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Abstract

This thesis focuses on Deterministic and Probabilistic Boolean Control Networks
and their application to some specific Gene Regulatory Networks.
At first, some introductory materials about Boolean Logic and Left Semi-tensor
Product are presented in order to explain in detail the concepts of Boolean Net-
works, Boolean Control Networks, Probabilistic Boolean Networks and Probabilis-
tic Boolean Control Networks. These networks can be modelled in state-space and
their representation, obtained by means of the left semi-tensor product, is called
algebraic form.
Subsequently, the thesis concentrates on presenting the fundamental properties of
these networks such as the classical Systems Theory properties of stability, reacha-
bility, controllability and stabilisation. Afterwards, the attention is drawn towards
the comparison between deterministic and probabilistic boolean networks.
Finally, two examples of Gene Regulatory Networks are modelled and analysed by
means of a Boolean Network and a Probabilistic Boolean Network.
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Introduction

In this chapter the state of the art of boolean networks and boolean control networks
is presented, followed by the description of the structure of the thesis.

State of the Art

A Boolean Network is a dynamic system whose variables are binary and hence de-
scribed as Boolean, thus representing a model in which the variables are either on
and off, high and low, 1 and 0, and the functions that regulate the dynamics are
logic functions (combinations of “and”, “or” and “negation” operators). When a
Boolean external input is introduced, a Boolean Network becomes a Boolean Control
Network. The typical control objective with this model is to find an input sequence
such that the system steers from the initial configuration to the desired one.
Boolean Networks have been defined for the first time by Kauffman in 1969 in [1] in
order to model genes and their interactions as binary entities. As explained in [2],
a gene is a fragment of the DNA that codes one protein, which is the fundamental
unit of cellular functions. The main contribution of Kauffman to this theory was to
consider genes as either active or inactive and recognizing that genes can activate
or inhibit other genes. This idea led to the study of the so-called gene regulatory
networks in the biology field. In a gene regulatory network, the role of the activators
and inhibitors is very important since they control the patterns of gene expression
(active or inactive).
In 2001 in [3] D. Cheng introduced a new operation, called semi-tensor product,
which represents a generalization of the classical product between matrices when
the dimensions do not coincide. It is interesting to notice that the left-semi tensor
product was born for a different purpose and then brilliantly employed in the frame-
work of Boolean Control Networks.
In fact, in 2009 in the paper [4], D. Cheng et al. showed that the semi-tensor product
permits to model Boolean Control Networks as a discrete-time state-space model.
The new representation is called algebraic state representation and is based on log-
ical canonical vectors and logical matrices. The new approach allows to study the
Networks by means of the tools of Systems Theory. Some of the properties that can
be characterized by matrices are reachability, controllability, stabilizability, observ-
ability; also problems as optimal control, decoupling and fault detection have been
investigated, and others still under development.
The main drawback of the algebraic state representation is its computational com-
plexity. In fact, this representation converts a Boolean Control Network with n
state variables and m input variables into an equivalent state-space model with 2n

states and 2m inputs. Then, it is easy to conclude that the operations in this repre-
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INTRODUCTION

sentation will have an exponential complexity. However one can consider that the
complexity of the algorithms used directly on the Boolean model without any kind
of conversion is also exponential.
In 2007 in [5] Akutsu et al. introduced the idea that a Boolean Network can be
topologically represented by a directed graph with a set of nodes and a set of edges.
Moreover, the authors showed that the algorithms regarding Boolean Networks are
NP-hard in general. In the special case in which the network has a tree structure,
the control problem can be solved in polynomial time. The other drawback of this
representation is that it does not consider the uncertainty of the models. In fact, a
Gene Regulatory Network intrinsically contains uncertainty, both in the data and
in the model selection.
In 2002 in [6], Shmulevich et al. proposed a new model class, called Probabilistic
Boolean Networks, which shares the properties of Boolean Networks but is able to
cope with uncertainty. Thus, the new model overcomes the limitation of Boolean
Networks which is their inherent determinism. The model can be considered as an
interface between the absolute determinism of Boolean Networks and the proba-
bilistic nature of Bayesian Networks. Shmulevich also introduced the concepts of
attractors and basin of attraction. The basic idea behind the probabilistic approach
is to extend the Boolean Network to accommodate more than one possible function
for each node and then to assign a probability to each function.
In 2010 in [7] Cheng et al. studied the theoretical framework of the state-space ap-
proach for Boolean Control Networks. The authors showed that a Boolean Network,
a logical dynamic system, is only formally the same as the conventional dynamic
system. In fact, they differ in the vector space structure. In this paper the concepts
of state space, subspace, coordinate transformation, regular subspace and invariant
subspace for Boolean Networks are presented.
In recent years, optimal control problems, in which there is a tradeoff between the
target and a cost to achieve the target, have been studied in [8]. In 2021 in [9] Cheng
studied the dual space of Boolean Networks identifying a dual network, a dual at-
tractor and an invariant subspace. Moreover, the author compared the attractor
with the dual attractor and the order of the network with its hidden order.

Chapters Presentation

This thesis is divided into two parts. The first part, consisting of five chapters, treats
the theoretical contents of Boolean Control Networks that are needed in the second
part, consisting of three chapters, where real cases of Gene Regulatory Networks are
tested by means of this theory.
The first chapter explains the preliminary material that is necessary to introduce
the concepts of boolean network and boolean control networks. The basis of boolean
logic is introduced. This includes the definitions of logic variables, logic functions
and truth tables. Then, the tool that permits to build the theory of boolean net-
works, called left semi-tensor product, is presented along with its properties and
some examples. Connecting the last two concepts it is possible to introduce logic
vectors and logic matrices, which are the algebraic form of boolean variables and
functions. Subsequently, logic functions are united to form logic equations and logic
systems. A method to find the algebraic form of these structures is presented and
it coincides with the introduction of the structure matrices. Finally, the chapter

2
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contains a brief presentation of non-negative matrices.
The second chapter introduces the boolean networks as dynamical systems of logic
variables and functions. Their algebraic form is discussed and a particular graphical
representation is defined both for the network context and the state context. Then,
the important concepts of fixed points and limit cycles are introduced together with
methods to characterize boolean networks. The tools to do a temporal analysis of
the convergence of a network are presented. Subsequently, the concepts of basins of
attraction and communication classes are explained. Finally, this chapter discusses
the stability of boolean networks using the tools previously defined.
In the third chapter, boolean control networks are presented. Since inputs are acting
on these systems, it is possible to treat them as switched systems. A new matrix
containing the information of the network is defined and a different graphical repre-
sentation is proposed. The concept of communication classes and the classical Sys-
tems Theory concepts of reachability, controllability and stabilisation are treated.
Finally, an algorithm to obtain a feedback control matrix is presented in order to
stabilise the network.
The fourth and fifth chapters are dedicated to the study of the probabilistic net-
works. These kind of networks takes into account the possibility that a node is
updated at each time by a function randomly selected from a set of functions. In
the fourth chapter, probabilistic boolean networks are presented. Since there can
be multiple update functions for each state, it is shown that a probabilistic boolean
network can be treated as a switched system of multiple boolean networks. The
algebraic form and the graphical representation are explained. Then, the concepts
of fixed points and limit cycles are adapted to the probabilistic setting. Finally,
the stability of a probabilistic boolean network is analysed. In the fifth chapter,
probabilistic boolean control networks are presented. Also these networks can be
interpreted as switched systems of multiple probabilistic boolean networks. The
algebraic form and the graphical representation are explained. Finally, the classical
Systems Theory concepts of reachability, controllability and stabilisation with feed-
back control are treated in the probabilistic setting.
This concludes the theoretical part of the thesis. The second part, consisting of
three chapters, is dedicated to the applications of this theory to the Gene Regula-
tory Networks.
The sixth chapter introduces the concept of Gene Regulatory Networks (GRNs), i.e.
biochemical networks that involve genes and proteins, and explains how boolean
networks can tackle the problem of representing and analysing GRNs.
The seventh chapter is dedicated to the first application of this thesis: the cellular
oxidative stress response. The general scheme of stress response pathways is men-
tioned, while the oxidative stress response pathways are thoroughly explained since
the involved genes and proteins are fundamental to construct the corresponding
boolean network model. Finally, some simulations are run to verify that this model
is consistent with the original one.
In the eighth chapter, the second and last application is presented: early detection
of cancer. Two probabilistic models are built starting from the dynamics of twelve
genes in tumor and non-tumor cells. This chapter focuses on testing the consistency
of the models with the original systems and compares them both in the logic and
algebraic form.

3
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Chapter 1

Preliminary Material

This chapter contains the basic knowledge to understand the Boolean Control Net-
works framework.
The first section recalls what is the Boolean logic and logical variables, operators
and functions are presented.
Then, a relatively new matrix product called left semi-tensor product is introduced
together with its properties. The product is fundamental in order to transform a
system of logic equations in its algebraic form, as it will be shown in the third
section.

1.1 Boolean Logic

In Boolean logic the values of the variables are logical values, that is 1 and 0, true
and false. A logic variable is defined as follows.

Definition 1.1.1 (Logic Variable)
Consider the binary set B = {0, 1}. χ is a logic (or boolean) variable if χ ∈ B. It is
assumed that χ = 1 corresponds to “true” while χ = 0 corresponds to “false”.

Logic variables can be combined using fundamental logic operators such as NOT,
AND, OR. The effect of each operator on the logic variables can be displayed in a
truth table, which shows the output value for all the possible input combinations.

• NOT : it is the logical negation operator (also called logical complement) and
it is represented with the symbol ¬:

¬(·) : B → B

χ 7→ ¬χ.
(1.1.1)

If χ = 0, then ¬χ = 1 and vice-versa because ¬ transforms the logical variable
into its complement. The truth table is reported in Tab. 1.1.1.

It is called unary operator since it operates on a single input.
Negation has the following property:

- double negation:
¬¬χ = χ (1.1.2)

7



CHAPTER 1. PRELIMINARY MATERIAL

χ ¬χ

0 1
1 0

Table 1.1.1: Truth Table of Negation (NOT )

• AND : it is the logical conjunction operator and it is represented with the sym-
bol ∧:

∧(·) : B × B → B

(χ1, χ2) 7→ χ1 ∧ χ2.
(1.1.3)

Only if χ1 = χ2 = 1, then the resulting χ1 ∧ χ2 = 1. The truth table is
reported in Tab. 1.1.2.

χ1 χ2 χ1 ∧ χ2

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.1.2: Truth Table of Conjunction (AND)

It is called binary operator since it operates on two inputs.
Conjunction has the following properties:

- commutativity:
χ1 ∧ χ2 = χ2 ∧ χ1; (1.1.4)

- associativity:

(χ1 ∧ χ2) ∧ (χ3 ∧ χ4) = χ1 ∧ (χ2 ∧ χ3) ∧ χ4; (1.1.5)

- distributivity with respect to (w.r.t.) ∨:

(χ1∧χ2)∨(χ3∧χ4) = (χ1∨χ3)∧(χ1∨χ4)∧(χ2∨χ3)∧(χ2∨χ4). (1.1.6)

• OR: it is the logical disjunction operator and it is represented with the symbol
∨:

∨(·) : B × B → B

(χ1, χ2) 7→ χ1 ∨ χ2.
(1.1.7)

Only if χ1 = χ2 = 0, then the resulting χ1 ∨ χ2 = 0. The truth table is
reported in Tab. 1.1.3.

It is called binary operator since it operates on two inputs.
Conjunction has the following properties:

8
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χ1 χ2 χ1 ∨ χ2

0 0 0
0 1 1
1 0 1
1 1 1

Table 1.1.3: Truth Table of Disjunction (OR)

- commutativity:

χ1 ∨ χ2 = χ2 ∧ χ1; (1.1.8)

- associativity:

(χ1 ∨ χ2) ∨ (χ3 ∨ χ4) = χ1 ∨ (χ2 ∨ χ3) ∨ χ4; (1.1.9)

- distributivity w.r.t. ∧:

(χ1∨χ2)∧(χ3∨χ4) = (χ1∧χ3)∨(χ1∧χ4)∨(χ2∧χ3)∨(χ2∧χ4). (1.1.10)

Some basic results are gathered in the following example.

Example 1.1.1 (Fundamental Results)
Given χ ∈ B, the following results hold.

χ ∧ 1 = χ

χ ∨ 1 = 1

χ ∧ 0 = 0

χ ∨ 0 = χ

χ ∧ χ = χ

χ ∨ χ = χ

χ ∧ ¬χ = 0

χ ∨ ¬χ = 1.

From these fundamental operators it is possible to express other derived logical
operators. Some examples are reported.

• Implication: it is indicated with → and it is defined as follows:

χ1 → χ2 ⇔ ¬χ1 ∨ χ2. (1.1.11)

The truth table is reported in Tab. 1.1.4.

• Double Implication (or logical equivalence): it is indicated with ↔ and it is
defined as follows:

χ1 ↔ χ2 ⇔ (χ1 → χ2) ∧ (χ2 → χ1)⇔ (¬χ1 ∨ χ2) ∧ (χ1 ∨ ¬χ2). (1.1.12)

The truth table is reported in Tab. 1.1.5.

9
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χ1 χ2 χ1 → χ2

0 0 1
0 1 1
1 0 0
1 1 1

Table 1.1.4: Truth Table of Implication

χ1 χ2 χ1 ↔ χ2

0 0 1
0 1 0
1 0 0
1 1 1

Table 1.1.5: Truth Table of Double Implication

• XOR (or logical exclusive disjunction): it is indicated with ∨̇ and it is defined
as follows:

χ1 ∨̇ χ2 ⇔ (¬χ1 ∧ χ2) ∨ (χ1 ∧ ¬χ2). (1.1.13)

The truth table is reported in Tab. 1.1.6.

Then, boolean logic is based on the interaction of boolean variables through boolean
operators. It is now possible to define logic functions.

Definition 1.1.2 (Logic Function)
A logic function f(·) is a logical expression that involves n ∈ N* logical variables,
such as χ1, χ2, . . . , χn ∈ B, which are connected by logical operators. It is a n-ary
map:

f(·) : Bn → B

(χ1, χ2, . . . , χn) 7→ f(χ1, χ2, . . . , χn).
(1.1.14)

It is clear that all the aforementioned fundamental and derived operators are exam-
ples of boolean functions.
A logic function f : Bn → B with a finite number of boolean variables n ∈ N* has a
finite number of input-output combinations. This means that a logic function can
be completely represented by means of a proper truth table. The latter will consist
of 2n rows since these corresponds to the number of possible combinations of the
inputs. An example is now provided.

Example 1.1.2 (Truth Table of a Logic Function)
Consider the three boolean variables χ1, χ2, χ3 ∈ B and the following logic function:

f(χ1, χ2, χ3) = (¬χ1 ∧ χ2) ∨ χ3. (1.1.15)

The corresponding truth table is reported in Tab. 1.1.7, along with some interme-
diate steps.

10
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χ1 χ2 χ1 ∨̇ χ2

0 0 0
0 1 1
1 0 1
1 1 0

Table 1.1.6: Truth Table of Exclusive Disjunction (XOR)

χ1 χ2 χ3 ¬χ1 ¬χ1 ∧ χ2 (¬χ1 ∧ χ2) ∨ χ3

0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 0 1
1 1 0 0 0 0
1 1 1 0 0 1

Table 1.1.7: Truth Table of a Logic Function

1.2 Left Semi-tensor Product

The conventional matrix product requires that the number of columns of the first
matrix is equal to the number of rows of the second matrix. In order to enable this
product even when the matrices dimensions do not match, a generalization is needed.
This concept is represented in the literature by the semi-tensor products: the left
semi-tensor product (L.S.T.P.), denoted by ⋉, and the right semi-tensor product
(R.S.T.P.), denoted by ⋊. In the following only the L.S.T.P. will be presented, since
it is the only one used when modelling Boolean Networks.
While in the standard product the entries of the resulting matrix are obtained
as a sum of products of the single entries, appearing in row vectors and column
vectors, and the Kronecker product (also known as tensor product) corresponds to a
multiplication between one entry and a matrix, the semi-tensor product mixes both
operations in order to make the dimensions compatible.
First, the Kronecker product is presented.

Definition 1.2.1 (Kronecker Tensor Product)
Given two matrices A ∈ R

r1×c1 and B ∈ R
r2×c2 with r1, c1, r2, c2 ∈ N*, the Kronecker

product between A and B is defined as:

C = A⊗ B :=






a1,1B · · · a1,c1B
...

. . .
...

ar1,1B · · · ar1,c1B




 , (1.2.1)

where ai,j represents the entry of matrix A in the i-th row and in the j-th column,
with 0 < i ≤ r1 and 0 < j ≤ c1. The resulting matrix C has dimensions r1r2 × c1c2.

An example is provided for clarity.

11
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Example 1.2.1 (Kronecker Product)

Let A =

[
1 0 3
0 2 5

]

∈ R
2×3 and B =

[
1 0
0 1

]

∈ R
2×2. Then, the Kronecker product

between A and B is:

C = A⊗ B =







1 ·

[
1 0
0 1

]

0 ·

[
1 0
0 1

]

3 ·

[
1 0
0 1

]

0 ·

[
1 0
0 1

]

2 ·

[
1 0
0 1

]

5 ·

[
1 0
0 1

]






=







1 0 0 0 3 0
0 1 0 0 0 3
0 0 2 0 5 0
0 0 0 2 0 5






. (1.2.2)

The dimensions of the resulting matrix C are 4 × 6, in accordance with the Def.
1.2.1.

The properties of the Kronecker product are listed in the following proposition.

Proposition 1.2.1 (Kronecker Product Properties)
Let A ∈ R

r1×c1 , B ∈ R
r2×c2 , C ∈ R

r3×c3 and D ∈ R
r4×c4 be four matrices with

ri, ci ∈ N*,∀i ∈ {1, 4}. The Kronecker product has the following properties:

1. commutativity with scalars:

(αA)⊗ (βB) = αβ(A⊗ B), α, β ∈ R; (1.2.3)

2. associativity:

(A⊗ B)⊗ (C ⊗D) = A⊗ (B ⊗ C)⊗D; (1.2.4)

3. distributivity w.r.t. addition:

(A+B)⊗ (C +D) = (A⊗ C) + (A⊗D) + (B ⊗ C) + (B ⊗D), (1.2.5)

if A has the same dimension as B and C has the same dimension as D.

In order to introduce the left semi-tensor product in the best way, two specific simple
cases are presented before the general case.

Definition 1.2.2 (Left Semi-tensor Product for Vectors)
Consider the row vector X =

[
x1 x2 . . . xm

]
∈ R

1×m and the column vector

Y =
[
y1 y2 . . . yn

]T
∈ R

n. Let us assume that the length of the row vector is
k times the length of the column vector, i.e. m = kn, with m,n, k ∈ N*. Then, X
can be partitioned into n blocks of length k:

X =

[

X [1]

︸︷︷︸

k

· · · X [n]

︸︷︷︸

k

]

︸ ︷︷ ︸

m=kn

, (1.2.6)

where X [i] ∈ R
1×k is the i-th block of X, ∀i = 1, . . . , n. Then, the L.S.T.P. corre-

sponds to:

X ⋉ Y :=
n∑

i=1

X [i]yi ∈ R
1×k. (1.2.7)

12
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In the opposite case, i.e. when n = km, in a symmetric way, Y can be partitioned
into m blocks of length k:

Y =






Y [1]
}
k

...
Y [m]

}
k












n = km, (1.2.8)

where Y [i] ∈ R
k is the i-th block of X, ∀i = 1, . . . ,m. The L.S.T.P. corresponds to:

X ⋉ Y :=
m∑

i=1

xiY
[i] ∈ R

k. (1.2.9)

Two examples are now presented in the following.

Example 1.2.2 (Left Semi-tensor Product for Vectors)

Consider X =
[
1 2 0 1

]
∈ R

1×4 and Y =
[
3 1

]T
∈ R

2, then m = 4, n = 2,

k = m
n
= 2. It is possible to recognize X [1] =

[
1 2

]
and X [2] =

[
0 1

]
, y1 = 3 and

y2 = 1. Now, by Def. 1.2.2:

X ⋉ Y =
[
1 2

]
· 3 +

[
0 1

]
· 1 =

[
3 7

]
∈ R

1×2. (1.2.10)

Example 1.2.3 (Left Semi-tensor Product for Vectors)

Consider X =
[
3 1

]
∈ R

1×2 and Y =
[
1 2 0 1

]T
∈ R

4, then m = 2, n = 4,

k = n
m

= 2. It is possible to recognize Y [1] =
[
1 2

]T
and Y [2] =

[
0 1

]T
, x1 = 3

and x2 = 1. Now, by Def. 1.2.2:

X ⋉ Y = 3 ·

[
1
2

]

+ 1 ·

[
0
1

]

=

[
3
7

]

∈ R
2. (1.2.11)

Let us now consider a more general case where the L.S.T.P. is between two matrices.

Definition 1.2.3 (Left Semi-tensor Product for Matrices)
A ∈ R

r1×c1 and B ∈ R
r2×c2 are two matrices, with r1, c1, r2, c2 ∈ N*. Suppose that

c1 = kr2 or r2 = kc1 with k ∈ N*. Then the entries of C = A⋉ B are computed as
follows:

C [i,j] = Rowi(A)⋉ Colj(B), (1.2.12)

where C [i,j] is the block of C in the i-th row and in the j-th column, since Rowi(A)
represents the i-th row of matrix A and Colj(B) represents the j-th column of matrix
B.
From Def. 1.2.2, if c1 = kr2, C is the composition of r1 × c2 blocks of dimensions
1 × k, so that the final dimensions of C are r1 × kc2. Instead, if r2 = kc1, C is
composed of r1 × c2 blocks of dimensions k × 1, so that C will have dimensions
kr1 × c2.

Some examples are reported, for clarity.

Example 1.2.4 (Left Semi-tensor Product for Matrices)

Consider A =

[
1 2 1 3
2 3 0 1

]

∈ R
2×4 and B =

[
1 1
2 0

]

∈ R
2×2. The dimensions are:

r1 = 2, c1 = 4, r2 = 2 and c2 = 2. It follows that k = 2. Then:

C = A⋉ B =

[[
1 2

]
· 1 +

[
1 3

]
· 2

[
1 2

]
· 1 +

[
1 3

]
· 0

[
2 3

]
· 1 +

[
0 1

]
· 2

[
2 3

]
· 1 +

[
0 1

]
· 0

]

=

=

[
3 8 1 2
2 5 2 3

]

∈ R
2×2·2.

(1.2.13)
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Example 1.2.5 (Left Semi-tensor Product for Matrices)

Consider A =

[
1 1
2 0

]

∈ R
2×2 and B =

[
1 2 1 3
2 3 0 1

]

∈ R
2×4. The dimensions are:

r1 = 2, c1 = 2, r2 = 4 and c2 = 2. It follows that k = 2. Then:

C = A⋉ B =







1 ·

[
1
2

]

+ 1 ·

[
1
3

]

1 ·

[
2
3

]

+ 1 ·

[
0
1

]

2 ·

[
1
2

]

+ 0 ·

[
1
3

]

2 ·

[
2
3

]

+ 0 ·

[
0
1

]






=







2 2
5 4
2 4
4 6






∈ R

2·2×2. (1.2.14)

As previously discussed, the L.S.T.P. is an extension of the standard matrix product.
The latter, in fact, is retrieved when c1 = r2.
In the following definition the L.S.T.P. in the general case is presented, where it is
necessary to resort to the Kronecker tensor product of Def. 1.2.1.

Definition 1.2.4 (Left Semi-tensor Product General Case)
Let us consider two matrices A ∈ R

r1×c1 and B ∈ R
r2×c2 with r1, c1, r2, c2 ∈ N* and

let T = l.c.m.(c1, r2). Then, the L.S.T.P. is defined as follows:

A⋉ B :=
(

A⊗ I T
c1

)(

B ⊗ I T
r2

)

. (1.2.15)

The resulting matrix C has dimensions:

(
r1T

c1
×
c1T

c1

)

×
(
r2T

r2
×
c2T

r2

)

=

(
r1T

c1
×
c2T

r2

)

. (1.2.16)

An example is now proposed.

Example 1.2.6 (Left Semi-tensor Product General Case)

Let A =

[
1 2
1 3

]

∈ R
2×2 and B =





1 0
2 1
3 2



 ∈ R
3×2 with r1 = 2, c1 = 2, r2 = 3 and

c2 = 2. Then T = l.c.m.(2, 3) = 2 · 3 = 6. One obtains that:

C = A⋉ B = (A⊗ I3)(B ⊗ I2) =

=











1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2
1 0 0 3 0 0
0 1 0 0 3 0
0 0 1 0 0 3





















1 0 0 0
0 1 0 0
2 0 1 0
0 2 0 1
3 0 2 0
0 3 0 2











=











1 4 0 2
6 1 4 0
2 6 1 4
1 6 0 3
9 1 6 0
2 9 1 6











∈ R
2·6

2
×

2·6

3 .
(1.2.17)

Let us now explore some properties of the L.S.T.P.in the following proposition.

Proposition 1.2.2 (General Properties)
Let A ∈ R

r1×c1 , B ∈ R
r2×c2 , C ∈ R

r3×c3 and D ∈ R
r4×c4 be four matrices with

ri, ci ∈ N*,∀ i ∈ {1, 4}. The L.S.T.P. has the following properties:

1. commutativity with scalars:

(αA)⋉ (βB) = αβ (A⋉ B), α, β ∈ R; (1.2.18)
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2. associativity:

(A⋉ B)⋉ (C ⋉D) = A⋉ (B ⋉ C)⋉D; (1.2.19)

3. distributivity w.r.t. addition:

(A+B)⋉ (C +D) = (A⋉ C) + (A⋉D) + (B ⋉ C) + (B ⋉D), (1.2.20)

if A has the same dimension as B and C has the same dimension as D.

4. transposition:
A⋉ B = BT

⋉ AT . (1.2.21)

In the following proposition, other properties of the L.S.T.P. that hold in special
cases are listed.

Proposition 1.2.3 (Properties in Special Cases)
Let A ∈ R

r1×c1 and B ∈ R
r2×c2 be two matrices with r1, c1, r2, c2 ∈ N*. The

L.S.T.P. has the following properties:

1. if c1 = kr2, then:
A⋉ B = A (B ⋉ Ik); (1.2.22)

2. if r2 = kc1, then:
A⋉ B = (A⋉ Ik)B; (1.2.23)

3. if X ∈ R
m and Y ∈ R

n, then:

X ⋉ Y = X ⊗ Y. (1.2.24)

1.3 Algebraic Form of the Boolean Logic

One of the main objects when dealing with Boolean Networks are logic matrices. In
the following definition, both logic vectors and matrices are introduced.

Definition 1.3.1 (Logic Vectors and Matrices)
Consider the identity matrix In ∈ R

n×n of dimension n ∈ N*. The i-th column
of In, δ

i
n, corresponds to the i-th canonical vector. The only entry different from

zero and with unitary value is the one in the i-th row. The set of all logic vectors
of dimension n is Ln ⊂ Bn. It contains all canonical vectors of dimension n, i.e.
Ln , {δin : i = 1, . . . , n}.
A vector is a logic vector if only one entry is equal to one and all the others are
equal to zero.
A matrix L ∈ R

r×c, with r and c ∈ N*, is a logic matrix if all its columns belong to
Lr, i.e. Coli(L) ⊂ L

r, ∀i = 1, . . . , c. Then, the set of all logic matrices of dimension
(r × c) is Lr×c ⊂ Br×c. A logic matrix L ∈ Lr×c is represented as follows:

L =
[
δi1r · · · δirc

]
= δr

[
i1 · · · ic

]
, (1.3.1)

where ij ∈ {1, r}, ∀ j ∈ {1, c}.
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Logic vectors and matrices are very important in the context of the L.S.T.P., as
explained in the following two propositions.

Proposition 1.3.1 (Closeness of L· w.r.t. L.S.T.P.)
Denote by L· the set of all canonical vectors of finite dimension. The L.S.T.P.
of two logic vectors L1 ∈ Lm ⊂ L· and L2 ∈ Ln ⊂ L· is another logic vector
L3 = L1 ⋉ L2 ∈ L

m·n, ∀n, m ∈ N*.

An example is given in the following.

Example 1.3.1 (Closeness of L· w.r.t. L.S.T.P.)

Let us consider two logic vectors L1 =
[
1 0 0

]T
∈ L3 and L2 =

[
0 1

]T
∈ L2. The

L.S.T.P. is another logic vector as follows:

L3 = L1 ⋉ L2 =











0
1
0
0
0
0











∈ L3·2 = L6. (1.3.2)

Proposition 1.3.2 (Closeness of L× w.r.t. L.S.T.P.)
Denote by L× the set of all logic matrices of finite dimensions. The L.S.T.P. of two
logic matrices A ∈ Lr1×c1 ⊂ L× and B ∈ Lr2×c2 ⊂ L×, with r1, c1, r2 and c2 ∈ N*,

is another logic matrix C = A⋉ B ∈ L
r1T

c1
×

c2T

r2 ⊂ L×, with T = l.c.m.(c1, r2) ∈ N*.

An example is given in the following.

Example 1.3.2 (Closeness of L× w.r.t. L.S.T.P.)

Let us consider two logic matrices A =





1 0 0
0 0 1
0 1 0



 ∈ L3×3 and B =

[
0 1 1
1 0 0

]

∈

L2×3. The L.S.T.P. is another logic matrix as follows:

C = A⋉ B =











0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0











∈ L6×9. (1.3.3)

With the new knowledge of logic vectors, one can associate bijectively a boolean
variable to a vector in L2. A formal definition is presented next.

Definition 1.3.2 (Boolean Variable and Logic Vector)
There exists a bijective relation between a generic boolean variable χ ∈ B and a
logic vector x ∈ L2. In fact, it is true that:

x↔

[
χ
¬χ

]

, (1.3.4)

whose realizations are: 





1↔ δ12 =

[
1
0

]

0↔ δ22 =

[
0
1

] . (1.3.5)
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In the next definition it is shown that the bijective correspondence between B and
L2 can be extended to Bn and L2n .

Definition 1.3.3 (From Logic Vectors to Boolean Variables)
Given n logic variables χi ∈ B, with i = 1, . . . , n and n ∈ N*, consider their
vectorial forms xi ∈ L

2 as in Def. 1.3.2. Define χ as follows:

χ =
[
χ1 χ2 · · · χn

]T
∈ Bn, (1.3.6)

and define x as follows:

x := ⋉
n
i=1xi = x1 ⋉ x2 ⋉ · · ·⋉ xn ∈ L

2n . (1.3.7)

It is now possible to extend the bijective correspondence between B and L2 to Bn

and L2n :

x :=

[
χ1

¬χ1

]

⋉

[
χ2

¬χ2

]

⋉ · · ·⋉

[
χn

¬χn

]

=

=








χ1χ2 · · ·χn

χ1χ2 · · · ¬χn

...
¬χ1¬χ2 · · · ¬χn







∈ L2n .

(1.3.8)

Since it is a bijective correspondence, it means that the information contained in
the newly defined logic vector is the same information contained in the boolean
variables.
So, given x ∈ L2n as in Def. 1.3.3, one can reconstruct the n original boolean
variables.
The next proposition shows how to move from boolean variables to logic vectors and
vice-versa.

Proposition 1.3.3 (Boolean Variables ⇔ Logic Vectors)
Let χi ∈ B, with i ∈ {1, n}, be the n boolean variables and x = δj2n ∈ L

2n be the
corresponding logic vector, with n and j ∈ N*.

• From boolean variables to logic vector: given the set of χi’s, the value j of
x = δj2n is retrieved as follows:

j =
n∑

i=1

(1− χi) 2
n−i + 1. (1.3.9)

• From logic vector to boolean variables: first, define q0 , 2n − j. Then, itera-
tively, compute:

{

χi = ⌊
qi−1

2n−i ⌋

qi = qi−1 − 2n−iχi

, i = 1, . . . , n. (1.3.10)

Two examples are presented to explain both directions.

17



CHAPTER 1. PRELIMINARY MATERIAL

Example 1.3.3 (From the χi’s to x)
Given x1 = δ12, x2 = δ22, x3 = δ12 and x4 = δ12, x = δj2n = x1 ⋉ x2 ⋉ x3 ⋉ x4 is
determined as follows:







x1 = δ12 → χ1 = 1

x2 = δ22 → χ2 = 0

x3 = δ12 → χ3 = 1

x4 = δ12 → χ4 = 1

j =
∑4

i=1(1− χi) 2
4−i + 1 = 22 + 1 = 5→ x = δ516.

(1.3.11)

Example 1.3.4 (From x to the χi’s)
Let x = δ68 = x1 ⋉ x2 ⋉ x3. Then, n = 3, j = 6 and q0 = 23 − 6 = 2. Following the
procedure of Prop. 1.3.3, one gets:







χ1 = ⌊
q0
22
⌋ = ⌊2

4
⌋ = 0→ x1 = δ22

q1 = q0 − 22 · χ1 = 2− 0 = 2

χ2 = ⌊
2
2
⌋ = 1→ x2 = δ12

q2 = 1− 1 = 0

χ3 = ⌊
0
1
⌋ = 0→ x3 = δ22

q3 = 0− 0 = 0.

(1.3.12)

Since boolean variables can be expressed through logic vectors, the same can be
applied to the result of a boolean function. Since it belongs to B it can be expressed
as a vector in L2. This translates into expressing the original truth table of a logic
function in terms of logic vectors. That is, given a boolean function f(χ1, . . . , χn) :
Bn → B, with χi ∈ B, ∀i = {1, . . . , n} and n ∈ N*, it is possible to find its
equivalent representation f̂(χ1, . . . , χn) : L

2n → L2. The following example shows
the conversion to logic vectors in the truth table.

Example 1.3.5 (Truth Table in Vectorial Form)
Using the function of Ex. 1.1.2, the truth table of Tab. 1.1.7 is translated into Tab.
1.3.1.

x1 x2 x3 x f(x)

δ22 δ22 δ22 δ88 δ22
δ22 δ22 δ12 δ78 δ12
δ22 δ12 δ22 δ68 δ12
δ22 δ12 δ12 δ58 δ12
δ12 δ22 δ22 δ48 δ22
δ12 δ22 δ12 δ38 δ12
δ12 δ12 δ22 δ28 δ22
δ12 δ12 δ12 δ18 δ12

Table 1.3.1: Truth Table in Vectorial Form of a Logic Function

Now it is possible to state that a logic function can be expressed in Algebraic Form
using logic vectors and matrices.
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Theorem 1.3.1 (Algebraic Form of a Logic Function)
Let f(χ1, . . . , χn) : Bn → B, with χi ∈ B, ∀i = {1, . . . , n} and n ∈ N*, be a
logic function. The equivalent function f̂(χ1, . . . , χn) : L2n → L2, with xi ∈ L

2,
∀i = 1, . . . , n, can be expressed in Algebraic Form in the following way:

f̂(χ1, . . . , χn) =Mf ⋉ x ∈ L2, (1.3.13)

where x := ⋉
n
i=1xi ∈ L

2n and Mf is a logic matrix ∈ L2×2n called Structure Matrix

of f̂(·).

An example on how to find the structure matrix is given in the following.

Example 1.3.6 (Structure Matrix)
Using the same function f(·) of Ex. 1.1.2, one can compute the vector x = x1 ⋉
x2 ⋉ x3. From the results of the truth table in vectorial form (see Tab. 1.3.1), Mf

is defined as follows:






Mf ⋉ δ18 = Col1(Mf ) = δ12
Mf ⋉ δ28 = Col2(Mf ) = δ22
Mf ⋉ δ38 = Col3(Mf ) = δ12
Mf ⋉ δ48 = Col4(Mf ) = δ22
Mf ⋉ δ58 = Col5(Mf ) = δ12
Mf ⋉ δ68 = Col6(Mf ) = δ12
Mf ⋉ δ78 = Col7(Mf ) = δ12
Mf ⋉ δ88 = Col8(Mf ) = δ22.

(1.3.14)

Therefore:

Mf =

[
1 0 1 0 1 1 1 0
0 1 0 1 0 0 0 1

]

∈ L2×8. (1.3.15)

In the following proposition, the structure matrices of the fundamental operators
are presented, since they are logic functions.

