



Chapter 4

Universal Verification
Methodology (UVM)

As time goes on, digital integrated circuits become more and more complex. This
trend can be attributed to a variety of factors. For example: the innovations in
the microelectronics field that enable the famous Moore’s law, the addition of
ever more features to already existing designs, the modern trend of SoCs, and so
on.55 Design complexity drives the verification effort. To keep up with this trend
we need a standardized, flexible and reusable verification methodology. Stan-
dardization allows the almost plug-and-play use of verification IPs. Furthermore,
it eases the concurrent development of verification components by more members
of the verification team. Flexibility helps keep the improvisation in testbenches
to a minimum, while reusability allows for more verification time.

In this chapter I will introduce one of the most recent and widely adopted ver-
ification methodologies, the Universal Verification Methodology (UVM).
UVM supports the Metric-Driven Verification (MDV) paradigm.56 As such, it
provides the necessary code features to define the standard components of a typ-
ical testbench that implements this verification paradigm. In practical terms,
UVM is a SystemVerilog library with a set of standard classes.57 UVM, as the
name suggests, is also a methodology for performing verification that defines stan-

55SoC stands for System-on-Chip (or System-on-a-Chip) and is a design principle consisting
in integrating different components of a system (e.g. CPUs, GPUs, Interfaces and DSPs) on
the same substrate. SoCs often include digital, analog, RF, and mixed-signal functionalities on
the same chip.

56As a reminder, this paradigm involves generating stimulus in a constrained randomized
way and check the DUT output to update the coverage and adapt stimulus generation.

57UVM is also compatible and available for other languages used in verification, such as
SystemC and e. Furthermore, it is possible to develop UVM test environments that use multiple
languages.
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dard constructs and architectures for the different verification components of the
testbench. It is an IEEE standard (IEEE 1800.2) supported by Accellera [16],
which also provides the methodology documentation.

One of the key features of UVM (and not only) is the separation of the data
layer and the testbench infrastructure. These two components of verification
can be developed concurrently and separately. The data layer is represented as
standard data item constructs (as we will see latter, the uvm_sequence_item
class). The testbench infrastructure is typically built using UVM environments
(as we will see latter, the uvm_env class) that contain other environments in
a recursive manner. The leafs of this hierarchical testbench structure are the
environments that implements UVM Verification Components (UVC s). These
represent standard verification IP that, once developed, can be used in a variety
of verification tasks. There are two main types of UVCs: the Interface UVC and
the Module UVC. We will explore these constructs, and their architecture, in the
following sections.

UVM also provides a standard communication protocol, dubbed the Transac-
tion Level Modeling (TLM ) protocol, that we will not be presented in this work.
Last, I will mention that it also supports constructs for modeling memory ele-
ments (UVM Register Modeling), but those will also not be covered here. More in
general, following the pattern outlined up to now, what follows is not an exhaus-
tive coverage of UVM. The scope is introducing the methodology and presenting
some constructs used in, and justifying, the later chapters. For an in-depth guide
to UVM consult, for example, [17]. You can also find plenty of material online.
For example, Accellera’s site [16], Cadence courses [4], or web pages that cover
this topic [18].

4.1 Data Modeling

UVM models the basic blocks of the stimulus we send to the DUT (data items),
via classes that specify that type of data. Each data item is derived (extends)
from a base UVM class (uvm_sequence_item) and contains the data fields that
describe it. Some of these (if not all) might be randomizable (declared with
the rand or randc modifier) to indicate that a random instance of that data
item can have different values for those data fields. We must also add the nec-
essary constraints to ensure that the randomized data is valid and useful for
verification. Since data items are defined as classes, we can extend them using
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inheritance to create multiple data item types with a restricted amount of code.
When we define a new UVM data item, we must include an explicit construc-

tor that takes a string argument specifying the name of the data item instance.
We must also provide as argument default the name of the class that defines that
data item. The constructor implementation must call the parent constructor and
pass it its argument. See Code 4.1 for an example.

Data items defined following UVM (i.e. derived from uvm_sequence_item)
can inherit subroutines to automatically copy, print, compare, etc. those items,
without the need for the user to provide custom code. To enable these subroutines
for specific data fields of the data item, you must explicitly indicate that using
UVM macros. These macros must be wrapped by the `uvm_object_utils_begin
. . . `uvm_object_utils_end pair. Data fields that do not have declared a macron
in this fashion will not be included in these automatically inherited functions.
Thus, remember to always add a macro for each data field. You can also specify
some flags that allow you to customize how these field are used. For example,
you can add the UVM_NOCOMPARE flag to indicate that the data field should not
be used when comparing two data item instances. To see the technical rules of
how to add data fields to these inherited functions, and what flags are available,
see the literature. For an example see Code 4.1.

� �
1 //defining new data item, it extends uvm_sequence_item
2 class my_data_item extends uvm_sequence_item;
3 //data fields, can be randomized
4 rand bit [7:0] var1;
5 rand bit [15:0] var2;
6 ...
7 //constraints to make sure that data is randomized correctly
8 constraint var1_c {var1 > 1; var1 < 250;}
9 constraint var2_c {var2 != var1;}

10 ...
11 //explicit constructor that requires a string name as argument
12 //default value set to the class name
13 function new(string name = "my_data_item");
14 //implementation only requires to call the super constructor and pass it

the name argument
15 super.new(name);
16 endfunction
17 ...
18 //UVM macros to automate copy, compare, print, etc
19 `uvm_object_utils_begin(my_data_item)
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20 `uvm_field_int(var1, UVM_ALL_ON + UVM_BIN)
21 `uvm_field_int(var2, UVM_ALL_ON + UVM_NOCOMPARE)
22 `uvm_object_utils_end
23 ...
24 endclass : my_data_item
25 ...
26 //new data item instances, handle names and constructor string arguments

match
27 my_data_item di_inst = new("di_inst");
28 my_data_item di_inst2 = new("di_inst2");
29 ...
30 //deep copy of di_inst into di_inst2, the name field ("di_inst2") is not

copied
31 di_inst2.copy(di_inst);
32

33 //print the data item instance
34 di_inst.print();
35 ...� �

Code 4.1: SystemVerilog UVM Data Item Examples

4.1.1 Sequences

Single data items are a higher level representations of the bundles of signals
that are sent to the DUT. Often times, however, we want to stimulate the DUT
with a sequence of data items, perhaps representing a complex command (e.g.
memory read) that cannot be represented as a single data item. UVM provides
a mechanism for bundling together a sequence of individual data items. We can
represent this sequence as an object (whose type is derived from uvm_sequence).
Then, each time we instantiate an object of this type, we indicate that specific
sequence of data items. Sequences are usually passed to sequencers (which we
will see later), that send them to the DUT.

When you define a sequence, you must define the body() task that indicates
the sequence of data items that composes it. There are multiple ways of defining
this sequence of data items. Here, I will present the simplest way of doing so.
More complex ways, that allow more control over sequences, can be found in the
literature. The easiest (and most limiting) way of defining a sequence of data
items in the body() is through the use of `uvm_do_with(uvm_sequence_item
seq, constraint const) and `uvm_do(uvm_sequence_item seq). These macros
create the data item, wait until it is needed, randomize it, send it to the sequencer,
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and wait for the sequencer to signal that the data item was sent to the DUT.
`uvm_do_with() also allows the user to specify a set of constraints that will
be imposed when the data item is randomized. An example of a simple sequence
can be found below (Code 4.2).

Sequences are an extensive topic that needs a fair amount of effort to be cov-
ered in any level of detail. The reader is thus invited to consult the literature to
actually learn how to define sequences of data items. This subsection serves only
as an introduction to the topic.

� �
1 //defining a new sequence of data items, it extends uvm_sequence
2 //must also provide as parameter the data item class that will compose the

sequence (in our case my_data_item)
3 class my_sequence extends uvm_sequence #(my_data_item);
4 //utility macro of the uvm_object (uvm_sequence, uvm_sequence_item)
5 `uvm_object_utils(my_sequence)
6

7 //explicit constructor that requires a string name as argument
8 //default value set to the class name
9 function new(string name = "my_sequence");

10 super.new(name);
11 endfunction
12

13 //task that indicates the sequence of data items to be sent to the sequencer
14 virtual task body();
15 //my_data_item req was automatically created when my_sequence was

parametrized
16 //indicating to generate a new data item, randomized with the specified

constraint, as the first element of the sequence
17 `uvm_do_with(req, {var1 == 0;})
18

19 //indicating to generate a new data item, randomized, as the next element
of the sequence

20 `uvm_do(req)
21 endtask
22 ...
23 endclass : my_sequence� �

Code 4.2: SystemVerilog UVM Sequence Examples
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4.2 Simulation Cycle

UVM breaks down simulation into phases. These are executed sequentially. A
phase must be fully completed for the next one to begin. The simulation phase
sequence defined by UVM is:

• build_phase: build testbench components.

• connect_phase: connect testbench components.

• end_of_elaboration_phase: phase after testbench elaboration. Useful,
for example, for printing the testbench topology.

• start_of_simulation_phase: phase right before simulation begins.

• run_phase: run simulation.

• extract_phase: gather information on the final state of the DUT.

• check_phase: check the gathered data.

• report_phase: analyze and report the results.

• final_phase: finish simulation.

The user can specify actions to be performed during any of these phases.58 To
do so, a specific subroutine must be defined and overwritten in the user code.
For example, to define an action to be executed during the connect_phase,
you must declare the function void connect_phase(uvm_phase) and specify
the desired action inside the definition. Similar void functions, that take an
uvm_phase as argument, can be specified for the other phases if one wants to
specify behaviour to be executed during them. There are two exceptions how-
ever. One is for the build_phase and another for the run_phase. function
void build_phase(uvm_phase phase) must call super.build_phase(phase);
as the first statement of its definition. This is to ensure that the testbench is build
top-down in a proper manner. The other exception is that the run_phase is a
task and needs to be defined as such, i.e. task run_phase(uvm_phase phase).
This is the only subroutine that is not executed in zero time. The run_phase
can be further subdivided into 12 sub-phases, find out more in the literature.

Last, I will mention that in order to start the UVM simulation, the user must
call the run_test() subroutine defined in the uvm_pkg::* package.

58It is also possible for the user to define custom phases.
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4.2.1 End of Simulation

UVM has an elegant mechanism for indicating the end of simulation. When
the simulation begins, the simulator tries right away to end it. Individual se-
quences are required to raise objections, that prevent the simulator from ending
the simulation, at the beginning for their execution. The sequences are then
required to drop these objections once their execution has finished. There are
multiple ways of raising and dropping objections. The easiest one is letting
UVM 1.2 automatically handle objections for you. To do so, simply add the
statement set_automatic_phase_objection(1); to the sequence constructor
(new()). For the full list of possibilities consult the literature.

