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Abstract

Human-robot collaboration (HRC) is an increasingly successful research field, widely
investigated for several industrial tasks. Collaborative robots can physically interact with
humans in a shared environment and simultaneously guarantee an high human safety dur-
ing all the working process. This can be achieved through a vision system equipped by a
single or a multi camera system which can provide to the manipulator essential informa-
tion about the surrounding workspace and human behavior, ensuring the collision avoidance
with objects and human operators. However, in order to guarantee human safety and an
excellent working system where the robot arm is aware about the surrounding environment
and it can monitor operator motions, a reliable Hand-Eye calibration is needed. An addi-
tional improvement for a really safe human-robot collaboration scenario can be provided by
a multi-camera hand-eye calibration. This process guarantees an improved human safety
and give the robot a greater ability for collision avoidance, thanks to the presence of more
sensors which ensures a constant and more reliable vision of the robot arm and its whole
workspace.
This thesis is mainly focused on the development of an automatic multi-camera calibration
method for robotic workcells, which guarantees ah high human safety and ensure a really
accurate working system. In particular, the proposed method has two main properties. It is
automatic, since it exploits the robot arm with a planar target attached on its end-effector
to accomplish the image acquisition phase necessary for the calibration, which is generally
realized with manual procedures. This approach allows to remove as much as possible the
inaccurate human intervention and to speed up the whole calibration process. The second
main feature is that our approach enables the calibration of a multi-camera system suitable
for robotic workcells that are larger than those commonly considered in the literature.
Our multi-camera hand-eye calibration method was tested through several experiments with
the Franka Emika Panda robot arm and with different sensors: Microsoft Kinect V2, Intel
RealSense depth camera D455 and Intel RealSense LiDAR camera L515, in order to prove
its flexibility and to test which are the hardware devices which allow to achieve the highest
calibration accuracy. However, really accurate results are generally achieved through our
method even in large robotic workcell where cameras are placed at a distance d = 3m from
the robot arm, achieving a reprojection error even lower than 1 pixel with respect to other
state-of-art methods which can not even guarantee a proper calibration at these distances.
Moreover our method is compared against other single- and multi-camera calibration tech-
niques and it was proved that the proposed calibration process achieves highest accuracy
with respect to other methods found in literature, which are mainly focused on the calibra-
tion between a single camera and the robot arm.
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Chapter 1

Introduction

The fast growing demand of robot applications in industrial environment have required
the development of several well-performing robots equipped by advanced control and vision
systems. Such robots have the main aim of helping human to accomplish different tasks
in collaborative scenarios. The term Human–Robot Collaboration (HRC) refers to the
study of collaborative processes where human and robot work together to achieve a common
goal, with the main purpose of reducing the workloads of human operators and speeding up
the working process. This research field is getting increasingly wide, involving most of the
industrial production areas such as automotive industries [1, 2], manufacturing industries [3]
and mining industries [4], but even outside the industrial environment such as agricultural
production [5] and medical and surgical applications, as described in [6, 7].
Industrial applications of Human-Robot Collaboration involve collaborative robots, also
known as cobots, which can physically interact with humans in a shared workspace. This
kind of robots are adopted to carry out simple and ripetitive tasks such as pick and place,
as well as more complex works such as assembling mechanical objects, welding small pieces
together and drilling screws, in order to release human workers from tricky tasks.

Figure 1.1: Typical Human-robot collaboration workcell, where an operator collaborates, in
a shared workspace, with a cobot equipped by a vision sensor [8].
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Cobots differ from classical industrial robots1 for their capability of work alongside humans.
This is allowed by advanced sensor systems which acquire data from the surrounding en-
vironment and from the operator, with two different methods: image based approach and
non-image based approach.

• Image-based approach: the information acquisition is computed through the analysis
and the elaboration of images, which can be captured by specific sensors such as RGB-
D camera, which is a specific type of depth sensing devices that are combined with a
RGB camera, that are able to augment the conventional image with depth information
[9], or a stereo camera, which is a type of camera with two or more lenses with a
separate image sensor, allowing the camera to capture three-dimensional images2 [10].

• Non image-based approach: they were used generally to acquire data and recognize
gestures and actions from an operator closed to the robot through wearable devices.
Some of these system are special gloves used for gesture recognition [11] and sensors
relying on a wristband as Myo [12].

All these methods are necessary to analyze the robot workspace and the operator behavior,
to allow the robot to recognize some human gestures, identifying unexpected user motion
and localize objects and persons in the workspace.
In last years, cobots have been widely deployed in several industrial areas such as manufac-
turing [13] and pharmaceutical industries [14] and even for different medical tasks [15, 16]
thanks to the improvement of their properties:

• safety, since collaborative robots are able to safely work alongside human workers to
complete a task. They are designed to minimize the risk of accidents and injuries in
the workspace with other humans, thanks to the presence of specific sensors adopted
for forces limitations, current overload prevention and blocking systems in case of
unexpected contact;

• flexibility, since cobots can be easily programmed. Moreover, thanks to their small
size, they can be moved more easily across the factory without changing the production
environment and then they can be adapted from one production to another quickly
and cheaply;

• low-cost, since the simplicity of their programming reduces the time for their integra-
tion and moreover they don’t need any dedicated safety cell, meanly any fences or
other industrial safety equipment are required. These features contribute to decrease
significantly the cost of their deployment.

Safety is often enhanced adopting camera systems which allow to visually and precisely
guide the robot to its goal, as it is described in [17, 18]. In particular it is interesting the
case study proposed in [19], where a deep learning algorithm analyzes images captured by a
camera to recognize the human operator that collaborates with the robot. Then, the human
working ability is analyzed and is used by the robot to adapt its operation speed according

1Industrial robots don’t the ability to work alongside humans. They work fast in pre-defined patterns
and lack awareness about humans.

2This process is known as stereo photography.
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to the worker skills or deliver parts to be manipulated according to the handedness of the
human worker.
Most recent depth sensors, thanks to an increasingly hardware improvement, allow to
enhance the performance of HRC for many applications, especially for industrial tasks.
In particular camera systems allow the collaborative robots to supervise the surrounding
workspace, recognize human actions, avoid unexpected motion with consequently human in-
juries with the main purpose of ensuring high human safety. Moreover, in order to guarantee
a safe and reliable operating system, cameras have to precisely localize the robot within the
workcell, in order to establish accurately where is placed an object or a person with respect
the robot.

1.1 Hand-eye calibration

In order to accurately establish the camera position with respect to a fixed world co-
ordinate system (e.g. the robot’s base), a robust camera calibration is strongly required.
Camera Calibration is a primary task in computer vision and it is defined as the process of
determining the geometric parameters of the camera model, namely the function parameters
which maps the 3-dimensional world onto a 2-dimensional plane and defines the camera 3D
geometric coordinate with respect to a world reference frame. In particular, this process is
generally divided in two procedures, the extrinsic [20] and the intrinsic calibration [21]. The
extrinsic parameters are necessary to the transformation from world coordinate frame to the
camera coordinate frame. Instead the intrinsic parameters map a 3D point with respect to
the camera frame into the 2D point on the image plane. The whole process can be considered
as an optimization procedure where the discrepancy between the observed image features
and their theoretical positions is minimized according to camera’s parameters [22], which
are described accurately in section 3.2. In order to accomplish the optimization, identifying
an accurate relation between 3D points in real world and their correspondent 2D projected
points on the image plane is required. These correspondences can be obtained capturing
more images from different perspective of a calibration pattern, whose 3D geometry is well
known, such as a planar checkerboard, as explained in [23].
When the vision system is composed by more cameras, a multiple camera calibration is
needed. The term Multi-Camera Calibration refers to the the calibration of more than
one sensor simultaneously as it is proposed in [24], which deals with an accurate global
calibration of multiple cameras with non-overlapping fields of view. However, in a camera
network setup with overlapping fields of view, it can be exploited calibration pattern images
seen at the same moment from multiple cameras as it is proposed in [25]. In both scenarios,
the main purpose is determining the accurate locations of each camera with respect to the
others, and with respect to a single world reference frame. In particular, in many camera
calibration approaches, a manual procedure is required, in order to move the checkerboard
in several positions and perspectives in front of the cameras and then to capture the related
images, as it is described in [25, 26, 27, 28].
A very good option to automatize this calibration process is the usage of a robot arm which
can move the checkerboard in different perspectives in front of the camera, in order to avoid
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human intervention that can lead to inaccuracy errors. This solution can be accomplished
in a robotic workcell, as it is illustrated in Figure 1.2b, that shows a camera system and a
robot arm, where a calibration between the robot and the camera is required. The calibra-
tion procedure which is focused on determining the transformation between a robot base
and a camera or between the end-effector and the sensor, is generally known as Hand-Eye
Calibration.
There are two different setups for Hand-Eye calibration:

• Eye-in-Hand calibration, where a camera is mounted on the robot arm, as shown
in Figure 1.2a. It is the hand-eye calibration approach most used, as it is proposed in
[29, 30, 31]. A calibration pattern is placed on the robot’s workspace and then moving
the robot arm in different poses, the camera can capture one image of the pattern
for each pose. Hence the calibration process determines the camera’s position on the
robot frame as well as the position of the calibration pattern in the robot’s workspace.
In particular this approach refers to the concurrence of the eye’s reference frame, so
the camera’s frame to the hand frame, namely the end-effector reference system.

• Eye-on-Base calibration, where it is used a fixed external camera around the robot
environment, as shown in Figure 1.2b, and described in [32]. In order to do this,
a calibration pattern is attached on the robot arm’s end-effector and it is moved
to different poses in front of the camera. By capturing an image for each pose, the
calibration can be computed and then the camera’s pose and the pose of the calibration
pattern can be estimated with respect to the robot’s end-effector. In this event, the
eye reference frame (namely, the camera frame) is fixed with respect to the reference
frame of the robot’s base.

In both calibration setups the aim is the identification of the transformation between the
Hand, namely the robot base or the end-effector and the Eye which refers to the camera.

(a) Camera on the robot arm. (b) External camera from the robot arm.

Figure 1.2: Hand-Eye Calibration setups, collected by [33]. At the left the typical eye-in-hand
calibration setup. At the right the eye-on-base calibration setup with a fixed external camera.
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In this thesis, as it is described in Section 1.2, we focused on the Eye-on-base calibration
approach. In particular, fixed external cameras and a robot arm with a checkerboard at-
tached to its end-effector is the calibration setup adopted for thesis experiments. The usage
of a camera network allows us to implement a robust robotic workcell calibration, that can
be used for people tracking in human-robot collaboration tasks, avoiding persons occlusion
issues, where an operator can not be observed and detected by a single camera, since he is
partially covered by the robot arm. The ability to never lose the human tracking is a main
requirement for human-robot collaboration tasks, necessary to guarantee the human safety
avoiding unexpected collisions with the robot arm and to ensure the people tracking correct-
ness. The robot arm allows to replace the classical manual procedure for images acquisition
and automatize the whole procedure, making it more precise. Moreover an accurate hand
eye calibration ensures an accurate visually guidance of the robot, allowing an excellent
working systems, where the manipulator can properly help humans in their tasks.

1.2 Automatic multi-camera hand-eye calibration

As described in section 1, in Human-Robot Collaboration tasks the robot should be
capable of recognizing its position with respect to the operator is working with, for the
whole time in which the collaboration takes place, guaranteeing the human safety. This is
made possible by a camera network accurately calibrated with respect to the robot arm. A
common solution previously adopted in our research laboratory IAS-Lab3, is proposed in
OpenPTrack4 [25]. It involves the use of a camera network in order to detect when users
are inside the robot workspace. The adopted images acquisition procedure is completely
accomplished by a long manual process, where a human intervention is required in order to
move the calibration pattern in front of cameras in several perspectives. The main draw-
backs of this process is the time necessary to compute the whole images acquisition and the
inaccuracy of the calibration due to the human intervention.
This procedure was the main starting point for this thesis. In particular, according to the
issues and considerations just described, the thesis objective was to automatize and speed
up such procedure in order to improve precision and ease of use. More precisely, we focus
on proposing an automatic hand-eye calibration for robotic workcells, which can be
adopted for Human-Robot collaboration tasks.
In this thesis we proposed a novel calibration method to achieve an accurate extrinsic5 cal-
ibration of a multi-camera setup with respect to a robot arm positioned in the center of
a workcell, as shown in Figure 1.3. Regarding the intrinsic6 calibration, it was considered
already computed, because accurate camera intrinsic parameters were already provided by
the cameras factory.
Since we exploited the robot arm to automatize the image acquisition process and make

3IAS-Lab stands for Intelligent Autonomous Systems Laboratory and it is one of the 28 laboratories of
the Department of Information Engineering of the University of Padua.

4http://openptrack.org/.
5It is focused on determining the geometric transformation between the cameras coordinates frame and

the robot’s base frame.
6They are the camera parameters which relate the camera’s coordinate system to the image plane of the

camera.
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Figure 1.3: Example of workcell setup adopted for the calibration in this thesis. Image
acquired by the virtual environment Gazebo.

it repeatable, in order to compute the hand-eye calibration an A4 size printed calibration
target was adopted. First of all, this was done to facilitate the small robot arm movements
in the image capture phase and avoid collisions. Furthermore, it allowed to simplify the
attachment to the robot, accomplished by a custom 3D-printed mount. However, the main
drawback of this implementation was the difficulty of the planar target detection, due to its
small size and the its high distance from the camera.

1.3 Thesis outline

The remainder of the thesis is organized as follows: in Chapter 2 some related works,
which concerns with different calibration objects adopted for camera calibration. Moreover
most recent papers, which are focused on hand-eye calibration in a single and multi camera
setups, are introduced. In Chapter 3 the theory behind the camera calibration is reported,
with an initial description of the pinhole camera model and then with an introduction of the
mathematics related to intrinsic and extrinsic camera calibration. Hence, in Chapter 4 the
proposed method for the camera calibration is accurately described. Especially, in the first
section it is analyzed the approach for a single camera calibration and then it is reported
the calibration technique for a multi-camera setup. In Chapter 5 the setup adopted for the
experiments is described. More precisely, the hardware specifications of the cameras and
the robot arm adopted for the whole thesis work, are presented. Then, in Chapter 6 all
the experiments and achieved results are accurately reported and discussed, reviewing the
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difference with other state of art calibration methods and evaluating the performance of our
proposed calibration technique. The results are reported in two small subsection, the first
one which concerns with simulated experiments and the second one which is focused on the
real experiments. Then, in the final Chapter 7 a short review of the proposed method is
reported, by highlighting the main contributions to the state of art. Finally some future
improvements and developments are presented.
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Chapter 2

Related work

Cameras calibration is generally divided into two phases: intrinsic and extrinsic calibra-
tion as further explained in Chapter 3. These procedures can be carried out by adopting
different calibration targets, which observed from different perspectives by the camera allows
its calibration.
However a key role is played by the approach adopted for the images acquisition. A manual
procedure was often used to move the calibration objects such as in [27, 28]. Even though
with the recent spread of human-robot collaboration setups, almost completely automatized
procedures by robot arms were presented, in order to avoid the human intervention, as it is
proposed in [34, 35, 36].
In the following two subsections, firstly some papers that analyze mostly adopted objects for
the cameras calibration are illustrated and secondly works focused on procedures employed
for hand-eye calibration for robotic workcells are analyzed.

