UNIVERSITA ‘
DEGLI STUDI —) DIPARTIMENTO
DI PADOVA = D| INGEGNERIA

— DELL'INFORMAZIONE

MASTER THESIS IN INGEGNERIA INFORMATICA

Design and Development of an Extensible and
Configurable Framework for Conversational
Search Experiments

MASTER CANDIDATE SUPERVISOR
Marco Alessio Prof. Nicola Ferro
Student ID 1242412 University of Padua

CO-SUPERVISOR

Dott. Guglielmo Faggioli

University of Padua

AcADEMIC YEAR
2022/2023

Abstract

The Conversational Search (CS) paradigm allows for an intuitive interaction
between the user and the system through natural language sentences and it is in-
creasingly being adopted in various scenarios. However, its widespread exper-
imentation has led to the birth of a multitude of CS systems with custom imple-
mentations and variants of Information Retrieval (IR) models. This exacerbates
the reproducibility crisis already observed in several research areas, including
IR. To address this issue, we propose DECAF: a modular and extensible Con-
versational Search framework designed for fast prototyping and development of
conversational agents. Our framework integrates all the components that char-
acterize a modern CS system and allows for the seamless integration of Machine
Learning (ML) and Large Language Models (LLMs)-based techniques. Further-
more, thanks to its uniform interface, DECAF allows for experiments charac-
terized by a high degree of reproducibility. DECAF contains several state-of-
the-art components including query rewriting, search functions under Bag-of-
Words (BoW) and dense paradigms, and re-ranking functions. Our framework
is tested on two well-known conversational collections: TREC CAsT 2019 and
2020 and the results can be used by future practitioners as baselines. Our contri-
butions include the identification of a series of state-of-the-art components for

the CS task and the definition of a modular framework for its implementation.

Contents

List of Figures xi
List of Tables xiii
1 Introduction 1
2 Background 5
2.1 Basics of Information Retrieval 5
211 Documents 7

2.1.2 InformationNeed 7

213 Query 7

214 Analysis L o 8

215 Indexing L. 9

216 Matching. 11

217 Reranking 18

2.1.8 RetrievalResults 19

219 Evaluation 19

2.2 Conversational Search 24
221 QueryRewriting 25

2.2.2 Heuristics for Query Generation 26

2.3 TREC Conversational Assistance Track 26
24 IRFrameworks 27

3 DECAF Architecture 29
31 MainModules 29
3.2 Components Implemented 30
321 IndexPipeline. 30

322 SearchPipeline 32

CONTENTS

3.3 External Process Integration

331 Creation i i e

3.3.2 Synchronization and Data Exchange

333 Clean-up
3.34 Techniques to avoid Stream Cluttering in Python

34 GitRepository o

4 DECAF in Action

41 InstallationGuide
411 Requirements

412 Dependencies
413 Installation.,
414 Uninstall
42 ConfigurationGuide
421 IndexPhase
422 SearchPhase

5 Experimental Results

51 TRECCAsT2019Results
5.1.1 Rewriters and Query Generation Heuristics

51.2 First-stage Retrieval
513 Reranking,
514 Comparison with Best Runs of TREC CAsT 2019
52 TRECCAsT2020Results

6 Conclusions
References

Acknowledgments

Vi

57
59
59
66
67
70
75

81

83

93

2.1

3.1
3.2

3.3
34

4.1

4.2

51

52

List of Figures

Architecture of IR systems.

Architecture of DECAF.

Typical data and execution flow between the Main and External
processesin DECAF.

Screenshot of the main directory of DECAF repository.
Screenshot of the template sub-directory of DECAF repository.

An example of configuration file snippet that allows for configur-
ing theindexing phase.

An example of a configuration file snippet that allows for config-
uring the searchphase.,

Evaluation of FLC heuristic paired with three different rewriting
strategy. The scoring function is BM25 and no re-ranking is em-
ployed. Each column and row represent the coefficient applied
to the First and Last utterances, respectively. Instead, the coeffi-
cient for Current utterance is given by 1 — (F + L). The evalua-
tion metric reported is Normalized Discounted Cumulative Gain
(nDCG)@10, considering only utterances those turn is > 3 within

its conversation. o e e e e e e e e e e

Differences in nDCG@10 evaluation metric across all queries, be-
tween the run employing FLC w.r.t. considering only the current
utterance. Three different rewriting strategies are employed, one
for each plot, the scoring function is BM25, and no re-ranking is
used. Only the utterances those turn is > 3 within its conversation

areconsidered.

xi

LIST OF FIGURES

53

54

55

5.6

57

5.8

Evaluation of the same experiments showed on Figures 5.1 and
5.2 conducted on the “manual” utterances, which were manually
rewritten from the organizers of TREC CAsT 2019.

Differences in nDCG@10 evaluation metric across all queries, be-
tween the run employing reranking with BERT w.r.t. no rerank-
ing. Both experiments are based on Text-To-Text Transfer Trans-
former (T5)-rewritten automatic utterances, but two different rank-
ing function are employed, one for each plot: BM25 and Dirichlet
Language Model (LM).

Evaluation of two different strategies for improving re-ranking.
Figure 5.5a evaluates the optimal parameters for the FLC heuris-
tic, when applied to the query representation used for re-ranking
with BERT, employed to T5-rewritten automatic utterances. Fig-
ure 5.5b shows how the score changes when varying the linear
combination parameter in our custom Reciprocal Rank run fusion
technique, employed to merge the ranked lists produced by the
Searcher (left) and the Reranker (right). The performance mea-
sure considered is nDCG@10 in both plots.

Evaluation of the nDCG@10 metric across all queries, for both our
best experiment on automatic run, which employs SPLADE, and
for the Best Automatic run on TREC CAsT 2019 dataset.

Evaluation of the nDCG@10 metric across all queries, for both our
best experiment on manual run, which employs SPLADE, and for
the Best Manual run on TREC CAsT 2019 dataset.

Average nDCG@3 metric at varying conversation depths, on TREC
CAsT 2019 dataset. In the top plot, there are automatic runs,
while the other displays manual runs. The considered runs are:
BM25 with BERT (blue bar, on the left), Dirichlet LM with BERT
(orange bar, in the center-left), SPLADE (grey bar, in the center-
right), and the Best run across original submissions (green bar, on
theright).

xii

LIST OF FIGURES

5.9 Average nDCG@3 metric at varying conversation depths, on TREC
CAsT 2020 dataset. In the top plot, there are automatic runs,
while the other displays manual runs. The considered runs are:
BM25 with BERT (blue bar, on the left), Dirichlet LM with BERT
(orange bar, in the center-left), SPLADE (grey bar, in the center-
right), and the Baseline run across original submissions (green
bar,ontheright). 79

xiii

2.1
2.2

51

5.2

5.3

54

55

5.6

5.7

List of Tables

Example of run in trec-eval format. 20

Example of relevance judgements in trec-eval format. 20

Rewriters and corresponding configuration parameters, used in
the evaluation of DECAF. 57

Searchers (first-stage ranking functions) and corresponding con-
figuration parameters, used in the evaluation of DECAF. 58

Rerankers and corresponding configuration parameters, used in
the evaluation of DECAE. 59

List of experiments conducted on TREC CAsT 2019 benchmark,
testing different rewriting strategies and query generation heuris-
tics, detailed in Section 5.1.1. The evaluation measures reported
are Recall (R)@100, Mean Reciprocal Rank (MRR), and nDCG with
cutoffs3and 10. Lo oo 59

Optimal parameters to employ with FLC heuristic for maximizing
nDCG@10 metric, determined with various rewriting strategies
and type of utterances, on TREC CAsT 2019 benchmark. 65

List of experiments conducted on TREC CAsT 2019 benchmark,
testing different ranking functions, detailed in Section 5.1.2. The

evaluation measures reported are R@100, MRR and nDCG with
cutoffs3and 10. Lo Lo oo 66

List of experiments conducted on TREC CAsT 2019 benchmark,
applying re-ranking using a BERT model to different settings, de-
tailed in Section 5.1.3. The evaluation measures reported are R@100,
MRR and nDCG with cutoffs3and 10. 68

xiii

LIST OF TABLES

5.8

59

Comparison between our best-performing experiments against the
best runs across original submissions, for both automatic and man-
ual utterances, on TREC CAsT 2019 benchmark. The evaluation
measures reported are R@100, MRR and nDCG with cutoffs 3 and

List of all experiments conducted on TREC CAsT 2020 bench-
mark. The evaluation measures reported are R@100, MRR and
nDCG with cutoffs 3 and 10. We do not report Recall@100 and
nDCG@10 for the best TREC CAsT 2020 runs, since they were not
computedin[7]. o 77

Xiv

Introduction

Information is an abstract concept that refers to any data or knowledge per-
taining to some aspect of the world that are processed, interpreted and orga-
nized in such a way to become meaningful for a determined set of people. It can
take an heterogeneous and variegated spectrum of representations: written text,
such as letters and books, images, like pictures and drawings, video, and audio,
including music and speech. Moreover, information can be stored, to retain and
make it available for future reference and analysis. Information communica-
tion, on the other hand, allows for the distribution and sharing of information
across individuals, which is vital for decision-making, learning, and innovation

in various domains and disciplines.

Information Retrieval George Salton, a pioneer in IR from the 1960s to the
1990s, proposed the following definition [47]:

Information Retrieval is a field concerned with the structure, analysis, or-
ganization, storage, searching, and retrieval of information.

The demand for IR stems from the lack of knowledge needed to perform a
task. To satisfy this information need, the user seeks to find correct and useful
information from a collection of resources, delivered to him/her in an appropri-
ate way.

Traditional IR systems are rather limited: users are required to manually
translate their information need into an — hopefully effective — query, which
is tipically a set of keywords. Despite its semplicity, such approach has been

widely employed in practice, ranging from traditional library catalogues to mod-
ern search engines. It can be defined as a one-shot process: each search is inde-
pendent from others.

Conversational Search CS[64, 3] is an emerging paradigm which is drastically
innovating IR by allowing users to interact with the system through a conversa-
tion. This paradigm allows for a very intuitive and seamless interaction between
the human and the system since it is based on natural language utterances.

As a result of remarkable technological advancements in recent years, we
have seen a significant rise in the adoption of personal assistants equipped with
interactive voice-based interfaces, such as Amazon Alexa, Google Assistant, Sam-
sung Bixby, Apple Siri, and many others, which testify to the importance of CS in
the industry.

Context CS poses significant challenges due to the inherent imprecision and
ambiguity of natural language expressions, as well as the presence of complex
speech structures in the utterances, including anaphoras, ellipses, and corefer-
ences. Therefore, the system needs to address these natural language phenom-
ena by keeping track of the conversation state and to preserve all the implicit

information contained in the utterances.

Neural Approaches In recent years, ML have been successfully employed to
perform many Natural Language Processing (NLP) and IR tasks, achieving state-
of-the-art performance. The Transformer architecture [50], serving as the foun-
dation of several popular LLMs such as BERT [10] and GPT [40], utilise the self-
attention mechanism to capture the relationships between different parts of the
input sequence and learn contextual dense representations for each of them.

Additionally, the higher training parallelization w.r.t. previous models have
fostered the development of LLMs pretrained on large datasets, which can be
fine-tuned for performing specific tasks such as query rewriting [43], first-stage
retrieval [55, 66, 15], ranking [19, 54, 61], and question answering [10].

Motivations The advent of Neural Information Retrieval (NIR) models, fueled
by LLMs, has been helping to overcome some of these challenges and to foster a
capillary adoption of CS in many different scenarios. Such a variety made the CS

CHAPTER 1. INTRODUCTION

scenario fragmented from the systems’ design perspective, with hundreds of ad-
hoc custom implementations and variants of IR models and other components
developed.

They employ a wide range of languages and frameworks, making their inte-
gration difficult, if not impossible at all. This situation determines a number of
challenges both in the development of CS systems and in their experimentation.
Finally, it hinders the reproducibility of experiments, exacerbating the already

prevalent reproducibility crisis in current research [60, 6, 14, 21].

Contributions To address these issues, we propose DECAF — moDular and
Extensible Conversational seaArch Framework, which is explicitly designed to al-
low for fast prototyping and development of CS systems and to enable their sys-
tematic evaluation under the traditional Cranfield paradigm. The framework is
designed to allow the integration of all the components that characterize a mod-
ern CS system, including query rewriting, searching — both under the BoW and
dense paradigms — and re-ranking.

While written primarily in Java to ensure compatibility with traditional IR
libraries, such as Lucene!, Terrier [37], and Anserini [26], it also supports mod-
ern Artificial Intelligence (AI), ML, and LLM-based techniques thanks to the
seamless integration of Python scripts. The framework already includes multi-
ple state-of-the-art components for query rewriting, traditional BoW similarity
functions, NIR approaches — both sparse and dense — and re-ranking functions.
It also allows for the evaluation on reference collections in the area, such as TREC
CAsT 2019 and 2020.

The components implemented in DECAF act as state-of-the-art baselines for
future experiments. They also provide a template for integrating and design-
ing new components, to extend DECAF itself. To show the capabilities of this
framework, we demonstrate its application to the TREC CAsT 2019 and 2020
collections, reporting the results that different pipelines are able to achieve.

Our main contributions are the following;:

* Design and develop the DECAF modular and easily extensible framework,
which allows us to seamlessly integrate CS components and instantiate CS
pipelines.

'https://lucene.apache.org/

https://lucene.apache.org/

* Provide a series of state-of-the-art components that can be used to imple-
ment a CS pipeline.

¢ Evaluate several CS pipelines, created using DECAF, on two well-known
and widely adopted conversational collections, namely TREC CAsT 2019
and TREC CAsT 2020.

Structure of this work The remainder of this work is organized as follows:
Chapter 2 surveys the current state-of-the-art for IR and CS experimentation
frameworks. Chapter 3 introduces the framework and its architecture, along
with the different CS components implemented out of the box. Chapter 4 an-
alyzes a practical application of our framework, focusing on how to set up the
configuration files to conduct experiments. Chapter 5 reports experiments con-
ducted to evaluate the components implemented within DECAF. Finally, Chap-
ter 6 draws some conclusions and outlines future extensions of DECAF.

Background

In this chapter, we report the main endeavours and related works concern-
ing four topics: IR and CS fields, the principal evaluation campaigns in the CS
setting — used as a reference point to design DECAF, and the related IR frame-

works.

BAsics OF INFORMATION RETRIEVAL

The practice of archiving and retrieving information is a fundamental ac-
tivity of human society. In ancient times, this was accomplished through oral
tradition, involving the memorization and recitation of stories and myths. The
development of writing led to the creation of various methods for organizing
and cataloging written works. In the latter half of the 20th century, the tech-
nological advancement have fueled the development of automatic systems for
storing and retrieving information. The term Information Retrieval has been
firstly introduced by Calvin Mooers in 1950 [13], denoting the recovery, from a
given collection of documents, of a subset including all documents of specified
content, possibly together with irrelevant ones.

From there, a lot of research developed. IR systems have converged towards
a standard architecture, shown in Figure 2.1. It involves an offline phase, that
handles preprocessing of the entire collection of information, and an online phase,
that is activated for each query to process. This architecture has been widely
adopted and has proven to be effective for IR systems.

2.1. BASICS OF INFORMATION RETRIEVAL

IR System - Offline Phase User — Online Phase

—

User
Information
Need

Documents

Analysis Query
A 4
Indexing Analysis
/—L\ ¢)
_/
Index Query
Representation Representation

P Matching —

v

Re-ranking
IR System -
¢ Online Phase
Retrieval
Results
A 4
Developers -
Evaluation Offline Phase

Figure 2.1: Architecture of IR systems.

CHAPTER 2. BACKGROUND

DOCUMENTS

IR systems operate on a collection of resources, which represent the entire
pool of information available to the system. Historically, emphasis have been
placed on textual-based content including books, papers, email, and web pages.
However, modern applications of IR increasingly encompass multimedia re-
sources, such as pictures, videos, and audio.

In this work, we consider exclusively textual documents. While they may
possess some degree of structure, such as title, author, chapters and paragraphs,

most of the information is conveyed through unstructured text.

INFORMATION NEED

The information need refers to the demand for accurate and useful knowl-
edge required by users of IR systems to perform a specific task. Based on the
different users’ requirements and expectations, we can distinguish four kinds of
IR systems:

Information Seeking The user wishes to locate information relevant to the pro-
vided topic.

Question Answering These systems are concerned with delivering automatically-
generated answers to questions posed in natural language by the human
users.

Recommendation Systems The aim is to help users providing a set of items, of-
ten taken from a closed domain, obtained by filtering and selecting whose
that are considered the most suitable to fulfill the user’s needs.

Goal-oriented Systems They are designed to aid people in fulfilling some spe-
cific tasks, such as making a reservation, or buying a product.

QUERY

The user translates his/her information need into the query, usually involv-
ing a set of keywords that are deemed the most appropriate terms for the system
to retrieve the desired data to fulfill the information need.

2.1. BASICS OF INFORMATION RETRIEVAL

The effectiveness of retrieval is somewhat dependent on the specific formu-
lation chosen by the user, since different but equivalent-meaning queries may

produce non-identical results.

ANALYSIS

The analysis phase is conducted independently for each document and query,
with the objective of extracting the features that describe their content. The spe-
cific activities carried out during this phase depend on the particular indexing
approach and retrieval model employed in the pipeline. The most common sub-

phases are tokenization, stopword removal, and stemming.

TOKENIZATION

Tokenization is always the first step in the analysis process performed by
IR systems. The textual content is transformed into a stream of tokens, which
represent the minimal lexical units considered by the system, and typically cor-
respond to individual words. Punctuation marks, special characters, and blank
spaces are used as delimiters to separate words from each other. There are spe-
cial cases that must be treated with care. Hyphenated words sometimes should
be handled as a single word (i.e., ice-cream, co-operation), while in other cases
as separate words (i.e., user-centered, dog-friendly, well-known). Apostrophes
could be a part of a word or of a possessive, or just a mistake. Uppercase letters
are usually insignificant, but there are exceptions: for instance, “Bank” is a city
in Iran and “bank” is a financial institution.

Finally, all words are converted to lowercase and punctuation marks are dis-
carded.

StoPwoORD REMOVAL

Stopword Removal is an optional step that involves filtering out stopwords,
which are terms with low discriminatory power for retrieval purposes. The un-
derlying principle is that words occurring in the majority of the documents, such
as articles, prepositions, conjunctions, and pronouns, are not informative and
can be safely discarded. The primary benefit of this technique is the reduction
in the size of the index, those extent depends on the aggressiveness of the elim-
ination process. However, a potential drawback is the loss of important infor-

mation embedded within the excluded words.

CHAPTER 2. BACKGROUND

STEMMING

Stemming is an optional process which attempts to reduce morphological
variations, such as plural, gerund, and past tense forms, of related words by
eliminating common prefixes and suffixes. The portion of the word remaining
after this process is referred to as the “stem”.

The usage of stemming offers certain advantages: most words pertaining to
a common concept are reduced into the same term, while coincidentally reduc-
ing the number of unique words and, in turn, the size required by the index
structure. On the other hand, the stemming algorithm may occasionally pro-
duce wrong results lowering the effectiveness of this technique. Overstemming
is when some unrelated words are transformed into the same term (i.e., “univer-
sity” and "universe”), while understemming is when related words are reduced
to different stems (i.e., “mouse” and “mice”).

In the literature, there is controversy surrounding the usage of stemming for
english language, with conflicting conclusions being drawn in different research
works. However, stemming is de-facto mandatory in other languages, such as

arabic.

INDEXING

The corpus of documents is processed ahead of time in order to build an in-
dex, a data structure needed to efficiently support the retrieval of documents in
response to the user query. The purpose of this step is to avoid performing a
linear scan of the entire documents collection, resulting in faster response times.
Information Retrieval systems employ a particular type of search called rank-
ing, which involves retrieving documents in sorted order based on a score that
is computed by applying a scoring function to the query and documents repre-

sentations.

BAG-O0F-WORDS REPRESENTATIONS

While performing indexing, it is possible to build the dictionary, a list con-
taining all distinct terms that appeared at least once in the documents corpora.
BoW are representations in which each term is associated with a weight, reflect-
ing the relative importance of the considered word in the document. The pecu-
liar aspect of BoW representations consists in the fact that they are sparse: only a

2.1. BASICS OF INFORMATION RETRIEVAL

small number of terms are assigned to non-zero weights. Usually, the BoW rep-
resentation for a document is composed by the set of unique words appearing
in its text associated with their frequency.

The inverted index is the most popular data structure employed with Bag-of-
Words representations, providing a mapping between terms and the documents
in which they appear. The index is referred to as “inverted”, because starting
from documents composed of terms, this data structure invert such relation by
associating each term with the corresponding documents.

Every document in the collection is linked with an unique number. Each
term is associated with its own posting list: each entry contains the unique iden-
tifier of a document where the term appears, optionally together with other fea-
tures containing useful information used to perform retrieval. Common exam-
ples of such features are term frequency and positions list, allowing for ranking
documents by their relevance as well as for phrase and proximity matching.

Inverted lists are usually stored together in a single file for efficiency pur-
poses. There are auxiliary data structures for other useful data: vocabulary,

term and collection statistics are commonly stored in separate files.

DENSE REPRESENTATIONS

The remarkable modeling capacity of pretrained LLMs allowed to effectively
learn the representations for textual data in the latent representation space. The
latent space is an embedding of a collection of items, where entities with similar
characteristics are positioned closer to each other in the latent space. The em-
bedding refers to the output of an injective function f: X + Y, in which each
item belonging to X is mapped into a different entity, which in our case is a
vector of real numbers.

These vectors, belonging to the same high-dimensional vector space, can be
compared using a semantic matching function, such as dot product and cosine
similarity. The score obtained is a measure of similarity between the actual texts
being compared, as guaranteed by the latent space.

One widely adopted pretrained LLM is BERT [10], which generates a con-
textual representation for each token found in the text. They belong to a vector
space of size 768 or 1024, depending on which variant (“BERTBASE” or
“BERTLARGE”) is employed. During tokenization phase, the special token [CLS]
is added at the beginning, which is important as its embedding encapsulates the

10

CHAPTER 2. BACKGROUND

meaning of the whole text. For this reason, only this embedding is retained; this
approach is known as the CLS pooling technique.