Once all sequences have dropped their objections, the simulation would stop
immediately. You can specify a delay, called drain time, between the last objection
drop and the end of the simulation. This way, you can allow outstanding items to
finish propagating. Once again, there are multiple ways of specifying a drain time,
the easiest one being adding the run_phase() task, containing the following two
statements, to the test that is executed:59

uvm_objection objection = phase.get_objection();

objection.set_drain_time(this, 50ns);

Of course, you can specify a different drain time than the 50ns specified above.

4.3 Interface UVCs

A fundamental testbench component is the interface UVM verification component
(or simply interface UVC). This component is responsible for driving stimulus into
the DUT, capturing both stimulus as well as DUT response, and sending it to
other testbench components (e.g. the scoreboard) for analysis. The interface
UVC can be developed as a verification IP (VIP) and used wherever the specific
communication interface is used.

As was stated previously, in UVM stimulus and testbench are kept sepa-
rate. We have see that data items extend uvm_sequence_item. This implies
that both the constructor and the class macros must follow the rules that we
have discussed in the previous section. For testbench components, on the other
hand, these rules do not apply. This is because the different components of the

59We will see test later in this work.
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testbench are not extended from uvm_sequence_item. Instead, there is a super-
class (the uvm_component) that has its own rules regarding the constructor and
the macros, from which all the testbench components derive. The constructor
and macros rules for these components will be illustrated below (Code 4.3). You
can see that the constructor must be declared with two arguments, one indicat-
ing the name (string name) of the component, and the other the component
(uvm_component parent) that created the current instance. The constructor
must call, as the first statement, the super-class’ constructor (super.new(name,
parent);). Furthermore, there is not need to add the data fields to the utility
macro. A simple `uvm_component_utils(CLASS_NAME) must be declared.

The interface UVC has a standard architecture. A schematic overview of
this architecture can be found below (Figure 4.1). Code examples for each of
the interface UVC components can also be found below (Code 4.3, Code 4.4,
Code 4.5, Code 4.6 and Code 4.7). Some details about the code is provided as
comments but, for the sake of brevity, the full explanation of is not presented.
For more details on how to properly build these components see the literature.

Figure 4.1: Standard Interface UVC Architecture in UVM.

At the top level we have the UVC (extends uvm_env, which itself is derived
from uvm_component). This component instantiates one or more Agents and con-
figures them.

� �
1 //defining an interface UVC, extends uvm_env
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2 class my_interface_uvc extends uvm_env;
3 //declaring the agent of the UVC
4 my_iagent iagent_inst;
5

6 //utility macro of the uvm_component
7 `uvm_component_utils(my_interface_uvc)
8

9 //constructor of the uvm_component
10 function new(string name, uvm_component parent);
11 super.new(name, parent);
12 endfucntion
13

14 //build the agent instance
15 virtual function void build_phase(uvm_phase phase);
16 super.build_phase(phase);
17 iagent_inst = new("iagent_inst", this);
18 endfunction
19 ...
20 endclass : my_interface_uvc� �

Code 4.3: SystemVerilog UVM Interface UVC Examples

4.3.1 Agents

Agents are the next level down the component hierarchy. These components are
obtained by extending the uvm_agent class (which is a sub-class of uvm_component).
Agents can be active, meaning that they can send stimulus to the DUT, or pas-
sive, meaning that they can only monitor the communication channel. They
instantiate, connect and configure the components at the next (last) layer of the
hierarchy.

� �
1 //defining an interface UVC agent, extends uvm_agent
2 class my_iagent extends uvm_agent;
3 //declaring the components of the agent
4 my_monitor mon_inst;
5 my_driver drv_inst;
6 my_sequencer sqr_inst;
7

8 //utility macro of the uvm_component
9 `uvm_component_utils(my_iagent)

10

11 //constructor of the uvm_component
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12 function new(string name, uvm_component parent);
13 super.new(name, parent);
14 endfucntion
15

16 //build the agent components
17 virtual function void build_phase(uvm_phase phase);
18 super.build_phase(phase);
19 mon_inst = new("mon_inst", this);
20

21 //instantiate the driver and sequencer if the agent is not passive
22 //is_active is an inherited enum instance that can be either UVM_ACTIVE or

UVM_PASSIVE
23 if (is_active == UVM_ACTIVE) begin
24 drv_inst = new("drv_inst", this);
25 sqr_inst = new("sqe_inst", this);
26 end
27 endfunction
28

29 virtual function void connect_phase(uvm_phase phase);
30 if (is_active == UVM_ACTIVE) begin
31 //connect is a TLM method that connects a port to an export
32 drv_inst.seq_item_port.connect(sqr_inst.seq_item_export);
33 end
34 endfucntion
35 ...
36 endclass : my_iagent� �

Code 4.4: SystemVerilog UVM Interface UVC Agent Examples

4.3.2 Monitors

At the lowest level of the component hierarchy we have: the monitor, the driver
and the sequencer. The monitor (extends uvm_monitor, which itself is derived
from uvm_component) is responsible for keeping track of the data that goes into
and comes out of the DUT. This data can then be analyzed locally or sent to
other components.

� �
1 //defining an interface UVC monitor, extends uvm_monitor
2 class my_monitor extends uvm_monitor;
3 //utility macro of the uvm_component
4 `uvm_component_utils(my_monitor)
5
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6 //constructor of the uvm_component
7 function new(string name, uvm_component parent);
8 super.new(name, parent);
9 endfucntion

10 ...
11 endclass : my_monitor� �

Code 4.5: SystemVerilog UVM Interface UVC Monitor Examples

4.3.3 Drivers

The driver (extends uvm_driver, which itself is derived from uvm_component)
is responsible for stimulating the DUT.60 The monitor and driver should be com-
pletely independent to allow for both passive and active agents. This component
asks for a data item to be sent to the DUT. This data item is provided at a high
level of abstraction, through a class instance, and must be converted into signals
by the driver.61

� �
1 //defining an interface UVC driver, extends uvm_driver
2 //must also provide as parameter the data item class that will be driven into

the DUT (in our case my_data_item)
3 class my_driver extends uvm_driver #(my_data_item);
4 //utility macro of the uvm_component
5 `uvm_component_utils(my_driver)
6

7 //constructor of the uvm_component
8 function new(string name, uvm_component parent);
9 super.new(name, parent);

10 endfucntion
11

12 //the action performed by the driver during the run phase
13 virtual task run_phase(uvm_phase phase);
14 forever begin
15 //ask the sequencer for the next data item
16 //my_data_item req was automatically created when my_driver was

parametrized
17 seq_item_port.get_next_item(req);

60Sometimes the driver is also referred to as Bus Functional Model (BFM) in the literature.
61In practice the function that translates a high-level representation of the data into the

associated signals in usually implemented inside the virtual interface that connects the interface
UVC and the DUT. This is particularly important for reusability and hardware acceleration.
See details in the literature.
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18

19 //method, likely defined in the virtual interface, to send the data item
to the DUT

20 send_to_dut(req);
21

22 //indicate the sequencer that the data item was driven successfully
23 seq_item_port.item_done();
24 end
25 endtask
26 ...
27 endclass : my_driver� �

Code 4.6: SystemVerilog UVM Interface UVC Driver Examples

4.3.4 Sequencers

The data item is asked from, and provided by, the sequencer (extends uvm_sequencer,
which itself is derived from uvm_component). This component takes valid se-
quences of date items, randomizes them, and sends them to the driver. The
agent is responsible for connecting the driver and the sequencer via a TLM con-
nection. The topic of TLM will not be presented in this work. It suffices to know
that the sequencer has a built-in TLM connection (namely seq_item_export)
and defines some communication method (e.g. get_next_item(), that sends the
next sequence item to the driver, and item_done(), used by the driver to signal
to the sequencer that the data item was driven into the DUT). Analogously, the
driver contains a built-in TLM connection (namely seq_item_export).

� �
1 //defining an interface UVC sequencer, extends uvm_sequencer
2 //must also provide as parameter the data item class that will be sent to the

driver (in our case my_data_item)
3 class my_sequencer extends uvm_sequencer #(my_data_item);
4 //utility macro of the uvm_component
5 `uvm_component_utils(my_sequencer)
6

7 //constructor of the uvm_component
8 function new(string name, uvm_component parent);
9 super.new(name, parent);

10 endfucntion
11 ...
12 endclass : my_sequencer
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� �
Code 4.7: SystemVerilog UVM Interface UVC Sequencer Examples

4.4 Configuration

Sometimes we might need to change the value of certain parameters, for example,
setting the is_passive field of an agent in different tests. We could manually
go through the code and change the desired values. This is however tedious and
error prone. Luckily, UVM provides a mechanism that allows us to change the
values of parameters, from a higher hierarchical level, without having to manually
modify the source code or pass the desired values as method arguments. This
mechanism is the configuration database. It allows you to specify the values that
certain parameters should have upon creation (e.g. whether is_active should be
UVM_ACTIVE or UVM_PASSIVE) and, when the instances are created, the specified
values will be set. The syntax that is used to specify the values of parameters
via this mechanism is:

uvm_config_db#(<type>)::set(uvm_component context,

string instance, string field, T value)

where <type> is the configure property type. For integral values the type is
uvm_bitstream_t. Check the literature for the other types. context is an
uvm_component that is the root from which the rest of the expression will be eval-
uated. instance is a string with the hierarchical name of the object whose pa-
rameter (data field) should be changed. field is the string indicating the name
of the data field that needs to be changed. Last, value specifies the new value the
parameter should have. Its type T must be appropriate for the specific data field
it modifies. As an example, uvm_config_db#(uvm_bitstream_t)::set(this,
"my_tb_inst.my_ivc_inst.iagent_inst", "is_active", UVM_PASSIVE); will
evaluate the hierarchical path my_tb_inst.my_ivc_inst.iagent_inst.is_active
from the context of the current object (this used as context) and set this data
field to UVM_PASSIVE. It is important to know that only the data fields that have
been registered with UVM macros can be modified this way. If the hierarchical
path, or the value type, is not correct, the configuration will be ignored. To check
which configuration have not been used, you can call the check_config_usage()
method during the check_phase.
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These also exist shortcuts for commonly used configuration and type com-
mands. For example, you can use uvm_config_int instead of
uvm_config_db#(uvm_bitstream_t). Find out more in the literature. There
you can also find information on how to specify the parameter name as regular
expressions, allowing you to change multiple parameters with a single configura-
tion statement. There also exist other configuration methods, besides set, and
another configuration statement syntax (though it is deprecated). Once again,
consult the literature to find out more.