Proposition 1.3.4 (Structure Matrices of Fundamental Operators)
Using Thm. 1.3.1, it possible to construct the structure matrices of the fundamental
operators in Def. 1.1.1:

• NOT : given x ∈ L2, the structure matrix for negation is denoted by M¬ so
that ¬x ∈ L2 is found as ¬x = M¬ ⋉ x. In fact, looking at Tab. 1.1.1, one
gets:

{

x = δ12 → ¬x =M¬ ⋉ δ12 = Col1(M¬) = δ22
x = δ22 → ¬x =M¬ ⋉ δ22 = Col2(M¬) = δ12,

(1.3.16)

and

M¬ =

[
0 1
1 0

]

; (1.3.17)

• AND : given x1, x2 ∈ L
2, the structure matrix for conjunction is denoted by

M∧ so that x1 ∧ x2 ∈ L
2 is found as x1 ∧ x2 =M∧ ⋉ x1 ⋉ x2. In fact, looking
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at Tab. 1.1.2, one gets:







x1 = x2 = δ12 → x1 ∧ x2 =M∧ ⋉ x1 ⋉ x2 = Col1(M∧) = δ12
x1 = δ12, x2 = δ22 → x1 ∧ x2 =M∧ ⋉ x1 ⋉ x2 = Col2(M∧) = δ22
x1 = δ22, x2 = δ12 → x1 ∧ x2 =M∧ ⋉ x1 ⋉ x2 = Col3(M∧) = δ22
x1 = x2 = δ22 → x1 ∧ x2 =M∧ ⋉ x1 ⋉ x2 = Col4(M∧) = δ22,

(1.3.18)

and

M∧ =

[
1 0 0 0
0 1 1 1

]

; (1.3.19)

• OR: given x1, x2 ∈ L
2, the structure matrix for conjunction is denoted by M∨

so that x1 ∨ x2 ∈ L
2 is found as x1 ∨ x2 = M∨ ⋉ x1 ⋉ x2. In fact, looking at

Tab. 1.1.3, one gets:







x1 = x2 = δ12 → x1 ∨ x2 =M∨ ⋉ x1 ⋉ x2 = Col1(M∨) = δ12
x1 = δ12, x2 = δ22 → x1 ∨ x2 =M∨ ⋉ x1 ⋉ x2 = Col2(M∨) = δ12
x1 = δ22, x2 = δ12 → x1 ∨ x2 =M∨ ⋉ x1 ⋉ x2 = Col3(M∨) = δ12
x1 = x2 = δ22 → x1 ∨ x2 =M∨ ⋉ x1 ⋉ x2 = Col4(M∨) = δ22,

(1.3.20)

and

M∨ =

[
1 1 1 0
0 0 0 1

]

. (1.3.21)

The L.S.T.P. does not have the commutative property. Nevertheless, it is possible
to introduce some particular permutation matrices in order to obtain a pseudo-
commutative property. In the context of L.S.T.P., a useful permutation matrix is
the swap matrix.

Definition 1.3.4 (Swap Matrix)
A swap matrix W[m,n] ∈ L

mn×mn is a permutation matrix with this structure:

W[m,n] := δmn[1, m+ 1, 2m+ 1, . . . , (n− 1)m+ 1,

2, m+ 2, 2m+ 2, . . . , (n− 1)m+ 2,

. . . ,

m, m+m, 2m+m, . . . , (n− 1)m+m].

(1.3.22)

The use of the swap matrix is clarified in the following proposition.

Proposition 1.3.5 (Pseudo-commutativity)
Consider two vectorsX ∈ R

m, Y ∈ R
n and a matrix A ∈ R

r×c, withm, n, r, c ∈ N*.
Then the following properties hold:

• vectors exchange:
W[m,n] ⋉X ⋉ Y = Y ⋉X; (1.3.23)

• vector-matrix exchange:

X ⋉ A = W[r,m] ⋉ A⋉W[m, c] ⋉X = (Im ⊗ A)⋉X. (1.3.24)

The dimensions of the above matrices are: W[m,n] ∈ L
mn×mn, W[r,m] ∈ L

rm×rm

and W[m, c] ∈ L
mc×mc.
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Let us consider two examples: one for vectors exchange and another for vector-
matrix exchange.

Example 1.3.7 (Vectors Exchange)
Assume that x′ = x2 ⋉ x1, where x1, x2 ∈ L

2. In order to write x = x1 ⋉ x2, it is
necessary to swap x1 and x2. Applying Def. 1.3.4 and observing that m = n = 2,
one gets that:

x = x1 ⋉ x2 = W[2, 2] ⋉ x′ = W[2, 2] ⋉ x2 ⋉ x1 =

= δ4
[
1 3 2 4

]
⋉ x2 ⋉ x1 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






⋉ x2 ⋉ x1.

(1.3.25)

Example 1.3.8 (Vector-Matrix Exchange)
Assume that y′ = x1 ⋉ A ⋉ x2, where x1, x2 ∈ L

2, and A ∈ R
2×2. Applying Def.

1.3.4 and observing that m = r = c = 2, one gets W[r,m] = W[m, c] = W[2, 2]. In order
to determine y = (Im ⊗ A)⋉ x1 ⋉ x2 = (Im ⊗ A)⋉ x, one finds:

y = (Im ⊗ A)⋉ x = (Im ⊗ A)⋉ x1 ⋉ x2 =

= W[2, 2] ⋉ A⋉W[2, 2] ⋉ x1 ⋉ x2 = x1 ⋉ A⋉ x2 = y′.
(1.3.26)

In the following proposition, the power reduction matrix Mr is introduced. This
operator is important to reduce the second power of a logic vector.

Proposition 1.3.6 (Power Reduction Matrix)
Consider x ∈ L2, then the following holds:

x2 = x⋉ x =

[
χ
¬χ

]

⋉

[
χ
¬χ

]

=







χχ
χ¬χ
¬χχ
¬χ¬χ






=







χ
0
0
χ






. (1.3.27)

Introducing the power reduction matrix Mr, the equation becomes:

x2 =Mr ⋉ x, (1.3.28)

where Mr = I4
[
1 4

]
.

Thanks to the introduction of the structure matrices of the fundamental operators,
it is now possible to convert a logic function in its equivalent algebraic form starting
from its variables ∈ L2.
Here is a simple algorithm to obtain the structure matrix of a logic function:

1. First, all the boolean operators must be substituted with the corresponding
structure matrices;

2. then, the objective is to move all variables to the right side of the function
and all logic matrices to the left side of the function;

3. then, the logic vectors on the right must be reordered w.r.t. their subscript
index, as seen in previous examples;
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4. now, if there are variables with order greater than one, they must be reduced
with the power reduction matrix Mr;

5. lastly, all matrices Mr of the previous point must be brought to the left of all
logic vectors.

An example where to apply this algorithm is now proposed.

Example 1.3.9 (Logic Function in Algebraic Form)
Let us consider the following logic function:

f(χ1, χ2) = (χ1 ∧ χ2)→ χ2. (1.3.29)

Remembering the conversion of implication, the function is rewritten as:

f(χ1, χ2) = (χ1 ∧ χ2)→ χ2 = ¬(χ1 ∧ χ2) ∨ χ2. (1.3.30)

Following the points of the algorithm, one gets:

f(χ1, χ2) = ¬(χ1 ∧ χ2) ∨ χ2 =

=M∨ ⋉M¬ ⋉M∧ ⋉ x1 ⋉ x2 ⋉ x2 =

=M∨ ⋉M¬ ⋉M∧ ⋉ x1 ⋉ x22 =

=M∨ ⋉M¬ ⋉M∧ ⋉ x1 ⋉Mr ⋉ x2 =

=M∨ ⋉M¬ ⋉M∧ ⋉ (I2 ⊗Mr)⋉ x1 ⋉ x2 =

=Mf ⋉ x1 ⋉ x2 =

=Mf ⋉ x,

(1.3.31)

where Mf =M∨ ⋉M¬ ⋉M∧ ⋉ (I2 ⊗Mr) ∈ L
2×4 and x = x1 ⋉ x2 ∈ L

2.

1.4 Logic Equations and Logic Systems

In the following, logic equations and logic systems will be treated.

Definition 1.4.1 (Logic Equation)
A logic equation asserts the equality of two logic expression. It can be expressed as:

f(χ1, . . . , χn) = β, (1.4.1)

where f(χ1, . . . , χn) is a logic function as defined in Def. 1.1.2 and β ∈ B is a fixed
boolean constant, thus assuming either the value β = 0 or β = 1. The equation is
satisfied for a set of logic constants γ1, . . . , γn ∈ B such that χi = γi, ∀i ∈ {1, n}.

Let us now see an example of logic equation and its solution.

Example 1.4.1 (Logic Equation)
Consider the following logic equation:

f(χ1, χ2, χ3) = (¬χ1 ∧ χ2) ∨ χ3 = β, (1.4.2)

with χ1, χ2, χ3 and β ∈ B.
In order to find the solution of the equation, one needs to find the inputs combina-
tions such that the output of the logic function matches each value of β. Let us call

the variables vector χ =
[
χ1 χ2 χ3

]T
and the solution vector γ =

[
γ1 γ2 γ3

]T
.

Looking at the truth table in Tab. 1.1.7, the solutions can be found as follows:
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• for β = 0: 





χ = γ01 =
[

0 0 0
]T

χ = γ02 =
[

1 0 0
]T

χ = γ03 =
[

1 1 0
]T

,

(1.4.3)

the solution set is:
χ = γ0 =

{
γ01 , γ

0
2 , γ

0
3

}
; (1.4.4)

• for β = 1:






χ = γ11 =
[

0 0 1
]T

χ = γ12 =
[

0 1 0
]T

χ = γ13 =
[

0 1 1
]T

χ = γ14 =
[

1 0 1
]T

χ = γ15 =
[

1 1 1
]T

,

(1.4.5)

the solution set is:

χ = γ1 =
{
γ11 , γ

1
2 , γ

1
3 , γ

1
4 , γ

1
5

}
. (1.4.6)

Definition 1.4.2 (Logic System)
A logic system is a collection of m ∈ N* logic equations with f1(·), . . . , fm(·), logic
functions, whose variables are χi ∈ B, with i = 1, . . . , n, and β1, . . . , βm ∈ B. It
can be expressed as: 





f1(χ11 , . . . , χn1
) = β1

f2(χ12 , . . . , χn2
) = β2

...

fm(χ1m , . . . , χnm
) = βm,

(1.4.7)

where the subscript ij indicates that the i-th variable is involved in the j-th equation,
with 0 ≤ ij ≤ nj, 0 ≤ nj ≤ n and 0 < j ≤ m. In this case, the system solution
is a set of boolean constants γ1, . . . , γn ∈ B which satisfies all the equations in the
system at the same time.

Let us now see an example of logic system and its solution.

Example 1.4.2 (Logic System)
Consider the following logic system:

{

f(χ1, χ2) = ¬χ1 ∨ χ2 = β1

f(χ2, χ3) = χ2 ∧ ¬χ3 = β2.
(1.4.8)

with χ1, χ2, χ3, β1 and β2 ∈ B.

In order to find the solution of the system, χ =
[
χ1 χ2 χ3

]T
=
[
γ1 γ2 γ3

]T
= γ,

for each combination of the constant values β =
[
β1 β2

]T
, one needs to find the

solutions for both logic functions. Looking at the truth table in Tab. 1.4.1, the
solutions can be found as follows:
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• for β =
[
0 0

]T
:







χ = γ
[0, 0]
1 =

[

1 0 0
]T

χ = γ
[0, 0]
2 =

[

1 0 1
]T

,
(1.4.9)

the solution set is:
χ = γ[0, 0] =

{

γ
[0, 0]
1 , γ

[0, 0]
2

}

; (1.4.10)

• for β =
[
0 1

]T
, there are no acceptable solutions:

χ = γ[0, 1] = {∅} ; (1.4.11)

• for β =
[
1 0

]T
:







χ = γ
[1, 0]
1 =

[

0 0 0
]T

χ = γ
[1, 0]
2 =

[

0 0 1
]T

χ = γ
[1, 0]
3 =

[

0 1 1
]T

χ = γ
[1, 0]
4 =

[

1 1 1
]T

,

(1.4.12)

the solution set is:

χ = γ[1, 0] =
{

γ
[1, 0]
1 , γ

[1, 0]
2 , γ

[1, 0]
3 , γ

[1, 0]
4

}

; (1.4.13)

• for β =
[
1 1

]T
:







χ = γ
[1, 1]
1 =

[

0 1 0
]T

χ = γ
[1, 1]
2 =

[

1 1 0
]T

,
(1.4.14)

the solution set is:
χ = γ[1, 1] =

{

γ
[1, 1]
1 , γ

[1, 1]
2

}

. (1.4.15)

χ1 χ2 χ3 χ =
[
χ1 χ2 χ3

]T
f1 = ¬χ1 ∨ χ2 f2 = χ2 ∧ ¬χ3 f =

[
f1 f2

]T

0 0 0
[
0 0 0

]T
1 0

[
1 0

]T

0 0 1
[
0 0 1

]T
1 0

[
1 0

]T

0 1 0
[
0 1 0

]T
1 1

[
1 1

]T

0 1 1
[
0 1 1

]T
1 0

[
1 0

]T

1 0 0
[
1 0 0

]T
0 0

[
0 0

]T

1 0 1
[
1 0 1

]T
0 0

[
0 0

]T

1 1 0
[
1 1 0

]T
1 1

[
1 1

]T

1 1 1
[
1 1 1

]T
1 0

[
1 0

]T

Table 1.4.1: Truth Table of a Logic System

At this point it is interesting to understand how to convert logic equations and
systems to an equivalent algebraic form. This is the topic of the next theorems.
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Theorem 1.4.1 (Algebraic Form of Logic Equations and their Solutions)
It is always possible to convert a logic equation to an equivalent algebraic form:

f(x1, . . . , xn) = b, (1.4.16)

where f(x1, . . . , xn) is a logic function as in Def. 1.1.2 and b ∈ L2 is a fixed logic
vector. Then, f(x1, . . . , xn) can be expressed as:

f(x1, . . . , xn) =Mf ⋉ x = b, (1.4.17)

where Mf ∈ L
2×2n is the structure matrix of f(·) and x = ⋉

n
i=1xi ∈ L

2n .
The solution of the equation is a set of n constant logic vectors c1, . . . , cn ∈ L

2. In
fact, (x1, . . . , xn) = (c1, . . . , cn) implies that f(c1, . . . , cn) = b. It is possible to say
that x = c = ⋉

n
i=1ci ∈ L

2n is the solution of f(x) = b. Looking at eqn. (1.4.17),
one can say that all the solutions are x = δi2n , with i ∈ {i |Coli(Mf ) = b}.

An example is proposed to clarify the last theorem.

Example 1.4.3 (Logic Equation in Algebraic Form and its Solutions)
Let us consider again the logic function of Ex. 1.4.1. It is possible to write a logic
equation involving this function as follows:

f(x1, x2, x3) =Mf ⋉ x =

[
1 0 1 0 1 1 1 0
0 1 0 1 0 0 0 1

]

⋉ x = b. (1.4.18)

Following the result of Thm. 1.4.1, one gets:

• for b = δ22, the solutions are:







x = c01 = δ18
x = c02 = δ58
x = c03 = δ78,

(1.4.19)

then:
x = c0 =

{
c01, c

0
2, c

0
3

}
; (1.4.20)

• for b = δ12, the solutions are:







x = c11 = δ28
x = c12 = δ38
x = c13 = δ48
x = c14 = δ68
x = c15 = δ88,

(1.4.21)

then:
x = c1 =

{
c11, c

1
2, c

1
3, c

1
4, c

1
5

}
. (1.4.22)

Theorem 1.4.2 (Algebraic form of Logic Systems and their Solutions)
It is always possible to rewrite a logic system in an equivalent algebraic form:

f(x) = b, (1.4.23)
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where:

f(·) : L2n → L2m

x 7→ f(x),
(1.4.24)

x ∈ L2n and b ∈ L2m .
Given c1, . . . , cn ∈ L2, the solution of the system is x = c = ⋉

n
i=1ci ∈ L2n if

f(c) = b.

An example for the solutions of a logic system is proposed.

Example 1.4.4 (Logic System in Algebraic Form and its Solutions)
Using the same system as in Ex. 1.4.2, one can get the system described by logic
vectors and matrices:







f1(x1, x2) =M∨ ⋉M¬ ⋉ x1 ⋉ x2 =M∨ ⋉M¬ ⋉ x1 = b1

f2(x2, x3) =M∧ ⋉ x2 ⋉M¬ ⋉ x3 =

=M∧ ⋉W[2, 2] ⋉M¬ ⋉W[2, 2] ⋉ x2 ⋉ x3 =

=M∧ ⋉W[2, 2] ⋉M¬ ⋉W[2, 2] ⋉ x2 = b2.

(1.4.25)

Then:

f(x) =M∨ ⋉M¬ ⋉ x1 ⋉ x2 ⋉M∧ ⋉W[2, 2] ⋉M¬ ⋉W[2, 2] ⋉ x2 ⋉ x3 = b. (1.4.26)

The resulting truth table, obtained translating Tab. 1.4.1 through logic vectors, is
shown in Tab. 1.4.2.
The solutions of f(x) = b, for each possible value of b, are:

• for b = δ44: {

x = c41 = δ38
x = c42 = δ48,

(1.4.27)

then, the solution set is:

x = c4 =
{
c41, c

4
2

}
; (1.4.28)

• for b = δ34, there are no acceptable solutions:

x = c3 = {∅} ; (1.4.29)

• for b = δ24:






x = c21 = δ18
x = c22 = δ58
x = c23 = δ78
x = c24 = δ88,

(1.4.30)

then, the solution set is:

x = c2 =
{
c21, c

2
2, c

2
3, c

2
4

}
; (1.4.31)
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x1 x2 x3 x = ⋉
3
i=1xi f1 =M∨ ⋉M¬ ⋉ x1 ⋉ x2 f2 =M∧ ⋉ x2 ⋉M¬ ⋉ x3 f = f1 ⋉ f2

δ22 δ22 δ22 δ88 δ12 δ22 δ24
δ22 δ22 δ12 δ78 δ12 δ22 δ24
δ22 δ12 δ22 δ68 δ12 δ12 δ14
δ22 δ12 δ12 δ58 δ12 δ22 δ24
δ12 δ22 δ22 δ48 δ22 δ22 δ44
δ12 δ22 δ12 δ38 δ22 δ22 δ44
δ12 δ12 δ22 δ28 δ12 δ12 δ14
δ12 δ12 δ12 δ18 δ12 δ22 δ24

Table 1.4.2: Truth Table of a Logic System in Algebraic Form

• for b = δ14: {

x = c11 = δ28
x = c12 = δ68,

(1.4.32)

then, the solution set is:

x = c1 =
{
c11, c

1
2

}
. (1.4.33)

In the following theorem it is shown how to describe a logic system in algebraic form
in a more compact and elegant way.

Theorem 1.4.3 (Algebraic Form of a Logic System and its Solutions)
The logic system of eqn. (1.4.23) can be rewritten as:

f(x) = L⋉ x = b, (1.4.34)

where L ∈ L2m×2n is the structure matrix of the system.

Let us now provide an example to prove the previous statement.

Example 1.4.5 (Logic System in Algebraic Form)
From the truth table in Tab. 1.4.2 of Ex. 1.4.4, one can compute:







L⋉ δ18 = Col1(L) = δ24
L⋉ δ28 = Col2(L) = δ24
L⋉ δ38 = Col3(L) = δ14
L⋉ δ48 = Col4(L) = δ24
L⋉ δ58 = Col5(L) = δ44
L⋉ δ68 = Col6(L) = δ44
L⋉ δ78 = Col7(L) = δ14
L⋉ δ88 = Col8(L) = δ24.

(1.4.35)

Then, the structure matrix L is as follows:

L =







0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0






. (1.4.36)
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The next theorem offers an alternative procedure to compute L.

Theorem 1.4.4 (Structure Matrix of a Logic System)
The matrix L can be found from the single structure matrices of the equations in
the system.

The procedure of the theorem is clarified by the following example.

Example 1.4.6 (Logic System in Algebraic Form)
The matrix L previously derived in Ex. 1.4.5 can be computed starting from eqn.
(1.4.26) as follows:

f(x1, x2, x3) =M∨ ⋉M¬ ⋉ x1 ⋉ x2 ⋉M∧ ⋉W[2, 2] ⋉M¬ ⋉W[2, 2] ⋉ x2 ⋉ x3 =

=

[
1 1 1 0
0 0 0 1

]

⋉

[
0 1
1 0

]

⋉ x1 ⋉ x2 ⋉

⋉

[
1 0 0 0
0 1 1 1

]

⋉







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






⋉

[
0 1
1 0

]

⋉







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






⋉ x2 ⋉ x3 =

=

[
1 0 1 1
0 1 0 0

]

⋉ x1 ⋉ x2 ⋉

[
0 1 0 0
1 0 1 1

]

⋉ x2 ⋉ x3 =

=Mf1 ⋉ x1 ⋉ x2 ⋉Mf2 ⋉ x2 ⋉ x3 =

=Mf1 ⋉ (I4 ⊗Mf2)⋉ x1 ⋉ x2 ⋉ x2 ⋉ x3 =

=Mf1 ⋉ (I4 ⊗Mf2)⋉ x1 ⋉ x22 ⋉ x3 =

=Mf1 ⋉ (I4 ⊗Mf2)⋉ x1 ⋉Mr ⋉ x2 ⋉ x3 =

=Mf1 ⋉ (I4 ⊗Mf2)⋉ (I2 ⊗Mr)⋉ x1 ⋉ x2 ⋉ x3 =

=

[
1 0 1 1
0 1 0 0

]

⋉













1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






⊗

[
0 1 0 0
1 0 1 1

]







⋉

⋉







[
0 1
1 0

]

⊗







1 0
0 0
0 0
0 1













⋉ x1 ⋉ x2 ⋉ x3 =

=







0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0






⋉ x1 ⋉ x2 ⋉ x3 =

= L⋉ x = b1 ⋉ b2 = b,

(1.4.37)

where L is the same matrix as in eqn. (1.4.36).

As this example just showed, computing all L.S.T.P.s is a long process. Fortunately,
there is an alternative way to compute L. It requires some preliminary results. First
of all, two new operators, called front-maintaining and rear-maintaining operators,
are introduced in the following definition.
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Definition 1.4.3 (Front-maintaining and Rear-maintaining Operators)
The front-maintaining operator is defined as follows:

Dp, q
f

:= Ip ⊗ 1T
q =

=

[

δ1p · · · δ1p
︸ ︷︷ ︸

p

δ2p · · · δ2p
︸ ︷︷ ︸

p

· · · δqp · · · δqp
︸ ︷︷ ︸

p

]

︸ ︷︷ ︸
p q

∈ Lp×p q, (1.4.38)

Instead, the rear-maintaining operator is defined as follows:

Dp, q
r := 1T

p ⊗ Iq =

=

[

δ1q δ2q · · · δqq
︸ ︷︷ ︸

q

· · · δ1q δ2q · · · δqq
︸ ︷︷ ︸

q

]

︸ ︷︷ ︸
p q

∈ Lq×p q. (1.4.39)

Consider now two logic vectors X ∈ Lp and Y ∈ Lq, with p, q ∈ N*. Then, it is
true that: {

Dp, q
f XY = X

Dp, q
r XY = Y.

(1.4.40)

The new operators allow to include in a logic expression a fictitious logic vector that
does not alter the logic function.
Some examples are presented for clarity.

Example 1.4.7 (Front-maintaining Operator)
Let us consider x1, x2, x3 ∈ L

2, so that x = x1 ⋉ x2 ⋉ x3, and a function f(x1, x2)
as follows:

f(x1, x2) =M
′

f ⋉ x1 ⋉ x2, (1.4.41)

with M
′

f ∈ L
2×4. The objective is to write f in terms of x as:

f(x) =Mf ⋉ x. (1.4.42)

Using the front-maintaining operator, one gets:

f(x) =M
′

f ⋉ x1 ⋉ x2 =

=M
′

f ⋉D4, 2
f ⋉ x1 ⋉ x2 ⋉ x3 =

=Mf ⋉ x,

(1.4.43)

where Mf =M
′

f ⋉D4, 2
f ∈ L2×4 and

D4, 2
f = I4 ⊗ 1T

2 =







1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1






. (1.4.44)

Example 1.4.8 (Rear-maintaining Operator)
Let us consider x1, x2, x3 ∈ L

2, so that x = x1 ⋉ x2 ⋉ x3, and a function f(x2, x3)
as follows:

f(x2, x3) =M
′

f ⋉ x2 ⋉ x3, (1.4.45)
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with M
′

f ∈ L
2×4. The objective is to write f in terms of x as:

f(x) =Mf ⋉ x. (1.4.46)

Using the rear-maintaining operator, one gets:

f(x) =M
′

f ⋉ x2 ⋉ x3 =

=M
′

f ⋉D2, 4
r ⋉ x1 ⋉ x2 ⋉ x3 =

=Mf ⋉ x,

(1.4.47)

where Mf =M
′

f ⋉D2, 4
r ∈ L2×4 and

D2, 4
r = 1T

2 ⊗ I4 =







1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1






. (1.4.48)

The last necessary tool to compute L in a new way is described in the following
definition.

Definition 1.4.4 (Khatri-Rao Matrix Product)
Let A ∈ R

r1×c and B ∈ R
r2×c be two matrices, with r1, r2 and c ∈ N*. The

Khatri-Rao matrix product is denoted by ∗ and defined as follows:

C = A ∗B :=
[
Col1(A)⊗ Col1(B) · · · Colc(A)⊗ Colc(B)

]
. (1.4.49)

The product has these properties:

• commutativity with scalars:

(αA) ∗ (βB) = αβ (A ∗B), α, β ∈ R; (1.4.50)

• associativity:
(A ∗B) ∗ (C ∗D) = A ∗ (B ∗ C) ∗D; (1.4.51)

• distributivity w.r.t. addition:

(A+B) ∗ (C +D) = (A ∗ C) + (A ∗D) + (B ∗ C) + (B ∗D), (1.4.52)

when A has the same dimensions as B and C has the same dimensions as D.

The resulting matrix C has dimensions r1 r2× c. It is important to notice that C is
defined only if the two matrices A and B have the same number of columns.

Because of the last remark, it might happen that, to obtain the algebraic form of a
logic system, some equations do not contain all system variables. If this is the case,
the m structure matrices Mj, with j = 1, . . . , m, might not have the same number
of columns or be related to different variables. Either way, Khatri-Rao product could
not be used. A solution is to include all system variables in each equation, using
the operators introduced in Def. 1.4.3, and then rearranging the variables with the
swap matrices.
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Proposition 1.4.1 (Algebraic Form of a Logic System)
Consider a logic system as follows:







f1(x1, . . . , xn) =Mf1 ⋉ x = b1

f2(x1, . . . , xn) =Mf2 ⋉ x = b2
...

fm(x1, . . . , xn) =Mfm ⋉ x = bm,

(1.4.53)

involving m ∈ N* logic functions fj(·) : L2n → L2, with j = 1, . . . , m, n ∈ N*
boolean variables xi ∈ L

2, with i = 1, . . . , n, and m boolean constants bj ∈ L
2.

Each logic function fj(·) has an associated structure matrix Mfj ∈ L
2×2n and each

equation depends on all the variables xi, i.e. on x = ⋉
n
i=1 ∈ L

2n . Then, the structure
matrix of the system, L, can be found by means of the Khatri-Rao product as follows:

L =Mf1 ∗Mf2 ∗ · · · ∗Mfm =

=
[
Col1(Mf1)⋉ · · ·⋉ Col1(Mfm) · · · Col2n(Mf1)⋉ · · ·⋉ Col2n(Mfm)

]
=

=
[
Col1(Mf1)⊗ · · · ⊗ Col1(Mfm) · · · Col2n(Mf1)⊗ · · · ⊗ Col2n(Mfm)

]
.

(1.4.54)

An example is now proposed.

Example 1.4.9 (L computation)
Using the logic system of Ex. 1.4.4, one can write:







f1 =M
′

f1
⋉ x1 ⋉ x2 =

[

1 0 1 1

0 1 0 0

]

⋉ x1 ⋉ x2 =M
′

f1
⋉D4, 2

f ⋉ x1 ⋉ x2 ⋉ x3

f2 =M
′

f2
⋉ x2 ⋉ x3 =

[

0 1 0 0

1 0 1 1

]

⋉ x2 ⋉ x3 =M
′

f2
⋉D2, 4

r ⋉ x1 ⋉ x2 ⋉ x3.

(1.4.55)
The structure matrices of each equation are:







Mf1 =M
′

f1
⋉D4, 2

f =

[

1 0 1 1

0 1 0 0

]

⋉








1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1







=

=

[

1 1 0 0 1 1 1 1

0 0 1 1 0 0 0 0

]

Mf2 =M
′

f2
⋉D2, 4

r =

[

0 1 0 0

1 0 1 1

]

⋉








1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1







=

=

[

0 1 0 0 0 1 0 0

1 0 1 1 1 0 1 1

]

.

(1.4.56)
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Then, the structure matrix of the system is:

L =Mf1 ∗Mf2 =







0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0






, (1.4.57)

which coincides with the matrix in eqn. (1.4.36).

As for a logic equation, a method to find the solutions of a logic system as in eqn.
(1.4.34) is presented in the following theorem.

Theorem 1.4.5 (Solution of a Logic System in Algebraic Form)
A logic system as in eqn. (1.4.34) has solutions if ∃ i ∈ {1, . . . , m} s.t. b = Coli(L).
The solutions are x = δi2n , with i ∈ {i |Coli(L) = b}.

1.5 Non-negative Matrices

Logic vectors and matrices can only contain ones and zeros, by definition. This
means that they are composed of non-negative elements. Considering the non-
negative matrices M = [m]i, j ∈ R

r×c, with 0 < i ≤ r, 0 < j ≤ c, and r, c ∈ N*, one
can classify them in three categories:

1. non-negative: if mi, j ≥ 0, ∀i, j, M is non-negative and is denoted by M ≥ 0;

2. positive: if M is non-negative and ∃ i, j s.t. mi, j > 0, M is positive and is
denoted by M > 0;

3. strictly positive: if mi, j > 0, ∀i, j, M is strictly positive and is denoted by
M ≫ 0.

The same can be said about vectors.
Another classification for non-negative square matrices M = [m]i, j ∈ R

n×n, with
n ∈ N* is the following:

• primitive: if ∃ s ∈ N s.t. M s ≫ 0, then M is said to be a primitive matrix;

• irreducible: if ∀i, j ∈ {1, . . . , n} ∃ si, j ∈ N s.t. [M si, j ]i, j > 0, then M is
irreducible. For a logic matrix M ∈ Ln×n, the irreducibility can be verified as
follows:

M :=
n−1∨

s=0

M s, (1.5.1)

and M is irreducible if M has all entries equal to one.

• reducible: if M is not irreducible, then M is said to be reducible.

The references examined to write this chapter are the following: [10], [11], [12],
[4], [13], [14], [15], [16].
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Chapter 2

Boolean Networks

This chapter focuses on Boolean Networks (B.N.s), dynamical systems with logic
state variables that evolve through logic functions. Moreover, these systems do
not have (boolean) inputs unlike Boolean Control Networks (B.C.N.s), that will
be treated in the next chapter. In this thesis, boolean networks are time-invariant,
discrete-time and have a finite number of nodes. In this chapter we assume that their
update mechanism is deterministic, while probabilistic boolean networks (P.B.N.s)
will be discussed later on.

2.1 Boolean Networks Dynamics

The structure of a boolean network is defined in the following.

Definition 2.1.1 (Boolean Network)
A B.N. is a dynamical system involving boolean state variables that can influence
each other by means of logic functions. The state variables are χ1(t), χ2(t), . . . ,
χn(t) ∈ B, with n ∈ N*. The evolution of the entire network is determined by a set
of n logic first order difference equations:







χ1(t+ 1) = f1 (χ11(t), χ21(t), . . . , χn1
(t))

χ2(t+ 1) = f2 (χ12(t), χ22(t), . . . , χn2
(t))

...

χn(t+ 1) = fn (χ1n(t), χ2n(t), . . . , χnn
(t)) ,

(2.1.1)

where fi(·) : Bn → B, i ∈ {1, n} are the logic functions. It can happen that
an equation does not depend on all logic variables, in fact, χij represents the i-th
variable in the j-th equation, with ij, j ∈ {1, n} and 0 < nj ≤ n.

An example of boolean network is presented next.

Example 2.1.1 (Boolean Network)
Let χ1, χ2 and χ3 ∈ B be the state variables of a B.N.. Then, a possible system of
equations describing the B.N. can be as follows:







χ1(t+ 1) = f1 (χ1(t), χ2(t)) = χ1(t) ∨ χ2(t)

χ2(t+ 1) = f2 (χ1(t), χ3(t)) = χ1(t) ∧ ¬χ3(t)

χ3(t+ 1) = f3 (χ2(t), χ3(t)) = ¬χ2(t) ∧ χ3(t).

(2.1.2)
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Since a B.N. is a logic system, it can be converted to its algebraic form using the
procedures explained in the previous chapter. This is formally expressed in the
following proposition.

Proposition 2.1.1 (Boolean Networks in Algebraic Form)







x1(t+ 1) = f1(x11(t), x21(t), . . . , xn1
(t)) =M

′

f1
⋉ x1(t) =Mf1 ⋉ x(t)

x2(t+ 1) = f2(x12(t), x22(t), . . . , xn2
(t)) =M

′

f2
⋉ x2(t) =Mf2 ⋉ x(t)

...

xn(t+ 1) = fn(x1n(t), x2n(t), . . . , xnn
(t)) =M

′

fn
⋉ xn(t) =Mfn ⋉ x(t),

(2.1.3)
where xij(·) ∈ L

2, fj(·) : L2nj
→ L2, M

′

fj
∈ L2×2nj

, Mfj ∈ L
2×2n , ij, j ∈ {1, n},

0 < nj ≤ n, xj(t) = ⋉
nj

ij=1j
xij(t) ∈ L

2nj
and x(t) = ⋉

n
i=1xi(t) ∈ L

2n .
To summarize this expression, one can rewrite the B.N. as:

x(t+ 1) = L⋉ x(t), (2.1.4)

where L ∈ L2n×2n is the structure matrix.

An example is shown for clarity.

Example 2.1.2 (Boolean Networks in Algebraic Form)
Consider Ex. 2.1.1. Using Thm. 1.4.1, the B.N. becomes:







x1(t+ 1) =M∨ ⋉ x1(t)⋉ x2(t) =M
′

f1
⋉ x1(t)

x2(t+ 1) =M∧ ⋉ x1(t)⋉M¬ ⋉ x3(t) =

=M∧ ⋉ (I2 ⊗M¬)⋉ x2(t) =M
′

f2
⋉ x2(t)

x3(t+ 1) =M∧ ⋉M¬ ⋉ x2(t)⋉ x3(t) =M
′

f3
⋉ x3(t),

(2.1.5)

where:






M
′

f1
=

[

1 1 1 0

0 0 0 1

]

M
′

f2
=

[

1 0 0 0

0 1 1 1

]

⋉

([

1 0

0 1

]

⊗

[

0 1

1 0

])

=

[

0 1 0 0

1 0 1 1

]

M
′

f3
=

[

1 0 0 0

0 1 1 1

]

⋉

[

0 1

1 0

]

=

[

0 0 1 0

1 1 0 1

]

.

(2.1.6)

The next step is to add the missing state variables to each equation, using Def.
1.4.3:







x1(t+ 1) =M
′

f1
⋉ x1(t) =M

′

f1
⋉D4, 2

f ⋉ x1(t)⋉ x3(t)

=Mf1 ⋉ x(t)

x2(t+ 1) =M
′

f2
⋉ x2(t) =M

′

f2
⋉D2, 2

f ⋉ x1(t)⋉ x2(t)⋉ x3(t)

=Mf2 ⋉ x(t)

x3(t+ 1) =M
′

f3
⋉ x3(t) =M

′

f3
⋉D2, 4

r ⋉ x1(t)⋉ x3(t)

=Mf3 ⋉ x(t),

(2.1.7)
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where:






Mf1 =

[

1 1 1 0

0 0 0 1

]

⋉








1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1







=

[

1 1 1 1 1 1 0 0

0 0 0 0 0 0 1 1

]

Mf2 =

[

0 1 0 0

1 0 1 1

]

⋉

[

1 1 0 0

0 0 1 1

]

=

[

0 1 0 1 0 0 0 0

1 0 1 0 1 1 1 1

]

Mf3 =

[

0 0 1 0

1 1 0 1

]

⋉








1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1







=

[

0 0 1 0 0 0 1 0

1 1 0 1 1 1 0 1

]

.

(2.1.8)
Finally, one can compute the structure matrix of the network by means of the
Khatri-Rao product:

L =Mf1 ∗Mf2 ∗Mf3 =















0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1















=

= δ8
[
4 2 3 2 4 4 7 8

]
.