Dense retrieval approaches commonly employ a list as index structure, com-
prising the embeddings of CLS token that are generated for each document.
These indexes require to store a substantial amount of data. For example, if a
BERTBAsE-based model is utilized, each document require 768 - 4 bytes = 3 KB
of storage space. This can become problematic when indexing large corpora of
documents. For instance, the corpora used in the TREC CAsT 2019 and 2020
evaluation campaigns consist of approximately 38.5 million documents, there-
fore necessitating a total storage space of 110.15 GB. During retrieval stage, the
query embedding is compared to all document embeddings to identify the top-k
most relevant documents. This brute-force approach raises efficiency concerns
regarding computational power, memory, and time required.

In order to address these issues, various approximate search techniques have
been developed. There are approaches in which the embeddings are approxi-
mated, in order to decrease their storage requirements. Other approaches aim
to disregard the majority of documents during retrieval, as they are deemed un-
likely to be among the top-k most relevant documents for the given query. Clus-
tering is commonly employed to partition the embeddings into smaller subsets,
those centroids are used to determine which partitions are examined and which
are ignored. These approximate search techniques have been demonstrated to
be effective, although their effect on performance metrics has not been fully ex-

plored and remains an area of active research.

MATCHING

This phase is concerned with determining which documents the user will
find relevant to fulfill his/her information need. The formalization of the pro-
cesses undertaken by a person deciding about the relevance of a piece of text has
been one of the primary goals of research in the IR field.

Retrieval models establish a mathematic framework to define the search pro-
cess, based on certain assumptions. They serve as the foundation for many rank-
ing functions that compute a score for each document, representing the confi-
dence about its relevance for the given query. Effective models produce outputs
that highly correlates with human judgements on relevance.

Over the course of the years, several retrieval models have been proposed.

11

2.1. BASICS OF INFORMATION RETRIEVAL

The main ones are the Boolean Model, the Vector Space Model and the Proba-
bilistic Model.

BooLEAN MODEL

The Boolean is a classical retrieval model that has been the first and most-
adopted model by early IR systems. Despite its semplicity, it is still employed
in some specific domains, such as digital libraries and legal search. The Boolean
model is based on the principles of boolean algebra and set theory. Each docu-
ment is represented as a set of terms, which are typically single words or phrases
present in the text. Both the frequency of terms and the order in which they ap-
pear are not considered in this model. Instead, queries are formulated as boolean
expressions composed of terms linked by logical operators such as NOT, AND,
OR, and XOR.

The ranking function in this model is a binary match: the documents are ei-
ther relevant or not, with no partial matching allowed. The result does not con-
sist in a ranked list, but rather a set of documents. For this reason, the Boolean
model can be defined as an exact-match model, as documents are retrieved only
if they exactly match the query specification.

This retrieval model offers several advantages. It is particularly suited for
exact match queries, and provides predictable and easily explainable results.
Furthermore, efficient processing is achievable since most documents can be ig-
nored during the search process.

On the other hand, it comes with many drawbacks. Firstly, a common out-
come results in retrieving too few or too many documents. For this reason, both
simple and complex queries are seldom effective. Secondly, the model effec-
tiveness depends entirely on user’s ability to express his/her information need
through a well-designed logical expression. Thirdly, it does not account for term
frequency and order, which doesn’t allow to search for specific phrases as well
as using proximity operators. Lastly, the model does not provide any reccoman-

dation on which documents the user should examine first.

VECTOR SPACE MODEL

The Vector Space Model is a framework for implementing term weighting,
ranking and relevance feedback, proposed during the 1960s.

In this model, both the documents and queries are represented as vectors in a

12

CHAPTER 2. BACKGROUND

N-dimensional vector space. The similarity between a query and a document is
evaluated using either the dot product or cosine similarity between their vector
representations. Therefore, this model allows for partial matching and ranked
results.

Dot Product

z

rel(q,d)=7q-d = Zqi'di
i=1

Cosine Similarity

rel(q,d) = cos(G(Z]’,Zi)) =

3 _ Zf\il qi - d;
1 \/Z?; qzz\/zﬁl d;

Despite the absence of an explicit definition of relevance in this model, there

| (=

exists an underlying assumption that relevance is related to the similarity be-
tween the vectors representing the query and the document. Instead, no as-
sumptions are made regarding the nature of relevance, whether it is binary or
multi-graded.

The representation of documents and queries is determined by the specific
ranking algorithm being utilized.

For instance, classical approaches based on the Vector Space Model consider
a dictionary of N possible terms, and associate each of them with a weight char-
acterising the term importance for the given entity. The vector representation
consists in the aggregation of all the weights assigned to the terms. The ra-
tionale behind it is based on the premise that not all terms are equally useful
for describing the content. For example, common words such as articles and
conjunctions are not informative; on the other hand, a rare term appearing in
only a few documents have a strong discriminatory power, allowing to cosider-
ably narrow down the set of potential relevant documents during retrieval. The
weights are typically derived from the frequency of the terms in the corpus of
documents.

The TF-IDF (Term Frequency-Inverse Document Frequency) weighting scheme
is composed of two factors: the TF component measures terms occurring with
substantial frequencies within a document/query, while the IDF component
evaluates the specificity of a term, i.e., how well it characterizes the topic de-

13

2.1. BASICS OF INFORMATION RETRIEVAL

scribed in the text.

(1+1ogy(fi,a) - logy 5 if fra >0

otherwise

Wi =tf(t,d) idf(t) =

where t and d are, respectively, the term and document considered, f; 4 is the
frequency of term t within the document d, and #; is the number of documents
in which the term appears.

This retrieval model offers several advantages. Firstly, it is a simple, efficient
and general computational framework for ranking. Secondly, it allows for partial
matching of query terms, therefore avoiding the problem affecting the Boolean
retrieval model of manually finding the right trade-off between coverage and
specificity of retrieval. Lastly, it returns a list of documents, ranked by their
predicted relevance w.r.t. the information need of the user.

The primary drawback is the heuristic approach adopted by this retrieval
model, which is based on basic mathematical operations and lacks a robust the-
oretical foundation.

ProsBasBiILisTIC MODEL

The Probabilistic retrieval model is supported by a robust foundation for rep-
resenting and manipulating the uncertainty which is an inherent aspect of the
IR process. Assuming that the relevance of a document is independent of other
documents, it can be shown that ranking documents by their probability of rel-
evance leads to optimal performance of the IR system.

For any ranking algorithm which assumes binary relevance, it is possible
to partition documents into two distinct categories, namely relevant and non-
relevant. Given a query, the primary objective of IR systems is to determine
whether a document belongs either in the relevant or non-relevant set. Thus,
the problem can be characterized as a classification task.

To accomplish this, the probabilities of relevance, P(R | d, q), or non-relevance,
P(R | d,), given a document representation are evaluated, and the document is
classified into the category with the highest probability. By applying the Bayes
theorem, which states that P(A | B) = P(B | A) - P(A)/P(B), the decision rule can
be expressed as:

14

CHAPTER 2. BACKGROUND

PA|R,q) P(R, q)

d € Drelevant - P(R|d,q) >P(R | d,q) = ~
(RIdg)> PR |d,9) = go2oh > 50

The right-end side of the inequality is independent from the document, and
can be ignored for the ranking task when considering the left-hand side (known
as likelihood ratio) as a score. Therefore, it is sufficient to estimate P(d | R, q)
and P(d | R, q) probabilities.

BM25 The BM25 scoring function has been proved to exhibit high performance
in various TREC evaluation campaigns. For this reason, it is widely employed
as a baseline in the majority of research endeavors within the IR field.

BM25 is based on the Binary Independence Model (BIM), which does three
assumptions:

e Each document is represented by a vector on N binary random variables
indicating term occurence or non-occurrence.

e Terms are statistically independent when considering relevance.

* Only the terms appearing in the query are considered for relevance of doc-
uments. Terms not appearing in the query have the same probability of
occurrence in the relevant and non-relevant documents, so they are negli-
gible for ranking.

Despite not being realistic assumptions, they enable a substantial simplifica-
tion of the problem. The probabilities P(d | R, q) and P(d | R, q) can be estimated
as follows:

P|R,q) =] |PW@i|R) PR q) =] |PW@i | R)
i€Q i€Q

The BM25 scoring function can be derived starting from the foundation pro-
vided by the Binary Independence Model. The BIM has been extended to also
consider the document terms frequency, based on probabilistic arguments and
experimental validation but without theoretical justification. The score is com-
puted by summing, for each query term, the value computed as the product
between a idf-like and a tf-like factors. There exists many variations of this scor-

ing function, but the most common formulation is:

15

2.1. BASICS OF INFORMATION RETRIEVAL

BM25(d, q) = Z idf (q:) - tf(d, q:)

qgi€q
Z N —n(g;) + 0.5 f(qi,d) - (ki +1)

= logy|1 + 105 : l
gi€q n(ql)+ ' f(qi'd)+k1) (1_b+b) avgr_len)

where N is the number of documents, 1(g;) is the number of documents con-
taining the i-th term of the query, f(g;, d) is the frequency of term ¢; in document
d, |d| is the length of document d, and avg_len is the average length of docu-
ments. Instead, k1 and b are parameters whose value is determined empirically.
The former determines how the term-frequency component changes as the fre-
quency of term g; increases for the considered document. If k; = 0, only the
presence or absence of the term is considered. Otherwise, the tf component will
tend to saturate to k; as the frequency of the term increases, similarly to the us-
age of l0g2(f(gi,d)) in the TE-IDF weighting scheme. The parameter b regulates
the impact of length normalization, given by the denominator of the tf compo-
nent, which is necessary to fairly evaluate documents with different length. It
takes a value between 0 and 1: b = 0 disable length normalization, while b = 1
is full normalization. Many TREC experiments showed that effective values for
these parameters are k1 = 1.2 and b = 0.75.

Language Model LMs are commonly utilized in various NLP tasks to repre-
sent text. The simplest form of LM, known as unigram, constitutes a probability
distribution over the vocabulary of the language, where each word is associated
with its probability of occurrence. For search applications, LMs are employed
to represent the topical content of a text. While the majority of words within the
vocabulary are expected to have low probabilities, those that are important to
the considered topic have substantially higher probabilities.

Language Models can generate novel text by sampling words according to its
probability distribution. In the query likelihood retrieval model, documents are
ranked based on the probability P(g |) that the query could be generated from
the LM representing the document. The objective is to measure the degree of
similarity between the topic of query and document. Such probability is calcu-
lated as the product of the probabilities of generating each word independently
from the document LM.

16

CHAPTER 2. BACKGROUND

Pqld)=] [Pl
qi€q
The probability distribution of the LM is inferred using the maximum likeli-
hood estimation: for each word, the probability is given by the ratio between its

frequency and the length of the document considered.

f(qi, d)
|d|

P(gi | d) =

However, this estimation will assign a probability of 0 for all query terms
not found in the document. Therefore, from the document LM is not possible to
generate the query text if it contains unseen word(s), and the score assigned to
the considered document is also 0. This behavior is not appropriate: for instance,
documents missing one query term should be valued higher that those missing
the whole query text.

This phenomena is caused by the small amount of document text available
for creating the LM. Smoothing is a technique used to overcome such data spar-
sity problem: it consists in assigning some non-zero probability to the estimates
of words not appearing in the document, usually based on their frequency in
the whole documents corpus D. In practice, this is often achieved through a
linear combination between the probabilities estimated from the document and

the entire documents corpus.

P(gild) =(1-a)-P(g; | d)+a-P(g; | D)
:(1_a).f(qi'd) f(gi, D)

+ o
|| D]

There exists many different approaches for specifying the value of a. The
Dirichlet is an effective smoothing technique that is dependent on document
length.

U
0(:
|d| + u

The value of the u parameter is set empirically: typical values range from
1000 to 2000. Smaller values boost the importance given to terms frequency,

while larger values favor the number of matching terms. If no text is available,

17

2.1. BASICS OF INFORMATION RETRIEVAL

f(gi,D)
|D|

the corpus data. As more text is observed, the less influence prior knowledge

which is a reasonable estimation based on

the term probability would be

will have.

The expression for a can be plugged in the general smoothing formula, ob-
taining the following scoring function:

4l fG@id) Il f4i,D)

P(g; | d) =
Gl =G AT Td+s D)
i,D
 flaid)+ uls
|d| + p

SPLADE

SPLADE [15, 16] is a BoW neural retrieval model developed specifically to
be used as a first-stage retrieval model, without requiring additional re-ranking
to achieve state-of-the-art performance. The particular SPLADE instance em-
ployed in our experiments has been fine-tuned for passage retrieval, utilizing
two distinct models for documents and queries. It performs document expan-
sion by adding a large number of terms not found in the original text while
producing sparser representations for queries.

SPLADE predicts term importance based on the logits of the Masked Lan-
guage Model (MLM) layer given by a BERT model. Therefore, a real-value weight
is generated by the model for each term of the vocabulary. Regularization tech-
niques are employed to learn sparse representations, in which only a small frac-

tion of terms are assigned to non-zero weights, resulting in efficient indexes.

RE-RANKING

Re-ranking is an optional phase which aims to increase the overall effective-
ness at small cutoffs by reordering the documents selected during the first-stage
retrieval. Since the introduction of LLMs, this step is usually performed using
such models to evaluate the semantic similarity between the documents’ text
and the provided query. The initial retrieval process typically employs scoring
functions that focus on lexical features, such as BM25.

18

CHAPTER 2. BACKGROUND

RunN FusioN

Run Fusion techniques allows to merge two or more ranked lists generated
by different systems, with the objective of producing a single one resulting in
higher effectiveness than any of the original lists. In DECAF, we implemented
two different methods: linear combination and our custom Reciprocal Rank-
based method.

Linear Combination Given two ranked lists A and B, their scores are normal-
ized in the [0.0, 1.0] range by applying min-max normalization. Then, the final
score assigned to each document is given by the linear combination between the
normalized scores from both lists.

sa(d) —ming
maxas — ming

sp(d) — ming
maxg — ming

s{d)=a- +(1-a)-

Reciprocal Rank For each document, a score based solely on its rank is ob-
tained from both ranked lists A and B, which are then combined using a linear
combination. To obtain the same results as the standard Reciprocal Rank run

fusion technique [5], use k = 60 and a = 0.5.

1.0 1.0

s =@ T Y e @

RETRIEVAL RESULTS

In the retrieval phase, a ranked list of retrieved documents with their respec-
tive scores is generated. IR experiments typically involve running the system
on multiple queries. The rankings obtained are stored in a textual file, referred
to as the run, which is used to assess the system’s performance measurements.
The runs are commonly distributed in the trec-eval format, which consists in a
tab-separated file with six columns: the ID of the query, a Q0, the ID of the doc-
ument, the rank and the score achieved by the judged document, and the ID of
the run. A valid example is shown in Table 2.1.

EvALUATION

Evaluation is an essential phase in any field, enabling to make progress and

devise better solutions/products/systems. In the context of IR, evaluation mea-

19

2.1. BASICS OF INFORMATION RETRIEVAL

Table 2.1: Example of run in trec-eval format.

Query ID ‘ Fixed ‘ Document ID Rank Score Run ID
32_1 Q0 | MARCO_2861203 1 12.734488 Example
32_1 Q0 | MARCO_8685439 2 12.662704 Example
32_1 Q0 | MARCO_3878347 3 12.305318 Example
321 Q0 | MARCO_1361406 4 12.227960 Example
32_1 Q0 | MARCO_4978407 5 12.056210 Example
32_1 Q0 | MARCO_7208611 6 12.044337 Example
32_1 Q0 | MARCO_4181532 7 11.873714 Example
32_1 Q0 | MARCO_2925873 8 11.605083 Example
32_1 Q0 | MARCO_6584633 9 11.598649 Example
32_1 Q0 | MARCO_1905581 10 11.403030 Example

Table 2.2: Example of relevance judgements in trec-eval format.

TopicID Fixed | DocumentID | Judgement
32_1 Q0 | MARCO_1361406 1
321 Q0 | MARCO_2322023 2
321 Q0 | MARCO_2861203 1
321 Q0 | MARCO_3232784 0
321 Q0 | MARCO_3955620 0
32_1 Q0 | MARCO_4181532 1
32_1 Q0 | MARCO_4978407 2
32_1 Q0 | MARCO_6584633 2
321 Q0 | MARCO_8441724 1
321 Q0 | MARCO_8685439 0

sures how well a particular system performs and enables to determine which is

the best performing one in a specific setting.

One of the primary distinctions made in the evaluation is between effective-

ness and efficiency. The former can be defined as a measure of the corrispon-

dence between the ranking list produced by the IR system and the user relevance

judgments, which are based on the subjective perception that each considered

document contains relevant information to fulfill his/her information need. The

latter, instead, is defined as the amount of resources (such as time, energy, mem-

ory, computing power, ...) required by the system to produce the intended re-

sult. While important, in this work we focus exclusively on effectiveness, as an

20

CHAPTER 2. BACKGROUND

extremely fast system is pointless unless it produces good results.

A fundamental requirement for evaluation consist in ensuring the repeata-
bility of the experiments and a fair comparison between different systems. To
achieve this, the experimental data and settings must be fixed.

As a result of the Cranfield projects, a series of early experimentations con-
ducted by Cyril W. Cleverdon during 1950s and 1960s, the Cranfield paradigm
has emerged as the standard for effectiveness evaluation in the IR field. It is
based on experimental collections, which are composed of documents corpora,
topics and relevance judgements.

The set of documents should be representative of the realistic use-case sce-
nario considered in terms of number, size and type of documents. Typically,
more than one corpus is employed, ensuring that the results obtained may be
generalized and are not corpus-specific.

The topics represent a surrogate for information needs of an hypothetical
user. They may either be acquired from query logs of real IR systems or be
manually generated by the curators of the collection. Commonly, at least 50
topics are employed for evaluation.

The relevance judgments are usually manually created, requiring a consid-
erable investment of manual effort for the curators as well as representing the
most time-consuming step when producing new experimental collections. The
judgements are incomplete, as the complete coverage of the whole pool of doc-
uments is not feasible. In practice, a technique called pooling is used. It reduces
the number of documents that are examinated by considering only those ap-
pearing in the top-k results collected from multiple systems. All documents left
unjudged should be considered as not relevant.

The relevance judgements could be either binary or multi-graded. In the
former case, a document is assessed as either relevant or not, while in the latter
multiple level of relevance are considered (i.e., not relevant, partially relevant,
tully relevant).

The relevance judgements are usually distributed in trec-eval format, which
consists in a tab-separated file with four columns: the ID of the topic, a QO,
the ID of the judged document, and the relevance score assigned to it. A valid
example is shown in Table 2.2.

Despite DECAF not including any component to carry out evaluation, we
perform this phase using trec-eval tool. It is an open-source C program devel-
oped by NIST, and it is the standard tool used for every evaluation campaign

21

2.1. BASICS OF INFORMATION RETRIEVAL

organized within TREC conference. It is available at: https://github.com/
usnistgov/trec_eval. The evaluation measured considered in this work are
three: R, MRR and nDCG.

For explanation purposes, we have to consider the following quantities. Let
D be the set of documents, Q be the set of queries, and Dk (g) be the set of top-
k most relevant documents retrieved for a query q € Q. The cutoff, k, is the
number of results considered when computing the evaluation metric. Moreover,
with rel(d, q) we indicate the relevance assigned for a query g € Q to document
d € D, if available, otherwise 0. A document is considered relevant for a given
query if its relevance is greater or equal to a given threshold, rel,,;,, which is
usually set to 1. Let D,.;(q) = {d € D | rel(d, q) > relyin} be the set of relevant
documents for the query g € Q. Finally, rank(d, q) is the rank given to document
d € D and d,(q) is the document ranked in position # for a query q € Q.

Recall The Recallis a set-based retrieval measure, evaluating the proportion of
relevant documents actually retrieved for a given query. This measure is given
by the following formula:

|Drel(Q) N Dk(q)|
|Drei(q)]

It is common practice to report the average value across the set of queries Q.

R@k(q) =

_ 3,2 Rak(g,)

R@k
QI

Mean Reciprocal Rank The Reciprocal Rank (RR) is defined as the reciprocal
of the rank at which the first relevant document is retrieved for the given query
q € Q, otherwise 0 if no relevant documents are retrieved. The Mean Reciprocal
Rank is the average of RR over the set of queries Q.

1 .
RR@k(q) —) min{rank(d,q)|rel(d,q)=relninVdeDk(q)} lf|D”31(q) N Dk(‘])| 21
0 otherwise

> RR@k(g,,)

MRR@k =
QI

22

https://github.com/usnistgov/trec_eval
https://github.com/usnistgov/trec_eval

CHAPTER 2. BACKGROUND

Normalized Discounted Cumulative Gain The nDCG is a popular measure
for evaluation, based on the assumption that highly relevant documents are
more useful than marginally relevant ones. Moreover, the probability that a
document is examined by the user decreases as it is positioned further down in
the ranked list of results.

Based on these considerations, the nDCG measures the sum of the usefulness
(measured by the relevance) gained by the user when examining the ranked list
of documents retrieved by the system. The sum is discontinued, as relevant doc-
uments appearing lower in the result list are penalized by a weight proportional
to the logarithm of its rank. To facilitate the comparison across different cut-
offs and queries , the sum (DCG) is normalized in [0, 1] range by dividing with
the ideal value obtained when considering the perfect ranking (iDCG), in which

documents are sorted by relevance in descending order.

o rel(du(),q)

n=1

DCG@k(q)

As with Recall, the average value across the set of queries Q is usually re-
ported.

