
Università degli studi di Padova
Department of Physics and Astronomy

Master thesis in Physics of Data

Quantum Computer simulation

via Tensor Networks

Supervisor Master Candidate

Simone Montangero Marco Ballarin

Università di Padova

Abstract

In recent years lots of efforts have been spent in the realization of quantum com-

puters able to reproduce quantum circuits involving increasing number of qubits

with the greatest possible accuracy. The final goal is to reach the limit, the so-

called quantum supremacy, where a classical computer is no longer able to repro-

duce the results of a quantum machine. Indeed, simulating quantum many-body

systems is very computationally demanding due to the exponential scaling of the

Hilbert space with the number of qubits. In order to perform a classical simula-

tion of a quantum circuit acting on a qubits register, one must choose between two

possible approaches: the first is an exact description of the qubits’ state, possible

up to a maximum reachable number of qubits. The second, instead, consists of

representing the state approximately. But, even quantum processors are not able

to reproduce exactly a given quantum circuit: their coupling with the environ-

ment, which is minimized but not removed by the experimental implementation,

induces errors through quantum channels like decoherence or bit-flip. Therefore

an approximate representation of the qubits’ state is acceptable as long as its

errors are comparable with the experimental ones. The tensor network methods

allow one to approximate a quantum state by efficiently compressing its informa-

tion, introducing a controllable error. In this thesis, these methods will be used

to simulate a quantum computer on a large computational cluster, to push as far

as possible the classical simulation framework.

i

To all those who sustained me during my education.

ii

Contents

Introduction 1

1 Quantum Computing 4

1.1 Classical computation in a nutshell 4

1.2 The Qubit . 5

1.2.1 Composite systems and entanglement 7

1.3 State evolution . 8

1.3.1 Quantum gates . 9

1.3.2 Quantum Fourier Transform 12

1.3.3 Quantum channels . 16

1.4 Simulation methods . 18

1.4.1 Linear algebra . 19

1.4.2 Stabilizers . 19

1.5 Linear optics model . 20

1.5.1 Qumodes . 21

1.5.2 Linear optics gates . 22

1.5.3 Gaussian boson sampling 26

2 Matrix Product States 30

2.1 Motivation and Construction . 30

2.2 Tensor networks . 35

2.2.1 Gauge Freedom . 35

2.2.2 Passing from a full to a matrix product state 39

2.3 Operations on the MPS . 40

2.3.1 Time evolving block decimation 47

3 QC-MPS: MPS simulator for Quantum Computers 51

3.1 Implementation . 51

iii

CONTENTS

3.1.1 Qiskit interface . 52

3.1.2 Strawberry fields interface 55

3.2 Results . 56

3.2.1 Correctness checks . 56

3.2.2 Time scaling . 59

3.2.3 Gaussian Boson Sampling 63

3.3 Future development and improvement 67

3.3.1 Gate merging . 68

3.3.2 Parallelization . 69

Conclusions 80

iv

List of Figures

1.1 The Bloch Sphere . 6

1.2 One-qubit gates . 10

1.3 Two-qubits gates . 11

1.4 Quantum circuit depth example 12

1.5 QFT circuit . 15

1.6 Local QFT circuit . 16

1.7 Linear optics gates representation 26

1.8 Linear optics gates . 27

1.9 Gaussian boson sampling circuit 28

2.1 Maximally entangled bonds . 33

2.2 Projection to physical sites . 33

2.3 Single-tensor representation . 36

2.4 Tensor network representation . 36

2.5 Expectation value on the tensor network 37

2.6 Gauge freedom . 37

2.7 Center of orthogonality . 38

2.8 Decomposition of a full state to MPS. Step 1 40

2.9 Decomposition of a full state to MPS. Step 2 41

2.10 Application of 1-site operator . 42

2.11 Application of 2-site operator. Step 1 43

2.12 Application of two-site operator. Step 2 44

2.13 Projective measurements . 45

2.14 Probability measure . 47

2.15 Time evolving block decimation algorithm 49

3.1 Correctness checks for the QVOLUME and the W circuit with QFT 58

3.2 Correctness checks for random circuits 59

v

LIST OF FIGURES

3.3 State vector simulator time scaling 60

3.4 MPS time scaling with the number of qubits 61

3.5 MPS time scaling with bond dimension χ 63

3.6 Example of occupation profile for a GBS experiment 64

3.7 Average number of photons w.r.t. the Fock space cutoff in the

Gaussian Boson Sampling . 65

3.8 GBS Hafnian estimation . 67

3.9 Occupation profile and singular values cut with different number

of qumodes . 68

3.10 Single-qubit gates merging example 69

3.11 Gate merging . 70

3.12 Parallel algorithm for gate application 72

3.13 Parallel speed-up for GHZ . 73

3.14 Parallel speed-up for QFT . 74

3.15 Cartesian parallel architecture . 75

3.16 Master-workers parallel architecture 76

3.17 Master-worker and cartesian parallel architecture comparison for

the QFT circuit . 77

3.18 Master-worker and cartesian parallel architecture comparison for

random circuits . 79

vi

List of Tables

1.1 Classical gates truth table . 5

3.1 Available gates in the MPS simulator 53

vii

Listings

3.1 Example of a qiskit quantum circuit in python. We initialize a

GHZ circuit, linearizing its topology. 53

3.2 An example of a linear optic circuit initialization using the straw-

berry fields python library. In particular, this example shows a

Gaussian Boson sampling circuit for 4 qumodes. 55

viii

Introduction

Quantum mechanics has given truthful results since its introduction in 1925 [1].

Important results have been achieved via analytical techniques, such as the tun-

neling effect [2]. However, it is not possible to attack analytically every problem.

For this reason, simulations are one of the most used methods to explore a natural

phenomenon. Simulations are usually performed on a classical computer. How-

ever, this approach is not efficient, if we are describing classically something that

is quantum: in 1982 Richard Feynman said, “Nature isn’t classical, dammit, and if

you want to make a simulation of nature, you’d better make it quantum mechani-

cal” [3]. Thus, we expect that quantum simulations will bring great improvements

to the research effort: in the last decade, there has been an outstanding effort

to develop quantum computers, i.e. machines able to exploit quantum features

to study phenomena otherwise inaccessible. In quantum computers, the classical

bit, which can encode the values {0, 1}, is replaced by the quantum bit (qubit),

which can also encode a superposition of those two states. Furthermore, we can

employ the entanglement, a unique quantum resource. Using quantum computers

would enable us to perform efficient simulations of quantum systems.

Building quantum computers is a challenge. The interaction of the quantum

system with the environment introduces errors, to the extend that the system may

easily lose its quantum behavior, by the means of a process called decoherence.

Quantum computers available today are noisy and reduced in size, thus com-

monly referred to as Noisy Intermediate Scale Quantum computers (NISQ). For

example, IBM, using superconducting qubits [4], promised to build a quantum

computer composed of 1000-qubits by 2023, even though their largest current

quantum computer is made of 65 qubits. There are other physical platforms

which are currently used to implement quantum computers, such as trapped ions

[5], Rydberg atoms [6] or photonic hardware [7]. It is essential to benchmark all

these quantum computers to attest their performances. Classical simulations are

one of the possible techniques to benchmark quantum computers, even though

1

Introduction

these simulations are exponentially demanding due to the exponential scaling of

the Hilbert space in which the quantum state is defined, as a function of the

system size. For example, to exactly describe the 65-qubits machine one would

need more than 1011 GB of memory. Nonetheless, we are often interested in par-

ticular states, that belong to peculiar subspaces of the full Hilbert space. Many

different techniques were introduced over the years by the physics community to

represent and evolve such states, like the Real Space Renormalization Group, the

Density Matrix Renormalization Group [8] or the Tensor Network Methods [9].

Tensor Network Methods can be used for the simulation of quantum computers.

We focus on Tensor Networks in Chapter 2: they enable us to run simulations of

many qubits even on a personal computer.

In this thesis, we present a quantum computer simulator based on a tensor

network ansatz called Matrix Product States [10, 11]. The developed program

runs on the Cineca cluster, and specifically the Marconi 100 supercomputer. We

test this simulator, understanding its capabilities and use cases. Furthermore,

we also tackle systems more computationally demanding than quantum circuits

composed of qubits. In particular, we simulate photonic circuits, where the di-

mension of the single degree of freedom is not two, as in the qubit’s case, but is

theoretically infinite. Since it is not possible to simulate unbounded quantities,

we impose a maximum dimension. We apply such tool to address an instance

of quantum supremacy, which was achieved using the Gaussian boson sampling

protocol [12].

This thesis is organized as follows:

• In the Introduction we present the reasons for this work, briefly introducing

its structure;

• In Chapter 1 we introduce the quantum computing framework, focusing on

the limits of the exact classical simulation, both in the qubit’s and photonic

case;

• In Chapter 2 we explain in detail the Matrix Product State formalism,

highlighting its capabilities and the main steps to develop it to the quantum

computing framework;

• In Chapter 3 we focus on the implementation on the Cineca cluster, going

through the developed code and presenting the obtained results;

2

Introduction

• In the Conclusion we conclude this thesis, suggesting possible future works

that employ the framework developed.

3

1
Quantum Computing

In this chapter, we introduce the basics of the quantum computing framework.

First, we address how the classical computation techniques can be extended in

the quantum case. In Section 1.3.1 we survey the methods for the evolution of

quantum states, focusing on the application of quantum gates [13]. We explore

one of the error sources in the current quantum processor hardware. Then, in

Section 1.4 we overview different simulation methods for quantum circuits [14,

15]. Finally, in Section 1.5, we address one particular implementation of the

framework, namely photonic quantum computers [16, 17, 18]. We focus on the

criticisms arising when simulating Gaussian boson sampling hardware [19].

1.1 Classical computation in a nutshell

Classical computation is based on boolean algebra. Its fundamental unit is the

bit, a binary variable with values {0, 1}. Each task performed by a computer is

translated, at the lowest level, into operations applied to a set of bits. These

operations, called gates, can be modeled as binary functions f : {0, 1}n → {0, 1},
where n is the number of input bits. Only a few gates, forming the so-called

universal set, are implemented in the hardware because it has been proven that

every binary function is modular in a set of elementary logic gates [20].

We now present the truth tables of a universal gate set as an example. A truth

table is a table where on the left column we list all the possible configurations

of the input bits, while on the right the gate output is reported. The chosen

universal gate set is composed by:

• NOT, which negates the input bit;

4

CHAPTER 1. QUANTUM COMPUTING

• AND, which outputs 1 if and only if both inputs are 1;

• OR, which outputs 1 if either of the inputs is 1;

• COPY, which copies the input bit state to another one.

The corresponding truth tables are reported in Table 1.1. Having defined the ba-

a COPY NOT

0 0 1

1 1 0

(a) Truth table of one-bit gates.

a b AND OR

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

(b) The truth table of two-bits gates.

Table 1.1: Gates truth tables. In the first row, we have the bit and gate name. On

the following rows, we have the states. On the left, we report the input states, while

on the right the correspondent gate output.

sics states and operations in the classical regime we can now proceed, introducing

the quantum bit.

1.2 The Qubit

The fundamental unit of quantum computation is the qubit. It is the quantum

version of the classical bit. It is a two-level system, whose general state |ψ⟩ can
be represented as follows:

|ψ⟩ = α0 |0⟩+ α1 |1⟩ =
(︃
α0

α1

)︃
with |α0|2 + |α1|2 = 1, α0, α1 ∈ C, (1.1)

where on the right we have the normalization condition.

There is another way of defining the state of a single qubit, namely as a unit

vector on the Bloch Sphere (Figure 1.1). This sphere is useful for having a visual

representation of the state. We can uniquely identify a quantum state through

the angles θ ∈ [0, π], ϕ ∈ [0, 2π] as follows:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ =

(︃
cos θ

2

eiϕ sin θ
2

)︃
. (1.2)

5

CHAPTER 1. QUANTUM COMPUTING

Fig. 1.1: The Bloch sphere is a sphere with unitary radius. Through the angles θ, ϕ

we can uniquely identify the pure state of a qubit, as shown in Equation (1.2). When

the unit vector is aligned with the z axis, it represents the |0⟩ state if it points upward,
or the |1⟩ state if it points downward. Image is taken from Wikipedia.

6

CHAPTER 1. QUANTUM COMPUTING

We presented the state of a single qubit. The more important features of

quantum computing, such as entanglement, arise when we have a quantum many-

body state, composed in our case by n qubits.