2.1 Calibration objects

The extrinsic and intrinsic camera calibrations are performed by observing a particular
object whose geometry in 3-D space is known with very good precision. Therefore several
studies related to the camera calibration process were focused on testing the reliability of
different kinds of patterns.
Planar targets are the most-commonly objects used for camera calibration. One of these,
is the classical squared checkerboard shown in Figure 2.1a, as described in several papers
such as in [37, 38, 39]. It was one of the first planar patterns used for camera calibration as
described by Zhang’s method in [40] and it is still adopted for its geometric simplicity and
for its detection accuracy. Therefore it is used both for extrinsic calibration and intrinsic
parameters estimation, as in [37].
In [41] and [42], ArUco and AprilTag markers were proposed respectively, for extrinsic cam-
era calibration. They guarantee an accurate camera calibration and a great adaptability to
camera models, moreover they allow to estimate the camera pose in tag coordinate system
as long as there is one complete tag in the field of view. However, AprilTag markers shown
in Figure 2.1b appeared robust for camera calibration, especially when they are placed rel-
atively closed to the camera as described in [43].
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(a) Chessboard (b) AprilTag marker (c) ChArUco board (d) Random speckle
pattern

Figure 2.1: Examples of planar calibration patterns.

A special checkerboard called ChArUco is also adopted for camera extrinsic [44] and intrinsic
calibration [45]. This planar board, shown in Figure 2.1c, tries to combine the benefits of the
markers and the simplicity and accuracy of the checkerboard. ArUco markers are used to
interpolate the position of the checkerboard corners, so that it has the versatility of marker
boards, since it enables a camera calibration without necessarily being entirely within the
camera’s field of view [46], as long as there is one complete marker in the camera’s field of
view. Moreover, the checkerboard corners allow to achieve accurate calibration, in terms of
subpixel accuracy [38].
Further planar targets were tested in literature such as polygonal boards [47], ring cali-
bration pattern [48] and random-speckle pattern shown in Figure 2.1d. As it is accurately
explained in [49], the random-speckle pattern has the main advantage of being characterized
by many effective control points defined on the simulated speckle pattern, instead of the
classical checkerboards which count at most some tens of control points. However one main
limitation is that the calibration accuracy may significantly decrease when very large reso-
lution difference exists between the simulated speckle pattern and the captured calibration
images.
Nevertheless, even 3D objects with a depth variation are used for camera calibration, espe-
cially to calibrate depth sensor. Spheres is a proposed 3D object adopted for the calibration
in [50, 51]. Its uniform and well known geometry allowed to overcome the problem of limited
features scene shared by sensors, since the sphere center’s location can be robustly estimated
from any viewpoint, as it is clearly illustrated in Figure 2.2.

Figure 2.2: Sphere center detection in a camera network by [50].
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The 3D locations of the center of a moving sphere are estimated from the color and depth
images and they are used as visual correspondences across different camera views for esti-
mate the relative poses among sensors. Although the sphere center is not directly observed
by any sensor, the spherical constraint implies that the observation of a reasonably-sized
surface patch from any perspective can be used to estimate the center location.
However, the use of a specific target over another one, is closely related to its robustness and
its detection accuracy, but also to the environment in which it is tested. According to the
hardware setup adopted and the aim of this thesis work, a detailed analysis was computed
employing planar patterns that can be easily attached to the robot end-effector. They are
listed and described more accurately in section 6 related to the experiments.

2.2 Eye-on-base calibration

As mentioned in section 1, the calibration procedure proposed in OpenPTrack [25], has
been previously adopted in our research laboratory IASLab, for the multi-camera calibra-
tion in a RGB-D camera networks. The authors presented a calibration that through the
use of a checkerboard, jointly optimize and estimate the pose of all sensors at once. When
all cameras have been calibrated, the user had to place the checkerboard on the ground, in
order to guarantee that the position of the ground plane with respect to each camera was
calibrated. The main drawback of this procedure is the human intervention requirement,
necessary to move the checkerboard in several poses for images acquisition. This leads to
a slow-down of the whole calibration process as well as its accuracy reduction. Moreover
a big checkerboard is required to ensure acceptable calibration performance, which yields
the human task more complex and uncomfortable, as it is difficult to move an 80x80cm
checkerboard and keep it still during the acquisition of each image.
The robot arm’s presence in the multi-camera calibration for robotic workcells, allowed us
to exploit the robot arm with a planar target attached to the end-effector to automatize the
image acquisition process and replace the inaccurate human intervention.
In literature several robot hand-eye calibration were proposed, where the main purpose is
the estimation of the relative pose between a camera frame and robot base frame. Some of
these systems are accurately described in [15, 32, 52, 53, 54, 55]. In [32] authors proposed
an automatic single camera eye-to-hand calibration for a small workcell, such as the one
shown in Figure 2.3. They used a standard checkerboard calibration grid attached on the
manipulator’s tool in order to automatize and then speed up camera-to-robot calibrations.
In particular, they proposed a single camera calibration procedure, whose optimization pro-
cess has to be computed once for each sensor. It consists in estimating a 3D affine transfor-
mation matrix between the camera and the robot end-effector, using the corresponding 3D
corner points of the calibration checkerboard. Then, adopting the robot kinematics, the 3D
points detected in the camera color image can be transformed from the camera coordinate
system to the robot’s base coordinate system. Additionaly they tested their optimization
process according to the number of positions of the checkerboard used for each calibration
procedure. According to experiment results shown in [32], in order to achieve good calibra-
tion accuracy, the calibration pattern has to cover at each pose the most of the camera’s field
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Figure 2.3: Ideal workcell setup proposed in [32].

of view. Therefore, since the robot arm has a limited action range, the cameras required to
be placed closely to the manipulator, as it is illustrated in Figure 2.3, where the cameras
are placed in front of the checkerboard at a distance of 60 cm. Although at this distance
an accurate calibration can be achieved, it do not allow a robotic workcell calibration for
human-robot collaboration tasks.
In [52], it is described a new technique for computing 3D position and orientation of a cam-
era relative to the last joint of a robot manipulator in eye-on-hand configuration, but it can
be easily inverted in a eye-on-base system.
In [53] it is introduced a novel hand-eye calibration method which allows to determine the
hand-eye transformation using known relative movements of the robot and the data acquired
by the camera, by taking into account the unity constraint of dual quaternions necessary to
represent rigid motions in space.
In the article [54] it is proposed an online hand-eye calibration method which allows to
reduce the human supervision compared with classical calibration methods. Its derivation
includes a new linear formulation of classical hand-eye calibration which is linear and nu-
merically efficient.
Frank Park in its paper [55] proposed a method for solving the linear system AX = XB for
hand-eye optimization. The main innovation of this algorithm is the usage of the knowledge
of Lie group theory [56] to solve the classical equations of hand-eye calibration.
Further research papers introduced extended optimization approaches with a simultaneous
multi-camera calibration for a robot workcell. In [45] is presented an automated calibration
technique to enable a vision-based robot control with a multi-camera setup depicted in Fig-
ure 3.1a. In order to find the 3D poses of cameras, the Perspective-n-Point1 (PnP) problem
is solved with ArUco markers. Hence, in order to estimate the relative pose between the
robot base and camera, the predefined 3D geometric transformation from World frame to
Base frame is adopted, as reported in Figure 3.1b.

1The problem of estimating the pose of a calibrated camera given a set of n 3D points in the world and
their corresponding 2D projections in the image. Possible solutions to this problem are formulated in [57,
58].
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(a) Camera network setup (b) Robot base with markers

Figure 2.4: Workcell setup for camera calibration adopted in [45].

However, since the ArUco markers have to be rigidly attached to the small robot base as
shown in Figure 3.1b, they has to be fairly small, in the range of 2-3 cm2. These markers
speed up certainly the extrinsic calibration procedure, even though their small size increase
the possibility to fail theirs detection, as the distance among cameras and robot arm en-
larges.
Furthermore, in [59] a generalization of the Zhang’s single camera calibration algorithm [40]
for the case of N cameras with a robot arm and a checkerboard is proposed. The calibra-
tion procedure starts with a single camera calibration using Zhang’s algorithm, in order to
get an initial estimate of each camera’s intrinsic parameters and the rigid transformation
between camera and world reference frame. Then, exploiting the camera’s overlapping field
of view and the checkerboard simultaneously detected by all sensors, the estimation of each
camera’s position and orientation relative to a reference camera is computed. It could be
done, by minimizing the reprojection error2 using the Levenberg-Marquardt algorithm [60].
As it is mentioned, the big squared checkerboard is attached to the manipulator’s tool, as
shown in Figure 2.5, and it is moved in several perspectives for capturing the images. Thus,
the robot arm is mainly adopted for controlling the checkerboard movements and solve the
repeatability issue of manual calibration.

Figure 2.5: Multi camera calibration setup proposed in [59].

2The reprojection error corresponds to the Euclidean distance between detected image feature points and
reprojected world points, obtained through the principles of projective geometry.
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Since the checkerboard has to fill at least 20% of the image frame to guarantee acceptable
calibration accuracy, the main requirement of the proposed calibration process is the close-
ness between camera and robot arm, in the range of 60− 80 cm.
All the previous described calibration procedures, concern with multi-camera setup in a
small workcell, namely the sensors are closely positioned to the robot arm. This setup
allowed to overcome the distance issue and to avoid to fail markers or corners detection,
however at the same time it makes difficult the implementation of such methods in a larger
cell in which there may also be a human.
According to described related works and especially to the aim of developing a camera cal-
ibration process for human-robot collaboration tasks, in this thesis we illustrate a robust
calibration procedure which can be applied in a robotic workcell with big-medium sizes,
while maintaining very good calibration accuracy, even though a smaller planar pattern is
adopted. According to this thesis aim the main contribution to the state-of-art is overcoming
the issue of having a checkerboard that does not cover a large part of camera’s field of view
and achieving really accurate calibration results, even in a network of cameras 4-5 meters
away from the robot.
In particular in section 4 we describes more precisley the approach adopted for cameras
calibration and how the robot arm contribute to the whole optimization process.



Chapter 3

Camera models and calibration

Before defining the camera calibration procedure, firstly it is necessary to understand
the image formation process and the camera model structure. The image formation consists
in the radiometric and geometric process by which a 3D object is mapped into a 2D image
plane [61]. In particular, vision starts with the detection of the light. The light is issued by
a source, such as the sun, by rays and it strikes objects which are in its direction of emission.
When the light rays strike an object, most of the light is absorbed and the remainder, which
is not absorbed, is reflected by the object and it is perceived as its color by appropriate
photoreceptors in our eyes [62]. Thus, allowing the object detection and the formation of its
image in our eyes, in particular in our retina, which is a photosensitive surface composed by
the photoreceptor cells: cones and rods [63]. This process can be accomplished by a camera
as well, whose structure is able to capture the scattered light from an illuminated object and
then to collect and focus the light on a dedicated film to create the image. Typically a thin
lens1 or a camera’s aperture2 and the image sensor/film3 are the main elements necessary
to create a camera model, as it is schematically shown in Figure 3.1.

(a) Pinhole camera model allows the transition of
a small amount of light rays coming from an illu-
minated object to strike the image sensor.

(b) Thin lens camera model gathers a bigger
amount of light coming from an illuminated ob-
ject and focuses it on the image sensor.

Figure 3.1: Comparison between the two most typical camera models.

1A lens is a transmitting optical device which focuses or disperses a light beam by means of refraction.
2An aperture is a hole or an opening through which light travels.
3Device that allows the camera to convert photons (light) into electrical signals that can be interpreted

by the device [64].
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Pinhole camera model and camera with thin lens are the camera models illustrated
in Figure 3.1, they are both structured in order to be able to absorb light coming from an
objects and then project it on a film, commonly known as image plane.
In the following subsections it is described accurately the structure of the pinhole camera
model and its perspective projections 3.1, the intrinsic and extrinsic parameters 3.2, camera
lens distortion 3.3 and then the camera calibration process 3.4.

3.1 Pinhole camera model

The pinhole is the simplest camera model structure, which consists in a simple lightproof
box without any lens and with a single tiny hole in the center of one of its sides, and a
light-sensitive film paper positioned inside the box on the side facing this pinhole. In this
camera model only a small amount of light rays, coming from an illuminated object, can
pass through the pinhole to project the inverted image on the opposite box side, where a
sensing film is placed (Figure 3.2). Moreover, in order to get a fairly sharp image, each
point on the surface of an object needs to be projected to one single point on the film. This
can only happen if the pinhole is really reduced to a point (which is physically impossible),
because exactly one light ray would pass through the pinhole from any scene point to the
image plane. Hence, the camera’s aperture defines how much light can pass through it, then
the size of the pinhole plays a key role in image formation. The smaller the pinhole, the
sharper the image. However a small hole means that the amount of light passing through
the hole and striking the surface of the film decreases. Therefore a small pinhole requires
a longer exposure time4, which, for real pinhole cameras, increases the risk of producing a
blurred image if the camera is not perfectly still.

Figure 3.2: Pinhole camera model structure, where a 3D object is projected on the image
plane, at the opposite side of the camera.

Although, this camera model presents these limitations, which are partly overcome by the
thin lens addition on the camera model (Section 3.3), the pinhole perspective projection is
mathematically convenient to analyze the image formation process because it provides an
acceptable approximation of the mapping between 3D points and their projection onto 2D

4Exposure time is the length of time that the film inside the camera is exposed to light.
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coordinates. In Figure 3.2 is illustrated the structure of the pinhole camera model and the
following elements can be highlighted:

• the pinhole C, is called center of projection and it defines the aperture of the camera;

• the image plane R is the yellow plane in which is projected the inverted image;

• the optical axis coincides to the red line passing through the center C and perpen-
dicular to the image plane, whose intersection is the principal point p*;

• the focal plane F is the green plane which contains C, parallel to the image plane;

• the focal distance f refers to the distance between the center C and R;

• the virtual image plane V is the purple plane located in front of the camera at the
focal distance f which virtually contains the upright image of the scene;

These elements and the camera structure just described, are necessary to define the mathe-
matical relationship between a 3D real object and its correspondent projection onto the 2D
image plane. Perspective projection, as shown in Figure 3.2, illustrates accurately how the
light coming from a 3D objects and passing through the tiny hole, creates inverted images
on the image plane R. However it is sometimes convenient to take into account the corre-
spondent upright image on the virtual image plane V, associated to the plane in front of the
pinhole, at the distance f , in order to consider the positive coordinates on z axis.
In Figure 3.3 it is described how the 3D scene points M = (X,Y, Z) is mapped to the
correspondent point m = (x, y, z), according to the coordinate system (C, x, y, z), where the
origin C corresponds to the pinhole. In particular, since m lies on the image plane V we
have z = f , then m = (x, y, f).

Figure 3.3: Perspective geometry of pinhole camera model.

Moreover, since C, M and m are collinear, we can write
−−→
Cm = λ

−−→
CM , for some values λ.

So, it can be written the following geometric relationship:
x = λX

y = λY

f = λZ

⇐⇒ λ = x/X = y/Y = f/Z (3.1)
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Figure 3.4: Perspective geometry of a 3D point projected on Y and X axis.

therefore, according to equation (3.1) and the triangle trigonometry, as it is shown in Figure
3.4, the coordinates (x, y) of the image point m are the following:x = fX/Z

y = fY/Z
(3.2)

The equations 3.1 and 3.2, which describe the perspective projection from M = (X,Y, Z)

to m = (x, y), define the transformation from world coordinate system to image coordinate
system that can be shown by the following map:

M =

XY
Z

→ m =

"
f X

Z

f Y
Z

#
=

"
x

y

#
(3.3)

where m = (x, y) is given with respect to the 2D coordinate frame (O, x, y) as in Figure 3.5.

Figure 3.5: Projection of point p = (x, y) on the virtual image plane V.