> nDCGak(g,)
Q]

Considering the data shown in Tables 2.1 and 2.2, we can compute the fol-

nDCG@k =

lowing results:

Recall
|Drel| =7 |Drel N D10| =5
|Drel N DlOl 5
R@10 = ———— = - =0.7143
|Drel| 7

Reciprocal Rank, with rel,,;;, =2

1 1
RR@10 = —— = = =0.2000
min{5,9} 5

23

2.2. CONVERSATIONAL SEARCH

nDCG@5

DCG@5 =1 *logs(1 + 1) + 0 *logy(1 + 2) + 0 * logy(1 + 3)+
1*logy(1 +4) + 2% logy(1 +5) = 8.4919

iDCGQ5 =2 logy(1 + 1) + 2 *logs(1 +2) + 2 % logy(1 + 3)+
1#logs(1+4)+ 1=logy(1 +5) =14.0768

DCGQ5

CONVERSATIONAL SEARCH

Conversational Search (CS) consists of the exchange of natural language ut-
terances between a user and a conversational agent. The most peculiar aspect
of this scenario is that the system needs to keep track of the context [41] as
the dialogue unfolds. In fact, natural language expressions are inherently im-
precise and ambiguous. Complex speech structures in the utterances, such as
anaphoras, ellipsis, and coreferences, exacerbate these problems. Anaphora is
the repetition of words or phrases at the beginning of a group of successive sen-
tences, to emphasize a particular idea or topic throughout the conversation. El-
lipsis refers to the omission of one or more words from a sentence that can be
inferred from the context provided by the remaining elements. Coreference oc-
curs when two or more expressions within a text refer to the same entity, hence
they have the same referent. One of the most common source of coreference is
through the use of pronouns, linguistic elements that substitute for previously
defined entities within a discourse. Moreover, users may refer implicitly to en-
tities and topics previously mentioned in the conversation, ask for more details
and clarifications, or change the current topic, thus drifting the trajectory of the
exchange [2, 31].

Depending on the task they absolve, conversational agents are commonly
divided into chit-chat bots [63, 56] and task-oriented systems [18, 4, 38]. The
former class of systems is meant to entertain the users, while the latter allows
helping the user to achieve a certain goal, such as buying or learning new in-
formation, by the means of a dialogue. A further categorization of task-driven
CS systems, consists in dividing them into approaches used to retrieve the re-
sponse within a corpus [53, 48, 18] and systems that construct the response by

24

CHAPTER 2. BACKGROUND

combining multiple retrieved sources using summarization approaches such as
T5 [43].

The multi-turn conversational task is characterized by the importance given
to the “context” [23, 32, 49, 44]. It consists in the system’s internal belief con-
cerning the conversation state while it evolves through time. To keep track of
the context, a large part of the research work has been focused on rewriting ut-
terances, enriching them with the correct contextual information provided by
the user in previous utterances. In this way, the rewritten utterances become
self-explanatory and thus suitable for an IR system [57, 51, 28, 31, 24]. Another
approach to modelling the context consists of adopting approaches based on
dense retrieval models. For example [62], the teacher-student framework has
been employed to learn a student query encoder to use in conjunction with
a standard ad hoc dense retrieval teacher model, such as ANCE [55], or TCT-
CoIBERT [27], in the role of the documents encoder. The student query encoder
is trained to replicate the embeddings given by the teacher model for the oracle
reformulated queries. This method allows the elimination of the explicit query
rewriting phase from the pipeline [62].

QUERY REWRITING

This is an additional phase performed by CS systems before the query anal-
ysis phase, with the objective of rewriting the current utterance by enriching it
using the correct contextual information gathered and made available through-

out the conversation.

Coreference Resolution Co-reference Resolution (CR) aims to determine which
are the spans of text referring to the same entity, and replace all of them with the
most appropriate text appearing in a occurrence, which in most cases is the first
one. The rationale is that all coreferential expressions are not equivalent: the
first occurrence is often a full or descriptive form, while later occurrences use
shorter forms. However, sometimes pronouns are employed to refer forward to
not-already mentioned entities.

In our work, we employ two different CR models each based on a specific
framework. The first one is the “coref-spanbert-large” model of AllenNLP li-
brary [17], while the other is the “f-coret” model [35] based on the LingMess
architecture [36]. Both solutions achieve state-of-the-art performance on the CR

25

2.3. TREC CONVERSATIONAL ASSISTANCE TRACK

task, although the first one is based on the AllenNLP library which has been
deprecated and is no longer updated by the original authors since December
2022.

T5 Model-based The Text-To-Text Transfer Transformer model is a pretrained
LLM developed by Google in 2019 [42] based on the Transformers architecture [50].
The peculiar aspect of T5 is that is a “text-to-text” model, which means that it is
trained to transform the input text into another piece of text. Five distinct vari-
ants of T5 have been released: they differ solely for the number of parameters
used, ranging from 60 millions to 11 billions. Similarly to other LLMs, T5 models
can be fine-tuned for various downstream NLP tasks achieving state-of-the-art
results.

In our work, we employ a “t5-base” model (220 million parameters) that has
been fine-tuned specifically for conversational question rewriting on the CA-
NARD dataset [12].

HEURISTICS FOR QUERY (GENERATION

A different approach consists in mixing the current query text with infor-
mation coming from previous utterances when generating the query represen-
tation. Despite being rather simple, such heuristics are proved to be effective.
Across the original submissions of the TREC CAsT 2019 track[8], one fifth em-
ploy heuristic rules, providing more that 25% relative nDCG@3 gain w.r.t. sub-
missions not utilizing them.

In this work, we employ the FLC heuristic, consisting of the weighted sum
of the textual content of the first (F), last (L) and current (C) utterances. The
rationale behind it is that the first utterance often gives the general topic of the
conversation, while the previous one is the most likely to be referenced again by
the current utterance. This heuristic can synergize with a query rewriting tech-
nique, joining its effort to bring contextual information into the current query.
FLC is especially useful when the output quality of rewriting is far from ideal.

TREC CONVERSATIONAL ASSISTANCE TRACK

The Conversational Assistance Track (CAsT) at the Text Retrieval Confer-
ence (TREC) was held for the first time in 2019 [8] and since then, at the current

26

CHAPTER 2. BACKGROUND

time, it has reached its fourth edition. TREC CAsT has fueled the research in CS
domain by providing four large-scale reusable test collections, comprising con-
versations, corpora, and additional annotations, such as the manual rewrites of
the utterances or the canonical response to users” questions [7].

The main task evaluated in CAsT is passages (in 2019 [8] and 2020 [7]) or
documents (since 2021 [9]) retrieval from a corpus composed of multiple sub-
corpora, such as MS-MARCO [33], TREC CAR [11], Wikipedia [39], and Wash-
ington Post corpora.

Since the first edition, the track has evolved towards more natural and human-
like conversations, by considerably expanding both the amount and the scope
of contextual information that is required by systems to understand a question.
For example, in TREC CAsT 2019, user utterances were constructed beforehand
by imagining a conversation on a given topic [8], while, from the second edition
onward [7, 9] conversations take into consideration the responses given by the
system as well. The 2022 edition saw the introduction of a mixed-initiative [1,
22] sub-task, evaluating the ability of systems to produce more engaging and ef-
fective conversations, by gaining through feedback questions additional context,

details or clarification about the original user utterance.

IR FRAMEWORKS

Several IR libraries, such as Lucene, Terrier [37], and Anserini [26, 58, 59] al-
low for extensive and reproducible experimentation with IR systems. These li-
braries are open-source and were developed for full-text indexing and searching.
Furthermore, they can rely on decades of usage, update, and support, as well as
flourishing communities underneath. With the advent of ML solutions and the
increased popularity of Python, new wrappers around traditional frameworks
were designed, such as Pyserini [25] and PyTerrier [30]. Pyserini [25] is a Python
toolkit designed as a self-contained package providing a reproducible and easy-
to-use first-stage retrieval module within a multi-stage architecture. It supports
both sparse and dense representations. PyTerrier [30] is a Python framework
developed to allow advanced retrieval pipelines to be expressed and evaluated
in a declarative manner. However, none of these frameworks provides native
support for conversational search.

We are interested in developing a solution specifically designed for CS but
capable of exploiting the advantages of the already existing frameworks. There-

27

2.4. IR FRAMEWORKS

fore, we opt for a custom implementation based on Java as the main language,
while also allowing us to access external Python scripts. In fact, this allows for
easy integration with other frameworks, such as Lucene and Anserini, as well
as Pyserini and PyTerrier, which are not designed for CS. Furthermore, using
Java’s strong typing, it is possible to enforce future components implemented
within DECAF to follow a rigid external interface. This, in turn, will increase
standardization, ease extensibility and reduce the fragmentation in the CS com-

ponents design.

28

DECAF Architecture

In this section, we provide the overview of DECAF, focusing on, the prin-
cipal modules of its architecture, components implemented, and software re-

quirements.

MAIN MODULES

DECAF relies on a modular architecture for index and search pipelines. In
practice, to foster extensibility, as well as standardization, each module of DE-
CAF is defined as a Java interface. As illustrated in Figure 3.1, the index pipeline
revolves around two main modules: the Corpus Parser and the Indexer. The for-

mer processes the corpus into a stream of documents, which is consumed by the

INDEX **

INDEX PIPELINE
index.properties ——>
CORPUS
{ PARSER H INDEXER J

SEARCH PIPELINE
CONVERSATION |- -nnxempesemmmmemcoemcoenooacce ;
[QRY GENJ QRY GEN]

> [REWRITER H SEARCHER H RERANKER }»
i

CONVERSATION

EXT. EXT. EXT.

MODELS MODELS MODELS

Figure 3.1: Architecture of DECAF.

29

3.2. COMPONENTS IMPLEMENTED

latter to index them. For the search pipeline, we adopt a multi-stage architecture
which employs the modules that are the most common for CS systems.
Figure 3.1 shows the structure of the search pipeline:

¢ The Topics Parser reads in input a file — e.g., written in TREC format — and
provides parsed conversations and utterances to be processed by the rest
of the framework.

¢ The Rewriter modifies the text of the utterances by adding contextual in-
formation extracted from previous utterances in the conversation.

* The Searcher takes the (possibly rewritten) utterance text as input, gener-
ates the query and retrieves a set of candidate documents to answer the
provided question.

¢ The ranked list of documents generated as output by the Searcher is con-
sumed by the Reranker. This module is designed to apply complex and
resource-consuming re-ranking operations upon the Searcher output, boost-
ing the performance of the CS pipeline.

Furthermore, we exploit two additional utility models: the Query Generator
and the Run Writer. Both the searcher and the re-ranker modules exploit the
Query Generator to obtain a representation of the user utterance — possibly by
combining it with previous ones — that is directly used at retrieval time. Finally,
the Run Writer is a utility module meant to write the run on a file, so that it can

be further used or evaluated.

COMPONENTS IMPLEMENTED

Every component belonging to a particular module is expected to implement
the corresponding Java interface, which defines one or more methods specific to
the performed job. The components implemented within DECAF and described
in the remainder of this section can be used by practitioners both as baselines as
well as templates in extending the framework. Most of them require some con-
figurable parameters, which must be passed through constructor arguments.
We also implemented a configuration system, based on .properties files, that al-
lows the user to specify them in a user-friendly manner (see Chapter 4).

INDEX PIPELINE

Corpus Parser Three distinct components are implemented to perform corpus
parsing. The first processes the passages contained within MS-MARCO version

30

CHAPTER 3. DECAF ARCHITECTURE

1! dataset. It also supports duplicate removal: the discarded documents are
specified through an input file. Another parser addresses the paragraph cor-
pus of TREC CAR v2.0 2. The third parser processes any corpus based on tab-
separated files using the ~“DOC ID\tDOC TEXT\n'' format.

Furthermore, it might be necessary to index documents from multiple sources
with different formats at once. The last parser component eases this by allowing
to instantiate multiple parsers that are used to parse different corpora. To pro-
vide a practical example, consider TREC CAsT 2019 where both MS-MARCO
and TREC CAR corpora were used. This fourth corpus parser provides support
in handling this type of scenario, with multiple parsers combined in a single

interface.

Indexer The framework comes with three distinct indexer components: the
BoW, the SPLADE, and the Dense indexer.

The BoW indexer is a wrapper around Lucene indexing operations. It pro-
vides multi-fielded documents, tokenization and advanced analysis capabili-
ties. The efficient inverted index implementation of Lucene makes it suitable
for BoW sparse retrieval models. The BoW indexer component has been ex-
tended for the SPLADE indexer which is specific to the homonyms neural re-
trieval model®. It replaces the standard tokenization and analysis pipeline per-
formed by Lucene with the SPLADE model inference. A separate interface to op-
erate with SPLADE is needed since it requires computing first the BoW sparse
representations. Custom models based on the same principle, i.e., expanding
documents before indexing them, can be instantiated in the same way. Finally,
the dense indexer component is specific for dense retrieval models. It is built
on top of two well-known libraries: Transformers [52] and Facebook AI Simi-
larity Search (FAISS) [20]. The former is an open-source library providing APIs
and tools to download, train and use state-of-the-art ML models. The latter is an
open-source library developed for efficient operations, such as clustering, index-
ing or similarity, on high-dimensional vector spaces. It is particularly efficient
and able to handle large datasets composed of billions of vectors with fast query

times even in high-dimensional spaces.

"https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz
*https://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz
*https://huggingface.co/naver/efficient-splade-V-large-doc

31

https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz
https://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz
https://huggingface.co/naver/efficient-splade-V-large-doc

3.2. COMPONENTS IMPLEMENTED

SEARCH PIPELINE

Conversation and Utterance Components To provide an unified interface to
the data, we define two utility components, called Utterance and Conversation.
The former is a data structure that provides unified access to the utterance and
subsequent transformations operated by different components of the search
pipeline. Instead, the latter provides access and groups together the utterances
belonging to the same conversation. At runtime, each module will extract the
needed data (e.g., the textual content of the utterance, its rewritten version, or
the ranked list associated) from the Utterance component, passing through the
Conversation interface. Upon completion of the required operations, each mod-
ule will save the computed results for a specific utterance (e.g., a new rewriting
of the utterance, the re-ranked run), within the Utterance component, so that
the next module can access it.

The vast majority of modules for the search pipeline define one or more
methods specific to the performed job, which take only two parameters: the
Conversation object, containing the data regarding the specific conversation at
hand, and the ID of the current utterance on which the component operates (e.g.,
for rewriting or retrieving the documents for). This approach ensures great flex-
ibility in the component design, since it is possible to access the entire data struc-
ture for the whole conversation — in particular to previously issued utterances
and retrieved responses. Furthermore, it allows for easily expanding DECAF,
since each component can behave as a black-box building block operating only
on the Conversation and Utterance objects. The only constraints imposed by the
search pipeline are that every module must set some specific data for the current

utterance being processed.

Topics Parser DECAF provides five topic parsers designed explicitly to handle
TREC CAsT 2019 and 2020 evaluation topics. More in detail, for each collection,
DECAF has a parser for each type of utterance —i.e., either manual or automatic
utterances. We design two parsers specifically for the automatic and manual
utterances for TREC CAsT 2019. Moreover, we also implemented the equiva-
lent ones for TREC CAsT 2020. The fifth parser, instead, gives the automatically
rewritten utterances for the second edition, which were produced using an au-
tomatic method by the organizers. Notice that, we define such a high number of

different topic parsers components since they also contain specific preprocess-

32

CHAPTER 3. DECAF ARCHITECTURE

ing operations — this allows us to feed directly the original topic files to DECAF.

This component takes in input the topics file — using, for simplicity and to
ease reproducibility, directly those provided by TREC CAsT organizers — and
generates in output a stream of Conversation objects. Each of them is further

split into the individual Utterance objects that compose it.

Rewriter DECAF provides two state-of-the-art rewriting approaches using off-
the-shelf resources, either employing coreference resolution libraries or
pre-trained T5 models.

In implementation terms, there are two distinct components that carry out
coreference resolution, which differ solely for the library used to perform the
operation. In particular, one component is based on AllenNLP framework [17],
while the other uses Fastcoref. Fastcoref is a coreference resolution utility based
on the LingMess [36] architecture, providing state-of-the-art coreference accu-
racy [35].

For the second approach, a TS model is employed, which is a large-scale,
unsupervised text-to-text transfer learning model that relies on the transformer
architecture and can be fine-tuned for various NLP tasks, including anaphora
and coreference resolution [43]. The particular instance of T5 used in the exper-
imental part is publicly available and pre-trained specifically for conversational
search question rewriting*.

To maintain the modularity of the framework, we also implement a rewriter
which corresponds to the “identity” operation and returns the original text un-
changed. It should be used in all cases where the utterances have been rewritten
externally from the framework or if the practitioner does not wish to carry out
any form of rewriting.

The rewriter expands the original text of the utterance into the rewritten text

and stores it within the specific Utterance object.

Query Generator The whole conversation is considered as input for compo-
nents implemented within this module, producing as output a representation
of the utterance that embeds the context. Within DECAF, we provide three dif-

ferent query generator components.

*https://huggingface.co/castorini/t5-base-canard

33

https://huggingface.co/castorini/t5-base-canard

3.2. COMPONENTS IMPLEMENTED

The FLC query generator takes in input the utterances for a given conver-
sation and outputs a weighted sum of the rewritten text of the first (F), last (L)
and current (C) utterances. The rationale behind it is that the first utterance of-
ten gives the general topic of the conversation, while the previous one is the
most likely to be referenced again by the current utterance. The output of this
component is meant to synergize with the rewriter’s effort to bring contextual
information into the current query, especially useful when the quality of its out-
put is less than ideal. The overall effectiveness of such a simple approach in
modeling the context has been already observed [32].

The Sequence query generator provided within DECAF considers the con-
catenation of the rewritten text for all previous utterances of the current con-
versation. Instead, the Current query generator considers only the — possibly
rewritten — text of the current utterance, without taking into account any of the

previous ones.

To operate, the query generator accesses the Utterance objects referring to

the current and — possibly — the previous utterances.

Searcher The searchersare specular to the indexers used in the indexing phase,
with three different searcher components, one for BOW Lucene-based similarity

functions, one for SPLADE and one for dense models.

The first searcher component, the BoW one, by being based on Lucene, can
be instantiated with any of the classical BoW models already implemented in it,
such as BM25 [45], LM [65] or the Vector Space Model [46]. For example, in the
experimental benchmarking reported in Chapter 5, we exploit BM25 [45]. It is a
BoW IR model that ranks documents based on the occurrence and frequency of
terms. Notice that the lexical similarity function used can be set at runtime (see
Chapter 4).

The second similarity function taken into consideration is SPLADE [15, 16]. It
is a NIR model that learns sparse representation for both queries and documents
via the BERT MLM head and sparse regularization. SPLADE is particularly ap-
pealing for the first stage retrieval phase, thanks to the simplicity, efficiency,
and explainability of sparse representations. We separated it from the previous
component, even though SPLADE is a BoW model, because SPLADE requires
computing the BoW sparse representation of the query. In our experimental

34

CHAPTER 3. DECAF ARCHITECTURE

analysis, we utilize a publicly available set of weigths®.

Finally, we implement a component for dense retrieval that can be used with
FAISS indexes. In particular, it is instantiated with BERT, which is a pre-trained
LLM and it has been trained to learn dense representations of words from un-
labeled text, by jointly conditioning on both left and right context [10]. Notice
that, for the experimental analysis, we exploit a publicly available BERT instance
fine-tuned specifically for IR®.

Components implementing this module invoke the query generator sub-
component that provides them with a searcher-specific query representation
directly used for retrieval. Upon retrieval completion, components within the
searcher module must save the top-k retrieved document IDs within the Utter-

ance component.

Reranker Components implemented within the reranker module consider the
documents included in the ranking list produced by the searcher and generate
a new relevance score for each of them.

At the current time, DECAF comes with a reranker component: Transform-
ers. The Transformers reranker employs the Transformers (Hugging Face) [52]
library to apply ML models, such as BERT, to the text of both the rewritten
query and of the documents retrieved by the searcher, then evaluate the sim-
ilarity between them. At the run-time, the Transformers component can be cus-
tomized depending on the practitioner’s needs through the properties file. About
the transformers model employed, the experiments focus on BERT, since several
works already observed its effectiveness for the re-ranking task in the CS and IR
domains [32, 34, 29]. It is possible to set different similarity functions, enabling
to adapt to different models. The similarity functions currently implemented
are cosine similarity, dot product and Euclidean distance. This component can
optionally perform run fusion between the newly-generated ranked list with the
one given by the searcher.

Finally, we assume that a user might not be interested in re-ranking docu-
ments. In that case, we included the identity reranker which returns the ranked
list of documents generated by the searcher.

Shttps://huggingface.co/naver/efficient-splade-V-large-query
®https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_
b-b256-msmarco

35

https://huggingface.co/naver/efficient-splade-V-large-query
https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco

3.3. EXTERNAL PROCESS INTEGRATION

This module must set the final ranked list of documents in the Utterance ob-
ject. This final ranking is the output of the whole search pipeline for the current
utterance.

Run Writer This final module can be instantiated into two modalities. The first
component — dubbed Trec Eval — produces a run using the standard TREC eval
format. In particular, it saves inside the runs sub-folder of the framework a tab-
separated file with six columns: the query id, the QO placeholder, the document
id and ranking, the retrieval score, and the user-specified id of the run. Secondly,
to ease the debugging, the “debug” component saves on file both ranked lists
produced by the searcher and reranker together with a file containing the top-k
documents retrieved by the system to allow for manual inspection and precise
failure analysis.

EXTERNAL PROCESS INTEGRATION

Some components implemented out-of-the-box integrate external Python code
within the main architecture developed in Java. The objective of this section is to
provide a detailed explanation on how this integration is achieved and what op-
erations are performed, in order to supply practitioners with the knowledge re-
quired to extend the framework. Despite our codebase exemplifies this method
using only Python code, the same methodology can be employed to integrate
any external process.

Figure 3.2 shows the three main steps and the flow of data exchanged by the
Java and external processes.

CREATION

In the initial phase, the main Java process creates the external one as a dae-
mon process, which operates as a background process, running continuously
without any direct interaction with the user until the main process is terminated.
The two processes can communicate with each other and exchange data through
their input, output and error streams. Further information is provided in the fol-
lowing subsection.