1.2.1 Composite systems and entanglement

We are now interested in describing the state of many qubits. We introduce it for

a general d-level system, since we need this more general framework in Section

1.5. The state of a single degree of freedom |ϕ⟩i lives in a Hilbert space Hi with

dimension dim (Hi) = d, and we can write it as:

|ϕ⟩i =
d∑︂

j=1

cj |j⟩i ,
d∑︂

j=1

|cj|2 = 1, (1.3)

where {|j⟩i}j=1,...,d is an orthonormal basis of Hi.

If we now consider n degrees of freedom their state is defined in the tensor

product of the local Hilbert spaces Hi:

H = H1 ⊗H2 ⊗ · · · ⊗ Hn =
n⨂︂

i=1

Hi. (1.4)

The most general state |ψ⟩ ∈ H can be expressed as a linear combination of the

tensor product of the orthonormal basis:

|ψ⟩ =
∑︂
j⃗

cj⃗ |j⟩1 |j⟩2 . . . |j⟩n ,
∑︂
j⃗

|cj⃗|
2 = 1. (1.5)

We notice that cj⃗ is a n-dimensional tensor, with local dimension d, and thus

have dn elements. We can so state that the Hilbert state of a composite system

scales exponentially with the number of degrees of freedom.

We proceed now and define the entanglement, a purely quantum resource [21,

22]. We consider the so-called bipartite entanglement relative to the bipartitions

(A,B) of a pure state |ψ⟩, each with A (B) degrees of freedom of local dimension

d. By introducing bases {
⃓⃓
ϕA
i

⟩︁
} and {

⃓⃓
ϕB
j

⟩︁
} for the two subsystems, which are

respectively of dimension dA and dB, we can write any state of the whole system

in a product basis as follows:

|ψ⟩ =
∑︂
ij

αij

⃓⃓
ϕA
i

⟩︁ ⃓⃓
ϕB
j

⟩︁
. (1.6)

7

CHAPTER 1. QUANTUM COMPUTING

However, using the Schmidt decomposition [23], we can turn the double sum into

a single one:

|ψ⟩ =
r∑︂
α

λα
⃓⃓
ϕA
α

⟩︁ ⃓⃓
ϕB
α

⟩︁
,
∑︂
α

λ2α = 1, (1.7)

where r ∈
[︁
1,min(dA, dB)

]︁
is the Schmidt rank. The Schmidt rank is equal to 1

only for a product state, which by definition is not entangled, whereas a Schmidt

rank r > 1 indicates non-zero entanglement between the two parts. From the

Schmidt coefficients {λα}, which are real, non-negative, and unique (for a given

state), we can obtain the entanglement entropy. This is simply the Von Neumann

entropy evaluated on a subsystem:

SV = −
∑︂
α

λ2α lnλ
2
α. (1.8)

1.3 State evolution

The evolution of a quantum state |ψ⟩ is obtained solving the Schrödinger differ-

ential equation:

iℏ
∂ |ψ⟩
∂t

= H |ψ⟩ , (1.9)

where H is the Hamiltonian of the system. We denote with |n⟩ the eigenvector

of H with eigenvalue ϵn. We can then solve Equation (1.9) by writing |ψ⟩ in the

eigenvector basis, obtaining:

|ψ(t)⟩ = U(t) |ψ(0)⟩ =
∑︂
n

e−
i
ℏ ϵntcn |n⟩ , (1.10)

where U(t) is a unitary operator.

Using an appropriate Hamiltonian we can evolve the system arbitrarily. This

means that we can manipulate a system by applying different Hamiltonians for a

given amount of time. Indeed, we can abstract our reasoning even further: instead

of Hamiltonians we take into account only its effect, the evolution operator U(t̄) =

U , where t̄ is the exact time needed for the transformation we are interested in.

We now focus on the qubits case.

8

CHAPTER 1. QUANTUM COMPUTING

1.3.1 Quantum gates

At the detail level of this thesis, we are not interested in the microscopic Hamil-

tonians that generate the dynamics of the qubit. Instead, we take into account

only their unitary representations U . These operators are called quantum gates.

We so focus on the quantum circuit model, where the qubits are represented as

lines, called qubit wires, where the gates are applied, with time flowing from left

to right. Examples of simple quantum circuits are shown in Figure 1.2, 1.3.

Quantum gates are analogous to classical gates, with the important difference

being that they are unitary operators. This means that quantum circuits are

always reversible since we know that for a unitary operator U holds UU † = 1,

wherewith (·)† we denote the adjoint operation. We list now some of them as an

example.

One-qubit gates

One-qubit gates acts only on a single qubit, and can be modeled as a 2×2 unitary

matrix. Some examples, which graphical representation is in Figure 1.2, are:

• The Hadamard gate. It acts on the computational basis as follows:

{|0⟩ , |1⟩} H→ { |0⟩+|1⟩√
2
, |0⟩+|1⟩√

2
}. Its matrix representation is:

H =
1√
2

(︃
1 1

1 −1

)︃
. (1.11)

• The phase shift. It adds a relative phase to the qubit’s state: |0⟩+|1⟩√
2

P (ϕ)−→
|0⟩+eiϕ|1⟩√

2
.

P (ϕ) =

(︃
1 0

0 eiϕ

)︃
. (1.12)

• The NOT or X gate. It acts on the computational basis as follows, flipping

the state: {|0⟩ , |1⟩} X→ {|1⟩ , |0⟩}.

X =

(︃
0 1

1 0

)︃
. (1.13)

9

CHAPTER 1. QUANTUM COMPUTING

q0 : H P (ϕ) X

Fig. 1.2: One-qubit gates applied to the qubit 0. Starting from the left, we have the

Hadamard gate (Equation (1.11)), the Phase gate (Equation (1.12) and the NOT gate

(Equation (1.13)).

Two-qubits gates

Quantum circuits act on qubit registers modifying their state. One common type

of two-qubits gates is called controlled-gate, in which the first qubits acts as a

control on the application of a one-qubit gate on the second qubit, called target.

Two-qubits gates are represented by unitary 4×4 matrices. They are particularly

important in quantum circuits since they enable us to create entanglement. Some

examples, shown in Figure 1.3, are:

• The Controlled Not, also named as CNOT or CX. It applies a NOT gate

on the target qubit if and only if the control qubit is in the |1⟩ state.

CX =

(︃
12×2 O2×2

O2×2 X

)︃
, (1.14)

where 12×2 is the 2 × 2 identity matrix and O2×2 is the 2 × 2 matrix with

only 0 elements.

• The Control Phase Shift, it applies a phase shift represented by P (θ) to the

target qubit if and only if the control qubit is in the |1⟩ state.

CPHASE(θ) =

(︃
12×2 O2×2

O2×2 P (θ)

)︃
. (1.15)

• The Swap, it swaps the states of the qubits.

SWAP =

⎛⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎠ . (1.16)

10

CHAPTER 1. QUANTUM COMPUTING

q0 : • •
P (θ)

×
q1 : • ×

Fig. 1.3: Two-qubits gates applied to the qubit 0 and 1. Starting from the left, we

have the CNOT gate (Equation (1.14)), the CPhase gate (Equation (1.15) and the

SWAP gate (Equation (1.16)). Notice that while the CNOT gate has a control qubit

(black dot) and a target qubit (crossed circle), the CPhase and SWAP are symmetric

across control/target.

It has been shown that a universal set of qubits gates is formed by the

Hadamard gate H, the π/4 phase shift T = P (π/4) and the control NOT CX.

This is particularly important since it means that in order to have a universal

quantum computer we only need to implement one and two-qubits gates. For this

reason, we do not spend any effort in defining gates involving more qubits.

We now define an important quantity of quantum circuits: the circuit depth.

The circuit depth is the length of the longest path from the input (or from a

preparation) to the output (or a measurement gate), moving forward in time

along each qubit wire. The stopping points on the path are the gates, the allowed

paths that must be considered can enter and exit those gates on any input or

output, and the length is the number of jumps from each gate to the next gates

along the path. We suggest the following approach to calculate the depth: (a)

consider each gate takes the same time to be applied, which we call time step.

It is an approximation, which does not hold in general for 1- vs 2-qubit gates in

experiments or simulations. (b) Multiple gates can be implemented within the

same time step if no qubit appears in more than one gate and (c) the original

order of gates does not change from the viewpoint of each qubit, i.e., a sequence

of gates G1,2 G3 can be swapped, but G1,2 G1 cannot be swapped. Then, the

depth is the number of time steps needed to simulate the quantum circuit. For

example, both the circuits on Figure 1.3 and 1.2 has depth 3, while the circuit on

Figure 1.4 has depth 7, since the gates enclosed in the dashed rectangle can be

performed at the same time.

As an example of a more complex quantum circuit that contains some of the

gates defined above, we present now the Quantum Fourier Transform algorithm.

11

CHAPTER 1. QUANTUM COMPUTING

q0 : H • H •
P (θ)

•
q1 : H • • H

P (θ)
•

q2 : H • • H
q3 :

Fig. 1.4: Example of quantum circuit to better understand the definition of circuit

depth. Gates on the same column or enclosed in the dashed rectangle can be executed

at the same time, meaning that they count as one unit in the computation of the depth.

Thus, this circuit has depth 7.

1.3.2 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) [24] is the quantum analogue of the

inverse discrete Fourier transform for qubits. It is the main ingredient of many

quantum algorithm [25], and we employ it in Chapter 3 to test the performances

of the developed code.

Given a sequence of N complex terms {fk}k=0,...,N−1, with fk ∈ C, the in-

verse Discrete Fourier Transform is a linear transformation F−1 : CN → CN

mapping each fk ↦→ f̃k ∈ C to:

f̃k =
1√
N

N−1∑︂
j=0

fj exp

(︃
2πi

N
j k

)︃
. (1.17)

The quantum analogue, i.e. the Quantum Fourier Transform (QFT), is

a linear transformation performed on n qubits, which acts on the states of the

computational basis {|j⟩}j=0,...,N−1, with N = 2n, according to:

|QFT ⟩⟨QFT | (|j⟩) = 1√
N

N−1∑︂
k=0

exp

(︃
2πi

N
j k

)︃
|k⟩ ∀ |j⟩ ∈ CN . (1.18)

The QFT can be written as a sequence (circuit) of quantum gates, which can be

implemented in a quantum computer.

To do so, we start by representing k ∈ {0, . . . , N − 1} as a binary number:

k = kn−12
n−1 + · · ·+ k02

0 =
n−1∑︂
t=0

kt2
t,

12

CHAPTER 1. QUANTUM COMPUTING

We consider ki as the i−th digit, with k0 being the least significant one (i.e., the

Least Significant Bit, LSB), while the Most Significant Bit (MSB) is kn−1. This

allows us to rewrite the elements of the computational basis as the tensor product

of the local bases at each qubit:

|k⟩ =
n⨂︂

l=1

|kn−l⟩ ≡ |kn−1 · · · k0⟩ . (1.19)

With this notation, (1.18) becomes a nested sequence of summations:

|QFT ⟩⟨QFT | (|j⟩) = 1√
N

1∑︂
kn−1=0

· · ·
1∑︂

k0=0

exp

(︄
2πij

2n

n−1∑︂
t=0

2tkt

)︄
|kn−1 · · · k0⟩ .

(1.20)

By defining l = n− t, the summation highlighted in red can be rewritten as:

n−1∑︂
t=0

2tkt
2n

=
n−1∑︂
t=0

kt
2n−t

=
n∑︂

l=1

kn−l

2l
.

Then, by converting the exponential of the summation into a product of expo-

nentials, Equation (1.20) becomes:

|QFT ⟩⟨QFT | (|j⟩) = 1√
N

1∑︂
kn−1=0

· · ·
1∑︂

k0=0

[︄
n∏︂

l=1

exp

(︃
2πij

kn−l

2l

)︃]︄
|kn−1 · · · k0⟩ .

We can now use Equation (1.19) to separate the qubits:

|QFT ⟩⟨QFT | (|j⟩) = 1√
N

1∑︂
kn−1=0

· · ·
1∑︂

k0=0

n⨂︂
l=1

exp

(︃
2πij

kn−l

2l

)︃
|kn−l⟩ =

=
1√
N

n⨂︂
l=1

⎡⎣ 1∑︂
kn−l=0

exp

(︃
2πij

kn−l

2l

)︃
|kn−l⟩

⎤⎦
=

1√
N

n⨂︂
l=1

[︃
|0⟩+ exp

(︃
2πij

1

2l

)︃
|1⟩
]︃
.

Finally, we convert j in binary notation too:

j = jn−1jn−2 . . . j0 =
n−1∑︂
t=0

jt2
t,

13

CHAPTER 1. QUANTUM COMPUTING

and we also introduce the fractional binary notation:

0.jljl+1 . . . jm =
1

2
jl +

1

4
jl+1 + · · ·+ 1

2m−l+1
jm.