The equation that compute this mapping from the 3D point M = (X,Y, Z) to a 2D point
m = (x, y) is called perspective projection transformation.
In order to analyze this transformation and to define it as linear mapping , it is convenient
to transform the 3D point M from cartesian coordinates (X,Y, Z) ∈ R3 to homogeneous
coordinates M̃ = (X,Y, Z,W ) ∈ R4 as explained in [65]. The transformation from cartesian
coordinates to homogeneous coordinates are done by adding an extra coordinate W5 so that

5For simplicity, it is often equal to 1.
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the dimensionality will be increased by 1.

Cartesian coords Homogeneous coords

3D M =

XY
Z

 M̃ =


X

Y

Z

1


2D m =

"
x

y

#
m̃ =

xy
1


Hence, according to the table 3.1 the mapping reported in equation (3.3) can be written as
a linear mapping, exploiting the representation in homogeneous coordinates, from the 2D
image point m̃ = (x, y, 1) to M̃ = (X,Y, Z, 1), as follow:

Z

xy
1

 (3.2)
= Z

fX/Z

fY/Z

1

 =

fXfY
Z

 =

f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 (3.4)

where it is assumed the principal point p* at the origin of image reference frame (O, x, y)

and the camera at the center of world coordinates. This linear mapping can be written
compactly with the following equation:

m̃ ≃ PM̃ with P =

f 0 0 0

0 f 0 0

0 0 1 0

 (3.5)

where the matrix P is the 3x4 matrix called camera projection matrix. It defines the
mapping R3 → R2, namely the transformation from a world 3D point M̃ to the correspon-
dent 2D point m̃ with respect to the image reference frame.

3.2 Intrinsic and extrinsic parameters

The perspective equation (3.4) derived in section 3.1 is valid only assuming that the
principal point p* is placed at the origin of image plane (O, x, y) and the camera coordinates
frame correspond to the world coordinates frame. However, the world and the camera are
generally related by a set of parameters, such as the size of the pixels, the position of the
image center, and the position and orientation of the camera with respect to a fixed world
frame as well as the focal distance of the camera. In this section these parameters are
identified and accurately described. In particular it is analyzed the distinction between the
intrinsic parameters necessary to relate the camera’s coordinate system to the image
coordinate system and the extrinsic parameters which determine the position and the
orientation of the camera coordinates system with respect to the world coordinates system.
Hence, the principal point p* is generally positioned in pixel coordinates (cx, cy) on the
image plane as shown in Figure 3.6 and moreover coordinates (x, y) of the image point m

are usually expressed in pixel units (u, v).
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Figure 3.6: Perspective projection of Pinhole camera model, considering a principal point p*

at coordinates (cx, cy) of image plane.

Therefore the coordinates (x, y) of m defined in equation 3.2 can be rewritten in pixel
coordinates (u, v) as follow:x = f X

Z

y = f Y
Z

→

u = kuf
X
Z + cx

v = kvf
Y
Z + cy

(3.6)

where ku and kv are the inverse of the pixel dimension in the u and v direction respectively
[pix/m], (cx, cy) are the coordinates in pixels of the principal point p* and f is the focal
distance. The parameters (ku, kv, cx, cy, f) are defined as intrinsic parameters of a camera
and they are necessary to project a 3D point with respect to camera reference frame to a 2D
point with respect the image reference frame. A further notation is αu = kuf and αv = kvf

which are the focal lengths expressed in pixels. According to the pixel coordinates of m of
the equation (3.6), the linear mapping described in equation (3.4) can be rewritten as follow:

uv
1

 ≃
kuf 0 cx 0

0 kvf cy 0

0 0 1 0



X

Y

Z

1

 = K [I|0]Xcam (3.7)

where K is the camera calibration matrix and Xcam denotes the 3D points coordinates
with respect to the camera coordinates frame.
However, in general, world 3D points are expressed with respect to a world coordinate
frame different from the camera coordinate frame. The two coordinates systems are related
through the translation vector t and a rotation matrix 3x3 R.
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The transformation between the two reference frames can be described by the following
equation:

Xcam =


X

Y

Z

1


cam

= GXworld =

"
R t
0 1

#
X

Y

Z

1


world

with R =

rT1rT2
rT3

 t =

t1t2
t3

 (3.8)

where G denotes the rototranslation which transforms the 3D point Xworld in world coor-
dinates frame to the 3D point Xcam in camera coordinates frame, as illustrated in Figure
3.7. In particular, when the rotation matrix R is written as the product of three elemen-
tary rotations around each axis, the row vectors ri for i = 1, 2, 3 can be written in terms
of the corresponding three angles. Thus, the 3 elementary rotations related to R and the
3 translation components t1, t2, t3 on x, y, z axis respectively, are defined as the extrinsic
parameters. These 6 parameters define the camera orientation and position with respect
to a world coordinate system.

Figure 3.7: Perspective projection of Pinhole camera model, considering a principal point p*

at coordinates (u0, v0) of image plane and a camera at R,t of world coordinates.

Hence, considering a general scenario, in which a principal point is placed at (cx, cy) on the
image plane and the camera is transformed from the world reference frame by a rotation R

and translation t = [t1, t2, t3]
T , we can derive the following camera projection matrix:

P = K[I|0]G = K[R|t] =

αurT1 + cxrT3 αut1 + cxt3

αvrT2 + cyrT3 αvt2 + cyt3

rT3 t3

 (3.9)

Thus, the linear mapping reported in the equation (3.5) is rewritten as follow:

m ≃ K[I|0]MC = K[I|0]GM = K[R|t]MC (3.10)

where G corresponds to the matrix of extrinsic parameters and K is the matrix of in-
trinsic parameters.
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It can be observed that the world points are transformed to camera coordinates using the
extrinsics parameters and points in the camera coordinates are mapped to 2D points in the
image plane using the intrinsics parameters, as it is schematically reported in Figure 3.8.

Figure 3.8: Extrinsic parameters transform the 3D point from the world coordinate to camera
coordinates. Intrinsic parameters maps the 3D point from the camera coordinates to the
image plane.

3.3 Camera with lenses

Most real cameras are equipped by lenses. This equipment allows the camera to gather
more light than the simple pinhole camera model. As described in section 3.1 the pinhole
camera model is ideally structured in order to let pass only a single light ray coming from
each point of the 3D world scene and focus it on the correspondent 2D point on the image
plane, however, due to the size of the real pinhole, in general each point in the image plane
is illuminated by a cone of light rays. For this reason, the larger the hole, the wider the
cone and then the brighter the image, but a large pinhole produces blurry pictures. Instead
shrinking the tiny hole gives sharper images but reduces the amount of light reaching on the
image plane. The addition of the lens in the camera model allows to gather more light rays
coming from a point in the world rather than one light ray as in pinhole model, overcoming
the crispness and brightness issues of pinhole camera model. As it is illustrated in Figure
3.9, by adding a thin lens all rays of light that are emitted by an object point are refracted
by the lens such that they converge to a single point on the image plane, overcoming the
problem of low brightness. However this property does not hold for each 3D point at dif-
ferent distance from the lens, for instance for a point P which is closer than M to the lens,
the corresponding projection on the image plane is blurred or out of focus (see Figure 3.10).
This lens property, called depth of field, defines the range of distance from the camera on
which an object is in focus. Another interesting property of the lens is that all the light rays
which travel parallel to the optical axis pass through a common point called focal point,
shown in Figure 3.9. The distance between the focal point and the center of the lens is
known as focal length and it strongly depends on the curvature6 of the lens [66].

6Curvature represents how curved a surface is or how much it has deviated from being straight/planar.
It is simply the reciprocal of the radius of the curve.
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Hence, considering the previous lens properties, thin lens model can be illustrated as follow:

Figure 3.9: Perspective projection of thin lens model.

In particular f denotes the focal length7 f of the lens, which is strictly related to the lens
characteristics, di is the distance between the lens center and the image plane and dO is the
distance from the object to the lens. From the thin lens model structure can be derived the
following this lens equation:

1

dO
+

1

di
=

1

f
(3.11)

which determines at what distance dO from the lens, an object is in focus. In particular
an object that does not satisfy this constraint is not in focus and creates the phenomenon
called circle of confusion, defined as the optical spot where a point of light grows to a circle
that can be seen in the final image [67]. This phenomenon is illustrated in Figure 3.10.

Figure 3.10: Lens can gather more light rays coming from the objects, but only a set of points
at a specific distance are in focus, the others are out of focus and then creates on the image
plane a circle of confusion.

7It is computed by f = R
2(n−1)

where R is the lens spherical surface and n is the refraction index [63].
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This issue is caused by a cone of light rays coming from a lens not coming to a perfect focus
when it is projected onto the image plane.
A further property of the lens is its field of view ϕ, or FoV, which is defined as the maximum
area of a sample that a camera can image (see Figure 3.11).

Figure 3.11: Camera FoV is strictly related to the size of film and focal length of the lens.

As it can be observed from the equation 3.12, the FoV is strictly related to the focal length
f of the camera and the sensor size a [68]. It can be computed as follow:

ϕ = arctan
a

2f
(3.12)

In particular, assuming that the focal length of the lens remains constant, the larger the
sensor the larger the field of view. The sensor size is determined by both the number of
pixels on the sensor, and the size of the pixels.

Considering the properties previously analyzed, it is assumed that the cameras do not have
any distortions, namely the straight lines in the world remain straight line in the image.
However, many lenses suffer from optical distortions, caused by the optical design of lenses.
The most common lens distortions which occur, especially on wide-angle lenses8 [69] is the
radial distortion. This lens distortion is caused as a result of the shape of lens and hap-
pens when light rays bend more near the edges of a lens than they do at its optical center.
The radial distortions can be classified in two main aberrations: pincushion distortion and
barrel distortion. In particular, pincushion distortion consists in a projected distance
increment beyond the expected locations as one moves farther away from the centre of the
image plane and displays the coordinates in an image towards the image center. Instead the
barrel distortion is the projected distance reduction from the expected locations as one
moves farther away from the centre of the image plane and the coordinates in an image are
placed away from the image center. In Figure 3.12 are illustrated images affected by these
two radial distortions.

8A wide angle lens is any lens with a short focal length and a wide field of view.
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Figure 3.12: Comparison among the original image at the left, its barrel distortion and at
the right the pincushion distortion.

A further lens distortion that can affect the lens model is the tangential distortion, which
arises from the assembly process of the camera as a whole, namely it occurs when the lens
and the image plane are not parallel. The effect of this lens distortion is illustrated in Figure
3.13.

Figure 3.13: Tangential distortion of the image plane where the main issue is referred to the
skewness of the image plane.

In particular, the image coordinates, when radial distortions and tangential distortions oc-
cur, can be relocated according to the following equations:xcorrelated = x+ x · (1 + k1r

2 + k2r
4 + k3r

6) + 2p1xy + p2(r
2 + 2x2)

ycorrelated = y + y · (1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2 + 2p2xy)
(3.13)

where x, y denote the undistorted pixel locations. k1, k2 and k3 are the radial distortion
coefficients of the lens, p1 and p2 are the tangential distortion coefficients and r2 = x2 + y2.



26 Camera models and calibration

3.4 Camera calibration

As it is introduced in section 1 the camera calibration is the process of estimating the
intrinsic and extrinsic parameters of the camera. Specifically, it is necessary referring to the
following projective mapping from world coordinates to pixel coordinates:

λm̃ = K[I|0]GM̃ = K[R|t]M̃ (3.14)

where λ is an arbitrary scale factor, m̃ is the 2D point on the image plane in pixel homoge-
neous coordinates , K is the matrix of intrinsic parameters, G is the roto-translation matrix
composed by extrinsic parameters and M̃ is the 3D world point in homogeneous coordinates.
In particular, camera calibration consists in the optimization process required to determine
the matrices K, R and t.
Most used approaches for camera calibration are:

• Direct linear transformation (DLT) method which exploits a set of control points
of an object whose space coordinates are already known. It essentially compute the
linear mapping between the 2D image space coordinates and the 3D object space
coordinates, assuming that the camera does not suffer by any distortion such as for
the pinhole camera model [70, 71, 72].

• Zhang’s method [40]. It consists in a calibration technique only requiring the camera
to observe a planar pattern shown at a few (at least two) different orientations. In
particular in the first step, it adopts the homography9 to identify the map between a
model point M and its image m and then it takes into account lens distortion, adopting
nonlinear optimization technique based on the maximum likelihood criterion.

• Bouguet’s method which uses lines and planes in a consistant framework allowing
to identify intrinsic and extrinsic camera parameters, and then extract closed form
solutions for them, by exploiting geometrical constraints existing in the scene [73]. It
is also released as Camera Calibration Toolbox for Matlab [74].

They are three different camera calibration methods which share the same basic procedure.
In particular, they exploits a pattern whose space 3D geometry is already known (for in-
stance checkerboard, aruco board10 [75], etc.). They require to capture more images of that
calibration target oriented in different perspective and to extract all corners/control points.
Then it is implemented an optimization process, such that the squared distance between the
observed image control points and their theoretical positions is minimized, with respect to
the intrinsic and extrinsic parameters of the camera.
To get started to analyze the basic procedure of camera calibration process, it is assumed
that the camera does not suffer by any distortion. Considering the first part of the camera
matrix equation λm̃ = K[I|0]GM̃ = PM , a set of correspondences between 2D control
points m̃i = [xi, yi]

T (i = 0, 1, . . . , N) on the image plane and the related 3D points Mi

are required, in order to compute the camera matrix 3x4 P . For this reason a calibration
pattern with known geometric features is necessary, such as the checkerboard in Figure 3.14.

9It is a matrix which maps the points residing on a plane from world coordinates to the corresponding
image coordinates.

10It is a particular planar board composed by several markers arranged in a grid.
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Figure 3.14: Checkerboard with 4x7 corners and with known geometry. The distance between
each corner on the x axis is equal to sx, the distance on the y axis is sy.

Such pattern allows to list the N 3D corners position as M0(0, 0, 0), M1(sx, 0, 0), etc., w.r.t.
the checkerboard reference frame whose origin is placed in M0 and then the third coordinate
is z = 0. Moreover detecting these points in the captured image allows to determine the
correspondent 2D points m1, . . . ,mN on the image. Hence, it can be set up a linear system
of N correspondences as follow: 

λm1 = PM1

. . .

λmN = PMN

(3.15)

In particular, since each correspondence of the linear system provide two equations, one for
the x coordinate and the other for the y coordinate, we need N ≥ 6 correspondences in
order to determine the 11 camera parameters (5 intrinsic and 6 extrinsic, see Section 3.2).
Furthermore, in order to build the optimization problem to determine the matrix P , it is
convenient to rewrite that matrix P in its vectorized version pstack as follow:

P =

pT
1 p14

pT
2 p24

pT
3 p34

 =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 −→ pstack =



p11
...

p14

p21
...

p24

p31
...

p34



∈ R12×1 (3.16)



28 Camera models and calibration

Figure 3.15: Example of correspondences (mi,Mi) between the image plane and the target
plane in the 3D world for a checkerboard.