(2.1.9)

Theorem 2.1.1 (Boolean Network Nodes Dynamics)
The algebraic form of eqn. (2.1.4) completely describes the dynamical behaviour of
the n ∈ N* variables of the B.N.. In fact:

x(t) = L⋉ x(t− 1) =

= L2
⋉ x(t− 2) =

...

= Lt−1
⋉ x(1) =

= Lt
⋉ x(0).

(2.1.10)

From eqn. (2.1.3), it is true that ∀ i = 1, . . . , n:

xi(t) =Mfi ⋉ x(t− 1), (2.1.11)

then:
xi(t) =Mfi ⋉ L⋉ x(t− 2) =Mfi ⋉ Lt−1

⋉ x(0). (2.1.12)

From the structure matrix L and the initial state condition x(0), it is possible to
retrieve the evolution of each node of the B.N..

Since a B.N. described by eqn. (2.1.3) is time-invariant and deterministic, given
an initial state condition x(0) ∈ L2n , the state trajectory x(t), with t ∈ Z, is
univocally determined. The structure matrix L, in fact, is unique and does not
change over time. From an initial condition x(0), then, the state trajectory can be
pre-determined using eqn. (2.1.10).
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2.2 Graphical representation

Boolean Network nodes and their interactions are well represented by means of a
directed graph. A brief presentation of a graph is given in the following.

Definition 2.2.1 (Graph)
A graph is a pair G , (V, E), where V , {Vi : i = 1, . . . , n}, with n ∈ N*, is the
set of nodes (also called vertices) and E ⊂ V ×V is the set of edges. There exists
a connection from node Vi to node Vj if the edge ei, j belongs to E.

Definition 2.2.2 (Directed and Undirected Graphs)
A graph is called undirected if every edge is bidirectional, that is ∀ (Vi, Vj) ∈ E also
(Vj, Vi) ∈ E, and the edge connecting Vi and Vj is denoted by Vi ↔ Vj.
If a graph is not undirected, it is directed, and the edge connecting Vi to Vj is
denoted by Vi → Vj.

Every boolean network can be described as a directed graph.

Definition 2.2.3 (Network Graph of a Boolean Network)
Given a B.N., we associate with it a graph whose set of nodes is the set of boolean
variables: V = {χ1, . . . , χn}. A pair (χi, χj) is an edge belonging to E if χi(t) is
an argument of fj(·) in eqn. (2.1.1), thus the node χi(t) affects χj(t+ 1), with 0 <
i, j ≤ n. This directed graph is called network graph of the B.N.. Moreover, thanks
to the equivalence between boolean variables and logic vectors, and consequently
between the eqns. (2.1.1) and (2.1.3), the nodes of a network graph can either be
χi ∈ B or xi ∈ L

2, with 0 < i ≤ n and n ∈ N*.

The next definition introduces the possible degrees of a generic node.

Definition 2.2.4 (In-degree and Out-degree of a Node)
Given a graph as in Def. 2.2.1 and a node Vi ∈ V, the following parameters are
defined:

• in-degree: it is the number of incoming edges of Vi;

• out-degree: it is the number of outgoing edges of Vi;

• total degree: it is the sum of the in-degree and out-degree of Vi.

The interaction between nodes, namely the presence of edges in a graph, is embedded
in the incidence matrix. The definition and algorithm below show how to move from
the graph to the incidence matrix and vice-versa.

Definition 2.2.5 (From Graph to Incidence Matrix)
Given a graph as in Def. 2.2.1, we define incidence matrix the boolean matrix
I(G) ∈ Bn×n whose entries are defined based on the following rule:

[I(G)]i, j =

{

1, if (Vi, Vj) ∈ E

0, otherwise
, ∀ 0 < i, j ≤ n. (2.2.1)
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Algorithm 2.2.1 (From Incidence Matrix to Graph)
Given an incidence matrix I(G) ∈ Bn×n, it is always possible to retrieve the corre-
sponding graph.
Looking at the incidence matrix, one gets the edges connecting the n ∈ N* nodes as
follows:

[I(G)]i, j =

{

1→ (Vi, Vj) ∈ E

0→ (Vi, Vj) /∈ E
, ∀ 0 < i, j ≤ n. (2.2.2)

The next proposition shows an alternative way to derive the incidence matrix.

Proposition 2.2.1 (From Boolean Network to Incidence Matrix)
The incidence matrix I(G) can be directly derived from the logic equations of a
B.N. as in eqn. (2.1.3) in the following way:

[I(G)]i, j =

{

1, if fj(·) depends on xi(t)

0, otherwise
, ∀ 0 < i, j ≤ n. (2.2.3)

It is now clear that the incidence matrix has been introduced because it provides
the same information as a network graph.
An example is presented in the following.

Example 2.2.1 (Network Graph and Incidence Matrix)
Consider again Ex. 2.1.1. It is possible to build the network graph G , (V, E)
applying Def. 2.2.3. The set of nodes is V = {χ1, χ2, χ3} and the set of edges is
E = {e1, 1, e2, 1, e1, 2, e3, 2, e2, 3, e3, 3}. The incidence matrix can be retrieved either
from Def. 2.2.5 or from Prop. 2.2.1 as follows:

I(G) =





1 1 0
1 0 1
0 1 1



 . (2.2.4)

The resulting graph G , (V, E) is reported in Fig. 2.2.1.

χ1

χ2 χ3

Figure 2.2.1: Network Graph of a Boolean Network

The correspondence between network graphs (or incidence matrices) and boolean
networks is clarified in the following remark.

Remark 2.2.1 (Network Graphs)
A network graph and an incidence matrix do not represent univocally the B.N. of

37



CHAPTER 2. BOOLEAN NETWORKS

eqn. (2.1.1). In fact, it is true that for a B.N. there exists a single network graph
and a single incidence matrix. Instead, the formers can correspond to more than
one B.N.. In two distinct B.N.s the dynamical behaviours can be different but the
corresponding logic functions depend on the same nodes.
It is easy to see that network graphs and incidence matrices do not take into ac-
count the logic operators that connect the nodes of the B.N. but only their mutual
influence.

Because network graphs and incidence matrices do not describe the network be-
haviour, a more powerful graph is now presented.

Definition 2.2.6 (State Graph of a Boolean Network)
Consider a B.N. in algebraic form, described as in eqn. (2.1.3). A directed graph
G , {V , E} is the state graph of the B.N. if its vertices correspond to all the values
that the state vector can assume, i.e. V = {δi2n : i = 1, . . . , 2n}, and the edges ∈ E
are the elements ei, j =

(
δi2n , δ

j
2n

)
s.t. [L]j, i = 1, with 0 < i, j ≤ 2n (equivalently,

Coli(L) = δj2n).

Let us now explore a particular case of the previous definition.

Definition 2.2.7 (Self Loops of a State Graph)
Given the same configuration as in Def. 2.2.6, a particular edge exists when [L]i, i =
1, with 0 < i ≤ 2n and n ∈ N*. The edge is called self-loop because the state of the
B.N. remains unchanged over time:

δi2n = x(t+ 1) = L⋉ x(t) = L⋉ δi2n . (2.2.5)

In the state graph of a B.N. each node has exactly one outgoing edge which implies
that its out-degree is equal to one. In fact, since L is deterministic and time-
invariant, a state with value δi2n at time t evolves to another single state δj2n at time
t+ 1, with 0 < i, j ≤ 2n and n ∈ N*. Algebraically, it holds that:

δj2n = x(t+ 1) = L⋉ x(t) = L⋉ δi2n . (2.2.6)

Instead, the in-degree of the nodes in a state graph has no restrictions. In fact,
a node δj2n can be reached at time t + 1 from more than one node at time t. For
example, if x(t) = δi12n or x(t) = δi22n , with 0 < i1, i2, j ≤ 2n and i1 6= i2, then it
follows that:

δj2n = x(t+ 1) = L⋉ x(t) = L⋉ δi12n = L⋉ δi22n . (2.2.7)

To conclude, since in a state graph there are 2n nodes and each of them has one
outgoing edge, there are exactly 2n edges and the in-degree of each node is ≤ 2n.
The following definition introduces the idea of a path for a graph.

Definition 2.2.8 (Path in a Graph)
A path of the state graph G = (V, E), as in Def. 2.2.1, from node Vi1 to node Vik+1

is an ordered sequence of k > 0 distinct consecutive edges:





(Vi1 , Vi2) , . . . ,

(
Vik , Vik+1

)

︸ ︷︷ ︸

k






, (2.2.8)

where the sequence of k+1 distinct vertices Vi1 , . . . , Vik+1
is the vertex sequence of

the path.
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The path in a state graph is examined in the next definition.

Definition 2.2.9 (Path in a State Graph)

A path of the state graph G , {V , E}, as in Def. 2.2.6, from node δi12n to node δ
ik+1

2n

is an ordered sequence of 0 < k ≤ 2n distinct consecutive edges:






(
δi12n , δ

i2
2n

)
, . . . ,

(

δik2n , δ
ik+1

2n

)

︸ ︷︷ ︸

k







, (2.2.9)

where the sequence of k + 1 distinct vertices δi12n , . . . , δ
ik+1

2n is the state sequence of
the path.

Proposition 2.2.2 (Path in a State Graph)
Consider a B.N. as in eqn. (2.1.4) and two states δi2n and δj2n ∈ L

2n . A directed
path from δi2n to δj2n exists if and only if

∃ k, 0 < k ≤ 2n, n ∈ N* | δj2n = Lk
⋉ δi2n . (2.2.10)

The following remark explains another relation between the structure matrix of a
B.N. and its state graph.

Remark 2.2.2 (L and State Graph)
The structure matrix and the state graph of a B.N. as the one in eqn. (2.1.4) bring
the same information about the network.

The same relation applies to a B.N. and its state graph.

Proposition 2.2.3 (Boolean Networks and State Graph)
Considering again the B.N. in eqn. (2.1.4), it is possible to say that there exists a
one-to-one correspondence between the B.N. and its state graph.

The following example shows how to build the state graph of a boolean network.

Example 2.2.2 (State Graph)
Consider the B.N. of Ex. 2.1.2 which is fully characterized by the structure matrix
L of eqn. (2.1.9). The set of vertices V and of edges E can be found looking at L.
It follows that:







V =
{
δi23 : i = 1, 2, 3, 4, 5, 6, 7, 8

}

E = {(δ18, δ
4
8) , (δ

2
8, δ

2
8) , (δ

3
8, δ

3
8) , (δ

4
8, δ

2
8) ,

(δ58, δ
4
8) , (δ

6
8, δ

4
8) , (δ

7
8, δ

7
8) , (δ

8
8, δ

8
8)}.

(2.2.11)

Then, the state graph is reported in Fig. 2.2.2.

2.3 Fixed Points and Limit Cycles

Fixed points and limit cycles are elements of fundamental importance because they
are responsible for the asymptotic behaviour of a boolean network. Furthermore,
they are crucial in the study of stability of a B.N.
The concepts of fixed point and limit cycle are now introduced.
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δ48

δ58

δ68

δ78

δ88

δ18 δ28

δ38

Figure 2.2.2: State Graph of a Boolean Network

Definition 2.3.1 (Fixed Point)
Given a B.N. described as in eqn. (2.1.4) and a time instant t ∈ Z, a state δp2n is
said to be a fixed point (or equilibrium point) of the B.N. if it holds that:

δp2n = x(t+ 1) = L⋉ x(t) = L⋉ δp2n . (2.3.1)

Definition 2.3.2 (Limit Cycle)
Given a B.N. described as in eqn. (2.1.4), a limit cycle of length t ∈ Z is an ordered
sequence of t distinct states {δc2n , L⋉ δc2n , . . . , L

t−1
⋉ δc2n} if it holds that:

δc2n = x(t) = Lt
⋉ x(0) = Lt

⋉ δc2n . (2.3.2)

From these definitions it follows that a fixed point is a self-loop in the state graph
of Def. 2.2.6, while a limit cycle is a loop in the state graph.
Let us now define the attractors which will be useful in the following.

Definition 2.3.3 (Attractors)
In a B.N. as in eqn. (2.1.4), an attractor is either a fixed point or a limit cycle.
Therefore, there can be multiple attractors in this B.N..

The following proposition holds true because the B.N.s of this chapter are determin-
istic and time-invariant.

Proposition 2.3.1 (Convergence of a Boolean Network)
Given a deterministic and time-invariant B.N. as in eqn. (2.1.4), its dynamics con-
verge to a specific attractor as in Def. 2.3.3. In detail, an initial state condition
x(0) = δi2n , with 0 < i ≤ 2n, converges to a fixed point or to a limit cycle. The
states which are not fixed points or part of limit cycles are called transient states.

As a further consideration, a transient state converges to a single attractor and an
attractive state belongs to one and only one limit cycle.
Thanks to the structure matrix L it is possible to identify the states that are fixed
points and their number.

Theorem 2.3.1 (Fixed Points of a Boolean Network)
Given a B.N as in eqn. (2.1.4), the state δi2n = δp2n ∈ L

2n is a fixed point if the i-th
element of the diagonal of the structure matrix is unitary, namely [L]i, i = 1. Then,
the number Np of fixed points can be found as follows:

Np := Trace(L). (2.3.3)
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A fixed point can be considered as a limit cycle of length one. The identification
of limit cycles of length greater than one is harder and it requires a preliminary
concept.

Definition 2.3.4 (Proper Factors)
Given two numbers a and b ∈ N*, b is said to be a proper factor of a if a

b
∈ N* and

b < a. The set of all proper factors of a is denoted by P(a).

Example 2.3.1 (Proper Factors)
The proper factors of the number a = 16 are:

P(16) = {1, 2, 4, 8} . (2.3.4)

The next theorem shows an algorithm to find the number of limit cycles of a B.N..

Theorem 2.3.2 (Limit Cycles of a Boolean Network)
Consider a B.N. as in eqn. (2.1.4). The number Ns of limit cycles of length s ∈ N*
is:

Ns :=
Trace(Ls)−

∑

k∈P(s) k Nk

s
, 2 ≤ s ≤ 2n, (2.3.5)

with P(s) the set of proper factors of s. When s = 1, the formula reduces to
N1 = Trace(L) = Np which is eqn. (2.3.3) for the number of fixed points.

Let us now explore the two limit cases for the limit cycles. In a B.N. with n ∈ N*
boolean variables the number of states is 2n. Then, it might happen that a B.N.
has a limit cycle of length 2n, as shown in the following.
Consider the structure matrix L = δ8

[
2 3 4 5 6 7 8 1

]
. The state graph of

the associated B.N. with n = 3 variables is reported in Fig. 2.3.1.

δ18

δ28

δ38

δ48

δ58

δ88

δ78

δ68

Figure 2.3.1: Limit Cycle of length 2n of a Boolean Network

Let us now consider the opposite case: 2n limit cycles of unitary length, or equiva-
lently 2n fixed points.
Consider the structure matrix L = δ8

[
1 2 3 4 5 6 7 8

]
. The state graph of

the associated B.N. with n = 3 variables is reported in Fig. 2.3.2.
The following example explains how to compute the number of limit cycles in a
B.N.. A brief definition of the powers of the structure matrix L is given before.
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δ18 δ28 δ38 δ48

δ58 δ68 δ78 δ88

Figure 2.3.2: 2n Limit Cycles of unitary length of a Boolean Network

Definition 2.3.5 (Powers of L)
Given a B.N. as in eqn. (2.1.4), the s ∈ N* power of the structure matrix L is found
as follows:

Ls = Ls−1
⋉ L =

= Ls−2
⋉ L⋉ L =

...

= L⋉ L⋉ . . . ⋉ L
︸ ︷︷ ︸

s

.

(2.3.6)

Example 2.3.2 (Fixed Points and Limit Cycles)
Given a B.N. as in eqn. (2.1.4) with:

L = δ8
[
5 2 7 1 8 2 3 4

]
, (2.3.7)

in order to find the number of limit cycles and their lengths, let us begin by com-
puting the powers of L defined in Def. 2.3.5. Since the number of states is 23 = 8,
one needs to compute the first eight powers of L and then apply eqn. (2.3.5):

L1 = δ8
[
5 2 7 1 8 2 3 4

]
→ N1 =

Trace(L1)

1
= 1;

L2 = δ8
[
8 2 3 5 4 2 7 1

]
→ N2 =

Trace(L2)− 1N1

2
= 1;

L3 = δ8
[
4 2 7 8 1 2 3 5

]
→ N3 =

Trace(L3)− 1N1

3
= 0;

L4 = δ8
[
1 2 3 4 5 2 7 8

]
→ N4 =

Trace(L4)− 1N1 − 2N2

4
= 1;

L5 = δ8
[
5 2 7 1 8 2 3 4

]
→ N5 =

Trace(L5)− 1N1

5
= 0;

L6 = δ8
[
8 2 3 5 4 2 7 1

]
→ N6 =

Trace(L6)− 1N1 − 2N2 − 3N3

6
= 0;

L7 = δ8
[
4 2 7 8 1 2 3 5

]
→ N7 =

Trace(L7)− 1N1

7
= 0;

L8 = δ8
[
1 2 3 4 5 2 7 8

]
→ N8 =

Trace(L8)− 1N1 − 2N2 − 4N4

8
= 0.

(2.3.8)

In this B.N., then, there are three limit cycles of lengths one, two and four, as
confirmed by the state graph in Fig. 2.3.3. Since a state can belong to a single limit
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cycle, the computations for cycles of length equal to five or greater could have been
avoided. In fact, the first three cycles include seven states. As a consequence, it is
not possible to build a limit cycle of length equal to or greater than five.

δ18 δ58

δ88δ48

δ28 δ68

δ38 δ78

Figure 2.3.3: Limit Cycles and Fixed Points of a Boolean Network

It would be interesting now to define a method to find which nodes are associated
with a specific limit cycle. This is presented in the following proposition.

Proposition 2.3.2 (Elements of a Limit Cycle)
Given a B.N. as in eqn. (2.1.4), let us define:

Cs =
{

i : [Ls]i, i

}

, s = 1, . . . , 2n, (2.3.9)

and

Ds = Cs ∩




⋂

i∈P(s)

Cc
i



 , (2.3.10)

where Cc
i = U \Ci is the complementary set of Ci w.r.t. the set U = {1, 2, . . . , 2n},

with n ∈ N*. Ds is the set containing all elements that belong to a cycle of length
s. This is equal to saying that {δi2n , L⋉ δi2n , . . . , L

s
⋉ δi2n} is a limit cycle of length

s if i ∈ Ds.

An example of the procedure is now shown.

Example 2.3.3 (Elements of a Limit Cycle)
Consider the previous Ex. 2.3.2. Let us compute the sets Cs and Ds as follows:

C1 = {2} → D1 = C1 = {2}

C2 = {2, 3, 7} → D2 = C2 ∩ C
c
1 = {3, 7}

C4 = {1, 2, 3, 4, 5, 7, 8} → D4 = C4 ∩ C
c
1 ∩ C

c
2 = {1, 4, 5, 8} ,

(2.3.11)

with

U = {1, 2, 3, 4, 5, 6, 7, 8}

Cc
1 = U \ C1 = {1, 3, 4, 5, 6, 7, 8}

Cc
2 = U \ C2 = {1, 4, 5, 6, 8} .

(2.3.12)
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The indices of the distinct sets Ds are the indices of the states that belong to a
specific limit cycle, in the correct sequence. In this example, the limit cycles are:

D1 : δ
2
8

L
−→ δ28

D2 : δ
3
8

L
−→ δ78

D4 : δ
1
8

L
−→ δ58

L
−→ δ88

L
−→ δ48.

(2.3.13)

The node δ68 is a transient state and therefore does not belong to any limit cycle.
Fig. 2.3.3 highlights the distinct limit cycles and the transient state.

δ18 δ58

δ88δ48

δ28 δ68

δ38 δ78

Figure 2.3.4: Limit Cycles and Transient State of a Boolean Network

2.4 Temporal analysis

Once transient states and the states belonging to attractors have been identified,
the next step to fully understand a B.N is to find towards which attractor each
transient state converges and also the number of steps to reach it. More generally,
it is interesting to predict the convergence of the entire boolean network from each
possible initial condition x(0) = δi2n , i = 1, . . . , 2n with n ∈ N*.

Proposition 2.4.1 (Attractors Collection)
Let us denote by m ∈ N* the number of limit cycles in a B.N described as in eqn.
(2.1.4). Then denote by Ci, with i = 1, . . . , m, the set of nodes that belong to the
i-th cycle. Finally let Ω =

⋃m

i=1 Ci be the set containing all the states that are part
of a limit cycle. The sets Ci are disjoint, i.e. C1 ∩ C2 ∩ · · · ∩ Cm = ∅. This holds
because the states in a state graph have unitary out-degree.

Let us see an example.

Example 2.4.1 (Attractors Collection)
By referring to Ex. 2.3.3, one can obtain the following sets:

D1 → C1 =
{
δ28
}

D2 → C2 =
{
δ38, δ

7
8

}

D4 → C4 =
{
δ18, δ

4
8, δ

5
8, δ

8
8

}
,

(2.4.1)

which are disjoint sets, as expected. Then, Ω is as follows:

Ω = C1 ∩ C2 ∩ C4 =
{
δ18, δ

2
8, δ

3
8, δ

4
8, δ

5
8, δ

7
8, δ

8
8

}
. (2.4.2)
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The following proposition introduces a time concept related to attractors.

Proposition 2.4.2 (Absorption Time of a State)
Given a B.N. described as in eqn. (2.1.4), for each initial condition x(0) = δi2n , i =
1, . . . , 2n with n ∈ N*, the evolution converges to one attractor in a finite number
of steps. The minimum time needed to reach that attractor is Tt [x(0)] ∈ N and it
holds that x (Tt [x(0)]) ∈ Ω. Finally, Tt [x(0)] is called absorption time of the initial
condition x(0).

If the initial state δi2n is already part of an attractor, its absorption time is:

Tt
[
δi2n
]
= 0. (2.4.3)

The absorption times of the previous example are evaluated in the following.

Example 2.4.2 (Attractor and Absorption Time of a State)
Let us consider again Ex. 2.3.3. By using Prop. 2.4.2 one can write the evolution
of the trajectory for the first 23 steps from each initial condition:

δ18 :
{
δ18, δ

5
8, δ

8
8, δ

4
8, δ

1
8, δ

5
8, δ

8
8, δ

4
8,
}
→ h = 1, k = 5

δ28 :
{
δ28, δ

2
8, δ

2
8, δ

2
8, δ

2
8, δ

2
8, δ

2
8, δ

2
8,
}
→ h = 1, k = 2

δ38 :
{
δ38, δ

7
8, δ

3
8, δ

7
8, δ

3
8, δ

7
8, δ

3
8, δ

7
8,
}
→ h = 1, k = 3

δ48 :
{
δ48, δ

1
8, δ

5
8, δ

8
8, δ

4
8, δ

1
8, δ

5
8, δ

8
8,
}
→ h = 1, k = 5

δ58 :
{
δ58, δ

8
8, δ

4
8, δ

1
8, δ

5
8, δ

8
8, δ

4
8, δ

1
8,
}
→ h = 1, k = 5

δ68 :
{
δ68, δ

2
8, δ

2
8, δ

2
8, δ

2
8, δ

2
8, δ

2
8, δ

2
8,
}
→ h = 2, k = 3

δ78 :
{
δ78, δ

3
8, δ

7
8, δ

3
8, δ

7
8, δ

3
8, δ

7
8, δ

3
8,
}
→ h = 1, k = 3

δ88 :
{
δ88, δ

4
8, δ

1
8, δ

5
8, δ

8
8, δ

4
8, δ

1
8, δ

5
8,
}
→ h = 1, k = 5,

(2.4.4)

where h and k are the indices of the first two repeated elements in a chain. Moreover,
the length of a limit cycle is exactly k − h and Tt [δ

i
2n ] = h− 1. As a consequence:

δ18 ∈ Ω→ Tt
[
δ12n
]
= 0

δ28 ∈ Ω→ Tt
[
δ22n
]
= 0

δ38 ∈ Ω→ Tt
[
δ32n
]
= 0

δ48 ∈ Ω→ Tt
[
δ42n
]
= 0

δ58 ∈ Ω→ Tt
[
δ52n
]
= 0

δ68
L
−→ δ28 ∈ Ω→ Tt

[
δ62n
]
= 1

δ78 ∈ Ω→ Tt
[
δ72n
]
= 0

δ88 ∈ Ω→ Tt
[
δ82n
]
= 0.

(2.4.5)

The same results can be obtained observing the state graph of Fig. 2.3.4.

Prop. 2.4.2 introduced the concept of absorption time of a state. The generalization
to the entire B.N. is done in the following definition.

Definition 2.4.1 (Absorption Time of a Boolean Network)
Given a B.N. as in eqn. (2.1.4), the absorption time of the B.N. is denoted by Tt
and defined as follows:

Tt = max
x(0)∈L2n

{Tt [x(0)]} . (2.4.6)
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According to the previous definition, the evolution of a B.N. enters a limit cycle
after Tt steps. From Prop. 2.4.2, one can conclude that Tt [x(0)] = 2n − 1 in the
worst case (Fig. 2.4.1, with x(0) = δ18). Then, from Def. 2.4.1, Tt ≤ 2n − 1.

δ18 δ28 δ38 δ48 δ58 δ68 δ78 δ88

Figure 2.4.1: Absorption Time, in the worst case, of a Boolean Network

Let us see an example.

Example 2.4.3 (Absorption Time of a Boolean Network)
Consider Ex. 2.4.2. Using eqn. (2.4.6), one easily gets:

Tt = 1. (2.4.7)

In fact, the transient state δ68 needs one step to enter the fixed point δ28. In conclusion,
the entire B.N. evolution belongs to a cycle after one step.

To further investigate the absorption time, a new concept is now introduced.

Proposition 2.4.3 (Powers of the Structure Matrix)
Let r , 2n × 2n denote the number of distinct values that the structure matrix L
can take. This holds because there are 2n columns and each can assume 2n different
values. Then, it is true that the sequence of the first r + 1 powers of L

{I2n×2n , L, . . . , L
r} (2.4.8)

contains two elements which are equal.

Let us now define a new element.

Definition 2.4.2 (Smallest Exponent r0)
Given a B.N. as in eqn. (2.1.4), r0 is defined as the smallest exponent r such that:

∃ τ, 0 < τ < r : Lr = Lr+τ . (2.4.9)

An example is now shown.

Example 2.4.4 (Powers of the Structure Matrix and r0)
Let us consider the structure matrix L of Ex. 2.4.3. According to Prop. 2.4.3, the
first r + 1 powers of L are related as follows:

L0 = I8×8

L1 = L5 = L9 = · · · = L61

L2 = L6 = L10 = · · · = L62

L3 = L7 = L11 = · · · = L63

L4 = L8 = L12 = · · · = L64.

(2.4.10)

From Def. 2.4.2, one can obtain that r0 = 1 and τ = 4.
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An insight about r0 is presented in the following.

Proposition 2.4.4 (r0)
Given a B.N. as in eqn. (2.1.4), for every initial condition x(0) ∈ L2n the B.N.
evolution becomes part of a limit cycle after (at most) r0 steps. In fact, from Def.
2.4.2, ∃ τ : Lr0 = Lr0+τ . Then, the following holds true:

x(r0) = Lr0 ⋉ x(0) = Lr0+τ
⋉ x(0) = x(r0 + τ). (2.4.11)

This shows that x(r0) is part of a cycle, ∀x(0) ∈ L2n .

Remembering that all transient states belong to a specific cycle, r0 must be in the
interval {0, . . . , 2n − 1}.
The relation between the absorption time Tt and the exponent r0 is explained in the
following theorem.

Theorem 2.4.1 (Absorption Time and r0)
Given a B.N. as in eqn. (2.1.4), the absorption time Tt and the exponent r0 coincide,
thus:

Tt = r0. (2.4.12)

Let us see an example for clarity.

Example 2.4.5 (Absorption Time and r0)
From Exs. 2.4.3 and 2.4.4, it holds that:

Tt = r0 = 1. (2.4.13)

2.5 Boolean Network States Classification

This section focuses on the classification of the states of a B.N. so that new properties
can be introduced.

2.5.1 Attractors and Basin of Attraction

Besides attractive and transient states, another classification is possible.

Definition 2.5.1 (Basin of Attraction)
A set Si is the basin of attraction of Ci as defined in Prop. 2.4.1, if it contains the
states of Ci and the states that converge to Ci. A state x(0) = δi2n belongs to Si if:

∃ t : x(t) = Lt
⋉ x(0) = Lt

⋉ δi2n ∈ Ci, ∀ t ≥ Tt [x(0)]. (2.5.1)

The following definition is needed in order to determine the basins of attraction of
a B.N..

Definition 2.5.2 (Parent States in k-steps)
Consider two logic states δi2n and δj2n ∈ L

2n . If it holds that:

δj2n = Lk
⋉ δi2n , (2.5.2)
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then δi2n is called a parent state in k steps of δj2n , with k ∈ N*.
Since a state can be reached from many other states (the in-degree of a state is
always ≤ 2n), the set of all parent states in k-steps of δj2n can be written as follows:

L−k
[
δj2n
]
=
{
δi2n | δ

j
2n = Lk

⋉ δi2n
}
. (2.5.3)

To further generalize, given an attractor C, the parent states in k-steps of C are:

L−k [C] =
{
δi2n |L

k
⋉ δi2n ∈ C

}
. (2.5.4)

In the case k = 0, the set of parent states in 0-steps is:

L−0 [C] =
{
δi2n |L

0
⋉ δi2n = δi2n ∈ C

}
= C. (2.5.5)

The following proposition is very important.

Proposition 2.5.1 (Basin of Attraction)
The basin of attraction S of an attractor C is as follows:

S =
Tt⋃

i=0

L−i[C], (2.5.6)

and C ⊆ S. This is due to the fact that after Tt steps all nodes of a state graph
belong to a limit cycle, specifically to C.

Since the trajectory of a deterministic B.N. can be univocally predicted given any
initial condition, each state is associated with one and only one attractor. Then,
given an attractor C, the basin of attraction is also defined as follows:

S =
{
δi2n ∈ L

2n | if x(0) = δi2n then x(t) ∈ C, ∀t ≥ Tt
}
. (2.5.7)

The computation of L−k
[
δj2n
]
is explained in the following proposition.

Proposition 2.5.2 (Parent States and Structure Matrices)
From Def. 2.5.2, the collection of parent states in k-steps of δi2n ∈ L

2n , with k ∈ N*,
can be found as follows:

L−k
[
δj2n
]
=
{
δi2n |Coli(L

k) = δj2n
}
. (2.5.8)

Let us consider an example of basins of attraction in a B.N..

Example 2.5.1 (Parent States and Structure Matrices)
Following Ex. 2.4.1, the basins of attractions are:

S1 = C1 ∪ δ
6
8 =

{
δ28, δ

6
8

}

S2 = C2 =
{
δ38, δ

7
8

}

S4 = C4 =
{
δ18, δ

4
8, δ

5
8, δ

8
8

}
,

(2.5.9)

which are all disjoint sets, constituting a complete partition of L8. In fact:

L8 = S1 ∪ S2 ∪ S4 =
{
δ18, δ

2
8, δ

3
8, δ

4
8, δ

5
8, δ

6
8, δ

7
8, δ

8
8

}
. (2.5.10)

The basins of attraction are highlighted in Fig. 2.5.1.
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S1

S2

S4

δ18 δ58

δ88δ48

δ28 δ68

δ38 δ78

Figure 2.5.1: Basins of Attraction of a Boolean Network

2.5.2 Accessibility

Another classification for the states of a B.N. is called accessibility and it concerns
the possibility that a state evolves into another one.

Definition 2.5.3 (Accessibility)
Consider a B.N. as in eqn. (2.1.4), a state δj2n ∈ L

2n is accessible from a state
δi2n ∈ L

2n , with 0 < i, j ≤ 2n, if ∃ k, 0 ≤ k ≤ 2n − 1 | δj2n = Lk
⋉ δi2n .

Accessibility is an equivalent concept to parenthood. In fact, δj2n is accessible from
δi2n is another way of saying that δi2n is a parent of δj2n as in the following:

∃ k, 0 ≤ k ≤ 2n − 1 | δi2n ∈ L
−k
[
δj2n
]
. (2.5.11)

In the state graph of a B.N., the accessibility of δj2n from δi2n is equivalent to a
directed path from δi2n to δj2n .
It is important to notice that this concept is not symmetric. In fact, the accessibility
of δj2n from δi2n does not imply the accessibility of δi2n from δj2n .
A symmetric relation is given in the next definition.

Definition 2.5.4 (Communicability)
The communicability of two states δi2n and δj2n requires the accessibility in both
directions. It must hold that:

{

∃ k, 0 ≤ k ≤ 2n − 1 | δj2n = Lk
⋉ δi2n

∃h, 0 ≤ h ≤ 2n − 1 | δi2n = Lh
⋉ δj2n .

(2.5.12)

This definition allows us to define the communication classes.

Definition 2.5.5 (Communication Classes)
A communication class K contains all the states that can communicate with each
other. Specifically, a state δi2n belongs to the class K if it communicates with the
other states in K and with no state outside K.
Then, given two states δi2n and δj2n , there are two possibilities:

• δi2n and δj2n belong to the same communication class because they communicate
with each other;

• δi2n and δj2n belong to different communication classes because they do not
communicate with each other. The following cases can happen:
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- δj2n is accessible from δi2n ;

- δi2n is accessible from δj2n

- δi2n and δj2n do not interact.

Let us now give a classification of communication classes.

Definition 2.5.6 (Types of Communication Classes)
A communication class K belongs to either one of the two following options:

• closed: when there are no transitions from nodes in K to nodes in other classes;

• transient: when there exists a path from a node in K to a node in another
class.

The following proposition relates communication classes with limit cycles.

Proposition 2.5.3 (Communication Classes and Limit Cycles)
Given a B.N. as in eqn. (2.1.4), an attractor of the B.N. corresponds to a closed
class in the state graph. This is why closed classes can also be called attractive
classes.

Before showing an example about communication classes, let us remark that tran-
sient classes always contain only one state. In fact, a node of a transient class does
not communicate with every other node and it accesses another class.

Example 2.5.2 (Communication Classes)
Consider again Ex. 2.3.2. The communication classes of this B.N. are:

K1 =
{
δ18, δ

4
8, δ

5
8, δ

8
8

}

K2 =
{
δ28
}

K3 =
{
δ38, δ

7
8

}

K4 =
{
δ68
}
,

(2.5.13)

where K1 and K3 are closed classes of a limit cycle, K2 is a closed class of a fixed
point and K4 is a transient class, that accesses K2. The communication classes are
highlighted in Fig. 2.5.2, where closed classes are enclosed in colored rectangles.

Proposition 2.5.4 (Unique Limit Cycle)
In a B.N. there is a single communication class if and only if all the states in the
B.N. belong to a limit cycle.

An example of the previous proposition is the state graph of Fig. 2.3.1.

2.6 Stability of a Boolean Network

The usefulness of rewriting the B.N. dynamics in algebraic form as in eqn. (2.1.4)
is that it is possible to use the tools of Systems Theory to discuss the stability of
the network.
The following two examples are important to recall the concept of equilibrium point
which is crucial when studying the stability of a system.
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K1

K2

K3

K4

δ18 δ58

δ88δ48

δ28 δ68

δ38 δ78

Figure 2.5.2: Communication Classes of a Boolean Network

Example 2.6.1 (Equilibrium Point)
Given a B.N. as in eqn. (2.1.4), with the structure matrix L ∈ L4×4 as follows:

L =







0 0 1 0
0 1 0 0
0 0 0 0
1 0 0 1






. (2.6.1)

In this case, looking at the trace of L, there are two equilibrium points: δ24 and δ44.

Example 2.6.2 (Equilibrium Point)
Given a B.N. as in eqn. (2.1.4), with the structure matrix L ∈ L4×4 as follows:

L =







0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0






. (2.6.2)

In this case, the trace of L is null which means that there are no equilibrium points,
but only limit cycles.

The stability of a B.N. is defined in the following definition.

Definition 2.6.1 (Global Stability)
A B.N. is said to be globally stable (G.S.) if the attractor set Ω contains only one
fixed point. Equivalently, the B.N. is G.S. if there exists a fixed point δi2n ∈ L

2n ,
such that

∀x(0) ∈ L2n , ∃Tt ∈ Z
+, Tt ≥ 0 : x(t) = δi2n , ∀ t ≥ Tt. (2.6.3)

In order to establish if a B.N. is globally stable, there is no need to find all attractors
in the network. The next theorem exploits the structure matrix L to deduce the
stability.