In this way, the term j/2l can be rewritten as:

j

2l
= jn−1jn−2 . . . jl+1.jl . . . j0.

Thanks to the properties of the exponential, the integer, and the fractional part

can be factorized. Note that exp (2πijn−1 . . . jl+1) = 1, and so it can be removed.

This allows to further expand the tensor product:

|QFT ⟩⟨QFT | (|j⟩) = 1√
N

[︂
|0⟩+ exp(2πi0.j0) |1⟩

]︂
n−1

⊗

⊗
[︂
|0⟩+ exp(2πi0.j1j0) |1⟩

]︂
n−2

⊗ · · ·⊗

⊗
[︂
|0⟩+ exp(2πi0.jn−1jn−2 . . . j0) |1⟩

]︂
0
. (1.21)

This final expression can be used now to express the QFT operation via elemen-

tary gates, leading to the quantum circuit implementation of the algorithm.

We start by noticing that the last qubit after the transformation (the [. . .]n−1

term) only depends on the first one (|j0⟩), as it emerges by applying a Hadamard

gate:

|QFT ⟩⟨QFT | (|j⟩)n−1 ≡
⃓⃓
j̃
⟩︁
n−1

=
1√
2

[︂
|0⟩+ exp(2πi0.j0) |1⟩

]︂
= H |j0⟩ . (1.22)

In fact, there are only two possible cases, since j0 can be either 1 or 0:

j0 = 0 :
⃓⃓
j̃
⟩︁
n−1

=
1√
2

[︂
|0⟩+ |1⟩

]︂
= H |0⟩ (1.23)

j0 = 1 :
⃓⃓
j̃
⟩︁
n−1

=
1√
2

[︂
|0⟩+ exp(πi) |1⟩

]︂
=

1√
2

[︂
|0⟩ − |1⟩

]︂
= H |1⟩ . (1.24)

The qubit immediately before (n− 2-th) is indeed more complex to derive, espe-

cially due to its phase. The 0.j1 term can be computed, similarly to before, via a

Hadamard gate applied to |j1⟩, however, the 0.0j0 expression requires a controlled

phase (CPHASE gate) dependent on |k0⟩.
We define a k-order CPHASE gate as follows:

Pk =

(︃
12 O
O P(2πi/2k)

)︃
. (1.25)

14

CHAPTER 1. QUANTUM COMPUTING

Thus: ⃓⃓
j̃
⟩︁
n−2

= P
|j0⟩
2 H |j1⟩ . (1.26)

The same argument can be repeated for all the other qubits. For m ≥ 1, we

get:

⃓⃓
j̃
⟩︁
m
= P

|j0⟩
m+1 · · ·P

|jm−2⟩
3 P

|jm−1⟩
2 H |jm⟩ =

(︄
m−1∏︂
l=0

P
|jl⟩
m+1−l

)︄
H |jm⟩ .

Summarising all the previous deductions and computations, one can obtain the

final quantum circuit, displayed in Figure 1.5. It is worth observing that a SWAP

operation of order O(n) — or at least a renaming of qubits — must be imple-

mented to maintain the original qubit order since it is inverted by the QFT.

q0 : • • •
P (π2)

H ×
q1 : • •

P (π2) P (π4)
H • ×

q2 : •
P (π2) P (π4)

H
P (π8)

• • ×
q3 : H • • • ×

Fig. 1.5: Circuit implementation for the QFT on n = 4 qubits.

In conclusion, considering the number of quantum gates adopted in this cir-

cuit (n2), one can at first infer that the order of the algorithm is O(n2), which

compared to its classical counterpart (Fast Fourier Transform order: O(nN)) is

exponentially more efficient.

We now present another configuration of the QFT circuit, that makes use

only of local gates. We classify a gate as non-local if it is applied to non-adjacent

qubits. In Chapter 2, we will see the importance of a local circuit.

To understand the new structure, let us recall that the QFT reverses the

order of qubits. This reversal can be removed by iteratively swapping neighboring

qubits. For instance, for n = 4, if we name the qubits with their index after the

QFT, we get the reversed order 3210. The first-place qubit (“3”) can be brought

to its correct position (the rightmost one) by applying 3 SWAPs: 3210 → 2310 →
1230 → 2103. A second “pass” of SWAPs can be used to move also the “2” to

its right position (2103 → 1203 → 1023), and a last SWAP brings “0” and “1” to

15

CHAPTER 1. QUANTUM COMPUTING

q0 : H •
P (π

2
)
× H •

P (π
2
)
× H •

P (π
2
)
× H

q1 : • × •
P (π

4
)
× • × •

P (π
4
)
× • ×

q2 : • × •
P (π

8
)
× • ×

q3 : • ×

Fig. 1.6: Local circuit implementation for the QFT with n = 4 qubits.

their correct places: 1023 → 0123. Now, note that in the original circuit (Figure

1.5), the qubit at the i-th place interacts with a CPHASE with all the qubits “to

its right”. For instance, “3” in 3210 interacts with “2”, “1” and “0” in succession.

But during the first pass of SWAPs, “3” is moved iteratively “to the right”, and

becomes neighbor of qubits “2”, “1” and “0” in sequence. This property holds for

the other qubits too, meaning that the entire circuit can be rewritten by placing

a SWAP after each CPHASE, as shown in the figure. In particular, all CPHASEs

with the same phase are applied on the same “layer”, and that a “pass” of SWAPs

is achieved from the top-left to the bottom-right as shown in Figure 1.6. This

wiring makes all gates local and preserves the initial ordering of qubits. We show

the new circuit configuration in Figure 1.6.

Up to now, we have discussed the unitary evolution of a quantum state. This

has been done because the simulation methods that are presented in Chapter 2 are

aimed at the simulation of pure states undergoing a unitary evolution. However,

these methods can introduce an error on the state. We justify this error, stating

that if it is comparable with the device’s error, then the simulation is meaningful.

We then briefly overview a way to characterize this error in the following section.

1.3.3 Quantum channels

In real experiments, it is impossible to perfectly insulate a quantum system, as

the system interacts with the environment. Even though the evolution of the

system+environment is still unitary, we can observe only the system, and thus

observe a non-unitary evolution. In order to describe a non-unitary evolution of

a quantum system we introduce a more general tool to represent quantum states,

the density matrix ρ ∈ H. Using it we can represent mixed states, i.e. states

16

CHAPTER 1. QUANTUM COMPUTING

where we do not have complete knowledge. It is defined as:

ρ =
∑︂
i

pi |ψi⟩ ⟨ψi| , (1.27)

where pi is the probability of being in the quantum state |ψi⟩ ∈ H. The density

matrix has the following properties:

1. ρ is hermitian;

2. ρ is a non-negative operator, i.e. ⟨ψ| ρ |ψ⟩ ≥ 0 ∀ |ψ⟩;

3. We define the trace of an operator A as Tr(A) =
∑︁

k ⟨k|A |k⟩ where
{|k⟩}k=1,...,n is a basis of the Hilbert space H. Then, Tr(ρ) = 1.

We can describe a pure state using a density matrix. In that case we have pj = 1,

pi ̸=j = 0. Furthermore, a density matrix is pure if and only if ρ2 = ρ and

Tr(ρ2) = 1. Instead, if Tr(ρ2) < 1 then the state is mixed.

If we have a composite system we can focus only on a subsystem, tracing

away the other. We consider a bipartite system divided into two parts (A,B),

each with A(B) degrees of freedom of local dimension d. By introducing bases

{
⃓⃓
ϕA
i

⟩︁
} and {

⃓⃓
ϕB
j

⟩︁
} for the two subsystems, which are respectively of dimension

dA and dB. If a state ρ is defined in A ⊗ B then we can focus on the state ρA

defined only on A as:

ρA = TrB(ρ) =
∑︂
j

⟨︁
ϕB
j

⃓⃓
ρ
⃓⃓
ϕB
j

⟩︁
. (1.28)

Indeed, when we trace away a subsystem we can pass from a pure to a mixed

state. Let us consider, as an example, a Bell state |ψ⟩ = 1√
2
(|00⟩+ |11⟩). We can

write the related density matrix as:

ρ = |ψ⟩ ⟨ψ| = 1

2
(|00⟩ ⟨00|+ |11⟩ ⟨11|) = 1

2

⎛⎜⎜⎜⎝
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞⎟⎟⎟⎠ .

We notice that ρ2 = ρ, and so we confirm that the state is pure. If we trace away

the second qubit we obtain:

ρ1 = Tr2(ρ) =
∑︂
j

⟨j|2 ρ |j⟩2 =
1

2
(|0⟩1 ⟨0|1 + |1⟩1 ⟨1|1).

17

CHAPTER 1. QUANTUM COMPUTING

We notice that ρ21 ̸= ρ1. This means that ρ1 is mixed. We so passed from a pure

to a mixed state by focusing on a subsystem.

We now have all the ingredients to present the motivation behind the introduc-

tion of quantum channels. If A is the quantum system and B is the environment,

then the total system A + B undergoes a unitary evolution. However, since we

can observe only A we are effectively tracing away B, passing from a pure state to

a mixed one. We can model the evolution of A through a non-unitary evolution

using the Kraus representation [26]:

ρA(t) = TrB
(︁
ρ(t)

)︁
=
∑︂
k

EkρA(t = 0)E†
k, with

∑︂
k

E†
kEk = 1. (1.29)

The Ek are called Kraus operators.

We list here some examples of quantum channels, highlighting their effect on

the qubit’s state:

• Amplitude damping. It is the process that makes the excited state |1⟩ de-

caying into the ground state |0⟩;

• Phase damping. It is the process that eliminates the coherence: it trans-

forms the state 1
2

(︁
|0⟩+ |1⟩

)︁(︁
⟨0|+ ⟨1|

)︁
into 1

2

(︁
|0⟩ ⟨0|+ |1⟩ ⟨1|

)︁
.

• Depolarizing channel. It is the process that depolarizes the qubit, dimin-

ishing the projections of the state over the axis x, y, and z. Over the time

the arbitrary state decays in 1
2

(︁
|0⟩ ⟨0|+ |1⟩ ⟨1|

)︁
.

It is not the aim of this dissertation of going into details about quantum

channels and non-unitary evolution. The important message from this subsection

is that there are errors in the states of quantum computers, due to the interaction

with the environment. We can so exploit this fact, and state that symmetrically

we can tolerate errors in the simulations, as long as they are small enough. We

can set the threshold of the acceptability at an error of 10−4, which is the fault-

tolerant threshold.

1.4 Simulation methods

We now review some methods for the exact simulation of quantum circuits. It is

indeed a difficult task since the dimension of the Hilbert space scales exponentially

with the number of qubits n.

18

CHAPTER 1. QUANTUM COMPUTING

1.4.1 Linear algebra

The most straightforward simulation method involves the exact simulation of the

state. We represent the state of a n-qubits system |ψ⟩ as a 2n dimensional vector,

and then apply the gates. Indeed, we can not simply use the expression for the

gates presented in Section 1.3.1, but extend it on the entire Hilbert space. A

one-qubit gate Gi =

(︃
g11 g12
g21 g22

)︃
acting on the i-th qubit can be extended on the

full space as follows:

U = 11 ⊗ 12 ⊗ · · · ⊗ 1i−1 ⊗Gi ⊗ 1i+1 ⊗ · · · ⊗ 1n. (1.30)

The problem is that now U is a 22n matrix, which explodes even faster than the

state. However, we do not need to construct the full U, and we can perform apply

the gate G directly on the state-vector. We denote the amplitudes of the state

vector |ψ⟩ by their binary index. For example, if we are worknig with n = 2

qubits then |ψ⟩ = (α00, (α01, (α10, (α11). Then, the gate induces a transformation

to pairs of amplitudes whose indices differ in i-th bits of their binary index:

α′
∗···∗0i∗···∗ = g11 · α∗···∗0i∗···∗ + g12 · α∗···∗1i∗···∗, (1.31)

α′
∗···∗1i∗···∗ = g21 · α∗···∗0i∗···∗ + g22 · α∗···∗1i∗···∗, (1.32)

where with ∗ we denote all the possible configuration of the other binary indices.

The number of operation needed to perform an update for single-qubit gates is

so 2n. The operations are analogous for two-qubits gates. This means that, for

updating the state vector we perform O(2n) operations. We recall that a set of

universal gate is formed by only one-qubits gates and two-qubits gates [13], and

so it is sufficient to be able to simulate those.