Hence, given the correspondences (mi,Mi)i=0,...,N , as they are illustrated in Figure 3.15,
it can be formalized a linear problem as Apstack = 0 where the matrix A contains the
information about the correspondences and the unknown vector pstack has to be determined.
In particular, we can derive from the linear system (3.15) the following equations:

λxi = pT
1 Mi + p14

λyi = pT
2 Mi + p24

λ = pT
3 Mi + p34

=⇒

xi =
pT

1 Mi+p14

pT
3 Mi+p34

yi =
pT

2 Mi+p24

pT
3 Mi+p34

∀i = 0, . . . , N (3.17)

where the last equations are defined for each correspondences (mi,Mi)i=0,...,N . The system
(3.17) can be rewritten as:pT

3 Mixi + p34xi = pT
1 Mi + p14

pT
3 Miyi + p34yi = pT

2 Mi + p24
=⇒

pT
3 Mixi + p34xi − pT

1 Mi − p14 = 0

pT
3 Miyi + p34yi − pT

2 Mi − p24 = 0
(3.18)

From equation’s system (3.18), by swapping the transpose operation of the two vectors, we
obtain: MT

i p3xi + p34xi −MT
i p1 − p14 = 0

MT
i p3yi + p34yi −MT

i p2 − p24 = 0
(3.19)
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Then we can derive the matrix form representation of the linear problem as follow:

"
−MT

i −1 0 0 MT
i xi xi

0 0 −MT
i −1 MT

i yi yi

#


p1

p14

p2

p24

p3

p34


= Aipstack = 0 (3.20)

by repeating the Ai ∈ R2×12 matrix for N times, one for each correspondences (mi,Mi)i=0,...,N

and by stacking them we obtain the final matrix A ∈ R2N×12 as follow:


A1

A2

...
AN





p1

p14

p2

p24

p3

p34


= Apstack = 0 (3.21)

Hence, although theoretically the rank(A) is 11, in practice, since the correspondences
(mi,Mi)i=0,...,N are provided by noisy measurements, we have rank(A) = 12, so the opti-
mization problem can not be solved exactly. Then the optimization problem can be rewritten
in the following form:

p* = argmin
p
||Apstack||2 such that ||pstack|| = 1 (3.22)

The solution of this optimization problem is given by the singular value decomposition of
A = USV T corresponding to the smallest singular value of A [76].
After re-transforming the vector p into the initial matrix P = K[R|t], the extrinsic and
intrinsic parameters can be determined, in particular since the SVD-solved of P is known
up to scale, the true values of the camera matrix are some scalar multiple of P as follow:

αP = [A|b] =

aT
1 b1

aT
2 b2

aT
3 b3

 =

fxrT1 − fx cot θrT2 + cxrT3 fxtx − fx cot θty + cxtz
fy

sin θr
T
2 + cyrT3

fy
sin θ ty + cytz

rT3 tz

 (3.23)

where fx and fy are the focal lengths in x and y coordinates respectively, r1, r2, r3 are three
rows of the rotation matrix R, tx, ty, tz are the three components of translation vector t, α is
an unknown scale factor and θ is the angle between the two image axes which is not perfectly
equal to π

2 and it is given by camera coordinate system skewness, due to some manufacturing
error. In particular, exploiting the property of rotation matrix such that its rows have unit
length and they are perpendicular to each other and considering θ ≃ π

2 =⇒ sin θ > 0 we can
derive the following intrinsic parameters:

α = ± 1
ε

cx = ρ2(a1 · a3)

cy = ρ2(a2 · a3)

θ = cos−1 − (a1×a3)·(a2×a3)
||a1×a3||·||a2×a3||

fx = ρ2||a1 × a3|| sin θ

fy = ρ2||a2 × a3|| sin θ

(3.24)
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and the extrinsic parameters: 
r1 = a2×a3

||a2×a3||

r2 = r3 × r1

r3 = ρa3

T = ρK−1b

(3.25)

In particular as described in Zhang’s paper [40] the solution of the equation (3.22) is obtained
through minimizing an algebraic distance which is not physically meaningful. Hence it can
be refined through maximum likelihood inference. Since the correspondences are always
affected by noise, M images of the planar pattern are given and there are N control points
on the calibration pattern. Assuming that the image points are corrupted by independent
and identically distributed noise, the maximum likelihood estimate can be obtained by
minimizing the following functional:

MX
j=0

NX
i=0

||mji − f̂(K,Rj , tj ,Mji)||2 (3.26)

where f̂(K,Rj , tj ,Mj) is the projection of 3D points Mi of image j according to the equation
(3.15). Hence, minimizing (3.26) we reformulate the problem as a nonlinear minimization
problem, which is solved with the Levenberg-Marquardt Algorithm [60].
In general scenario, where a camera is equipped by at least one lens, the camera calibration
is necessary to determine as well the radial distortion parameters of the lens. As proposed
by the Zhang’s method, the coefficients k1 and k2 of the radial distortion, can be estimated
after the determination of the other parameters. Then considering the image coordinates
defined by the equation (3.13), and taking into account only k1 and k2 for simplicity, we
have: xcorrelated = x+ x · (k1(x2 + y2)2 + k2(x

2 + y2)4)

ycorrelated = x+ y · (k1(x2 + y2)2 + k2(x
2 + y2)4)

(3.27)

that can be rewritten in matrix form as follow:"
x(x2 + y2) x(x2 + y2)2

y(x2 + y2) y(x2 + y2)2

#"
k1

k2

#
=

"
xcorrelated − x

ycorrelated − y

#
(3.28)

Hence, given M images with N points, all 2MN equations can be stacked together in order
to obtain the equation Dk = d where k = [k1, k2]

T . Then the linear least-squares solution
is given by

k = (DTD)−1DT d (3.29)

In alternative, the functional (3.26) can be extended to the following form and then mini-
mized in order to estimate the complete set of parameters:

MX
j=0

NX
i=0

||mji − f̂(K, k1, k2, Rj , tj ,Mj)||2 (3.30)

where f̂(K, k1, k2, Rj , tj ,Mj) is the projection of 3D points Mi of image j considering the
lens radial distortions.



Chapter 4

Proposed eye-on-base calibration
method

As introduced in section 1.2, the main purpose of this thesis was developing a novel
multi-sensor eye-on-base calibration method to be adopted in a robotic workcell for human-
robot collaboration tasks as shown in Figure 4.1.

(a) Virtual robotic workcell setup designed in a sim-
ulator.

(b) Real robotic workcell setup designed in our re-
search laboratory Robot Vision Lab.

Figure 4.1: Setup examples of a multi camera system and a robot arm for eye-on-base
calibration for robotic workcells.

For this purpose, in this thesis we propose a calibration process for a robotic workcell with
a multi-camera system that is fast to be accomplished, especially in a real scenario where
it can happen that a camera is unintentionally touched or moved from its position and a
new calibration is required and it is necessary not to stop the working system for a long
time. At the same time, it is a calibration process as general as possible, namely that it
can be implemented with different setup and with different hardware system, in order to be
suitable for each possible environment. Moreover, as it will be described more precisely in
experiments and results section 6, it is also really accurate, in order to ensure human operator
safety and to allow an excellent collaboration working system even for more complex tasks.
This section is focused on the accurate description of the proposed eye-on-base calibration
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method and the analysis of mathematical theory which is behind such optimization process.
In particular in the subsection 4.1 is described the first step of the calibration technique
which deals with the single camera eye-on-base calibration process. In the subsection 4.2
the final multi-camera eye-on-base calibration process is accurately analyzed. Moreover in
the subsection 4.3 an helpful function is described which helps to guarantee the correctness
and the accuracy of the checkerboard detection.

4.1 Single camera eye-on-base calibration

The first step for this thesis was to accomplish a single camera eye-on-base calibration
process which can be implemented one time for each sensor of the camera network in the
robotic workcell. In particular this proposed calibration approach consists in a set of small
processes that work together to achieve the final calibration of the camera with respect to
the robot arm. The structure of the whole calibration framework is shown in Figure 4.2.

Figure 4.2: The whole proposed eye-on-base calibration process. It is divided in three subpro-
cesses, one dedicated to the image acquisition, one related to the robot motion and the other
dedicated to the optimization process of the final calibration.

As shown in Figure 4.2, the whole calibration process is split in three different modules
which works together. It can be outlined the robot motion phase, which controls the
correct execution of a predefined trajectory1 by the robot arm, in order to move the robot
in front of the camera. This phase works in parallel with image acquisition phase, where
the camera is programmed to capture several checkerboard images, one for each pose of the
robot arm. Moreover, during the images capture, the checkerboard is required to be clearly
visible and correctly detectable, to guarantee more accuracy on the calibration. In order
to accomplish this step and to store all the calibration images correctly, it is implemented
a filter which guarantees to store, only the checkerboard images where control points are

1It was previously stored one trajectory for each camera to be adopted for the calibration of each of these.
The trajectory is stored in order to move the checkerboard through the robot arm in front of the sensor on
several perspectives.
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visible and they can be accurately extracted (see section 4.3). Each time that an image is
filtered and then stored, even the corresponding robot pose is stored. Hence, when the robot
trajectory is concluded, all the robot poses and images stores are given as input to the final
optimization process.
According to the considerations made in the introduction 1, the cameras intrinsic parameters
are already accurately calibrated through a dedicated process, then in this thesis we focus
only on the extrinsic calibration. Hence, the calibration phase is the final step of the whole
process, which is the optimization necessary to determine the extrinsic parameters, namely
the rototranslation from the robot base frame to the camera frame and the transformation
between the checkerboard and the end-effector. This phase exploits the checkerboard images
and the correspondent poses, in order to accomplish the calibration. Moreover it requires
an initial guess2 of the rototranslation matrices that have to be estimated as starting point
for the iterative algorithm.
The calibration phase of our proposed method solves the eye-on-base calibration as a non-
linear optimization problem. It generally consists in a search iterative algorithm which
computes the solution to a least squares problem in each iteration through the Levenberg-
Marquardt algorithm [60]. The eye-on-base calibration problem can be mathematically
formalized in the following equation:

AX = ZB (4.1)

where A and B are two relative poses transformations that are already known or provided,
instead the matrices X and Z are the unknown transformations that have to be estimated.
This relation can be derived, by observing the robotic workcell setup shown in Figure 4.3.

Figure 4.3: Setup with a single camera and the robot arm with a checkerboard mounted on
its end-effector, where are denoted the transformations between all reference frames.

2It is a starting value for most optimization problems which use search algorithms, since those algorithms
are mainly deterministic and iterative.



34 Proposed eye-on-base calibration method

In particular, the reference system C denotes the camera frame, W identifies the world
reference frame which corresponds to the robot base, B is the reference frame of the planar
board and E denotes the end-effector reference frame. The outlined transformations between
the reference frames are:

• TW
C which denotes the rototranslation from the world reference frame W to the camera

frame C;

• TW
E describes the relative pose from the world’s frame W to the end-effector reference

frame E;

• TE
B is the transformations from the end-effector’s frame E to the checkerboard refer-

ence frame B;

• TB
C describes the relative pose from checkerboard reference frame B to the camera’s

frame C.

In our proposed method, the optimization process is necessary to determine the two un-
known transformations TW

C and TE
B . All the additional transformations contribute to the

formulation of the entire optimization problem, but many of them are constant and there-
fore not optimized during the entire calibration process, for example, the transformation
matrix TW

E . This matrix is already given by the kinematics of the robot arm adopted for
the experiments. This relative pose is provided with an high accuracy, in our specific case
its deviation with respect to the real transformations TW

E is less than 1mm as described by
the official data sheet of the manipulator, namely a Franka Emika panda manipulator used
in our experiments [77].
According to the previous remarks and taking into account the set of N 3D control points
PB
i = [Xi, Yi, Zi, 1] with i = 0, . . . , N that are the 3D corners with respect to the checker-

board reference frame denoted by B, the eye-on-base optimization problem described in the
equation (4.1) can be generally rewritten in the following form:

AX = ZB =⇒ TW
E TE

B PB
i = TW

C TC
B PB

i with i = 0, . . . , N (4.2)

where TC
B = (TB

C )−1, the matrices A = TW
E , B = TC

B are already provided and the unknown
matrices X = TE

B , Z = TW
C have to be estimated. In particular in order to accomplish

the optimization process, the problem is usually reformulated as a minimization problem
in order to determine the unknown matrices by minimizing the squared distance between
the reprojected 3D control points through two distinctive transformation chains: TW

E TE
B PB

i

and TW
C TC

B PB
i .

Hence the generic starting point is the minimization of the sum of squared difference between
AX and ZB over M positions of the robot arm’s trajectory:

M−1X
j=0

||AjX − ZBj ||2 (4.3)

This functional that has to be minimized can be reformulated by pre-multiplying both terms
by TC

W and expliciting the transformation matrices as follow:

M−1X
j=0

N−1X
i=0

TC
W (TW

E )jT
E
B PB

ij − (TC
B )jP

B
ij

2

(4.4)
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In our specific case, where we aim to minimize this functional in pixel terms through the
re-projection of the 3D points Pij on the image plane, we can derive the following final
optimization problem related to a 2D distance minimization where the transformation TC

B

is not taken into account:

argmin
TW
C ,TE

B

M−1X
j=0

N−1X
i=0

K [I|0]TC
W (TW

E )jT
E
B PB

ij − pij
2

(4.5)

where the matrix K corresponds to the matrix of intrinsic parameters that in our works is
already provided, pij is the ith detected corner on the jth image of the checkerboard through
specific functions based on Harris corner-detector [78, 79] and K [I|0]TC

W (TW
E )jT

E
B PB

ij is the
projection of points Pij in image j.
The proposed method for eye-on-base calibration it was solved as an optimization problem,
namely minimizing the 2D distance between the reprojected 3D points Pij on the image
plane and the correspondent detected 2D corners. It can be summarized by the following
minimization problem:

argmin
TW
C ,TE

B

M−1X
j=0

N−1X
i=0

pPij − pDij

2

= argmin
TW
C ,TE

B

M−1X
j=0

N−1X
i=0

 
ux

uy

!P

ij

−

 
ux

uy

!D

ij

2

(4.6)

where P denotes the projected 2D points on the image plane, so pPij = K [I|0]TC
W (TW

E )jT
E
B PB

ij

and D refers to the detected corners, namely pDij = pij .
The algorithm in pseudo-code which describes the just proposed calibration process, accord-
ing to the whole calibration framework of the Figure 4.2 is shown in the algorithm 1.

Algorithm 1 Single camera eye-on-base calibration
K ←matrix of intrinsic parameters;
X0, Z0 ←initial guess of TE

B and TC
W ;

M ← number of predefined trajectory poses;
for i = 0 : M − 1 do

Move the robot arm to pose i;
Detect checkerboard & extract corners;
Filter(extracted corners);
if filter == true then

Save image i;
Save pose i;

end if
end for
Robot trajectory concluded;
Given saved calibration images, correspondent poses and the initial guess;
Calibration phase → argmin

TW
C ,TE

B

P
j

P
i pj − dj

2

Filter(. . . section 4.3 . . . );
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4.2 Multi-camera eye-on-base calibration

As it is introduced in previous sections the main aim of this thesis was to propose a
multi-camera eye-on-base calibration method.
In section 4.1 is proposed the single camera calibration which can be adopted to calibrate
a robotic workcell equipped by a camera network, but implementing a single calibration for
each camera with respect to the robot arm, making the whole process very time-consuming.
In this section, a novel method for multi-camera eye-on-base calibration is described. It
computes the whole calibration of a robotic workcell, namely determines the extrinsic pa-
rameters of the camera network with respect to the robot arm through a single optimization
problem.
The whole calibration framework can be summarized in Figure 4.4, where it is highlighted
that the multi-camera calibration provides the calibration of the whole camera network and
the manipulator through a single optimization process.

Figure 4.4: The whole process for multi-camera eye-on-base calibration. It is divided in
three subprocesses, one dedicated to the image acquisition by all cameras, one related to the
robot motion and the other dedicated to the optimization process for the robotic workcell
calibration.