4.5 Factory and Type Overrides

Sometimes you might want to change not the value of a specific parameter, but
the type of an object. For example, consider the case where you send the DUT
a specific data item in one test, and want to send another data item, that is
a sub-class of the previous one, in a different test. To do this, you would
have to comb through the code and adapt it to each specific test. In UVM
there is actually no need to do so. There is a mechanism that allows you to
change the types of all the object of a particular type, as well as change the
types of specific objects. This mechanism is the factory enabled type override.
When you create a new object, instead of using the new() constructor, you
can call the factory method <object_type>::type_id::create(string name,
uvm_component parent), where object_type is the class of the object.62 The
factory construct then checks if you have specified a type or instance override
and, if so, the actual type of the object will be set to the user specified one. In
detail, use:

set_type_override_by_type(<source_type>::get_type(),

<target_type>::get_type());

to specify that all the instances of source_type should be created as type
target_type instead. Use:

set_inst_override_by_type(string <instance_name>,

<source_type>::get_type(), <target_type>::get_type());

62Note that, while the new() constructor required a string name and uvm_component
parent for uvm_components, and only a string name for uvm_sequence_items and
uvm_sequences, the factory method create() requires a string name and uvm_component
parent whenever the object is created inside a uvm_component. Otherwise, parent can be
omitted.
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to change the type of instance_name from source_type to target_type upon
creation.63 Then, when you create() the object, the type will be set based
on the specified type override (if you have specified one). Consider the fol-
lowing example: we call set_type_override_by_type(my_agent::get_type(),
my_agent_1::get_type());. Now, instead of calling my_agent agent_inst =
new("agent_inst", this); we call my_agent agent_inst =
my_agent::type_id::create("agent_inst", this);. Thanks to the type over-
ride, the type of agent_inst will actually be my_agent_1 and not my_agent.

Even though in this work, for the sake of simplicity, we use new() to instan-
tiate new objects, this should not be done in actual testbenches. As a general
UVM rule, it is important to use the factory method create() instead of the
new() constructor.64 Furthermore, type overrides work only for types registered
with the factory. These are the inherited UVM types, as well as those you have
included the `uvm_object_utils(), `uvm_component_utils() macros for.

Find out more about this topic, including a different syntax for specifying
overrides and rules for multiple type overrides, in the literature.

4.6 Module UVCs

A coverage model and a checker, that makes sure that the DUT responds to stim-
ulus in the expected way, are fundamental components of our testbench. These
components are usually bundled together is a single testbench entity, the module
UVC. This UVC once again extends uvm_env and can be used wherever the DUT
it was developed for is deployed. Note that, unlike interface UVCs, the module
UVC is much less flexible and reusable since it does not model a particular infor-
mation exchange protocol, but rather, a family of DUT configurations. What we
have discussed for interface UVCs also apply here (e.g. how to declare an UVC
and how to deploy it in the testbench). However, the module UVC is not used
to stimulate the DUT and monitor its response. It is instead connected to the
testbench interface UVCs’ monitors to gather stimulus/response data for elabo-
ration. The module UVC then analyzes the data it has captured and determines
whether the DUT is working properly and updates the coverage progress. The
key element of the module UVC is the scoreboard as it implements these func-
tionalities. Scoreboards separate and group together interface UVCs that need

63instance_name can also be a regular expression, allowing you to override multiple objects
with a single statement.

64This is not always true (e.g. for TLM connections), see more details in the literature.
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to be elaborated concurrently. In Figure 4.2 you can see the typical architecture
of a module UVC. You can also find a code example below (Code 4.8).

Figure 4.2: Standard Module UVC Architecture in UVM.

� �
1 //defining a module UVC, extends uvm_env
2 class my_module_uvc extends uvm_env;
3 //declaring the scoreboard of the UVC
4 my_scoreboard sb_inst;
5

6 //utility macro of the uvm_component
7 `uvm_component_utils(my_module_uvc)
8

9 //constructor of the uvm_component
10 function new(string name, uvm_component parent);
11 super.new(name, parent);
12 endfucntion
13

14 //build the scoreboard instance
15 virtual function void build_phase(uvm_phase phase);
16 super.build_phase(phase);
17 sb_inst = new("sb_inst", this);
18 endfunction
19 ...
20 endclass : my_module_uvc� �

Code 4.8: SystemVerilog UVM Module UVC Examples
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4.6.1 Scoreboards

Besides the coverage model, that can be scoreboard or module UVC specific,
a typical scoreboard has three components: a reference model, a storage and
an equivalence checker. The reference model describes the desired input-output
behaviour of our DUT. It is usually developed in SystemVerilog, C or SystemC.
The storage is needed to maintain the data that is to be processed. Last, the
equivalence checker compares the DUT and reference model outputs and acts
accordingly. Developing any of these three requires some thought and effort, as
such, a further discussion on these topics is beyond this introduction to UVM.65

Scoreboards are extended from uvm_scoreboard and require some specific
code to setup their communication channel with interface UVC monitors.66 The
basic scoreboard must declare and instantiate an uvm_analysis_imp and de-
fine the associated write() function that specifies how to monitor should send
data to the scoreboard. You must also modify the monitors to enable them to
communicate with scoreboards. The basic modification consists in declaring and
instantiating an uvm_analysis_port. Code 4.9 and Code 4.10 show how to do
so for scoreboards and monitors respectively. The examples presented below are
very basic and only indicate how to connect a monitor to a scoreboard. It is also
possible to establish more complex connections (e.g. multiple monitors to one
scoreboard). To see how, consult the literature as it is not an obvious extension
of what we have seen here.

Last, I will mention that once the interface and module UVCs have been prop-
erly developed, we must connect the monitor uvm_analysis_port to the score-
board uvm_analysis_imp. This is done in the testbench during the connect_phase
as shown in Code 4.11.

� �
1 //definition of a scoreboard, extends uvm_scoreboard
2 module my_scoreboard extends uvm_scoreboard;
3 //utility macro of the uvm_component
4 `uvm_component_utils(my_test)
5

6 //declaring an uvm_analysis_imp named ap_in
7 //it is parametrized with the data item (my_data_item) and the scoreboard (

65For example, you will find information on how UVM helps you implement the equivalence
checker thanks to a build-in uvm_comparer and its associated methods. Or, the need for cloning
data items passed to the scoreboard.

66The communication channel is established according to the TLM protocol, which is not
covered in this work.
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my_scoreboard)
8 uvm_analysis_imp #(my_data_item, my_scoreboard) ap_in;
9

10 //constructor of the uvm_component
11 function new(string name, uvm_component parent);
12 super.new(name, parent);
13

14 //instantiating the uvm_analysis_imp
15 ap_in = new("ap_in", this);
16 endfucntion
17

18 //specifies how the monitor should send data to the scoreboard
19 function void write(input my_data_item d_item);
20 ...
21 endfunction
22 ...
23 endmodule : my_scoreboard� �

Code 4.9: SystemVerilog UVM Scoreboard Examples

� �
1 //defining an interface UVC monitor, extends uvm_monitor
2 class my_monitor extends uvm_monitor;
3 //utility macro of the uvm_component
4 `uvm_component_utils(my_monitor)
5

6 //declaring an uvm_analysis_port named ap_out
7 //it is parametrized with the data item (my_data_item)
8 uvm_analysis_port #(my_data_item) ap_out;
9

10 //constructor of the uvm_component
11 function new(string name, uvm_component parent);
12 super.new(name, parent);
13

14 //instantiating the uvm_analysis_port
15 ap_out = new("ap_out", this);
16 endfucntion
17 ...
18 my_data_item d_item;
19 ...
20 //writing the data item d_item to the scoreboard
21 ap_out.write(d_item);
22 ...
23 endclass : my_monitor
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� �
Code 4.10: SystemVerilog UVM Monitor Configured for a Scoreboard

Examples

4.7 Testbenches

The testbench is a verification component (usually derived from uvm_env, as
UVM does not have a uvm_testbench sub-class) that instantiates and connects
other uvm_envs, e.g. UVCs. See an example of a testbench architecture below
(Figure 4.3). Since the testbench is a uvm_component, its declaration follows the

Figure 4.3: Example of a Testbench Architecture in UVM.

typical component macros and constructors that we have seen for UVCs.67 For an
example of a testbench see Code 4.11. In this example, note how the UVCs were
instantiated in the build_phase and connected in the connect_phase. UVM
components have access to some functions that return a string indicating the
instance name of the component, component class type and the full hierarchical
pathname of the instance. These functions are: get_name(), get_type_name()
and get_full_name() respectively.

� �
1 //definition of a testbench, extends uvm_env
2 class my_testbench extends uvm_env;
3 //UVCs instantiated in the testbench

67The full list of uvm_components is: uvm_monitor, uvm_driver, uvm_sequencer,
uvm_scoreboard, uvm_agent, uvm_env and uvm_test.
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4 my_interface_uvc my_ivc_inst;
5 my_interface_uvc my_ivc_inst1, my_ivc_inst2;
6 my_module_uvc my_mvc_inst;
7

8 //declaring a multichannel sequencer (see the rest of this section)
9 my_mc_sequencer my_mc_sqr;

10

11 //utility macro of the uvm_component
12 `uvm_component_utils(my_testbench)
13

14 //constructor of the uvm_component
15 function new(string name, uvm_component parent);
16 super.new(name, parent);
17 endfucntion
18

19 //instantiate the UVCs in the build_phase
20 virtual function void build_phase(uvm_phase phase);
21 super.build_phase(phase);
22 my_ivc_inst = new("my_ivc_inst", this);
23 my_ivc_inst = new("my_ivc_inst1", this);
24 my_ivc_inst = new("my_ivc_inst2", this);
25 my_mvc_inst = new("my_mvc_inst", this);
26

27 //building the multichannel sequencer
28 my_mc_sqr = new("my_mc_sqr", this);
29 endfunction
30

31 //connect the UVCs in the connect_phase
32 virtual function void connect_phase(uvm_phase phase);
33 //connecting the multichannel sequencer to the sequencers of the

individual interface UVCs
34 my_mc_sqr.sqr1 = my_ivc_inst1.iagent_inst.sqr_inst;
35 my_mc_sqr.sqr2 = my_ivc_inst2.iagent_inst.sqr_inst;
36

37 //connecting the monitor uvm_analysis_port with the scoreboard
uvm_analysis_imp

38 my_ivc_inst.iagent_inst.mon_inst.ap_out.connect(my_mvc_inst.sb_inst.ap_in)
;

39 ...
40 endfunction
41 ...
42 endclass : my_testbench� �

Code 4.11: SystemVerilog UVM Testbench Examples
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4.7.1 Tests

There is one component that is above the testbench in the UVM hierarchy of
classes, the test (which extends uvm_test). The test is the bridge between
the two aspects of the UVM, namely stimulus generation and testbench. As
such, this component (uvm_test is a sub-class of uvm_component), on the one
hand, controls the stimulus generated by UVCs and, on the other, instantiates
the testbench. Usually there are multiple tests developed, and contained in a
test library, that are meant to verify certain functionalities or simulate different
environments for the DUT. An example of a test can be found below (Code 4.12).