There are many techniques to speed up this process, such as running the

simulation on GPUs, or on multiple threads [27, 28]. However, as we will see

in Chapter 3, even running the simulation on 128 threads on the m100 cluster

enable us to run the QFT only on up to 32 qubits.

1.4.2 Stabilizers

We have seen in the previous section that the exact simulation of an arbitrary

quantum circuit is exponentially difficult. However, this simulation becomes much

more feasible if we put some constraints on the quantum circuit. The Gottesman-

Knill theorem [29] states that, if we only apply gates from the Clifford group

19

CHAPTER 1. QUANTUM COMPUTING

(CNOT, Hadamard, P̄ = P (π
2
)), then the circuit can be efficiently simulated on

a classical computer. In particular, using the graph state formalism [30], it is

possible to simulate circuits in O(n log n) time. We now give a brief overview of

the method.

The key idea of the stabilizer formalism is to represent a quantum state |ψ⟩,
not by a vector of amplitudes, but by a stabilizers group, consisting of unitary

matrices that stabilize |ψ⟩. A unitary matrix U stabilizes a quantum state |ψ⟩ if
|ψ⟩ is an eigenvector of U with eigenvalue 1, i.e. U |ψ⟩ = |ψ⟩. We do not neglect

a global phase. Notice that if U and V both stabilize |ψ⟩ then so do UV and

U−1, and thus the set Stab(|ψ⟩) of stabilizers of |ψ⟩ is a group. Also, it is not

hard to show that if |ψ⟩ ̸= |ϕ⟩ then Stab(|ψ⟩) ̸= Stab(|ϕ⟩). Remarkably, though,

a large and interesting class of quantum states can be specified uniquely by much

smaller stabilizer groups—specifically, the intersection of Stab(|ψ⟩) with the Pauli

group. A well-known fact from group theory says that any finite group G has a

generating set of size at most log2G. So if |ψ⟩ is a stabilizer state on n qubits,

then the group S(|ψ⟩) of Pauli operators that stabilize |ψ⟩ has a generating set

of size n = log2 2
n. Each generator takes 2n+ 1 bits to specify: 2 bits for each of

the n Pauli matrices, and 1 bit for the phase. So the total number of bits needed

to specify |ψ⟩ is n(2n+ 1).

What Gottesman and Knill showed, furthermore, is that these bits can be

updated in polynomial time after a CNOT, Hadamard, phase, or measurement

gate is applied to |ψ⟩. The updates corresponding to unitary gates are very

efficient, requiring only O(n) time for each, while the measurements are more

demanding, requiring O(n3).

However, there have been subsequent works that further optimize the algo-

rithm [30, 14]. Furthermore, the Clifford gate set is a non-universal gate set, even

if there has been some effort to extend the formalism to include also the T gate,

which promotes the set to universal [15].

1.5 Linear optics model

We define a continuous-variable (CV) model as a model where the quantum op-

erators underlying the model have continuous spectra. Many physical systems,

such as light, are continuous. These systems are defined in an infinite-dimensional

Hilbert space, and so offer a different implementation of quantum computing with

respect to qubits. The CV model is a natural fit for simulating bosonic systems.

20

CHAPTER 1. QUANTUM COMPUTING

In particular, we focus on the Gaussian Boson Sampling protocol.

The simplest CV system is the bosonic harmonic oscillator, defined via the

canonical mode operators â and â†. These satisfy the commutation relation

[â, â†] = 1. It is also common to work with the quadrature operators:

x̂ =

√︃
ℏ
2

(︁
â+ â†

)︁
, p̂ = −i

√︃
ℏ
2

(︁
â− â†

)︁
, (1.33)

where x̂ is the position and p̂ the momentum. We can picture a fixed harmonic os-

cillator mode as a single wire in the quantum circuits. These qumodes are the fun-

damental information-carrying units of CV quantum computers. We can imple-

ment a quantum computer model by combining several qumodes, each with their

own operators {âiâ†i}i=1,...,m, and evolving them through suitable quantum gates.

Furthermore, qubit-based computations can be reproduced with this model, by

using the Gottesman-Knill-Preskill (GKP) embedding [31].

1.5.1 Qumodes

Qumodes are the CV counterpart of qubits. Even though we are in a CV model,

we mainly represent the qumodes using a discrete basis, namely the Fock basis

|n⟩ , n ∈ N. They are the eigenstates of the number operator n̂ = â†â. They form

a discrete countable basis for the states of a single qumode. We can identify with

n the number of photons in a qumode. We recall, for completeness, the effect of

the operators â, â† on a general Fock state |n⟩:

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ . (1.34)

It is important to notice that, since the Fock states form a basis, it is possible

to write any qumode state as a linear combination of the basis. For example, we

present the Fock decomposition of a coherent state |α⟩, which is an eigenstate of

the operator â:

|α⟩ = e−
|α|2
2

∞∑︂
n=0

αn

√
n!

|n⟩ . (1.35)

By recalling that our focus is on the classical simulation of a quantum com-

puter, it is clear that we can not take into account an infinite basis set. For this

reason, we introduce a cutoff in the Fock basis fc, called Fock space cutoff. This

means that the basis is now |n⟩ , n ∈ [0, fc]. It is true that this is an approxima-

tion on the state, but as long as fc is chosen high enough this approximation is

21

CHAPTER 1. QUANTUM COMPUTING

meaningful. This is because we always start from the vacuum state, namely |0⟩,
and we increment the number of photons in a mode through quantum gates.

There are other interesting representations of the CV model states. We briefly

address the Gaussian states since they are very useful for understanding intu-

itively the effect of Gaussian gates.

Gaussian states

As we have seen in Section 1.3, the state |0⟩, called vacuum in photonics, can be

evolved according to:

|ψ⟩ = e−itH |0⟩ ,

where H is a bosonic Hamiltonian and t the evolution time. States where the

Hamiltonian is at most quadratic in the operators x̂ and p̂ are called Gaussian.

For a single qumode, Gaussian states are parameterized by two continuous com-

plex variables: a displacement parameter α ∈ C and a squeezing parameter

z ∈ C. Gaussian states are so-named because we can identify each Gaussian

state, through its displacement and squeezing parameters, with a corresponding

Gaussian distribution. The displacement gives the center of the Gaussian, while

the squeezing determines the variance and rotation of the distribution.

1.5.2 Linear optics gates

Gates in quantum optics are particularly difficult to represent on the Fock basis.

They are usually defined in terms of the operators â, â†. In this section, we address

some of the quantum optics gates that we need for the Gaussian boson sampling

protocol.

We stress that, since we need to simulate the gate application, we are not

interested in the operator representation, but in the matrix representation in the

Fock basis. So, if we call U(â, â†, θ) a generic gate, then we need:

Unm = ⟨n|U(â, â†, θ) |m⟩ , n,m ≤ fc, (1.36)

where fc is the Fock space cutoff.

In order to present the effect of the single-mode gates, it is interesting to look

at their effect in the position and momentum quadrature. We show these results

in Figure 1.8.

22

CHAPTER 1. QUANTUM COMPUTING

Indeed, the same representation used for qubits-based quantum circuits holds

for qumodes-based circuits. We present in Figure 1.7 the diagrammatic example

of the gates.

Rotation gate

The phase space rotation gate of an angle θ ∈ [0, 2π] is a single-qumode gate. It

is defined as:

R(θ) = eiθâ
†â. (1.37)

This form is particularly interesting, because in the exponent we can notice the

number operator n̂ = â†â. We recall that the Fock states are eigenstates of n̂.

We can easily find the matrix elements of R(θ):

R(θ)mn = ⟨m|R(θ) |n⟩ = ⟨m| eiθn |n⟩ = eiθn ⟨m|n⟩

=

{︄
0 if n ̸= m

eiθn if n = m
. (1.38)

The rotation gate is so a diagonal matrix. Furthermore, notice that R(θ) preserves

the number of photons in a mode.

In the quadrature representation we can write the effect of the rotation gate

as:

R†(θ)x̂R(θ) = x̂ cos θ − p̂ sin θ

R†(θ)p̂R(θ) = p̂ cos θ + x̂ sin θ.

We notice that it rotates the position and momentum to each other.

In this particular case, the computation of the matrix elements was easy.

However, it is not the same in the following. For this reason, we simply present

the results.

Displacement gate

The displacement gate D(r, ϕ), r ∈ [0,∞) ϕ ∈ [0, 2π), is a single-qumode gate

defined as follows:

D(α) = eαâ
†−α∗â, α = reiϕ. (1.39)

23

CHAPTER 1. QUANTUM COMPUTING

The matrix elements of this gate were derived by Cahill and Glauber[32]:

D(α)mn =

√︃
n!

m!
αm−ne−

|α|2
2 Lm−n

n (|α|2), (1.40)

where Lm
n (x) is the generalized Laguerre polynomial.

In the quadrature representation we can write the effect of the displacement

gate as:

D†(α)x̂D(α) = x̂+
√
2ℏRe{α}1̂

D†(α)p̂D(α) = p̂+
√
2ℏ Im{α}1̂.

We observe that it shifts the position and the momentum operator of a quantity

which is proportional to respectively the real and imaginary part of α.

Squeezing gate

The squeezing gate S(r, ϕ), r ∈ [0,∞) ϕ ∈ [0, 2π), is a single-qumode gate defined

as follows:

S(z) = e
1
2

[︁
z∗â2−z(â†)2

]︁
, z = reiϕ. (1.41)

A Fock decomposition related to this gate was obtained by Krall [33]:

fn,m(r, ϕ, β) = ⟨n|S(z∗)D(β) |m⟩ =

√︄
n!

µn!
e

β2ν∗
2µ

− |β|2
2 ·

·
min(m,n)∑︂

j=0

(︁
m
j

)︁ (︂
1
µν

)︂j/2
2

j−m
2

+ j
2
−n

2

(︂
ν
µ

)︂n/2 (︂
−ν∗

µ

)︂m−j
2

Hn−j

(︂
β√
2µν

)︂
Hm−j

(︂
− α∗

√
−2µν∗

)︂
(n− j)!

,

(1.42)

where ν = e−iϕ sinh(r), µ = cosh(r), α = βµ − β∗ν and Hn(x) are the Hermite

polynomials. In particular, to retrieve the squeezing gate, we are interested in

the case β → 0, and we have:

Hn(0) =

{︄
0 if n is odd

(−1)
n
2 2

n
2 (n− 1)!! if n is even

. (1.43)

24

CHAPTER 1. QUANTUM COMPUTING

We can so deduce that fn,m(r, ϕ, 0) is zero if n is even and m is odd or vice versa.

So we obtain:

fn,m(r, ϕ, 0) = D(r, ϕ)nm =

=

⎧⎨⎩ 0 if n is odd and m even or vice versa√︂
n!
µn!

∑︁min(m,n)
j=0 (−1)γ

(mj)(
1
µν)

j/2
(ν
µ)

n/2
(− ν∗

µ)
m−j

2 (n−j−1)!!(m−j−1)!!

(n−j)!
otherwise

(1.44)

In the quadrature representation we can write the effect of the displacement

gate as:

S†(z)x̂S(z) = e−rx̂

S†(z)p̂S(z) = erp̂.

We notice that it shrinks the position while enlarging the momentum operator.

Beamsplitter gate

The squeezing gate BS(θ, ϕ), θ ∈ [0, 2π) ϕ ∈ [0, 2π), is a two-qumode gate defined

as follows:

BS(θ, ϕ) = eθ(e
iϕâ1â

†
2−e−iϕâ†1â2). (1.45)

The parameter θ is called transmittivity angle. The transmission amplitude of

the beamsplitter is t = cos(θ). By setting θ = π/4 the 50-50 beamsplitter got

implemented. Instead, ϕ is the phase angle. The reflection amplitude of the

beamsplitter is r = eiϕ sin(θ). The value ϕ = π/2 corresponds the symmetric

beamsplitter.

The beamsplitter can be written in the Fock basis as [34]:

BS(θ, ϕ)m1m2
n1n2

= ⟨m1m2|BS(θ, ϕ) |n1n2⟩ =

= e−iϕ(n1−m1)

n1∑︂
k=0

n2∑︂
l=0

(−1)n1−krn1+n2−k−ltk+l·
√
n1!n2!m1!m2!

k!(n1 − k)!l!(n2 − l)!
δm1,n2+k−lδm2,n1−k+l, (1.46)

where δi,j is the Kronecker delta. Using beamsplitters and phase gates is possible

to build a multi-mode interferometer [35].

We now proceed by illustrating a protocol that uses the CV model, namely

the Gaussian boson sampling.