Within DECAF, the ExternalScriptDriver Java utility class is employed to man-
age the entire lifecycle of the external process, but also to handle its streams. The

36

CHAPTER 3. DECAF ARCHITECTURE

MAIN EXTERNAL

Creation of Main Process

Create the External Process » Init Phase
‘Wait for External Process
Resume Execution Sync on Error Stream

‘Wait for Main Process

Compute Phase #1
Read Data from
Input Stream

Send Data to Input Stream

‘Wait for External Process

Send Data to Output Stream

Resume Execution Sync on Error Stream

Read Data from ‘Wait for Main Process

Output Stream

Compute Phase #2
Read Data from
Input Stream

Send Data to Input Stream

‘Wait for External Process

Send Data to Output Stream

Resume Execution Sync on Error Stream

Read Data from ‘Wait for Main Process

Output Stream

Close the Input Stream O)' ----------------- 1 Clean-up Phase

Termination of
External Process

Termination of Main Process (]

Figure 3.2: Typical data and execution flow between the Main and External pro-
cesses in DECAF.

external process is created inside the constructor. Additionally, it is possible to
specity its working directory. When the constructor has finished, the two pro-
cesses are both alive and being executed concurrently.

SYNCHRONIZATION AND DATA EXCHANGE

The main and the external processes are scheduled independently from each
other. Except for basic tasks, the two processes are required to synchronize and
exchange data to successfully deliver the expected result(s). To achieve this, the
streams of the external process are employed.

The main process send/receive data to/from the external process through
its input and output stream, respectively. Instead, the error stream is employed
for synchronization purposes. The main Java process awaits for text on the er-

ror stream: in case of an empty line, no errors have occurred, hence the external

37

3.3. EXTERNAL PROCESS INTEGRATION

process has reached the expected state, otherwise an exception has occurred,
therefore the main process is terminated after displaying the error message to
the user. Immediately after this step has taken place, it is the appropriate time for
the main process to retrieve data from the output stream. It is imperative to syn-
chronize on the error stream, since waiting on the output stream may result in
the main process hanging indefinitely in the event of an exception being thrown
in the external process. The external process, on the other hand, awaits new data
to be processed from its input stream. No additional synchronization is required
in this case: both the external and main processes are terminated when an un-
handled exception is thrown in the main process. Note that, to ensure that the
receiver process obtains the data sent through a stream, it is necessary to flush
it after the transmission.

Operationally, the ExternalScriptDriver provides several convenient methods.
The hasNextOutput/ErrorLine method verify whether the external process has
written any data to its output or error stream. The content can be retrieved
using the nextOutput/ErrorLine and nextOutput/ErrorText methods, which
differ in the type of data returned: the former provided the subsequent line
of text, while the latter provides the entire block of text available. Finally, the
waitNextOutput/ErrorLine and waitNextOutput/ErrorText methods can also
suspend the current thread until the data becomes available.

CLEAN-UP

The external process will continue to expect data from the input stream un-
til it is closed by the main process. The getInputStream method of the Exter-
nalScriptDriver class is employed to retrieve the input stream object, then its
close method is called to shut down the stream. As a consequence, the external
process should perform any necessary clean-up tasks, such as releasing any re-
source in use, and then terminate. Typically, at this point no further interaction
is required between the processes.

TECHNIQUES TO AvOID STREAM CLUTTERING IN PYTHON

One crucial aspect of the synchronization mechanism outlined in the preced-
ing subsections is that the external process employs the error stream to convey its
status to the main process. Unfortunately, numerous developers tend to clutter

the error stream with debug information, progress status, and other insignifi-

38

CHAPTER 3. DECAF ARCHITECTURE

cant log data. This, in turn, make it challenging to integrate many pre-existing
libraries into our framework.

In this subsection, we describe the principal techniques used in Python to
suppress such superfluous information. The objective is to help pratictioners
avoiding the same difficulties we faced while implementing the components
available out-of-the-box in DECAF that they might encounter while developing
their own components. Note that, in case of the “logging” and “tqdm” libraries,
the code reported here must be placed before the import statement of problem-

atic libraries that contribute to the cluttering of output and/or error streams.

Disable the “logging” Library

import logging
logging.disable(logging.CRITICAL)

Disable the “tqdm” Library

import functools
import tqdm
tqdm.tqdm.__init__ = functools.partialmethod(tqdm.tqdm.__init__,

disable = True)

Disable the “warnings” Library

import warnings

Suppress the warnings using the following command:

with warnings.catch_warnings():
warnings.simplefilter("ignore")

Problematic code goes here.

Suppress output to a Stream

import contextlib

import os

@contextlib.contextmanager

39

3.4. GIT REPOSITORY

def suppress_stream(stream):
try:
0old_fd = os.dup(stream.fileno())
fnull = open(os.devnull, 'w')
os.dup2(fnull.fileno(), stream.fileno())
yield
finally:
if old _fd is not None:
os.dup2(old_fd, stream.fileno())
if fnull is not None:
fnull.close()

Suppress the error stream using the following command:
with suppress_stream(sys.__stderr__):

Problematic code goes here.

GIT REPOSITORY

DECAF is available as open source under the Creative Commons Attribution-
ShareAlike 4.0 International License” at the following address: https://github.
com/alemarco96/DECAF.

As shown in Figure 3.3, DECAF comes with extensive documentation and
guides to help new users adopt the framework. There are tutorials dedicated to
the installation process and the setup of configuration files for conducting ex-
periments. Regarding the reproducibility of the experiments shown in Chapter
5, we included a detailed guide but also, for each of them, both the configura-
tion file employed as well as the run generated. This data is located inside the
SIGIR-experiments directory.

The framework is organized around several directories, each with a different
purpose, as shown in Figure 3.4. We describe here such directories — to ease
the framework instantiation, they can be found on the template sub-directory of
DECAF repository?®.

"http://creativecommons.org/licenses/by-sa/4.0/
8In case of highly customized scenarios, the paths to these directories, as well as specific files,
could also be manually set through the configuration files and environmental variables declared

40

https://github.com/alemarco96/DECAF
https://github.com/alemarco96/DECAF
http://creativecommons.org/licenses/by-sa/4.0/

CHAPTER 3. DECAF ARCHITECTURE

[alemarco96 / DECAF | Public

Repository of the DECAF framework, described in the "DECAF: a Modular and Extensible
Conversational Search Framework" paper.

7 Ostars % 0forks

vy Star & Unwatch ~

¢> Code (O Issues 1% Pullrequests () Actions [Projects [0 Wiki (@ Security

¥ main ~

alemarco96 Version 1.0.0 upload. - 1 minute age D14
I SIGIR2023-experiments yesterday
I logos yesterday
I setup_scripts 1 minute ago
B src/main yesterday
I template yesterday
3 .gitignore last week
[CONFIGURATION_GUIDE.md last week
[INSTALLATION_GUIDE.md 1 minute ago
3 README.md 1 minute ago
[REPRODUCIBILITY_GUIDE.md 1 minute ago
[allennlp_spacy_transformers.yml last week
[} faiss_fastcoref_spacy_transformers.yml last week
M pom.xml last week
‘= README.md 4

DECAF

 x
%

DECAF is a framework for performing conversational search. lts modular architeciure enables
it to easily extend and adapt to suit most applications' needs while reusing most of the pre-
defined components. The core of DECAF is writien in Java, while some components are
implemented in Python. All machine-learning code supports acceleration through CUDA-
enabled GPU. It is developed at the Intelligent Interactive Information Access Hub, Department
of Information Engineering (DEI), University of Padua.

Figure 3.3: Screenshot of the main directory of DECAF repository.

41

3.4. GIT REPOSITORY

¥ main ~ DECAF /template /

alemarco96 Version 1.0.0 upload. -- 41 minutes ago ¥T) History
config 41 minutes ago
corpora 41 minutes ago
indexes 41 minutes ago
models 41 minutes ago
runs 41 minutes ago
scripts 41 minutes ago
topics 41 minutes ago
venv 41 minutes ago

Figure 3.4: Screenshot of the template sub-directory of DECAF repository.

¢ The config folder contains the properties files defining which components
are instantiated along with their parameters.

¢ The corpora folder contains the corpora used for indexing.

* The indexes folder contains the indexes created by DECAF, upon comple-
tion of the index pipeline.

¢ The models folder should be filled by the practitioner with the machine-
learning models employed.

® The runs folder contains the runs produced DECAF upon completion of
th the search pipeline.

* The scripts folder contains the scripts used to execute either the index or
the search pipeline.

* The topics folder contains the evaluation topics files.

¢ The venv folder contains the Python virtual environments employed by the

components.

To operationalize DECAF, it is first necessary to install it by compiling the
Java code using the Maven project management tool. Then, if needed, it is nec-
essary to install all the required Python modules within the venv directory and
download the models chosen by the user in the models directory. Finally, it is

necessary to download and place all corpora and topics within the corpora and

in the launch scripts.

42

CHAPTER 3. DECAF ARCHITECTURE

topics directories respectively. Notice that, we do not provide any collection,
since most of them require practitioners to accept “Terms and Conditions”. Af-
ter that, it is possible to run DECAF, either by using the properties files already
available within the config directory or define new configuration files. It is pos-
sible to use DECAF by running scripts/index.sh and scripts/search.sh to
run indexing and searching respectively. Output runs will be placed in the runs

directory.

43

DECAF in Action

INSTALLATION GUIDE

REQUIREMENTS

The core of DECAF has been developed in Java, with the integration of Python
for ML-oriented functionalities. It requires Java Development Kit (JDK) 11 and
Python 3.8 for execution. The framework employ Maven together with Conda
and Pip to manage the external dependencies in Java and Python, respectively.
DECAF is built upon Lucene 8.8.1".

Additionally, at least one Nvidia GPU with support for CUDA 11.3 is highly
recommended to significantly speed-up the execution of many components re-
lying of ML functionalities.

DEPENDENCIES

DECAF and its dependencies can be installed using two distinct methods,
either directly on the host machine or within a Singularity container. The lat-
ter approach involves creating a container image that includes all the necessary
software require to operationalize the framework, which can subsequently be
deployed on various hardware platforms. This solution is particularly suitable
for executing DECAF within a computing cluster, such as the one available at

'https://lucene.apache.org/core/8_8_1/index.html

45

https://lucene.apache.org/core/8_8_1/index.html

4.1. INSTALLATION GUIDE

DEI. For the remainder of this guide, we assume that the operating system used
is a Debian-based distribution of Linux, such as Ubuntu.

INSTALL SYSTEM DEPENDENCIES

The following libraries must be installed first:
sudo apt install -y git git-1fs wget

SINGULARITY

Singularity is a free and open-source containerization software designed
specifically for high-performance computing applications, available exclusively
for Linux operating system. It provide native support for high-performance in-
terconnections and PCle-attached devices, such as graphics accelerators. These
features are particularly valuable for any computation-intensive workloads, such
as ML and, in general, for any data-driven application. Furthermore, Singular-
ity enables reproducibility to scientific computing, by providing complete en-
vironments that can easily be copied and executed on many different hardware
platforms.

Install System Dependencies The following development tools and libraries
must be installed first:

sudo apt install -y build-essential libseccomp-dev libglib2.0-dev \
pkg-config squashfs-tools cryptsetup crun uidmap

Install Go Compiler Singularity is a software implemented in Go that requires
to be installed from source. Therefore, the Go compiler is a necessary prerequi-
site for installation. In our work, we employed the 1.19.2 version.

Change these variables to reflect your requirements.
GO_VERSION=1.19.2
CPU_ARCH=amd64

FILENAME=go${GO_VERSION}.linux-${CPU_ARCH}.tar.gz

wget -0 /tmp/${FILENAME} https://dl.google.com/go/${FILENAME}
sudo tar -C /usr/local -xzf /tmp/${FILENAME}

46

CHAPTER 4. DECAF IN ACTION

Make sure to add /usr/local/go/bin to the PATH environmental variable:

echo 'export PATH=$PATH:/usr/local/go/bin' >> ~/.bashrc

source ~/.bashrc

Install Singularity from Source Clone the repository of Singularity in a loca-
tion of your choice, then proceed to build and install using the following com-
mands. In our work, we employed the 3.10.3 release.

Change this variable to reflect your requirements.
SINGULARITY_VERSION=3.10.3

Clone the repository and select the desired version.
git clone --recurse-submodules \
https://github.com/sylabs/singularity.git

cd singularity

git checkout --recurse-submodules v${SINGULARITY_VERSION}

Build and install Singularity.
./mconfig

make -C builddir

sudo make -C builddir imnstall

Generate the Singularity Container The Singularity container employed in
our work is based on an image of Ubuntu 22.04. Open the terminal, navigate to

a location of your choice, and insert the following command:

CONTAINER_NAME=decaf
CONTAINER_LOCATION=/path/to/desired/location

cd $CONTAINER_LOCATION
singularity build --sandbox ${CONTAINER_NAME} docker://ubuntu:22.04

After the container has been successfully created, all the dependencies must
be installed inside it. Therefore, every command explained in the remainder of
this section should be typed inside a shell operating on the container. Note that
some commands require super-user privileges on the container, while others
not. In the former case, sudo must be prepended before the shell command.

47

4.1. INSTALLATION GUIDE

Shell operating on the container, super-user privileges.
sudo singularity shell --writable ${CONTAINER_NAME}/

Shell operating on the container, default privileges.
singularity shell --writable ${CONTAINER_NAME}/

Type the commands on the obtained shell.

Command to exit the shell.

exit

After all dependencies (Java, Maven, Python, Conda, and all Python virtual
environments) have been installed, the container is finalized into the read-only

.sif image using the following command:
sudo singularity build ${CONTAINER_NAME}.sif ${CONTAINER_NAME}/

The result of this procedure consists in the definitive container image, which
can be employed in different machines to replicate the same software setup.
Sometimes, the need to deploy our setup in an environment where we lack
super-user privileges may arise. In such cases, it is possible to build the container
on another machine, and then copy the definitive image on the target platform

where Singularity have already been installed by system administrators.

Java DEveELOPMENT KiT AND MAVEN
The core of DECAF has been developed in Java, and require Maven to com-

pile and generate the JAR file. In our work, we employed the JDK 11.

sudo apt install openjdk-11-jdk
sudo apt install maven

PytHoN AND CoONDA

Some components of DECAF are partially implemented on Python, using
external packages managed by Conda and Pip. In our work, we employed Mini-
conda 4.12.0 with Python 3.8 which includes all required software.

48

CHAPTER 4. DECAF IN ACTION

Change these variables to reflect your requirements.
CONDA_VERSION=4.12.0
CPU_ARCH=x86_64

FILENAME=Miniconda3-py38_${CONDA_VERSION}-Linux-${CPU_ARCH}.sh
wget https://repo.anaconda.com/miniconda/${FILENAME}

chmod +x ${FILENAME}

./${FILENAME}

INSTALLATION

BuiLpo DECAF rroM SOURCE

Clone the repository of DECAF in a location of your choice, then proceed to
build the main executable JAR file using Maven:

cd /path/to/desired/location

git clone https://github.com/alemarco96/DECAF.git
cd DECAF

DECAF_ROOT_FOLDER="$ (pwd)"

mvn package

Optionally, generate the JavaDoc documentation of the source code, which
will be placed inside the javadoc subdirectory of the root folder:

JAR_FILENAME=$(1ls target/ | grep ".*-jar.*.jar")
javadoc -protected -d javadoc -sourcepath src/main/java \

-subpackages it.unipd.dei -classpath target/$JAR_FILENAME

Notice that, if a Singularity container is employed, this folder must not be
placed inside the container but, instead, in a user-decided location within the
filesystem of the machine where DECAF is deployed. Otherwise, it won't be
possible to export any data produced by DECAF, as the container filesystem is
read-only.

49

4.1. INSTALLATION GUIDE

SeTUP PYTHON VIRTUAL ENVIRONMENTS

The components available out-of-the-box in DECAF assume that three Python
virtual environments have been created as detailed in this subsection.

If a Singularity container is employed, their data must be stored in a user-
decided location within the container filesystem (for example, use /venv). Oth-
erwise, all data regarding them should be stored inside the template/venv subdi-
rectory.

Update conda and pip to a recently-released version.
conda update -n base -c defaults conda

pip install pip --upgrade pip

If Singularity container is employed.
DECAF_VENV_FOLDER=/venv

If DECAF is installed locally.
DECAF_VENV_FOLDER="$DECAF_ROOT_FOLDER/template/venv"

Create the "allennlp_spacy_transformers" environment:

VENV_NAME=allennlp_spacy_transformers

conda env create -f $VENV_NAME.yml -p $DECAF_VENV_FOLDER/$VENV_NAME
conda activate $DECAF_VENV_FOLDER/$VENV_NAME
python -m spacy download en_core_web_sm

conda deactivate

Create the "faiss_fastcoref_spacy_transformers" environment:

VENV_NAME=faiss_fastcoref_ spacy_transformers

conda env create -f $VENV_NAME.yml -p $DECAF_VENV_FOLDER/$VENV_NAME
conda activate $DECAF_VENV_FOLDER/$VENV_NAME
python -m spacy download en_core_web_sm

conda deactivate
Create the "splade" environment:

wget https://raw.githubusercontent.com/naver/splade/main/\

conda_splade_env.yml

50

CHAPTER 4. DECAF IN ACTION

conda env create -f conda_splade_env.yml \
-p $DECAF_VENV_FOLDER/splade

DowNLOAD ALL MODELS

DECAF requires to manually download the ML models used by the default

components. All data regarding them are stored inside the template/models sub-

directory.

DECAF_MODELS_FOLDER="$DECAF_ROOT_FOLDER/template/models"

Keep separated AllenNLP and Transformer-based models.
mkdir $DECAF_MODELS_FOLDER/allennlp
mkdir $DECAF_MODELS_FOLDER/transformers

AllenNLP-based "coref-spanbert-large" model:
MODEL_ARCHIVE=coref-spanbert-large-2021.03.10.tar.gz
MODEL_LOCATION=$DECAF_MODELS_FOLDER/allennlp/coref-spanbert-large

mkdir $MODEL LOCATION
wget -p /tmp https://storage.googleapis.com/allennlp-public-models/\

$MODEL_ARCHIVE
tar -xf $MODEL ARCHIVE -C $MODEL_LOCATION
rm /tmp/$MODEL_ARCHIVE

Transformers-based models.
cd $DECAF_MODELS_FOLDER/transformers

git 1fs clone https://huggingface.co/\
distilbert-dot-tas_b-b256-msmarco

git
git
git
git
git

1fs
1fs
1fs
1fs
1fs

clone
clone
clone
clone

clone

https
https
https
https
https

://huggingface

://huggingface.
://huggingface.
://huggingface.
://huggingface.

.co/efficient-splade-V-large-doc
co/efficient-splade-V-large-query
co/f-coref
co/multi-qa-mpnet-base-dot-vi

co/t5-base-canard

51

4.2. CONFIGURATION GUIDE

EpiT THE LAUNCH SCRIPTS

The launch scripts provided with DECAF expect to find the resources in lo-
cations defined by specific environmental variables. Pratictioners are required
to manually edit both index.sh and search. sh launch scripts, which are located
inside the template/scripts subfolder, to make sure these environmental variables
reference the correct locations on disk. Notice that every location must be ref-
erenced with their absolute path. If pratictioners employ the default locations
suggested during the installation guide, only a few edits are required. In line 7,
the DECAF_ROOT_FOLDER must correspond to the location where DECAF has been
cloned. In line 19, DECAF_VENV_FOLDER must be set to the same value used before
during the setup of Python virtual environments. If practitioners employ a Sin-
gularity container, in line 15, DECAF_CONTAINER_ROOT_FOLDER must be set with
a user-decided absolute location where the root folder of DECAF is made avail-
able within the container filesystem. Moreover, in line 41 the following directive

must be added before the command to execute:

singularity exec --nv $CONTAINER_LOCATION/$CONTAINER_NAME.sif \
--bind $DECAF_HOST_ROOT_FOLDER:$DECAF_CONTAINER_ROOT_FOLDER \

<command to execute>

where “$CONTAINER_LOCATION” and “$CONTAINER_NAME” must be replaced
with the same values used during the creation of Singularity container image,
as was detailed in the installation procedure.

UNINSTALL

The procedure for uninstalling the framework slightly differs, based of
whether a Singularity container has been employed or not. In the former case,
delete the definitive . sif container image which was built following the instruc-
tions detailed in the previous section. In both cases, delete the root folder of
DECAF. This will remove all source code, documentation, data, and models.

CONFIGURATION GUIDE

We describe here the procedure required to configure DECAF in order to

execute them.

52

20

NN
N G

CHAPTER 4. DECAF IN ACTION

launch.corpus = CAsT1920

Path to the corpus files
launch.corpus.CAsT1920.msmarco_corpus_filename =
/path/to/location
launch.corpus.CAsT1920 . msmarco_duplicate_filename =
/path/to/location
launch.corpus.CAsT1920.treccar_corpus_filename =
/path/to/location

launch.indexer = BoWIndexer

Path to the directory containing the index
launch.indexer .BoWIndexer.index_directory =
/path/to/location

Text normalization component
launch.indexer.BoWIndexer.analyzer = English

Similarity function used and other parameters
launch.indexer.BoWIndexer.similarity = BM25

launch. indexer.BoWIndexer.similarity.BM25.k1 = 0.82
launch.indexer .BoWIndexer.similarity.BM25.b = 0.4
launch.indexer.BoWIndexer.chunks_size = 1000000

launch.num_threads = 8

Configuration 4.1: index.properties

Figure 4.1: An example of configuration file snippet that allows for configuring
the indexing phase.

The settings are composed of properties files, one specific for index and an-
other for search phases, responsible to specify which components are instanti-
ated together with their parameters. The proper use of these files allows the
execution of each pipeline according to the desired experimental setting.

The properties is a human-readable language commonly used in Java projects
for configuration files. Each line represents a key=value pair.

Notice that, the properties file is divided into two parts: the upper part con-
tains more volatile information (models used, paths, parameters), while the lower
part contains boilerplate and advanced settings that, in a ready-to-use scenario,

can remain unchanged for the basic user.

INDEX PHASE

53

4.2. CONFIGURATION GUIDE

The first operation is to index all the documents, which can be customized
using the provided index.properties file located inside the config sub-folder.
Figure 4.1 presents a minimal working example of how configuring the index.
properties file.