� �
1 //definition of a test, extends uvm_test
2 class my_test extends uvm_test;
3 //testbench instantiated in the test
4 my_testbench my_tb_inst;
5

6 //utility macro of the uvm_component
7 `uvm_component_utils(my_test)
8

9 //constructor of the uvm_component
10 function new(string name, uvm_component parent);
11 super.new(name, parent);
12 endfucntion
13

14 //instantiate the testbench in the build_phase
15 virtual function void build_phase(uvm_phase phase);
16 super.build_phase(phase);
17 my_tb_inst = new("my_tb_inst", this);
18

19 //setting the default test sequence
20 uvm_config_wrapper::set(this, "my_tb_inst.iagent_inst.sqr_inst.run_phase",

"default_sequence", my_sequence::get_type());
21

22 //setting the default test multichannel sequence for the multichannel
sequencer

23 uvm_config_wrapper::set(this, "my_tb_inst.my_mc_sqr.run_phase", "
default_sequence", my_mc_sequence::get_type());

24 endfunction
25

26 //connect the testbench in the connect_phase
27 virtual function void connect_phase(uvm_phase phase);
28 ...
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29 endfunction
30

31 //phase right after the connection phase, when the testbech topology is set
32 virtual function void end_of_elaboration_phase(uvm_phase phase);
33 //can execute this statement to print the structure of the testbench
34 uvm_top.print_topology();
35 endfunction
36 ...
37 endclass : my_test
38

39 //test class that will inheret the testbench of my_test
40 class my_test_1 extends my_test;
41 ...
42 endclass : my_test_1� �

Code 4.12: SystemVerilog UVM Test Examples

You can run a test by calling the run_test() task from the top module of
your hierarchy. You must pass it the name of test as an argument. See example
of Code 4.13. This is the most basic way of running a test, more flexible ways
exist. Consult the literature for details.

� �
1 module my_top;
2 //importing UVM with all the class structure
3 import uvm_pkg::*;
4

5 //including UVM macros
6 `include "uvm_macros.svh"
7

8 //including the testbench and tests
9 `include "my_testbench.sv"

10 `include "my_test.sv"
11 ...
12 intitial begin
13 run_test("my_test_1");
14 end
15 ...
16 endmodule : my_top� �

Code 4.13: SystemVerilog UVM Running Test Examples
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4.7.2 Multichannel Sequences

Often times we want to coordinate the sequences driven into the DUT by each
individual interface UVC. This can be achieved with the use of a multichan-
nel sequencer (sometimes also called virtual sequencer). This type of sequencer
works very similarly to the other sequencers we have seen before (e.g. it extends
uvm_sequencer). As you can see in this section’s code (Code 4.11, Code 4.12,
Code 4.14, Code 4.15), there are, however, a few key differences. For example, a
virtual sequencer must have access to the references of the sequencers it needs to
coordinate.

This type of sequencer drives a particular type of sequence, a multichannel
(or virtual) sequence. The latter needs to have access to the individual sequences
it will interlace. It must also use the `uvm_do_with(uvm_sequence_item seq,
uvm_sequencer sqr, constraint const) and `uvm_do(uvm_sequence_item
seq, uvm_sequencer sqr) macros, instead of the ones presented previously in
this work. Furthermore, the multichannel sequence needs to know the multichan-
nel sequencer it will be executed by. To indicate the sequencer, you need to use
the `uvm_declare_p_sequencer() as shown below (Code 4.15). It is of course
possible to define more sophisticated multichannel sequencers/sequences than the
ones illustrated in this section. As always, see the literature for details.

A multichannel sequencer is a component that, unlike non-multichannel se-
quencers, is not part of any UVC. Instead, it is instantiated directly in the test-
bench as seen in Code 4.11.

� �
1 //defining a new multichannel sequencer, extends uvm_sequencer
2 //note that, unlike non-multichannel sequencers, the class is not parametrized
3 class my_mc_sequencer extends uvm_sequencer;
4 //utility macro of the uvm_component
5 `uvm_component_utils(my_mc_sequencer)
6

7 //reference to the sequencers that will be coordinated
8 my_sequencer sqr1, sqr2;
9

10 //constructor of the uvm_component
11 function new(string name, uvm_component parent);
12 super.new(name, parent);
13 endfucntion
14 ...
15 endclass : my_mc_sequencer
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� �
Code 4.14: SystemVerilog UVM Multichannel Sequencer Examples� �

1 //defining a new multichannel sequence of data items, extends uvm_sequence
2 //note that, unlike non-multichannel sequences, the class is not parametrized
3 class my_mc_sequence extends uvm_sequence;
4 //utility macro of the uvm_object (uvm_sequence, uvm_sequence_item)
5 `uvm_object_utils(my_mc_sequence)
6

7 //macro that declares the type of multichannel sequencer the multichannel
sequence will be executed by (in our case my_mc_sequencer)

8 `uvm_declare_p_sequencer(my_mc_sequencer)
9

10 //declaring the sequences that will run on the individual sequencers
11 my_sequence m_seq1, m_seq2;
12

13 //constructor of the uvm_object
14 function new(string name = "my_mc_sequence");
15 super.new(name);
16 endfunction
17

18 //task that indicates the sequence of data items to be sent to the sequencer
19 virtual task body();
20 //my_mc_sequencer p_sequencer was automatically created when you declared

the macro at line 8
21 //indicating to run sequence m_seq2 on sequencer p_sequencer.sqr1, with

the var1 == 0 constraint
22 `uvm_do_on_with(m_seq2, p_sequencer.sqr1, {var1 == 0;})
23

24 //indicating to run sequence m_seq1 on sequencer p_sequencer.sqr2
25 `uvm_do_on(m_seq1, p_sequencer.sqr2)
26 endtask
27 ...
28 endclass : my_mc_sequence� �

Code 4.15: SystemVerilog UVM Multichannel Sequence Examples

4.7.3 Logging

UVM provides some macros for automatically logging information. These are:

• `uvm_info(string id, string message, int verbosity = UVM_MEDIUM)

• `uvm_warning(string id, string message)
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• `uvm_error(string id, string message)

• `uvm_fatal(string id, string message)

where id identifies the message, message is the message to be displayed and
verbosity is one among: UVM_NONE, UVM_LOW, UVM_MEDIUM (default), UVM_HIGH,
UVM_FULL, UVM_DEBUG. A uvm_info message will be displayed only if its verbosity
is not greater than the global verbosity of the test. The latter is set to UVM_MEDIUM
by default. In the literature you can find information on how to change it. You
can also find information on how to modify the default behaviour upon message
display.

A uvm_fatal will terminate simulation once the message is displayed.
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Chapter 5

Tools for automatic code
generation

As we have seen in the previous chapter, in order to keep up with the increas-
ing complexity of the design, and thus the required verification effort, we have
adopted a standard verification architecture. This choice brings with it a lot of
advantages, but it also comes with drawbacks. One of the most notable ones
being the significant code overhead needed. Writing even small testbenches or
simply setting up the required code infrastructure, without performing any veri-
fication, requires writing a lot of repetitive and tedious (thus error prone) code.
This second part of the dissertation presents the thesis project, which aims to help
alleviate this burden. This chapter present the fundamental tools that were used.
The last (6th) chapter describes how they were used and the achieved results.

5.1 Metamodels

Take a look at Figure 5.1. Clearly only one circuit sticks out by making sense.
Why is that so?

Figure 5.1: Example of "electric circuits".
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The leftmost circuit does not make any sense whatsoever. It uses graphical ele-
ments that have no meaning in the context of circuit diagrams (e.g. the star and
the dashed line). We cannot easily interpret this diagram and the system it tries
to model. The diagram in the middle, on the other hand, is quite easily readable
since it uses standard circuit notation. Despite this, the circuit does not make
sense once again. This time however it is due to the improper use of diagram
elements. It violates the rules we need to follow in describing the lumped model
of an electric system. The rightmost circuit does not present such problems. We
can easily read it and interpret the physical system it models. This example
shows that when we want to describe the model of a system we must: (i) make
sure that we use the constructs that have been agreed upon and have meaning;
(ii) make sure not to violate the rules the model must obey. Before continuing,
let’s briefly discuss what modelling actually is.

5.1.1 Modeling

We are often interested in studying subsets of reality (e.g. electric systems).
These can be physical (e.g. electric systems) or not (e.g. verification testbenches).
To avoid dealing with their complexity, and to hide the unnecessary detail, we
develop restricted representations: models. The same reality can be modeled in
different ways based on a particular purpose. For example, given the same electric
system, we can describe its electric characteristics (with a circuit diagram) and
its physical layout (layout diagram). Thus, a model can be seen as a simplified
representation of (a subset of) reality, with a specific purpose. Since a model
is useful precisely because it is a simplification, we need to make sure that the
model’s complexity is adequate to it’s purpose. We can have different models, of
varying complexity and purpose, that describe the same reality. It is our job to
pick the one that suites our needs best.

5.1.2 Metamodeling

Definition 5.1.1 (Metamodel) The set of constructs, such as entities, struc-
tures, semantics and constraints, that are used to describe, with a specific purpose,
subsets of reality is called a metamodel.68

68The entities of a metamodel are the basic components of a model (e.g. resistors, wires,
generators, etc.). The structures describe how entities can be composed to form other entities
(e.g. the entity generator is composed of the entities ideal generator and equivalent series
resistor). The semantics describe the meaning of entities and models (e.g. what is a resistor).
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A portion of reality is described by a model, which must conform to a metamodel.

Definition 5.1.2 (Modeling Language) A modeling language specifies the
concrete syntax we use to describe models.

For example, a modeling language might specify whether we use the IEC standard
or the American standard to represent resistors (see Figure 5.2), what are the
symbols for generators, capacitors, etc.

Figure 5.2: IEC and American Resistor Notations.

In conclusion, we can express reality with models, these are described using a
modeling language and must conform to a metamodel. Thus, a metamodel can
be seen as a special type of model, one that describes the abstract syntax of a
modelling language.69 We can now explain why the two circuit diagrams from
Figure 5.1 do not make sense: they do not conform to the metamodel we implicitly
learned when studying circuit analysis. The circuit in the middle violates this
metamodel’s constraints, the one on the left also does not use the appropriate
modeling language (e.g. it uses the star symbol).

The metamodel itself must conform to a metamodel, the meta-metamodel.
The latter is represented via a metamodeling language. Meta-metamodels are
powerful enough to describe themselves in their own metamodeling language.

Take these definitions with a grain of salt as they are sometimes used loosely.
You might find slightly different versions elsewhere. For example, some definitions
might state that the constraints a model needs to satisfy are part of the modeling
language and not the metamodel. The morale is that we use models to describe
reality with a certain purpose. These models must conform to a set of rules,

69The concrete syntax is the way in which we represent things. For example, the symbol
that we use to describe a resistor or the keywords we use to define SystemVerilog ports. The
abstract syntax specifies the constructs behind these symbols. We can change the keywords for
specifying ports (changing the concrete syntax) but keep the same underlying meaning (same
abstract syntax).
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which we can summarize in a metamodel. We represent models following the
concrete syntax of modeling language.

5.2 Eclipse Modeling Framework

In practical terms a metamodel describes the models that we can create. For ex-
ample, we might have a metamodel that describes all the legal circuit diagrams.
The Eclipse Modeling Framework (EMF) allows us to work with metamod-
els. EMF is based on the Java Programming Language [19][20][21] and the Eclipse
IDE, to find out more about EMF and Eclipse visit [22] and [23] respectively. At
[24] you will find a variety of tutorials on metamodeling. In particular, Ecore is
the meta-metamodel at the heart of EMF. Tutorial [25] shows how to use it to
define metamodels, which Ecore calls domain models.