25

CHAPTER 1. QUANTUM COMPUTING

q0 : R(θ) S(z)
BS(θ, ϕ)

q1 : D(α)

Fig. 1.7: Circuital representation of a bosonic circuit with its gates. On the qumode

q0 we have the Rotation phase gate (1.37) and the squeezing gate (1.41). On the

qumode q1 instead a displacement gate (1.39) is applied. Finally, on the right we show

a beamsplitter gate (1.45) applied to both qumodes.

1.5.3 Gaussian boson sampling

Gaussian Boson Sampling (GBS) is a prototype model of photonic quantum com-

putation [19]. It consists of preparing a multi-mode Gaussian state and measuring

it in the Fock basis. Theoretically, the output distribution of a GBS device cannot

be simulated in polynomial time with classical computers. It has been recently

used in an experiment that claimes quantum supremacy [12].

GBS is computationally equivalent to sampling from the Hafnian function of

a matrix. Given a graph G with adjacency matrix E; the Hafnian of E is the

number of perfect matchings of the graph G. A matching of a graph G is a subset

of edges M such that no two edges in M have a vertex in common. A matching

M is perfect if every vertex is incident to exactly one edge in M . The Hafnian

can be seen as a generalization of the Permanent of a matrix, which gives the

number of perfect matchings for a bipartite graph. Given the adjacency matrix

E, the relation between Hafnian and Permanent is:

Haf

(︃
0 E

ET 0

)︃
= Per(E). (1.47)

We recall that the permanent of a n× n matrix A of elements aij is defined also

as:

Per(A) =
∑︂
σ∈Sn

n∏︂
i=1

ai,σ(i), (1.48)

where the Sn is the symmetric group which contains all permutations of the

numbers 1, 2, . . . , n.

A general pure Gaussian state can be prepared from a vacuum state by a

sequence of single-mode squeezing, multi-mode linear interferometry, and single-

mode displacements. We show an example of the circuit for n = 4 modes in Figure

26

CHAPTER 1. QUANTUM COMPUTING

Position x

5.0 2.5 0.0 2.5 5.0 Mom
en

tum
 p

5.0
2.5

0.0
2.5

5.0

Pr
ob

ab
ilit

y

Vacuum

Position x

5.0 2.5 0.0 2.5 5.0 Mom
en

tum
 p

5.0
2.5

0.0
2.5

5.0

Pr
ob

ab
ilit

y

Squeezing, r = 1, = 0

Position x

5.0 2.5 0.0 2.5 5.0 Mom
en

tum
 p

5.0
2.5

0.0
2.5

5.0

Pr
ob

ab
ilit

y

Displacement, r = 1, = 0

Position x

5.0 2.5 0.0 2.5 5.0 Mom
en

tum
 p

5.0
2.5

0.0
2.5

5.0
Pr

ob
ab

ilit
y

Displacement+Rotation = /2

Fig. 1.8: Effect of linear optics gaussian gates on the vacuum state. Starting from

the upper left, we see the Gaussian probability centered in 0. In the upper right, we

apply the squeezing operator (1.41). We notice that the probability is reduced on the

position axis, while it increments on the momentum one. On the lower left, we observe

the effect of the displacement operator (1.39), which shifts the gaussian state. Finally,

in the lower right, we see the effect of the rotation gate (1.37), starting from the state

in the lower left.

27

CHAPTER 1. QUANTUM COMPUTING

1.9. Let us define the output state of a GBS as |s⟩ = |s1, s2, . . . , sn⟩, where si is
the number of photons in the i-th mode. It was shown in [19] that for a Gaussian

state with zero mean, which can be prepared only using squeezing followed by

linear interferometry, the probability p(s) of observing an output state s is:

p(s) =
1√︁

det(Q)

Haf(A)∏︁n
i=1 si!

, (1.49)

where:

Q = Σ+ 1/2, A = X
(︁
1−Q−1

)︁
, X =

(︃
O 1

1 O

)︃
,

and Σ is the covariance matrix of the Gaussian state. When the state is pure,

the matrix A can be written as A = A ⊕ A∗ and the probability distribution

becomes:

p(s) =
1√︁

det(Q)

|Haf(A)|2∏︁n
i=1 si!

.

A is an arbitrary symmetric matrix with eigenvalues bonded between −1 and 1.

Therefore, we can use a GBS device to encode symmetric matrices.

Fig. 1.9: Gaussian boson sampling circuit, in the case where we have no displacement.

First, we put the system in a non-trivial Gaussian state using the squeezing operators

and apply a linear interferometer which is decomposed in rotation and beamsplitter

gates. Finally, we perform measurements of the photon number in each mode, per-

forming a projective measurement on the Fock basis. Image from strawberry fields

documentation.

Encoding a matrix in a GBS device

In GBS without displacements, we can specify the symmetric matrix A by choos-

ing the correct gate parameters. Employing the Takagi-Autonne decomposition,

28

CHAPTER 1. QUANTUM COMPUTING

we can write:

A = U diag(λ1, λ2, . . . , λn)U
T , (1.50)

where U is the unitary matrix that specifies the linear interferometer. The values

0 ≤ λi < 1 uniquely determine the sqeezing parameters ri through the relation

tanh ri = λi. They also determine the mean photon number n̄ of the distribution

as follows:

n̄ =
m∑︂
i=1

λ2i
1− λ2i

. (1.51)

It is possible to encode an arbitrary matrix A, by re-scaling the matrix with

a parameter c > 0 such that cA satisfies the condition on the λi in the above

decomposition.

In the next chapter, we address the tensor network formalism, and how we

can employ it to efficiently simulate quantum circuits.

29

2
Matrix Product States

The Matrix Product States (MPS) are an efficient way of representing a quantum

state of 1-dimensional systems. We motivate their use in Section 2.1, where we

also present their definition, along with an intuitive way to physically construct

them. Then, Section 2.2 introduces the graphical notation of tensor networks, of

which MPS are a specific case. In Section 2.2.1 we discuss the choice of gauge

for a tensor network, which can be used to simplify computations and improve

the stability of algorithms. Thereafter, Section 2.2.2 contains a procedure to

convert states from a full representation to an MPS. Section 2.3 introduces the

operations that we can apply on an MPS. In Section 2.3.1 we finally present

the Time Evolving Block Decimation: a standard technique to evolve a quantum

many-body state under the effect of a local Hamiltonian, which is really important

in the MPS framework, even though it is not used in this thesis.

2.1 Motivation and Construction

A generic wave function of a many-body quantum system can be expressed by

listing its coefficients in a chosen base:

|ψ⟩ =
N∑︂
k=1

ck |k⟩ . (2.1)

As we have already seen in the previous chapter, the number N of needed coef-

ficients scales exponentially with the system’s size n. For example, if we have n

degrees of freedom (sites) with local dimension d, the most general wave function

30

CHAPTER 2. MATRIX PRODUCT STATES

has dn coefficients:

|ψ⟩ =
d∑︂

s1,...,sn=1

Cs1...sn |s1s2 . . . sn⟩ .

However, we are usually interested in some specific states, e.g. the low energy

ones. Their coefficients are not completely random, and so we may seek a more

compressed representation.

In fact, we can argue that Equation (2.1) is an extremely inefficient way to

define a state because most of the states we are interested in belong to a tiny

subset of the whole system’s Hilbert space.

A first intuition comes from the fact that most Hamiltonians are local, i.e. only

sites that are close to each other interact significantly. For instance, consider a

1D spin chain with a finite correlation length ξ [36, p. 9]. Two sites A and B

which lie at a distance lAB ≫ ξ are effectively independent, and their state ψAB

can be well approximated by a product state, thus requiring fewer coefficients to

be fully specified.

Moreover, most of the Hilbert space cannot be quickly reached by time-

evolution under a local Hamiltonian [37, sec. 3.4]. So, every state that can be

“reasonably” prepared (either in an experiment or by nature) belongs to a tiny

corner of the whole space of possible states.

But specifying a |ψ⟩ by listing dN coefficients is highly inefficient: it would

be better to have some representation that is “specialized” to the corner of the

Hilbert space we are most interested in. As we will now see, MPS offer one such

representation.

Consider an n-body system, with local dimension d and open boundary con-

ditions. A pure state |ψ⟩ can be written as a Matrix Product State as follows

[38]:

|ψ⟩ =
d∑︂

s1,...,sn=1

χ∑︂
α1,...,αn=1

M
[1],s1
1α1

M[2],s2
α2α3

· · ·M[n−1],sn−1
αn−2αn−1

M
[n],sn
αn−11

|s1s2 . . . sn⟩ . (2.2)

The core idea is that each tensor M[i],si
αiαi+1

is a local description for the [i]-th site,

which allows one to apply a local operator to a certain site without the need to

change all the other coefficients.

For a fixed si, M
[i],si
αiαi+1

is a χ × χ complex matrix, meaning that (2.2) is the

sum of basis elements weighted by matrix products — which is why it is called a

31

CHAPTER 2. MATRIX PRODUCT STATES

Matrix Product State. The integer χ is called the MPS bond dimension, and a

sufficiently high χ is needed if we want to express a truly general |ψ⟩ in such form.

However, the idea is that MPS with a lower χ can still encode all the meaningful

states, albeit clearly not all possible states. In particular, to correctly describe

any quantum state, assuming that all the sites has the same bond dimension, the

local dimension needed is χ = d⌊
n
2
⌋.

More precisely, MPS are suitable to describe states with “low entanglement”,

as defined in Section 1.2.1. Usually, various many-body ground states have “low

entanglement”, and this statement can be made rigorous [39] for 1-dimensional

systems that have a gap between the ground state and the first excited state.

Consider now the entanglement entropy as a function of the size N of the left

half of the bipartition. It is possible to prove that S(N) obeys an area law for

ground states of gapped 1-dimensional systems [40], according to which S(N) is

proportional to the size of the boundary that is left after the bipartition.

In 1-dimensional systems, the boundary consists of 2 points and hence the

entanglement entropy does not scale with N1. Thus, such states are said to have

“low entanglement”.

Now, we show a way to construct states with a controllable amount of entan-

glement, which in turn naturally leads to the MPS representation in Equation

(2.2) [38, sec. 2.2.5].

Consider a system of n sites, each with local dimension d. We want to con-

struct a state for this system such that it has a “limited” amount of entangle-

ment. One way to do so is offered by the Valence Bond Picture [41, sec. 2.2] [42,

sec. 1.2.1].

First, we associate to each site a pair of χ-dimensional auxiliary sites, each

representing one bond (Figure 2.1). In this way, we can independently set the

entanglement contained in each bond. This is done by preparing any two auxiliary

sites i and i+1, which correspond to the same bond of two neighboring sites (e.g.

auxiliary sites 2 and 3 in Figure 2.1), in a maximally entangled state:

|ωχ⟩ =
1
√
χ

χ∑︂
k=1

|k⟩i |k⟩i+1 . (2.3)

In fact, the von Neumann entropy for |ωχ⟩ is maximal, and equal to S = lnχ. The

number χ is called the bond dimension, and fixes the amount of entanglement

present in each bond.

1Near the boundary of a system there may be a dependence on N due to boundary effects.

32

CHAPTER 2. MATRIX PRODUCT STATES

Fig. 2.1: Construction of maximally entangled bonds |ωχ⟩ between physical sites.

Each site consists of two auxiliary sites (with states belonging to Cχ × Cχ) so that a

chain with L sites consists of 2L auxiliary sites.

If we assume open boundary conditions, the first and last auxiliary sites do not

participate in any bond, and they are respectively set to |α⟩ and |β⟩ (boundary
states).

Fig. 2.2: We construct maps P[i] : Cχ×Cχ → Cd, mapping states on the auxiliary sites

to states on the physical sites. These maps do not increase the system’s entanglement.

Now, we project the states of each pair of auxiliary sites to states of a single

physical site (Figure 2.2). This is done by applying to each pair [i] a local linear

map Cχ × Cχ → Cd given by:

P[i] =
d∑︂

s=1

χ∑︂
α,β=1

M
[i],s
αβ |s⟩[i] ⟨αβ|[i]aux . (2.4)

In other words, each element |αβ⟩i,aux of the basis of the i-th pair of auxiliary

sites is mapped to a physical state given by:

|αβ⟩[i]aux ↦→
d∑︂

s=1

M
[i],s
αβ |s⟩[i] .