The launch. corpus parameter is responsible for selecting which documents
corpus will be indexed. The option CAsT1920 allows for replicating the results re-
ported in Chapter 5. Notice that, the specific component identified by the name
CAsT1920 identifies a specific multiple corpora parser that combines the MS-
MARCO and TREC CAR parsers. With launch. indexer it is possible to specify
the indexer that will perform the indexing operation. There are some additional
parameters to set for this component. The index_directory is the absolute path
to the location on the disk where all index data is stored. Moreover, the docu-
ments are processed in chunks of size given by chunks_size parameter. Other
parameters, such as BoW.analyzer, are specific for the specified indexer. Lastly,
launch.num_threads determines the number of CPU cores used to speed-up the
execution of this phase.

SEARCH PHASE

In this section, we describe how to customize the search phase operations
using the search.properties configuration file. Figure 4.2 shows a minimal
example of it, performing first stage retrieval using BM25 Bag-of-Words model
then re-ranking with a BERT model. The launch.topics allows to choose which
evaluation topics are processed. The desired rewriter component can be picked
with the launch.rewriter parameter. Furthermore, the launch.searcher se-
lects which searcher to use. Note that each one require that the documents have
been already been processed by the corresponding indexer before attempting
execution. The index_directory sub-parameter specifies the absolute path to
the folder where the index data have been stored. Another important param-
eter is query: it allows to customize the query representation used to perform
retrieval. The desired re-ranker can be selected through the launch.reranker
property. The launch.run_writer component selects how to consume the re-
sults produced up to that point; TrecEval options generate a standard run using
TREC-Eval format. The run_id sub-parameter defines the identifier of the run.
In conclusion, launch.num_documents and launch.num_threads let you pick the

maximum number of documents included in the results for each query and the

54

CHAPTER 4. DECAF IN ACTION

number of CPU cores used to speed-up execution, respectively.

55

4.2. CONFIGURATION GUIDE

launch.topics = AutCAsT19

launch.rewriter = T5

launch.rewriter.T5.model = t5-base-canard
launch.rewriter.T5.max_tokens = 512
launch.searcher = BoWSearcher

Path to the directory containing the index
launch.searcher.BoWSearcher.index_directory =
/path/to/location

Text normalization component
launch.searcher.BoWSearcher.analyzer = English

Similarity function used and its parameters
launch.searcher.BoWSearcher.similarity = BM25
launch.searcher.BoWSearcher.similarity.BM25.kl =
launch.searcher.BoWSearcher.similarity.BM25.b = 0.

The query generator component
launch.searcher.BoWSearcher.query = Current

launch

.reranker

= Transformers

The model to use with its parameters
launch.reranker.Transformers.model =
distilbert-dot-tas_b-b256-msmarco

launch.reranker.Transformers.vector_size = 768
launch.reranker.Transformers.max_tokens = 512
launch.reranker.Transformers.similarity = dot
The query generator component
launch.reranker.Transformers.query = Current

The fusion component
launch.reranker.Transformers.fusion = No
launch.run_writer = TrecEval
launch.run_writer.TrecEval.run_id = id_of_the_run
launch.num_documents = 100

launch.num_threads = 8

Configuration 4.2: search.properties

Figure 4.2: An example of a configuration file snippet that allows for configuring

the search phase.

56

Experimental Results

The framework has been tested on TREC CAsT 2019 and 2020 settings, two
popular benchmarks for evaluating Conversational Information Seeking (CIS)
systems. We experiment with multiple combinations of components and param-
eters, summarized in Tables 5.1, 5.2, and 5.3. Following the procedure used for
CAsT evaluation campaign [8, 7], we report four widely used measures: R@100,
MRR, nDCG@3, and nDCG@10, computed using the trec_eval® tool. Following
the official evaluation settings on TREC CAsT 2020 dataset, we consider docu-

ments as relevant if their relevance score is > 2 [7].

Table 5.1: Rewriters and corresponding configuration parameters, used in the
evaluation of DECAF.

ID Rewriter conf. Description

— rewriter: No No rewriting is applied at all.

A-CR rewriter: AllenNLP Apply co-reference resolution, replacing most
model: coref-spanbert-large expressions that refer to the same entity.

F.CR rewriter: Fastcoref Apply co-reference resolution, replacing most
model: f-coref expressions that refer to the same entity.

T rewriter: T5 T5 model trained specifically for conversa-
model: t5-base-canard tional search question rewriting.

'https://github.com/usnistgov/trec_eval

57

https://github.com/usnistgov/trec_eval

Table 5.2: Searchers (first-stage ranking functions) and corresponding configu-
ration parameters, used in the evaluation of DECAF.

ID Searcher conf. Description
First stage retrieval using
Indexer: BoW BM25 Bag-of-Words model.
BM25 ¢ Analyzer: English The query representation is
Similarity: BM25 built considering only the
Query generator: Current rewritten text of the Current
utterance.
First stage retrieval using
Indexer: BoW BM25 Bag-of-Words model.
BMD25 FLc Analyzer: English The query representation is
Similarity: BM25 built considering the rewrit-
query generator: FLC ten text of the First, Last and
Current utterances.
First stage retrieval using
Indexer: BoW Dirichlet LM Bag-of-Words
DIR. ¢ Analyzer: English model. The query represen-
' Similarity: Dirichlet tation is built considering
Query generator: Current only the rewritten text of the
Current utterance.
First stage retrieval using
Indexer: BoW Dirichlet LM Bag-of-Words
DIR. FLC Analyzer: English model. The query represen-
' Similarity: Dirichlet tation is built considering
query generator: FLC the rewritten text of the First,
Last and Current utterances.
i First stage retrieval using
Indexer: Dense
Model: distilbert-dot-tas_ BER.T model for dense
BERT ¢ b-b256-msmarco (BERT) retrieval. The query repre-
Similaritv: dot product sentation is built considering
Y P ly the rewritten text of the
Query generator: Current ony
Current utterance.
First stage retrieval using
Indexer: Splade SPLADE Bag-of-Words
SPLADE c Model: efficient-splade-V- model. The query repre-

large-query
Query generator: Current

sentation is built from the
rewritten text of the Current
utterance.

58

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.3: Rerankers and corresponding configuration parameters, used in the
evaluation of DECAF.

ID Reranker conf. Description

— reranker: No No re-ranking is applied at all.
reranker: Transformers Re-ranking is performed using a
model: distilbert-dot-tas_ BERT model. Each document is com-

BERT b-b256-msmarco (BERT) pared against the query, by applying
similarity: dot dot-product similarity function be-
query generator: Current tween the embeddings produced by
fusion: No the model.

Table 5.4: List of experiments conducted on TREC CAsT 2019 benchmark, test-
ing different rewriting strategies and query generation heuristics, detailed in
Section 5.1.1. The evaluation measures reported are R@100, MRR, and nDCG
with cutoffs 3 and 10.

| Topics | Rew. Query Gen. Searcher | Rec. MRR nDCG@3 nDCG@10

1 — C 19.9 320 142 14.4
2 A-CR C 340 499 247 242
3 F-CR C 353 515 259 254
4 T5 C 428 640 339 32.1
5 | Auto. | - FLC BM25 1306 483 236 23.0
6 A-CR FLC 418 591 297 293
7 F-CR FLC 416 612 310 30.1
8 T5 FLC 442 674 356 33.0

Baseline Automatic at TREC CAsT 2019 ‘ 214 31.8 14.8 15.9
9 C 478 667 354 345
10 | Man. | — FLC BM25 1 105 702 366 35.2

TREC CAsT 2019 ResuLTs

In this section, we show the experimental results obtained on TREC CAsT
2019 evaluation campaign. Firstly, we test the performance impact of multiple
components implemented within DECAF, then we focus on those pipelines that

best performed throughout the initial experiments.

REWRITERS AND QUERY GENERATION HEURISTICS

Table 5.4 shows the experimental results on TREC CAsT 2019, obtained test-
ing different rewriting strategies and query generation heuristics, employing the

59

5.1. TREC CAST 2019 RESULTS

BM25 retrieval model and no-reranking on automatic utterances. In experiment
#1, no re-writing is applied at all: the system performs poorly due to the lack of
contextual information. Results are in line with the baseline provided for this
track, as observed in the TREC CAsT 2019 Overview [8]. Experiments #2, #3, and
#4 incorporate the rewriter component to the pipeline, which brings forward
implied substantives into the text of the utterance, resulting in improved per-
formance. Moreover, the second and third experiments evaluate different CR-
based rewriter components, each employing a distinct framework: AllenNLP
for the former and LingMess for the latter. Both frameworks can achieve state-
of-the-art performance for the CR task, hence their effectiveness is similar in our
scenario. We implemented these components performing the same job, given
that the AllenNLP framework has been discountinued by its creators and is no
longer updated since December 2022. Run #4, which employs T5, is the most
effective re-writing strategy for the TREC CAsT 2019 track, achieving twice the
performance w.r.t the automatic baseline across all measures. Moreover, the
results are comparable to those obtained using the same experimental settings

except for employing the utterances manually rewritten by the organizers (#9).

In experiments #5 to #8, the FLC heuristic, which combines the first, previous
and current utterances’ text, is also applied. This simple heuristic is beneficial,
particularly in cases where the rewriter fails to correctly disambiguate pronouns
with the relative entity and expand with implied information extracted from
within the conversation. In such cases, it allows to introduce missing context in-
formation from previous utterances, that would otherwise be lost. Furthermore,
the highest improvements are obtained when no re-writing is applied (#5): thisis
expected, as FLC represent the only mechanism to bring contextual information
into the query. In particular, we observe 53.8%, 50.9%, 66.2%, and 59.7% per-
formance uplift on the four metrics considered. Significant improvements can
also be achieved when FLC is applied after a rewriter performing CR: for the
AllenNLP-based component (#6), the improvements are 22.9%, 18.4%, 20.2%,
and 21.1%, while for the Fastcoref-based one (#7) are 17.8%, 18.8%, 19.7%, and
18.5%. Overall, the effectiveness achieved by this combination of components is
comparable to the T5 rewriter. Instead, very small improvements are observed
with the T5 rewriter (#8): 3.3%, 5.3%, 5.0%, and 2.8% on the four metrics con-
sidered. The negligible impact of FLC can be explained as T5 is more effective
in enriching the utterance, making simple heuristics such as FLC redundant.
Again, results are consistent with the observations made in the TREC CAsT 2019

60

CHAPTER 5. EXPERIMENTAL RESULTS

Overview [8].

Figure 5.1 shows the effectiveness of FLC heuristic in function of the coeftfi-
cient applied to the First, Last and Current utterances’ text. The x and y axes
represent the weights given to the first and last utterances, respectively, while
1 —(F + L) is the implicit weight assigned to the current utterance. As discussed
earlier, the effectiveness of FLC is dependent on which rewriting strategy is em-
ployed. Each heatmap shows the nDCG@10 metric achieved considering only
utterances whose turn is greater or equal to 3 within its conversation. The op-
timal values determined from these plots are the coefficients employed for the
experiments shown in the previous paragraph (#5 to #8).

When no rewriting is applied, the best permormance is achieved using very
large values for the first and last coefficients, as shown by Figure 5.1a. Less em-
phasis on the first utterance is required by the Fastcoref rewriter. Figure 5.1b
observes that overemphasizing the coefficients” value can negatively impact the
overall effectiveness of the heuristic. Finally, Figure 5.1c shows the negligible
impact of FLC when employing the T5 rewriter. It is interesting to note that a
significant portion of the plot, especially on the top-left corner, exhibits slightly
higher scores w.r.t. considering only the current utterance.

Figure 5.2 displays the impact on nDCG@10 metric of employing the FLC
heuristic against considering solely the current utterance. When no rewriting is
applied, the FLC heuristic generally improves query effectiveness, as seen in Fig-
ure 5.2a. Instead, the result varies whether one of the available rewriter compo-
nent is used. Figures 5.2b and 5.2c demonstrate that most queries are unaffected
by the FLC heuristic, whereas a small number of them experience significant
performance differences.

Regardless of the rewriting strategy employed, few queries decrease their ef-
fectiveness, such as “31_7” and “67_10", while others show a substantial gain
in performance, like “32_6"” and “58_7”. The former case can be explained as
the FLC heuristic introduces non-relevant information to the query, resulting in
significant changes to the scores produced by BM25. This phenomenon is most
prominent towards the end of the conversation, as topic shifts are commonly
employed to drift the trajectory of the dialogue towards related subjects. In the
latter case, instead, the rewritten utterance lacks critical information for the suc-
cess of the query, which is added through the FLC heuristic. Sometimes this
is due to the rewriter failing to correctly expand the utterance, sometimes the

given utterance has insufficient data to fulfill the user’s information need.

61

5.1. TREC CAST 2019 RESULTS

Coeff. for L utterances

29.64 29.89

30.01

Coeff. for L utterances

0.12

0.14
Coeff. for F utterances

20.53

20.60

20.08

0.16

21.08 21.24 21.38 21.88 21.64 21.07 20.94
21.69 21.83 21.82 21.58 21.48
21.12 21.40 21.54 22.03 21.75 21.99 21.88
20.59 21.11 21.25 21.67 22.18 21.93 21.98
20.29 20.58 21.21 21.44 21.81 22.04 22.14
20.63 21.12 21.57 21.89 22.03
20.29 20.82 21.38 21.81 21.95

20.45 21.00 21.58 22.09
20.09 20.92 21.25 21.89
20.76 20.91 21.36
20.34 20.83

20.42

0.18

(@) No Re-writing

30.18

30.18

29.85

29.60

30.52

30.36

30.05

29.83

29.53

0.12

30

30

30.

30

29

29.

.18

.34

04

11

.88

44

0.14

29.80

30.16

30.26

30.14

30.15

29.96

29.72

0.16

2008 2075

30.16 30.23
30.31 30.06
30.18 30.30
29.92 30.36 30.18 29.77
29.87 30.02 30.04 30.18 | 29.62
29.89 29.98 29.96 29.98 30.00 29.79
29.92 29.93 29.90 29.81

29.45 29.62 29.83

0.18
Coeff. for F utterances

(b) Fastcoref Co-reference Resolution Re-writing

0.3- 33.71 33.68 33.51 33.28

0.28- 33.98 34.07 33.42 33.50 33.52
0.26- 33.84 33.88 33.84 33.85 33.53
0.24- 33.78 33.88 33.67 33.91 33.63
0.22- 33.73 33.80 33.88 33.84 33.58
0.2- 33.88 33.70 33.69 33.48 33.50
0.18- 33.50 33.52 33.90 33.56 33.35
0.16- 33.63 33.37 33.40 33.35 33.47
0.14- 33.32 33.52 33.48 33.14 33.27
0.12- 33.45 33.56 33.53 33.42 33.44

0.1- 33.61 33.31 33.22 33.41 33.29

Coeff. for L utterances

0.08- 33.27 33.09 33.13 33.16 33.14
0.06- 33.01 33.08 33.20 33.27 33.13
0.04- 33.11 32.99 33.02 33.12 33.00
0.02- 33.21 33.00 32.84 33.00 33.03

0.0- 32.94 32.96 32.83 32.70 32.83
0.b4 O,bB O,bS

0.00 0.02

Figure 5.1: Evaluation of FLC heuristic paired with three different rewriting
strategy. The scoring function is BM25 and no re-ranking is employed. Each col-
umn and row represent the coefficient applied to the First and Last utterances,
respectively. Instead, the coefficient for Current utterance is given by 1 — (F +L).
The evaluation metric reported is nDCG@10, considering only utterances those
62

32.93
33.26
33.40
33.66
33.49
33.51
33.23
33.33

33.39

0.10

32.97
33.00
32.94
33.38
33.43
33.38
33.45
33.34
33.26
33.42
33.28
33.12
33.14
33.01
32.88
32.66

0.12

33.

33.

33.

32.

10

06

00

76

0,‘14
Coeff. for F utterances

33.22
33.23
33.18
33.09
33.07
33.02
33.11
32.90
32.83
32.80

0.16

32.89

33.16 32.76 32.41

32.89 32.92 32.54 32.46

33.11 32.73 32.72 32.51

32.93 32.78 32.43 32.39 32.46

33.00 32.81 32.57 32.32 32.21
32.99 33.00 32.79 | 32.27
33.06 32.76 32.75 32.65 | 32.22

32.75 32.82 32.56 32.48 32.38 32.31 31
32.76 32.57 32.49 32.29 32.30 32.17
32.55 32.35 32.25 32.47 31.81 31.75
O,iB O.éO O.‘22 O.é4 O.éG 0.28 0.30

(c) T5 Re-writing

turn is > 3 within its conversation.

CHAPTER 5. EXPERIMENTAL RESULTS

31- 11.42 6.81 19.82 7.37 -7.90 14.39 34.00 5.46
32 12.10 12.53 36.99 11.70 34.14 3.18 10.37 0.00 0.00 0.00
33- 8.76 0.00 0.00) 4.82 0.00 0.00
34- 13.80 5.46 12.13 17.12 13.37 0.00 34.72
37- 10.25 3.33 35.56 0.00 13.59 9.01 0.00
40- -4.62 0.86 0.00 -0.93 -21.94 -5.73 0.00
49 3155 S sss ETSONEEIIN 2964 14.69
50- 7.55 -6.03 34.38 19.68 0.00 -2.75 0.00
o 54- 138 -6.23 11.95 -7.44 0.00 0.00 11.35 0.00
2 56- 440 0.00 3.41 0.00 20.98 -7.81 9.86
S 58- 6.76 12.58 0.00 0.00 0.00 28.01 0.00
§ 59- 21.94 32.95 11.45 0.00 23.78 14.61
£ 61- 13.65 0.00 32.23 17.28 3.81 16.13 12.46
O 67- -0.40 0.00 -3.16 -4.78 5.32 0.00 0.00 0.00 -33.48 32.53
68- 23.45 26.78 -12.69 -6.78 2.21 23.61 -0.07 |26
69- 0.25 0.00 0.00 -7.45 9.48 0.00 0.00 0.00 0.00
75- 15.95 0.00 3200 [ASEATN 1456 -10.26
77- -1.87 EEssE o.00 -6.07 10.48 -22.96 -33.95
78 -2.14 -9.97 0.00 0.00 0.00 -2.89 0.00
79- 20.21 33.99 60.55 2.47 0.00 1.46 -2.48
Avg- 9.69 10.44 14.69 12.24 7.86 8.29 6.15 9.08 -8.61 25.07
Avg ' 3 4 5 6 7 8 9 10 11
Turn
(@) No Re-writing
31- -4.07 1.24 9.07 -14.28 -7.90 -13.16
32- 8.27 13.02 -1.05 2.39 4.17 1.89 0.41 -22.93
33- -0.77 -1.43 2.55 -3.12 -2.62 0.00 0.00
34- 9.99 [2806 | -2046 6.77 0.00 0.00
37- 5.77 11.59 -14.85 7.64 15.51 -5.05 19.83
40- -4.56 -19.39 0.00 -2.14 -4.56 -1.24 0.00
49- -5.62 0.18 -1.92 9.07 7.95 -5.10
50- 14.56 11.77 24.26 11.17 -7.42 -6.92
L 54 7.90 -3.49 17.19 2.31 0.00 0.00 2.10 37.18
2 56- 324 0.00 -21.88 -3.37 -5.08 0.00
S 58 9.47 0.00 0.00 0.00 25.38 0.22
§ 59- 9.02 ; 7.43 1.99 0.00 15.02 -5.01
g 61- 675 6.06 -0.49 16.35 -8.30 18.44 8.46
O 67- 195 -6.83 -2.81 9.49 4.74 0.00 23.72 -3.32 25.17
68- 14.12 1.80 -13.21 1.23 26.10 -2.81 -8.70
69- -4.62 -13.03 13.89 -7.45 12.10 -21.94 0.00 AT 1.66
75- 5.42 9.99 -9.56 21.94 -9.60
77- 9.55 0.00 16.17 9.20 -0.84 -12.61
78- -1.43 0.00 0.00 0.00 1.64 0.00
79- 9.97 2301 EEEAN 75 SeEIN 0.0 -15.21 -3.65
Avg- 4.82 8.40 3.69 4.58 12.97 -0.88 1.62 10.41 -8.33 -2.15
Avg ' 3 4 5 6 7 s 9 10 11
Turn
(b) Fastcoref Co-reference Resolution Re-writing
31- -3.43 2.12 -12.03 -1.01 4.82 -14.06 -2.55 1.71
32- 4.34 10.46 -8.88 -0.87 2.65 [IBS000N 3.00 -3.08
33- -1.06 -6.33 1.09 2.22 -3.42 -0.74 5.26
34- -2.20 0.82 0.04 6.14 9.69 -9.47 -20.43
37- 1.86 7.95 -7.09 3.06 11.35 -1.49 0.37
40- -0.16 -3.98 0.00 -2.14 -4.56 -0.75 10.45
49- -0.63 -1.28 -1.44 11.91 10.62 -20.17 -3.40
50- 3.32 15.45 8.68 0.00 1.68 -5.90 0.00
o b4- 684 -2.21 12.78 -5.81 0.00 0.00 0.00
2 56- -6.65 0.00 -15.08 -3.97 3.09 S11.64 -12.31
S 58] 14.85 10.00 -8.58 -3.99
§ 59- 2.49 0.87 -1.68 0.00
5 61- 7.06 11.74 10.00 -0.09
O 67- -1.70 -3.86 9.14 5.11 -16.31 -19.02 -9.57
68- -8.12 -5.80 -18.05 0.00 0.13 -10.63 -7.05
69- -1.93 -1.67 9.69 -7.81 6.15 1.74
75 4.70 11.23 -8.04 9.83
77 -4.14 0.00 -8.28 -0.93
78- 5.87 -0.60 22.20 11.95 -1.51 0.00
79- 6.25 -0.47 5.30 17.10 0.00 -7.97 0.98
Avg- 1.13 4.86 -0.02 0.69 5.07 -0.73 1.70 -0.62 -7.75 -15.60
Avg ' 3 4 5 6 7 s 9 10 11
Turn

(c) T5 Re-writing

Figure 5.2: Differences in nDCG@10 evaluation metric across all queries, be-
tween the run employing FLC w.r.t. considering only the current utterance.
Three different rewriting strategies are employed, one for each plot, the scor-
ing function is BM25, and no re-rankingsis used. Only the utterances those turn
is > 3 within its conversation are considered.