5.2.1 Defining an Ecore Domain Model

The gist of it is that we use a system that is very similar to entity-relationship
modeling of relational databases.70 Furthermore, this system adheres to the Ob-
ject Oriented Programming (OOP) design philosophy. The basic structure is:

• Entities are represented either as datatypes, enumerations or classes (con-
crete, abstract of interfaces).

• Entities have associated features that describe them, these can be con-
stants (called literals), functions (called operations) or attributes.

• Entities form relations. These can be hierarchical (e.g. entity A is a
super-class of entities B and C), compositional (e.g. entity A is is made
of two entities B) or referential (e.g. entity A knows of entities B and C).
Referential relations can be unidirectional (e.g. entity A knows of entity B)
or bidirectional (e.g. both entities A and B know of each other). Relations
do not have to necessarily be one-to-one (e.g. entity A references only one
entity B). They can also be one-to-many (e.g. entity A references multiple
entities B) or many-to-many (e.g. multiple entities A and B reference each
other bidirectionally).

70If not familiar with entity-relationship modeling worry not as it is not necessary to under-
stand Ecore.
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Below (Figure 5.3) you can see a very simple and limited metamodel of electric
circuits. This metamodel is incomplete, for example it does not contain the
constraints that would prevent us from connecting two DC voltage generators in
parallel. Its purpose is simply to illustrate Ecore. In the example you can see

Figure 5.3: Simplified Electric Circuit Ecore Domain Model.

the definition of four datatypes: Watt, Ampere, Volt and Ohm. These are used
as the datatypes of the various attributes and operations of the different entities.
The entity at the highest hierarchical level is ElectricCircuit. You can see
that it has a computePower() operation (that returns Watts) which might, for
example, compute the power dissipated by the circuit. This entity is madeOf zero
or more Components (abstract class). The latter is the super-class of the entities
Wire, Resistor, DCCurrentGenerator and DCVoltageGenerator. Resistor has
one attribute named Resistence (in Ohms) that must be specified. Analogously
DCCurrentGenerator and DCVoltageGenerator have the Current (in Ampere)
and Voltage (in Volt) mandatory attributes. When defining an attribute you
must choose whether it can appear zero or more times in the related entity. In our
case each attribute must appear exactly one time. Wire does not have attributes,
it however has a bidirectional referential relation with Component. Each Wire
connects from a minimum of 2 to a maximum of 2 Components. Each Component
is connectedBy a minimum of 2 to a maximum of 2 Wires. This metamodel is
clearly, as stated before, very limited and not a whole lot useful. It will however
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describe circuit diagrams made of resistors and DC current and voltage generators
connected in series (without considering the constraints of these connections).

5.2.2 Use of Metamodeling Tools

What was hopefully shown in this section is that we have a tool for abstracting
out models. This will turn useful in the next chapter when we will discuss ab-
stracting out the testbench architecture of UVM. As we have seen, UVM follows
a standard architecture for defining testbenches and their components. We can
thus summarize this architecture, or parts of it, as an Ecore domain model. We
might now wonder how is this useful. Before delving into the next sections, let’s
illustrate how it is so. The next tool that we will introduce is Sirius. The latter
will allow us to define graphical interfaces that can be used to create models which
conform to an Ecore domain model. In other words, Sirius is an EMF-based tool
for defining modeling languages. Last, we will introduce Acceleo. This tool allows
us to generate arbitrary user defined code, based on models specified using a mod-
eling language developed with Sirius. An example of a project that illustrates the
synergy of these tools might be: (i) develop a metamodel that describes all the
legal circuit diagrams (EMF); (ii) develop a graphical interface that enables the
user to specify circuit diagrams consistent with the previous metamodel (Sirius);
(iii) translate the user specified circuit diagrams into text form (e.g. XML) that
can be used by some other software (e.g. text-based circuit simulator) (Acceleo).

5.3 Sirius

As stated before, Sirius is a tool that allows us to specifier the modeling language
of an Ecore domain model. It is fairly extensive and relies on Eclipse’s Graphical
Modeling Framework (GMF), a framework for developing Graphical User Inter-
faces (GUI s) and other visual elements. Sirius’ documentation is available at
[26][27]. Tutorials [28][29][30][31][32] provide a quick guide to adopting this tool.
Sirius is non trivial, as such, a comprehensive overview is beyond the scope of
this work. The above mentioned tutorials should however provide a good starting
point. Here I will limit myself to describe the general idea of how Sirius works
and introducing some basic features and notions. A few more advance features
will be mentioned in the next chapter.
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5.3.1 Overview

Sirius allows us to define modeling languages through Viewpoint Specification
Projects. These contain Viewpoints, which are sets of graphical functionalities
that can be enabled/disabled all at once. One such functionality is the Repre-
sentation, which specifies the type of visual entities. The two most common
and useful Representations are Diagrams and Trees. The former represents the
entities of the metamodel with graphical elements (nodes), that can range form
simple rectangles, rhombi and circles to complex user-provided images. These
graphical elements can be contained within other elements (containers) or have
them fixed at their boundary (bordered nodes). Nodes, containers and bordered
nodes can be connected to each other by edges. The user can specify the look of
the different elements and edges through what are called Styles. Furthermore, it
is possible to hide/show diagram details through what are dubbed Layers. Trees
are much simpler as they represent the entities of the metamodel as a hierarchical
list of elements. Two important features that are common to both Representa-
tions are: (i) we map metamodel entities and relations to graphical elements.
When we instantiate such elements in the model (e.g. add a generator or connect
two resistors) we can impose constraints to this mapping. For example, keeping
in mind Figure 5.3, we might add the constraint that a Wire which connects two
Components that are both either DCCurrentGenerators or DCVoltageGenerators
should not be allowed. This is one way to impose constraints on the models the
user can create. (ii) we can define mechanisms for creating, deleting, editing, etc.
diagram (i.e. model) elements through what are called Tools.

Specifying the mapping from Ecore domain model to graphical elements can
be done with the use of the Acceleo Query Language (AQL). [33] provides a
comprehensive overview of the latter.

We can add more advanced custom functionality via user-developed Java
code. For example, we can call user-written functions, called Java Services,
that perform some specific action not provided by Sirius.

It is possible to automatically arrange Diagram elements by specifying a lay-
out algorithm. See the Eclipse Layout Kernel (ELK) [34] for the more advance
algorithmic solutions available.
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5.4 Acceleo

The last fundamental tool in our toolbox is Acceleo. It is once again non trivial.
A brief and comprehensive overview is thus not possible. Furthermore, this tool
does not require mastering some complex concepts as much as simply learning
about its technicalities. You can consult [35] for its documentation. To get started
with this tool follow tutorial [36]. An in-depth guide can be found at [37] instead.

5.4.1 Overview

Acceleo is capable of producing multiple files that contain automatically gen-
erated text (e.g. code) based on models that has been developed using Sirius
tools.71 It achieves this by providing the user with language constructs that al-
low the information in the models to be extracted. [37] illustrates the supported
constructs. An important note is that when we want to generated code based on
a model that conforms to one or more Ecore domain models, we must include
these metamodels in the .mtl file using the

[module <module_name>(’metamodel1_URI’, ’metamodel2_URI’, ...)]

syntax. This should be done only with disjoint metamodels (i.e. metamodels that
do not reference each other). The files generated by Acceleo can contain Code
Blocks. These are places in the file where the user can add code without fear of
being overwritten by the subsequent code generations. A feature that will prove
to be very useful are the Java Service Wrappers that allow us to add custom
functionality by invoking Java code, analogously to what was done in Sirius.

5.4.2 Useful Tips when Developing Acceleo Projects

The reader is invited to consult the above cited websites to actually learn how to
use Acceleo. The rest of this section is comprised of a couple of notes that might
be useful and should be consulted once the reader has acquired some familiarity
with this tool. (i) if you try to run code generation as a Java Application the way
it is described at [38] you might encounter some erroneous behavior. This is espe-
cially true if you have multiple metamodels that reference each other. Trying to
debug these problems might take away countless hours, without much progress.
Try running code generation as an Acceleo Plug-in instead [39], this might save

71To be precise, Acceleo only requires a model that conforms to an Ecore domain model.
How this model was obtained (e.g. with Sirius) does not matter.
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you a lot of headaches. (ii) during the development of your Acceleo project you
are likely to test it by running as an Acceleo Plug-in (or Java Application). Later
on you are likely to want to develop a plug-in that generates code for any model
represented by files with a specific suffix, as described at [40][41].72 If you now
test code generation through this new method you might find out that a previ-
ously working project is not performing as expected anymore. One of the most
probable culprits for this is the fact that these two methods register Universal
Resource Identifiers (URI s) in different ways. You can solve this problem by
rewriting your project to account for the new way of registering URIs. An eas-
ier alternative exists and is advisable. It consists in modifying the Acceleo UI
Launcher Project to register URIs the same way it is done when running as
an Acceleo Plug-in. To do so, open the Acceleo UI Launcher Project’s src folder
in the Model Explorer view and look for the *.popupMenus package. Expand it,
inside you should find a .java file. Modify this file as shown in Code 5.1. As
you can see, we need to find the run() method and look for the statement where
the model URI is generated. We need to eliminate this statement (or better just
comment it out) and add a new one that generates the model URI as if running
as an Acceleo Plug-in. This new statement is reported below.

� �
1 ...
2 public void run(IAction action) {
3 ...
4 //comment out the following line:
5 //URI modelURI = URI.createPlatformResourceURI(model.getFullPath().

toString(), true);
6

7 //add the following line instead:
8 URI modelURI = URI.createFileURI(model.getLocation().toString());
9 ...

10 }
11 ...� �

Code 5.1: Modification to register Acceleo UI Launcher Project’s URIs the
same way as when running as an Acceleo Plug-in.

72Plug-in’s are a standard Eclipse mechanism for generating, importing and exporting code
that provides the IDE with functionality. We will discuss a little about Eclipse plug-in’s in the
last chapter.
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Chapter 6

evigen

This chapter presents the project, dubbed evigen (enhanced verification IP gen-
erator), that was carried out during my six months or so of internship at Infineon.
As such, you will find below quite a few technicalities and implementation tricks
that were useful during development. The discussion that follows is centered
around a first iteration of this project. One that aims at developing a general
framework for writing and expanding tools for automating testbench generation
based on EMF, Sirius and Acceleo.

6.1 vipgen

As we have seen in Chapter 4, UVM provides some standard architectures and
guidelines for developing testbenches. For example, interface universal verifica-
tion components (UVCs) typically follow the architecture summarized by Fig-
ure 4.1.