Consider, for example, a chain of 2 physical sites, and thus 2 pairs of auxiliary

sites and exactly one bond between them. The initial state of the extended system

33

CHAPTER 2. MATRIX PRODUCT STATES

is: ⃓⃓⃓
ψ̃
⟩︂
= |α⟩ |ωχ⟩ |β⟩ =

1
√
χ
|α⟩[1]1

χ∑︂
k=1

|k⟩[1]2 |k⟩[2]3 |β⟩[2]4 .

By applying Equation (2.4) to both sites (and ignoring the normalisation for

brevity) we get:

|ψ⟩ = (P[1] ⊗P[2])
(︂ χ∑︂

k=1

|αk⟩[1] |kβ⟩[2]
)︂
=

=

χ∑︂
k=1

d∑︂
s1=1

d∑︂
s2=1

M
[1],s1
αk M

[2],s2
kβ |s1s2⟩ ,

which is the MPS representation for a 2-body system, with bond dimension χ.

The same reasoning can be extended to n sites (with n − 1 bonds), which leads

back to Equation (2.2).

Note that applying P[i] to each physical site [i] is a LOCC transformation [41,

sec. 2.2], i.e. it can be executed by means of only Local Operations and Classical

Communication. Thus, it cannot add more “quantum entanglement” between

different sites. More precisely, the entanglement entropy of |ψ⟩ is bounded by

that of
⃓⃓⃓
ψ̃
⟩︂
, which is fixed by χ. Consider a bipartition splitting sites i and i+1,

and let ρ be the left (or right) reduced density matrix of |ψ⟩. Then:

SVN(ρ) ≤ logχ.

So, we can conclude that any MPS with bond dimension χ has a “low en-

tanglement”, i.e. a bipartition entanglement not greater than logχ along any

bipartition.

Therefore, since an MPS can encode any2 state (see [sec. 2.3][41] for a proof),

we can say that MPS are a good representation for any “low entanglement” state.

In fact, the MPS representation is particularly useful when χ is small. In

particular, we can truncate the bond dimension χ to reduce the computational

size of a quantum state, while still retaining most (if not all) of the information.

For example, a chain of n qubits (d = 2) in a GHZ state can be exactly encoded

by an MPS with bond dimension χ = 2. Explicitly, it is realised by taking, in the

2Note, however, that the MPS decomposition for a particular state is not unique. So, different

MPS may not correspond to different states.

34

CHAPTER 2. MATRIX PRODUCT STATES

above construction, |ω2⟩ = |00⟩+|11⟩ and the mapping P = |0⟩ ⟨00|aux+|1⟩ ⟨11|aux
at each site (we ignore the normalisation for brevity). The MPS tensors M

[i]
ghz are

all equal to:

M
[i],0
ghz =

(︃
1 0

0 0

)︃
, M

[i],1
ghz =

(︃
0 0

0 1

)︃
.

The whole tensor M can be written “all at once” as a vector-valued matrix:

M
[i]
ghz =

(︃
|0⟩ 0

0 |1⟩

)︃
.

The main advantage of this representation comes from the fact that the num-

ber of coefficients in an MPS scales as O(ndχ2), i.e. linearly with n for a fixed χ,

while a full representation needs O(dn) coefficients, i.e. a number of coefficients

that is exponential in n.

For instance, to represent an n-qubit GHZ state as a full vector we would need

2n coefficients, but only 8n if the MPS representation is used.

Thus, MPS offer a way to accurately represent low entanglement states (i.e.

all the “interesting” ones) which is extremely compressed if compared to the usual

full representation in Equation (2.1).

2.2 Tensor networks

A notation such as the one used in Equation (2.2) can be particularly heavy.

For this reason, we make use of graphical representations, first introduced by R.

Penrose [43].

Consider one of the terms appearing in Equation (2.2), i.e. M
[i],si
αβ . This is an

object with three indices, that is an order-3 tensor. We can graphically represent

it as a coloured rectangle with 3 “legs”, each representing a different index (Figure

2.3).

Auxiliary between tensors are represented by joining with a line the two indices

being contracted. Our convention for representing Matrix Product States is shown

in Figure 2.4.

2.2.1 Gauge Freedom

A fundamental operation to do on the Matrix Product States is the application

of operators. If we want to measure the expectation value of a local operator on

35

CHAPTER 2. MATRIX PRODUCT STATES

M[i]

(si)

(β)(α)

Fig. 2.3: MPS diagram for the [i]-th site MPS tensor M
[i],si
αβ . The number of “legs” is

the number of indices of the tensor, which is 3 for a single M-tensor. The downward-

pointing leg is conventionally chosen to be the one representing the “physical” index,

while the other two represent the “virtual” indices that are contracted in the MPS

representation.

M
[1]
α M[2] M

[3]
β

χ1 χ2

d d d

Fig. 2.4: MPS representation for a 3-body system, encoding the following tensor

contraction:
∑︁χ1

γ=1

∑︁χ2

δ=1M
[1],s1
αγ M

[2],s2
γδ M

[3],s3
δβ . Note that the boundary conditions |α⟩

and |β⟩ fix the very first and last indices of the M tensor chain, reducing the first and

last M tensor to just matrices M
[1]
α and M

[3]
β (i.e. objects with 2 indices). However,

we can treat them as 3-indexes tensors, by keeping the dimension of the indexes α, β

restricted to 1. Moreover, in general the bond dimensions (χ1 and χ2) may be different

for each bond, and they are denoted above the links between the contracted indices.

All the physical sites have dimension d, which is shown below the downward links,

representing the physical indices.

a system of n sites, we would have to perform the full contraction of all the n

tensors (Figure 2.5).

However, the MPS representation is not unique. In fact, we may insert in a

bond any two matrices X and X−1 whose product equates an identity (Figure 2.6).

Then, each matrix is contracted with the nearest tensor, changing the numerical

representation of the MPS, but not the overall contraction of the chain, i.e. the

physical state it is representing. This is the so-called gauge freedom of tensor

networks.

By choosing the right kind of transformations, we can pick the particular

MPS representation which is most suited to our needs. For example, consider

the computation in Figure 2.5. To simplify the contraction, we could choose M1

and M2 so that M1M
†
1 = idχ1 and M2M

†
2 = idχ2 . In this way, to compute the

36

CHAPTER 2. MATRIX PRODUCT STATES

M1 M2 M3
χ1 χ2

O

M†
2M†

1 M†
3

Fig. 2.5: Expected value of a single-site operator O on a 3-body MPS.

Mi Mi+1 = Mi id Mi+1 =

= Mi

X X−1

Mi+1

M′
i M′

i+1

Fig. 2.6: Any bond can be rewritten as the contraction with an identity matrix, which

can then be decomposed into the matrix product of some generic matrix X and its

inverse X−1. These can be in turn be contracted into the neighboring tensors. In the

end, the tensor coefficients are changed, but the tensor network remains the same, in

the sense that the result of any contraction with external tensors is as before.

expected value we would only need to consider the tensor M2 on which the gate

O is acting.

In general, in a tensor network, if all branches connected to a tensor A form

an isometry between their open indices and their indices connected to A (as

it happens for M2 in the above example), then A is said to be a center of

orthogonality [44, def. 3.3].

Setting a center of orthogonality is useful also if one wants to compress A, for

instance by reducing its dimension, or by decomposing it into smaller tensors. In

fact, suppose that A′ is some (smaller) tensor used to locally approximate A. Let

H be the tensor obtained by contracting the whole original network, and similarly

let H′ be the result of contracting the whole network with A′ in place of A. In

our picture, H and H′ would be physical states in a full representation.

Then, ifA is a centre of orthogonality, the local approximation error ∥A−A′∥
is the same as the global approximation error on the whole network ∥H−H′∥,

37

CHAPTER 2. MATRIX PRODUCT STATES

where ∥· · ·∥ denotes the Frobenius norm [44, Theorem 3.4]:

A centre of orthogonality ⇒ ∥A−A′∥ = ∥H−H′∥, (2.5)

∥T∥ =
√︁

Tr(T†T) =

√︄ ∑︂
α1,α2,...,αk

|Tα1α2...αk
|2. (2.6)

It is then clear that setting the center of orthogonality guarantees trackable and

minimal errors.

A simple way to fix a tensor A as the center of orthogonality is to iterate QR

decompositions in each branch connected to A [44, 45, 46], as shown in Figure 2.7

for a 3-body MPS. The resulting network is said to be in the unitary gauge. We

recall the the QR decomposition of a (χ× χ) matrix requires O(χ3) operations.

M1 M2 M3
χL χR QR

M1=Q1R1

M†
3=Q3R3

Q1 R1 M2 R†
3 Q†

3

M′
2

Fig. 2.7: Procedure for setting a site (e.g. the second) as the center of orthogonality in

an MPS (in the figure, a 3-body MPS) by repeated QR decomposition. We convention-

ally draw left (right)-orthogonal tensors (e.g. Q1 and Q3) as red (green) triangles. They

are oriented such that, if they are contracted with their hermitian conjugates along the

indices they are “pointing” to, they form a projector. Instead, if they are contracted

along all the other indices, they form an identity. For instance, Q1 is shown “pointing

to” its second index. So
∑︁

β(Q1)iβ(Q
†
1)βj is a projector, while

∑︁
α(Q

†
1)iα(Q1)αj = δij

is an identity. The opposite holds for Q3, since it is “pointing to” its first index.

If by following this procedure one sets the rightmost (leftmost) site as the

center of orthogonality, the MPS is said to be in left-canonical (right-canonical)

form. Usually, MPS are initialized in one of these two forms. There are however

cases in which one could prefer random initialization, where the orthogonality has

to be enforced, like in-ground state searches [47].

Note that setting a center of orthogonality through QR decompositions does

not completely fix the gauge of the network. In fact, each bond can still be

modified by adding a unitary matrix and its inverse UU† = id, without changing

the physical state nor moving the center of orthogonality.

38

CHAPTER 2. MATRIX PRODUCT STATES

2.2.2 Passing from a full to a matrix product state

Consider a state of an n-body system with local dimension d, written in full

representation as a set of dn indices Cα1...αn . This can be interpreted as an order-

n tensor, which can be rewritten as an MPS (i.e. a 1d tensor network) through

repeated tensor decomposition.

To do so, we first gather all indices except the first into a unique index,

effectively reshaping the order-n tensor into a matrix:

Cα1...αn (αi = 1, . . . , d)
Reshape−−−−→ Cα1β (α1 = 1, . . . , d; β = 1, . . . , dn−1). (2.7)

This matrix can be now decomposed using the Singular Value Decomposition

(SVD) as shown in Equation (2.8). We recall that the SVD of a (χ× χ) matrix

requires O(χ3) operations. Using the SVD we can ensure the same isometry that

we obtain with a QR, but on top of that, we can apply a useful truncation in the

state, which we explore more in detail in Section 2.3.

Cα1β =

r1∑︂
γ=1

Uα1γSγγV
†
γβ, 1 ≤ r1 ≤ min(d, dn−1) = d. (2.8)

Note that the first physical index α1 appears only in the matrix Uα1γ, which we

now rewrite as a tensor M
[1],α1

1γ , following the MPS notation. Then we absorb S

into V by writing SγγV
†
γβ ≡ Fγβ:

Cα1β =

r1∑︂
γ1=1

M
[1],α1

1γ1
Fγβ. (2.9)

By splitting the index β into the physical indices α2 . . . αn, we can reshape Fγβ

to an order-n tensor:

Cα1β =

r1∑︂
γ=1

M
[1],α1

1γ1
Fγ1α2...αn . (2.10)

These steps are shown in Figure 2.8 for an order-3 tensor.

Now we repeat the SVD to extract the second physical index (α2) from the F

tensor. This is done by regrouping the indices as δ = (γ, α2) (size d
2 if there was

no truncation) and ϵ = (α3, . . . , αn) (size dn−2), i.e. reshaping F into a matrix

Fδϵ, which can then be decomposed as follows:

Fδϵ =

r2∑︂
γ2=1

Uδγ2Sγ2γ2V
†
γ2ϵ
, 1 ≤ r2 ≤ min(d2, dn−2).

39

CHAPTER 2. MATRIX PRODUCT STATES

A1

d d d

A1
Reshape

d d2

U1
d S1

d V†
1

d d2

SVD

Truncate U1
χ̄1 S1

χ̄1 V†
1

d d2

χ̄1=min(d,d2,χ)≤χ

Regroup
U1

χ̄1 A2

d d2

Fig. 2.8: First iteration of the process to map an order-3 tensor A1 on an MPS. First,

the rightmost tensor, which is A1, is reshaped to a matrix d × d2. Then a compact

SVD is performed, resulting in a bond dimension which is at most min(d, d2) = d. The

bond dimension is now truncated to χ̄1 = min(d, d2, χ), so that it is not greater than χ.