5.1. TREC CAST 2019 RESULTS

0.3- 36.31 36.29 36.21 35.87 35.60 35.59 35.31 34.38

0.28- 36.74 36.52 36.10 36.29 36.06 35.96 35.80 35.23 34.72

35.78 385.31 m

0.24- 36.77 37.04 36.70 36.80 36.59 36.63 36.17 36.22 36.02 35.42

0.26- 36.91 36.87 36.49 36.56 36.45 36.20 35.96
0.22- 36.75 36.99 37.03 36.83 36.58 36.62 36.44 36.33 36.22 35.67 | 35.19
0.2- 36.70 36.82 36.77 36.46 36.51 36.45 36.62 36.19 36.05 35.75 35.73 35.29
0.18- 36.72 36.62 36.86 36.54 36.26 36.16 36.34 36.06 36.09 36.03 35.53 35.43
0.16- 36.75 36.63 36.57 36.46 36.34 36.27 36.07 35.93 36.19 35.96 35.66 35.36 35.52 34.72

0.14- 36.39 36.58 36.50 36.32 36.32 36.40 36.24 36.04 36.29 36.07 35.79 35.44

35.33 35.01
0.12- 36.31 36.35 36.46 36.52 36.32 36.42 36.28 36.08 36.05 36.11 35.65 35.44 35.23

0.1- 36.51 36.29 36.41 36.41 36.31 36.39 36.29 36.39 36.23 35.99 35.94 35.47 35.22 35.08

Coeff. for L utterances

0.08- 36.34 36.20 36.32 36.31 36.17 36.26 36.33 36.42 36.18 36.21 35.99 35.78 35.18 35.15
0.06- 36.17 36.11 36.25 36.45 36.32 36.39 36.32 36.43 36.54 36.39 35.91 35.83 35.59 35.13
0.04- 36.30 36.18 36.11 36.34 36.28 36.08 36.25 36.27 36.31 36.29 36.02 35.62 35.57 35.32 35.25 | 34.94

0.02- 36.28 36.17 36.10 36.17 36.26 36.09 36.22 36.14 36.15 35.99 35.97 35.65 35.56 35.15 @ 35.17 -

0.0- 36.14 36.04 36.06 35.83 36.08 35.98 36.03 36.12 36.11 35.84 35.71 35.51 35.71 35.23 m 34.67

0.00 002 0.04 006 008 010 012 014 016 0.18 020 022 024 026 0.28 0.30
Coeff. for F utterances

(a) Heatmap with FLC coefficients.

31- -1.45 1.29 -5.36 -3.40 4.45 -12.99 4.12 1.71
32- -1.09 9.44 -8.16 BRI i35 | -33.71 [N 6.93 -7.40 -10.10
33- -1.63 -6.82 1.09 2.99) -0.12 0.00 174
34- 3.64 1.05 -3.87 17.91 7.56 11.61 -12.39
37- 2.00 7.95 -7.09 3.16 11.58 -3.98 0.37
40- 2.68 -7.83 8.47 -2.76 3.27 4.47 10.45
49- 121 -1.28 5.19 12.15 10.35 -16.28 -2.90
50- 8.70 9.38 7.14 1.68 -6.04 -3.87

o B4- 639 0.53 8.66 1.77 0.00 0.00 0.00

2 56- 462 0.00 -14.64 -aa7 3.09 -3.67 -8.36

8 58 6.47 -10.57 5.87 3.87 300 EEEEE o3

§ 59- 0.96 16.06 -6.63 0.00 0.00 0.16 -3.84

5 61- 5.85 -8.34 -0.87 19.40 -2.39 2.14

O 67- -1.08 -6.83 -1.58 16.20 -0.20 0.00 18.34 -6.05 -18.60 -11.00
68- -2.54 -5.14 -9.97 -2.94 -0.44 15.17 -13.25 -2.23 -3.24 -0.84
69- -4.53 -13.03 -3.31 9.69 -7.26 -10.49 0.00 -0.22 -11.65
75- 4.69 18.18 10.63 X 9.50 -7.58
77 -2.36 -0.08 -4.67 -0.08 -0.48 -5.90 -2.96
78- -3.65 -9.63 0.00 -11.30 0.00 -0.99 0.00
79- 3.55 EEEE s 7.78 13.37 0.00 -14.45 0.29
Avg- 0.90 0.90 -1.25 5.00 4.24 -0.94 1.09 0.06 -10.22 -7.31

Ave ' 3 4 5 6 7 8 9 10 11
Turn

(b) Differences in nDCG@10 metric between FLC vs. current utterance.

Figure 5.3: Evaluation of the same experiments showed on Figures 5.1 and 5.2
conducted on the “manual” utterances, which were manually rewritten from
the organizers of TREC CAsT 2019.

64

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.5: Optimal parameters to employ with FLC heuristic for maximizing
nDCG@10 metric, determined with various rewriting strategies and type of ut-
terances, on TREC CAsT 2019 benchmark.

Scor. Fun. | Topics | Rewriter | F Coeff. L Coeff. C Coeff.

— 0.26 0.24 0.50

Auto. A-CR 0.20 0.28 0.52

BM25 F-CR 0.12 0.30 0.58
T5 0.02 0.28 0.70

Man. — 0.02 0.24 0.74

— 0.30 0.18 0.52

Auto, A-CR 0.22 0.20 0.58

DIR. F-CR 0.24 0.18 0.58
T5 0.06 0.22 0.72

Man. — 0.06 0.02 0.92

Figure 5.3 shows the experiments conducted using the same settings on the
“manual” utterances, which were manually rewritten by the organizers of TREC
CAsT 2019. Both plots closely resemble the equivalent ones generated from au-
tomatic utterances rewritten using the T5 rewriter. Focusing on Figure 5.3b,
the same observations could be done as those described in the previous para-
graph. We can conclude that, indeed, a few of the provided utterances are
poor natural language formulations for the information need they represent.
For instance, conversation “32” focuses on sharks, considering their different
species and sizes, their endangered status, then focuses on asking details about
mako sharks. The utterance for turn 6 exhibits significant improvements from
FLC heuristic. Its rewritten text from the organizers, “What about for great
whites?”, lacks any reference to the user’s specific interests. The previous ut-
terance, “What’s the biggest shark ever caught?”, contains the required infor-
mation.

The FLC heuristic is beneficial for many different retrieval models and scor-
ing function. In this section, we showed the data about BM25, but similar results
can be found using Dirichlet LM. Table 5.5 shows the optimal parameters to use
with FLC, as function of the rewriting strategy and type of utterances, which
are employed on our experiments throughout the entire chapter. However, due
to time constraints, we did not perform a comprehensive investigation about
its performance employing BERT and SPLADE as first-stage retrieval models.
Preliminary experiments suggest that the heuristic may be beneficial for BERT,
while is detrimental to the overall performance for SPLADE. In the latter case,

65

5.1. TREC CAST 2019 RESULTS

Table 5.6: List of experiments conducted on TREC CAsT 2019 benchmark, testing
different ranking functions, detailed in Section 5.1.2. The evaluation measures
reported are R@100, MRR and nDCG with cutoffs 3 and 10.

| Topics | Rew. Query Gen. Searcher | Rec. MRR nDCG@3 nDCG@10

1 C BM25 | 428 64.0 33.9 32.1
2 FLC BM25 | 442 674 35.6 33.0
3 Auto T C DIR. 455 65.2 35.7 34.5
4 ' FLC DIR. 472 66.8 35.9 35.1
5 C BERT |432 523 30.4 33.1
6 C SPLADE | 51.5 79.9 52.3 50.1
7 C BM25 | 478 66.7 35.4 34.5
8 FLC BM25 | 495 70.2 36.6 35.2
9 Man . C DIR. 49.6 68.0 37.6 37.0
10 ' FLC DIR. 50.0 68.8 37.9 37.7
11 C BERT |464 543 32.8 35.5
12 C SPLADE | 549 84.3 56.6 53.5

this could be attributed to the indexing process, which introduces additional
terms not present in the text, thereby increasing the likelihood of relevant docu-
ments matching the original query. Hence the positive impact of FLC heuristic
is negligible, while, on the other hand, the inclusion of irrelevant information to
the query makes it less effective.

FIRST-STAGE RETRIEVAL

Table 5.6 shows the results obtained testing different retrieval models and
scoring functions. In this section, we evaluate both manual and automatic utter-
ances rewritten using the T5 rewriter, which has been proved in Section 5.1.1 to
be the most effective rewriting strategy on the TREC CAsT 2019 settings.

The experiments showed in the top half of Table 5.6 employ automatic utter-
ances rewritten using T5. The first two focus on BM25 as scoring function, with
#2 also using the FLC heuristic. The same settings are utilized for the next couple
of experiments, except the scoring function is now Dirichlet LM. The Dirichlet
LM slightly boost both Recall and nDCG@10 performance metrics compared to
BM25. The FLC variant is also beneficial for this scoring function, as demon-
strated by experiment #4.

Experiment #5 employs a first-stage dense retrieval approach using a BERT
model fine-tuned specifically for IR. The performance obtained is comparable

66

CHAPTER 5. EXPERIMENTAL RESULTS

to standard lexical BoW models such as BM25 and Dirichlet LM, but this ap-
proach is less effective when compared against methods that also employ a re-
ranking phase, as will be detailed in Section 5.1.3. In fact, the same BERT model
can be used for re-ranking, which remarkably improves precision at small cut-
offs. However, the dense retrieval approach doesn’t significantly benefit from
this additional phase, as the performance gain is much smaller. This is due to
both the first-stage and re-ranking models (which must be different) evaluat-
ing mainly the same semantic features of documents’ text. Moreover, the larger
storage space required to store the index together with the higher computational
resources and time needed make this approach the least effective overall for this
particular setting. Test #6 demonstrates that SPLADE reaches the best perfor-
mance measures, outperforming BM25 (#1) by 20.3% in terms of recall, 54.3% for
nDCG@3 and 47.8% for nDCG@10 when T5 rewriter is used. The performance
differences against classical lexical models will be much lower when they are
paired with a re-ranking phase, as will be discussed in Section 5.1.3.

The same conclusions can be drawn from experiments considering the man-

ual utterances.

RE-RANKING

Table 5.7 demonstrate that performing an additional re-ranking step using
a BERT model can further improve performance for all experimental settings,
except when SPLADE is used. A comparison between experiment #1 and #2
shows that, despite the absence of any form of rewriting, the performance is
significantly improved by using BERT as reranker, thus alleviating the issues
related to the “context representation” introduced by the CS setting. Besides,
the results of experiment #2 are similar to the average performance of systems
submitted at TREC CAsT 2019 [8]. Tests #3 and #4 shows that the FLC heuristic,
here employed as the solely technique to resolve context, together with BERT
reranking can slightly outperform state-of-the-art rewriting methods such as T5
without re-ranking (#5), when considering the nDCG metric at small cutoffs.

Experiments #6, #8, #10, and #12 demonstrate the effectiveness of BERT-based
re-ranking for classical lexical BoW models such as BM25 and Dirichlet LM, re-
sulting in an average improvement of 21.5% in terms of MRR, 44.2 % for nDCG@23,
and 36.9 % for nDCG@10. Furthermore, these experiments achieve compara-
ble performance to SPLADE. For instance, test #10, using Dirichlet LM with

67

5.1. TREC CAST 2019 RESULTS

Table 5.7: List of experiments conducted on TREC CAsT 2019 benchmark, ap-
plying re-ranking using a BERT model to different settings, detailed in Section
5.1.3. The evaluation measures reported are R@100, MRR and nDCG with cut-
offs 3 and 10.

| Topics | Rew. Searcher Rer. | Rec. MRR nDCG@3 nDCG@10

1 BM25 ¢ — | 199 320 14.2 144
2 Auto o BM25c¢ BERT | 199 48.0 28.4 249
3 ' BM25 FLC — | 30.6 483 23.6 23.0
4 BM25rLc BERT | 30.6 60.2 36.4 33.1
5 BM25 ¢ — | 428 64.0 33.9 32.1
6 BM25c¢ BERT | 42.8 79.3 50.4 45.2
7 BM25 FLC — | 442 674 35.6 33.0
8 BM25rLc BERT | 442 78.3 50.4 46.0
9 Auto T DIR.c — | 455 652 35.7 34.5
10 ' DIR. c BERT | 45.5 81.5 51.9 46.4
11 DIR. FLC — | 472 6638 35.9 35.1
12 DIR.r.c BERT | 47.2 80.7 50.7 46.6
13 SPLADEc — |51.5 799 52.3 50.1
14 SPLADEc BERT | 51.5 73.6 45.7 45.3

BERT, slightly outperforms SPLADE (#13) by 2.0 % for MRR, but is less effec-
tive for 11.7 %, 0.8 %, and 7.4 % in terms of Recall, nDCG@3, and nDCG@10,
respectively. The use of FLC heuristic during first-stage retrieval, when both
T5 rewriter and the additional re-ranking phase are employed, is beneficial for
both Recall and nDCG@10, but is detrimental for MRR and nDCG@3. Overall,
the effectiveness of FLC heuristic when paired with state-of-the-art rewriting
and re-ranking methods is uncertain. Instead, experiment #14 shows that per-
forming re-ranking is detrimental to the overall performance when SPLADE is
used as the first-stage retrieval model. This is expected, since SPLADE has been
specifically developed to achieve state-of-the-art performance without requiring

additional re-ranking.

Figure 5.4 shows the differences in nDCG@10 metric for each query between
experiments employing re-ranking against the same without re-ranking. The
first plot, Figure 5.4a, shows the impact of BERT re-ranking using BM25 scoring
function during first-stage retrieval, by comparing experiments #6 and #5. For
the second plot, Figure 5.4b, Dirichlet LM is utilized (experiments #10 and #9).

Most queries are considerably improved by this additional phase, except for

68

31 23.54
32- 8.02
33- 16.32
34- -1.91
37- 11.38
40- 14.26
49- 5.60
50 28.57

L 54 362

2 56- 0.9

S 58- 17.44

§ 59- 17.75

5 61- 13.34

O 67- 12.13
68- 13.09
69- 13.93
75 27.25
77- 5.74
78- 18.24
79- 15.35

Avg- 12.81

Avg
31- 12.74
32- 14.60
33
34- 6.21
37- 15.44
40~ 16.25
49- 6.07
50- 24.48

o B54- 1155

2 56- 127

g 58- 6.31

g 59- 7.53

5 61- 9.07

O 67- o0.80
68- 14.67
69- 12.27
75
77- 3.37
78 14.06
79- 3.20

Avg- 11.93
Avg

I s

23.05

16.51
23.30
46
26.92
18.36
-4.46
14.08
16.21
18.63
-7.40
13.14
11.42
7.15
22.90

24.38

-12.68

-10.58
-1.89
13.34
7.13
-4.34
-28.10
10.16
9.92
25.34
0.00

2.43
5.24
0.68
0.00
23.84

i)
-19.84
14.07

-6.70
19.18

30.15

23.45

14.33

Cssar |

19.65
1

3.60
23.21

21.40

41.11

22.04

6.20
2

-11.63

-11.49
3.02
17.78
25.51
7.93

72
-5.14

7.59
-5.84

2.43
14.19

8.30
2

26.48
3

-15.62

8.55
9.26

1

7.09
-2.91

29.55
18.91
4.64
-3.62
-5.96
0.00

18.11
6.33
-2.01
8.06
-2.16
-1.41
6.37

14.16
0.00
13.89

13.79

11.48
4

5.15
-2.65

4.36

5.12

24.86

14.83

5
Turn

(a) BM25

18.32

18.45
7.50
13.12

11.35
-7.10
-0.97
-8.10
-13.73
4.73

4.99

22.84

2.37
0.79

2.04
-8.93

0.00

17.76 [SSIGEN o0.43

s
15.01
23.88
19.39

22.62
3

5.31

-12.45
19.09
0.00
16.59

12.02
1

2.01

2.44
-1.30

19.13 | 27.61 | 21.58

10.00

5
Turn

20.48
5.88
24.63

0.00

8.60
-16.76

0.00

30.06

0.00
23.85

0.00
20.37

14.03
6

4.97

9.69
8.74
3.14

4
0.00
7.83

0.00

5.80
15.89

0.00
21.25
40.09

-2.11
0.00
21.34

9.65
6

(b) Dirichlet LM

12.77 -0.20 21.85
-0.96 11.30 6.00
13.61 -0.15

0.00 [[182:85] -6.02
-0.26 10.35 -4.33
2040 [3254 | 817
22.21
-1.28
0.00
0.00 30.39 15.43
5.38 11.05 5.87
7 8 9

-13.30 15.16

-13.89 11.30 6.00
9.63
7.58 -17.08
-2.28 -7.67
-5.96 22.27
12.52 0.00
0.00 14.55 23.32
S19.26 | -3.77
14.41
9.14
8.92
0.00 3.83
3.13 17.81 -8.61
3.16 17.84
2243 -2.70
-13.34 11.87 | -26.37
9.30 6.28 -0.90
7 8 9

16.83

20.85
23.00
0.00

15.17
1‘0

26.16

19.86
22.15
0.00

17.04

CHAPTER 5. EXPERIMENTAL RESULTS

-26.98

10.66

-20.77

-10.06

-23.48
16.21

-5.77
11

Figure 5.4: Differences in nDCG@10 evaluation metric across all queries, be-
tween the run employing reranking with BERT w.r.t. no reranking. Both experi-
ments are based on T5-rewritten automatic utterances, but two different ranking
function are employed, one for each plot: BM25 and Dirichlet LM.

69

5.1. TREC CAST 2019 RESULTS

a small subset, such as “34_8", “49_6",“56_6", and “79_2", which shows in both
plots a significant decrease in performance. A quick examination of these ut-
terances reveals that most of them are related to named entities: Bronze Age

collapse, Amazon Prime Video, Darwin, and Auguste Comte, respectively.

FLC Heuristic AND RunN Fusion

The FLC heuristic can also be applied to the query representation used by
BERT-based re-ranking. Due to time constraints, only the automatic utterances
rewritten with T5 model has been examinated. Figure 5.5a shows the variation
of nDCG@10 metric as function of the coefficients used for the first and last ut-
terances. The results indicate that this simple heuristic is never beneficial when
employed for re-ranking.

Another approach to further improve the effectiveness of re-ranking is to
perform run fusion between the ranked list produced by the searcher during
first-stage retrieval with that generated by the reranker. Figure 5.5b shows the
average nDCG@10 metric across all queries when the rankings are merged using
our custom Reciprocal Rank technique, while varying the linear coefficient. The
plot exhibits small increments around values between 0.7 and 0.9 for the linear
coefficient, with a maximum gain of 2.6 %. The impact of this approach on the
overall effectiveness is negligible.

CoMPARISON WITH BEsT Runs oF TREC CAsT 2019

Table 5.8 shows the experiments conducted on TREC CAsT 2019 against the
best runs across original submissions, for both automatic and manual utter-
ances. We focus our testing solely on those pipelines that best performed through-
out the experiments detailed in the previous sections.

The first part of Table 5.8 focus on automatic utterances, which in our ex-
periments have been rewritten using our T5-based rewriter. In Section 5.1.1, it
has been proved to be the most effective rewriting strategy among whose im-
plemented in DECAF. The FLC heuristic is not employed, since in Section 5.1.3
it has not emerged as clearly improving the performance across all four evalua-

tion metrics considered. All three of our experiments outperform the Best Auto-

?The Best Automatic Run is “CFDA_CLIP_RUN?7” from Group “CFDA_CLIP”.
*The Best Manual Run is “humanbert” from Group “ATeam”.

70

CHAPTER 5. EXPERIMENTAL RESULTS

0.5 L 4dsh
0.26- 45.27 45.04 44.82

0.24- 45.68 45.71 45.35 45.16

0.22- 45.93 46.07 45.66 45.56

45.22
0.2- 46.08 45.94 46.10 45.96 45.77 45.39 44.75
0.18- 45.84 45.99 45.91 46.19 45.98 45.90 45.41 44.92

0.16- 46.12 46.02 46.13 46.05 46.08 45.90 45.53 45.33

45.01 44.72
0.14- 46.01 45.91 46.32 46.19 45.95 46.04 45.79 45.49 45.49 45.14

0.12- 46.22 46.06 46.40 46.24 46.08 46.22 46.08 45.77 45.61 45.40

44.95 44.77

0.1- 46.27 46.19 46.23 46.38 46.23 46.39 46.13 46.06 45.76 45.70 45.41 44.99

Coeff. for L utterances

0.08- 46.51 46.38 46.30 46.49 46.39 46.46 46.26 46.13 45.99 45.92 45.86 45.33 44.88 44.58

0.06- 46.70 46.42 46.25 46.56 46.58 46.46 46.44 46.37 46.24 46.10 45.99 45.70

45.22 44.80

0.04- 46.76 46.47 46.41 46.51 46.52 46.61 46.44 46.59 46.42 46.20 45.94 45.94 45.70 45.24 44.81
0.02- 46.70 46.43 46.53 46.42 46.48 46.51 46.46 46.69 46.64 46.43 46.22 45.97 45.93 45.36 45.09 | 44.79
0.0- 46.79 46.57 46.65 46.64 46.60 46.51 46.60 46.69 46.81 46.32 46.24 45.98 45.78 45.52 45.21 44.95

0.00 002 0.04 006 008 010 012 014 016 018 020 022 024 026 0.28 0.30
Coeff. for F utterances

(a) Heatmap with FLC coefficients.
50
48

46

42
40
38
36
34
32

30
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(b) Fusion between the ranked lists produced by the Searcher (left) and the
Reranker (right).

Figure 5.5: Evaluation of two different strategies for improving re-ranking.
Figure 5.5a evaluates the optimal parameters for the FLC heuristic, when ap-
plied to the query representation used for re-ranking with BERT, employed to
T5-rewritten automatic utterances. Figure 5.5b shows how the score changes
when varying the linear combination parameter in our custom Reciprocal Rank
run fusion technique, employed to merge the ranked lists produced by the
Searcher (left) and the Reranker (right). The performance measure considered
is nDCG@10 in both plots.