Given the tools we have introduced in the previous chapter, we might have the
idea to abstract out some of these architectures with metamodels. The latter can
then be used to generate code automatically. What we would like to ultimately
achieve is giving users the possibility to develop, with a graphical tool, models
that represent some UVM component. The user should be able to develop these
models, that conform to the rules imposed by UVM, according to their needs. As
an example, a component that the user might want to build is an UVC, which
implies that we need to develop a metamodel for UVCs. Once a model has been
developed, the users should be able to automatically generate as much as possible
of the actual SystemVerilog code used in the testbench to implement what the
model represents, e.g. an UVC.

129
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6.1.1 Automated UVM Testbench Generation Framework

The above discussion implies that we need to perform certain tasks which are
schematized in Figure 6.1. There you see that what we need to do is:

• Develop one or more metamodels that capture the desired architectures
(e.g. UVCs).

• Develop a graphical tool, based on the above metamodels, that allows the
user to define models.

• Develop a code generator, based on the same metamodels, that generates
SystemVerilog code based on the model defined at the previous point.

The user can then:

• Build models (e.g. UVC models) using the graphical tool.

• Use the code generator to translate the above models into SystemVerilog
code.

Figure 6.1: Schema of the Automated Code Generation Framework.

6.1.2 Interfacing with an Existing Testbench Generator

In this first iteration of evigen we have not dealt with defining metamodels for
standard UVM architectures. This is due to the fact that Infineon already has
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an internal tool for UVM testbench generation dubbed vipgen (verification IP
generator). This tool allows the user to specify the characteristics of a testbench
component, whose SystemVerilog code will be generated, via an .json file.73 It
works in three phases:

• (i) Component generation: we invoke the tool and indicate that we want
to create a new component, which represents a standard element of a test-
bench. The tool will then generate an empty project with an .json file.

• (ii) Component specification: we compile the .json file with the desired
characteristics of the component.

• (iii) Component update: we can now invoke vipgen to generate the Sys-
temVerilog code associated with the component specified via the .json file.
We can change this file as many times as we want and call vipgen to update
the generated code accordingly.

A more detailed description of vipgen will not be provided in this work. The
three phases is all we need to understand the rest of this dissertation.

The focus of this first iteration of evigen has been to develop a more general
framework for testbench generation, one that is capable of interfacing with other
automated code generation tools, in particular with vipgen. This framework
has been summarized in Figure 6.2. There you can see that we are no longer
interested in defining UVM metamodels. Rather, we need to develop metamodels
that capture the various components vipgen supports. The user interface that
we need to develop will allow the specification of these components, which are a
proxy for UVM components. The code generator will not produce SystemVerilog
code directly. It will instead generate the appropriate .json file that will then
be used by vipgen to produce SystemVerilog code. From user’s perspective the
workflow is unchanged. Models must be built using a graphical tool. These are
then translated into SystemVerilog code via a code generator. The user is not
aware of the existence of vipgen as the code generator takes the responsibility of
managing it. This new framework requires us to perform some additional tasks:

• Interface with the Operating System to invoke vipgen.

• Read/write from/to files to fill in the .json file and check the generated
.json/SystemVerilog code.

73json stands for JavaScript Object Notation. It is a data interchange format used to store
and exchange arbitrary data.
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• Manage the interface between the graphical tool and vipgen.

The details of the different tasks we need to perform in order to develop this
framework will be discussed in the rest of this chapter.

Figure 6.2: Schema of the vipgen-based Automated Code Generation Frame-
work.

The are a few advantage of using evigen over simply relying on vipgen. The
use of a Graphical User Interface (GUI) over a text format allows for faster and
less error prone development of the testbench components. evigen is also easier to
learn and the models that you develop with it are easier to maintain and update.
The one drawback of evigen is that very complex components might clutter the
GUI too much, a text format is thus more appropriate for those instances. It is
however seldom the case, if ever, components that complex are needed.

Before moving on, let’s briefly mention what are the plans for the future it-
erations of evigen. What we would like to do is expand the vipgen metamodel
to support new functionality. In other words, design new metamodels, code
generators and graphical tools that are super-sets of the first iteration vipgen
metamodel and tools. The user will then be able to model UVM components
that are more complex than the ones supported by vipgen. The functionality
supported by the latter will be managed through .json files as usual. What is
not supported will be managed by the new code generator that will read the Sys-
temVerilog code written by vipgen and modify it accordingly. The technicalities
of how this could be done should not be too complicated thanks to the framework
that we have developed in this first iteration.
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6.2 Interfacing with the Operating System

What follow in this section are some useful ways of interacting with the Operating
System. As discussed previously, in order to use vipgen and have more control
over the generated code, we need a way of performing some actions that involve
the OS. Since the project was developed for Linux, the presented material refers
to this Operating System.

6.2.1 Command Execution

The first fundamental task that we must be able to do is invoking shell commands
from within the Java code we develop. This can be done as described in Code 6.1.
The method presented below will execute command1 followed by command2 as if
they were called from a shell with working directory directoryPath. It is easy
to generalize this method to execute more than two commands. The function will
report to stdout the shell output, if any, followed by a message that indicates
the executed commands and the resource path where the commands were run.

� �
1 ...
2 public static void executeCommands(String command1, String command2,

String directoryPath) {
3

4 //add ’cmd + " && " +’ to execute another command
5 List<String> command = java.util.Arrays.asList("bash", "-i", "-c",
6 command1 + " && " +
7 command2 + " && " +
8 "exit");
9

10 //get the resource path where the commands should be executed
11 //create directory is such path does not exist
12 File componentParentDirectory = new File(directoryPath);
13 if (!componentParentDirectory.exists())
14 componentParentDirectory.mkdir();
15

16 ProcessBuilder pb = new ProcessBuilder(command);
17 pb.directory(componentParentDirectory);
18 pb.redirectErrorStream(true);
19 Process p = null;
20 try {
21 p = pb.start();
22
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23 BufferedReader reader = new BufferedReader(new InputStreamReader(p
.getInputStream()));

24

25 String line;
26 while ((line = reader.readLine()) != null) {
27 //report shell output
28 System.out.println("[Shell Output] " + line);
29 }
30

31 reader.close();
32 } catch (IOException e) {
33 e.printStackTrace();
34 }
35 //wait for the process to finish
36 try { p.waitFor(); }
37 catch (InterruptedException e) {
38 e.printStackTrace();
39 }
40

41 //report the command and the resource path
42 System.out.println("Executed command: \"" + String.join(" ", command)

+ "\", in directory: \"" + componentParentDirectory.getName() + "\" (" +
directoryPath + ")");

43 }
44 ...� �

Code 6.1: Function for executing shell commands from within a Java
program.

6.2.2 Resource Management

The second fundamental task we must be able to do is managing OS resources.
In particular, we must be able to: (i) detect whether directories/files exist; (ii)
select directories/files; (iii) create directories/files. Detecting the existence of files
and directories is pretty straight forward. See Code 6.2 for the Java functions.

� �
1 ...
2 //checks if the file already exists
3 public static boolean fileExists(String fileName, String directoryPath) {
4

5 //Linux uses ’/’ to delimit files and folders
6 //Windows uses ’\’ for the same purpose
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7 String pathDelimiter = "/";
8 String completeFilePath = directoryPath + pathDelimiter + fileName;
9 File file = new File(completeFilePath);

10

11 return file.exists();
12 }
13

14 //checks if the directory already exists
15 public static boolean directoryExists(String directoryPath) {
16

17 File directory = new File(directoryPath);
18

19 return directory.exists();
20 }
21 ...� �

Code 6.2: Functions for checking file/directory existence from within a Java
program.

Being able to select directories and files is crucial for allowing the user to
generate code in specific folders, as well as importing models that were developed
at a different time. The functions that perform these operations are once again
fairly simple. Code 6.3 reports them. You can see that the function that selects
a file allows the user to specify two file suffixes (e.g. ".java" and ".json"). Only
files that end with those suffixes can be selected. It is easy to modify this function
to include a different number of suffixes.

� �
1 ...
2 //lets the user specify a file with the suf1 or suf2 suffixes
3 public String selectFile(String suf1, String suf2) {
4

5 FileDialog dialog = new FileDialog(new Shell(), SWT.OPEN);
6 dialog.setFilterExtensions(new String [] {suf1, suf2});
7 dialog.setFilterPath(System.getProperty("user.dir"));
8 return dialog.open();
9 }

10

11 //lets the user specify a directory
12 public String selectDirectory() {
13

14 DirectoryDialog dialog = new DirectoryDialog(new Shell(), SWT.OPEN);
15 dialog.setFilterPath(System.getProperty("user.dir"));
16 return dialog.open();
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17 }
18 ...� �

Code 6.3: Functions for selecting file/directory from within a Java program.

Generating new files and directories is also pretty simple. See Code 6.4. The
functions return true if the generation was successful, false otherwise.

� �
1 ...
2 //generate new file
3 public static boolean createFile(String fileName, String directoryPath) {
4

5 String pathDelimiter = "/";
6 String completeFilePath = directoryPath + pathDelimiter + fileName;
7 File file = new File(completeFilePath);
8

9 return file.createNewFile();
10 }
11

12 //generate new directory
13 public static boolean createDirectory(String directoryPath) {
14

15 File directory = new File(directoryPath);
16

17 return directory.mkdir();
18 }
19 ...� �

Code 6.4: Functions for generating file/directory from within a Java program.

6.2.3 Reading and Writing to/from Files

The last fundamental task we must be able to perform is reading and writing
to/from files. Unlike in the previous cases, developing such functions is quite a
bit more complex. At the same time, there are multiple strategies for reading and
writing to/from files. Different approaches, based on the specific needs, can yield
more or less complex implementations. For example, we might scan the entire file
and implement a parser that extracts the necessary information. Implementing
a parser, however, can be very time consuming and thus should be done only
if necessary. We might also use Java Standard Library functions that helps us
perform this task.
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During this first iteration of evigen we found it necessary to implement the
following: (i) a function that looks for the first occurrence of a specific keyword
in a file, and reports a string that begins with that keyword and goes to the end
of the line. This function is used to parse the .json file generated by vipgen
in order to extract some information. (ii) a function for copying the contents
of a file to another. This function is used to copy the contents of the .json file
generated by the Acceleo code generator to the .json file that vipgen uses. See
Code 6.5 for the first function and Code 6.6 for the second one.

� �
1 ...
2 public static String extractKey(String keyword, String fileName, String

directoryPath) {
3

4 String pathDelimiter = "/";
5 String completeFilePath = directoryPath + pathDelimiter + fileName;
6 File file = new File(completeFilePath);
7

8 String line = "";
9 try (BufferedReader reader = new BufferedReader(new FileReader(file)))

{
10 //while the file end has not been reached
11 while ((line = reader.readLine()) != null) {
12 //first occurrence of the keyword
13 if (line.indexOf(keyword) >= 0) break;
14 }
15 } catch (IOException e) {
16 e.printStackTrace();
17 }
18 if (line == null) {
19 //the end of the file was reached without finding the keyword
20 System.err.println("Unable to find the " + keyword + " keyword");
21 }
22 else
23 line = line.substring(line.indexOf(keyword), line.length());
24

25 //report the results
26 System.out.println("Analyzed file: \"" + file.getName() + "\" (" +

completeFilePath + ") for the " + keyword + " keyword");
27 System.out.println("Reporting: " + line);
28 return line;
29 }
30 ...
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� �
Code 6.5: Java function for extracting the first line that begins with a specific

keyword from a file.