Then, calling λ1 > λ2 > . . . λi > · · · > λχ the eigenvalues of the singular matrix S1, we

neglect all the eigenvalues λi such that λi
λ1
< ϵ, where ϵ is an arbitrary threshold called

cut ratio. Finally, the singular values are regrouped into the rightmost tensor.

Now we split again the δ = (γ, α2) index, and rename the tensorUγ1α2γ2 ≡ M[2],α2
γ1γ2

,

following the MPS notation:

Cα1α2ϵ =

r1∑︂
γ1=1

r2∑︂
γ2=1

M
[1],α1

1γ1
M[2],α2

γ1γ2
[Sγ2γ2V

†
γ2ϵ

].

Note that, if the system contains n ≥ 4 sites, the number of singular values r2
in the second decomposition can be up to d2, which is a factor d higher than the

maximum range of singular values r1 at the previous decomposition. This means

that, if no approximation is added, the bond dimension increases exponentially,

up to d⌊n/2⌋.

Then, after grouping again S and V†, the whole procedure can be applied once

more. By repeating it until all physical indices are split into separate tensors we

arrive at the MPS representation in Equation (2.2). Again, in Figure 2.9 we show

the application of the second step of this algorithm.

2.3 Operations on the MPS

After defining the structure of Matrix Product States we focus on the possible

operations applicable. We first introduce the operation needed to perform the

40

CHAPTER 2. MATRIX PRODUCT STATES

U1
χ̄1 A2

d d
d

U1
χ̄1 U2

d S2
d V†

2

d d d

SVD

Truncate U1
χ̄1 U2

χ2̄ S2
χ2̄

V†
2

d d d

χ̄2=min(χ̄1d,d,χ)≤χ

Regroup
U1

χ̄1 U2
χ̄2 A3

d d d

Fig. 2.9: Second iteration of the mapping of an order-3 tensor to an MPS. At the

start, we have last svd dim = χ̄1. The rightmost tensor, A2, is reshaped to a matrix

χ̄1d × d, and then a compact SVD is performed, leading to a bond dimension which

is at most min(χ̄1d, d) = d. This is now truncated to χ̄2 = min(χ̄1d, d, χ). We then

neglect all the singular values λi of Si such that λi
λ1
< ϵ. The remaning singular values

are then regrouped into the rightmost tensor, and the algorithm ends.

time evolution of the quantum state, namely the application of quantum gates,

as seen in Section 1.3. In particular, we focus on the importance of a suitable

approximation in the application of two-qubit gates. Then, we explain how to

efficiently perform projective measurements, which are a fundamental step of all

quantum algorithms, since they are the only possibility of accessing the informa-

tion of the quantum state in the experimental implementation. Finally, we show

how to measure the entanglement along any bipartition of the system, underlying

the easiness in this representation, and a protocol to obtain the exact probability

of any state in a qubit system, employing a binary tree.

One-site operation

The operation with the most favorable computational scaling that we can apply

on MPS is the one-site operation. Given a order-2 tensor G its application on

the i-th site of the MPS is defined as:

M′[σi]
αi,αi+1 =

∑︂
si

M
[si]
αi,αi+1Gsiσi

. (2.11)

It is a local operation, and thus modifies only the application site, as presented in

Figure 2.10. In the quantum circuit framework, it is translated into a one-qubit

gate. It is important to notice that single-qubit gates are unitary, and thus do

not change the gauge of the MPS.

41

CHAPTER 2. MATRIX PRODUCT STATES

Mi

G

32

1

2

Fig. 2.10: Tensor contraction schemas for the application of a one-site operator G.

Following our convention, the physical index is numbered as 1, and then the rest is

numbered left to right. For the operato G, instead, we start from the upper left link,

numbering it with 1, and then continue clockwise.

Two-site operation

A two-site operation involves two adjacent sites in the MPS. We restrict ourselves

to neighboring sites. Given an order-4 tensor G, applied to the i-th, (i + 1)-th

sites, we can decompose the computations in three different steps.

1. The i-th or (i+ 1)-th site is set as the center of orthogonality of the tensor

network, using the QR decompositions. In the algorithm, the site is chosen

to minimize the number of QR decompositions to perform. For simplicity,

in the following, we assume the chosen site is the i-th.

2. We contract the sites i and i+ 1 and the tensor G:

U =
∑︂

si,si+1

∑︂
αi+1

Usi
αiαi+1

Usi+1
αi+1αi+2

Gsisi+1
σiσi+1

. (2.12)

This first step is presented in Figure 2.11. However, the algorithm does not

present a three-tensor contraction option. For this reason, computationally,

we first contract the two sites and then contract the resulting tensor with

the operator G.

3. We apply an SVD to come back to the MPS structure. However, a trivial

application of the SVD would make the bond dimension increase at each

application. For this reason, we cut the singular value diagonal matrix

S, such that the maximum number of non-zero eigenvalues is fixed at the

maximum bond dimension χmax. Furthermore, we neglect all the eigenval-

ues λ1 > λ2 > . . . λi > . . . λχmax of S such that λi

λ1
< ϵ, where ϵ is called

cut ratio. We call Ŝ the singular value matrix after the application of the

42

CHAPTER 2. MATRIX PRODUCT STATES

approximations.

U = UiSV
†
i+1 ≃ ÛiŜV̂

†
i+1 = ÛiU

′
i+1, (2.13)

This second step is presented in Figure 2.12. We stress that, since Ui was

set as center of orthogonality, we are minimizing the error in the truncation

of S.

Ui−1 Ui
−1 Ui+1

right tensleft tens

2 Ui+2
−4

G

1 3

−2 −3

Ui−1
Contract

U

gate contracted

Ui+2

Fig. 2.11: When a 2-site operator is applied, the site at pos (Ui) is set to the centre

of orthogonality. Then the quantum gate G is contracted with the sites at pos and

pos+ 1 (Ui and Ui+1 in the figure).

Projective measurement

It is very important to measure the matrix product state. In particular, we

focus on projective measurements on the computational basis. It is important

to measure each site one at a time, since each single-site measurement further

projects the state in a smaller Hilbert space, resulting in a final product state.

For this reason, we can not implement parallel techniques, like the use of the

OpenMP library [48], to speed up this process. We now discuss the procedure,

showing that the algorithm scales as O(nχ2d2) [49].

We suppose that we want to measure a state |ψA⟩ represented as an MPS.

First, we set as orthogonality center the first site, i.e. we work in a right-canonical

condition. First, we compute the expectation values of a projector P1(m), which

43

CHAPTER 2. MATRIX PRODUCT STATES

U′
i−1 U′χL U′

i+2
χR

U′
i−1

Reshape
U′χL

d

Ui+2
′χR

d

SVD U′
i−1 U

χL

d

Sr V†r

r=min(χLd,χRd)

U′
i+2

χR

d

Truncate
& Reshape U′

i−1 U
χL

d

S
χc

V†χc

χc=min(r,χ)≤χ, eigenvalues
λj
λ1

<ϵ discarded

U′
i+2

χR

d

Regroup
& Reshape U′

i−1

d

U
χL

d

U′
i+1

χc U′
i+2

χR

d d

Fig. 2.12: Final steps of the application of a 2-site operator. First, U (i.e. the gate

contracted with the MPS), which is now the centre of orthogonality, is reshaped to a

matrix χLd × χRd. Then a compact SVD is performed, leading to a bond dimension

which is at most r = min(χLd, χRd). Columns (rows) of U (V) are removed to truncate

the bond dimension from r to χc = min(r, χ) ≤ χ. Then, the first χc elements of S

{λi}i=1,...,χc with ratio
λj

λ1
> ϵ are regrouped into V† to complete the splitting procedure.

The result is a new MPS state, incorporating the action of the quantum operator.

project the site 1 on one of its possible states m ∈ {mi}i=1,...,M . As discussed

in Section 2.2.1 setting the center of orthogonality let us compute expectation

values by only considering the site where the operator is applied. Explicitly:

⟨ψA|P1(m) |ψA⟩ =
∑︂

α1,s′1,s1

(As′1)†α1
P

s1s′1
1 (m)As1

α1
. (2.14)

44

CHAPTER 2. MATRIX PRODUCT STATES

We then collapse the state of site 1 in |s1⟩ = |mi⟩ with probability pmi
=

⟨ψA|P1(mi) |ψA⟩. The action of a generic single-site operator would be followed

by an SVD to orthogonalize site 1 and turn site 2 into the center. However, the

fact that we are using projectors allows for a more efficient algorithms. Indeed,

the repeated action of single-site projectors on any state produces a product state,

which can be represented as an MPS with χ = 1. If the above step of applying

the projector P1(mi) to site 1 and left orthogonalizing As1 was performed, the

new bond index connecting As1 to As2 could be truncated such that it only takes

on one value. For this reason, one can therefore directly replace As1 with the

1 × 1 matrix As1 = ⟨s1|mi⟩. Finally, to ensure that we are still describing the

same state one should propagate the measure on the second site:

As2
α1α2

→ As2
miα2

= p−1/2
mi

∑︂
s1α1

⟨mi|s1⟩As1
α1
As2

α1α2
. (2.15)

The measurement procedure can be further propagated until the end of the MPS.

As1

P1(m)

(As1)†

⟨ψA|P1(m) |ψA⟩ =

(a) Tensor diagram of the expectation

value of the projector P1(m). Since

the MPS is in the left-canonical gauge

all the right tensors contract to the

identity, producing the easy diagram

presented above.

As1=(As2)′ α2

d

As2

mi
d

α2
α1

s1

(b) Propagation of the measurement from the first

tensor to the second one. The procedure can be

then reproduced to propagate the measurement

from the i-th tensor to the (i + 1)-th tensor. We

contract the measured state-vector m1 with the

physical index of As1 , and then contract As1 and

As2 . Notice that, even though in Equation (2.15)

there is also the index m1 it is not reported in the

diagram since it can only assume one value.

Fig. 2.13: Projective Measurement steps for an MPS. We put the state in a left-

canonical form, and then perform iteratively the two steps above. It is important to

notice that they can be reproduced for all sites, since in step (b) we obtain a tensor

with 2 indexes, as As1

Entanglement measure

Since the MPS are better suited to describe low-entanglement states it is impor-

tant to have a way of measure it. Indeed, the structure of an MPS makes this

45

CHAPTER 2. MATRIX PRODUCT STATES

measurement very easy. Defining the entanglement of two partitions [1, . . . , i],

[i + 1, . . . , n] as the von Neumann entanglement entropy the procedure is the

following:

1. Set the site i as center of orthogonality;

2. We recall that the legs of the tensor are numbered, starting from left to

right, as 2, 1, 3. We reshape the tensor Asi into a matrix, by merging the

the indexes 2, 1. Then, we perform an SVD decomposition of the matrix:

Asi = (Asi)′SV†
i . (2.16)

3. Compute the von Neumann entropy using the eigenvalues {λj}j=1,...,χ of S:

SV = −
χ∑︂
j

λ2j log λ
2
j . (2.17)

4. Contract the tensors SV†
i to the tensor Asi+1

Again, we can notice how the entanglement of the state can be controlled through

the maximum bond dimension χ.

Probability measure

We have seen how to perform projective measurements. However, using MPS let

us analyze more precisely the probabilities related to the quantum state.

We define with ϵp ∈ [0, 1] the threshold probability, i.e. the minimum proba-

bility that the algorithm is able to observe. Then, we simply analyze the state in

a binary tree, as shown in Figure 2.14. The algorithm on a quantum state |ψ⟩ is
composed as follows:

1. Compute the expectation value of the Pauli matrix σz on the i-th qubit.

Then, the probability of measuring respectively 0 and 1 are:

p(q0i |q
s0
0 q

s1
1 . . . q

si−1

i−1) =
⟨ψ|σz |ψ⟩+ 1

2
, (2.18)

p(q1i |q
s0
0 q

s1
1 . . . q

si−1

i−1) = 1− p(q0i |q
s0
0 q

s1
1 . . . q

si−1

i−1), (2.19)

where sj are the configuration of the qubit state relative to the specific

branch of the binary tree we are investigating;

46

CHAPTER 2. MATRIX PRODUCT STATES

2. Check if the probability of the state up to the i-th qubit is less than the

probability threshold ϵp. In that case, discard that branch of the binary

tree. If

j=i∏︂
j=0

p(q0j |q
s0
0 q

s1
1 . . . q

si−1

i−1) < ϵp, (2.20)

then discard the branch.