Theorem 2.6.1 (Global Stability)
A B.N. as in eqn. (2.1.4) is G.S. if and only if the following two equivalent statements
hold:
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1. The only power such that

Trace [Ls]−
∑

k∈P(s)

kNk > 0 (2.6.4)

is s = 1, and it must be Trace[L] = 1;

2. ∃ i, 0 < i ≤ 2n |Lk = δ2n [i, . . . , i], ∀ k ≥ Tt, where Tt ≤ 2n is the absorption
time of the B.N..

An example is now shown for clarity.

Example 2.6.3 (Global Stability)
Consider a B.N. as in eqn. (2.1.4) with:

L = δ4
[
2 2 4 1

]
. (2.6.5)

It is easy to see that the only element equal to one on the diagonal is the second
one. Furthermore:

L1 = δ4
[
2 2 4 1

]
→ N1 =

Trace (L1)

1
= 1

L2 = δ4
[
2 2 1 2

]
→ N2 =

Trace (L2)− 1N1

2
= 0

L3 = δ4
[
2 2 2 2

]
→ N3 =

Trace (L3)− 1N1

3
= 0

L4 = δ4
[
2 2 2 2

]
→ N4 =

Trace (L4)− 1N1 − 2N2

4
= 0.

(2.6.6)

Applying Thm. 2.6.1, δ24 results to be the only attractor, therefore proving the
global stability of the B.N.. The state graph of this B.N. is reported in Fig. 2.6.1.

δ34 δ44 δ14 δ24

Figure 2.6.1: Globally Stable Boolean Network

2.6.1 Globally Attractive Cycle

It is known that if a B.N. is not globally stable it must converge to one or more
limit cycles. If for any initial condition the B.N. converges to a unique limit cycle
(with a number of states greater than one), the latter is called globally attractive
cycle (G.A.C.).

Definition 2.6.2 (Globally Attractive Cycle)
Given a B.N., a limit cycle CG is globally attractive if the following holds:

∀x(0) ∈ L2n , ∃T ∈ Z |x(t) ∈ CG, ∀t ≥ T. (2.6.7)
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The following proposition gives an insight of the globally attractive cycle.

Proposition 2.6.1 (Globally Attractive Cycle)
A cycle of a B.N. is globally attractive if and only if it is the unique cycle of the
network. Furthermore, T is equal to the absorption time Tt.

Let us see an example in the following.

Example 2.6.4 (Globally Attractive Cycle)
Consider a B.N. as in eqn. (2.1.4) with:

L = δ8
[
3 1 5 3 1 5 6 7

]
. (2.6.8)

From Def. 2.6.2 and Prop. 2.6.1, one can conclude that the limit cycle CG =
{δ18, δ

3
8, δ

5
8} is a G.A.C.. The state graph of this B.N. is reported in Fig. 2.6.2.

δ28 δ18

δ48 δ38

δ58 δ68 δ78 δ88

Figure 2.6.2: Globally Attractive Cycle in a Boolean Network

The references examined to write this chapter are the following: [4], [13], [14],
[15], [17], [18].
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Chapter 3

Boolean Control Networks

A B.N. is an autonomous system since no inputs act on the state variables. When
adding boolean inputs a B.N. becomes a Boolean Control Network (B.C.N.) and it
is now possible to control the evolution of the network by acting on these inputs.

3.1 Boolean Control Networks Dynamics

The structure of a boolean control network is defined in the following.

Definition 3.1.1 (Boolean Control Network)
A B.C.N. is a discrete time dynamical system involving n ∈ N* boolean state vari-
ables χi(t) ∈ B and m ∈ N* boolean inputs µj ∈ B, with 0 < i ≤ n and 0 < j ≤ m.
The evolution of the network is determined by a set of n logic first order difference
equations:







χ1(t+ 1) = f1 (χ1(t), χ2(t), . . . , χn(t); µ1(t), µ2(t), . . . , µm(t))

χ2(t+ 1) = f2 (χ1(t), χ2(t), . . . , χn(t); µ1(t), µ2(t), . . . , µm(t))
...

χn(t+ 1) = fn (χ1(t), χ2(t), . . . , χn(t); µ1(t), µ2(t), . . . , µm(t)) ,

(3.1.1)

where the logic functions fi(·) are defined as follows:

fi(·) : B
n × Bm → B

(χ1(t), . . . , χn(t))× (µ1(t), . . . , µm(t)) 7→ fi (χ1(t), . . . , χn(t); µ1(t), . . . , µm(t)) .

(3.1.2)

It is also possible to consider boolean outputs ψk as shown in the following:







ψ1(t) = h1 (χ1(t), χ2(t), . . . , χn(t))
...

ψp(t) = hp (χ1(t), χ2(t), . . . , χn(t)) ,

(3.1.3)

where, ∀ k s.t. 0 < k ≤ p, the boolean functions hk(·) are defined as follows:

hk(·) : B
n → B

(χ1(t), . . . , χn(t)) 7→ hk (χ1(t), . . . , χn(t)) .
(3.1.4)
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A B.C.N. can be rewritten in its algebraic form with the same method used for
B.N.s. Then, one needs to transform all boolean state variables, inputs, outputs
and functions into their algebraic representation. This is explained in the following
proposition.

Proposition 3.1.1 (Boolean Control Network in Algebraic Form)
A B.C.N. as in eqns. (3.1.1) and (3.1.3) can be transformed into its equivalent
algebraic form following Thm. 1.4.3:

{

x(t+ 1) = L⋉ u(t)⋉ x(t)

y(t) = H ⋉ x(t),
(3.1.5)

where x(·) ∈ L2n is the state vector, u(·) ∈ L2m is the input vector, y(·) ∈ L2k is the
output vector, L ∈ L2n×2n+m

is the transition matrix of the B.C.N. and H ∈ L2p×2n .
Using Thm. 1.4.2, one can obtain the following system:







x1(t+ 1) = f1(x1(t), x2(t), . . . , xn(t); u1(t), u2(t), . . . , um(t)) =

=Mf1 ⋉ u(t)⋉ x(t)

x2(t+ 1) = f2(x1(t), x2(t), . . . , xn(t); u1(t), u2(t), . . . , um(t)) =

=Mf2 ⋉ u(t)⋉ x(t)
...

xn(t+ 1) = fn(x1(t), x2(t), . . . , xn(t); u1(t), u2(t), . . . , um(t)) =

=Mfn ⋉ u(t)⋉ x(t),

(3.1.6)

where xi(·) ∈ L
2, ∀ i, 0 < i ≤ n, uj(·) ∈ L

2, ∀ j, 0 < j ≤ m, Mfi ∈ L
2n×2n+m

and
the logic functions fi(·) are defined as follows:

fi(·) : L
2n × L2m → L2n

(x1(t), . . . , xn(t))× (u1(t), . . . , um(t)) 7→ fi (x1(t), . . . , xn(t); u1(t), . . . , um(t)) .

(3.1.7)

The same changes can be applied to the output equations as follows:







y1(t+ 1) = h1(x1(t), x2(t), . . . , xn(t)) =Mh1
⋉ x(t)

y2(t+ 1) = h2(x1(t), x2(t), . . . , xn(t)) =Mh2
⋉ x(t)

...

yp(t+ 1) = hp(x1(t), x2(t), . . . , xn(t)) =Mhp
⋉ x(t),

(3.1.8)

where yk(·) ∈ L
2, ∀ k, 0 < k ≤ p, Mhk

∈ L2p×2n and the logic functions hk(·) are
defined as follows:

hk(·) : L
2n → L2p

(x1(t), . . . , xn(t)) 7→ hk (x1(t), . . . , xn(t)) .
(3.1.9)

In eqn. (3.1.5), it is customary to put the input vector u(·) before the state vector
x(·). Let us remark that this choice does not alter the dynamics of the B.C.N. since
the two vectors can be exchanged by means of a proper swap matrix.
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Example 3.1.1 (Boolean Control Network in Algebraic Form)
Given a B.C.N. with n = 3 state variables,m = 2 inputs and p = 1 outputs described
as in the following:







χ1(t+ 1) = (χ1(t) ∧ χ2(t)) ∨ µ1(t)

χ2(t+ 1) = (χ2(t) ∨ χ3(t)) ∧ µ2(t)

χ3(t+ 1) = ¬χ1(t) ∧ χ3(t)

ψ(t) = χ1(t) ∨ ¬χ2(t),

(3.1.10)

it is possible to rewrite the system as:







x1(t+ 1) =Mf1 ⋉ u(t)⋉ x(t)

x2(t+ 1) =Mf2 ⋉ u(t)⋉ x(t)

x3(t+ 1) =Mf3 ⋉ u(t)⋉ x(t)

y(t) =Mh ⋉ x(t),

(3.1.11)

where Mfi ∈ L
2×32, with 1 ≤ i ≤ 3 and Mh ∈ L

2×8. Finally, the matrices L and H
in the B.C.N. description (3.1.5) are:

{

L = δ8 [2 2 2 4 1 2 1 4 4 4 4 4 3 4 3 4 2 2 6 8 5 6 5 8 4 4 8 8 7 8 7 8]

H = Mh = δ8 [2 2 1 1 2 2 2 2],
(3.1.12)

where L ∈ L8×32 and H ∈ L2×8.

3.1.1 Boolean Control Networks as Switched Systems

With the introduction of inputs, the state graph of a B.N. changes depending on the
values of these inputs. Therefore, it is possible to interpret a B.C.N. as a boolean
switched system that varies among 2m different boolean networks.
Let us recall that switched systems are a class of hybrid systems which consist of a
family of subsystems and some law regulating the switching among them, depending
on various factors. In this case, the factor that makes the system switch is the value
of the inputs, represented by the input vector u(t) at time t ∈ Z. Algebraically, it
holds:

x(t+ 1) = L⋉ u(t)⋉ x(t) = L [u(t)]⋉ x(t) = Lj ⋉ x(t), (3.1.13)

where Lj ∈ L
2n×2n is the structure matrix of the active B.N. at time t. Lj is selected

by the input value u(t) = δj2m , with 0 < j ≤ 2m. Then, L can be rewritten as:

L =
[
L1 L2 . . . L2m

]
. (3.1.14)

Therefore, the B.C.N. can be written as a switched system:

x(t+ 1) = Lσ(t) ⋉ x(t), (3.1.15)

where σ(t) is the switching input taking values in {1, . . . , 2m}.
Let us now consider an example.
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Example 3.1.2 (Boolean Control Networks as Switched Systems)
Consider the same B.C.N. as in Ex. 3.1.1. Since there are m = 2 inputs in the net-
work, i.e. u1(·) and u2(·), it means that there are 2m = 4 sub-networks represented
by the four blocks in the matrix L:

L =
[
L1 L2 L3 L4

]
, (3.1.16)

where: 





L1 =
[

2 2 2 4 1 2 1 4
]

L2 =
[

4 4 4 4 3 4 3 4
]

L3 =
[

2 2 6 8 5 6 5 8
]

L4 =
[

4 4 8 8 7 8 7 8
]

.

(3.1.17)

3.1.2 The Matrix Ltot

The transition matrix L, defined in Prop. 3.1.1, contains the information about the
evolution of a B.C.N. for every possible value of the input vector u(·), as previously
clarified. The objective now is to adopt a smaller matrix w.r.t. L that brings the
necessary information to study some properties about the evolution of the states.
This matrix is called Ltot and is presented in the following definition.

Definition 3.1.2 (The matrix Ltot)
Given a B.C.N. described as in eqn. (3.1.5), the matrix Ltot is defined as follows:

Ltot :=
2m⋃

i=1

Li ∈ L
2n×2n . (3.1.18)

Let us understand the meaning of this matrix. The (j, i)-th entry of Ltot, that is
[Ltot]j, i, is equal to one if and only if there exists an input u(t) = δk2m ∈ L

2m such
that the state x(t) = δi2n ∈ L

2n evolves into x(t+1) = δj2n ∈ L
2n , with 0 < i, j ≤ 2n,

0 < k ≤ 2m and t ∈ Z. Algebraically, it must hold that:

δj2n = x(t+1) = L⋉u(t)⋉ x(t) = L⋉ δk2m ⋉ x(t) = Lk ⋉ x(t) = Lk ⋉ δi2n . (3.1.19)

This means that there exists at least one input such that δj2n is accessible from δi2n
in one step. Then, the unitary entries in Coli(Ltot) represent the states δ

j
2n that are

reachable from δi2n in one step. As a consequence, the out-degree of the i-th node
is:

2n∑

j=1

[Ltot]j, i ≤ 2m. (3.1.20)

For this reason, Ltot will prove to be useful to graphically represent the B.C.N..
Let us remark that Ltot is no longer a logic matrix but only a boolean one because
its columns can be non-logic vectors. In fact, by construction of this matrix, the
operations of sum and product are substituted with their logical equivalent ∨ and
∧ respectively to preserve the boolean property of Ltot when the L.S.T.P. is used.
An example of computation of Ltot is now shown.
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Example 3.1.3 (The Matrix Ltot)
By referring to the matrix L of eqn. (3.1.12), it is possible to compute Ltot using
eqn. (3.1.18):

Ltot =















0 0 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 1 1 0 1 0 1















. (3.1.21)

3.1.3 Graphical Representation

Also in the case of a B.C.N., it is possible to represent graphically the network
by means of a state graph G = (V , E) as in Def. 2.2.6. The set of nodes is V =
{
δi2n ∈ L

2n , 0 < i ≤ 2n
}
with n ∈ N*. The set of edges is slightly different as they

are derived from the matrix Ltot. In fact, the oriented edge ej, i = (δi2n , δ
j
2n) from

the i-th node to the j-th node belongs to E if [Ltot]j, i = 1.
Referring to eqn. (3.1.20), one can notice that in the state graph of a B.C.N.
each node may have an out-degree greater than one due to the presence of inputs.
Specifically, there can be at most 2m outgoing edges for each node of the network
because there are at most 2m possible input values.
The next example clarifies these comments.

Example 3.1.4 (Graphical Representation)
Given a B.C.N. in algebraic form with two state variables and one input ∈ L2:

x(t+ 1) = L⋉ u(t)⋉ x(t), (3.1.22)

where x(·) ∈ L4, u(·) ∈ L2 and therefore L ∈ L4×8. The transition matrix L has
the following entries:

L = δ4
[
4 3 4 2 1 4 4 1

]
. (3.1.23)

If u(·) = δ12, the first four columns are selected, thus:

L1 = δ4
[
4 3 4 2

]
∈ L4×2. (3.1.24)

Instead, if u(·) = δ22, the last four columns are selected:

L2 = δ4
[
1 4 4 1

]
∈ L4×2. (3.1.25)

By using eqn. (3.1.18), it is possible to compute:

Ltot =







1 0 0 1
0 0 0 1
0 1 0 0
1 1 1 0






. (3.1.26)
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Thanks to the information embedded in Ltot, one can build the corresponding state
graph G:







V = {δ14, δ
2
4, δ

3
4, δ

4
4}

E = {(δ14, δ
1
4), (δ

1
4, δ

4
4), (δ

2
4, δ

3
4), (δ

2
4, δ

4
4),

(δ34, δ
4
4), (δ

4
4, δ

1
4), (δ

4
4, δ

2
4)}.

(3.1.27)

Finally, the state graph is reported in Fig. 3.1.1, where edges depending on distinct
inputs are highlighted with different colors.

δ14 δ24

δ34δ44

δ22

δ12 δ12

δ22

δ12, δ
2
2

δ12δ22

Figure 3.1.1: State Graph of a Boolean Control Network

3.1.4 Communication Classes

Since the inputs in a B.C.N. can change at every time instant t ∈ Z, the convergence
to an attractor is no more guaranteed. In fact, it might happen that, for a specific
sequence of inputs, the evolution never converges to a fixed point or a limit cycle.
Def. 2.5.5 of communication classes of B.N.s holds true also for B.C.N.s but the
transient classes can contain more than one state. Anyway, as soon as the trajectory
leaves a transient class it cannot re-enter it, otherwise it would be a closed class.
In a B.N., once the trajectory enters a closed class, its evolution is periodic in the
nodes belonging to that class, as stated in Prop. 2.5.3. In a B.C.N., this is no longer
true because of the arbitrariness in the input choice.
Let us clarify this reasoning with an example.

Example 3.1.5 (Communication Classes of a Boolean Control Network)
Consider a B.C.N. as in eqn. (3.1.5) composed of two state variables and one input
so that:

L = δ4
[
2 3 4 3 4 1 3 4

]
. (3.1.28)

After having identified L1 = δ4
[
2 3 4 3

]
and L2 = δ4

[
4 1 3 4

]
, one can

compute Ltot as follows:

Ltot =







0 1 0 0
1 0 0 0
0 1 1 1
1 0 1 1






. (3.1.29)
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It follows that the sets of nodes and edges are respectively:







V = {δ14, δ
2
4, δ

3
4, δ

4
4}

E = {(δ14, δ
2
4), (δ

1
4, δ

4
4), (δ

2
4, δ

1
4), (δ

2
4, δ

3
4),

(δ34, δ
3
4), (δ

3
4, δ

4
4), (δ

4
4, δ

3
4), (δ

4
4, δ

4
4)}.

(3.1.30)

The state graph is reported in Fig. 3.1.2, where two communication classes are
highlighted. One can identify a closed class K1:

K1 = {δ
3
4, δ

4
4}, (3.1.31)

and a transient class K2:
K2 = {δ

1
4, δ

2
4}. (3.1.32)

It is possible to observe that, starting from an initial state of class K2, the trajectory
can remain inside that class as long as the input is suitably chosen. Instead, once
the trajectory moves to class K1, it cannot re-enter the transient class.

δ14 δ24

δ34δ44

K1

K2

Figure 3.1.2: Communication Classes of a Boolean Control Network

3.2 Reachability

The first section of this chapter showed that the evolution of a B.C.N. cannot be
uniquely predetermined as the one of a B.N. due to the presence of inputs. However,
the powerfulness of B.C.N. lies in the possibility to control the trajectory to some
desired states. An important property that will be now discussed is reachability.

Definition 3.2.1 (Reachability from a State in τ Steps)
Given a B.C.N. as in eqn. (3.1.1), a state δj2n ∈ L

2n , with 0 < j ≤ 2n and n ∈ N*,
is reachable in τ ∈ N steps from the state δi2n ∈ L

2n , with 0 < i ≤ 2n, if there exists
a sequence of τ inputs {u(0), . . . , u(τ − 1)} such that the trajectory evolves from
x(0) = δi2n into x(τ) = δj2n .

Let us consider an example in this regard.

61



CHAPTER 3. BOOLEAN CONTROL NETWORKS

Example 3.2.1 (Reachability from a State)
Consider a B.C.N. described as in eqn. (3.1.5) with:

L = δ4
[
2 2 1 3 3 1 4 2

]
. (3.2.1)

Then, Ltot is as follows:

Ltot =







0 1 1 0
1 1 0 1
1 0 0 1
0 0 1 0






, (3.2.2)

and the corresponding state graph is shown in Fig. 3.2.1.
Let us now check the reachability in τ = 1 step. One finds that:







δ14
δ1
2−→ δ24

δ14
δ2
2−→ δ34

δ24
δ1
2−→ δ24

δ24
δ2
2−→ δ14

δ34
δ1
2−→ δ14

δ34
δ2
2−→ δ44

δ44
δ1
2−→ δ34

δ44
δ2
2−→ δ24,

(3.2.3)

where
δi
2−→ indicates a state transition in one step under the input δi2, with i = {1, 2}.

From these results, one can conclude, for example, that δ34 is reachable in one step
from δ14 for u(·) = δ22, while δ

2
4 cannot be reached in one step from δ34.

Def. 3.2.1 can be generalised as follows.

Definition 3.2.2 (Reachability from a State)
Given a B.C.N. as in eqn. (3.1.1), a state δj2n ∈ L

2n , with 0 < j ≤ 2n and n ∈ N*,
is reachable from the state δi2n ∈ L

2n , with 0 < i ≤ 2n, if there exist τ and one or
more sequences of τ inputs {u(0), . . . , u(τ − 1)} such that the trajectory evolves
from x(0) = δi2n into x(τ) = δj2n .

Thanks to Defs. 3.2.1 and 3.2.2, it is possible to define the reachable space.

Definition 3.2.3 (Reachable Space)
The set of all the states that are reachable in τ steps from δi2n is called the reachable
space in τ steps from δi2n and is denoted by Rτ [δ

i
2n ] ⊆ L2n . The set of all the

states that are reachable from δi2n independently of the number of steps is called the
reachable space from δi2n , is denoted by R[δi2n ] ⊆ L

2n and is computed as follows:

R[δi2n ] =
+∞⋃

τ=0

Rτ [δ
i
2n ]. (3.2.4)
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δ14 δ24

δ34δ44

δ12

δ22

δ12

δ22

δ12

δ22

δ12

δ22

Figure 3.2.1: State Graph of a Boolean Control Network

The following proposition discusses reachability taking into account the dimension
of a B.C.N..

Proposition 3.2.1 (Reachability from a State)
Given a B.C.N. with 2n states, if a state δj2n ∈ L

2n is reachable from δi2n ∈ L
2n in a

finite number of steps τ , then τ ≤ 2n.

Due to this proposition, eqn. (3.2.4) can be rewritten as follows:

R[δi2n ] =
2n⋃

τ=0

Rτ [δ
i
2n ]. (3.2.5)

Moreover, given two states δi2n ∈ L
2n and δj2n ∈ L

2n that belong to the same com-
munication class (see Def. 2.5.5), it follows that:

{

δi2n ∈ R[δj2n ]

δj2n ∈ R[δi2n ].
(3.2.6)

An example is now presented.

Example 3.2.2 (Reachable Space)
By referring to Ex. 3.2.1, the reachable spaces for the various states are:

R[δ14] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}

R[δ24] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}

R[δ34] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}

R[δ44] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}.

(3.2.7)

In this particular case, each state guarantees global reachability, a concept that will
be investigated in the following.

Let us start with the definition of global reachability from a state.
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Definition 3.2.4 (Global Reachability from a State)
If the reachable space of the state δi2n ∈ L

2n , with 0 < i ≤ 2n and n ∈ N*, coincides
with the whole state space L2n , that is R[δi2n ] = L

2n , then the B.C.N. is said to be
globally reachable from δi2n .

Example 3.2.3 (Global Reachability from a State)
In Ex. 3.2.2, since the reachable space of each state coincides with the whole state
space, one can conclude that global reachability holds for δi4, with i = {1, 2, 3, 4}.
In fact:

R[δ14] = R[δ24] = R[δ34] = R[δ44] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4} = L

4. (3.2.8)

The matrix Ltot proves to be useful for the study of reachability, as shown in the
following theorem.

Theorem 3.2.1 (Reachability and Ltot)
Given a B.C.N. as in eqn. (3.1.5) and its matrix Ltot defined as in eqn. (3.1.18), a
state δj2n is reachable in τ ∈ N steps from δi2n , with 0 < i, j ≤ 2n and n ∈ N*, if and
only if

[Lτ
tot]j, i = 1. (3.2.9)

By Thm. 3.2.1, the state δj2n is reachable from δi2n if and only if:
[

2n∨

τ=1

Lτ
tot

]

j, i

= 1. (3.2.10)

Moreover, a B.C.N. is globally reachable from δi2n if and only if

Coli

(
2n∨

τ=1

Lτ
tot

)

= 12n , (3.2.11)

where 12n represents the unitary column vector of length 2n.

Example 3.2.4 (Global Reachability)
Recalling Ex. 3.2.1, the logical disjunctions (∨ operator) of the powers of Ltot, for
τ = 1, 2, 3, 4, are:

Ltot =







0 1 1 0
1 1 0 1
1 0 0 1
0 0 1 0







2∨

τ=1

Lτ
tot =







1 1 1 1
1 1 1 1
1 1 1 1
1 0 1 1







3∨

τ=1

Lτ
tot =

4∨

τ=1

Lτ
tot =







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1






.

(3.2.12)

It is easy to see that for τ ≥ 3 each state can reach all the others because
Coli

(∨4
τ=1 L

τ
tot

)
= 14, with 0 < i ≤ 4. Instead, after two steps, only the state δ44

cannot be reached from δ24 since [L2
tot]4, 2 = 0. In fact, the only path able to connect

these two states has length 3 ([L3
tot]4, 2 = 1).

The last comment of the previous example highlights a connection between the
concept of reachability and the state graph of a B.C.N.. Saying that a state δj2n is
reachable from δi2n is equivalent to saying that there exists a directed path from δi2n
to δj2n in the state graph.
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3.3 Controllability

Another important problem in Systems Theory is controllability, which can be con-
sidered the problem of reachability from the opposite point of view.

Definition 3.3.1 (Controllability to a State)
Consider a B.C.N. as in eqn. (3.1.5). A state δi2n is said to be controllable to the
state δj2n if the latter is reachable from the first one. Then, it must hold that:

δj2n ∈ R[δi2n ]. (3.3.1)

Definition 3.3.2 (Controllable Space)
Given a B.C.N. as in eqn. (3.1.5), the set of all the states δi2n ∈ L

2n which are
controllable to δj2n ∈ L

2n , with 0 < i, j ≤ 2n, is called controllable space of δj2n and
is denoted by C[δj2n ] ⊆ L

2n .

Definition 3.3.3 (Global Controllability to a State)
A B.C.N. described as in eqn. (3.1.5) is said to be globally controllable to the state
δj2n ∈ L

2n if every δi2n ∈ L
2n , with 0 < i ≤ 2n, is controllable to δj2n . This translates

into the following:
δj2n ∈ R[δi2n ], ∀ δi2n ∈ L

2n . (3.3.2)

Definition 3.3.4 (Global Controllability)
A B.C.N. described as in eqn. (3.1.5) is said to be globally controllable if each state
is reachable from all the other states. This amounts to saying that:

δj2n ∈ R[δi2n ], ∀ δi2n , δ
j
2n ∈ L

2n . (3.3.3)

An example is now presented.

Example 3.3.1 (Controllability to a State)
Recalling Ex. 3.2.1, let us verify the controllability in one step:







δ14
δ2
2←− δ24

δ14
δ1
2←− δ34

δ24
δ1
2←− δ14

δ24
δ1
2←− δ24

δ24
δ2
2←− δ44

δ34
δ1
2←− δ14

δ34
δ1
2←− δ44

δ44
δ2
2←− δ34,

(3.3.4)

where
δi
2←− indicates a state transition in one step under the input δi2, with i = {1, 2}.

From the list above, one can conclude that δ24 is controllable in one step to δ14 with

65



CHAPTER 3. BOOLEAN CONTROL NETWORKS

the input δ22, while δ
2
4 is not controllable in one step to δ34.

Moreover, it is possible to compute the controllable spaces:

C[δ14] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}

C[δ24] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}

C[δ34] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}

C[δ44] = {δ
1
4, δ

2
4, δ

3
4, δ

4
4}.

(3.3.5)

Since C[δi4] = L
4, the B.C.N. is globally controllable to δi4, with 0 < i ≤ 4. Therefore,

the network is globally controllable.

Proposition 3.3.1 (Controllability and Ltot)
Given a B.C.N. described as in eqn. (3.1.5) with its matrix Ltot as in eqn. (3.1.18),
a state δi2n can be controlled in τ ∈ N steps to δj2n , with 0 < i, j ≤ 2n and n ∈ N*,
if and only if:

[Lτ
tot]j, i = 1. (3.3.6)

Similarly to the consideration drawn for the global reachability, a B.C.N. is globally
controllable to δj2n if and only if:

Rowj

(
2n∨

τ=1

Lτ
tot

)

= 1T
2n , (3.3.7)

where 1T
2n is the unitary row vector of length 2n.

Example 3.3.2 (Global Controllability)
Let us consider Ex. 3.2.4. It is possible to notice that for τ ≥ 3 each state is
controllable to all the others because Rowj

(∨4
τ=1 L

τ
tot

)
= 1T

4 , with 0 < j ≤ 4.
Instead, after two steps, only the state δ24 cannot be controlled to δ44 since [L2

tot]4, 2 =
0.

A new matrix, denoted by L, is introduced to simplify the study of controllability
of a B.C.N..

Definition 3.3.5 (The matrix L)
Given a B.C.N. as in eqn. (3.1.5), we define the matrix L as follows:

L :=
2n−1∨

τ=0

Lτ
tot. (3.3.8)

Theorem 3.3.1 (Global Controllability and L)
A B.C.N. as in eqn. (3.1.5) is globally controllable if and only if L in eqn. (3.3.8)
has all unitary entries, that is Ltot is irreducible.

An example is now shown.

Example 3.3.3 (Global Controllability and L)
Consider Ex. 3.2.4. It has been shown in eqn. (3.2.12) that:

L =
3∨

τ=0

Lτ
tot =







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1






. (3.3.9)

Then, the B.C.N. is globally controllable.
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The matrix L contains the information about which states are reachable and, from
the other perspective, which states are controllable. However, it is not possible to
retrieve the number of steps that are necessary for a state to be controlled to another
state. Therefore, in the following, a new definition of controllability is introduced.

Definition 3.3.6 (Strong Global Controllability)
A B.C.N. is said to be globally controllable in τ ∈ Z steps in the strong sense if:

∀ δi2n , δ
j
2n ∈ L

2n , 0 < i, j ≤ 2n, ∃ {u(0), . . . , u(τ − 1)} (3.3.10)

such that the trajectory moves from x(0) = δi2n to x(τ) = δj2n .

This definition requires that every state can be controlled to any other possible
state in exactly τ steps in order to have a globally controllable in the strong sense
B.C.N.. This definition differs from Def. 3.3.4, where it is stated that every state is
controllable to any other possible state in a finite number of steps.
In the following theorem a relation between global controllability in the strong sense
and the matrix Ltot is shown.

Theorem 3.3.2 (Strong Global Controllability and Ltot)
A B.C.N. described as in eqn. (3.1.5) is globally controllable in the strong sense if
and only if its matrix Ltot is primitive.

Another important result for global controllability is presented in the following
proposition.

Proposition 3.3.2 (Strong Global Controllability)
If a B.C.N. is globally controllable in the strong sense in τ ∈ Z steps, then it is
globally controllable in the strong sense ∀ k ≥ τ .

Let us present an example about the matrix L.

Example 3.3.4 (Strong Global Controllability and L)
Consider Ex. 3.2.1. Since the matrix L is as in eqn. (3.3.9), one can say that the
B.C.N. is globally controllable and also globally controllable in the strong sense.

3.4 Stabilisation

This section treats the problem of stabilisation, that is the problem of finding the
input values so that the trajectory of a B.C.N. takes only specific values.

Definition 3.4.1 (Stabilisation to a Fixed Point)
A B.C.N. is stabilisable to a fixed point δi2n ∈ L

2n , with 0 < i ≤ 2n and n ∈ N*,
if, ∀x(0) ∈ L2n , there exists τ ∈ Z

+ and an input sequence u(t), with t ∈ Z
+, such

that x(t) = δi2n , for every t ≥ τ .

A similar definition is now given for the more general case of a limit cycle.

Definition 3.4.2 (Stabilisation to a Limit Cycle)
A B.C.N. is stabilisable to a limit cycle C = {δi12n , . . . , δ

ik
2n}, with 0 < ih ≤ 2n,

0 < h ≤ k and n ∈ N*, with δi2n 6= δj2n for i 6= j, if, ∀x(0) ∈ L2n , there exists τ ∈ Z
+

and an input sequence u(t), with t ∈ Z
+, such that x(t) = δih2n , for every t ≥ τ , with

h = (t− τ + 1)mod k.
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The following proposition characterises the problem of stabilisation to a limit cycle.

Proposition 3.4.1 (Stabilisation to a Limit Cycle)
A B.C.N. is stabilisable to a limit cycle C = {δi12n , . . . , δ

ik
2n} if and only if these two

conditions hold:

• the B.C.N. is globally controllable to δih2n ∈ C, with 0 < ih ≤ 2n and 0 < h ≤ k;

• for every (il, il+1), with l ∈ [1, k] and ik+1 = i1, there exists an input u(t) =

δjl2m such that δ
il+1

2m = x(t+ 1) = L⋉ u(t)⋉ x(t) = L⋉ δjl2m ⋉ δil2n = Ljl ⋉ δil2n .

This proposition holds also in the case of a fixed point since the latter is a limit
cycle of length one. The two previous conditions are slightly simplified:

• δi2n is reachable from every initial condition x(0), that is δi2n ∈ R*;

• there exists δk2m , with 0 < k ≤ 2m, such that δi2n = x(t+1) = L⋉u(t)⋉x(t) =
L⋉ δk2m ⋉ δi2n = Lk ⋉ δi2n .

An example of stabilisation of a B.C.N. is now proposed.

Example 3.4.1 (Stabilisation to a Limit Cycle)
Given a B.C.N. as in eqn. (3.1.5) with two state variables and one input with:

L =
[
2 2 1 1 1 3 3 3

]
, (3.4.1)

where L1 =
[
2 2 1 1

]
and L2 =

[
1 3 3 3

]
, a possible limit cycle of the B.C.N.

is:
C = {δ14, δ

2
4, δ

3
4}, (3.4.2)

because, if x(t) = δ14 with t ∈ Z, one can verify that:







x(t+ 1) = L⋉ u(t)⋉ x(t) = L⋉ δ12 ⋉ δ14 = δ24
x(t+ 2) = L⋉ u(t+ 1)⋉ x(t+ 1) = L⋉ δ22 ⋉ δ24 = δ34
x(t+ 3) = L⋉ u(t+ 2)⋉ x(t+ 2) = L⋉ δ12 ⋉ δ34 = δ14,

(3.4.3)

satisfying the second condition of Prop. 3.4.1. Now, the global controllability to a
state of C of the B.C.N. needs to be verified in order to verify that it is stabilisable.
Therefore, let us compute the matrix L as in eqn. (3.3.8):

L =







1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 1






, (3.4.4)

where it holds that:

Row1[L] = Row2[L] = Row3[L] = 14, (3.4.5)

This proves the global controllability of the B.C.N. to the states belonging to C.
The corresponding state graph is reported in Fig. 3.4.1.
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δ14 δ24

δ34δ44

C

δ12δ22 δ12

δ22δ12

δ22

δ12

δ22

Figure 3.4.1: Stabilisation of a Boolean Control Network

3.5 Feedback Control

In the previous section, the inputs that stabilised the B.C.N. were chosen arbitrarily
at every time instant. Now, the problem of stabilisation is solved using a time-
invariant feedback law, where the input vector is a linear combination of state vector
entries:

u(t) = K ⋉ x(t), (3.5.1)

with

K =
[
δk12m δk22m · · · δkn2m

]
∈ L2m×2n . (3.5.2)

This concept is formalized in the following proposition.

Proposition 3.5.1 (Stabilisation by means of a State Feedback Law)
If a B.C.N. is stabilisable to a limit cycle C = {δi12n , . . . , δ

ik
2n}, then it can be stabilised

by means of a state feedback law.

In the following, two examples of feedback stabilisation are presented.

Example 3.5.1 (Feedback Stabilisation to a Fixed Point)
Consider a B.C.N. with three state variables and one input. The transition matrix
is:

L =
[
L1 L2

]
, (3.5.3)

where 





L1 =
[

2 2 2 8 4 8 5 2
]

L2 =
[

1 1 4 6 2 5 6 8
]

.
(3.5.4)

The state graph of this B.C.N. is reported in Fig. 3.5.1. It is easy to notice either
from the matrix L2 or from the state graph that δ28 is a fixed point which the network
is globally controllable to. Since both points of Prop. 3.4.1 are satisfied for this fixed
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point, one can conclude that the B.C.N. is stabilisable to the state δ28.
Let us now compute the parent states (see Def. 2.5.2) of δ28 as follows:







L−0[δ28] = {δ
2
8}

L−1[δ28] = {δ
1
8, δ

3
8, δ

5
8, δ

8
8}

L−2[δ28] = {δ
4
8, δ

6
8, δ

7
8}

L−3[δ28] = ∅

L−4[δ28] = ∅

L−5[δ28] = ∅

L−6[δ28] = ∅

L−7[δ28] = ∅.