It can be observed from Figure 4.4 that even in the proposed method for multi-camera
eye-on-base calibration, the whole process is split in three different modules which works
together. As it was described for the single camera calibration, it can be outlined the robot
motion phase which controls the execution of a predefined trajectory by the robot arm.
In particular the trajectory is defined in order to move the checkerboard mounted on the
robot in front of each camera around the robot workspace and moreover the trajectory is
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determined in order to have some robot poses in which the checkerboard can be seen simul-
taneously by couples of cameras. The image acquisition phase works in parallel with the
robot motion, and it handles the images capture process. In particular at each pose achieved
by the robot, the cameras are programmed to capture the images of the checkerboard if and
only if they are able to detect the checkerboard. In the event that a camera cannot observe
the calibration checkerboard it does not capture the image. Instead when one or more cam-
eras can simultaneously detect a checkerboard, those cameras capture the images and store
the pictures in a dedicated folder for each sensor, and the correspondent pose of the robot
is stored in a proper folder.
In order to accomplish this phase, it was implemented a state machine3 to handle the robot
and camera behaviours during the image acquisition. The state-machine structure is sum-
marized in the Figure 4.5.

Figure 4.5: State machine implemented in order to handle the image acquisition phase.

3State machine is a task-level architecture for rapidly creating complex robot behavior.
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Each state of the state-machine in Figure 4.5 is defined by the blocks, which have the
following roles:

• START: the robot is moved to the first position of the trajectory;

• MOVE: the robot is moved to the next pose of the trajectory;

• IMAGE ACQUISITION: each camera which can detect the checkerboard, cap-
tures the image that will be filtered, if correctly detected the image is stored with its
corresponding robot pose;

• NEXT: it manage the trajectory counter updating, if there exists other poses to be
executed, it goes back to MOVE state, else the image acquisition moves to END state
because the trajectory is concluded.

Then, the stored calibration images and the stored robot poses are given as input to the
module related to optimization process. This multi-calibration process is implemented to
handle images coming from different cameras and in particular it is realized in order to de-
termine the extrinsic parameters of all camera with respect to each other and with respect
to the robot base. Moreover, as for the single camera calibration, this method requires an
initial guess as well of the rototranslation matrices that have to be estimated.
This implementation is a novel method, which consists in a single optimization process to
calibrate more cameras in a robotic workcell, avoiding to accomplish a calibration for each
camera and then to adopt N times the single camera calibration process shown in Figure
4.2.
The multi-camera eye-on-base calibration can be mathematically formalized as reported in
equation (4.1) where the unknown matrices X and Z can be derived by observing the robotic
workcell setup shown in Figure 4.6.
With respect to the robotic workcell with a single camera, more cameras are added, and their
reference frames are denoted with C1, C2 and C3. Moreover the transformations between
cameras are denoted by TC1

C2
, TC2

C3
and TC3

C1
, which have to be estimated. The transfor-

mations between the cameras and the planar board are specified by TB
Ci

with i = 1, 2, 3

but they are not exploited for our optimization problem. The transformation matrix TW
E

between the robot base frame and the end effector frame, is given by the robot kinematics.
Furthermore the transformations TW

Ci
between the cameras and the world reference frame

and the transformation TE
B are the relative poses that have to be estimated through the

optimization process.
According to these transformations, considering the set of N control points PB

i = [Xi, Yi, Zi, 1]

with i = 0, . . . , N which are the 3D corners on the checkerboard reference frame and whereas
there are K cameras and it can happen that two cameras Cm and Ct can simultaneously
detect the checkerboard, the eye-on-base calibration described in the equation 4.1 can be
formalized as follow:

AX = ZB =⇒ TW
E TE

B PB
i = TW

Cm
TCm

Ct
TCt

B PB
i (4.7)

where (m, t)i are the couples of camera that can simultaneously detect the checkerboard.
Moreover, the transformation matrices that have to be estimated are X = TE

B from the
end-effector to the checkerboard, and the transformation matrix Z = TW

Cm
TCm

Ct
which can
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Figure 4.6: Setup with a camera network of three cameras and the robot arm with a checker-
board mounted on its end-effector, where are denoted the transformations between all refer-
ence frames.

be decoupled in TW
Cm

and TCm

Ct
. These two matrices correspond to the relative pose between

the generic camera m and the robot base W and the transformation between the camera t

and the camera m.
As in the single camera calibration of section 4.1, in order to accomplish the optimization
process, the problem is formulated as a minimization problem. The main aim is minimizing
the root mean square error between the reprojected 3D points into the 2D points on the
image plane and their corresponding detection.
According to the equation 4.7 the functional can be rewritten as follow:

M−1X
j=0

N−1X
i=0

TCt

Cm
TCm

W (TW
E )jT

E
B PB

i − TCt

B PB
i

2

(4.8)

where M is the number of trajectory poses and N is the number of the control points on
the checkerboard.
Hence, in order to formulate this functional in terms of pixels and to derive the final opti-
mization problem, it is considered the projection of 3D corners onto the image plane through
the matrix of intrinsic parameters and the second term is the 2D corners detected pij for
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each image j by the camera t. Thus, the final optimization problem can be written as follow
for each pair of cameras (m, t) with m, t = 1..K:

argmin
TW
Cm

,TE
B ,TCm

Ct

M−1X
j=0

N−1X
i=0

Kt [I|0]TCt

Cm
TCm

W (TW
E )jT

E
B PB

i − (pij)t
2

(4.9)

where Kt refers to the set of intrinsic parameters of the camera t, Kt [I|0]TCt

Cm
TCm

W (TW
E )jT

E
B PB

i

is the projection of the 3D point PB
i on the image plane of the camera t and (pij)t is the

ith 2D corner detected by the camera t at the robot pose j.
Through this single optimization problem which allows to calibrate the whole camera net-
work in the robotic workcell provides the optimized transformation matrices between each
camera to the others T

Cj

Ci
with i, j = 0, . . . ,K and the transformation between each camera

to the robot’s base frame TCi

W . Moreover it is optimized one single matrix TE
B from the end-

effector to the planar board. In particular, in this proposed method it is provided a single
common optimization of the matrix TE

B , unlike the single camera calibration of the previous
section 4.1 which optimizes one TE

B for each performed camera calibration. Furthermore, it
has to be highlighted that if the checkerboard at pose j can be detected by a single sensor it
is added to the optimization problem the functional described in equation (4.4) as a single
camera eye-on-base calibration of the previous section 4.1. So, considering K the number
of cameras that can detect the checkerboard at the jth robot pose, the final functional that
has to be minimized for the optimization problem can be rewritten as follow:

M−1X
j=0
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E )jT
E
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ij − pij
2

if K = 1PN−1
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if K = 2P
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W (TW
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if K > 2

(4.10)

In particular, it is highlighted that in the event that more than two cameras can simultane-
ously see the checkerboard (K > 2), the optimization just described is computed for each
couple of cameras (m, t) with m, t = 0, . . . ,K − 1 which detect the calibration target.
The pseudo-code algorithm of the multi-camera eye-on-base calibration is reported in algo-

rithm 2. In particular. it can be highlighted that it manages the event that more cameras can
detect the checkerboard, but also when only a single camera can see the checkerboard, adding

to the minimization problem the residual term
PN−1

i=0 K [I|0]TC
W (TW

E )jT
E
B PB

ij − pij
2

de-
rived from single camera eye-on-base calibration 4.5. Therefore the proposed multi camera
calibration method works even if at each pose the checkerboard is detected by only one
camera, leading back to the single camera calibration. However, in order to exploit the ad-
vantage of the multi-camera eye-to-hand calibration, so optimize the transformations among
cameras, are required robot poses where the checkerboard can be simultaneously detected
by more sensors.
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Algorithm 2 Multi camera eye-on-base calibration
N ←number of cameras;
Ki ← with i = 0, . . . , N − 1 matrix of intrinsic parameters of camera i;
X0 ←initial guess of TE

B ;
Zi ← with i = 0, . . . , N − 1 initial guess of TCi

W ;
Yij ← Zi(Zj)

−1 with i, j = 0, . . . N − 1 initial guess of TCj

Ci

M ← number of predefined trajectory poses;
count← 0

res← 0

for i = 0 : M − 1 do
Move the robot arm to pose i;
for j = 0 : N − 1 do

Camera j try to detect checkerboard
if detection == true then

Extract corners;
Filter(extracted corners);
if filter == true then

Save index j

count← count+ 1

Save image i on dedicated folder of camera j;
Save pose i on dedicated folder of camera j;

end if
end if

end for
if count = 1 then

res← res+ Kj [I|0]T
Cj

W (TW
E )iT

E
B PB

i − pi
2

end if
if count > 1 then

for ∀(m, t) do

res← res+ Kt [I|0]TCt

Cm
TCm

W (TW
E )jT

E
B PB

i − (pij)t
2

end for
end if

end for
Robot trajectory concluded;
Given stored calibration images;
Given correspondent poses;
Given the initial guesses;
Calibration phase → argmin

TW
Cm

,TE
B ,TCm

Ct

res

Filter(. . . section 4.3 . . . );
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4.3 Filter function

As it is mentioned in sections 4.1 and 4.2 related to proposed single-camera and multi-
camera calibration method respectively, in order to guarantee a correct checkerboard detec-
tion it is implemented a filter function. In particular, this function is necessary to check
if the checkerboard corners extracted are properly and accurately identified.
A common issue of the functions adopted for the checkerboard corner extraction [80] is the
false positives as described in [81]. This corners extraction functions gives as results the
control points position of a calibration pattern if and only if they are accurately detected.
However it happens that in some events the functions used to extract corners gives the po-
sitions of internal corners of the checkerboard as result even if the detection was completely
wrong. A practical example is shown in Figure 4.7.

(a) Wrong checkerboard detection due to high light re-
flections.

(b) Wrong checkerboard detection due to the high
checkerboard tilt.

Figure 4.7: Example of false positive, namely wrong checkerboard corners extraction.

It can be easily observed that the corner extraction is wrong. The main issue is that the
corners position given is deviated with respect their real position on the image. This issue
can be due by different elements, for instance light reflections, shadows, checkerboard too
far away from the camera or high checkerboard tilt. In the event of checkerboard too far
away from the camera, it is accurately proposed a novel trick in section 6.3 to improve the
resolution of the image and overcome this issue. However, regardless the causes, this wrong
extraction has to be avoided because it adversely affects the final calibration results. Hence,
the filter function is implemented in order to avoid these false positives and then to remove
from the calibration process images that are affected by these mistakes. In particular the
filter checks that the control points of a generic calibration planar target are arranged as
a grid (e.g. checkerboard corners, centers of circles grid, etc.). In order to accomplish this
monitoring, the function requires as input the corners extracted and then for each corners
row and column it verifies that the image points are perfectly aligned. This is necessary to
ensure that the points respect the grid property.
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Moreover there are some event where the corners extracted could appear aligned even if they
are completely wrongly extracted and the filter it would not able to detect the mistakes, as
shown in Figure 4.8, then a further monitoring implementation on the filter was adopted.

Figure 4.8: Wrong corners detection due to the high distance between camera and checker-
board. The control points are almost aligned even if they are wrongly detected.

In particular, in addition to the alignment check, the filter function monitors the distance
between each couple of corners. Hence for each row the filter verifies that the corners are
placed almost4 at the same distance and it does the same operation for each column. In
this way it is avoided the false positive such as the one shown in Figure 4.8, because the
filter can easily verifies that the some checkerboard corners are overlaid not respecting the
distance property.
In the section 6 related to the experiments it will be accurately shown that the filter widely
improves the calibration performances, removing the images in which the corners are wrongly
detected.
The algorithm of the filter function is reported in pseudo-code in 3.

4They cannot perfectly be at the same distance, since there can be a little noise on the image and moreover
it has to be considered the checkerboard tilt.
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Algorithm 3 Filter function
N ← number of rows
M ← number of columns
filter_state← false

corners_det← number of corners detected
dm ← 0

if corners_det == M ·N then
for i = 1 : N do

dtot ← ||pi1 − piM ||2

for j = 1 : M − 1 do
lj = ||pij − pij+1||2

dm ← dm + ||pij − pij+1||2

end for
if dm ≃ dtot & lj ≃ lj+1 with j = 1 : M − 1 then

filter_state← true

else
filter_state← false

end if
end for
for j = 1 : M do

dtot ← ||pj1 − pjN ||2

for i = 1 : N − 1 do
li = ||pji − pji+1||2

dm ← dm + ||pji − pji+1||2

end for
if dm ≃ dtot & li ≃ li+1 with i = 1 : N − 1 then

filter_state← true

else
filter_state← false

end if
end for

end if
return filter_state



Chapter 5

System setup

In order to accomplish the thesis experiments and testing the proposed calibration
method, a suitable setup was implemented, both in terms of software and hardware.
The adopted system software is mainly based on the Robot Operating System1 (ROS)
which is a set of software libraries and tools that allows to build robot apps [82, 83]. It is an
open source software development kit for robotics applications running on top of Ubuntu.
In particular, it is a software system which provides a built-in and well-tested messaging
system that allows the communication between distributed nodes via a publish/subscribe
pattern. In our specific case this software allowed us to build an interconnected system,
which can manage and connect cameras and the robot arm. The ROS programs developed
for our experiments are created with two programming languages: Python and C++.
Furthermore a part of thesis experiments were computed in a virtual environment in or-
der to speed up the whole process and acquire quantitative experiments as it is accurately
described in section 6. For this purpose it was adopted Gazebo which is a well-designed
simulator for testing algorithms, designing robots, performing regression, and training AI
system using realistic scenarios [84]. In order to handle the computer vision algorithm for
instance for the corner detection, it was exploited the OpenCV library [85]. which is an
open source computer vision and machine learning software library.
Regarding the hardware elements adopted in thesis experiments, different cameras are used
which are accurately described in section 5.1, in particular their technical specifications and
their differences are analyzed. In section 5.2 the manipulator adopted for our experiments is
described, and the main differences with other manipulators commonly used are analyzed.

5.1 Camera

In order to perform our proposed multi-camera calibration method we tested the algo-
rithm adopting different kind of cameras for the setup. As it is described in section 6 related
to the experiment description, we have computed a qualitative analysis and comparison
among the cameras, in order to figure out which kind of sensor is more suitable for camera
calibration and then more convenient to be adopted in human-robot collaboration tasks. In
particular the cameras adopted are illustrated in Figure 5.1.

1https://www.ros.org/.
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(a) Kinect V2. (b) Depth camera D455. (c) LiDAR camera L515.

Figure 5.1: Cameras tested on the thesis experiments.

In our experiments we tested three different kind of cameras: Kinect V2, Intel RealSense
depth camera D455 [86] and Intel RealSense LiDAR camera L515 [87].
The Kinect V2 is an RGB-D camera2. It contains an RGB sensor and infrared projectors
and detectors that map depth through time of flight calculations, which can be used to
perform real-time gesture recognition and body skeletal detection, among other capabilities
[88]. In particular the Time-of-Flight principle (ToF) is a method for measuring the distance
between a sensor and an object, based on the time difference between the emission of a signal
and its return to the sensor, after being reflected by an object [89]. The Kinect sensor also
contain microphones that can be used for speech recognition and voice control.
The depth camera D455 is a stereo-based depth camera of Intel. The stereo vision is sim-
ilar to 3D perception in human vision and it is based on triangulation of rays from multiple
viewpoints. The stereo vision approach can provide full field of view 3D measurements using
two machine vision cameras such as in the depth camera D455. Hence the depth perception
is achieved by using two sensors a set distance apart to triangulate similar pixels from both
2D planes.
The LiDAR is the acronym for “Light Detection And Ranging” and it uses eye-safe laser
beams to create a 3D representation of the surveyed environment. Its technology allows to
determine the distance by targeting an object with a laser and measuring the time for the
reflected light to return to the receiver. In particular, a typical LiDAR sensor emits pulsed
light waves from a laser into the environment. These pulses bounce off surrounding objects
and return to the sensor. The sensor uses the time it took for each pulse to return to the
sensor to calculate the distance it traveled. Repeating this process millions of times per
second creates a real-time 3D map of the environment [90].
All the three cameras analyzed and adopted for thesis experiments are based on different
vision technologies, but they are linked for their capability of depth perception. In this the-
sis, even if the proposed camera calibration method is based on the calibration of the RGB
cameras, RGB-D cameras are adopted since the main aim is the calibration of a camera
network in a robotic workcell for human robot collaboration tasks, hence, it was necessary
the usage of cameras that was able to perceive the depth. The main requirement for the
cameras used for the experiments is the ROS support, which allows the correct communica-
tion among more sensors and the manipulator.