� �
1 ...
2 public static void copySrcToDst(String srcName, String srcPath, String

dstName, String dstPath) {
3

4 String pathDelimiter = "/";
5 String srcCompletePath = srcPath + pathDelimiter + srcName;
6 String dstCompletePath = dstPath + pathDelimiter + dstName;
7 File src = new File(srcCompletePath);
8 File dst = new File(dstCompletePath);
9

10 try (BufferedReader reader = new BufferedReader(new FileReader(src));
11 BufferedWriter writer = new BufferedWriter(new FileWriter(dst)))

{
12 String line = "";
13 //while the file end has not been reached
14 while((line = reader.readLine()) != null) {
15 //copy the src line to dst and add a new line character
16 writer.write(line);
17 writer.newLine();
18 }
19 } catch(IOException e) {
20 e.printStackTrace();
21 }
22

23 //report the operation
24 System.out.println("Filled in \"" + dst.getName() + "\" (" +

dstCompletePath + ") with \"" + src.getName() + "\" (" + srcCompletePath +
")");

25 }
26 ...� �

Code 6.6: Java function for copying the contents of one file to another.

6.3 Customizing the Sirius Layout Algorithm

Sirius provides standard tools for specifying the layout of a Diagram. These tools
are however somewhat limited and do not allow the developer to fully customize
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the user experience and UI. In order to have full control over the graphical el-
ements of a Diagram, we must combine working with Sirius standard tools and
developing Java code that implements custom functionality. Developing a fully
satisfactory graphical tool can be a challenging task. This is due to both poor
documentation and online support, as well as complexity and amount of work
required. The development of the graphical tool is by far the most time consum-
ing part of the project. This section will present a general guide for developing
custom graphical functionality.

6.3.1 Notification Listener

The first step is understanding a little bit how Sirius works under the hood and
how we can inject custom behaviour. Each action that the user can perform
with the graphical tool can be intercepted. It does not matter if the action
involves semantic elements (e.g. the Agents of an UVC) or their graphical rep-
resentation (e.g. the position in the Diagram of the rectangle that indicates an
Agent). We can detect both cases and provide custom actions that overwrite
the default Sirius behaviour. To do so, we need to implement a SessionMan-
agerListener [42] and a ModelChangeTrigger [43]. Let’s walk you through
how to do this. Start a new Plug-in Project in Eclipse (assuming you want to
export the developed tools as Eclipse plug-ins)74. Suppose to name it my.layout.
Now create a new Java class, suppose to name it LayoutListener.java, and fill
it in with Code 6.7.75 Fix all the plug-in dependencies. Eclipse should automat-
ically present the option to do so if you hover the mouse over the icon indicating
an error.� �

1 package my.layout;
2

3 import org.eclipse.sirius.business.api.session.Session;
4 import org.eclipse.sirius.business.api.session.SessionManagerListener;
5 import org.eclipse.sirius.viewpoint.description.Viewpoint;
6

7 public class LayoutListener implements SessionManagerListener {
8

9 public LayoutListener() {}
10

11 @Override

74Click on "File" (top left), "New", "Other" and type "Plug-in Project", select the project
type that appears and follow the wizard instructions (filling in only the project name suffices).

75Right click on the my.layout project, "New", "Class" and fill in the name.
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12 public void notifyAddSession(Session newSession) {
13 newSession.getEventBroker().addLocalTrigger(LayoutInitializer.

IS_GMF_NODE_ATTACHMENT,
14 new LayoutInitializer(newSession.getTransactionalEditingDomain()));
15 }
16

17 @Override
18 public void notifyRemoveSession(Session removedSession) {}
19

20 @Override
21 public void viewpointSelected(Viewpoint selectedSirius) {}
22

23 @Override
24 public void viewpointDeselected(Viewpoint deselectedSirius) {}
25

26 @Override
27 public void notify(Session updated, int notification) {}
28 }� �

Code 6.7: Implementation of a SessionManagerListener.

Next, we need to create another class, say LayoutManipulator.java, and fill
it in with Code 6.8. Once again fix any dependency problems. Last, open
the MANIFEST.MF file that you can find in the META-INF folder of the project
and go to the "Extensions" tab.76 There, click on the "Add..." button and type
"org.eclipse.sirius.sessionManagerListener" in the search bar. If you do not see
any results with this name being displayed, unselect "Show only extension points
from the required plug-ins". Select the element that appears and click "Finish".
Now right click on the newly added extension point named
"org.eclipse.sirius.sessionManagerListener" and select "New", "listener". Click on
the newly added listener, you should see a new "Browse..." button appear on the
right in the Editor. Click on that button and type the name of the second class
we created (i.e. LayoutManipulator), select it among the elements that appear
and click "OK".� �

1 package my.layout;
2

3 import java.util.Collection;
4

5 import org.eclipse.emf.common.command.Command;

76Tabs can be found at the bottom of the Editor, where the latter is the graphical element
that popped up when you opened MANIFEST.MF.
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6 import org.eclipse.emf.common.notify.Notification;
7 import org.eclipse.emf.transaction.NotificationFilter;
8 import org.eclipse.emf.transaction.RecordingCommand;
9 import org.eclipse.emf.transaction.TransactionalEditingDomain;

10 import org.eclipse.sirius.business.api.session.ModelChangeTrigger;
11 import org.eclipse.sirius.ext.base.Option;
12 import org.eclipse.sirius.ext.base.Options;
13

14 public class LayoutManipulator implements ModelChangeTrigger {
15

16 private final TransactionalEditingDomain domain;
17

18 public LayoutManipulator(TransactionalEditingDomain domain) {
19 super();
20 this.domain = domain;
21 }
22

23 private static boolean notificationOfInterest(Notification notification) {
24 ...
25 }
26

27 private static void performAction(Notification notification) {
28 ...
29 }
30

31 public static final NotificationFilter IS_GMF_NODE_ATTACHMENT = new
NotificationFilter.Custom() {

32 @Override
33 public boolean matches(Notification notification) {
34 if (notificationOfInterest(notification))
35 return true;
36 return false;
37 }
38 };
39

40 @Override
41 public Option<Command> localChangesAboutToCommit(Collection<Notification>

notifications) {
42 Command result = new RecordingCommand(domain) {
43 @Override
44 protected void doExecute() {
45 for (Notification notification : notifications)
46 performAction(notification);
47 }
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48 };
49 return Options.newSome(result);
50 }
51

52 @Override
53 public int priority() {return Integer.MAX_VALUE;}
54 }� �

Code 6.8: Implementation of custom graphical functionality.

What we have done up to now is setting up a mechanism that is able to
detect changes in our models, both semantic and graphical. To reiterate, semantic
changes involve alterations in the underlying model. For example, the number,
types and characteristics of UVC Agents. Or, thinking back at circuit models, the
number, type, rating and interconnections of the different components of a circuit.
Graphical changes, on the other hand, do not affect the underlying model we want
to construct, only the way it is represented. For example, where and how big are
the rectangles that represent UVC Agents, or the length of the wires between
two circuit components. The model changes are detected as Notifications [44].
These can be filtered by implementing the notificationOfInterest() function
of Code 6.8 in such a way that it returns true only if the Notification refers to an
event that requires custom behaviour. performAction() of Code 6.8 allows us
to implement this custom behaviour, based on the specific Notification. Deciding
which Notification, or their sequence, corresponds to which action performed by
the user is non trivial and depends on the specifics of the project. The same can
be said about developing custom behaviour based on the detected Notifications.
This guide’s aim is that of introducing the topic and presenting a general way of
approaching the problem. The actual implementation of the two aforementioned
functions requires knowledge of vipgen and is beyond the scope of this essay.
A good starting point to implement these functions, in a different project the
reader might want to develop, is the Eclipse debugger. You might want to set a
breakpoint at the very beginning of the matches() function of Code 6.8, e.g. at
line 34. Then, use the debugger to reverse engineer which actions correspond to
which Notification sequences. To do this, you can use their attributes that are
visible with the debugger. This reverse engineering task could take a lot of trial
and error and time. In the process, you will hopefully get an idea of how these
functions can be implemented in your specific case.
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6.3.2 Graphical Structure

Even thought the specific functions that implement Notification filtering and cus-
tom behaviour must be studied case by case, there is some underlying structure
that Sirius Diagrams use. The semantic changes are usually reported via Notifica-
tions where the associated Notifiers are semantic elements.77 Graphical changes,
on the other hand, usually also involve Notifiers that represent graphical elements.
Among these, two are of most importance: NodeImpls and BoundsImpls. The
former relate to model entities that have an associated Diagram element (i.e.
node, bordered node or container) and are the glue that holds together the se-
mantics with the representation. The latter represent the layout of the Diagram
elements that the user sees (i.e. the x, y coordinates and the height and width).
In other words, each Diagram element has both an associated NodeImpl, which
keeps track of the semantic element associated with it and Diagram structure, as
well as a BoundsImpl, which keeps track of the layout. If you check the Type
attribute of NodeImpls you might observe that NodeImpls of a certain Type (e.g.
with Type 2002 representing a root container, 3008 representing a non-root con-
tainer, 3012 representing a bordered node, etc.) have the Element attribute that
is not null.78 These are NodeImpls directly associated with a semantic element,
which you can access using the getElement() and getTarget() functions, both
of which return an EObject. For these Types of NodeImpls you can also access
the layout of the graphical element using the getLayoutConstraint() function,
which returns a BoundsImpl. Once you have the BoundsImpl, you can modify the
layout characteristics by using the appropriate get and set functions (i.e. getX(),
setX(), getHeight(), setHeight(), etc.). NodeImpls are usually composed in a
tree-like structure to represent the hierarchical arrangement of the Diagram. This
tree can be navigated using the eContainer() and getPersistedChildren()
functions. The former returns the father NodeImpl of the current NodeImpl.
The latter returns the curent NodeImpl’s children NodeImpls. Note that not all
NodeImpls have and associated semantic element and layout (e.g. NodeImpls of
Type 7001, 7002, etc.), so you must navigate the tree carefully to determine the
different semantic elements, their layout and hierarchy. The discussed structure
has been summarized in the diagram that follows (Figure 6.3).

77A Notifier is nothing more than the element that triggered the Notification. You can check
the Notifier of a Notification using the getNotifier() function.

78You can use the getType() and getElement() functions for checking.
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Figure 6.3: Sirius Diagram structure.