(3.5.5)

The input that keeps the trajectory of the B.C.N. at the fixed point is δ12. Then,
the second column of K is the logic vector δ12. Algebraically, it holds that:

δ28
δ1
2−→ δ28 =⇒ Col2(K) = δ12, (3.5.6)

where
δ1
2−→ indicates a state transition in one step under the input u(·) = δ12. Every

other column of the feedback matrix K is found assigning the value of the input
that brings a parent state one step closer to the fixed point. In the case of a parent
state of length one, the right input guarantees to reach the fixed point after the
transition. It is important to remark that the input is not necessarily unique. So,
there can exist multiple matrices K that stabilise the trajectory to a specific fixed
point.
The other columns of K are filled as follows:







δ18 ∈ L
−1[δ28]

δ1
2−→ δ28 ∈ L

−0[δ28] =⇒ Col1(K) = δ12

δ38 ∈ L
−1[δ28]

δ1
2−→ δ28 ∈ L

−0[δ28] =⇒ Col3(K) = δ12

δ58 ∈ L
−1[δ28]

δ2
2−→ δ28 ∈ L

−0[δ28] =⇒ Col5(K) = δ22

δ88 ∈ L
−1[δ28]

δ1
2−→ δ28 ∈ L

−0[δ28] =⇒ Col8(K) = δ12

δ48 ∈ L
−2[δ28]

δ1
2−→ δ88 ∈ L

−1[δ28] =⇒ Col4(K) = δ12

δ68 ∈ L
−2[δ28]

δ1
2−→ δ88 ∈ L

−1[δ28] =⇒ Col6(K) = δ12

δ78 ∈ L
−2[δ28]

δ1
2−→ δ58 ∈ L

−1[δ28] =⇒ Col7(K) = δ12.

(3.5.7)

Using Prop. 3.5.1 and reordering the columns found above, the feedback matrix
becomes:

K = δ2
[
1 1 1 1 2 1 1 1

]
. (3.5.8)

Example 3.5.2 (Feedback Stabilisation to a Limit Cycle)
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δ18 δ28 δ38

δ48

δ58δ68δ78

δ88

δ12
δ22 δ12

δ22

δ12

δ22

δ12

δ22
δ12

δ22

δ12

δ22

δ12

δ22

δ12

δ22

Figure 3.5.1: Feedback Stabilisation of a Boolean Control Network

In the B.C.N. of Ex. 3.5.1 the following five limit cycles are present:






C1 : δ
1
8

δ2
2−→ δ18

C2 : δ
1
8

δ1
2−→ δ28

δ2
2−→ δ18

C3 : δ
2
8

δ1
2−→ δ28

C4 : δ
4
8

δ2
2−→ δ68

δ2
2−→ δ58

δ1
2−→ δ48

C5 : δ
8
8

δ2
2−→ δ88.

(3.5.9)

The only states that the B.C.N. is globally controllable to are:

R* = {δ18, δ
2
8}. (3.5.10)

Then, by Prop. 3.4.1, the B.C.N. is stabilisable to the following cycles:






C1 : δ
1
8

δ2
2−→ δ18

C2 : δ
1
8

δ1
2−→ δ28

δ2
2−→ δ18

C3 : δ
2
8

δ1
2−→ δ28.

(3.5.11)

By applying Prop. 3.5.1, the feedback matrices for the cycles are as follows:






C1 : K1 = δ2

[

2 2 1 1 2 1 1 1
]

C2 : K2 = δ2

[

1 2 1 1 2 1 1 1
]

C3 : K3 = δ2

[

1 1 1 1 2 1 1 1
]

.

(3.5.12)
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By substituting eqn. (3.5.1) of feedback control into eqn. (3.1.5) and by perform-
ing simple manipulations, it is possible to transform the original B.C.N. into the
following B.N.:

x(t+ 1) = L⋉ u(t)⋉ x(t) =

= L⋉K ⋉ x(t)⋉ x(t) =

= L⋉K ⋉ x2(t) =

= L⋉K ⋉Mr ⋉ x(t) =

= LK ⋉ x(t),

(3.5.13)

where Mr = δ2n·2n
[
1 2n + 2 2 · 2n + 3 · · · (2n − 1) · 2n + 2n

]
∈ L2n·2n×2n is the

power reduction matrix of eqn. (1.3.28) for x(·) ∈ L2n and LK = L ⋉ K ⋉Mr ∈
L2n×2n is the structure matrix of the new B.N..
In particular:

LK :=
[
Col1(Lk1) Col2(Lk2) · · · Coln(Lkn)

]
. (3.5.14)

Then, a B.C.N. can be stabilised to the limit cycle C by means of state feedback.
The stabilised B.C.N. is equivalent to a B.N. whose only attractor is C, as shown in
eqn. (3.5.13).
An example of this last comment is now proposed.

δ18 δ28 δ38

δ48

δ58δ68δ78

δ88

C

Figure 3.5.2: Equivalent Boolean Network

Example 3.5.3 (Equivalent Boolean Network)
By referring again to Ex. 3.5.1, the matrix LK is the following one:

LK = L⋉K ⋉Mr = δ8
[
2 2 2 8 2 8 5 2

]
. (3.5.15)
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The state graph of the resulting B.N. is reported in Fig. 3.5.2, where the stable
fixed point obtained by means of state feedback is highlighted.

The references examined to write this chapter are the following: [13], [14], [15],
[19], [20], [21], [22].
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Chapter 4

Probabilistic Boolean Networks

This chapter focuses on Probabilistic Boolean Networks (P.B.N.s), which are a
stochastic extension of the B.N.s of the previous chapters. In fact, a P.B.N. can
be considered as a collection of B.N.s and the choice of a specific B.N. is subjected
to a probability. Then, P.B.N.s share the property of B.N.s of representing depen-
dencies between genes but are able to cope with uncertainties, both in the data and
the model selection.

4.1 Probabilistic Boolean Networks Dynamics

The structure of a probabilistic boolean network is defined in the following.

Definition 4.1.1 (Probabilistic Boolean Network)
A P.B.N. is a dynamical system involving boolean state variables that can influence
each other by means of logic functions. The state variables are χ1(t), χ2(t), . . . ,
χn(t) ∈ B, with n ∈ N*. The evolution of the entire network is determined by a set
of n logic first order difference equations:







χ1(t+ 1) = f1 (χ1(t), χ2(t), . . . , χn(t))

χ2(t+ 1) = f2 (χ1(t), χ2(t), . . . , χn(t))
...

χn(t+ 1) = fn (χ1(t), χ2(t), . . . , χn(t)) ,

(4.1.1)

where, at every time instant t, each logic function fi is selected from a collection
of li < ∞ possible models, namely fi ∈ {f

1
i , f

2
i , . . . , f

li
i }, with fγi

i (·) : Bn → B,
according to the probability of fi being f

γi
i , i.e. Pr{fi = fγi

i } = pγii , with
∑li

γi=1 p
γi
i =

1, γi ∈ {1, 2, . . . , li} and i ∈ {1, 2, . . . , n}.

An example of probabilistic boolean network is presented next.

Example 4.1.1 (Probabilistic Boolean Network)
Let χ1, χ2 and χ3 ∈ B be the state variables and let f1, f2 and f3 : B

3 → B be the
function sets, where f1 = {f 1

1 , f
2
1}, f2 = {f 1

2 , f
2
2} and f3 = {f 1

3}. Then, a possible
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system of equations describing the P.B.N. is as follows:







χ1(t+ 1) = f1 (χ1(t), χ2(t)) =

=

{

f 1
1 (χ1(t), χ2(t)) = χ1(t) ∨ χ2(t), p11 = Pr{f1 = f 1

1} = 0.4

f 2
1 (χ1(t), χ2(t)) = χ1(t) ∧ χ2(t), p21 = Pr{f1 = f 2

1} = 0.6

χ2(t+ 1) = f2 (χ1(t), χ3(t)) =

=

{

f 1
2 (χ1(t), χ3(t)) = χ1(t) ∧ ¬χ3(t), p12 = Pr{f2 = f 1

2} = 0.5

f 2
2 (χ1(t), χ3(t)) = χ1(t) ∨ ¬χ3(t), p22 = Pr{f2 = f 2

2} = 0.5

χ3(t+ 1) = f3 (χ2(t), χ3(t)) =

= f 1
3 (χ2(t), χ3(t)) = ¬χ2(t) ∧ χ3(t), p13 = Pr{f3 = f 1

3} = 1.

(4.1.2)

Just like in the case of a B.N., a P.B.N. is a logic system that can be converted into
its algebraic form using the procedures explained in Chapter 1. This is formally
expressed in the following proposition.

Proposition 4.1.1 (Probabilistic Boolean Networks in Algebraic Form)







x1(t+ 1) = f1(x1(t), x2(t), . . . , xn(t)) =Mf1 ⋉ x(t)

x2(t+ 1) = f2(x1(t), x2(t), . . . , xn(t)) =Mf2 ⋉ x(t)
...

xn(t+ 1) = fn(x1(t), x2(t), . . . , xn(t)) =Mfn ⋉ x(t),

(4.1.3)

where xi(·) ∈ L
2, fj(·) : L

2n → L2, Mfj ∈ L
2×2n , with Mfj ∈ {M

1
fj
, M2

fj
, . . . , M

lj
fj
},

i, j ∈ {1, n}, and x(t) = ⋉
n
i=1xi(t) ∈ L

2n .
To summarize this expression, one can rewrite the P.B.N. as:

x(t+ 1) = Lγ ⋉ x(t), (4.1.4)

where Lγ ∈ L2n×2n is one of the structure matrices with γ = 1, 2, . . . , N and
N =

∏n

i=1 li denoting the number of possible combinations of logic functions, that
is the number of networks. In fact, the probability for each model Σγ to be active
is:

Pγ = Pr{network Σγ is selected} = Pr{f1 = fγ1
1 , f2 = fγ2

2 , . . . , fn = fγn
n }. (4.1.5)

In this thesis, the next proposition is always true.

Proposition 4.1.2 (Independent P.B.N.)
A P.B.N. as in eq. (4.1.3) is considered to be independent if the functions f1, f2, . . . ,
fn are independent. Therefore, eq. (4.1.5) can be rewritten as follows:

Pγ = Pr{f1 = fγ1
1 , f2 = fγ2

2 , . . . , fn = fγn
n } =

= Pr{f1 = fγ1
1 } · Pr{f2 = fγ2

2 } · · · · · Pr{fn = fγn
n } =

=
n∏

i=1

pγii , γ = 1, 2, . . . , N.

(4.1.6)

An example is now shown for clarity.
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Example 4.1.2 (Probabilistic Boolean Networks in Algebraic Form)
Consider Ex. 4.1.1. Using Thm. 1.4.1, the P.B.N. becomes:







x1(t+ 1) =M∨ ⋉D4, 2
f ⋉ x(t) =M1

f1
⋉ x(t)

=M∧ ⋉D4, 2
f ⋉ x(t) =M2

f1
⋉ x(t)

x2(t+ 1) =M∧ ⋉ (I2 ⊗M¬)⋉D2, 2
f ⋉ x(t) =M1

f2
⋉ x(t)

=M∨ ⋉ (I2 ⊗M¬)⋉D2, 2
f ⋉ x(t) =M2

f2
⋉ x(t)

x3(t+ 1) =M∧ ⋉M¬ ⋉D2, 4
r ⋉ x(t) =M1

f3
⋉ x(t),

(4.1.7)

where:






M1
f1

=

[

1 1 1 0

0 0 0 1

]

⋉








1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1







=

[

1 1 1 1 1 1 0 0

0 0 0 0 0 0 1 1

]

M2
f1

=

[

1 0 0 0

0 1 1 1

]

⋉








1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1







=

[

1 1 0 0 0 0 0 0

0 0 1 1 1 1 1 1

]

M1
f2

=

[

0 1 0 0

1 0 1 1

]

⋉

[

1 1 0 0

0 0 1 1

]

=

[

0 1 0 1 0 0 0 0

1 0 1 0 1 1 1 1

]

M2
f2

=

[

1 1 0 1

0 0 1 0

]

⋉

[

1 1 0 0

0 0 1 1

]

=

[

1 1 1 1 0 1 0 1

0 0 0 0 1 0 1 0

]

M1
f3

=

[

0 0 1 0

1 1 0 1

]

⋉








1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1







=

[

0 0 1 0 0 0 1 0

1 1 0 1 1 1 0 1

]

.

(4.1.8)
Finally, one can compute the N = l1 · l2 · l3 = 2 · 2 · 1 = 4 structure matrices of the
network by means of the Khatri-Rao product:

L1 =M1
f1
∗M1

f2
∗M1

f3
= δ8

[
4 2 3 2 4 4 7 8

]
,

with P1 = Pr{Σ1 selected} = p11 · p
1
2 · p

1
3 = 0.2

L2 =M1
f1
∗M2

f2
∗M1

f3
= δ8

[
2 2 1 2 4 2 7 6

]
,

with P2 = Pr{Σ2 selected} = p11 · p
2
2 · p

1
3 = 0.2

L3 =M2
f1
∗M1

f2
∗M1

f3
= δ8

[
4 2 7 6 8 8 7 8

]
,

with P3 = Pr{Σ3 selected} = p21 · p
1
2 · p

1
3 = 0.3

L4 =M2
f1
∗M2

f2
∗M1

f3
= δ8

[
2 2 5 6 8 6 7 6

]
,

with P4 = Pr{Σ4 selected} = p21 · p
2
2 · p

1
3 = 0.3.

(4.1.9)

4.1.1 Probabilistic Boolean Networks as Switched Systems

With the possibility that the update function of each state of a B.N. is not unique,
the state graph of a P.B.N. changes depending on the selected function for each
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state. Therefore, it is possible to interpret a P.B.N. as a boolean switched system
that varies among N different boolean networks.
In this case, the factor that makes the system switch is not deterministic, as the
value of the inputs for a B.C.N., but is rather the probability that a specific model
Σγ is selected at time t ∈ Z. Algebraically, it holds:

x(t+ 1) = Lγ(t)⋉ x(t), (4.1.10)

where Lγ ∈ L
2n×2n is the structure matrix of the active B.N. at time t. Lγ is selected

by the probability Pγ = Pr{Σγ selected}, with 0 < γ ≤ N . Therefore, the P.B.N.
can be written as a switched system:

x(t+ 1) = Lσ(t) ⋉ x(t), (4.1.11)

where σ(t) is the active model taking values in {1, . . . , N} and Pγ = Pr{σ(t) = γ}.
Then, the P.B.N. can be thought of as:

x(t+ 1) = L⋉ u(t)⋉ x(t), (4.1.12)

where L is rewritten as:

L :=
N∑

γ=1

PγLγ, (4.1.13)

and the P.B.N. is driven by the stochastic input sequence u(t) ∈ LN , with Pr{u(t) =
δγN} = Pγ.

Let us now consider an example.

Example 4.1.3 (Probabilistic Boolean Networks as Switched Systems)
Consider the same P.B.N. as in Ex. 4.1.2. Since there are two possible update
functions for state x1, two for state x2 and one for state x3, i.e. f1 = {f 1

1 , f
2
1},

f2 = {f
1
2 , f

2
2} and f3 = {f

1
3}, it means that there are N = l1 · l2 · l3 = 4 sub-networks

represented by the matrix L as in eq. (4.1.13), where:

L =















0 0 0.2 0 0 0 0 0
0.5 1 0 0.4 0 0.2 0 0
0 0 0.2 0 0 0 0 0
0.5 0 0 0 0.4 0.2 0 0
0 0 0.3 0 0 0 0 0
0 0 0 0.6 0 0.3 0 0.5
0 0 0.3 0 0 0 1 0
0 0 0 0 0.6 0.3 0 0.5















, (4.1.14)

and the different Lγ for γ = 1, 2, 3, 4 are those in eq. (4.1.9).

The following definitions give an insight on the different networks of a P.B.N..

Definition 4.1.2 (Matrix K of possible models)
Given a P.B.N. as in eq. (4.1.4), the index set of possible models Σγ, with γ =
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1, 2, . . . , N , is denoted by matrix K as follows:

K =





















1 1 · · · 1 1
1 1 · · · 1 2
...

...
. . .

...
...

1 1 · · · 1 ln
1 1 · · · 2 1
1 1 · · · 2 2
...

...
. . .

...
...

1 1 · · · 2 ln
...

...
. . .

...
...

l1 l2 · · · ln−1 ln





















, (4.1.15)

where K ∈ N
N×n and N =

∏n

i=1 li. Each row of K represents a possible network

with probability Pγ = Pr{network Σγ is selected} =
∏n

i=1 p
[K]γ, i
i where [K]γ, i is the

(γ, i)-th entry of the matrix K.

Definition 4.1.3 (State Transition Matrix A)
Given a P.B.N. as in eq. (4.1.4), let us define the probability of transitioning from
a state (x1, x2, . . . , xn) ∼ δi2n ∈ L

2n to the state (x′1, x
′
2, . . . , x

′
n) ∼ δj2n ∈ L

2n as
follows:

Pr{(x1, x2, . . . , xn)→ (x′1, x
′

2, . . . , x
′

n)} =

=
∑

γ: f
Kγ 1

1
(x1, x2, ..., xn)=x′

1
, f

Kγ 2

2
(x1, x2, ..., xn)=x′

2
, ..., f

Kγ n
n (x1, x2, ..., xn)=x′

n

Pγ =

=
N∑

γ=1

Pγ

[
n∏

i=1

(1− |f
Kγ i

i (x1, x2, . . . , xn)− x′i|)

]

=

=
N∑

γ=1

Pr{(x1, x2, . . . , xn)→ (x′1, x
′

2, . . . , x
′

n)| network Σγ is selected} · Pγ.

(4.1.16)

Then, the entries of the state transition matrix A are found as follows:

[A]i, j = Pr{(x1, x2, . . . , xn) ∼ δi2n → (x′1, x
′

2, . . . , x
′

n) ∼ δj2n}, ∀i, j = 1, 2, . . . , 2n.
(4.1.17)

It is also possible to state that:

2n∑

j=1

[A]i, j = 1, ∀i = 1, 2, . . . , 2n, (4.1.18)

because any state of the P.B.N. is supposed to evolve with probability one to another
state during a transition.

Remark 4.1.1
The state transition matrix A is the transpose of the structure matrix L defined in
eq. (4.1.13):

A = LT . (4.1.19)

79



CHAPTER 4. PROBABILISTIC BOOLEAN NETWORKS

χ1 χ2 χ3 f 1
1 f 2

1 f 1
2 f 2

2 f 1
3

0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
1 0 0 1 0 1 1 0
1 0 1 1 0 0 1 1
1 1 0 1 1 1 1 0
1 1 1 1 1 0 1 0

pγii 0.4 0.6 0.5 0.5 1

Table 4.1.1: Truth Table of a Probabilistic Boolean Network

The following example clarifies the procedure to build the transition matrix A.

Example 4.1.4 (State Transition Matrix A)
Consider again Ex. 4.1.1. From the system of equations (4.1.2), it is possible to
derive the truth table of the P.B.N., reported in Tab. 4.1.1. Since there are two
possible functions for state χ1, two functions for state χ2 and one function for state
χ3, the matrix K can be built as follows:

K =







1 1 1
1 2 1
2 1 1
2 2 1






, (4.1.20)

Finally, the state transition matrix A is:

A =















0 P2 + P4 0 P1 + P3 0 0 0 0
0 1 0 0 0 0 0 0
P2 0 P1 0 P4 0 P3 0
0 P1 + P2 0 0 0 P3 + P4 0 0
0 0 0 P1 + P2 0 0 0 P3 + P4

0 P2 0 P1 0 P4 0 P3

0 0 0 0 0 0 1 0
0 0 0 0 0 P2 + P4 0 P1 + P3















=

=















0 0.5 0 0.5 0 0 0 0
0 1 0 0 0 0 0 0
0.2 0 0.2 0 0.3 0 0.3 0
0 0.4 0 0 0 0.6 0 0
0 0 0 0.4 0 0 0 0.6
0 0.2 0 0.2 0 0.3 0 0.3
0 0 0 0 0 0 1 0
0 0 0 0 0 0.5 0 0.5















,

(4.1.21)

using the values of Pγ for γ ∈ {1, 2, 3, 4} found in eq. (4.1.9).
Let us now clarify the meaning of this matrix by analysing the entry [A]1, 2. This
corresponds to the transition probability Pr{(1, 1, 1) → (1, 1, 0). Observing the
row related to (χ1, χ2, χ3) = (1, 1, 1) in Tab. 4.1.1, one can see that the possible
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combinations of the functions that bring the state to the values (1, 1, 0) are either
(f 1

1 , f
2
2 , f

1
3 ) or (f

2
1 , f

2
2 , f

1
3 ). In the matrix K, these combinations correspond to the

second and fourth rows which represent respectively that, in the P.B.N., the model
Σ2 is selected with probability P2 and the model Σ4 is selected with probability P4.
That is why [A]1, 2 = P2 + P4 = 0.5.
Let us now concentrate on the entry [A]7, 7. In this case, one can immediately write
[A]7, 7 = 1 because [Lγ]7, 7 = 1, so in each transition matrix of eq. (4.1.9) the state
(0, 0, 1) ∼ δ78 is a fixed point.
It is also possible to prove that eq. (4.1.18) is true by checking matrix A directly.

Theorem 4.1.1 (Probabilistic Boolean Network Nodes Dynamics)
Let Lγ(t) be the structure matrix at time t in the algebraic form of eq. (4.1.4).
The dynamical behaviour of the n ∈ N* variables of the P.B.N. can be described as
follows:

x(t) = Lγ(t− 1)⋉ x(t− 1) =

= Lγ(t− 1)⋉ Lγ(t− 2)⋉ x(t− 2) =

...

= Lγ(t− 1)⋉ Lγ(t− 2)⋉ · · ·⋉ Lγ(0)⋉ x(0).

(4.1.22)

From eq. (2.1.3), it is true that ∀ i = 1, . . . , n:

xi(t) =Mfi ⋉ x(t− 1), (4.1.23)

then, also in the case of a P.B.N.:

xi(t) =Mfi ⋉ Lγ(t− 2)⋉ x(t− 2). (4.1.24)

Since a B.N. described by eq. (2.1.3) is time-invariant and deterministic, given
an initial state condition x(0) ∈ L2n , the state trajectory x(t), with t ∈ Z, is
univocally determined. The structure matrix L, in fact, is unique and does not
change over time. From an initial condition x(0), then, the state trajectory can be
pre-determined using eq. (2.1.10).
In a B.N. described as in eq. (2.1.3) which is time-invariant and deterministic, the
evolution of the state x(t), with t ∈ Z, is univocally determined, starting from any
initial condition x(0) ∈ L2n . This is not true for a P.B.N. since the active network Σγ

at time t depends on the probability Pγ. Therefore, unlike in a B.N., the structure
matrix Lγ is not unique and can change over time, making impossible to predict the
exact state at any future time t.
Nevertheless, given a starting joint distribution, it is possible to find the limiting
joint distribution. Let us start by defining the iterative system for updating the
joint distribution.

Definition 4.1.4 (Update Function of Joint Distribution)
Given a P.B.N. as in eq. (4.1.4), the initial joint probability distribution is denoted
by D(x1, x2, . . . , xn) over the n-dimensional hypercube, where x1, x2, . . . , xn ∈
[0, 1]n . Then, the equation to compute the joint distribution of the network at the
next iteration is:

Dt+1 = Ψ(Dt), (4.1.25)
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where Ψ : [0, 1]2
n

→ [0, 1]2
n

. Then, the mapping Ψ is represented by the state
transition matrix A so that the previous equation can be rewritten as:

Dt+1 = Dt · A = D0 · At+1, (4.1.26)

where Dt+1 and Dt ∈ [0, 1]2
n

, D(0) = D(x) is the starting joint distribution and
A ∈ R

2n×2n is the state transition matrix of Def. 4.1.3.

Assuming that the starting joint distribution is uniform, i.e. D0 =
[

1
2n
, 1

2n
, . . . , 1

2n

]
,

it is possible to find the limiting probabilities of a P.B.N. iterating eq. (4.1.26). Let
us see the procedure in the next example.

Example 4.1.5 (Limiting Probabilities)
Continuing Ex. 4.1.4, let us assume that the starting joint distribution is uniform,
that is D0 =

[
1
8
, 1

8
, . . . , 1

8

]
. Then, the limiting probabilities are found as follows:

Dt+1 = Dt · A =

= Dt ·Dt−1 · A =

...

= D0 · At+1.

(4.1.27)

After a sufficient number of iterations (around 57 iterations), one finally gets the
limiting probabilities as:

π = [0, 0.828, 0, 0, 0, 0, 0.172, 0]. (4.1.28)

This vector shows that, starting from a uniform distribution of the states, the active
states will either be (110) or (001) in the long run. In some sense, the concept of
limiting probabilities in P.B.N.s corresponds to the concept of attractors in B.N.s.
However, unlike in a B.N. where the initial condition does not influence the attrac-
tors, the absorbing states in a P.B.N. might not be the same from a different starting
distribution. If, for example, D0 = [1, 0, 0, 0, 0, 0, 0, 0] the limiting probabilities
result:

π = [0, 1, 0, 0, 0, 0, 0, 0], (4.1.29)

which is different from the previous result since the active state will be (110) with
probability one.

4.2 Graphical representation

Also Probabilistic Boolean Network nodes and their interactions are well represented
by means of directed graphs. Let us define the network graph in this specific case.

Definition 4.2.1 (Network Graph of a Probabilistic Boolean Network)
Given a P.B.N., we associate with it a graph whose set of nodes is the set of boolean
variables: V = {χ1, . . . , χn}. A pair (χi, χj) is an edge belonging to E if χi(t)
is an argument of f

γj
j (·) in eq. (4.1.1), thus the node χi(t) affects χj(t + 1), with

0 < i, j ≤ n and 0 < γj ≤ lj. This directed graph is called network graph of
the P.B.N.. Moreover, thanks to the equivalence between boolean variables and
logic vectors, and consequently between the eqs. (4.1.1) and (4.1.3), the nodes of a
network graph can either be χi ∈ B or xi ∈ L

2, with 0 < i ≤ n and n ∈ N*.
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In the case of P.B.N., it is possible to define an incidence matrix for each subsystem
Σγ as shown in the following.

Definition 4.2.2 (From Graph to Incidence Matrix)
Given a graph as in Def. 2.2.1, we define incidence matrix of subsystem Σγ the
boolean matrix I(G, Σγ) ∈ B

n×n whose entries are defined based on the following
rule:

[I(G, Σγ)]i, j =

{

1, if (Vi, Vj) ∈ E

0, otherwise
, ∀ 0 < i, j ≤ n, 0 < γ ≤ N. (4.2.1)

Algorithm 4.2.1 (From Incidence Matrix to Graph)
Given the incidence matrices I(G, Σγ) ∈ B

n×n, ∀ 0 < γ ≤ N it is always possible
to retrieve the corresponding graph.
Looking at each incidence matrix, one gets the edges connecting the n ∈ N* nodes
as follows:

[I(G, Σγ)]i, j =

{

1→ (Vi, Vj) ∈ E

0→ (Vi, Vj) /∈ E
, ∀ 0 < i, j ≤ n, ∀ 0 < γ ≤ N. (4.2.2)

The next proposition shows an alternative way to derive the incidence matrix.

Proposition 4.2.1 (From Boolean Network to Incidence Matrix)
The incidence matrix I(G, Σγ) ∈ B

n×n, ∀ 0 < γ ≤ N can be directly derived from
the logic equations of a P.B.N as in eq. (4.1.3) in the following way:

[I(G, Σγ)]i, j =

{

1, if f
γj
j (·) depends on xi(t)

0, otherwise
, ∀ 0 < i, j ≤ n, ∀ 0 < γ ≤ N,

(4.2.3)
where the functions f

γj
j are chosen accordingly with the selected subsystem Σγ.

Definition 4.2.3 (General Incidence Matrix)
Given the incidence matrices I(G, Σγ) ∈ B

n×n, ∀ 0 < γ ≤ N it is possible to denote
with I(G) ∈ Bn×n the general incidence matrix of a P.B.N.. It can be found as
follows:

I(G) =
N∨

γ=1

I(G, Σγ). (4.2.4)

An example is presented in the following.

Example 4.2.1 (Network Graph and Incidence Matrix)
Consider again Ex. 4.1.1. It is possible to build the network graph G , (V, E)
applying Def. 2.2.3. The set of nodes is V = {χ1, χ2, χ3} and the set of edges is
E = {e1, 1, e2, 1, e1, 2, e3, 2, e2, 3, e3, 3}. The incidence matrices can be retrieved either
from Def. 4.2.2 or from Prop. 4.2.1 as follows:

I(G, Σ1) =





1 1 0
1 0 1
0 1 1



 I(G, Σ2) =





1 1 0
1 0 1
0 1 1





I(G, Σ3) =





1 1 0
1 0 1
0 1 1



 I(G, Σ4) =





1 1 0
1 0 1
0 1 1



 ,

(4.2.5)
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where the functions f
γj
j , with 0 < j ≤ n and 0 < γj ≤ N , are associated to the

subsystems Σγ according to matrix K of eq. (4.1.20). The resulting graph G ,

(V, E) is reported in Fig. 4.2.1. The four incidence matrices are identical because,
in this specific case, the functions f

γj
j depend on the same nodes for 0 < γj ≤ N .

Therefore, also the network graph is identical to that of Fig. 2.2.1 and the general
incidence matrix is:

I(G) =
4∨

γ=1

I(G, Σγ) =





1 1 0
1 0 1
0 1 1



 . (4.2.6)

χ1

χ2 χ3

Figure 4.2.1: Network Graph of a Probabilistic Boolean Network

Since Rem. 2.2.1 can be applied also to probabilistic boolean networks, the state
graph for P.B.N. is now presented.

Definition 4.2.4 (State Graph of a Probabilistic Boolean Network)
Consider a P.B.N. in algebraic form, described as in eq. (4.1.3). A directed graph
G , {V , E} is the state graph of the P.B.N. if its vertices correspond to all the values
that the state vector can assume, i.e. V = {δi2n : i = 1, . . . , 2n}, and the edges ∈ E
are the elements ei, j =

(
δi2n , δ

j
2n

)
s.t. [Lγ]j, i = 1, with 0 < i, j ≤ 2n and 0 < γ ≤ N

(equivalently, Coli(Lγ) = δj2n).

Defs. 2.2.7, 2.2.9 and Prop. 2.2.2 are valid also for P.B.N. by substituting the
deterministic structure matrix L with the probabilistic one Lγ. If in the state of a
B.N. each node has one and only one outgoing edge (out-degree equal to one), in the
state of a P.B.N. each node can have a number of outgoing edges equal to at most
N , the number of subsystems Σγ. So the out-degree is ≤ N . Instead, the in-degree
of each node is ≤ 2n ·N because there are exactly 2n ·N edges.

Proposition 4.2.2 (Probabilistic Boolean Networks and State Graph)
Considering again the P.B.N. in eq. (4.1.4), it is possible to say that there exists a
one-to-one correspondence between the P.B.N. and its state graph.

The following example shows how to build the state graph of a probabilistic boolean
network.

Example 4.2.2 (State Graph)
Consider the P.B.N. of Ex. 4.1.2 which is fully characterized by the structure ma-
trices Lγ for γ = 1, 2, 3, 4 of eq. (4.1.9). The set of vertices V and of edges E can
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be found looking at the different Lγ. It follows that:







V =
{
δi23 : i = 1, 2, 3, 4, 5, 6, 7, 8

}

E = {(δ18, δ
2
8) , (δ

1
8, δ

4
8) , (δ

2
8, δ

2
8) , (δ

3
8, δ

1
8) ,

(δ38, δ
3
8) , (δ

3
8, δ

5
8) , (δ

3
8, δ

7
8) , (δ

4
8, δ

2
8) ,

(δ48, δ
6
8) , (δ

5
8, δ

4
8) , (δ

5
8, δ

8
8) , (δ

6
8, δ

2
8) ,

(δ68, δ
4
8) , (δ

6
8, δ

6
8) , (δ

6
8, δ

8
8) , (δ

7
8, δ

7
8) ,

(δ88, δ
6
8) , (δ

8
8, δ

8
8)}.

(4.2.7)

Then, the state graph is reported in Fig. 4.2.2. Attached to each edge there is the
probability that the edge is selected in the model Σγ. Equivalently, the probability
indicates how likely it is for a state to move to a new state by means of that edge.
For example, the nodes δ28 and δ

7
8 are fixed points with probability one because, once

they are reached, it is not possible to change state with any model Σγ. The edges
colored in brown represent multiple edges from one state to another one and in fact
the transition probability is a sum of probabilities.

δ18 δ28 δ38

δ48

δ58δ68δ78

δ88

P2 + P4

P1 + P3

1

P2 P1

P4
P3

P1 + P2

P3 + P4

P1 + P2

P3 + P4

P2

P1

P4

P3

1

P2 + P4

P1 + P3

Figure 4.2.2: State Graph of a Probabilistic Boolean Network

4.3 Fixed Points and Limit Cycles

The concepts of fixed points and limit cycles play an important role in the study
of stability of a P.B.N.. Differently to a B.N., a P.B.N. can be represented as a
set of B.N.s, so for each node of the state graph there are N outgoing edges. This
determines that fixed points and limit cycles are not deterministic but depend on
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the probability that a specific model Σγ is active.
Let us start from the new definition of fixed point.

Definition 4.3.1 (Fixed Point)
Given a P.B.N. described as in eq. (4.1.4) and a time instant t ∈ Z, a state δp2n
is said to be a fixed point (or equilibrium point) of the P.B.N. if, for some γ ∈
{1, 2, . . . , N}, it holds that:

δp2n = x(t+ 1) = Lγ ⋉ x(t) = Lγ ⋉ δp2n . (4.3.1)

The previous definition shows the possibility that, for some models Σγ, the state
δp2n is not actually a fixed point. That is why, in the case of a P.B.N., a stronger
definition of fixed point is necessary.

Definition 4.3.2 (Common Fixed Point)
Given a P.B.N. described as in eq. (4.1.4) and a time instant t ∈ Z, a state δp2n is
said to be a common fixed point of the P.B.N. if, ∀γ ∈ {1, 2, . . . , N}, it holds that:

δp2n = x(t+ 1) = Lγ ⋉ x(t) = Lγ ⋉ δp2n . (4.3.2)

The following example clarifies the difference between the last two definitions.

Example 4.3.1 (Fixed Points and Common Fixed Points)
Consider the P.B.N. described by the structure matrices of eq. (4.1.9) whose state
graph is shown in Fig. 4.2.2. Looking at the different Lγ, with γ = 1, 2, . . . , N , one
finds that the fixed points are the states δ28, δ

3
8, δ

6
8, δ

7
8, δ

8
8 because there is at least

one self-loop on each of these states. Instead, the common fixed points are a subset
of the fixed points composed by the states δ28 and δ78, since all models have the same
value in the corresponding structure matrix Lγ.

Definition 4.3.3 (Limit Cycle)
Given a P.B.N. described as in eq. (4.1.4), a limit cycle of length t ∈ Z is an
ordered sequence of t distinct states {δc2n , Lγ(0)⋉ δc2n , . . . , Lγ(t− 1)⋉ δc2n}, with
γ = 1, 2, . . . , N , if it holds that:

δc2n = x(t) = Lγ(t− 1)⋉ Lγ(t− 2)⋉ · · ·⋉ Lγ(0)⋉ x(0) =

= Lγ(t− 1)⋉ Lγ(t− 2)⋉ · · ·⋉ Lγ(0)⋉ δc2n .
(4.3.3)

As in the case of a fixed point, each state can belong to more than one limit cycle
due to the randomness in the choice of the structure matrix Lγ, which is visually
represented by the multiple edges from each node in the state graph of a P.B.N..
Let us see an example about limit cycles.

Example 4.3.2 (Limit Cycles)
Consider the P.B.N. described by the structure matrices of eq. (4.1.9) whose state
graph is shown in Fig. 4.2.2. From the latter, one can see that the limit cycles are
{δ48, δ

6
8} and {δ68, δ

8
8}. The first one requires that, when x(t) = δ48, with t ∈ Z, the

active model is either Σ3 or Σ4 so that δ68 = x(t + 1) = L3 ⋉ δ48 = L4 ⋉ δ48, and,
when x(t) = δ68, the active model is Σ1 so that δ48 = x(t + 1) = L1 ⋉ δ68. The same
reasoning can be followed for the second limit cycle.

The following proposition treats the convergence of a P.B.N. as opposed to the
convergence of a deterministic and time invariant B.N..
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Proposition 4.3.1 (Convergence of a Probabilistic Boolean Network)
Given a P.B.N. as in eq. (4.1.4), its dynamics may never converge to a specific
attractor as in Def. 2.3.3. In detail, an initial state condition x(0) = δi2n , with
0 < i ≤ 2n, can either converge to a fixed point or to a limit cycle, or evolve
infinitely into different states of the network. Then, in general, it is no more possible
to distinguish between attracting and transient states.