2RGB-D camera are a specific type of depth sensing devices that work in association with a RGB camera,
that are able to augment the conventional image with depth information.
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In the table 5.1 are shown more accurately the technical specifications of the Kinect V2,
depth camera D455 and the LiDAR camera L515.

Kinect V2 Depth camera D455 LiDAR camera L515
Sensor type Time of Flight Stereoscopic LiDAR
RGB resolution 1920× 1080 1280× 800 1920× 1080

Depth resolution 512× 424 1280× 720 Up to 1024× 768

RGB frame rate 30 fps 30 fps 30 fps
Depth frame rate 30 fps Up to 90 fps 30 fps
Depth range 0.5 to 4.5 meters 0.6 to 6 meters 0.25 to 9 meters
RGB FoV (h× v) 84.1◦ × 53.8◦ 90◦ × 65◦ 70◦ × 43◦

Depth FoV (h× v) 70.6◦ × 60.0◦ 87◦ × 58◦ 70◦ × 55◦

5.2 Robot arm

For the thesis experiments, the manipulator has a main role on performing and testing
the single and multi camera calibration methods. As it is accurately described in section 4
the robot arm is adopted to automatize the process of the image acquisition, by executing
predefined trajectories and moving the checkerboard in front of the cameras. The advantage
of the robot usage is its accurate repeatability, which allows the execution of the same tra-
jectory several times in order to repeat calibration methods with different sensors according
to the same chessboard poses.
There are several robot arms suitable for human-robot collaboration tasks such as Kuka
LBR iiwa [91], the UR16 [92] and the Franka Emika Panda [93].

Figure 5.2: Franka Emika Panda robor arm adopted for thesis experiments.
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In particular the robot arm shown in Figure 5.2 is the Franka Emika Panda robot. It has an
high torque sensitivity on all of the 7 axes and it is ideal for optimizing low-weight collabo-
rative processes such as picking, placing, and testing. Considering that it can lift a payload
up to 3kg, it has the flexibility to automate almost any manual task [93].
This collaborative robot have an high flexibility thanks to their 7 degrees of freedom, which
for our purpose allows to easily execute a complex predefined trajectory as well. Moreover
this cobot is known for its accuracy on motion repeatability which is about 0.1mm.
Hence for our experiments it is adopted the Panda Franka Emika robot arm, however the
proposed camera calibration methods can be performed also with other manipulators such
as the Kuka, the UR16 or others.
In particular, in order to attach the checkerboard on the end-effector of the robot arm, so
that it would remain fixed, it was realized a dedicated custom 3D-printed mount composed
by 2 elements shown in Figure 5.3.

Figure 5.3: Custom 3D printed mount, composed by two elements necessary to attach
checkerboard on the Panda robot arm.

It is designed in order to perfectly matched with the structure of the end-effector from on
side, and from the other side was suitable to attach the checkerboard, as illustrated more
accurately in Figure 5.4

(a) 3D printed mount with checkerboard seen from
the bottom.

(b) 3D printed mount with checkerboard seen from
the top.

Figure 5.4: Custom 3D printed mount adopted for to attach the checkerboard to the robot
arm.



Chapter 6

Experimental results

The single and multi camera hand-to-eye calibration processes proposed in section 4 were
tested on several and different experiments, to determine their calibration accuracy and their
applicability to different scenarios. For the experiments, we considered a dedicated robot
workcell composed equipped by an Emika Franka Panda manipulator and several type of
cameras such as Kinect v2 and Realsense cameras. Experiments have been performed both
in simulation using Gazebo, and in real setups. Figure 6.1 illustrates two different real
testbeds for the robot workcell setup in the Robot Vision Lab and in the simulator Gazebo.

(a) Robotic workcell equipped by a camera network
of depth sensors D455, arranged around the robot
arm placed on the center of the workcell.

(b) Robotic workcell designed for the simulator
Gazebo equipped by a camera network, whose sen-
sors are arranged around the robot arm placed on
the center of the workcell.

Figure 6.1: Example of two different workcell setups of our robotic workcell in Robot Vision
Lab and in the simulator Gazebo.

In this chapter a set of significant performed experiments is accurately described, analyzing
in detail the configuration considered and the achieved results. In particular, Section 6.1
focuses on the simulation experiments which aim to evaluate the calibration methods con-
sidering different calibration patterns and sizes of the camera network (i.e. distances of the
cameras from the robot arm).
Section 6.2 focuses on the real experiments, reporting the results achieved with the pattern
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which was proved to achieve the best calibration performances, and tested with the three
cameras: Microsoft Kinect V2, Intel RealSense depth camera D455 and Intel RealSense Li-
DAR camera L515 described in section 5. Moreover, in section 6.2.2 and 6.2.3 our proposed
method is compared and analyzed with respect to other single and multi calibration methods
respectively, that are adopted in the state-of-art.
A main issue that has arisen from the experiments is the difficulty of calibrating large net-
works, due to the insufficient resolution to correctly detect calibration patterns in the image
at large distances. Therefore in Section 6.3 we present the calibration results obtained by
introducing an image resize step. As demonstrated by the obtained results, this simple trick
allows to significantly increase the size of the camera network, making the proposed methods
usable with high accuracy even in very large robotic workcells.

6.1 Simulated experiments

As previously mentioned, in this section it is analyzed the set of simulated experiments
performed on the simulator Gazebo.
This software can faithfully simulate the real world and it is adopted to accurately reproduce
the robotic workcell of our experiments. It allows to perform quantitative experiments of
our proposed calibration method, by arranging the cameras network in the most suitable
position for each type of experiment, simultaneously providing a specific ground truth of
the transformation matrices which describe the relative poses among sensors and the robot
arm. It even allowed to avoid to always adopt the real robot arm and then to speed up the
calibration process. It can be done by exploiting an higher speed for the trajectory execution
which can not be implemented on the real robot for real experiments, since it would be more
difficult to keep under control increasing the risk of accident and unexpected collisions with
humans or other objects.

Figure 6.2: Robotic workcell setup designed for the experiments on simulator Gazebo.
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6.1.1 Analysis with different planar patterns

A first experiments group was focused on the analysis of the calibration with different
planar targets, shown in Figure 6.3, in order to determine how much a specific pattern with
respect to the others contributes to improve or get worse the calibration performances. In
particular, to accomplish these experiments they are attached to the end-effector of the
robot arm through the dedicated custom mount described in Section 5.

(a) Checkerboard with asymmet-
ric circles grid.

(b) checkerboard with small
squares.

(c) checkerboard with big squares.

Figure 6.3: Planar patterns analyzed.

As introduced in section 1 the above planar patterns sizes are suitable to be printed on
an A4 size paper (210mm ×297mm), so that the checkerboard can be easily attached to
the robot and making the robot’s movement smoother during the trajectory execution by
avoiding collisions with the surrounding environment. In particular the analyzed calibration
patterns are the following:

• Asymmetric circles grid, Figure 6.3a, with an asymmetric grid of 5 × 3 circles,
whose diameter is d = 4 cm;

• Small squares grid of Figure 6.3b with a grid of 5× 8 squares of size 3 cm;

• Big squares grid of Figure 6.3c with a grid of 4× 5 squares of size 4.6 cm.

To accomplish an exhaustive and comprehensive comparison, each one of the three planar
targets is attached to the end-effector of the robot arm and it is tested with the proposed
single camera calibration method. These experiments are performed with the single camera
calibration aiming to evaluate the accuracy of the detection of different patterns. In par-
ticular, at each of these experiments, the manipulator executes the same trajectory of 20

predefined poses in front of the sensors belonging to the camera network which are placed
on the same side of the robot arm at a variable distance d as shown in Figure 6.4.
It was adopted a predefined trajectory with a small amount of poses where the checkerboard
is maintained almost stationary and it is only tilted on different orientations with respect
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Figure 6.4: Robotic workcell setup adopted to perform the experiments with different planar
patterns.

to the camera. This is done in order to analyze which pattern allows the best calibration
although a small amount of images was acquired, testing their detection robustness and ac-
curacy. When the trajectory is concluded, then the images are completely acquired and the
calibration is performed according to the approaches described in Section 4. The processes
are repeated one time for each target, by adopting the simulated robotic workcell with three
simulated cameras (e.g. Kinect), placed on one side of the panda arm, facing the manipu-
lator positioned on the center of the workspace, as illustrated in Figure 6.5.

(a) Robotic workcell with checker-
board with big squares.

(b) Robotic workcell with small
squares checkerboard.

(c) Robotic workcell with checker-
board with circles grid.

Figure 6.5: Simulated environment adopted with the three calibration patterns analyzed.

Moreover to implement a quantitative and a qualitative analysis, each planar target is used
for the eye-on-base calibrations of the cameras placed at each experiment at an increasing
distance d from the robot base (see Figure 6.4). Starting from the first experiment where
the cameras are placed at a distance d = 150m from the robot base which is the shortest
distance required so that an human operator can move on the workcell avoiding accidental
collisions to the cameras, until the last experiments where the cameras achieve the distance
d = 2m.
The evaluation of the eye-on-base calibration method with different calibration targets was
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accomplished according to the re-projection error (pixel). Indeed, this evaluation error is
the most used generic metric to analyze the calibration performances and it will be used on
the whole experiments process of this thesis. It consists in computing the root mean squared
distances between the 3D control points PB

j of the checkerboard on the jth robot’s pose re-
projected on the image plane through the transformations chain K[I|0]TC

W (TW
E )jT

E
B PB

j ,
and the detected 2D control points pj by the camera at jth pose of the robot. In this way,
the computed error, reliably describes how accurate the calibration is, since the error is
evaluated according the two estimated matrices TC

W and TE
B , as follow:

err =

vuutPM−1
j=0 K[I|0]TC
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E )jT

E
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j − pj
2

M
=

vuutPM−1
j=0 ŷj − yj

2

M
(6.1)

where M is the number of the trajectory’s poses executed and then of the corresponding
images analyzed for the calibration process, ŷj are the corners projected through the esti-
mated matrices, and yj are the detected corners.
In the following tables are reported the reprojection errors achieved by each camera for each
planar target with our proposed single camera hand-eye calibration method, according to
the distance between the cameras and the checkerboard. Moreover, since it was adopted
the single camera hand-eye calibration method for three cameras, in the first three table are
independently reported the achieved results by each of three sensor and in the last table are
reported the average reprojection error obtained with all the three sensors.

CAMERA 1 Small squares grid Big squares grid Circles grid
Distance 1.5m 0.075 pix 0.079 pix 0.110 pix
Distance 1.6m 0.080 pix 0.077 pix 0.098 pix
Distance 1.7m 0.081 pix 0.078 pix 0.098 pix
Distance 1.8m 0.088 pix 0.075 pix 0.099 pix
Distance 1.9m 0.096 pix 0.077 pix 0.095 pix
Distance 2.0m 0.102 pix 0.081 pix 0.101 pix

CAMERA 2 Small squares grid Big squares grid Circles grid
Distance 1.5m 0.082 pix 0.081 pix 0.095 pix
Distance 1.6m 0.081 pix 0.078 pix 0.098 pix
Distance 1.7m 0.079 pix 0.077 pix 0.103 pix
Distance 1.8m 0.085 pix 0.078 pix 0.099 pix
Distance 1.9m 0.089 pix 0.079 pix 0.101 pix
Distance 2.0m 0.096 pix 0.081 pix 0.094 pix

CAMERA 3 Small squares grid Big squares grid Circles grid
Distance 1.5m 0.085 pix 0.083 pix 0.089 pix
Distance 1.6m 0.086 pix 0.087 pix 0.092 pix
Distance 1.7m 0.092 pix 0.089 pix 0.091 pix
Distance 1.8m 0.095 pix 0.088 pix 0.093 pix
Distance 1.9m 0.096 pix 0.085 pix 0.092 pix
Distance 2.0m 0.094 pix 0.086 pix 0.094 pix
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AVERAGE Small squares grid Big squares grid Circles grid
Distance 1.5m 0.081 pix 0.081 pix 0.098 pix
Distance 1.6m 0.082 pix 0.081 pix 0.096 pix
Distance 1.7m 0.084 pix 0.081 pix 0.091 pix
Distance 1.8m 0.089 pix 0.080 pix 0.097 pix
Distance 1.9m 0.094 pix 0.080 pix 0.096 pix
Distance 2.0m 0.097 pix 0.083 pix 0.096 pix

It can be easily observed that the proposed camera calibration method achieves an high
calibration accuracy, namely a low re-projection error, with each planar pattern at all tested
distances, thanks to the high resolution of the captured checkerboard images on the simula-
tor Gazebo. In the experiments with the real setup instead, image resolution and noise will
be crucial factors limiting the calibration accuracy, as described in Section 6.2.
Moreover it has to be highlighted that when the distance between the camera and the
checkerboard increases, the re-projection error obtained with the checkerboard with small
squares slightly increases, since the corners detection get worse as the camera moves away
from the checkerboard. The calibration target with big squares and the pattern with the
circles grid are not too much affected by the distance issue at least up to distance d = 2m.
Moreover although the calibration with the pattern with the circles grid allows to achieve
very high calibration accuracy, in general the best results are achieved by the camera cal-
ibration with the checkerboard with the grid of 4 × 5 squares of size 4.6 cm. It has to be
said that these reported results are only a part of all performed experiments with different
planar patterns. However, we could infer that the calibration performances are significantly
influenced by the corners detection accuracy, namely by the resolution of the captured im-
ages. So the results can variate according to the executed trajectory, since from the captured
image the checkerboard can be accurately detected only if the it is properly moved in front
of the cameras. However on average the results achieved by the calibration with the checker-
board with bigger squares are the most accurate. The results are accurately illustrated and
confirmed by the graph reported in Figure 6.6.

Tabella 1
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Figure 6.6: Average results obtained with the three different planar patterns describe above.
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From this graph, it can easily derived that the best performances are achieved by calibration
with the chessboard with bigger squares and in particular it can be inferred that the checker-
board with small squares most suffers by the distance issue. In the next simulated and real
experiments the proposed camera calibration methods are analyzed using for simplicity the
checkerboard with 5× 4 squares of size 4.6 cm.

6.1.2 Analysis of the calibration method according to the distance
between the camera and the robot arm

From the analysis of the calibration performances with different planar patterns, it can
be inferred that the highest accuracy is achieved by the checkerboard with bigger squares
shown in Figure 6.3c. Since the main aim of this thesis is determining a novel robotic
workcell calibration for human-robot collaboration tasks, this subsection is focused on the
analysis of the calibration performances according to the distance, in order to investigate
up to which distance between robot and cameras the calibration process provides accurate
results.
For this purpose it was designed a dedicated robotic workcell on the simulator Gazebo to
simulate a factory environment for human robot collaboration tasks as faithfully as possi-
ble. In particular the robotic workcell is equipped by three cameras arranged around the
manipulator placed in the center of the cell, as schematically described in Figure 6.7.