71

5.1. TREC CAST 2019 RESULTS

Table 5.8: Comparison between our best-performing experiments against the
best runs across original submissions, for both automatic and manual utter-
ances, on TREC CAsT 2019 benchmark. The evaluation measures reported are
R@100, MRR and nDCG with cutoffs 3 and 10.

| Topics | Rew. Searcher ~ Rer. | Rec. MRR nDCG@3 nDCG@10

1 BM25c BERT |[428 793 504 45.2
2| Auto. | T5 DIR. ¢ BERT |455 815 519 46.4
3 SPLADEc ~ — |515 799 523 50.1
Best Automatic Run® at TREC CAsT 2019 | 412 71.1 424 40.6
4 BM25c BERT |47.8 825 544 48.2
5| Man. | — DIR. BERT |496 854 56.1 49.8
6 SPLADEc ~ — |549 843 566 53.5

Best Manual Run® at TREC CAsT 2019 | 56.7 884 59.3 60.6

matic (BA) run across the original submissions of TREC CAsT 2019, with average
differences of 13.1 %, 12.8 %, 21.5 %, and 16.3 % for Recall, MRR, nDCG@3, and
nDCG@10 metrics, respectively. The SPLADE model (experiment #3) achieves
the best overall performance, with remarkable improvements for both Recall and
nDCG@10 metrics w.r.t. all other runs.

Figure 5.6 shows the nDCG@10 metric across each query, for both the SPLADE
and the BA run. These plots exhibit the superior rewriting strategy employed
in our experiments, as the average performance across the first query of each
conversation is approximately the same.

We now examine the second part of Table 5.8, where the manually rewritten
utterances are used. Notice that, the performance observed on this kind of utter-
ance represents an upper bound on the performance that can be achieved by re-
trieval systems, since in a real-case scenario such utterances would not be avail-
able. The performance differences between automatic and manual utterances
are mostly independent of the retrieval model utilized, with average differences
of 9.1% for recall, 4.8% for MRR, 8.1% for nDCG@3 and 6.9% for nDCG@10.
These experiments demonstrate that T5-based query rewriting methods are very
effective on the TREC CAsT 2019 dataset. The best performance is achieved
again using the SPLADE model (experiment #6), similar to the results observed
for the automatic runs. When comparing our best manual run to the Best Man-
ual (BM) run among the original submissions, we observe slightly lower scores,
particularly for the nDCG@10 measure with a difference of 13.3%. Figure 5.7

72

CHAPTER 5. EXPERIMENTAL RESULTS

Conversation

' 1 2 3 4 5 6 7 8 9 10 11

Turn

(a) Automatic Run using SPLADE

Conversation
o
©
i ‘

)
)

- I

20
.4€
4

' 1 2 3 4 5 6 7 8 9 10 11

Avg

68
69
75
7T
78
79

Avg

Turn

(b) Best Automatic Run
31 B3NS 41.12 9.99 30.27 1245 [JESIOS|

32- 0.46 8.69 18.25 -8.83 -8.98 -2.45 0.00 0.00
33- 14.79 11.67 -3.32 -4.65 47.70 4.28 -4.12 19.22
34- 112 3.36 -6.45 -15.61 -5.30 -35.33 14.08 -4.15
37 20.54 9.119) 16.18 50.29 -6.41 -16.08 18.69 32.52
40- -1.96 12.01 -20.92 -26.71 -4.58 27.58 -5.46 -10.37 12.78
49- 3.55 -38.90 29.39 7.10 2.33 23.38 -6.03 -3.30 14.39
50- -2.97 12.55 -6.40 -33.88 -44.35 51.52 2.17 49.35
o b4- 6.32 60N o518 8.47 15.32 -8.48 | -43.02 0.00 47.92
2 56- 2481 41.46 -2.65 -0.02 28.98 24.27 26.74 5.12
8 58 -3.76 -13.22 44.11 9.28 14.02 25.39 -35.62 -12.72
§ 59- 1.83 -18.70 5.94 -11.82 20.90 -6.73 0.00 5.19 19.83
5 61- 11.22 -1.86 6.10 13.13 27.56 T 10.99 -13.68 [1150:28
O 67- 2.7 0.62 1.42 6.06 -12.74 [1286l84 4.41 0.00 4.84 118 27.85 35.39
68- 2.76 1903 EEEH 932 -11.42 27.44 0.00 -25.01 -9.41 9.45 23.98
69- 11.43 -22.01 -4.36 21.05 18.12 5.46 15.88 20.00 -17.35 -15.84
75- 17.37 34.73 4.66 -2.44 19.84 51.98 12.67 0.14
77 3.20 2.12 0.00 417 -42.54 1.15 8.82 52.41 -0.53
78- 13.38 -13.21 46.05 -21.79 -16.44 [B6W6NI -20.68 -23.52 [JEK
79- 14.62 -9.91 10.73 183 [IBSI000N| 4099 11.75 13.44 13.85
Avg- 9.51 0.55 12.97 2.07 14.49 -3.26 3.38 33.51 16.20 23.69 19.79
Avg ' 1 2 3 5 6 7 8 9 10 11

Turn

(c) Comparison between SPLADE and Best Automatic Run

Figure 5.6: Evaluation of the nDCG@10 metric across all queries, for both our
best experiment on automatic run, which employs SPLADE, and for the Best
Automatic run on TREC CAsT 2019 dataset.

73

5.1. TREC CAST 2019 RESULTS

77.28

o T

o SR

o ST
6F

Conversation

.08
30
 SEIEEN 1
oo R
o
o

1 2 3 4 5 6 7 8 9 10 11

Turn

(a) Manual Run using SPLADE

31 85.86 100.00 | 91.17 100.00 93.94 100.00 | 89.14

90.10

@
o

@
@

56.72

@
kS

BENGE]

w

56.71

13.01

IS
©

IS
S 3

ol o o

© o] © @

BN 9

o e S o

@
=)

oo o
® o &
w | o

®©
Sl o

~ < o o
© J a2 ®

79.09
100.00

Conversation
o
©

92.16

S

78.51 87.36

>
<
)

' 1 2 3 4 5 6 7 8 9 10 11

Avg
Turn
(b) Best Manual Run
31- -10.34 0.00 -0.42 | -22.46 | -28.67 -10.70 -12.83 | -31.49 8.34 5.16
32- -7.89 9.89 -0.87 -0.71 -8.98 -12.22 -4.83 3.73 -1.96 3.16 20.48
33- 1.42 4.47 -11.53 -19.10 15.66 2.59 1.30 -3.22 21.14
34- -13.08 -3.46 -5.70 -17.57 -4.27 LGP | NP
37- -3.45 21.85 10.96 -17.15 -12.26 -8.78 -4.52 -12.21 -5.49
40- -7.49 19.39 -14.27 | -34.62 1.42 6.30 -13.75 -16.92 -7.48
49- -10.96 -37.25 3.52 3.34 -0.17 -17.94 -15.14 | -34.37
50- -10.69 2.67 -6.85 3.23 2.12 -12.90 -12.85 -13.56
o B4- 1477 -37.85 -20.67 . 6.31 3.23 -31.42 EABI08N| 149 -12.24
2 56- -3.42 5.76 6.49 -18.20 0.07 6.77 12.27
8 58- -6.69 -16.87 -6.27 7.32 -20.68 -8.08 25.02 -3.30
“E 59- -2.67 -12.02 -6.37 14.49 -4.84 1.25 -15.99 2.16
% 61- -8.60 22.96 6.22 -4.32 -13.76 | -22.08 -11.45 5.15
O 67- -11.55 1.34 -16.78 20.50 10.40 -26.71 -481 [28160 | -23.46 -15.96 -6.63
68- -4.06 -2.27 [PE88IZEN] -16.77 -1.59 0.07 7.37 8.20 -11.27 | 2072 -17.67
69- -5.25 -27.15 -11.00 -9.14 -0.55 114 0.00 4.06 -34.87 19.03
75- -0.39 23.89 -11.32 -13.92 5.25 -5.65 -0.49
77- -6.23 6.43 0.00 3.80 -9.62 -16.44 -22.14 -5.20
78- -4.04 -14.20 | -16.67 -2.75 6.83 15.45 -20.97 0.00
79- -8.91 -31.22 0.37 8.86 3.36 -3.51 2.95 14.81
Avg- -7.09 -3.18 -10.39 -5.94 -3.83 775 -14.25 -11.74 -2.82 -9.12 6.74 -1.27
Avg ' 1 2 3 4 5 6 7 8 9 10 11

Turn

(c) Comparison between SPLADE and Best Manual Run

Figure 5.7: Evaluation of the nDCG@10 metric across all queries, for both our
best experiment on manual run, which employs SPLADE, and for the Best Man-
ual run on TREC CAsT 2019 dataset.

74

CHAPTER 5. EXPERIMENTAL RESULTS

shows the nDCG@10 metric across each query, for both the SPLADE and the
BM run. We can see that fewer queries achieves very low results in the BM run
w.r.t. our experiment, resulting in higher overall results.

Figure 5.8 shows the average nDCG@3 metric at varying turn depths for both
automatic and manual runs on TREC CAsT 2019. In these plots we compared
four runs: the first one is BM25 with BERT re-ranking (blue bar, on the left), then
Dirichlet LM with BERT re-ranking (red bar, in the center-left), the third one is
SPLADE (yellow bar, in the center-right), and the Best of the original submis-
sions (green bar, on the right). Due to smaller sample size, we decided to aggre-
gate all turns with depth greater or equal to 8 together with the same ”8+"” label.
Figure 5.8a exhibits that scores remain almost constant across the whole conver-
sation, thanks to the remarkable effectiveness of T5 rewriter on this dataset. It
is worth noting that our system does not suffer any significant drip on depth 2,
unlike all original submissions. The same trend can be observed in Figure 5.8b
for manual runs, just with slightly higher scores.

TREC CAsT 2020 ResuLTs

Table 5.9 shows the experimental results on TREC CAsT 2020. In this Section,
we consider only the configurations that best performed on TREC CAsT 2019
and evaluate them on the second edition of the track. For automatic runs, we
test the three searchers paired with the T5 rewriter. When considering the per-
formance after first-stage retrieval, BM25 (#1) is the lowest performing method,
followed by Dirichlet LM (#3) and BERT-based dense retrieval (#5). As observed
for TREC CAsT 2019, after the re-ranking phase, the dense retrieval approach
(experiment #5) gives the lowest overall scores, followed by Dirichlet LM (#4)
and BM25 (#2) with BERT re-ranking, and SPLADE (#6). However, its Recall is
much higher than both experiments employing BM25 and Dirichlet LM, with
an increment of 36.5 % and 41.8 % respectively. Finally, following what was
noticed on TREC CAsT 2019, SPLADE appears to be overall the best approach
among those implemented. The patterns remain substantially the same when
we switch from automatic to manual runs, likely due to the fact that T5 performs
particularly well in resolving the utterances. The automatic baseline ranks third
for all measures, while the manual baseline slightly outperforms our best run.
Notice that both baselines are the worst-performing run in their respective cat-

egories when considering the Recall measure. For reference, we also included

75

5.2. TREC CAST 2020 RESULTS

80

70

0 |||| |||| |‘|| “ll |‘|| I“‘ II“ ‘|||
1 2 3 4 5 6 7 8+

W BM25 +BERT mDIR. + BERT MW SPLADE W BEST AUTOMATIC

[
o

N
o

w
o

N
o

=
o

(a) Automatic Runs

80

70

0 |||| ‘||| |||| ||‘| |‘|| ||‘| |||‘ |‘||
1 2 3 4 5 6 7 8+

WBM25 + BERT mDIR.+BERT mSPLADE mBEST MANUAL

v
o

N
o

w
o

N
o

=
o

(b) Manual Runs

Figure 5.8: Average nDCG@3 metric at varying conversation depths, on TREC
CAST 2019 dataset. In the top plot, there are automatic runs, while the other
displays manual runs. The considered runs are: BM25 with BERT (blue bar, on
the left), Dirichlet LM with BERT (orange bar, in the center-left), SPLADE (grey
bar, in the center-right), and the Best run across original submissions (green bar,
on the right).

76

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.9: List of all experiments conducted on TREC CAsT 2020 benchmark.
The evaluation measures reported are R@100, MRR and nDCG with cutoffs 3
and 10. We do not report Recall@100 and nDCG@10 for the best TREC CAsT
2020 runs, since they were not computed in [7].

‘Topics ‘ Rew. Searcher Rer. ‘Rec. MRR nDCG@3 nDCG@10

1 BM25 c — 29.6 26.9 16.9 18.0
2 BM25 c BERT | 29.6 43.8 31.3 29.5
3 Auto TS DIR. c — 28.5 30.7 18.5 18.3
4 ’ DIR. c BERT | 28,5 404 29.8 27.1
5 BERT c — 404 342 23.6 23.5
6 SPLADE ¢ — 46.7 45.6 35.1 32.7
Baseline Automatic at TREC CAsT 2020 | 27.6 40.8 30.0 27.7
Best Automatic Run at TREC CAsT 2020 | - 59.3 45.8 -
7 BM25 c — 41.7 40.3 25.8 26.0
8 BM25c BERT | 41.7 584 43.7 40.7
9 Man o DIR. c — 421 43.1 27.3 26.8
10 ’ DIR. c BERT | 42.1 594 42.8 40.3
11 BERT c — 56.4 50.8 35.6 34.7
12 SPLADE c — 61.5 624 47.8 449
Baseline Manual at TREC CAsT 2020 46.3 65.2 47.9 45.0
Best Manual Run at TREC CAsT 2020 - 68.4 53.0 -

77

5.2. TREC CAST 2020 RESULTS

the MRR and nDCG@3 data for the best runs across the original submissions of
TREC CAsT 2020, as reported in the track overview [7].

The effectiveness of the retrieval systems as the conversation unfolds is eval-
uated in Figure 5.9a and 5.9b, respectively for automatic and manual runs. All
systems perform well at the start of the conversation, whereas from turn 2 on-
ward there is a significant reduction in the average nDCG@3 metric. It can be
estimated as a 40 % - 50 % decrease for automatic runs, while it is smaller (17
% - 33 %) for manual. After the first turn, the performance remains roughly the

same for the remaining of the conversation.

78

CHAPTER 5. EXPERIMENTAL RESULTS

80
70
60
50

4

0 | | ||| | I|| | |||I
1 2 3 4 5 6 7 8+

B BM25 +BERT mDIR. + BERT W SPLADE m BASELINE AUTOMATIC

o

o

N
o

=
o

(a) Automatic Runs

80
70
60

50

40
3
2
1
0
1 2 3 4 5 6 7 8+

EMBM25+BERT m®DIR.+ BERT mSPLADE m BASELINE MANUAL

o

o

o

(b) Manual Runs

Figure 5.9: Average nDCG@3 metric at varying conversation depths, on TREC
CAsT 2020 dataset. In the top plot, there are automatic runs, while the other
displays manual runs. The considered runs are: BM25 with BERT (blue bar, on
the left), Dirichlet LM with BERT (orange bar, in the center-left), SPLADE (grey
bar, in the center-right), and the Baseline run across original submissions (green
bar, on the right).

79

Conclusions

In this work, we have presented DECAF, a novel resource for conducting
experiments within the CIS scenario. This work is motivated by the constantly
growing plethora of heterogeneous CS systems that have been recently devised
thanks to the advent of LLMs. DECAF has been designed to favour comparabil-
ity between systems, fast prototyping and reproducibility, and in turn, alleviate
the current reproducibility crisis. Therefore, DECAF has been designed around
three key features: modularity, expandability and reproducibility. DECAF sup-
ports the fundamental building blocks that characterize modern CS systems and
comes with a set of state-of-the-art components already implemented out of the
box, including query rewriting, searching and re-ranking. The framework is
also flexible enough to integrate additional components without much effort.
We have evaluated several CS pipelines instantiated through DECAF on two
well-known collections, TREC CAsT 2019 and 2020.

Future work will concern the extension of DECAF to support mixed-initiative
tasks, such as those offered by TREC CAsT 2022.

81

82

[1]

2]

[3]

References

Mohammad Aliannejadi et al. “Analysing Mixed Initiatives and Search
Strategies during Conversational Search”. In: CIKM '21: The 30th ACM
International Conference on Information and Knowledge Management, Virtual
Event, Queensland, Australia, November 1 - 5, 2021. Ed. by Gianluca Demar-
tini et al. ACM, 2021, pp. 16-26. por: 10 . 1145 /3459637 . 3482231. URL:
https://doi.org/10.1145/3459637.3482231.

Mohammad Aliannejadi et al. “ Asking Clarifying Questions in Open-Domain

Information-Seeking Conversations”. In: Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019. Ed. by Benjamin Pi-
wowarski et al. ACM, 2019, pp. 475-484. por: 10.1145/3331184.3331265.
URL: https://doi.org/10.1145/3331184.3331265.

Avishek Anand et al. “Conversational Search - A Report from Dagstuhl
Seminar 19461”. In: CoRR abs/2005.08658 (2020). arXiv: 2005 .08658. URL:
https://arxiv.org/abs/2005.08658.

Srinivas Bangalore, Giuseppe Di Fabbrizio, and Amanda Stent. “Learn-
ing the Structure of Task-Driven Human-Human Dialogs”. In: IEEE Trans.
Speech Audio Process. 16.7 (2008), pp. 1249-1259. por: 10.1109/TASL.2008.
2001102. URL: https://doi.org/10.1109/TASL.2008.2001102.

Gordon V. Cormack, Charles L. A. Clarke, and Stefan Biittcher. “Recipro-
cal rank fusion outperforms condorcet and individual rank learning meth-
ods”. In: Proceedings of the 32nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2009, Boston,
MA, USA, July 19-23, 2009. Ed. by James Allan et al. ACM, 2009, pp. 758-
759. por: 10.1145/1571941 . 1572114. URL: https://doi.org/10.1145/
1571941.1572114.

83

https://doi.org/10.1145/3459637.3482231
https://doi.org/10.1145/3459637.3482231
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3331184.3331265
https://arxiv.org/abs/2005.08658
https://arxiv.org/abs/2005.08658
https://doi.org/10.1109/TASL.2008.2001102
https://doi.org/10.1109/TASL.2008.2001102
https://doi.org/10.1109/TASL.2008.2001102
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114

REFERENCES

[6] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. “Are
we really making much progress? A worrying analysis of recent neural
recommendation approaches”. In: Proceedings of the 13th ACM Conference
on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September 16-
20, 2019. Ed. by Toine Bogers et al. ACM, 2019, pp. 101-109. por: 10.1145/
3298689.3347058. URL: https://doi.org/10.1145/3298689.3347058.

[7] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. “CAsT 2020: The Con-
versational Assistance Track Overview”. In: Proceedings of the Twenty-Ninth
Text REtrieval Conference, TREC 2020, Virtual Event [Gaithersburg, Maryland,
USA], November 16-20, 2020. Ed. by Ellen M. Voorhees and Angela Ellis.
Vol. 1266. NIST Special Publication. National Institute of Standards and
Technology (NIST), 2020. URL: https://trec.nist.gov/pubs/trec29/
papers/0OVERVIEW.C.pdf.

[8] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. “TREC CAsT 2019: The
Conversational Assistance Track Overview”. In: CoRR abs/2003.13624 (2020).
arXiv: 2003.13624. URL: https://arxiv.org/abs/2003.13624.

[9] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. “TREC CAsT 2021: The
Conversational Assistance Track Overview”. In: CoRR (2022), pp. 1-7. URL:
https://www.cs.cmu.edu/~callan/Papers/trec22-Jeffrey_Dalton.
pdf.

[10] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: CoRR abs/1810.04805 (2018). arXiv:
1810.04805. URL: http://arxiv.org/abs/1810.04805.

[11] Laura Dietz et al. “TREC Complex Answer Retrieval Overview”. In: Pro-
ceedings of the Twenty-Seventh Text REtrieval Conference, TREC 2018, Gaithers-
burg, Maryland, USA, November 14-16, 2018. Ed. by Ellen M. Voorhees and
Angela Ellis. Vol. 500-331. NIST Special Publication. National Institute of
Standards and Technology (NIST), 2018. URL: https://trec.nist.gov/
pubs/trec27/papers/0Overview-CAR.pdf.

[12] Ahmed Elgohary, Denis Peskov, and Jordan L. Boyd-Graber. “Can You
Unpack That? Learning to Rewrite Questions-in-Context”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7, 2019. Ed. by Kentaro Inui et

84

https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.C.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.C.pdf
https://arxiv.org/abs/2003.13624
https://arxiv.org/abs/2003.13624
https://www.cs.cmu.edu/~callan/Papers/trec22-Jeffrey_Dalton.pdf
https://www.cs.cmu.edu/~callan/Papers/trec22-Jeffrey_Dalton.pdf
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://trec.nist.gov/pubs/trec27/papers/Overview-CAR.pdf
https://trec.nist.gov/pubs/trec27/papers/Overview-CAR.pdf

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

al. Association for Computational Linguistics, 2019, pp. 5917-5923. por:
10.18653/v1/D19-1605. URL: https://doi.org/10.18653/v1/D19-1605.

Robert A. Fairthorne. “ Automatic Retrieval of Recorded Information”. In:
Comput. J. 1.1 (1958), pp. 36—41. por: 10.1093/comjnl/1.1.36. URL: https:
//doi.org/10.1093/comjnl/1.1.36.

Nicola Ferro. “Reproducibility Challenges in Information Retrieval Evalu-
ation”. In: ACM J. Data Inf. Qual. 8.2 (2017), 8:1-8:4. por: 10.1145/3020206.
URL: https://doi.org/10.1145/3020206.

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. “SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking”. In: CoRR
abs/2107.05720 (2021). arXiv: 2107.05720. URL: https://arxiv.org/abs/
2107.05720.

Thibault Formal et al. “SPLADE v2: Sparse Lexical and Expansion Model
for Information Retrieval”. In: CoRR abs/2109.10086 (2021). arXiv: 2109.
10086. URL: https://arxiv.org/abs/2109.10086.