4.4 Stability of a Probabilistic Boolean Network

The property of stability, studied in Chapter 2 for boolean networks, is applicable
also to P.B.N.s. Since the latter are probabilistic models, the stabilities that can be
analysed are: with probability one, in probability and in distribution. In this thesis,
only the first type of stability is treated. Its definition is presented in the following.

Definition 4.4.1 (Global Stability with probability one)
Consider a P.B.N. described as in eq. (4.1.3), where the probability Pγ, γ =
1, 2, . . . , N , for the model Σγ to be active is as in eq. (4.1.6). Then, the P.B.N.
is said to be globally stable with probability one if it globally converges to a fixed
point with probability one. Specifically, there must exist a state xe ∈ L

2n such that,
for any x0 ∈ L

2n :

Pr
{

lim
t→∞

x(t) = xe |x(0) = x0

}

= 1. (4.4.1)

In order to present a theorem that contains an easily verifiable, necessary and suffi-
cient condition, some preliminary lemmas are needed.

Lemma 4.4.1
Given a P.B.N. described as in eq. (4.1.3), with probability Pγ , γ = 1, 2, . . . , N ,
for the model Σγ being active, denote the event:

AT
γ = {Σγ appears continuously over T times}. (4.4.2)

Then, for any T > 0, one gets:

Pr {AT
γ happens infinite times} = 1. (4.4.3)

This lemma shows that any network model can always appear in any continuous pe-
riod. Thanks to it, the next lemma proves a necessary condition for global stability.

Lemma 4.4.2
Consider a P.B.N. described as in eq. (4.1.3), with probability Pγ, γ = 1, . . . , N ,
for the model Σγ being active. If it globally converges to xe ∈ L

2n with probability
one, then xe is a fixed point of any network model Σγ.

To provide the necessary and sufficient condition, some lemmas for Markov chains
(see [23]) are needed.

Lemma 4.4.3
Consider a Markov chain ξn. A state j is said to be recurrent, if and only if:

Pr {ξn = j for infinitely many n | ξ0 = j} = 1, (4.4.4)

while a state j is said to be transient, if and only if:

Pr {ξn = j for infinitely many n | ξ0 = i} = 1, ∀ i 6= j. (4.4.5)
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It is now possible to present the following theorem for stability.

Theorem 4.4.1 (Global Stability with probability one)
Consider a P.B.N. described as in eq. (4.1.3), with probability Pγ, γ = 1, . . . , N ,
for the model Σγ being active. Let us denote:

L =
N∑

γ=1

Lγ. (4.4.6)

Then, the P.B.N. globally converges to xe = δi2n ∈ L
2n with probability one, if and

only if xe is a fixed point of every model Σγ as in Def. 4.3.2, and

Rowi

(
2n∑

s=1

Ls

)

> 0. (4.4.7)

Let us see an example.

Example 4.4.1 (Global Stability with probability one)
Consider a P.B.N. with two states, x1 and x2 ∈ L

2, and its dynamics as follows:

{

x1(t+ 1) = f1(x1(t), x2(t))

x2(t+ 1) = f2(x1(t), x2(t)),
(4.4.8)

where f1 = {f
1
1 , f

2
1} and f2 = {f

1
2 , f

2
2} are chosen randomly with uniform distribu-

tion, so that there are N = l1 · l2 = 2 · 2 = 4 structure matrices:

L1 = δ4
[
1 2 3 4

]
, L2 = δ4

[
2 2 4 4

]
,

L3 = δ4
[
3 3 4 4

]
, L4 = δ4

[
4 3 4 4

]
.

(4.4.9)

It is easy to see that the unique common fixed point of all models Σγ, with γ =
1, 2, 3, 4, is xe = δ44, as confirmed by the state graph of Fig. 4.4.1, where each edge
has the transition probability attached. One can compute:

L =
4∑

γ=1

Lγ =







1 0 0 0
1 1 0 0
1 1 1 0
1 0 1 1






, (4.4.10)

where it is confirmed the presence of the common fixed point xe = δ44, and:

4∑

s=1

Ls =







1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1






. (4.4.11)

Since Row4

(∑4
s=1 L

s
)
> 0, one can conclude that eq. (4.4.7) holds, so the P.B.N.

is globally stable at xe = δ44.

Let us now see an example where there cannot be global stability with probability
one.

88



SECTION 4.4. STABILITY OF A PROBABILISTIC BOOLEAN NETWORK

δ18 δ28

δ38δ48

0.25

0.25

0.25
0.25

0.5

0.5

0.75

0.251

Figure 4.4.1: State Graph of a Probabilistic Boolean Network

Example 4.4.2 (Global Stability with probability one)
Refer again to Ex. 4.1.2 whose state graph is shown in Fig. 4.2.2. Consider that
the update functions are chosen randomly with uniform distribution. Then, the
structure matrix L is as follows:

L =
4∑

γ=1

Lγ =















0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1















, (4.4.12)

where it is possible to recognize two common fixed points of all models, δ28 and δ78.
Then, the boolean sum of the boolean powers of L is as follows:

8∑

s=1

Ls =















0 0 1 0 0 0 0 0
1 1 1 1 1 1 0 1
0 0 1 0 0 0 0 0
1 0 1 1 1 1 0 1
0 0 1 0 0 0 0 0
1 0 1 1 1 1 0 1
0 0 1 0 0 0 1 0
1 0 1 1 1 1 0 1















. (4.4.13)

In this case, there is no index i ∈ {1, 2, . . . , 8} such that Rowi

(∑8
s=1 L

s
)
> 0.

Then, the P.B.N. is not globally stable with probability one. This is due to the fact
that, if x0 = δ78, the trajectory of the P.B.N. will never leave the fixed point making
it impossible to reach the other common fixed point δ28.

The references examined to write this chapter are the following: [6], [13], [14],
[15], [24], [25], [26], [27], [28], [29], [30].
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Chapter 5

Probabilistic Boolean Control
Networks

The next step is to study the effects of inputs on P.B.N.s. In this case, a P.B.N.
becomes a Probabilistic Boolean Control Network (P.B.C.N.). The properties of
B.C.N.s studied in Chapter 3 are applicable to this new model.

5.1 Probabilistic Boolean Control Networks Dy-

namics

The structure of a probabilistic boolean control network is defined in the following.

Definition 5.1.1 (Probabilistic Boolean Control Network)
A P.B.C.N. is a discrete time dynamical system involving n ∈ N* boolean state
variables χi(t) ∈ B and m ∈ N* boolean inputs µj ∈ B, with 0 < i ≤ n and
0 < j ≤ m. The evolution of the network is determined by a set of n logic first order
difference equations:







χ1(t+ 1) = f1 (χ1(t), χ2(t), . . . , χn(t); µ1(t), µ2(t), . . . , µm(t))

χ2(t+ 1) = f2 (χ1(t), χ2(t), . . . , χn(t); µ1(t), µ2(t), . . . , µm(t))
...

χn(t+ 1) = fn (χ1(t), χ2(t), . . . , χn(t); µ1(t), µ2(t), . . . , µm(t)) ,

(5.1.1)

where, at every time instant, each logic function fi is selected from a collection of
li < ∞ possible models, namely fi ∈ {f

1
i , f

2
i , . . . , f

li
i }, with f

γi
i (·) : Bn × Bm → B,

according to the probability of fi being f
γi
i , i.e. Pr{fi = fγi

i } = pγii , with
∑li

γi=1 p
γi
i =

1, γi ∈ {1, 2, . . . , li} and i ∈ {1, 2, . . . , n}.

A P.B.C.N. can be rewritten in its algebraic form by means of the same method
used for P.B.N.s. Then, one needs to convert all boolean state variables, inputs
and functions into their algebraic representation. This is explained in the following
proposition.

Proposition 5.1.1 (Probabilistic Boolean Control Network in Algebraic Form)
A P.B.C.N. as in eq. (5.1.1) can be transformed into its equivalent algebraic form
following Thm. 1.4.3:

x(t+ 1) = Lγ(t) ⋉ u(t)⋉ x(t) (5.1.2)
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where x(·) ∈ L2n is the state vector, u(·) ∈ L2m is the input vector and Lγ(t) ∈

L2n×2n+m

is one of the N transition matrices of the P.B.C.N. as in eq. (4.1.4) for
P.B.N.s. To simplify the notation, if the active subsystem at time t, γ(t), is called
γ̄, then the transition matrix Lγ(t) becomes Lγ̄. Then, the previous equation can be
rewritten as follows:

x(t+ 1) = Lγ̄ ⋉ u(t)⋉ x(t) (5.1.3)

Using Thm. 1.4.2, one can obtain the following system:







x1(t+ 1) = f1(x1(t), x2(t), . . . , xn(t); u1(t), u2(t), . . . , um(t)) =

=Mf1 ⋉ u(t)⋉ x(t)

x2(t+ 1) = f2(x1(t), x2(t), . . . , xn(t); u1(t), u2(t), . . . , um(t)) =

=Mf2 ⋉ u(t)⋉ x(t)
...

xn(t+ 1) = fn(x1(t), x2(t), . . . , xn(t); u1(t), u2(t), . . . , um(t)) =

=Mfn ⋉ u(t)⋉ x(t),

(5.1.4)

where xi(·) ∈ L
2, ∀ i, 0 < i ≤ n, uj(·) ∈ L

2, ∀ j, 0 < j ≤ m, Mfi ∈ L
2n×2n+m

, with

Mfi ∈ {M
1
fi
, M2

fi
, . . . , M

lj
fi
}, and x(t) = ⋉

n
i=1xi(t) ∈ L

2n , u(t) = ⋉
m
j=1uj(t) ∈ L

2m .

In eq. (5.1.2), it is customary to put the input vector u(·) before the state vector
x(·). Let us remark that this choice does not alter the dynamics of the P.B.C.N.
since the two vectors can be exchanged by means of a proper swap matrix.

Example 5.1.1 (Probabilistic Boolean Control Network in Algebraic Form)
Given a P.B.C.N. with n = 3 state variables, m = 2 inputs and the function sets
f1, f2 and f3 : B3 → B, where f1 = {f 1

1 , f
2
1}, f2 = {f 1

2 , f
2
2} and f3 = {f 1

3} as
follows:







χ1(t+ 1) = f1 (χ1(t), χ2(t), µ1(t)) =

=

{

f 1
1 (χ1(t), χ2(t), µ1(t)) = (χ1(t) ∧ χ2(t)) ∨ µ1(t), p11 = Pr{f1 = f 1

1} = 0.6

f 2
1 (χ1(t), χ2(t), µ1(t)) = (χ1(t) ∨ χ2(t)) ∨ µ1(t), p21 = Pr{f1 = f 2

1} = 0.4

χ2(t+ 1) = f2 (χ1(t), χ3(t), µ2(t)) =

=

{

f 1
2 (χ1(t), χ3(t), µ2(t)) = (χ2(t) ∨ χ3(t)) ∧ µ2(t), p12 = Pr{f2 = f 1

2} = 0.7

f 2
2 (χ1(t), χ3(t), µ2(t)) = (χ2(t) ∧ χ3(t)) ∧ µ2(t), p22 = Pr{f2 = f 2

2} = 0.3

χ3(t+ 1) = f3 (χ2(t), χ3(t)) =

= f 1
3 (χ2(t), χ3(t)) = ¬χ2(t) ∧ χ3(t), p13 = Pr{f3 = f 1

3} = 1,

(5.1.5)
it is possible to rewrite the system as:







x1(t+ 1) =Mf1 ⋉ u(t)⋉ x(t)

x2(t+ 1) =Mf2 ⋉ u(t)⋉ x(t)

x3(t+ 1) =Mf3 ⋉ u(t)⋉ x(t),

(5.1.6)

where Mfi ∈ {M
1
fi
, M2

fi
, . . . , M li

fi
} ∈ L2×32, with 1 ≤ i ≤ 3. Finally, the N =

l1 · l2 · l3 = 2 · 2 · 1 = 4 structure matrices in the P.B.C.N. description (5.1.2) are
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found by means of the Khatri-Rao product:

L1 =M1
f1
∗M1

f2
∗M1

f3
=

= δ8
[
2 2 2 4 1 2 1 4 4 4 4 4 3 4 3 4 2 2 6 8 5 6 5 8 4 4 8 8 7 8 7 8

]
,

with P1 = Pr{Σ1 selected} = p11 · p
1
2 · p

1
3 = 0.42;

L2 =M1
f1
∗M2

f2
∗M1

f3
=

= δ8
[
2 4 4 4 1 4 3 4 4 4 4 4 3 4 3 4 2 4 8 8 5 8 7 8 4 4 8 8 7 8 7 8

]
,

with P2 = Pr{Σ2 selected} = p11 · p
2
2 · p

1
3 = 0.18;

L3 =M2
f1
∗M1

f2
∗M1

f3
=

= δ8
[
2 2 6 8 5 6 5 8 4 4 8 8 7 8 7 8 6 6 6 8 5 6 5 8 8 8 8 8 7 8 7 8

]
,

with P3 = Pr{Σ3 selected} = p21 · p
1
2 · p

1
3 = 0.28;

L4 =M2
f1
∗M2

f2
∗M1

f3
=

= δ8
[
2 4 4 4 1 4 3 4 4 4 4 4 3 4 3 4 2 4 4 4 1 4 7 8 4 4 4 4 3 4 7 8

]
,

with P4 = Pr{Σ4 selected} = p21 · p
2
2 · p

1
3 = 0.12.

(5.1.7)

where Li ∈ L
8×32, with i = 1, 2, 3, 4.

5.1.1 Probabilistic Boolean Control Networks as Switched
Systems

In the previous chapters it has been shown that, in a B.C.N., the selection of a
specific boolean network depends on the deterministic value of the inputs, while, in
a P.B.N., the same selection depends on the probability that a specific model Σγ

is selected at time t ∈ Z. In a P.B.C.N., which is a mixture of a B.C.N. and a
P.B.N., the choice depends on both the deterministic value of the inputs and on the
probability that a specific model is selected. Algebraically, it holds:

x(t+ 1) = Lγ(t)⋉ u(t)⋉ x(t), (5.1.8)

where Lγ(t) ∈ L
2n×2n+m

is the structure matrix of the active B.C.N. at time t. Lγ is
selected by the probability Pγ = Pr{Σγ selected}, with 0 < γ ≤ N . Therefore, the
P.B.C.N. can be written as a switched system:

x(t+ 1) = L⋉ γ(t)⋉ u(t)⋉ x(t), (5.1.9)

where γ(t) ∈ LN selects with Pr{γ(t) = δγN} = Pγ the active structure matrix Lγ

taking values in {1, . . . , N}, u(t) ∈ L2m is the input selecting the sub-model of Lγ

and L is as follows:

L =
[
L1 L2 . . . LN

]
. (5.1.10)

Let us now consider an example.

Example 5.1.2 (Probabilistic Boolean Control Networks as Switched Systems)
Consider the P.B.C.N. of Ex. 5.1.1. Since there are two possible update functions
for the state x1, two for the state x2 and one for the state x3, i.e. f1 = {f

1
1 , f

2
1}, f2 =

{f 1
2 , f

2
2} and f3 = {f

1
3}, this means that there are N = l1 · l2 · l3 = 4 sub-networks.
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Moreover, there are two inputs which means that the number of combinations is
2m = 4. Therefore, the matrix L is as follows:

L =
[
L1 L2 L3 L4

]
∈ L8×128, (5.1.11)

and the vectors have dimensions γ(t) ∈ L4 and u(t) ∈ L4.

5.1.2 Graphical Representation

Also in the case of a P.B.C.N., it is possible to represent graphically the network by
means of a state graph G = (V , E) as in Def. 2.2.6. The next definition introduces
the network graph of a P.B.C.N..

Definition 5.1.2 (Network Graph of a Probabilistic Boolean Control Network)
Given a P.B.C.N., we associate with it a graph (V,E) whose set of nodes is the set
of boolean variables: V = {χ1, . . . , χn}. A pair (χi, χj) is an edge belonging to E if
χi(t) is an argument of f

γj
j (·) in eqn. (5.1.1), thus the value of χi(t) affects the value

χj(t + 1), with 0 < i, j ≤ n and 0 < γj ≤ lj. The same holds for a pair including
an input µk(t) with 0 < k ≤ m. (µk, χj) is an edge belonging to E if µk(t) is an
argument of f

γj
j (·). This directed graph is called network graph of the P.B.C.N..

It is also possible to represent a P.B.C.N. by means of a state graph as expressed in
the following definition.

Definition 5.1.3 (State Graph of a Probabilistic Boolean Control Network)
Consider a P.B.C.N. in algebraic form, described as in eqn. (5.1.4). The state graph
of the P.B.C.N. is a directed graph G , {V , E} whose vertices correspond to all the
values that the state vector can assume, i.e. V = {δi2n : i = 1, . . . , 2n}, and whose
edges ∈ E are the elements ei, j =

(
δi2n , δ

j
2n

)
s.t.

[
[Lγ]k

]

j, i
= 1, with 0 < i, j ≤ 2n,

0 < k ≤ 2m and 0 < γ ≤ N .

In order to draw the state graph of a P.B.C.N., it is possible to introduce the matrix
LTOT that summarizes the information brought by the single structure matrices Lγ,
with γ = 1, 2, 3, 4. In fact, the information of each of the N B.C.N.s is collected in
the matrix Ltot, γ of eqn. (3.1.18). Then, LTOT is as follows:

LTOT =
N∑

γ=1

Ltot, γ. (5.1.12)

The following example shows this procedure.

Example 5.1.3 (Graphical Representation)
Given a P.B.C.N. in algebraic form with two state variables and one input belonging
to L2, and two possibilities for each state update function so that there are N = 4
values of Lγ with uniform distribution, with γ = 1, 2, 3, 4, the state update equation
is:

x(t+ 1) = Lγ ⋉ u(t)⋉ x(t), (5.1.13)

where x(·) ∈ L4, u(·) ∈ L2 and the different Lγ ∈ L
4×8 have the following entries:

L1 = δ4
[
4 3 4 4 1 4 4 4

]

L2 = δ4
[
2 3 1 4 1 4 2 4

]

L3 = δ4
[
1 2 2 4 4 3 2 4

]

L4 = δ4
[
4 3 1 4 3 1 2 4

]
.

(5.1.14)

94



SECTION 5.1. PROBABILISTIC BOOLEAN CONTROL NETWORKS
DYNAMICS

By considering that each Lγ represents a single B.C.N., one can compute the ma-
trix Ltot, γ using eqn. (3.1.18) for each Lγ and then superimpose the state graphs
corresponding to each matrix Ltot, γ.
The matrices Ltot, γ, for γ = 1, 2, 3, 4 are:

Ltot, 1 =







1 0 0 0
0 0 0 0
0 1 0 0
1 1 1 1






, Ltot, 2 =







1 0 1 0
1 0 1 0
0 1 0 0
0 1 0 1






,

Ltot, 3 =







1 0 0 0
0 1 1 0
0 1 0 0
1 0 0 1






, Ltot, 4 =







0 1 1 1
0 0 1 0
1 1 0 0
1 0 0 0






.

(5.1.15)

Superimposing the state graphs corresponds to the logical sum of the matrices Ltot, γ,
denoted by LTOT (see eqn. (5.1.12)) and with entries:

LTOT =







1 1 1 1
1 1 1 1
1 1 0 1
0 0 0 1






. (5.1.16)

Thanks to the information embedded in LTOT , one can build the corresponding state
graph G where the common nodes and edges are:







V = {δ14, δ
2
4, δ

3
4, δ

4
4}

E = {(δ14, δ
1
4), (δ

1
4, δ

2
4), (δ

1
4, δ

3
4), (δ

1
4, δ

4
4),

(δ24, δ
1
4), (δ

2
4, δ

2
4), (δ

2
4, δ

3
4), (δ

2
4, δ

4
4),

(δ34, δ
1
4), (δ

3
4, δ

2
4), (δ

3
4, δ

4
4),

(δ44, δ
4
4)}.

(5.1.17)

Finally, the state graph is reported in Fig. 5.1.1.

δ14 δ24

δ34δ44

Figure 5.1.1: State Graph of a Probabilistic Boolean Control Network
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5.2 Reachability

As done for the deterministic B.C.N., the analysis of reachability for a P.B.C.N. is
now proposed. Let us start by introducing a new concept, called reachability with
probability one.

Definition 5.2.1 (Reachability from a State)
Given a P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N ,
a state xj ∈ L

2n is said to be reachable from the state xi ∈ L
2n , if there exists a

sequence of model-control pairs {(Σ(t), u(t)), t = 0, 1, . . . , s−1}, s <∞, such that
the controlled network trajectory will reach xj at time s.

The following two more general definitions follow from the previous definition.

Definition 5.2.2 (Reachability)
By referring to Def. 5.2.1, a state xj ∈ L

2n is said to be reachable if it is reachable
from any state xi ∈ L

2n .

Definition 5.2.3 (Reachability of P.B.C.N.)
By referring to Def. 5.2.1, a P.B.C.N. is said to be reachable if any xj ∈ L

2n is
reachable.

It is now possible to explore an equivalent computable condition for reachability.
Given that Lγ denotes the structure matrix of the γ-th network model Σγ, one can
compute the following two matrices:

Mγ =
2m∑

j=1

Blkj(Lγ), (5.2.1)

and

MP =
N∑

γ=1

Mγ . (5.2.2)

[MP ]i, j = 1, i.e. the i, j-th entry of matrix MP is equal to one, means that there
exists at least one model Σγ and a control u such that the state δi2n can be reached
from the state δj2n in one step.
Now, one can define the reachability matrix for P.B.C.N.s, as done in the following
definition.

Definition 5.2.4 (Reachability Matrix)
Given a P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N ,
the reachability matrix is a boolean matrix belonging to B2n×2n defined as follows:

RP =
2n∑

s=1

M s
P . (5.2.3)

The new matrix RP can completely characterize the reachability as shown in the
following theorem.

Theorem 5.2.1 (Reachability and RP )
A P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N , is
reachable if and only if RP > 0.
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The following example clarifies the concept of reachability for a P.B.C.N..

Example 5.2.1 (Reachability)
Consider Ex. 5.1.1. The matrices Mγ, γ = 1, 2, 3, 4, are found using eqn. (5.2.1):

M1 =















0 0 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 1 1 0 1 0 1















, M2 =















0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 1 1 0 1 0 1















,

M3 =















0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1















, M4 =















0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1















.

(5.2.4)

Then, matrix MP is found using eqn. (5.2.2):

MP =















0 0 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1
0 0 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1















. (5.2.5)

It is now possible to compute the reachability matrix using eqn. (5.2.3):

RP =















0 0 0 0 1 0 1 0
1 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0
1 1 1 1 1 1 1 1
0 0 0 0 1 0 1 0
1 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0
1 1 1 1 1 1 1 1















. (5.2.6)

Since there are some entries equal to zero, one can conclude that the P.B.C.N. is not
reachable. For example, [RP ]3, 2 = 0 indicates that state δ38 cannot be reached from
state δ28. Nevertheless, some conclusions about the reachability of specific states can
be drawn. The fourth and eighth rows contain only ones, so the states δ48 and δ88 are
reachable because they can be reached from any state in the network.
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5.3 Controllability

Let us now analyse the controllability property for a P.B.C.N..

Definition 5.3.1 (Controllability with Probability One to a State)
Given a P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N , a
state xi ∈ L

2n is said to be controllable with probability one to the state xj ∈ L
2n

if there exists a control sequence such that:

Pr{x(t) = xj for some t ≥ 1 |x(0) = xi} = 1. (5.3.1)

The following two more general definitions follow from the previous definition.

Definition 5.3.2 (Controllability with Probability One)
By referring to Def. 5.3.1, a P.B.C.N. is said to be controllable with probability one
at state xi if it is controllable with probability one from xi to any xj ∈ L

2n .

Definition 5.3.3 (Controllability with Probability One of a P.B.C.N.)
By referring to Def. 5.3.1, a P.B.C.N. is said to be controllable with probability one
if it is controllable at any xi ∈ L

2n .

It is now possible to characterise the controllability by means of the reachability
matrix thanks to the following theorem.

Theorem 5.3.1 (Controllability with Probability One and RP )
Consider a P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N .
It is controllable with probability one if and only if RP > 0.

Let us now see an example where the controllability property is investigated.

Example 5.3.1 (Controllability with Probability One)
Consider Exs. 5.1.1 and 5.2.1. By looking at matrix RP of eqn. (5.2.6) and observ-
ing that some entries are equal to zero, one can conclude that the P.B.C.N. is not
controllable with probability one. Nevertheless, the fifth and seventh columns con-
tain only ones which means that the states δ58 and δ

7
8 are controllable with probability

one to any state ∈ L2n .

5.4 Stabilisation

In this section, the stabilisation of a P.B.C.N. is explored.
The concept of control-fixed point is now introduced because it will be frequently
used in the following.

Definition 5.4.1 (Control-fixed Point)
In a P.B.C.N. as in eqn. (5.1.1), a point xe ∈ L

2n is called a control-fixed point if
there exists a control ue ∈ L

2m such that xe = Lγ̄ ⋉ ue ⋉ xe.

One can check the control-fixed points of a network directly from the structure
matrix L as explained in the following proposition.

Proposition 5.4.1 (Control-fixed Point)
The state xe = δi2n ∈ L

2n is a control-fixed point under the control ue = δj2m ∈ L
2m

if and only if xe = Coli(Blkj(Lγ̄)).
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It is now possible to define the stabilisation with probability one of a P.B.C.N..

Definition 5.4.2 (Stabilisation with Probability One)
Consider a P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N .
It is said to be stabilisable with probability one if there exists a control sequence
such that the controlled system converges to a state xe ∈ L

2n with probability one.

From the concept of stability of P.B.N.s, it is possible to suppose that the necessary
condition of stabilisation of a P.B.C.N. is the fact that the state xe is a control-fixed
point of each network model. This is explained in the next proposition.

Proposition 5.4.2 (Stabilisation with Probability One)
Given a P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N , a
necessary condition for the system to be stabilisable with probability one to xe =
δi2n ∈ L

2n is that xe is a common control-fixed point of all network models Σγ under
the same control ue = δj2m ∈ L

2m .

The sufficient condition is given in the following theorem.

Theorem 5.4.1 (Stabilisation with Probability One)
A P.B.C.N. as in eq. (5.1.1), with N network models Σγ, γ = 1, 2, . . . , N , is
stabilisable to xe = δi2n ∈ L

2n with probability one if and only if the necessary
condition in Prop. 5.4.2 holds and:

Rowi(RP) > 0. (5.4.1)

Let us consider an example in this regard.

Example 5.4.1 (Stabilisation with Probability One)
Consider the setup of Ex. 5.3.1. By observing the entries of matrix RP , since
Row4(RP) and Row8(RP) > 0, one can conclude that the P.B.C.N. is stabilisable
to the states δ48 and δ88.

5.5 Feedback Control

The previous section shows which states a P.B.C.N. is stabilisable to with probability
one. This section proposes a solution to guarantee that every state of the network
converges to a control-fixed point. Similarly to what has been done for B.C.N.s,
a state feedback controller is designed for P.B.C.N.s. Let us start by defining the
problem.
Given a P.B.C.N. as in eqn. (5.1.1), the problem of stabilisation of the network
is solved using a time-invariant feedback law, where the input vector is a linear
combination of state vector entries:

u(t) = K ⋉ x(t), (5.5.1)

where K ∈ L2m×2n is the feedback matrix. The result is that the overall closed-loop
system:

x(t+ 1) = Lin ⋉K ⋉ x(t)⋉ x(t), (5.5.2)
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where x(t) ∈ L2n , u(t) ∈ L2m and Lin ∈ L
2n×2n+m

is defined as follows:

Lin =
N∑

γ=1

Lγ, (5.5.3)

is globally stable with probability one.
Let us start by defining a sequence of sets.

Definition 5.5.1 (Recursive Sets)
Consider a P.B.C.N. as in eqn. (5.1.1). If x′ ∈ L2n is the fixed point to which the
network needs to be stabilised, the sets {Ωk(x

′)} are defined recursively as follows:






Ω1(x
′) = {a ∈ L2n : there is au ∈ L2m such that

Pr{x(t+ 1) = x′ |x(t) = a, u(t) = u) = 1},

Ωk+1(x
′) = {a ∈ L2n : there is au ∈ L2m such that the conditions

Pr{x(t+ 1) = b |x(t) = a, u(t) = u) > 0, b ∈ L2n

imply that b ∈ {Ωk(x
′)}, k = 1, 2, 3, . . . .

(5.5.4)

The two next lemmas give some basic properties of the sets Ωk(x
′).

Lemma 5.5.1
If x′ ∈ Ω1(x

′), then Ωk(x
′) ⊆ Ωk+1(x

′) for k ≥ 1.

Lemma 5.5.2
The following two items are true:

• If Ω1(x
′) = {x′}, then Ωk(x

′) = {x′} for all k ≥ 1;

• If Ωj+1(x
′) = Ωj(x

′) for some j ≥ 1, then Ωk(x
′) = Ωj(x

′) for all k ≥ j.

The following theorem can now be presented.

Theorem 5.5.1 (State Feedback and Recursive Sets)
Consider a P.B.C.N. as in eqn. (5.1.1) and let x′ = x′1 ⋉ x′2 ⋉ · · ·⋉ x′n. If there is a
state feedback law u(·) such that x′ is globally stable with probability one for the
closed-loop system of eqn. (5.5.2), then it holds that:

• x′ ∈ Ω1(x
′);

• there exists an integer G ≤ 2n − 1 such that ΩG(x
′) = L2n .

The previous conditions in Thm. 5.5.1 are also sufficient for the existence of a
state feedback controller that globally stabilises the P.B.C.N.. This is shown in the
following theorem, after the introduction of some notation.
With the conditions in Thm. 5.5.1 satisfied, L2n can be rewritten as the union of
the disjoints sets previously defined:

L2n = Ω1(x
′) ∪ (Ω2(x

′) \ Ω1(x
′)) ∪ · · · ∪ (ΩG(x

′) \ ΩG−1(x
′)). (5.5.5)

Then, to each 1 ≤ i ≤ 2n there corresponds a unique integer 1 ≤ ki ≤ G such that
δi2n ∈ Ωki(x

′) \ Ωki−1(x
′), where Ω0(x

′) = ∅.
If ki = 1, then one can choose a vector vi ∈ L

2m such that:

Pr{x(t+ 1) = x′ |x(t) = δi2n , u(t) = vi} = 1. (5.5.6)

Otherwise, we can find vi ∈ L
2m in such a way that a ∈ Ωki−1(x

′) when

Pr{x(t+ 1) = a |x(t) = δi2n , u(t) = vi} > 0 and a ∈ L2n . (5.5.7)
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Theorem 5.5.2 (State Feedback)
Consider a P.B.C.N. as in eqn. (5.1.1) and let x′ = x′1⋉x′2⋉ · · ·⋉x′n. Suppose that
the conditions of Thm. 5.5.1 hold. If the structure matrix K of the feedback law
has the following shape:

K =
[
v1 v2 · · · v2n

]
, (5.5.8)

where, the vectors vi are those introduced previously, then the state x′ is globally
stable with probability one for the closed-loop system of eqn. (5.5.2).

The following remark is important to understand the usefulness of finding a state
feedback controller for stabilisation.

Remark 5.5.1
If a P.B.C.N., as in eqn. (5.1.1), can be globally stabilised to some state x′ with
probability one, then every state of the network can be steered to x′ with probability
one using random control. Nevertheless, the state feedback scheme of Thm. 5.5.2
is more efficient in terms of stabilisation time than using random control. In fact,
the feedback control scheme finds the shortest path to stabilise the network, while
a random control scheme finds a path that is always equal or longer than the one
found with feedback.

Since the sets Ωk(x
′) play an important role in the whole stabilisation process, from

deciding if the global stabilisation to a state x′ is feasible to determining the actual
feedback controller, a simpler way to compute Ωk(x

′) is needed. This is provided in
the next theorem.

Theorem 5.5.3 (Recursive Sets)
Consider a P.B.C.N. as in eqn. (5.1.1). Let Lγ, with γ = 1, . . . , N , be the structure
matrices of the different B.C.N.s and let Lin be as in eqn. (5.5.3). Then, for every
x′ ∈ L2n , the following holds:

• Ω1(x
′) = {a ∈ L2n : there is au ∈ L2m such thatLin ⋉ a⋉ u = Nx′};

• Ωk+1(x
′) = {a ∈ L2n : there is au ∈ L2m such thatLin ⋉ a ⋉ u = a1 +

· · · aN for some ai ∈ Ωk(x
′) for k = 1, 2, 3, . . . }.

The following remark comments on the results of this theorem.

Remark 5.5.2
From Thm. 5.5.3, one can observe that the structure of Ωk(x

′) does not depend on
the probabilities P1, P2, . . . , PN that a certain B.C.N. is selected. So, specific values
of the selection probabilities do not influence whether a P.B.C.N. can be globally
stabilised by state feedback.

Let us now see an example that clarifies the whole procedure of state feedback
stabilisation.

Example 5.5.1 (State Feedback)
Consider Ex. 5.1.3. Since, for example, the state δ44 is a control-fixed point, the
objective is to find a feedback law, that is a feedback matrix K such that x′ = δ44 is
globally stable with probability one for the closed-loop system.
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The structure matrices Lγ, with γ = 1, 2, 3, 4, representing the different B.C.N.s,
are similar to those of eqn. (5.1.14). Therefore the matrix Lin, defined in eqn.
(5.5.3), is built as follows:

Lin =







1 0 1 0 1 1 0 0
1 1 1 0 0 0 1 0
0 1 0 0 1 1 0 0
1 0 1 1 1 1 1 1






. (5.5.9)

Then, the recursive sets of Def. 5.5.1 are found using the procedure explained in
Thm. 5.5.3 as follows:

Ω1(x
′) = {δ24, δ

4
4},

Ω2(x
′) = {δ14, δ

2
4, δ

4
4},

Ω3(x
′) = L4.

(5.5.10)

Therefore, the two conditions of Thm. 5.5.2 are satisfied.
For i = 1, 2, 3, 4, the indices ki and the inputs vi are as follows:

k2 = k4 = 1, k1 = 2, k1 = 3, (5.5.11)

v1 = δ12, v2 = v3 = v4 = δ22. (5.5.12)

Then, the state feedback matrix K is:

K = δ2
[
1 2 2 2

]
, (5.5.13)

which corresponds to the function µ = χ1 ∧ χ2 and it guarantees that x′ is globally
stable with probability one.

The references examined to write this chapter are the following: [6], [13], [14],
[15], [26], [27], [31].
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Chapter 6

Gene Regulatory Networks

The genome of every organism encodes thousands of genes whose products enable
cell survival and numerous cellular functions. Genes are fragments of DNA that
contain the information about proteins, which are fundamental for the cellular func-
tions. A cell, in fact, is regulated by the interactions between genes and proteins. In
order to study these coordinated interactions, studying the collection of genes has
proved to be more efficient than studying each individual gene. This is necessary
to qualitatively understand the behaviour of complex biological systems. Then, an
important role is played by the construction of the model for the simulation of the ge-
netic interactions. The recent literature developed various computational models for
these analyses: continuous models, such as linear models and differential equations,
which are very precise both in time and in describing molecular concentrations; logi-
cal models, which describe the interactions among genes in a qualitative manner and
are flexible and easy to adjust to biological phenomena. A logical model that has
been recently used is the Boolean Network model, explained in Chapter 2 and first
introduced by Kauffman in [1]. Boolean networks are useful to model, simulate and
control Gene Regulatory Networks (G.R.N.s). A G.R.N. is a biochemical network
that involves genes and proteins. Its role is fundamental for the behaviour of biolog-
ical organisms since it controls both the internal functions of individual biological
cells and the overall development of multicellular organisms. If a Boolean Network
is affected by some external boolean inputs, related to an external condition or to
the presence of a certain substance in the biological system, it becomes a Boolean
Control Network and a control problem can be defined. This is very useful in those
situations in which it is desirable to move away from undesired states representing
diseases or malfunctions in the system. The applications to this type of network are
focused on medical interventions, for example in the treatments of cancer by artifi-
cially changing a cell state from cancerous to non-cancerous. In recent years, many
applications to gene regulatory networks of biological processes have been simulated
and analysed: for example, the cell-fate determination in flower development in [32],
the yeast cell-cycle in [33] and the neurotransmitter signaling pathway in [34].
The following chapters will present a few examples of gene regulatory networks mod-
elled with deterministic and probabilistic boolean networks.