Figure 6.7: Schematic robotic workcell arrangement for experiments related to the distance.

The distance between the three cameras and the checkerboard is denoted by d1, d2 and
d3. The experiments were performed by increasing at each time the average distance
d = (d1 + d2 + d3)/3 between the cameras and z axis of the robot base reference frame.
More accurately the first experiments set analyzed the calibration accuracy at an average
distance d = 150m whose setup is shown in Figure 6.8a and then testing the cameras cali-
bration methods at the maximum distance d = 3m as shown in Figure 6.8b.
For these experiments a dedicated predefined trajectory of 110 poses was executed more

times by the robot arm, in order to move the checkerboard in front of the sensors several
times and to test both the single and multi-camera hand-eye calibration methods according
to the same trajectory depending on the distance. In order to evaluate the experiments
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(a) Robotic workcell with a camera net-
work at a distance d = 150cm from the
robot base.

(b) Robotic workcell with a camera network at a
distance d = 300cm from the robot base.

Figure 6.8: Workcell arrangement of the first experiment at the left and arrangement of the
last experiments at the right.

it was adopted the re-projection error of the equation 6.1 introduced and used in previous
section 6.1.1. Moreover an additional evaluation metrics was adopted, which consists in
computing the euclidean difference between the transformation matrices TCj

Ci
, TCi

W and their
real value provided by the simulator Gazebo.
Considering our particular setup where the robotic workcell is equipped with three cameras
the transformation matrices analyzed are TC2

C1
, TC3

C1
, TC3

C2
, TC1

W , TC2

W and TC3

W .
In the table 6.1 is reported the calibration accuracy related to the single camera cali-
bration implemented one time for each sensor belonging to the camera network, depending
on the increasing distance. In particular the values reported in the table 6.1 on the first
six columns, denote the distance in mm obtained as norm of the translation part in the
transformation matrices from their real values, moreover the errors erri in the last three
columns are the reprojection errors evaluated in pixels with the equation 6.1.

CAM 1-2-3 TC2

C1
TC3

C1
TC3

C2
TC1

W TC2

W TC3

W err1 err2 err3

Distance 1.5m 2.35 2.61 3.27 0.52 0.66 0.32 0.12 0.22 0.09
Distance 1.6m 2.42 2.81 3.62 0.48 0.61 0.49 0.15 0.35 0.12
Distance 1.7m 2.51 3.25 3.75 0.98 0.77 0.55 0.55 0.57 0.32
Distance 1.8m 2.68 3.49 4.12 1.23 0.68 0.63 0.76 0.87 0.32
Distance 1.9m 2.97 3.64 3.94 1.12 0.85 0.68 0.79 0.82 0.56
Distance 2.0m 3.12 3.85 4.05 1.25 0.98 0.75 0.78 0.85 0.63
Distance 2.2m 3.04 3.95 4.53 0.09 1.12 0.92 0.82 0.91 0.69
Distance 2.4m 3.53 3.86 4.78 1.68 1.25 1.18 0.93 0.91 0.78
Distance 2.6m 3.86 4.53 4.93 1.57 1.34 1.38 1.23 1.12 0.89
Distance 2.8m 4.22 4.82 5.21 2.34 1.49 1.45 1.65 1.58 1.21
Distance 3.0m 4.89 5.32 5.31 2.17 1.56 1.90 1.75 1.67 1.35

Table 6.1: Deviation of the transformation matrices from their real values and reprojection
error achieved with the single camera calibration method.
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In addition, in the table 6.2 are reported the calibration results according to the distance d

obtained through the multi-camera calibration process. The same transformation ma-
trices are investigated considering the translation error. The re-projection errors (pixel)
achieved by the three cameras are reported as well in the last three columns.

CAM 1-2-3 TC2

C1
TC3

C1
TC3

C2
TC1

W TC2

W TC3

W err1 err2 err3

Distance 1.5m 2.35 2.32 2.45 0.52 0.69 0.38 0.12 0.24 0.09
Distance 1.6m 2.42 2.73 3.21 0.49 0.61 0.43 0.15 0.32 0.12
Distance 1.7m 2.51 2.95 3.43 0.78 0.79 0.63 0.46 0.39 0.24
Distance 1.8m 2.68 3.23 4.12 1.23 0.73 0.67 0.76 0.65 0.32
Distance 1.9m 2.92 3.54 4.03 1.25 0.82 0.68 0.79 0.77 0.56
Distance 2.0m 3.12 3.65 4.05 1.28 0.98 0.75 0.81 0.85 0.63
Distance 2.2m 3.14 3.79 4.46 1.32 1.07 0.91 0.85 0.88 0.67
Distance 2.4m 3.43 3.93 4.62 1.56 1.15 1.12 0.95 0.91 0.75
Distance 2.6m 3.76 4.23 4.83 1.57 1.31 1.28 1.21 1.10 0.93
Distance 2.8m 4.12 4.76 5.12 2.16 1.43 1.38 1.65 1.42 1.19
Distance 3.0m 4.76 5.21 5.27 2.19 1.56 1.85 1.79 1.73 1.28

Table 6.2: Deviation of the transformation matrices from their real values and reprojection
error achieved with the multi camera calibration method.

It can be observed how the accuracy of the estimated transformation matrices with re-
spect to their real values significantly decreases as the distance d increases. In particular
the average deviation of all the transformation matrix TCi

W are equal about to 0.5 at the
distance d = 1.5m and it becomes more than triple > 1.78 at distance d = 3m for both
camera calibration methods. Moreover the re-projection error even increases by an order
of magnitude on the last experiments with respect to the first one. These achieved results
highlight how the distance significantly affects the calibration performances, the resolution
of the checkerboard in the images decreases as the distance enlarges and then causing the
consequent reduction of the corner detection accuracy.
In the graphs in Figure 6.9 are reported the results listed in the Tables 6.1 and 6.2, in
particular it is clearly illustrated the heavy dependence to the distance of the calibration
performances.
Indeed, it can be observed that the graphs 6.9a, 6.9b, 6.9c and 6.9d depict an increasing
trend of the transformations deviation with respect to the distance, underlining how much
the robotic workcell sizes greatly influences the accuracy of the calibration. However, the
obtained results, both at shorter distance such d = 1.5m and at farther distance as d = 3m,
are very good thanks to the high resolution of the images captured on the simulator. As it
can be seen in the next section 6.2, this accuracy will get worse in the real experiments, but
these simulated experiments of this section faithfully describes the influence of the distance
on the calibration performance.
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(a) Deviation of transformations between cam-
eras computed by the single camera calibration
method.
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(b) Deviation of transformations between cameras
computed by the multi camera calibration method.
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(c) Deviation of transformations between cameras
and robot arm computed by the single camera cal-
ibration method.
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(d) Deviation of transformations between cameras
and robot arm computed by the multi camera cal-
ibration method.
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(e) Reprojection error achieved with single-
camera calibration.
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(f) Reprojection error achieved with multi-camera
calibration.

Figure 6.9: Deviations of estimated transformation matrices from their real values, achieved
achieved by the single and multi camera calibration on the first four graphs. Reprojection
error related to the single and multi camera calibration depending on the distance d between
the camera and the robot arm on the last two graphs.
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The consideration made above are further confirmed by the graphs 6.9e and 6.9f, which
illustrates an increasing trend of the reprojection error according to the increasing robotic
workcell sizes. Although the reprojection error increases as the distance is higher, the cali-
bration accuracy achieved with both camera calibration methods is really high as it can be
seen in the two Figures 6.10a and 6.10b.

(a) Reprojected corners through the
transformation matrices estimated by the
single camera calibration.

(b) Reprojected corners through the
transformation matrices estimated by the
multi camera calibration.

Figure 6.10: Reprojected corners on the same image adopting the transformation matrices
determined through the single and multi camera calibration at distance d = 3m.

In Figure 6.10 can be seen how the calibration at distance d = 3m achieves really accu-
rate calibration results. Indeed in Figures 6.10a and 6.10b are shown the 3D corners of the
board, reprojected on the image plane of the camera through the transformation matrices
estimated by the calibration process.
Moreover from the results reported in previous tables 6.1 and 6.2, it can be highlighted the
slight improvement achieved by the multi-camera calibration which provides the optimiza-
tion of the transformation between cameras.

Transformation accuracy between cameras achieved by two 
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Figure 6.11: Transformation accuracy achieved by the single and multi calibration methods,
computing the deviation mean between the estimated transformation matrix T

Cj

Ci
and their

real values at each distance d.



60 Experimental results

In the graph of Figure 6.11 it is reported the average deviation computed among the three
transformation matrices TCj

Ci
at each distance d and it can be observed a slightly lower error

obtained with the multi camera calibration (yellow line) according to the distances with
respect to the error achieved by the single camera calibration (green line).

6.2 Experiments in the Robot Vision Lab testbed

In order to perform real experiments and then to test the proposed calibration method
on a real environment it was designed a dedicated robotic workcell with the Panda robot arm
and a camera network as shown in Figure 6.12. In particular in this section are analyzed the
calibration performances achieved with different kind of sensors, namely Kinect V2, depth
camera D455 and LiDAR camera L515 as listed in section 5. Moreover these sensors are
adopted to test the proposed calibration method with the classical checkerboard analyzed
in section 6.1 with 5× 4 squares of sizes 4.6 cm. The results reported in the following sub-
section take into account both the single and multi camera calibration. More accurately
the subsection 6.2.1 is focused on the analysis of the single and multi-camera calibration
with different cameras; in the subsection 6.2.2 it is accurately analyzed the single camera
calibration with respect to the other calibration methods most adopted in the state-of-art
and finally in the subsection 6.2.3 the multi camera calibration method is compared with
some other methods found in literature.

Figure 6.12: Robotic workcell designed in Robot Vision Lab; in particular in this image
there are three depth sensors D455 with a robot arm in the center of the workcell with the
chessboard attached on the end-effector.

It has to be highlighted that the evaluation metrics adopted in the real experiments and
reported in the following subsections for every experiments is the re-projection error (pixel),
since the deviation of the estimated transformation matrices from their real values (ground
truth) can not be computed because they are no longer provided as in the simulator Gazebo.
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6.2.1 Analysis of the single and multi camera calibration with dif-
ferent sensors

As previously introduced, this section is focused on the analysis of the single and multi
camera calibration with different sensors. In particular the Microsoft Kinect V2, the Intel
RealSense depth camera D455 and the Intel RealSense LiDAR camera L515 were adopted.
The robotic workcell designed for these experiments is equipped by a camera network of
three sensors, due to the availability of hardware in laboratory and they are arranged on
the same side of the robot arm at an increasing distance d from the robot arm at each
experiment. In particular the cameras are fixed at an height h = 1.6m from the ground and
they are are placed at a distance d1 = 0.8m, d2 = 1.2m, d3 = 1.8m, d4 = 2.8m for each
experiment, in order to analyze the cameras properties with respect to the robotic workcell
sizes. Hence it was tested the single and the multi camera calibration with the checkerboard
with 5× 4 squares of sizes 4.6 cm. The same predefined trajectory of 20 poses is repeatedly
executed by the panda arm, in order to properly move the checkerboard in front of the
sensor and to analyze the different cameras with the same robot poses and the consequent
same checkerboard images.
In the following table are reported the re-projection error (pixel) obtained by the three
cameras C1, C2, C3, with the three different categories of cameras according to the distance
di with i = 1, 2, 3, 4 through the single camera calibration and in the four next tables the
corresponding results achieved with the multi camera calibration method. Note that some
values are missing, due to the checkerboard not detected in the images at a given distance.

Single calibration d1 = 0.8 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 0.21 0.34 0.27
Depth camera D455 0.22 0.27 0.27
LiDAR camera L515 0.27 0.32 0.33

Single calibration d2 = 1.2 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 0.26 0.35 0.36
Depth camera D455 0.22 0.18 0.25
LiDAR camera L515 0.26 0.39 0.32

Single calibration d3 = 1.8 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 0.38 0.45 0.41
Depth camera D455 0.86 1.22 0.98
LiDAR camera L515 0.31 0.36 0.40

Single calibration d4 = 2.8 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 1.35 1.28 1.25
Depth camera D455 - - -
LiDAR camera L515 0.42 0.48 0.41
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Multi calibration d1 = 0.8 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 0.23 0.35 0.29
Depth camera D455 0.21 0.27 0.26
LiDAR camera L515 0.26 0.28 0.32

Multi calibration d2 = 1.2 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 0.28 0.36 0.36
Depth camera D455 0.21 0.19 0.27
LiDAR camera L515 0.26 0.39 0.32

Multi calibration d3 = 1.8 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 0.36 0.43 0.34
Depth camera D455 0.81 1.15 1.03
LiDAR camera L515 0.35 0.38 0.29

Multi calibration d4 = 2.8 Reproj. error C1 Reproj. error C2 Reproj. error C3

Kinect V2 1.27 1.15 1.27
Depth camera D455 - - -
LiDAR camera L515 0.39 0.42 0.40

From data of the previous tables can be derived a more accurate analysis which highlight
the difference among the three sensors as reported in graphs of the Figure 6.13. In particular
the mean re-projection error of the three cameras obtained by the single and multi camera
calibration, at each experiment is taken into account and it is analyzed according to the
distance d and the adopted sensor.

Tabella 1

Kinect V2 single

80 0,21 0,34 0,27 0,273333333333333 0,22 0,27

100 0,24 0,32 0,33 0,296666666666667 0,21 0,26

120 0,26 0,35 0,36 0,323333333333333 0,22 0,18

140 0,31 0,32 0,33 0,32 0,35 0,27

160 0,35 0,39 0,40 0,38 0,53 0,67

180 0,38 0,45 0,41 0,413333333333333 0,86 1,22

200 0,45 0,53 0,57 0,516666666666667 1,02 1,45

220 0,67 0,61 0,73 0,67 2,54 2,21

240 0,99 1,02 1,12 1,04333333333333 Nan Nan

260 1,33 1,25 1,34 1,30666666666667 Nan Nan

280 1,35 1,28 1,25 1,29333333333333 nan Nan

80 0,23 0,35 0,29 0,29 0,21 0,27

100 0,24 0,32 0,33 0,296666666666667 0,21 0,26

120 0,28 0,36 0,36 0,333333333333333 0,21 0,19

140 0,31 0,32 0,33 0,32 0,35 0,27

160 0,35 0,39 0,40 0,38 0,53 0,67

180 0,36 0,43 0,34 0,376666666666667 0,81 1,15

200 0,45 0,53 0,57 0,516666666666667 1,02 1,45

220 0,67 0,61 0,73 0,67 2,54 2,21

240 0,99 1,02 1,12 1,04333333333333 Nan Nan

260 1,33 1,09 1,15 1,19 Nan Nan

280 1,27 1,15 1,27 1,23 nan Nan
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(a) Mean re-projection error obtained with the sin-
gle camera calibration according to the distance d.

Multi camera calibration with different sensors
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(b) Mean re-projection error obtained with the
multi camera calibration according to the distance
d.

Figure 6.13: Analysis of the calibration accuracy achieved by each sensor according to the
distance through the single and the multi camera calibration method.