Matt Gardner et al. “AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform”. In: CoRR abs/1803.07640 (2018). arXiv: 1803 . 07640.
URL: http://arxiv.org/abs/1803.07640.

Jia-Chen Gu, Zhen-Hua Ling, and Quan Liu. “Utterance-to-Utterance In-
teractive Matching Network for Multi-Turn Response Selection in Retrieval-
Based Chatbots”. In: IEEE ACM Trans. Audio Speech Lang. Process. 28 (2020),
pp. 369-379. por: 10.1109/TASLP.2019.2955290. URL: https://doi.org/
10.1109/TASLP.2019.2955290.

Kai Hui et al. “PACRR: A Position-Aware Neural IR Model for Relevance
Matching”. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017. Ed. by Martha Palmer, Rebecca Hwa, and Sebastian Riedel.
Association for Computational Linguistics, 2017, pp. 1049-1058. por: 10.
18653/v1/d17-1110. URL: https://doi.org/10.18653/v1/d17-1110.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-Scale Similarity
Search with GPUs”. In: IEEE Trans. Big Data 7.3 (2021), pp. 535-547. por:
10 . 1109/ TBDATA . 2019 . 2921572. URL: https : //doi . org/10. 1109/
TBDATA.2019.2921572.

85

https://doi.org/10.18653/v1/D19-1605
https://doi.org/10.18653/v1/D19-1605
https://doi.org/10.1093/comjnl/1.1.36
https://doi.org/10.1093/comjnl/1.1.36
https://doi.org/10.1093/comjnl/1.1.36
https://doi.org/10.1145/3020206
https://doi.org/10.1145/3020206
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
https://doi.org/10.1109/TASLP.2019.2955290
https://doi.org/10.1109/TASLP.2019.2955290
https://doi.org/10.1109/TASLP.2019.2955290
https://doi.org/10.18653/v1/d17-1110
https://doi.org/10.18653/v1/d17-1110
https://doi.org/10.18653/v1/d17-1110
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572

REFERENCES

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Sadegh Kharazmi et al. “Examining Additivity and Weak Baselines”. In:
ACM Trans. Inf. Syst. 34.4 (2016), 23:1-23:18. por: 10 . 1145/2882782. URL:
https://doi.org/10.1145/2882782.

Antonios Minas Krasakis et al. “Analysing the Effect of Clarifying Ques-
tions on Document Ranking in Conversational Search”. In: ICTIR "20: The
2020 ACM SIGIR International Conference on the Theory of Information Re-
trieval, Virtual Event, Norway, September 14-17, 2020. Ed. by Krisztian Ba-
log et al. ACM, 2020, pp. 129-132. por: 10 . 1145/3409256 . 3409817. URL:
https://doi.org/10.1145/3409256.3409817.

Juntao Li et al. “Dialogue History Matters! Personalized Response Selec-
tion in Multi-Turn Retrieval-Based Chatbots”. In: ACM Trans. Inf. Syst. 39.4
(2021), 45:1-45:25. por: 10 . 1145/3453183. URL: https://doi.org/10.
1145/3453183.

Yongqi Li, Wenjie Li, and Ligiang Nie. “Dynamic Graph Reasoning for
Conversational Open-Domain Question Answering”. In: ACM Trans. Inf.
Syst. 40.4 (Jan. 2022). 1ssN: 1046-8188. por: 10.1145/3498557. URL: https:
//doi.org/10.1145/3498557.

Jimmy Lin et al. “Pyserini: A Python Toolkit for Reproducible Informa-
tion Retrieval Research with Sparse and Dense Representations”. In: SIGIR
"21: The 44th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Virtual Event, Canada, July 11-15, 2021. Ed. by
Fernando Diaz et al. ACM, 2021, pp. 2356-2362. por: 10 . 1145/3404835 .
3463238. URL: https://doi.org/10.1145/3404835.3463238.

Jimmy Lin et al. “Toward Reproducible Baselines: The Open-Source IR
Reproducibility Challenge”. In: Advances in Information Retrieval - 38th Eu-
ropean Conference on IR Research, ECIR 2016, Padua, Italy, March 20-23, 2016.
Proceedings. Ed. by Nicola Ferro et al. Vol. 9626. Lecture Notes in Computer
Science. Springer, 2016, pp. 408—420. por: 10. 1007 /978-3-319-30671-
1_30. URL: https://doi.org/10.1007/978-3-319-30671-1%5C_30.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. “Distilling Dense
Representations for Ranking using Tightly-Coupled Teachers”. In: CoRR

abs/2010.11386 (2020). arXiv: 2010.11386. URL: https://arxiv.org/abs/
2010.11386.

86

https://doi.org/10.1145/2882782
https://doi.org/10.1145/2882782
https://doi.org/10.1145/3409256.3409817
https://doi.org/10.1145/3409256.3409817
https://doi.org/10.1145/3453183
https://doi.org/10.1145/3453183
https://doi.org/10.1145/3453183
https://doi.org/10.1145/3498557
https://doi.org/10.1145/3498557
https://doi.org/10.1145/3498557
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1007/978-3-319-30671-1_30
https://doi.org/10.1007/978-3-319-30671-1_30
https://doi.org/10.1007/978-3-319-30671-1%5C_30
https://arxiv.org/abs/2010.11386
https://arxiv.org/abs/2010.11386
https://arxiv.org/abs/2010.11386

[28]

[29]

[31]

[32]

[33]

[34]

REFERENCES

Sheng-Chieh Lin et al. “Multi-Stage Conversational Passage Retrieval: An
Approach to Fusing Term Importance Estimation and Neural Query Rewrit-
ing”. In: ACM Trans. Inf. Syst. 39.4 (2021),48:1-48:29. poI: 10.1145/3446426.
URL: https://doi.org/10.1145/3446426.

Sean MacAvaney et al. “CEDR: Contextualized Embeddings for Docu-
ment Ranking”. In: Proceedings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR 2019, Paris,
France, July 21-25, 2019. Ed. by Benjamin Piwowarski et al. ACM, 2019,
pp- 1101-1104. por: 10.1145/3331184 .3331317. URL: https://doi.org/
10.1145/3331184.3331317.

Craig Macdonald and Nicola Tonellotto. “Declarative Experimentation in
Information Retrieval using PyTerrier”. In: ICTIR "20: The 2020 ACM SIGIR
International Conference on the Theory of Information Retrieval, Virtual Event,
Norway, September 14-17, 2020. Ed. by Krisztian Balog et al. ACM, 2020,
pp- 161-168. por: 10.1145/3409256 . 3409829. URL: https://doi.org/10.
1145/3409256 . 3409829.

Ida Mele et al. “Adaptive utterance rewriting for conversational search”.
In: Inf. Process. Manag. 58 (2021), p. 102682.

Ida Mele et al. “Topic Propagation in Conversational Search”. In: Proceed-
ings of the 43rd International ACM SIGIR conference on research and devel-
opment in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-
30, 2020. Ed. by Jimmy X. Huang et al. ACM, 2020, pp. 2057-2060. por:
10.1145/3397271 .3401268. URL: https://doi.org/10.1145/3397271.
3401268.

Tri Nguyen et al. “MS MARCO: A Human Generated MAchine Read-
ing COmprehension Dataset”. In: Proceedings of the Workshop on Cognitive
Computation: Integrating neural and symbolic approaches 2016 co-located with
the 30th Annual Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, Spain, December 9, 2016. Ed. by Tarek Richard Besold et al.
Vol. 1773. CEUR Workshop Proceedings. CEUR-WS.org, 2016. URL: http:
//ceur-ws.org/Vol-1773/CoCoNIPS}5C_2016%5C_paper9.pdf.

Rodrigo Frassetto Nogueira and Kyunghyun Cho. “Passage Re-ranking
with BERT”. In: CoRR abs/1901.04085 (2019). arXiv: 1901 . 04085. URL:
http://arxiv.org/abs/1901.04085.

87

https://doi.org/10.1145/3446426
https://doi.org/10.1145/3446426
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3409256.3409829
https://doi.org/10.1145/3409256.3409829
https://doi.org/10.1145/3409256.3409829
https://doi.org/10.1145/3397271.3401268
https://doi.org/10.1145/3397271.3401268
https://doi.org/10.1145/3397271.3401268
http://ceur-ws.org/Vol-1773/CoCoNIPS%5C_2016%5C_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS%5C_2016%5C_paper9.pdf
https://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085

REFERENCES

[35]

[38]

[39]

Shon Otmazgin, Arie Cattan, and Yoav Goldberg. “F-COREF: Fast, Accu-
rate and Easy to Use Coreference Resolution”. In: CoRR abs/2209.04280
(2022). por: 10.48550/arXiv.2209.04280. arXiv: 2209.04280. URL: https:
//doi.org/10.48550/arXiv.2209.04280.

Shon Otmazgin, Arie Cattan, and Yoav Goldberg. “LingMess: Linguisti-
cally Informed Multi Expert Scorers for Coreference Resolution”. In: CoRR
abs/2205.12644 (2022). por: 10 .48550/arXiv . 2205 . 12644, arXiv: 2205 .
12644. URL: https://doi.org/10.48550/arXiv.2205.12644.

Iadh Ounis et al. “Terrier Information Retrieval Platform”. In: Advances in
Information Retrieval, 27th European Conference on IR Research, ECIR 2005,
Santiago de Compostela, Spain, March 21-23, 2005, Proceedings. Ed. by David
E. Losada and Juan M. Fernandez-Luna. Vol. 3408. Lecture Notes in Com-
puter Science. Springer, 2005, pp. 517-519. por: 10 . 1007 /978 - 3-540 -
31865-1\ _37. URL: https://doi.org/10.1007/978-3-540-31865-
1%5C_37.

Gustavo Penha and Claudia Hauff. “Challenges in the Evaluation of Con-
versational Search Systems”. In: Proceedings of the KDD 2020 Workshop on
Conversational Systems Towards Mainstream Adoption co-located with the 26TH
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD
2020), Virtual Workshop, August 24, 2020. Ed. by Giuseppe Di Fabbrizio et al.
Vol. 2666. CEUR Workshop Proceedings. CEUR-WS.org, 2020. URL: http:
//ceur-ws.org/Vol-2666/KDD},5C_Converse2075C_paper’%5C_5.pdf.

Fabio Petroni et al. “KILT: a Benchmark for Knowledge Intensive Language
Tasks”. In: CoRR abs/2009.02252 (2020). arXiv: 2009 . 02252. URL: https :
//arxiv.org/abs/2009.02252.

Alec Radford et al. “Improving Language Understanding by Generative
Pre-Training”. In: 2018.

Filip Radlinski and Nick Craswell. “A Theoretical Framework for Conver-
sational Search”. In: Proc. CHIIR. New York, NY, USA: ACM, 2017, pp. 117-
126.

Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Uni-
fied Text-to-Text Transformer”. In: CoRR abs/1910.10683 (2019). arXiv: 1910.
10683. URL: http://arxiv.org/abs/1910.10683.

88

https://doi.org/10.48550/arXiv.2209.04280
https://arxiv.org/abs/2209.04280
https://doi.org/10.48550/arXiv.2209.04280
https://doi.org/10.48550/arXiv.2209.04280
https://doi.org/10.48550/arXiv.2205.12644
https://arxiv.org/abs/2205.12644
https://arxiv.org/abs/2205.12644
https://doi.org/10.48550/arXiv.2205.12644
https://doi.org/10.1007/978-3-540-31865-1_37
https://doi.org/10.1007/978-3-540-31865-1_37
https://doi.org/10.1007/978-3-540-31865-1%5C_37
https://doi.org/10.1007/978-3-540-31865-1%5C_37
http://ceur-ws.org/Vol-2666/KDD%5C_Converse20%5C_paper%5C_5.pdf
http://ceur-ws.org/Vol-2666/KDD%5C_Converse20%5C_paper%5C_5.pdf
https://arxiv.org/abs/2009.02252
https://arxiv.org/abs/2009.02252
https://arxiv.org/abs/2009.02252
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683

[43]

[44]

[49]

[50]

REFERENCES

Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Uni-
fied Text-to-Text Transformer”. In: J. Mach. Learn. Res. 21 (2020), 140:1-
140:67. URL: http://jmlr.org/papers/v21/20-074.html.

Gongalo Raposo et al. “Question Rewriting? Assessing Its Importance for
Conversational Question Answering”. In: Advances in Information Retrieval
- 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway,
April 10-14, 2022, Proceedings, Part I1. Ed. by Matthias Hagen et al. Vol. 13186.
Lecture Notes in Computer Science. Springer, 2022, pp. 199-206. por: 10.
1007/978-3-030-99739-7_23. URL: https://doi.org/10.1007/978-3-
030-99739-7%5C_23.

Stephen E. Robertson and Hugo Zaragoza. “The Probabilistic Relevance
Framework: BM25 and Beyond”. In: Found. Trends Inf. Retr. 3.4 (2009), pp. 333—
389.p0r1: 10.1561/1500000019. URL: https://doi.org/10.1561/1500000019.

Gerard Salton and Chris Buckley. “Term-Weighting Approaches in Auto-
matic Text Retrieval”. In: Inf. Process. Manag. 24.5 (1988), pp. 513-523.

Gerard. Salton. Automatic Information Organization and Retrieval. McGraw
Hill Text, 1968. 1sBN: 0070544859.

Chongyang Tao et al. “Multi-Representation Fusion Network for Multi-
Turn Response Selection in Retrieval-Based Chatbots”. In: Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, WSDM
2019, Melbourne, VIC, Australia, February 11-15,2019. Ed. by]. Shane Culpep-
per et al. ACM, 2019, pp. 267-275. por: 10 .1145/3289600 . 3290985. URL:
https://doi.org/10.1145/3289600.3290985.

Svitlana Vakulenko et al. “Question Rewriting for Conversational Ques-
tion Answering”. In: WSDM 21, The Fourteenth ACM International Confer-
ence on Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021.
Ed. by Liane Lewin-Eytan et al. ACM, 2021, pp. 355-363. por: 10. 1145/
3437963.3441748. URL: https://doi.org/10.1145/3437963.3441748.

Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by
Isabelle Guyon et al. 2017, pp. 5998-6008. URL: https : / /proceedings .
neurips . cc/paper /2017 /hash/3f5ee243547dee91fbd053c1c4a845aa -
Abstract.html.

89

http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/978-3-030-99739-7_23
https://doi.org/10.1007/978-3-030-99739-7_23
https://doi.org/10.1007/978-3-030-99739-7%5C_23
https://doi.org/10.1007/978-3-030-99739-7%5C_23
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/3289600.3290985
https://doi.org/10.1145/3289600.3290985
https://doi.org/10.1145/3437963.3441748
https://doi.org/10.1145/3437963.3441748
https://doi.org/10.1145/3437963.3441748
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

REFERENCES

[51]

[53]

[56]

Nikos Voskarides et al. “Query Resolution for Conversational Search with
Limited Supervision”. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 921-930. 1sBN:
9781450380164. URL: https://doi.org/10.1145/3397271.3401130.

Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Pro-
cessing”. In: Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, EMNLP 2020 - Demos, On-
line, November 16-20, 2020. Ed. by Qun Liu and David Schlangen. Associ-
ation for Computational Linguistics, 2020, pp. 38—45. por: 10. 18653/v1/
2020.emnlp-demos.6. URL: https://doi.org/10.18653/v1/2020.emnlp-

demos. 6.

Yu Wu etal. “Sequential Matching Network: A New Architecture for Multi-
turn Response Selection in Retrieval-Based Chatbots”. In: Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers. Ed. by
Regina Barzilay and Min-Yen Kan. Association for Computational Lin-
guistics, 2017, pp. 496-505. por: 10 . 18653 /v1 /P17 - 1046. URL: https :
//doi.org/10.18653/v1/P17-1046.

Chenyan Xiong et al. “End-to-End Neural Ad-hoc Ranking with Kernel
Pooling”. In: Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, Au-
gust 7-11, 2017. Ed. by Noriko Kando et al. ACM, 2017, pp. 55-64. por:
10.1145/3077136 .3080809. URL: https://doi.org/10.1145/3077136.
3080809.

Lee Xiong et al. “Approximate Nearest Neighbor Negative Contrastive
Learning for Dense Text Retrieval”. In: 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. Open-
Review.net, 2021. URL: https://openreview.net/forum?id=zeFrfgyZln.

Rui Yan. “”Chitty-Chitty-Chat Bot”: Deep Learning for Conversational AI”.
In: Proceedings of the Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. Ed. by
Jéréme Lang. ijcai.org, 2018, pp. 5520-5526. por: 10 .24963/1ijcai. 2018/
778. URL: https://doi.org/10.24963/ijcai.2018/778.

90

https://doi.org/10.1145/3397271.3401130
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3077136.3080809
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.24963/ijcai.2018/778
https://doi.org/10.24963/ijcai.2018/778
https://doi.org/10.24963/ijcai.2018/778

REFERENCES

[57] Jheng-Hong Yangetal. “Query and Answer Expansion from Conversation
History”. In: TREC. 2019.

[58] Peilin Yang, Hui Fang, and Jimmy Lin. “Anserini: Enabling the Use of
Lucene for Information Retrieval Research”. In: Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017. Ed. by Noriko Kando
et al. ACM, 2017, pp. 1253-1256. por: 10 . 1145 /3077136 . 3080721. URL:
https://doi.org/10.1145/3077136.3080721.

[59] Peilin Yang, Hui Fang, and Jimmy Lin. “Anserini: Reproducible Ranking
Baselines Using Lucene”. In: ACM]. Data Inf. Qual. 10.4 (2018), 16:1-16:20.
DOL: 10.1145/3239571. URL: https://doi.org/10.1145/3239571.

[60] Wei Yang et al. “Critically Examining the “Neural Hype”: Weak Baselines
and the Additivity of Effectiveness Gains from Neural Ranking Models”.
In: Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-
25,2019. Ed. by Benjamin Piwowarski et al. ACM, 2019, pp. 1129-1132. por:
10.1145/3331184.3331340. URL: https://doi.org/10.1145/3331184.
3331340.

[61] Zhou Yang et al. “A Deep Top-K Relevance Matching Model for Ad-hoc
Retrieval”. In: Information Retrieval - 24th China Conference, CCIR 2018, Guilin,
China, September 27-29, 2018, Proceedings. Ed. by Shichao Zhang et al. Vol. 11168.
Lecture Notes in Computer Science. Springer, 2018, pp. 16-27. por: 10 .
1007/978-3-030-01012-6\ _2. URL: https://doi.org/10.1007/978-3-
030-01012-6%5C_2.

[62] Shi Yu et al. “Few-Shot Conversational Dense Retrieval”. In: SIGIR "21: The
44th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, Virtual Event, Canada, July 11-15, 2021. Ed. by Fernando
Diaz et al. ACM, 2021, pp. 829-838. por: 10.1145/3404835 . 3462856. URL:
https://doi.org/10.1145/3404835.3462856.

[63] Zhou Yu et al. “Strategy and Policy Learning for Non-Task-Oriented Con-
versational Systems”. In: Proceedings of the SIGDIAL 2016 Conference, The
17th Annual Meeting of the Special Interest Group on Discourse and Dialogue,
13-15 September 2016, Los Angeles, CA, USA. The Association for Computer

91

https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3239571
https://doi.org/10.1145/3239571
https://doi.org/10.1145/3331184.3331340
https://doi.org/10.1145/3331184.3331340
https://doi.org/10.1145/3331184.3331340
https://doi.org/10.1007/978-3-030-01012-6_2
https://doi.org/10.1007/978-3-030-01012-6_2
https://doi.org/10.1007/978-3-030-01012-6%5C_2
https://doi.org/10.1007/978-3-030-01012-6%5C_2
https://doi.org/10.1145/3404835.3462856
https://doi.org/10.1145/3404835.3462856

REFERENCES

Linguistics, 2016, pp. 404—412. por: 10.18653/v1/w16-3649. URL: https:
//doi.org/10.18653/v1/w16-3649.

[64] Hamed Zamani et al. “Conversational Information Seeking. An Introduc-

tion to Conversational Search, Recommendation, and Question Answer-
ing”. In: arXiv.org, Information Retrieval (cs.IR) arXiv:2201.08808 (Jan. 2022).

[65] Cheng Xiang Zhai. “Statistical Language Models for Information Retrieval:
A Critical Review”. In: Found. Trends Inf. Retr. 2.3 (2008), pp. 137-213. por:
10.1561/1500000008. URL: https://doi.org/10.1561/1500000008.

[66] Jingtao Zhanetal. “Optimizing Dense Retrieval Model Training with Hard
Negatives”. In: SIGIR "21: The 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Virtual Event, Canada, July
11-15, 2021. Ed. by Fernando Diaz et al. ACM, 2021, pp. 1503-1512. por:
10.1145/3404835 . 3462880. URL: https://doi.org/10.1145/3404835.
3462880.

92

https://doi.org/10.18653/v1/w16-3649
https://doi.org/10.18653/v1/w16-3649
https://doi.org/10.18653/v1/w16-3649
https://doi.org/10.1561/1500000008
https://doi.org/10.1561/1500000008
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880

Acknowledgments

93

	List of Figures
	List of Tables
	Introduction
	Background
	Basics of Information Retrieval
	Documents
	Information Need
	Query
	Analysis
	Indexing
	Matching
	Re-ranking
	Retrieval Results
	Evaluation

	Conversational Search
	Query Rewriting
	Heuristics for Query Generation

	TREC Conversational Assistance Track
	IR Frameworks

	DECAF Architecture
	Main Modules
	Components Implemented
	Index Pipeline
	Search Pipeline

	External Process Integration
	Creation
	Synchronization and Data Exchange
	Clean-up
	Techniques to avoid Stream Cluttering in Python

	Git Repository

	DECAF in Action
	Installation Guide
	Requirements
	Dependencies
	Installation
	Uninstall

	Configuration Guide
	Index Phase
	Search Phase

	Experimental Results
	TREC CAsT 2019 Results
	Rewriters and Query Generation Heuristics
	First-stage Retrieval
	Re-ranking
	Comparison with Best Runs of TREC CAsT 2019

	TREC CAsT 2020 Results

	Conclusions
	References
	Acknowledgments