The references that inspired the following chapters are the following ones: [13],
[15], [35], [36].
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Chapter 7

Oxidative Stress Response

In biology, the cause-effect relationships between different pairs of genes are found
experimentally. A so-called pathway information exists when these relationships
are concatenated together. Biological pathways are used by biologists to represent
complex interactions of genes and proteins inside living cells. It can be said that
biological pathways represent the graphical interactions between different molecules
but they give a marginal picture of the regulation mechanisms among genes and
proteins. In order to analyse these complex systems more deeply, genetic regulatory
network models consistent with pathway information need to be developed.
Let us start by defining the stress response pathways.

7.1 Stress Response Pathways

Adaptive stress response pathways are the first responders to chemical toxicity,
radiation and physical insults. The main architecture that is shared among the
different stress response pathways has three main components:

• the transcription factor (TF) is a DNA-binding protein that interacts with
the promoter regions of its target genes, via its canonical DNA-binding sites,
known as response elements, to activate the expression of the target genes;

• the sensor is a protein that physically interacts with the transcription factor
in the cytosol, sequestering the transcription factor from the nucleus under
normal cellular conditions;

• the transducer is an enzymatic protein, such as a kinase, that conveys a bio-
chemical change from a signaling pathway upstream of the sensor/TF complex
in the event of cellular stress.

It is important to remark that the result of the sensor/TF complexation is to main-
tain inactivity of the TF under normal cellular conditions, while providing a mecha-
nism that permits activation in response to appropriate insult to the cell. Moreover,
generally the sensor and TF are unique for a given stress response pathway unlike
transducers which can be common to different stress response pathways. The pic-
ture in Fig. 7.1.1 shows the general architecture of a stress response pathway. Let
us now focus on the oxidative stress response pathways.
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Figure 7.1.1: General scheme of stress response pathways

7.2 Oxidative Stress Response Pathways

Oxidative stress is caused by exposure to reactive oxygen species (ROS). A variety
of chronic diseases is due to the stress induced on the cells by electrophiles and
oxidants. The result of the interactions between the cell and oxidants is determined
largely by the balance between the enzymes that activate the reactive species and
the enzymes that detoxify these reactive species. Examples of aging and age-related
diseases which are possibly caused by oxidative stress are cancer, cardiovascular
disease, chronic inflammation and neurodegenerative disorders. In the following, a
counteractive measure to fight oxidative stress is presented.
When the concentration of electrophiles is high, the complex Keap1−Nrf2, com-
posed of the transcription factor Nrf2 and sensor Keap1 is broken and Nrf2 is
transported into the nucleus of the cell. Inside, Nrf2 forms heterodimers with
small Maf proteins (SMP ) which then binds to the anti-oxidant response element
(ARE). The main purpose of ARE is to detoxify the electrophiles to water soluble
components. Therefore, various antioxidant proteins are activated in response to
elevated concentrations of electrophiles. The next phase consists in the deactiva-
tion of the TF Nrf2. Bach1 is known as a negative regulator of antioxidant genes
through ARE, together with SMP . These protein complexes bind to the same lo-
cation on the ARE as the Nrf2−SMP complex. Once the electrophiles have been
eliminated, Nrf2 is transported back to the cytoplasm. At this point, it binds with
Keap1 which starts its proteosomal degradation.
During a normal metabolism a large number of free radicals are produced. The
consequence when the production of the latter goes beyond the maximum level that
can be handled by the cellular antioxidant system is oxidative stress, which has an
effect in the development of many age-related diseases.

7.3 Boolean Network Modeling

The oxidative stress response pathways can be visually represented via a graph,
whose nodes are the main genes involved in the model and whose edges represent
either an activation pathway segment if the line ends in an arrow, or an inhibition
pathway segment if the line ends in a bar. The genes interactions of the model in
[37] are reported in Fig. 7.3.1.

The dynamics involving the main genes can be retrieved from the graph in Fig.
7.3.1, assuming that SMP is ubiquitously expressed, so it is always equal to one.
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Figure 7.3.1: Oxidative Stress Response Pathways [37]

Then, the update functions for the six genes are collected in the following system:







ROS(t+ 1) = Stress(t) ∧ ¬ARE(t)

Keap1(t+ 1) = ¬ROS(t) ∧ (Nrf2(t) ∨Keap1(t))

PKC(t+ 1) = ROS(t) ∧ ¬ARE(t)

Nrf2(t+ 1) = PKC(t) ∨ ¬Keap1(t)

Bach1(t+ 1) = ¬ROS(t)

ARE(t+ 1) = Nrf2(t) ∧ (¬ARE(t) ∨ ¬Bach1(t)).

(7.3.1)

To better understand the system, let us simplify the notation of eqn. (7.3.1) by
substituting the genes’ names with abstract boolean variables. The substitutions,
reported in Tab. 7.3.1, are useful to rewrite eqn. (7.3.1) in a clean form as follows:
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Gene Boolean Variable ∈ B Logic Vector ∈ L2

Stress µ(·) u(·)
ROS χ1(·) x1(·)
Keap1 χ2(·) x2(·)
PKC χ3(·) x3(·)
Nrf2 χ4(·) x4(·)
Bach1 χ5(·) x5(·)
ARE χ6(·) x6(·)

Table 7.3.1: Table of Conversion of the Oxidative Stress Response Model







χ1(t+ 1) = µ(t) ∧ ¬χ6(t)

χ2(t+ 1) = ¬χ1(t) ∧ (χ4(t) ∨ χ2(t))

χ3(t+ 1) = χ1(t) ∧ ¬χ6(t)

χ4(t+ 1) = χ3(t) ∨ ¬χ2(t)

χ5(t+ 1) = ¬χ1(t)

χ6(t+ 1) = χ4(t) ∧ (¬χ6(t) ∨ ¬χ5(t)).

(7.3.2)

In order to find the algebraic form and the transition matrix L of this system of
equations, it is necessary to translate the boolean variables into logic vectors and
the boolean operators into logic matrices as follows:







x1(t+ 1) =M∧ ⋉ u(t)⋉M¬ ⋉ x6(t)

x2(t+ 1) =M∧ ⋉M¬ ⋉ x1(t)⋉M∨ ⋉ x4(t)⋉ x2(t)

x3(t+ 1) =M∧ ⋉ x1(t)⋉M¬ ⋉ x6(t)

x4(t+ 1) =M∨ ⋉ x3(t)⋉M¬ ⋉ x2(t)

x5(t+ 1) =M¬ ⋉ x1(t)

x6(t+ 1) =M∧ ⋉ x4(t)⋉M∨ ⋉M¬ ⋉ x6(t)⋉M¬ ⋉ x5(t).

(7.3.3)

Now, by applying the theory of B.C.N.s, it is possible to derive the transition matrix
L from eqn. (7.3.3):

L = δ64
[
64 23 63 23 64 · · · 62 62 62 62

]
∈ L128×64. (7.3.4)

Since a boolean input corresponding to the Stress gene is present in the system,
one can divide the transition matrix L into two structure matrices, L1 and L2:







L1 = δ64 [64 23 63 23 64 24 64 24 64 23 63 23 64 24 64 24 60 19 59 19 60 20 60 20 64 23 63 23 64 24 64 24 ...

46 13 45 13 46 14 46 14 46 13 45 13 46 14 46 14 42 9 41 9 58 26 58 26 46 13 45 13 62 30 62 30]∈L64×64

L2 = δ64 [64 55 63 55 64 56 64 56 64 55 63 55 64 56 64 56 60 51 59 51 60 52 60 52 64 55 63 55 64 56 64 56 ...

46 45 45 45 46 46 46 46 46 45 45 45 46 46 46 46 42 41 41 41 58 58 58 58 46 45 45 45 62 62 62 62]∈L64×64.

(7.3.5)
The input u(t), whose value discriminates the choice between the structure matrices
L1 and L2, cannot be arbitrarily controlled since it depends on the level of oxidative
stress induced on the cells. Therefore, instead of studying the whole B.C.N., it
is still possible to analyse the oxidative stress response in the two separate B.N.s
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corresponding to no stress (L2) and stress (L1).
Let us start with the analysis of L2, when the input u(t) = Stress(t) = 0, ∀t ≥ 0.
The state graph of this B.N. is reported in Fig. 7.3.4 and the fixed point δ4664 is
highlighted by the coloured box. Since there is a unique stable point, it is possible
to observe in the graph that all the other nodes converge towards the state δ4664 in
a finite number of steps, so the B.N. is globally stable. Equivalently, all the other
nodes belong to its basin of attraction. The states vector of the system in eqn.
(7.3.1) is

[
ROS Keap1 PKC Nrf2 Bach1 ARE

]
. Then, the logic vector δ4664

corresponds, using Prop. 1.3.3, to the following state vector:
[
0 1 0 0 1 0

]
.

This means that both Keap1 and Bach1 are active, while the other genes/proteins
are off. These results are compatible with the oxidative stress response mechanism
since Keap1 is the sensor that detects the presence of electrophiles and oxidants,
while Bach1 is the inhibitor of antioxidant genes through ARE. In other words,
Keap1 is responsible for the start of the oxidative stress response and Bach1 blocks
this mechanism when there are no oxidative elements.
Then, the boolean variables, in this specific case, are:







χ1(t) = 0

χ2(t) = 1

χ3(t) = 0

χ4(t) = 0

χ5(t) = 1

χ6(t) = 0.

∀t (7.3.6)

Following the theory of Boolean Networks, explained in Chapter 2, a deeper analysis
of this particular model can be made.
Checking the fixed points and limit cycles with the formulas of Thm. 2.3.1, Thm.
2.3.2 and Prop. 2.3.2, one finds a single fixed point represented by the state δ4664.
The latter is also the only attractor of the B.N.. Then, the absorption time of the
network, defined in Def. 2.4.1, is the absorption time of δ4664. By the equivalence
between the absorption time and the exponent r0 in Thm. 2.4.1, it is possible to
prove that the maximum number of steps to reach the fixed point δ4664 is equal to
r0 = 4.
Since there is only one attractor, its basin of attraction contains all the other states
of the network, with no need to compute it.
In terms of communication classes, as defined in Defs. 2.5.5 and 2.5.6, the fixed
point is a closed class while every other state belongs to a transient class.
Finally, the stability of the B.N. can be analysed. As previously mentioned, this
network is globally stable since all states converge to δ4664 in a finite number of steps.
This can be observed in the state graph in Fig. 7.3.4. However, to correctly prove
the global stability, one of the two conditions of Thm. 2.6.1 must be verified. With
a few lines of code it is possible to obtain the powers of the transition matrix and
check that the second condition holds, thus proving the global stability of the B.N..
In the following, a few simulations of the B.N. model are presented, showing the time
response behaviour in terms of both the boolean variables and the logic vectors. The
initial condition of the system is

[
ROS Keap1 PKC Nrf2 Bach1 ARE

]
=

[
1 1 0 1 1 0

]
. Fig. 7.3.2 shows the variables evolution due to input u(t) =

Stress(t) = 0, ∀t = 1, 2 . . . , 100. It is possible to observe that, after a transitory of
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four time steps, the boolean variables converge to the stable configuration at t = 5.
The same behaviour can be noticed looking at Fig. 7.3.3, which shows the state
evolution and the convergence to the fixed point δ4664.

Figure 7.3.2: Time response behaviour of the system with u(t) = Stress(t) = 0

Figure 7.3.3: Time response behaviour of the system with u(t) = Stress(t) = 0
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C

δ4864

δ4664

δ4764

δ4164

δ4564

δ4364δ4464 δ4264

δ4964

δ37−40
64

δ3364

δ5764

δ5964δ6064 δ5264 δ5164 δ34−36
64 δ5064

δ1,5,7,17,21,23,25,29,3164

δ3,19,2764

δ5864

δ6,8,22,24,30,3264 δ2,4,18,20,26,2864

δ5664δ6364δ6464 δ5564 δ61−62
64 δ53−54

64

δ9,13,1564

δ1164 δ14,1664 δ10,1264

Figure 7.3.4: Oxidative Stress Response with Stress = 0
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Let us now analyse L1, that represents the system matrix in the presence of oxidative
stress or equivalently when the input u(t) = Stress(t) = 1, ∀t. The state graph of
this B.N. is reported in Fig. 7.3.7. It is possible to observe an oscillatory behaviour
of the genes represented by a limit cycle, highlighted by the coloured box, which is
composed of the following seven states: δ4664, δ

14
64, δ

24
64, δ

20
64, δ

19
64, δ

59
64, δ

41
64.

Then, the boolean variables behaviour, in this specific case, is the following:






χ1(1) = 0
χ2(1) = 1
χ3(1) = 0
χ4(1) = 0
χ5(1) = 1
χ6(1) = 0

→







χ1(2) = 1
χ2(2) = 1
χ3(2) = 0
χ4(2) = 0
χ5(2) = 1
χ6(2) = 0

→







χ1(3) = 1
χ2(3) = 0
χ3(3) = 1
χ4(3) = 0
χ5(3) = 0
χ6(3) = 0

→







χ1(4) = 1
χ2(4) = 0
χ3(4) = 1
χ4(4) = 1
χ5(4) = 0
χ6(4) = 0

→

→







χ1(5) = 0
χ2(5) = 0
χ3(5) = 1
χ4(5) = 1
χ5(5) = 0
χ6(5) = 1.

→







χ1(6) = 0
χ2(6) = 0
χ3(6) = 0
χ4(6) = 1
χ5(6) = 0
χ6(6) = 1

→







χ1(7) = 0
χ2(7) = 1
χ3(7) = 0
χ4(7) = 1
χ5(7) = 1
χ6(7) = 1

→







χ1(8) = 0
χ2(8) = 1
χ3(8) = 0
χ4(8) = 0
χ5(8) = 1
χ6(8) = 0

(7.3.7)

Let us now explain why this limit cycle is consistent with the scheme of the oxidative
stress response pathways, analysing each state of the cycle:

1. δ4664 represents the aforementioned condition of a disabled cycle (L2);

2. with the input u(t) = 1, ∀t, the state δ1464 differs from the previous one because
electrophiles and oxidants (χ1(2) = ROS(2)) are present in the cell;

3. at δ2464, due to the elevated concentrations of electrophiles, the complexKeap1−
Nrf2 is broken and the transducer PKC (protein kinase C) is activated;

4. the state δ2064 indicates that the transcription factor Nrf2 enters the cell nu-
cleus;

5. at δ1964, the antioxidant response element (ARE), made up of various antioxi-
dant proteins, detoxifies the electrophiles;

6. at δ5964, once the electrophiles have been neutralized, the transducer PKC is
deactivated to stop the translation of the ARE;

7. δ4164 is useful to reactivate the sensor Keap1 and the inhibitor Bach1, in case
new oxidant elements enter the cell;

8. δ4664 corresponds to the first state, thus the limit cycle is over.

Let us now analyse the system more deeply, as we did for the B.N. L2.
Checking the fixed points and limit cycles with the formulas of Thm. 2.3.1, Thm.
2.3.2 and Prop. 2.3.2, one finds a single limit cycle consisting of the following set
of states: {δ4664, δ

14
64, δ

24
64, δ

20
64, δ

19
64, δ

59
64, δ

41
64}. This is the only attractor in the B.N..

Therefore, the absorption time of the network is the maximum number of steps to
reach one of the seven states forming the limit cycle. By using Thm. 2.4.1, the
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absorption time is r0 = 7.
As in the previous network, the basin of attraction of the limit cycle contains all the
states of this B.N. because it is the only attractor.
The states of the limit cycle belong to a closed class, while every other state is a
transient state.
Since there is no fixed point, the B.N. is not globally stable. In fact, even though
the limit cycle is reached from every possible initial condition, the state changes at
each time instant. In this case, the limit cycle is called a globally attractive cycle,
as in Prop. 2.6.1.
In the following, a few simulations of the B.N. model are presented, showing the time
response behaviour in terms of both the boolean variables and the logic vectors. The
initial condition of the system is again

[
ROS Keap1 PKC Nrf2 Bach1 ARE

]

=
[
1 1 0 1 1 0

]
. Fig. 7.3.5 shows the variables evolution due to input u(t) =

Stress(t) = 1, ∀t = 1, 2 . . . , 100. It is possible to observe that, after a small transi-
tory, the boolean variables enter an oscillatory behaviour. The same behaviour can
be noticed looking at Fig. 7.3.6, which shows the state evolution and the oscillation
of the states {δ4664, δ

14
64, δ

24
64, δ

20
64, δ

19
64, δ

59
64, δ

41
64} according to the limit cycle.

Figure 7.3.5: Time response behaviour of the system with u(t) = Stress(t) = 1

Figure 7.3.6: Time response behaviour of the system with u(t) = Stress(t) = 1
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C

δ1964

δ5964

δ4164

δ4664

δ2064

δ2464

δ1464

δ4864δ4764
δ4564δ4364

δ1664

δ6,864

δ22,30,3264

δ35,5164
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Figure 7.3.7: Oxidative Stress Response with Stress = 1
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Finally, one can observe the time response behaviour of the entire B.C.N. by mix-
ing the two values of the input. The evolution of both the boolean variables
and the state vectors is reported in Figs. 7.3.8 and 7.3.9, with initial condition
[
ROS Keap1 PKC Nrf2 Bach1 ARE

]
=
[
1 1 0 1 1 0

]
and input u(t)

= 0, for 1 ≤ t ≤ 24 and 75 ≤ t ≤ 100, and u(t) = 1, for 25 ≤ t ≤ 74. The results
are compatible with those of [37], confirming that the model is correct.

Figure 7.3.8: Time response behaviour of the system with variable u(t) = Stress(t)

Figure 7.3.9: Time response behaviour of the system with variable u(t) = Stress(t)

The references examined to write this chapter are the following: [13], [15], [35],
[36], [37], [38], [39], [40].
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Chapter 8

Early Detection of Cancer

Many diseases are the results of interactions of genes according to their regulatory
rules. For example, cancers are caused by changes in the gene expression program
inside individual cells.
In this chapter, the construction of a P.B.N. for the hepatocellular cancer GRN is
presented. Starting from the 27 cancer genes discovered in [41], the study in [42] uses
a regression analysis to identify the regulatory networks in the two cases of tumor
and non-tumor networks. The result of this analysis is the selection of a subgroup of
12 genes for each network, both containing the three cancer genes GS1706, GS1938
and GS2508.
Now, the goal is to build the P.B.N.s of the two systems and test that the results
are compatible with those obtained in the original study (see [42]).
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8.1 Probabilistic Boolean Network Modeling

8.1.1 Probabilistic Boolean Network of tumor cells

Let us start with the P.B.N. in the case of tumor cells.
The system of equations describing the P.B.N. is the following:







G1(t+ 1) = f 1
1 (G5(t), G6(t), G12(t)) =

= (¬G5(t) ∧ (¬G6(t) ∧G12(t)))∨

∨(G5(t) ∧ (¬G6(t) ∨G12(t))), p11 = 1

G2(t+ 1) = f 1
2 (G7(t), G10(t), G11(t)) = G11(t), p12 = 1

G3(t+ 1) = f 1
3 (G4(t), G8(t), G9(t)) =

= (¬G8(t) ∧ (G4(t) ∧G9(t)))∨

∨(G8(t) ∧ (G4(t) ∨G9(t))), p13 = 1

G4(t+ 1) = f4 (G8(t), G10(t)) =

=

{

f 1
4 (G8(t)) = G8(t), p14 = 0.58

f 2
4 (G10(t)) = G10(t), p24 = 0.42

G5(t+ 1) = f 1
5 (G1(t), G6(t), G12(t)) =

= ¬G6(t) ∧ (¬G12(t) ∧G1(t)) ∨G6(t), p15 = 1

G6(t+ 1) = f 1
6 (G1(t), G5(t), G12(t)) =

= (¬G12(t) ∧ (¬G1(t) ∧G5(t))) ∨ (G12(t) ∧G5(t)), p16 = 1

G7(t+ 1) = f 1
7 (G10(t)) = G10(t), p17 = 1

G8(t+ 1) = f 1
8 (G4(t)) = G4(t), p18 = 1

G9(t+ 1) = f 1
9 (G3(t)) = G3(t), p19 = 1

G10(t+ 1) = f10 (G1(t), G5(t), G6(t), G7(t), G12(t)) =

=







f 1
10 (G7(t)) = G7(t), p110 = 0.34

f 2
10 (G1(t), G5(t), G6(t)) =

= (¬G1(t) ∧ (G5(t) ∨G6(t)))∨

∨(G1(t) ∧ (G5(t) ∧G6(t))), p210 = 0.33

f 3
10 (G5(t), G6(t), G12(t)) =

= (¬G5(t) ∧ (G6(t) ∧ ¬G12(t)))∨

∨(G5(t) ∧ (G6(t) ∨ ¬G12(t))), p310 = 0.33

G11(t+ 1) = f 1
11 (G11(t)) = G11(t), p111 = 1

G12(t+ 1) = f12 (G1(t), G2(t), G5(t), G6(t)) =

=







f 1
12 (G1(t), G5(t), G6(t)) =

= (¬G1(t) ∧ (¬G5(t) ∧G6(t)))∨

∨(G1(t) ∧ (¬G5 ∨G6(t))), p112 = 0.55

f 2
12 (G2(t)) = G2(t), p212 = 0.45.

(8.1.1)

First, let us prove that the results obtained in [42] are correct by running some
simple simulations in Matlab.
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Starting from the initial condition

[
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

]
=

[
1 0 1 0 1 1 0 0 1 0 1 0

]
,

the evolution of the system after 500 iterations is shown in Fig. 8.1.1, while the
evolution of the three cancer genes is shown in Fig. 8.1.2. One can observe that the
three cancer genes expression continues to oscillate throughout the simulation.

Figure 8.1.1: Time evolution of the system in tumor networks

Figure 8.1.2: Time evolution of the three cancer genes in tumor networks

The next graph, presented in Fig. 8.1.3, is obtained by running 1000 simulations
with 4000 iterations each, and random initial condition (corresponding to situations
where the cancer genes are unexpressed), and by counting the number of times the
three cancer states end up in each of the eight possible combinations. The graph
shows that the desired combination (0, 0, 0), corresponding to the stable case when

121



CHAPTER 8. EARLY DETECTION OF CANCER

all three cancer genes G4, G10 and G12 are unexpressed, occurs only about 11% of
the times. In the remaining 89% of the cases at least one cancer gene is expressed
and hence the cells evolve into cancerous cells.

Figure 8.1.3: Steady state behaviour of the three cancer genes in tumor networks

In order to convert the logic system into its algebraic form, one needs to know the
number of networks of the P.B.N., that is the number of possible combinations of
logic functions and it is equal to N =

∏12
i=1 li = l1 · . . . · l12 = 1 · . . . · l4 · l10 · l12 =

1 · . . . · 2 · 3 · 2 = 12, as explained in Prop. 4.1.1.
The structure matrices of the twelve B.N.s are computed by using a function pro-
vided by Cheng in [7] which automatically transforms the logic equations in algebraic
form and evaluates the Khatri-Rao product between the functions structure matri-
ces.
The twelve structure matrices and their corresponding probabilities are listed below:

L1 =M1
f1
∗M1

f2
∗M1

f3
∗M1

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M1

f10
∗M1

f11
∗M1

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

1
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

1
10 · p

1
11 · p

1
12 = 0.1085

L2 =M1
f1
∗M1

f2
∗M1

f3
∗M1

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M1

f10
∗M1

f11
∗M2

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

1
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

1
10 · p

1
11 · p

2
12 = 0.0887

L3 =M1
f1
∗M1

f2
∗M1

f3
∗M1

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M2

f10
∗M1

f11
∗M1

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

1
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

2
10 · p

1
11 · p

1
12 = 0.1053

L4 =M1
f1
∗M1

f2
∗M1

f3
∗M1

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M2

f10
∗M1

f11
∗M2

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

1
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

2
10 · p

1
11 · p

2
12 = 0.0861
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L5 =M1
f1
∗M1

f2
∗M1

f3
∗M1

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M3

f10
∗M1

f11
∗M1

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

1
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

3
10 · p

1
11 · p

1
12 = 0.1053

L6 =M1
f1
∗M1

f2
∗M1

f3
∗M1

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M3

f10
∗M1

f11
∗M2

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

1
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

3
10 · p

1
11 · p

2
12 = 0.0861

L7 =M1
f1
∗M1

f2
∗M1

f3
∗M2

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M1

f10
∗M1

f11
∗M1

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

2
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

1
10 · p

1
11 · p

1
12 = 0.0785

L8 =M1
f1
∗M1

f2
∗M1

f3
∗M2

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M1

f10
∗M1

f11
∗M2

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

2
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

1
10 · p

1
11 · p

2
12 = 0.0643

L9 =M1
f1
∗M1

f2
∗M1

f3
∗M2

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M2

f10
∗M1

f11
∗M1

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

2
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

2
10 · p

1
11 · p

1
12 = 0.0762

L10 =M1
f1
∗M1

f2
∗M1

f3
∗M2

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M2

f10
∗M1

f11
∗M2

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

2
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

2
10 · p

1
11 · p

2
12 = 0.0624

L11 =M1
f1
∗M1

f2
∗M1

f3
∗M2

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M3

f10
∗M1

f11
∗M1

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

2
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

3
10 · p

1
11 · p

1
12 = 0.0762

L12 =M1
f1
∗M1

f2
∗M1

f3
∗M2

f4
∗M1

f5
∗M1

f6
∗M1

f7
∗M1

f8
∗M1

f9
∗M3

f10
∗M1

f11
∗M2

f12
,

with P1 = p11 · p
1
2 · p

1
3 · p

2
4 · p

1
5 · p

1
6 · p

1
7 · p

1
8 · p

1
9 · p

3
10 · p

1
11 · p

2
12 = 0.0624.

(8.1.2)

It is now possible to simulate the evolution of this P.B.N. using the algebraic form,
and hence the twelve structure matrices. In Figs. 8.1.4 and 8.1.5, the time evolution
of the states and the time evolution of the three cancer genes are reported. Both
graphs confirm the fact that the algebraic form of the P.B.N. reflects the dynamics
of the logic system with an oscillatory behaviour.

Figure 8.1.4: Time evolution of the states in tumor networks
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Figure 8.1.5: Time evolution of the three cancer genes in tumor networks

From the update equations and using Def. 4.2.3, it is possible to derive the incidence
matrix as in the following:

I(G) =
12∨

γ=1

I(G, Σγ) =























0 0 0 0 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 1 0 1
1 0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 1 0 0























(8.1.3)

From the latter, it is easy to draw the graph of this P.B.N., which is shown in Fig.
8.1.6. The three cancer genes are highlighted in different colours.
The state graph of this P.B.N., instead, is too complex to be drawn because it is
composed of 212 = 4096 states and 212 · 12 = 49152 edges.

In the following, an analysis of the fixed points, limit cycles and stability of the
P.B.N. is presented.
The number of fixed points for each of the twelve B.N.s is as follows:

Np =
[
24 12 12 6 12 6 12 6 6 3 6 3

]
.

Among these fixed points, there is only one common fixed point (see Def. 4.3.2):
δpc = δ40964096, which means that all genes are unexpressed. Now, in a simulation, it is
not possible to reach this state unless in the trivial case where the initial condition
is exactly the state δ40964096. The other fixed points can be reached but, since they are
fixed points of only one or a subset of the structure matrices, they are not a closed
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class, thus the probability to move to another state is different from zero. This
explains the oscillatory behaviour of the P.B.N. when it is expressed in its algebraic
form.
For what regards the limit cycles, it is computationally possible to evaluate the
limit cycles considering a single structure matrix. Instead, the limit cycles that
involve multiple structure matrices require high computational power due to the
sizes of these matrices. In fact, the longer the simulation the higher is the number of
combinations of these matrices: at the first step, one can choose among 12 matrices,
at the second step among 12 matrices and so on, leading to an exponential growth.
The matrix for the global stability with probability one of P.B.N.s, presented in
Thm. 4.4.1, is computationally easier to obtain. In this case, no matrix row is
unitary. Therefore, one can claim that there is no global stability with probability
one in this network, as observed in the previous simulations.

G1 G2 G3

G4

G5

G6

G7G8G9

G10

G11

G12

Figure 8.1.6: Graph of the Boolean Network for tumor cells
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8.1.2 Probabilistic Boolean Network of non-tumor cells

Let us now focus on the P.B.N. in the case of non-tumor cells.
The system of equations describing the P.B.N. is the following:







g1(t+ 1) = f 1
1 (g8(t)) = g8(t), p11 = 1

g2(t+ 1) = f 1
2 (g12(t)) = g12(t), p12 = 1

g3(t+ 1) = f 1
3 (g4(t), g5(t), g7(t)) =

= (¬g7(t) ∧ (¬g4(t) ∧ g5(t))) ∨ (g7(t) ∧ (¬g4(t) ∨ g5(t))), p13 = 1

g4(t+ 1) = f 1
4 (g5(t), g6(t), g7(t)) =

= (¬g5(t) ∧ (¬g6(t) ∧ g7(t))) ∨ (g7(t) ∧ g5(t)), p14 = 1

g5(t+ 1) = f 1
5 (g4(t), g6(t), g7(t)) =

= (¬g6(t) ∧ (¬g7(t) ∧ g4(t)) ∨ (g6(t) ∧ (¬g7(t) ∨ g4(t))), p15 = 1

g6(t+ 1) = f 1
6 (g7(t)) = g7(t), p16 = 1

g7(t+ 1) = f7 (g1(t), g3(t), g4(t), g5(t), g6(t), g8(t), g10(t)) =

=







f 1
7 (g4(t), g5(t), g6(t)) =

= (¬g4(t) ∧ g6(t)) ∨ (g4(t) ∧ (¬g5(t) ∨ g6(t))), p17 = 0.37

f 2
7 (g3(t), g8(t), g10(t)) =

= (¬g3(t) ∧ (¬g8(t) ∧ g10(t)))∨

∨(g3(t) ∧ (¬g8(t) ∨ g10(t))), p27 = 0.32

f 3
7 (g1(t), g3(t), g8(t)) =

= (¬g1(t) ∧ g3(t)) ∨ (g1(t) ∧ (¬g8(t) ∨ g3(t))), p37 = 0.31

g8(t+ 1) = f 1
8 (g10(t)) = g10(t), p18 = 1

g9(t+ 1) = f 1
9 (g12(t)) = g12(t), p19 = 1

g10(t+ 1) = f10 (g6(t), g8(t), g9(t), g11(t), g12(t)) =

=







f 1
10 (g8(t)) = g8(t), p110 = 0.36

f 2
10 (g6(t)) = g6(t), p210 = 0.33

f 3
10 (g9(t), g11(t), g12(t)) =

= (¬g9(t) ∧ (g11(t) ∨ g12(t)))∨

∨(g9(t) ∧ g11(t)), p310 = 0.31

g11(t+ 1) = f 1
11 (g6(t)) = g6(t), p111 = 1

g12(t+ 1) = f12 (g1(t), g2(t), g3(t), g9(t), g10(t), g11(t)) =

=







f 1
12 (g2(t), g9(t), g11(t)) =

= (¬g2(t) ∧ (g9(t) ∧ g11(t)))∨

∨(g2(t) ∧ (g9(t) ∨ g11(t))), p112 = 0.35

f 2
12 (g1(t), g3(t), g10(t)) =

= (¬g10(t) ∧ (g1(t) ∧ ¬g3(t))∨

∨(g10(t) ∧ (g1(t) ∨ ¬g3(t))), p212 = 0.33

f 3
12 (g1(t)) = g1(t), p312 = 0.32.

(8.1.4)

As done in the previous case, let us prove that the results obtained in [42] are correct
by resorting to some simple simulations in Matlab.
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Starting from the initial condition
[
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

]
=

[
1 0 1 0 1 1 0 0 1 0 1 0

]
,

the evolution of the system after 500 iterations is shown in Fig. 8.1.7, while the
evolution of the three cancer genes is shown in Fig. 8.1.8. One can observe that the
three cancer genes expressions oscillate until a certain time step and then become
equal to zero throughout the rest of the simulation.

Figure 8.1.7: Time evolution of the system in non-tumor networks

Figure 8.1.8: Time evolution of the three cancer genes in non-tumor networks

The next graph, presented in Fig. 8.1.9, is obtained by running 1000 simulations
with 4000 iterations each, and random initial condition (assuming that the cancer
genes are unexpressed), and by counting the number of times the three cancer states
end up in each of the eight possible combinations. The graph shows that the de-
sired combination (0, 0, 0), corresponding to the stable case where the cancer genes
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g7, g10 and g12 are unexpressed, occurs 100% of the times, while any undesired
combination, where at least one cancer gene is expressed, never occurs.

Figure 8.1.9: Steady state behaviour of the three cancer genes in non-tumor networks

In order to convert the logic system into its algebraic form, the number of networks of
the P.B.N.is fundamental and, in this case, it is equal to N =

∏12
i=1 li = l1 · . . . · l12 =

1 · . . . · l7 · l10 · l12 = 1 · . . . · 3 · 3 · 3 = 27, (see Prop. 4.1.1).
The structure matrices of the twenty-seven B.N.s are computed by using a function
provided by Cheng in [7] as before.
The twenty-seven structure matrices and their corresponding probabilities are listed
below:

L1 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M1

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

1
10 · . . . · p

1
12 = 0.0466

L2 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M1

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

1
10 · . . . · p

2
12 = 0.0440

L3 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M1

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

1
10 · . . . · p

3
12 = 0.0426

L4 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M2

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

2
10 · . . . · p

1
12 = 0.00427

L5 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M2

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

2
10 · . . . · p

2
12 = 0.0403

L6 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M2

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

2
10 · . . . · p

3
12 = 0.0391

L7 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M3

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

3
10 · . . . · p

1
12 = 0.0401

L8 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M3

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

3
10 · . . . · p

2
12 = 0.0379
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L9 =M1
f1
∗ . . . ∗M1

f7
∗ . . . ∗M3

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
1
7 · . . . · p

3
10 · . . . · p

3
12 = 0.0367

L10 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M1

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

1
10 · . . . · p

1
12 = 0.0403

L11 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M1

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

1
10 · . . . · p

2
12 = 0.0380

L12 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M1

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

1
10 · . . . · p

3
12 = 0.0369

L13 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M2

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

2
10 · . . . · p

1
12 = 0.0370

L14 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M2

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

2
10 · . . . · p

2
12 = 0.0348

L15 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M2

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

2
10 · . . . · p

3
12 = 0.0338

L16 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M3

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

3
10 · . . . · p

1
12 = 0.0347

L17 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M3

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

3
10 · . . . · p

2
12 = 0.0327

L18 =M1
f1
∗ . . . ∗M2

f7
∗ . . . ∗M3

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
2
7 · . . . · p

3
10 · . . . · p

3
12 = 0.0317

L19 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M1

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

1
10 · . . . · p

1
12 = 0.0391

L20 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M1

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

1
10 · . . . · p

2
12 = 0.0368

L21 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M1

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

1
10 · . . . · p

3
12 = 0.0357

L22 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M2

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

2
10 · . . . · p

1
12 = 0.0358

L23 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M2

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

2
10 · . . . · p

2
12 = 0.0338

L24 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M2

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

2
10 · . . . · p

3
12 = 0.0327

L25 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M3

f10
∗ . . . ∗M1

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

3
10 · . . . · p

1
12 = 0.0336

L26 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M3

f10
∗ . . . ∗M2

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

3
10 · . . . · p

2
12 = 0.0317

L27 =M1
f1
∗ . . . ∗M3

f7
∗ . . . ∗M3

f10
∗ . . . ∗M3

f12
,

with P1 = p11 · . . . · p
3
7 · . . . · p

3
10 · . . . · p

3
12 = 0.0308.

(8.1.5)
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It is now possible to simulate the evolution of this P.B.N. using the algebraic form,
and hence the twenty-seven structure matrices. In Figs. 8.1.10 and 8.1.11, the
time evolution of the states and the time evolution of the three cancer genes are
reported. Both graphs confirm the fact that the algebraic form of the P.B.N. reflects
the dynamics of the logic system since the steady state δ40964096 is reached before the
end of the simulation and consequently the three cancer genes are equal to zero.

Figure 8.1.10: Time evolution of the states in non-tumor networks

Figure 8.1.11: Time evolution of the three cancer genes in non-tumor networks
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From the update equations and using Def. 4.2.3, it is possible to derive the incidence
matrix as in the following:

I(G) =
27∨

γ=1

I(G, Σγ) =























0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 0 0 1 1 0
0 0 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0 1 1 0 0























(8.1.6)

From the latter, it is easy to draw the graph of this P.B.N., which is shown in Fig.
8.1.12. The three cancer genes are highlighted in different colours.

g1 g2 g3

g4

g5

g6

g7g8g9

g10

g11

g12

Figure 8.1.12: Graph of the Boolean Network for non-tumor cells

Instead, the state graph of this P.B.N. is too complex to be drawn because it is
composed of 212 = 4096 states and 212 · 12 = 49152 edges.