It is interesting to explore the different behaviour of the three sensors according the the
distance between the camera and the checkerboard to be detected. It can be immediately
seen that the depth sensor D455 achieves the highest calibration accuracy in the shortest
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distance until d ≃ 1.5m. However as the distance increases, the corresponding re-projection
error significantly enlarges, reaching the highest value of err ≃ 2.5 pixel both in the single
and the multi camera calibration at a distance d ≃ 2.0− 2.2m, and then for higher distance
the stereo camera is not able to perform the chessboard detection and consequently failing
the cameras calibration (as denoted by the "-" symbols in the tables). This issue is mainly
caused by the low RGB resolution of the D455 sensor (1280 × 800) as reported in section
related to the hardware specifications 5.1.
The Kinect V2 and LiDAR camera L515 can achieve excellent calibration results all over the
tested distances, thanks to their high RGB resolution equal to (1920× 1080). In particular
it can be highlighted an higher accuracy achieved by the LiDAR camera at longer distances
thanks to its narrower RGB field of view (70◦× 43◦) than the one of the Kinect V2 (84.1◦×
53.8◦). This can be seen more easily at shortest distance as illustrated in Figure 6.14.

(a) Checkerboard image captured by the Kinect
V2 at a distance d = 1.2m.

(b) Checkerboard image captured by the LiDAR
camera L515 at a distance d = 1.2m.

Figure 6.14: Checkerboard images captured by the Kinect and LiDAR camera from the same
distance d = 1.2m.

In particular the two Figures 6.14a, 6.14b illustrate the same checkerboard image captured
from the same distance, but it can be easily observed that the checkerboard on the LiDAR
image covers an higher area than the checkerboard detected by the Kinect thanks to its
narrow FoV, then allowing a better corners detection accuracy.

6.2.2 Analysis of the single-camera calibration with other state-of-
art methods

This section is focused on the analysis of the proposed single camera calibration method,
with an accurate comparison with other single camera hand-eye calibration most adopted in
the state-of-art. In particular our proposed single camera calibration method was compared
with the following state-of-art methods already introduced in Section 2.2:

• Tsai method which introduced an autonomous technique for 3D robotics hand/eye
calibration [52];

• Danillidis method, also known as dual quaternion method [53];

• Horaud method which includes a new linear formulation of classical hand-eye cali-
bration which is linear and numerically efficient [54];
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• Park method which introduces a cyclic coordinate descent algorithm for optimiz-
ing quadratic objective function on SE(3) and applies it to a class of robot sensor
calibration problems [55].

In order to perform these experiments the robotic workcell was equipped by a single camera
directed to the robot arm, in order to acquire images of the checkerboard with 5× 4 squares
of size 4.6 cm from different perspective. The predefined trajectory for these experiments
consists in a set of 20 poses where the checkerboard is not moved all over the image plane
but it is kept almost stationary and it is only tilted at each pose with respect to the image
plane of the camera, to capture checkerboard images on different orientations.

Figure 6.15: Robotic workcell setup adopted to perform the comparison among different
methods of single camera hand-eye calibration method.

In the following table are reported the average reprojection errors achieved on all the images
by the methods previously described and by our proposed method. In particular the reported
results are evaluated in pixel terms on the same set of images acquired only one single time
for all the optimization processes and they are obtained adopting a robotic workcell with a
single camera (Kinect V2) placed from the robot arm at a distance d = 1.5m as schematically
shown in Figure 6.15.

SINGLE CALIBRATION Reprojection error (pixel)
Tsai method 4.51 pixel
Danillidis method 7.68 pixel
Horaud method 5.42 pixel
Park method 5.13 pixel
Our proposed method 0.79 pixel

It can be easily observed that among these single camera hand eye calibration methods our
proposed method guarantees higher calibration accuracy according to the reprojection error
(pixel).
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6.2.3 Analysis of the multi-camera calibration with other state-of-
art methods

This section takes into account the experiments performed to test the multi camera hand-
eye calibration process, by comparing our proposed method with two methods adopted in
literature: OpenPTrack [25] and a multi-camera calibration method proposed in [32]. As it
is introduced in section 1 the main starting point for this thesis was the multi camera cali-
bration method previously adopted in our research laboratory proposed in the OpenPTrack
framework [25], based on a manual calibration performed by a person with a large caliba-
tion pattern. For this purpose, a workcell without any panda robot arm and three cameras
is adopted for the multi-camera calibration procedure proposed by OpenPTrack, which is
implemented by manually moving a big checkerboard 80 cm×90 cm in the workcell without
the robot, in order to further facilitate the checkerboard motion as shown in Figure 6.16a.
Then it was introduce the robot arm, to accomplish our proposed calibration method with
the same cameras network arrangement.

(a) Manual images acquisition phase for
OpenPTrack calibration.

(b) Automatic images acquisition phase for our
proposed calibration method.

Figure 6.16: Two adopted setups for multi-camera calibration where the camera networks
are arranged in the same setup and sizes.

Hence, with the same arrangement of the camera network it was used the robot arm to
move the smaller A4 checkerboard as expected by our proposed method and then the multi
camera calibration method was performed (see Figure 6.16b). In particular the experiments
were performed, considering three LiDARs L515 placed at a distance d = 2.0m from the
robot and with an height of h = 2.1m from the ground.
Since multi camera calibration proposed by OpenPTrack provides an optimization of the
transformation matrices between cameras, we have evaluated this method with respect to
the our proposed technique, considering the re-projection error obtained by projecting the
checkerboard 3D points passing through the transformation matrix which describes the rel-
ative pose between the two cameras that can simultaneously detect the checkerboard.
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This re-projection error is accurately computed as follow:

err =

vuutPM−1
k=0 Kj [I|0]T

Cj

Ci
TCi

B (PB
j )k − (pj)k

2

M
∀(i, j) (6.2)

where M are the poses in which the couple of cameras (Ci, Cj) can detect the checkerboard,
Kj [I|0]T

Cj

Ci
TCi

B (PB
j )k is the reprojection of the checkerboard 3D corner onto the image plane

of camera Cj through the optimized matrix T
Cj

Ci
and (pj)k are the 2D detected corners by

the camera Cj at the robot’s pose k. The achieved results in terms of mean re-projection
error (pixel) are reported in the following table, considering the re-projection through each
camera Ci with i = 1, 2, 3.

MULTI CALIBRATION Err CAM1 Err CAM2 Err CAM3
OpenPTrack method 6.51 pixel 5.32 pixel 7.24 pixel
Our proposed multi calibration 0.79 pixel 0.81 pixel 0.94 pixel
Our proposed single calibration 1.15 pixel 1.32 pixel 1.21 pixel

It can be observed that although the OpenPTrack calibration exploits a bigger checkerboard,
our calibration methods achieve an higher accuracy thanks to the role played by the robot.
In particular the checkerboard motion which is handled by the robot arm allows the cameras
to capture images of perfectly still planar target, in order to accomplish a more accurate
calibration. Instead the OpenPTrack calibration process significantly suffer from the impre-
cise manual checkerboard motions, indeed the human who moves the checkerboard during
the image acquisition phase since he is not capable of standing perfectly still, especially in
more awkward positions. Moreover it can be seen that re-projection error achieved by the
multi-camera calibration is more accurate than the one obtained by the single camera cali-
bration. This can be expected, since the multi camera calibration provides an optimization
of the transformation matrix between the cameras, as accurately explained in section 4.2. A
further advantage of our proposed method, in addition to the accuracy, is the time spent to
perform the whole calibration which is very fast compared to the manual prodecure used in
OpenPTrack, thanks to the marginalisation of the slow and imprecise human intervention
on the calibration process.
A further comparison of our proposed method was performed with respect to the hand-eye
calibration method proposed in [32]. In particular this article proposed a sensors network
calibration with a single hand-eye calibration method to be performed one time for each
camera belonging to the cameras network. Then it was designed a robotic workcell with
three Kinect V2 placed on the same side of the robot arm and directed on the manipulator
at a distance d = 1.1m. Thus it was performed our proposed method with a predefined
trajectory of 20 poses and the mean re-projection error of equation (6.1) achieved by each
camera is reported in the following table with respect to the results obtained by the method
proposed by the paper.

CALIBRATION at d = 1.1m Mean reproj. err of 3 cameras
Method of [32] 0.75 pixel
Our proposed multi calibration 0.27 pixel
Our proposed single calibration 0.34 pixel
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6.3 Image super resolution for large robotic workcells

As it was accurately described in section 6.1.2, the robotic workcell size is a main aspect
which significantly affects the calibration accuracy. In particular we have observed that as
the distance increases, the accuracy of the corners detection and the resulting calibration
precision significantly decreases. Moreover, by excessively increasing the distance between
the camera and the checkerboard to be detected, the probability that the checkerboard
detection fails increases and then even the resulting calibration.
The proposed trick is based on bicubic interpolation to enlarge the images acquired by
the cameras [94], thus increasing the number of pixels for the checkerboard in the image:
this allow to improve checkerboard detection robustness at further distances (i.e., reduce
checkerboard corners wrongly or not detected). Image resizing is a crucial concept which
consists in augmenting or reducing the number of pixels in a picture. A common method
to obtain this result is given by the interpolation process which works by using known data
to estimate values at unknown points. It means that if it is necessary to determine the
pixel intensity of a picture at a selected location within the grid at coords (x, y), but only
(x− 1, y − 1) and (x+ 1, y + 1) are known, it has to be estimated the value at (x, y) using
linear interpolation. The greater the quantity of already known values, the higher would
be the accuracy of the estimated pixel value. There are different interpolation algorithms
used to obtain this phenomenon such as the nearest neighbor [95], bilinear [96], bicubic
[94], and others. They exploit adjacent pixels during the interpolation and the accuracy
of those algorithms is increased by enlarging the set of neighboring pixels considered in
order to estimate the new pixel value. Bicubic interpolation considers the 16 closest pixels
(4×4), where the pixels that are closer to the one that has to be estimated are characterized
by higher weights and the farther pixels have instead lower weights. Moreover the images
resampled with bicubic interpolation are smoother and have fewer interpolation artifacts
which is a common issue of other interpolation methods. In our specific case this method
allows to achieve significant improvement on the corner detection especially with the depth
stereo camera which was not able to detect the checkerboard corners at distance larger than
d = 2.4m as proved in the previous section and illustrated in Figure 6.17a.

(a) Original image (1280 × 720) where the
camera can not detect checkerboard corners.

(b) Image with double sizes (2560 × 1440)

where the corners can be detected.

It can be easily observed that by resizing the original image, the corner detection can be
accurately performed overcoming the distance issue as shown in Figure 6.17b, especially
for cameras such as the depth sensor D455 which has a lower RGB resolution. Moreover a
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set of experiment was performed in order to analyze how the image resizing improves the
calibration accuracy when the distance between the camera and the robot arm increases.

ORIGINAL IMAGES RESIZED IMAGES
CAM 1-2-3 Err1 Err2 Err3 Err1 Err2 Err3

Distance 1.5m 0.17 0.22 0.20 0.16 0.18 0.22
Distance 1.6m 0.22 0.29 0.29 0.22 0.28 0.21
Distance 1.7m 0.78 0.71 0.89 0.32 0.43 0.29
Distance 1.8m 0.86 1.22 0.98 0.29 0.45 0.33
Distance 1.9m 0.99 1.35 1.42 0.45 0.39 0.38
Distance 2.0m 1.26 1.55 1.78 0.36 0.42 0.48
Distance 2.2m 2.35 3.56 2.98 0.55 0.62 0.73
Distance 2.4m - - - 0.62 0.71 0.69
Distance 2.6m - - - 0.68 0.75 0.82
Distance 2.8m - - - 0.65 0.81 0.79
Distance 3.0m - - - 0.83 0.93 0.88

In the previous table are reported the reprojection error obtained by our single and multi
camera calibration methods adopting a robotic workcell equipped by a camera network
composed by three stereo cameras placed on the same side of the manipulator at an increasing
distance d. It can be observed that, at shorter distances, the calibration accuracy in terms
of re-projection error is not too much helped by image resize trick, since the detection on
the original images in the distances range 1.5m−1.8m is accurate as well. However image
resize becomes really helpful when the distance increases such as d = 2.0m−2.2m, by
significantly reducing the re-projection error. This property can be especially highlighted
at larger distance d > 2.4m where the corners detection on the original images completely
fails and instead by resizing the image really accurate results can be obtained. In the graph
illustrated in Figure 6.17 are reported the mean re-projection error among the three cameras
C1, C2 and C3 according to the distance d, obtained by keeping the images with their original
size and then by resizing them. It can be easily seen the improvement provided by the image
resize especially when the distance enlarges.

Tabella 1

Error with original 
images

150 0,17 0,22 0,20 0,196666666666667 0,16 0,18

160 0,22 0,29 0,29 0,266666666666667 0,22 0,28

170 0,78 0,71 0,89 0,793333333333333 0,32 0,43

180 0,86 1,22 0,98 1,02 0,29 0,45

190 0,99 1,35 1,42 1,25333333333333 0,45 0,39

200 1,26 1,55 1,78 1,53 0,36 0,42

220 2,35 3,56 2,98 2,96333333333333 0,55 0,62

240 nan nan Nan 0,62 0,71
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Figure 6.17: Calibration accuracy in terms of re-projection error obtained by using orginal
images and resized images, according to the distance d.



Chapter 7

Conclusions

In this thesis, we address the problem of camera calibration considering the calibration of
the cameras in a robotic workcell for human-robot collaboration. In particular, a novel ap-
proach of automatic multi-camera hand-eye calibration for robotic workcells was presented,
with the main purpose of overcoming the issues encountered with manual procedures com-
monly used in literature, as the one proposed in the OpenPTrack framework.
An automatic approach was proposed which allows to remove the human intervention during
the checkerboard images acquisition phase, that, as illustrated in section 6 was the main
aspect which negatively affected the previous calibration method performances. Moreover,
moving the checkerboard with the robot manipulator allows to highly speed up the whole
calibration process and then significantly reducing the downtime for a production workflow
in a real factory where a robotic workcell calibration is required. As it was described in the
previous sections, our proposed calibration process achieved higher accuracy with respect to
the other camera calibration methods found and adopted in the state-of-art, allowing to pre-
cisely determine the extrinsic parameters among the cameras and the robot arm and then
ensuring an high human safety during human-robot collaborations. A further significant
contribution of our approach with respect to the state-of-art is the capability of performing
the calibration of a camera network in a robotic workcell with large sizes, even with cameras
placed at a distance d = 3m from the robot arm, achieving a reprojection error even lower
than 1 pixel. This improvement allows an accurate calibration of network of cameras in
large robotic workcell, hence our approach is more suitable to be used in real scenario such
as human-robot collaboration tasks.
The experiments run with the system outlined that through a classical checkerboard with
squares not too small an higher calibration accuracy than other planar targets is achieved.
Our method even proved to be simple and easily generalizable. Simplicity is given by its
modular process composed by a robot motion phase with the corresponding image acquisi-
tion phase and then the final calibration phase; flexibility is demonstrated by quantitative
experiments with different sensors and given by the opportunity to adopt even different
robot arms. The main critical aspect encountered during the thesis experiments is the need
to have a predefined trajectory to be executed by the robot arm in order to correctly move
the checkerboard in front of each sensor belonging to the camera network. This is due to
the fact that as long as the robotic workcell is not calibrated, the robot is not able to prop-
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erly move the checkerboard in front of the cameras in order to execute the images capture
and meanwhile to ensure the collision avoidance between robot and other objects in the
workspace. Furthermore the predefined trajectory is not perfectly proper for each robotic
workcell but a customized trajectory has to be stored for each specific camera network ar-
rangement.
For this reason future developments will be focused on the exploitation of a deep neural
network to correctly visual guide a robot arm in front of the camera before the calibration
accomplishment, and then to automatically execute a proper trajectory required for the
image acquisition phase, with the main purpose of removing completely the human aid.
Overall, the goals set for this thesis were satisfactorily achieved, obtaining higher calibration
accuracy with respect to other adopted methods in literature and allowing precise robotic
workcell calibrations and then simultaneously ensuring significant improvement for other
research works related to human-robot collaboration.
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