6.3.3 Modifying Semantics

An important characteristic of the interaction with Sirius is the type of element
we want to manipulate. If we wish to modify the layout of Diagram elements, we
can simply access and overwrite them. This can be done, as stated before, using
the get and set functions for layout attributes and does not require any particu-
lar procedure. On the other hand, if the custom functionality that we implement
modifies the semantics of the model, we must proceed in a specific way. We
cannot simply access semantic elements and modify them. We must work within
the Transactions framework. This requires us to implement the desired semantic
modifications as Transactions. To do so, we need to wrap the commands we want
to execute as shown in Code 6.9. There you can see the case in which we modify
model semantics within the performAction() function of Code 6.8. In partic-
ular, we need the semantic element we want to modify (semanticObject in the
code). To change it, we can add the necessary commands inside the doExecute()
function of line 10, which must be wrapped by the line 7 to 20 code block.

� �
1 ...
2 private static void performAction(Notification notification) {
3 ...
4 //the semantic object we want to modify
5 EObject semanticObject;
6 ...
7 TransactionalEditingDomain domain = TransactionUtil.getEditingDomain(

semanticObject);
8 RecordingCommand command = new RecordingCommand(domain) {
9 @Override

10 protected void doExecute() {
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11 //write here the commands you want to execute
12 // ...
13 }
14 };
15 try {
16 domain.getCommandStack().execute(command);
17 } catch (Exception exception) {
18 System.err.println(exception);
19 }
20 }
21 ...� �

Code 6.9: Wrapper code necessary to modify model semantics.

6.4 Customizing the Eclipse User Interface

Once we have finished our project and are ready to deploy it, we might want
to further customize the user experience by modifying the Eclipse environment.
We can change the options that are visible in menus, the wizards that are used
to create new projects and files, the type of information that is displayed to the
user through Views, etc. This sections introduces this topic and some of the
customizations implemented in evigen.

6.4.1 Custom Eclipse Perspective

If you have followed the Sirius and Acceleo tutorial linked in the previous chap-
ter, you should be fairly familiar with the concept of Eclipse Perspective. To
quickly recap, Perspectives are an Eclipse mechanism that allows the user to
switch between different working environments. The environments are character-
ized by the menu options that are directly visible, the toolbar options, the default
Views, etc. The concept of View is also an important one in the Eclipse IDE.
It indicates a graphical tool that is conveying the user some information and can
be interacted with. Examples of Views that are available in the default Modeling
Perspective are the Model Explorer, Outline, Properties and Problems tabs. A
more thorough overview of Perspectives and Views can be found at [45][46][47].
What follows next is a quick, tutorial style, introduction on how to create your
own Perspective and how to customize it. Much of this is a condensation of the
series of 24 tutorials that begin with [48].
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The first step is creating an Eclipse Plug-in Project, opening its MANIFEST.MF
file, and going to the "Extensions" tab, as described earlier (subsection 6.3.1).
Now click the "Add..." button and type "org.eclipse.ui.perspectives" in the "Ex-
tension Point filter" search bar. If no results are displayed unselect "Show only
extension points from the required plug-ins". You should be able to pick the
"org.eclipse.ui.perspectives" extension point. Do so and click "Finish". You
should see that a new "org.eclipse.ui.perspectives" extension point has been added
with a sub element representing the Perspective (it can be recognized by the
"(perspective)" tag). If that is not the case, right click on the newly added
"org.eclipse.ui.perspectives" extension point and select "New", "perspective". By
now clicking on the Perspective we have just added, you should be able to see
new fields on the right side of the Editing window. Fill in these fields as follows:

• "id*" with an unique identifier for the new Perspective (e.g.
com.myOrganization.projectName.perspective),

• "name*" with the new Perspective’s name (e.g. projectName Perspective),

• "class*" with "org.eclipse.sirius.ui.tools.internal.perspectives.DesignerModelingPerspective"
for Sirius based projects.

We can also click on "Brows..." next to the "icon" field to select an image to
represent the custom Perspective. This concludes the creation of the custom
Perspective. After saving, you should be able to see the new Perspective appear
in the list of the available Perspectives ("Open Perspective" icon in the top right).
We have thus created a new Perspective but we have not populated it with any
custom features. Let’s do this next.

The first element to add to the newly created Perspective is a wizard for
creating a custom project. This project will contain the models we develop.
I will explain the procedure for creating custom projects that contain mod-
els developed with Sirius, EMF and Acceleo. The principles can be applied
to other types of custom projects. Start by clicking the "Add..." button and
type "org.eclipse.ui.newWizards" in the "Extension Point filter" text box. Uns-
elect "Show only extension points from the required plug-ins" if necessary, pick
the "org.eclipse.ui.newWizards" extension point and click "Finish". Right click
on the newly added "org.eclipse.ui.newWizards", "New", "category". Click on
the newly added category, you should see a few field on the right in the Edit-
ing window. Among them should be present "id*" and "name*". Fill in the
first text box with a unique id that will identify your custom projects wizards
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(e.g. com.myOrganization.projectName.category.wizards), and the second
one with the category name (e.g. projectName.wizards). Once again right click
on the "org.eclipse.ui.newWizards" extension point, "New", "wizard". Fill in the
fields:

• "id*" with a unique identifier for the custom project wizard (e.g.
com.myOrganization.projectName.wizards.new.project),

• "name*" with custom project’s name (e.g. projectName Project),

• "class*" with "org.eclipse.sirius.ui.tools.internal.wizards.ModelingProjectWizard"
for Sirius based projects,

• "category" with the previously defined category id (i.e.
com.myOrganization.projectName.category.wizards) and

• "finalPerspective" with the custom Perspective id (i.e.
com.myOrganization.projectName.perspective).

Also select "true" in the "project" drop down selection box, and "Browse..." for
a custom project icon. The last step is right clicking the wizard we have just
added to select "New", "description", and filling in the description that will pop
up when the user hovers the mouse cursor over the custom project’s icon. What
we have done in these steps is adding a new wizard for creating custom projects.
For example, projects that can store vipgen models.79

The second and last customization I will present here is adding the wiz-
ards for creating custom projects and models to menus for easy access. Do-
ing so if fairly simple and similar to the procedure we followed before. Once
again click the "Add..." button in the "Extensions" tab of the MANIFEST.MF.
Look for the "org.eclipse.ui.perspectiveExtensions" and add it as an extension
point. Set the "targetID*" field to the id we gave our custom Perspective (i.e.
com.myOrganization.projectName.perspective). Now, for each element you
want to be visible in the menus, right click of the perspectiveExtension we have
just filled in and select "New", "newWizardShortcut". Use the "Browse..." but-
ton to find the ids of the wizards you want to add and fill in the "id*" fields
of the newWizardShortcuts. Each newWizardShortcut should correspond to a
different wizard. For example, in our case the id of the custom project wizard
is com.myOrganization.projectName.wizards.new.project. At this point we

79In reality these projects can store any model developed with the EMF.
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need to do something very similar to what we have just done. Start by clicking the
"Add..." button once more and look for the "org.eclipse.ui.navigator.navigatorContent"
extension point, add it. For each element that must be visible in the menus, right
click the newly added "org.eclipse.ui.navigator.navigatorContent" extension point
and select "New", "commonWizard". Now fill in the fields as follows:

• select "new" as "type*",

• fill in the "wizardId" the same way you did for the "org.eclipse.ui.perspectiveExtensions"
extension point just now (e.g. com.myOrganization.projectName.wizards.new.project
being the id of the new custom project wizard),

• the "menuGroupId" should be filled with a common identifier that will in-
dicated the cluster of menu options associated with the new custom Per-
spective (e.g. com.myOrganization.projectName.menu).

After saving, you should see that icons for calling the wizards you have just added
can now be found among menu options.

There are many other customizations that can be explored, I have but scratched
the surface. For the sake of brevity and since the way these modifications are
implemented is quite similar, I have presented just a few. You can find more
information online. The last note on Perspectives is that if you right click a Per-
spective icon, a menu will pop up. If you select the "Customize..." option you will
be prompted to a wizard that allows you to customize the Perspective further.

6.4.2 EMF Wizards

If you have tried to develop your own project, you might have noticed that when
creating new models EMF takes care of the creation with standard wizards. We
might not be completely happy with these and want to modify them. This can be
done by directly altering the source code of the wizards that EMF has generated
automatically. You can find the source code of the wizards in the packages
of the ".editor" suffixed projects EMF has automatically generated when we
compiled our metamodels with the "Generate, All" command.80 Furthermore, if
you check the MANIFEST.MF extension points, you will find the ids that uniquely
identify these wizards, and that were used when adding these to menu options as
described a few line above. You will also be able to see the source code by simply
clicking on the "class*" field hyperlink. Now that you have access to the source

80What was just said is only clear if you have followed the tutorials on metamodeling.
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code, you need to study how to best modify it according to your specific needs. It
is important to remember that if the model semantics need to be modified during
model creation (e.g. to set the model name according to some custom convention),
we must use the Transactions framework introduced in subsection 6.3.3.

6.5 Exporting the Project as a Plug-in

Now that everything is done and we have a deployable project, we need to export
it so that others can make use of it. You can learn how to do this by following
tutorial [32]. Just remember to also include the Acceleo, custom layout and
custom Eclipse UI projects that you have developed, not just the Sirius projects
as is described in the tutorial. You can find out more about Plug-in development
at [49]. Once you have finished this step, you should have a fully developed
and distributable tool for automatic code generation based on the standard tools
described in the previous chapter.

In the last few sections we have seen the steps and methods used to develop
evigen. Granted, what was presented has been highly condensed and at points
simplified. It should however still suffice to get you started in developing your
own projects and tackling some of their most challenging parts.
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Conclusions

In this work I have presented the basics of some of the various tools that are com-
monly used in the digital verification workflow. Specifically SystemVerilog (that
required an introduction to Verilog) and UVM. These topics, as state already
multiple times, have not been covered in depth. The reason for this choice is the
amount of effort and time needed for such an extensive work. Still, enough basic
notions have been given to get the reader started in the study of these topics and
to have an overview.

For the second part of this dissertation, the focus was on the methodology
and the tools that were used to carry out the project, and not as much on the
project itself. This choice was once again deliberate. We think most of the
academic value of this project is concentrated in these topics. Furthermore, we
considered disclosing information about the internal tools developed by Infineon,
which would enable us to present the project in more detail, not very useful and
outside the scope of this work.

As we have stated in the last chapter, we plan on continuing to work on the
project that was developed so far. In fact, it is necessary to do so. The reason
being that we have found significant roadblocks, some of which have not yet been
solved, when using the tools. This is especially (if not exclusively) true for Sirius.
A notable amount of effort is needed when developing the GUI. Furthermore, the
obtained tool is not very stables and needs a lot of patching to improve stability
and fix the plethora of bugs. Still, with enough work anything can be fixed (we
hope).

There are multiple metamodeling frameworks, not just EMF (with Acceleo
and Sirius). For example, Spark Systems’ Enterprise Architect is a commercial
tool that can be used instead of the Open-Source framework we have adopted.
You can find out more about Enterprise Architect at [50].

In the future we intend to explore potentially also different frameworks for
developing a suitable code generation tool. All of these, however, build on the
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metamodeling topics we have presented here (developing metamodels, generating
code by querying the models, and developing a GUI). As such, the hope is to
have illustrated the power of the described methodology.
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