In the following, an analysis of the fixed points, limit cycles and stability of the
P.B.N. is presented.
The number of fixed points for each of the twenty-seven B.N.s is as follows:

Np = [12 6 6 6 3 3 6 3 3 12 6 6 6 3 3 6 3 3 8 4 4 2 1 1 2 1 1].

131



CHAPTER 8. EARLY DETECTION OF CANCER

Among these fixed points, there is only one common fixed point (see Def. 4.3.2):
δpc = δ40964096. With a simulation time long enough, the state evolution always reaches
this state. Since it is a common fixed point, it remains equal to δ40964096 throughout the
rest of the simulation. As discussed before, the other fixed points can be reached
but, since they are fixed points of only one or a few structure matrices, correspond-
ing to a particular structure matrix, there is a non-zero probability to move from
them to another state. This explains an initial oscillatory behaviour of the P.B.N.,
while the evolution finally converges to a single state.
For what regards the limit cycles, the computational problem previously discussed
arises also in this case, as the number of structure matrices is even larger.
Let us analyse the global stability with probability one of this P.B.N., (see Thm.
4.4.1). In this case, only the last matrix row is unitary. Therefore, one can claim
that the state δ40964096 is globally stable with probability one, as observed in the previ-
ous simulations.

The references examined to write this chapter are the following: [13], [15], [41],
[42].
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In this chapter, other interesting topics to deepen the knowledge on B.N.s are pre-
sented. Then, some conclusions are drawn.

Improvements

In the last years, there has been a growing interest in the topic of Boolean Networks
due to the promising applications in representing and analysing Gene Regulatory
Networks but also in other fields, such as Game Theory. Especially for the last topic,
k-valued networks represent an important generalisation of B.N.s since they allow to
model systems with variables that can assume k different values. The generalisation
is explained in [11].
Other Systems Theory properties for B.N.s and P.B.N.s have been largely treated:
observability, reconstructibility and the design of a state observer. Their analysis
can be found, for instance, in [43], [44], [45] and [29]. As regards feedback control,
in case the state information is not completely accessible, [46] presents an output
feedback stabilisation technique.
The choice of the input sequence for a specific trajectory of a B.C.N. can be done
according to an optimal control problem where, for example, the objective is to
minimise a cost function. The theory is explained in [8].
Furthermore, the problems of disturbance decoupling and input/output decoupling
are solved in [47] and [48]. The first problem corresponds to finding suitable controls
such that for the closed-loop system the outputs are not affected by the disturbances.
The second problem requires that, for every initial state, two input sequences, whose
entries coincide at every time instant, generate two output sequences with equal
entries for every time instant.
Another interesting problem for B.N.s and P.B.N.s is fault detection, as explained in
[49] and in [28]. The problem consists in detecting the switching from a non-faulty
configuration to a faulty one, both online, where the input sequence is arbitrary,
and offline, where a specific input sequence is chosen.
As shown in [50], it is possible to realize output tracking of B.C.N.s by converting
this problem into a specific set controllability problem. Given a reference system
and any initial condition, the idea is to find a sequence of inputs such that the real
input corresponds to the input of the reference system at every time instant.
A recent study in [9] presents the hidden order of B.N.s, which is determined by
the fixed points and limit cycles of their dual networks. This order describes the
evolution of the overall network rather than the evolution of a single state.
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Conclusions

The initial part of this thesis focused on Boolean logic because it represents the basic
knowledge to understand the structure of Boolean Networks. These networks are, in
fact, dynamical systems described by logical variables and functions. The usefulness
of a B.N. is also determined by the possibility to model a system in algebraic form
by means of the left semi-tensor product, an aspect that was thoroughly explained.
The algebraic form, summed up in the transition matrix L, contains the informa-
tion to analyse the network both quantitatively and qualitatively. Another option
to understand the dynamical behaviour of a B.N. is the network graph and more
importantly the state graph, which are the graphical representations respectively
in the logic and algebraic domain. Next, the asymptotic behaviour of a B.N. was
investigated to analyse its convergence properties: attractors, such as fixed points
and limit cycles, basins of attraction, absorption time and communicability. Then,
the problem of stability was presented, differentiating global stability and globally
attractive cycles.
Afterwards, the extension of B.N.s to Boolean Control Networks due to the intro-
duction of Boolean inputs was presented. It was shown how these networks can be
considered as switched systems and how the information on the different B.N.s can
be summed up in the matrices Ltot and L. Thanks to the latters, Systems Theory
properties such as reachability and controllability are easily verifiable. The state-
feedback stabilisation of this network was also considered. An algorithm to compute
the feedback matrix that stabilises the system in the minimum number of steps was
presented.
Subsequently, the stochastic extension of B.N.s represented by Probabilistic Boolean
Networks was introduced. A P.B.N. is a collection of B.N.s whose choice depends
on a probability. It was shown how to describe these networks both algebraically
and graphically, and some probability insights were explained in detail. Then, the
convergence properties derived from the B.N.s were adapted to the uncertainty of
the new model. Also the problem of stability was restated as the problem of stability
with probability one. In fact, in a probabilistic model, different types of stabilities
exist: with probability one, in probability and in distribution.
The final step was to study the effect of inputs on P.B.N.s, that consequently become
Probabilistic Boolean Control Networks. Also these networks can be described as
switched systems. A new matrix, LTOT , was introduced to summarise the informa-
tion of each B.C.N.. The Systems Theory properties of reachability, controllability
and feedback control were adapted to these new networks.
In order to test the validity of the theory presented, two applications to Gene Regula-
tory Networks were introduced: the oxidative stress response and the early detection
of cancer.
In the first application, the B.C.N. model with an arbitrary input was created, start-
ing from the logical difference equations of the system. Thanks to software, the two
structure matrices were easily computed and, with the help of simulations and their
related graphs, a quantitative and qualitative analyses were made.
In the second application, the P.B.N. model was more difficulty to derive due to the
size of the network and the number of different structure matrices. As for the first
model, a few simulations were run to test the correctness of the model with respect
to the original system and an analysis of the attractors and of stability was made.
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Appendix A

Matlab Code

This chapter contains the functions used to analyse the B.N. and the P.B.N. in the
two proposed applications. The functions were written in Matlab.

A.1 General Functions

Here are presented some basic functions that were useful for the simulations.

A.1.1 DeltafromNumber()

This function computes the num-th canonical column vector of dimension n.

1 function delta col = DeltafromNumber(num, n)

2 % From value to column vector

3

4 delta col = zeros(2ˆn,1);

5 delta col(num) = 1;

6

7 end

A.1.2 NumberfromDelta()

This function computes the value of the canonical column vector of dimension n.

1 function [num, n] = NumberfromDelta(delta col)

2 % From column vector to value

3

4 n = log2(length(delta col));

5 num = find(delta col==1);

6

7 end

A.1.3 fromBVtoLV()

This function computes the j-th value of the canonical column vector of dimension
n from a set of boolean variables.
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1 function [j, n] = fromBVtoLV(vars)

2 % From boolean variables to value of delta

3

4 n = size(vars,2);

5 vars = vars(1,:);

6

7 j = 0;

8 for i=1:1:n

9 j = j + (1−vars(i))*2ˆ(n−i);

10 end

11 j = j + 1;

12

13 end

A.1.4 LfromLrow()

This function computes the transition matrix L from its row representation.

1 function L = LfromLrow(Lrow, rows)

2 % Structure matrix L from its row version

3

4 if ˜exist('rows','var')

5 rows = size(Lrow,2);

6 end

7

8 L = zeros(rows,size(Lrow,2));

9

10 for i=1:1:size(Lrow,2)

11

12 L(Lrow(i),i) = 1;

13 end

14

15 end

A.1.5 transitionMatrixL()

This function computes the transition matrix L from a set of variables and a set of
corresponding update equations. It uses functions from the STP Toolbox created
by D. Cheng and available here: http://lsc.amss.ac.cn/~dcheng/.

1 function [L, Lrow] = transitionMatrixL(variables, equations)

2 % Structure matrix L and its row version

3

4 % Structure matrices of fundamental operators

5 k = 2;

6 ME = lme(k);

7 MI = lmi(k);

8 MD = lmd(k);

9 MN = lmn(k);

10 MR = lmr(k);

11 MC = lmc(k);

12 MU = lmu(k);
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13 MX = lm([2 1 1 2], 2);

14

15 % Creating the set of variables and corresponding update ...

equations

16 options = lmset('vars',variables);

17 eqn = equations;

18

19 % Computing the transition matrix L

20 eqn = completeeqn(eqn,options);

21 expr = stdform(eqn,options,k);

22 for i=1:length(expr)

23 expr{i} = eval(expr{i});
24 end

25 L = ctimes(expr{:});
26 Lrow = L.v;

27 L = LfromLrow(Lrow,size(Lrow,1));

28

29 end

A.1.6 LSTP()

This function computes the left semi-tensor product between two matrices.

1 function C = LSTP(A, B)

2 % Left semi−tensor product

3

4 c1 = size(A,2);

5 r2 = size(B,1);

6

7 % Matrix product if compatible dimensions

8 if c1==r2

9 C = A*B;

10 else

11 T = lcm(c1,r2);

12 C = kron(A,eye(T/c1))*kron(B,eye(T/r2));

13 end

14

15 end

A.1.7 L power()

This function computes the p-th power of the matrix L.

1 function power = L power(L, p)

2 % Power of structure matrix L

3

4 power = L;

5 if p == 1

6

7 else

8 for s=2:1:p

9 power = LSTP(power,L);

10 end
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11 end

12

13 end

A.1.8 properFactors()

This function computes the proper factors of a number.

1 function proper factors = properFactors(num)

2 % Proper factors

3

4 proper factors = 1;

5

6 div = 2;

7 while div<num

8

9 if mod(num,div)==0

10 proper factors = [proper factors, div];

11 end

12 div = div + 1;

13 end

14

15 end

A.1.9 FixedPoints()

This function computes the number and values of the fixed points.

1 function [num fixedPoints, fixedPoints] = FixedPoints(L)

2 % Function to compute the number and values of the fixed points

3

4 num fixedPoints = trace(L);

5

6 fixedPoints = num2cell(find(diag(L)==1));

7

8 end

A.1.10 AbsorptionTime r 0()

This function computes the absorption time of a boolean network with the smallest
exponent r0.

1 function T t = AbsorptionTime r 0(L)

2 % Absorption time of the boolean network with exponent r 0

3

4 L powers=cell(1, size(L,1));

5 L row powers=cell(1, size(L,1));

6

7 % Powers of L in row form

8 for p=1:1:size(L,1)

9 L powers{p}=L power(L,p);
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10 L row powers{p}=LrowfromL(L powers{p});
11 end

12

13 % Cycle for determining r 0

14 r 0=size(L,1);

15 for j=1:1:size(L,1)

16 for i=1:1:size(L,1)

17 if isequal(L row powers{j},L row powers{i}) && j˜=i ...

&& j<r 0

18 r 0=j;

19 end

20 end

21 end

22 T t = r 0;

23

24 end

A.1.11 isStable()

This function verifies if the boolean network is globally stable.

1 function isStable(L)

2 % Check if the B.N. is globally stable

3

4 r 0 = AbsorptionTime r 0(L);

5 L powers=cell(1, size(L,1));

6 L row powers=cell(1, size(L,1));

7 stable powers=zeros(1,size(L,1));

8

9 % Powers of L in row form starting from the r 0−th power

10 for p=r 0:1:size(L,1)

11 L powers{p}=L power(L,p);

12 L row powers{p}=LrowfromL(L powers{p});
13 end

14

15 % Checking stability

16 for p=r 0:1:size(L,1)

17 if all(L row powers{p} == L row powers{r 0}(1,1))
18 stable powers(1,p)=1;

19 end

20 end

21 if sum(stable powers,2)==size(L,1)−r 0+1

22 disp("Stable")

23 else

24 disp("Not stable")

25 end

26

27 end

A.1.12 LimitCycles modified()

This function computes the number and values of the limit cycles.
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1 function [num limitCycles, limitCycles] = ...

LimitCycles modified(L, max cycle length)

2 % Function to compute the number and the values of the limit cycles

3

4 U = 1:size(L,1);

5 num limitCycles = zeros(1, size(L,1));

6 num limitCycles(1) = trace(L);

7 C s = cell(1, size(L,1));

8 C s c = cell(1, size(L,1));

9 D s = cell(1, size(L,1));

10 C s{1} = find(diag(L)==1)';

11 C s c{1} = setdiff(U,C s{1});
12 D s{1} = C s{1};
13

14 s=2;

15 while s<=max cycle length

16

17 proper factors = properFactors(s);

18

19 sum = 0;

20 for i=1:1:length(proper factors)

21 sum = sum + ...

proper factors(i)*num limitCycles(proper factors(i));

22 end

23

24 num limitCycles(s) = (trace(Lˆs) − sum) / s;

25

26 C s{s} = find(diag(Lˆs)==1)';

27 C s c{s} = setdiff(U,C s{s});
28

29 inter = U;

30 for i=1:1:length(proper factors)

31 inter = intersect(inter,C s c{proper factors(i)});
32 end

33 D s{s} = intersect(C s{s},inter);
34

35 s=s+1;

36

37 end

38 limitCycles = D s;

39

40 end

A.1.13 commonFixedPointsPBN()

This function computes the number and values of the common fixed points in a
probabilistic boolean network.

1 function [num fixedPoints, fixedPoints, common fixedPoints] = ...

commonFixedPointsPBN(L cell)

2 % Common fixed points in a probabilistic boolean network

3

4 % Number of fixed points and corresponding values

5 num fixedPoints = cell(1,length(L cell));

6 fixedPoints = cell(1,length(L cell));

7 for i=1:1:length(L cell)
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8 [num fixedPoints{i}, fixedPoints{i}] = ...

FixedPoints(L cell{i});
9 end

10

11 [minVal,minIdx] = min([num fixedPoints{:}]);
12

13 % Common fixed points

14 common fixedPoints = zeros(1,minVal);

15 for j=1:1:minVal

16 for k=1:1:length(L cell)

17 if k==minIdx

18 break

19 else

20 for l=1:1:size(fixedPoints{k},1)
21 if fixedPoints{1,k}{l,1} == ...

fixedPoints{1,minIdx}{j,1}
22 common fixedPoints(j) = ...

fixedPoints{1,minIdx}{j,1};
23 else

24 common fixedPoints(j) = 0;

25 end

26 end

27 end

28 end

29 end

30 common fixedPoints = nonzeros(common fixedPoints);

31

32 end

A.1.14 limitCyclesPBN brute force()

This function computes the number and values of the limit cycles in a probabilistic
boolean network with brute force approach in order to find the maximum length of
the cycles.

1 function [cycles cell, max cycle length] = ...

limitCyclesPBN brute force(L cell)

2 % Limit cycles in a probabilistic boolean network (brute force)

3

4 % Cycles listed in ordered columns that indicate the length

5 cycles cell = cell(1,length(L cell));

6 for l=1:1:length(L cell)

7

8 % Array of states

9 states = 1:1:size(L cell{1,1},1);
10 nums = ones(1,size(L cell{1,1},1));
11 cycles = {};
12

13 % Cycles of each matrix L t

14 while isempty(states)==0

15

16 % Possible cycle with first element of states which ...

is removed

17 possible cycle = states(1,1);

18 result = NumberfromDelta(LSTP(L cell{l}, ...
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DeltafromNumber(states(1,1), ...

log2(size(L cell{1,1},1)))));
19 states(states==states(1,1)) = [];

20

21 % Check if cycle of length one (fixed point)

22 if result==possible cycle(1,1)

23 cycles{nums(1,1),1} = possible cycle;

24 nums(1,1) = nums(1,1)+1;

25

26 % Add the result state in the possible cycle

27 else

28 possible cycle = [possible cycle,result];

29

30 % Determine if it is a cycle or a false cycle

31 while 1

32 result = NumberfromDelta(LSTP(L cell{l}, ...

DeltafromNumber(result, ...

log2(size(L cell{1,1},1)))));
33

34 % Check if really a cycle

35 if result==possible cycle(1,1)

36 cycles{nums(1,length(possible cycle)), ...

length(possible cycle)} = ...

possible cycle;

37 nums(1,length(possible cycle)) = ...

nums(1,length(possible cycle))+1;

38

39 % Delete all the states in the cycle

40 for i=2:1:length(possible cycle)

41 states(states==possible cycle(i)) = [];

42 end

43 break

44

45 % Check if the result is equal to one of the ...

previous states in the possible cycle

46 else

47

48 % If not, add it

49 if result˜=possible cycle(1,2:end)

50 possible cycle = ...

[possible cycle,result];

51

52 % If yes, not a cycle

53 else

54 break

55 end

56 end

57 end

58 end

59 end

60 cycles cell{1,l} = cycles;

61 end

62

63 % Max length of cycles in the PBN

64 max cycle length = max(cellfun('size',cycles edc,2));

65

66 end
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A.1.15 limitCyclesPBN()

This function computes the number and values of the limit cycles in a probabilistic
boolean network using the knowledge on the maximum length of the cycles.

1 function limitCycles finals = limitCyclesPBN(L cell, ...

max cycle length)

2 % Limit cycles in a probabilistic boolean network

3

4 % Number of limit cycles and values belonging to the cycles

5 num limitCycles = cell(1,length(L cell));

6 limitCycles = cell(1,length(L cell));

7 for i=1:1:length(L cell)

8 [num limitCycles{i}, limitCycles{i}] = ...

LimitCycles modified(L cell{i}, max cycle length);

9 end

10

11 % Cycle to find the values belonging to each cycle

12 limitCycles finals = cell(size(limitCycles));

13 for l=1:1:length(limitCycles)

14 limitCycles final = cell(1,size(L cell{l},1));
15 numbers in limitCycles = limitCycles{1,l};
16

17 % Cycle of length equal to the largest limit cycle

18 for i=1:1:max cycle length

19 number of cycles = length(numbers in limitCycles{1,i});
20 cycles = cell(number of cycles/i,1);

21 cycle = zeros(1,i);

22 num=1;

23

24 % Cycle to determine the values that compose a limit ...

cycle

25 while isempty(numbers in limitCycles{1,i})==0
26 result = numbers in limitCycles{1,i}(1,1);
27 cycle(1,1) = result;

28 numbers in limitCycles{1,i} ...

(numbers in limitCycles{1,i}==result) = [];

29 for j=1:1:i−1

30 result = NumberfromDelta(LSTP(L cell{l}, ...

DeltafromNumber(result, ...

log2(size(L cell{1,1},1)))));
31 cycle(1,j+1) = result;

32 numbers in limitCycles{1,i} ...

(numbers in limitCycles{1,i}==result) = [];

33 end

34 cycles{num,1} = cycle;

35 num = num+1;

36 end

37 limitCycles final{1,i} = cycles;

38 end

39 limitCycles finals{1,l} = limitCycles final;

40 end

41

42 end
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A.1.16 stabilityPBN()

This function verifies if the probabilistic boolean network is globally stable with
probability one.

1 function stable points = stabilityPBN(L cell)

2 % Global stability in a probabilistic boolean network

3

4 % Boolean sum of the twelve structure matrices

5 L sum = 0;

6 for i=1:1:length(L cell)

7 L sum = or(L sum,L cell{1,i});
8 end

9

10 % Boolean sum of the boolean powers of L sum

11 L power = L sum;

12 L sum power = L sum;

13 for i=2:1:size(L cell{1,1},1)
14 L power = LSTP(L power,L sum);

15 L power = L power˜=0;

16 L sum power = or(L sum power,L power);

17 end

18

19 % Array of states where the P.B.N. is globally stable

20 stable points = find(sum(L sum power,2)==size(L cell{1,1},1));
21

22 end

A.2 Functions for the Oxidative Stress Response

model

Here are presented the functions that were used for the simulation of the oxidative
stress response model.

A.2.1 simulationOxidativeStressResponse variables()

This function simulates the dynamics of the system variables according to the value
of Stress.

1 function x = simulationOxidativeStressResponse variables(x 0, ...

stress, sim time)

2 % Simulation of the oxidative stress response model

3

4 % Initial condition

5 if stress==0

6 u = zeros(1,sim time);

7 elseif stress==1

8 u = ones(1,sim time);

9 else

10 u = zeros(1,100);

11 u(1,25:74) = 1;

12 end
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13

14 % Variables vector

15 x = zeros(6,sim time);

16 x(:,1) = x 0;

17

18 for t=2:1:sim time

19

20 % Variables update

21 x(1,t) = u(t−1)&(˜x(6,t−1));

22 x(2,t) = ˜x(1,t−1)&(x(4,t−1) |x(2,t−1));
23 x(3,t) = x(1,t−1)&(˜x(6,t−1));

24 x(4,t) = x(3,t−1)|(˜x(2,t−1));
25 x(5,t) = ˜x(1,t−1);

26 x(6,t) = x(4,t−1)&((˜x(6,t−1))|(˜x(5,t−1)));
27 end

28

29 % Graph

30

31 end

A.2.2 simulationOxidativeStressResponse Lmatrix()

This function simulates the dynamics of the system by means of the transition matrix
L and according to the value of Stress.

1 function x = simulationOxidativeStressResponse Lmatrix(x 0, ...

stress, L, sim time)

2 % Simulation of the oxidative stress response model

3

4 % Input

5 if stress==0

6 u = zeros(1,sim time);

7 elseif stress==1

8 u = ones(1,sim time);

9 else

10 u = zeros(1,100);

11 u(1,25:74) = 1;

12 end

13

14 x = zeros(size(L,1),sim time);

15

16 % Initial condition into logic vector

17 j=fromBVtoLV(x 0');

18 x(:,1)=LfromLrow(j,size(L,1));

19

20 for t=2:1:sim time

21

22 % Choice of partition of L and states update

23 if u(t−1)==0

24 x(:,t)=LSTP(L(:,size(L,2)/2+1:size(L,2)),x(:,t−1));

25 else

26 x(:,t)=LSTP(L(:,1:size(L,2)/2),x(:,t−1));

27 end

28 end

29

30 x row=LrowfromL(x);
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31

32 % Graph

33

34 end

A.3 Functions for the Early Detection of Cancer

model

Here are presented the functions that were used for the simulation of the early
detection of cancer model.

A.3.1 simulationEarlyDetectionCancer variables()

This function simulates the dynamics of the system variables according to the value
of Tumor.

1 function x = simulationEarlyDetectionCancer variables(x 0, ...

tumor, sim time, sim graphs)

2 % Simulation of the early detection of cancer model

3

4 % Variables vector

5 x = zeros(12,sim time);

6 x(:,1) = x 0;

7

8 if tumor==1

9

10 % Probabilities for update functions for Tumor Cells

11 p 4 1=0.58;

12 p 4 2=0.42;

13

14 p 10 1=0.34;

15 p 10 2=0.33;

16 p 10 3=1−p 10 1−p 10 2;

17

18 p 12 1=0.55;

19 p 12 2=1−p 12 1;

20

21 for t=2:1:sim time

22

23 % Random number generation from uniform distribution ...

[0,1]

24 num 4 = rand();

25 num 10 = rand();

26 num 12 = rand();

27

28 % Variables update

29 x(1,t) = (˜x(5,t−1)&(˜x(6,t−1)&x(12,t−1))) | ...

(x(5,t−1)&(˜x(6,t−1) |x(12,t−1)));
30 x(2,t) = x(11,t−1);

31 x(3,t) = (˜x(8,t−1)&(x(4,t−1)&x(9,t−1))) | ...

(x(8,t−1)&(x(4,t−1) |x(9,t−1)));
32 if num 4<p 4 1

33 x(4,t) = x(8,t−1);
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34 else

35 x(4,t) = x(10,t−1);

36 end

37 x(5,t) = ˜x(6,t−1)&(˜x(12,t−1)&x(1,t−1)) |x(6,t−1);
38 x(6,t) = (˜x(12,t−1)&(˜x(1,t−1)&x(5,t−1))) | ...

(x(12,t−1)&x(5,t−1));

39 x(7,t) = x(10,t−1);

40 x(8,t) = x(4,t−1);

41 x(9,t) = x(3,t−1);

42 if num 10<p 10 1

43 x(10,t) = x(7,t−1);

44 elseif num 10>=p 10 1 && num 10<p 10 1+p 10 2

45 x(10,t) = (˜x(1,t−1)&(x(5,t−1) |x(6,t−1))) | ...

(x(1,t−1)&(x(5,t−1)&x(6,t−1)));

46 else

47 x(10,t) = (˜x(5,t−1)&(x(6,t−1)&˜x(12,t−1))) | ...

(x(5,t−1)&(x(6,t−1) |˜x(12,t−1)));
48 end

49 x(11,t) = x(2,t−1);

50 if num 12<p 12 1

51 x(12,t) = (˜x(1,t−1)&(˜x(5,t−1)&x(6,t−1))) | ...

(x(1,t−1)&(˜x(5,t−1) |x(6,t−1)));
52 else

53 x(12,t) = x(2,t−1);

54 end

55 end

56

57 if sim graphs==1

58

59 % Graphs

60

61 end

62

63 else

64

65 % Probabilities for update functions for Non−tumor Cells

66 pp 7 1=0.37;

67 pp 7 2=0.32;

68 pp 7 3=1−pp 7 1−pp 7 2;

69

70 pp 10 1=0.36;

71 pp 10 2=0.33;

72 pp 10 3=1−pp 10 1−pp 10 2;

73

74 pp 12 1=0.35;

75 pp 12 2=0.33;

76 pp 12 3=1−pp 12 1−pp 12 2;

77

78 for t=2:1:sim time

79

80 % Random number generation from uniform distribution ...

[0,1]

81 num 7=rand();

82 num 10=rand();

83 num 12=rand();

84

85 % Variables update

86 x(1,t)=x(8,t−1);
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87 x(2,t)=x(12,t−1);

88 x(3,t)=(˜x(7,t−1)&(˜x(4,t−1)&x(5,t−1))) | ...

(x(7,t−1)&(˜x(4,t−1) |x(5,t−1)));
89 x(4,t)=(˜x(5,t−1)&(˜x(6,t−1)&x(7,t−1))) | ...

(x(7,t−1)&x(5,t−1));

90 x(5,t)=(˜x(6,t−1)&(˜x(7,t−1)&x(4,t−1))) | ...

(x(6,t−1)&(˜x(7,t−1) |x(4,t−1)));
91 x(6,t)=x(7,t−1);

92 if num 7<pp 7 1

93 x(7,t)=(˜x(4,t−1)&x(6,t−1)) |(x(4,t−1)& ...

(˜x(5,t−1) |x(6,t−1)));
94 elseif num 7>=pp 7 1 && num 7<pp 7 1+pp 7 2

95 x(7,t)=(˜x(3,t−1)&(˜x(8,t−1)&x(10,t−1))) | ...

(x(3,t−1)&(˜x(8,t−1) |x(10,t−1)));
96 else

97 x(7,t)=(˜x(1,t−1)&x(3,t−1)) | ...

(x(1,t−1)&(˜x(8,t−1) |x(3,t−1)));
98 end

99 x(8,t)=x(10,t−1);

100 x(9,t)=x(12,t−1);

101 if num 10<pp 10 1

102 x(10,t)=x(8,t−1);

103 elseif num 10>=pp 10 1 && num 10<pp 10 1+pp 10 2

104 x(10,t)=x(6,t−1);

105 else

106 x(10,t)=(˜x(9,t−1)&(x(11,t−1) |x(12,t−1))) | ...

(x(9,t−1)&x(11,t−1));

107 end

108 x(11,t)=x(6,t−1);

109 if num 12<pp 12 1

110 x(12,t)=(˜x(2,t−1)&(x(9,t−1)&x(11,t−1))) | ...

(x(2,t−1)&(x(9,t−1) |x(11,t−1)));
111 elseif num 12>=pp 12 1 && num 12<pp 12 1+pp 12 2

112 x(12,t)=(˜x(10,t−1)&(x(1,t−1))&˜(x(3,t−1))) | ...

(x(10,t−1)&(x(1,t−1)|˜(x(3,t−1))));
113 else

114 x(12,t)=x(1,t−1);

115 end

116 end

117

118 if sim graphs==1

119

120 % Graphs

121

122 end

123

124 end

125

126 end

A.3.2 simulationEarlyDetectionCancer histogram()

This function computes the histogram of the combinations of the three cancer genes
running simnum simulations.
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1 function x = simulationEarlyDetectionCancer histogram(tumor, ...

sim time, sim num, sim graphs)

2 % Simulation of the early detection of cancer model

3

4 % Cycle for sim num simulations

5 hist = zeros(1,8);

6 for n=1:1:sim num

7

8 % Random initial conditions where the cancer genes are ...

equal to 0

9 while 1

10 randomNumbers = int32(randi([0, 1], [1, 12]));

11 if randomNumbers(1,7)˜=1 && randomNumbers(1,10)˜=1 ...

&& randomNumbers(1,12)˜=1

12 break

13 end

14 end

15

16 x 0 = randomNumbers;

17

18 x = simulationEarlyDetectionCancer variables(x 0, tumor, ...

sim time, sim graphs);

19

20 % Histogram array

21 if tumor==1

22

23 if x(4,sim time)==0 && x(10,sim time)==0 && ...

x(12,sim time)==0

24 hist(1,1) = hist(1,1)+1;

25 elseif x(4,sim time)==1 && x(10,sim time)==0 && ...

x(12,sim time)==0

26 hist(1,2) = hist(1,2)+1;

27 elseif x(4,sim time)==0 && x(10,sim time)==1 && ...

x(12,sim time)==0

28 hist(1,3) = hist(1,3)+1;

29 elseif x(4,sim time)==1 && x(10,sim time)==1 && ...

x(12,sim time)==0

30 hist(1,4) = hist(1,4)+1;

31 elseif x(4,sim time)==0 && x(10,sim time)==0 && ...

x(12,sim time)==1

32 hist(1,5) = hist(1,5)+1;

33 elseif x(4,sim time)==1 && x(10,sim time)==0 && ...

x(12,sim time)==1

34 hist(1,6) = hist(1,6)+1;

35 elseif x(4,sim time)==0 && x(10,sim time)==1 && ...

x(12,sim time)==1

36 hist(1,7) = hist(1,7)+1;

37 elseif x(4,sim time)==1 && x(10,sim time)==1 && ...

x(12,sim time)==1

38 hist(1,8) = hist(1,8)+1;

39 end

40

41 else

42

43 if x(7,sim time)==0 && x(10,sim time)==0 && ...

x(12,sim time)==0

44 hist(1,1) = hist(1,1)+1;

45 elseif x(7,sim time)==1 && x(10,sim time)==0 && ...
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x(12,sim time)==0

46 hist(1,2) = hist(1,2)+1;

47 elseif x(7,sim time)==0 && x(10,sim time)==1 && ...

x(12,sim time)==0

48 hist(1,3) = hist(1,3)+1;

49 elseif x(7,sim time)==1 && x(10,sim time)==1 && ...

x(12,sim time)==0

50 hist(1,4) = hist(1,4)+1;

51 elseif x(7,sim time)==0 && x(10,sim time)==0 && ...

x(12,sim time)==1

52 hist(1,5) = hist(1,5)+1;

53 elseif x(7,sim time)==1 && x(10,sim time)==0 && ...

x(12,sim time)==1

54 hist(1,6) = hist(1,6)+1;

55 elseif x(7,sim time)==0 && x(10,sim time)==1 && ...

x(12,sim time)==1

56 hist(1,7) = hist(1,7)+1;

57 elseif x(7,sim time)==1 && x(10,sim time)==1 && ...

x(12,sim time)==1

58 hist(1,8) = hist(1,8)+1;

59 end

60

61 end

62

63 end

64

65 % Histogram graph

66 if tumor==1

67

68 % Graph

69

70 else

71

72 % Graph

73

74 end

75

76 end

A.3.3 simulationEarlyDetectionCancer Lmatrix()

This function simulates the dynamics of the system by means of the transition matrix
L and according to the value of Tumor.

1 function x = simulationEarlyDetectionCancer Lmatrix(x 0, tumor, ...

L cell, p L cell, sim time)

2 % Simulation of the early detection of cancer model

3

4 x=zeros(size(L cell{1,1},1),sim time);

5

6 % Initial condition into logic vector

7 j=fromBVtoLV(x 0');

8 x(:,1)=LfromLrow(j,size(L cell{1,1},1));
9

10 if tumor==1

11
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12 for t=2:1:sim time

13

14 % Random number generation from uniform distribution ...

[0,1]

15 num=rand();

16

17 % Selection of the current structure matrix L

18 if num<p L cell(1,1)

19 L curr=L cell{1};
20 elseif num>=p L cell(1,1) && ...

num<p L cell(1,1)+p L cell(1,2)

21 L curr=L cell{2};
22 elseif num>=p L cell(1,1)+p L cell(1,2) && ...

num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)

23 L curr=L cell{3};
24 elseif ...

num>=p L cell(1,1)+p L cell(1,2)+p L cell(1,3) ...

&& num<p L cell(1,1)+p L cell(1,2)+ ...

p L cell(1,3)+p L cell(1,4)

25 L curr=L cell{4};
26 elseif num>=p L cell(1,1)+p L cell(1,2)+ ...

p L cell(1,3)+p L cell(1,4) && ...

num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)

27 L curr=L cell{5};
28 elseif ...

num>=p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5) && ...

num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6)

29 L curr=L cell{6};
30 elseif ...

num>=p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6) && ...

num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+ ...

p L cell(1,6)+p L cell(1,7)

31 L curr=L cell{7};
32 elseif ...

num>=p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+ ...

p L cell(1,6)+p L cell(1,7) && ...

num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+ ...

p L cell(1,6)+p L cell(1,7)+p L cell(1,8)

33 L curr=L cell{8};
34 elseif ...

num>=p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6)+ ...

p L cell(1,7)+p L cell(1,8) && ...

num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6)+ ...

p L cell(1,7)+p L cell(1,8)+p L cell(1,9)

35 L curr=L cell{9};
36 elseif ...

num>=p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6)+ ...

p L cell(1,7)+p L cell(1,8)+p L cell(1,9) && ...
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num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6)+ ...

p L cell(1,7)+p L cell(1,8)+ ...

p L cell(1,9)+p L cell(1,10)

37 L curr=L cell{10};
38 elseif ...

num>=p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6)+ ...

p L cell(1,7)+p L cell(1,8)+ ...

p L cell(1,9)+p L cell(1,10) && ...

num<p L cell(1,1)+p L cell(1,2)+p L cell(1,3)+ ...

p L cell(1,4)+p L cell(1,5)+p L cell(1,6)+ ...

p L cell(1,7)+p L cell(1,8)+ ...

p L cell(1,9)+p L cell(1,10)+p L cell(1,11)

39 L curr=L cell{11};
40 else

41 L curr=L cell{12};
42 end

43

44 % State update

45 x(:,t)=LSTP(L curr,x(:,t−1));

46 end

47

48 x row=LrowfromL(x);

49 x row=x row(1,1:sim time);

50

51 % From states to cancer genes boolean variables

52 boolean variables 12=zeros(12,sim time);

53 cancer genes=zeros(3,sim time);

54 for i=1:1:sim time

55 support=fromLVtoBV(x row(1,i),12);

56 boolean variables 12(:,i)=support(1,:)';

57 cancer genes(1,i)=boolean variables 12(4,i);

58 cancer genes(2,i)=boolean variables 12(10,i);

59 cancer genes(3,i)=boolean variables 12(12,i);

60 end

61

62 % Graphs

63

64 else

65

66 for t=2:1:sim time

67

68 % Random number generation from uniform distribution ...

[0,1]

69 num=rand();

70

71 % Selection of the current structure matrix L

72

73 % Similar to what has been done for tumor==1 but ...

with 27 matrices

74

75 % State update

76 x(:,t)=LSTP(L curr,x(:,t−1));

77 end

78

79 x row=LrowfromL(x);

80 x row=x row(1,1:sim time);
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81

82 % From states to cancer genes boolean variables

83 boolean variables 12=zeros(12,sim time);

84 cancer genes=zeros(3,sim time);

85 for i=1:1:sim time

86 support=fromLVtoBV(x row(1,i),12);

87 boolean variables 12(:,i)=support(1,:)';

88 cancer genes(1,i)=boolean variables 12(7,i);

89 cancer genes(2,i)=boolean variables 12(10,i);

90 cancer genes(3,i)=boolean variables 12(12,i);

91 end

92

93 % Graphs

94

95 end

96

97 end
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