3. Start from point 1. with the qubit i+ 1.

Measure probabilities

|ψ⟩

|0s⟩

|00⟩ |01⟩

|1s⟩

p(q00)

p(q01 |q00) p(q11 |q00)

p(q10)
p(q10) < ϵp

Fig. 2.14: Binary tree which represents the computation of the probability of the

measurements of a quantum state |ψ⟩. We denote with qsi the i-th qubit with value

s ∈ {0, 1}. If the probability of a branch is less than ϵp then that branch is cut and no

longer analyzed. At the end of the procedure, we obtain the probability of measuring

all states |ϕ⟩ with p(|ϕ⟩) > ϵp.

2.3.1 Time evolving block decimation

Even though we use only the operations described above in this thesis, it is impor-

tant to stress the original techniques used with MPS. The Time Evolving Block

47

CHAPTER 2. MATRIX PRODUCT STATES

Decimation [50] algorithm is a technique to time-evolve a quantum state repre-

sented with an MPS under the effect of a local Hamiltonian. The development of

such a technique was already motivated in Section 2.1, stressing the importance

of the locality of the interactions.

We define the Hamiltonian Hn in the following way:

Hn =
n∑︂

i=1

Ki
1 +

n∑︂
i=1

K
[i,i+1]
2 , (2.21)

where we have highlighted the division between the one-body and the two-body

(the interaction) term. To exploit the TEBD it is useful to decompose the Hamil-

tonian as a sum of two possibly non-commuting terms, where the first is acting

on the even sites, while the second on the odd sites:

Hn =
∑︂
even i

Ki
1 +K

[i,i+1]
2 +

∑︂
odd i

Ki
1 +K

[i,i+1]
2 (2.22)

=
∑︂
even i

Ei +
∑︂
odd i

Oi = E +O. (2.23)

Indeed, there is a freedom in the arrangement of the one-body terms, and the

structure presented in Equation (2.22) is only a possibility. At this point, recalling

that the evolution operator under an Hamiltonian is U(t) = e−iHnt we apply a

Suzuki-Trotter Decomposition [51]:

U(t) = e−iHnt =
[︁
e−iHnδ

]︁t/δ
=
[︂
e

δ
2
EeδOe

δ
2
E
]︂N

+O(δ2), (2.24)

where N = t
δ
is called the Trotter number.

At this point, the simulation becomes trivial. Indeed, all the Ei or Oi commute

and can so be applied in parallel, as two-qubits gates. We so apply in sweeps all

the gates on even sites, then on odd sites, and then again on the even ones, as

shown in Figure 2.15.

For time-independent Hamiltonians there are two possible error sources in the

TEBD algorithm:

1. the Suzuki-Trotter expansion. In the case of a p-th order approximation,

the error is of order δp+1. Taking into account that, to evolve the system in

N steps up to time T the error becomes:

ϵST = Nδp+1 =
T

δ
δp+1 = Tδp. (2.25)

48

CHAPTER 2. MATRIX PRODUCT STATES

M1 M2 M3 M4 M5

E1 E2

O1 O2

E1 E2

T
im

e
st
ep

Fig. 2.15: Time Evolving Block Decimation algorithm. A local Hamiltonian Hn is

decomposed through a Suzuki-Trotter decomposition into a series of unitary operators

acting respectively on even and odd sites. These operators are 2-sites unitary gates

and can be applied to the MPS using the procedures explained in Section 2.3. The

procedure represented above is then repeated N times to obtain the evolution from

time 0 to time t. We show the second-order decomposition as an example.

We can write the unapproximated state as
⃓⃓⃓
ψ̃
⟩︂

=
√
1− ϵ2 |ψ⟩ + ϵ

⃓⃓
ψ⊥⟩︁,

where
⃓⃓
ψ⊥⟩︁ is the part neglected by the approximation. Then, if we define

the final error as:

ϵ(T) = 1−F(ψ̃, ψ) = 1− 1 + ϵ2 = ϵ2. (2.26)

It is important to notice that the Suzuki-Trotter error is independent of the

dimension of the system.

2. the Hilbert space truncation. First, the smallest contributions of the Schmidt

spectrum are left away. We can so write the error as:

ϵ(χ) = 1−
n−1∏︂
i=1

(1−
dn∑︂
α=χ

(λ[i]α)
2, (2.27)

where with the superscript i we denote the i-th site. The second error source

is coming from the normalization of the state, since when we construct the

reduced density matrix of the state, its trace is multiplied by the factor:

| ⟨ψχ|ψχ⟩ |2 = 1− ϵi
1− ϵi

=
1− 2ϵi
1− ϵi

, (2.28)

49

CHAPTER 2. MATRIX PRODUCT STATES

where ϵi =
∑︁dn

α=χ |λ
[i]
α |2.

Both errors can be controlled: the first increasing the order of the Suzuki-

Trotter decomposition, the second increasing the bond dimension χ.

50

3
QC-MPS: MPS simulator for

Quantum Computers

The aim of this project is the development of an efficient Matrix Product State

simulator for quantum computers: QC-MPS. In Section 3.1, we overview the de-

sign choices done for the implementation of the program, highlighting the impor-

tance of a high-level interface. In Section 3.2 we instead analyze the performances

of the simulator, in particular focusing on the Quantum Fourier Transform algo-

rithm, introduced in Section 1.3.2. This step is beneficial because the QFT is one

of the building blocks of many important quantum algorithms, such as the Shor

algorithm [25]. Then, we study the Gaussian Boson Sampling protocol [19], con-

centrating on minimizing the computational resources. Finally, in Section 3.3 we

explore possible ways of improving the simulator, by manipulating the quantum

circuit and by parallelizing the algorithm.

3.1 Implementation

The programming language chosen for the simulator is Fortran, due to its ef-

ficiency in numerical computations. The simulator is compiled using the GNU

compiler gfortran, even though it is also compatible with the Intel compiler

ifort. Even though the Intel compiler is faster for many tasks, the choice of

gfortran been done to run the simulator on Marconi 100 supercomputer, which

does not support ifort.

The simulator presents all the methods explained in Chapter 2, that we list

here for completeness:

51

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

• Application of single-site operations;

• Application of two-site operations;

• Perform projective measurements;

• Perform entanglement measurements;

• Perform probability measurements;

• Compute inner product between different MPS;

• Computation of the expectation value of single-site operators;

• Computation of the expectation value of separable operators.

As previously stated, the emulator is written in Fortran for efficiency. How-

ever, a low-level programming language is in particular difficult to approach for

tackling many different problems. It would be demanding to prepare every quan-

tum circuit in Fortran language, and then compile the program. For this reason,

we developed a python interface, which combines the full potential of the Fortran

code with the easiness of use of an interpreted language. Furthermore, the inter-

face is compatible with packages widely used by the community, as we see in the

following sections.

3.1.1 Qiskit interface

Qiskit [52] is an open source python library, developed by IBM, for programming

quantum computers. The python interface of QC-MPS lets the user build his

circuit using qiskit, and then run it on the MPS Fortran simulator. The interface

already takes into account the constraints of using MPS, i.e. the linear topology

and the possibility of using only one and two-qubits gates. These procedures are

accomplished trough the qiskit function transpile, which stochastically searches

for the equivalent circuit minimizing the number of gates.

We briefly explain here the main commands needed in qiskit to work with a

quantum circuit, following the example in Listing 3.1. First, in line 3, we define

a quantum circuit with 4 qubits. Then, we can apply an available quantum

gate with name g name as QuantumCircuit.g name. This syntax means that the

gates are methods of the quantum circuit class, which takes as input the gate

parameters and the target qubits. Finally, we apply a linear mapping in lines 10

and 11, which enforces a linear topology in the circuit.

52

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

1 from qiskit import QuantumCircuit , transpile , transpiler

2 # The quantum circuit definition

3 qc = QuantumCircuit (4)

4 # We apply the Hadamard gates to the first qubit

5 qc.h(0)

6 # And the CNOT gates to the others

7 for i in range(1, n_qub):

8 qc.cx(0, i)

9 # Apply linear mapping

10 linear_map = transpiler.CouplingMap.from_line(qc.num_qubits)

11 linear_qc = transpile(qc, coupling_map=linear_map)

Listing 3.1: Example of a qiskit quantum circuit in python. We initialize a GHZ

circuit, linearizing its topology.

The available gates in qiskit, which are also the ones available in QC-MPS, are

reported in Table 3.1. We point towards the qiskit-terra GitHub page [53] for a

formal definition of each gate.

Gates available in the QC simulator

Constant

one-qubit

x y z h id s sdg sx sxdg t tdg

Parametric

one-qubit

p r rx ry rz u u1 u2

Constant

two-qubit

swap dcx ecr iswap ch cx cy cz

Parametric

two-qubit

rxx ryy rzx rzz cp cr cry crz cu cu1

Table 3.1: Name of the gates available in the MPS simulator, following the definition

of qiskit. A more detailed description of these gates, and in particular their matrix

form, can be found in the qiskit-terra GitHub page [53]

We show now the main function of the interface, run qiskit. It presents the

following inputs parameters:

• qc: the qiskit quantum circuit;

• chi: the maximum bond dimension of the simulation. We recall that this

is the maximum number of eigenvalues of the singular matrix kept after an

SVD;

53

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

• cut ratio: the cut ratio of the simulation. We recall that, if λi

λ1
≤cut ratio,

we discard the eigenvalue λi, where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues

of the singular matrix after an SVD;

• do statevector: a boolean flag. If it is evaluated True, then the function

returns the final MPS state-vector. Since the state-vector is described by

2n coefficients, with n the number of qubits, it is not advised to enable the

flag for n > 30.

• nshots: the number of measurements of the system to be performed at the

end of the simulation;

• linearize: a boolean flag. If set to True, the function applies the lin-

earization procedure to the system. It is possible to set the flag to False,

since the user may want to linearize the circuit only once, and then pass

that circuit multiple times to the function;

• basis gates: a list of strings, containing the names of the available gates,

chosen from those in Table 3.1. If an empty list is passed, then the function

assumes that all the gates used in the circuit are present in the simulator;

• optimization: an integer number that controls the level of optimization of

qiskit transpiler. The higher the number, the more optimized is the circuit.

However, it also increases the transpilation time. For further information

refer to the qiskit documentation;

• save unformatted mps: a boolean flag. If set to true, the function saves

the MPS final state in an unformatted format, for further uses;

• input nml: the name of the namelist file, which contains all the parameters

of the simulation, and is read by the Fortran backend.

As an output, the function returns a dictionary, which is a python structure that

connects data to labels. The results are:

• meas, it is a dictionary containing the number of occurrences of the states

after the measurements, in the form {State: n occurrences}. For ex-

ample, if the state |000⟩ has been measured 15 times and the state |111⟩ 12
times, then the dictionary will be {’000’:15, ’111’:12}. Only the mea-

sured states are set as keys in the dictionary, thus avoiding the exponential

explosion of the Hilbert space;

54

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

• statevector, if the do statevect is True it contains the statevector in the

form of a numpy array, otherwise it is None;

• time, the CPU time for the simulation, computed in Fortran;

• cutted sing vals, which is an array where every entry is the sum of the

discarded singular values at a given SVD;

• entanglement, which is the array of the bond entanglement along the MPS

chain at the end of the simulation.

Even though there are other functions in the interface, we skip them all for

brevity. The user can further adapt the simulations and measurements with these

functions.

3.1.2 Strawberry fields interface

Strawberry fields [54] is an open source python library, developed by XANADU,

for programming photonic devices. We report an example of code to generate a

linear optic circuit, shown in Listing 3.2. First, in line 4 we initialize a circuit

with 4 qumodes. Then, the application of the gates is obtained using the with

construct on line 6. To apply a gate, we first call the gate with its parameters,

add the vertical slash | and then write the target qumodes. This procedure

is exemplified from lines 7 to 25 for both single and two-qumodes gates. It is

important to notice that strawberry fields, inside the with context overwrites the

logical or operator, usually identified with the vertical slash |.

1 import strawberryfields as sf

2 from strawberryfields.ops import Sgate , Rgate , BSgate

3 # initialize a 4 mode program

4 gbs = sf.Program (4)

5

6 with gbs.context as q:

7 # squeezing gates

8 Sgate (1) | q[0]

9 Sgate (1) | q[1]

10 Sgate (1) | q[2]

11 Sgate (1) | q[3]

12

13 # rotation gates

14 Rgate (0.5719) | q[0]

15 Rgate (-1.9782) | q[1]

55

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

16 Rgate (2.0603) | q[2]

17 Rgate (0.0644) | q[3]

18

19 # beamsplitter array

20 BSgate (0.7804 , 0.8578) | (q[0], q[1])

21 BSgate (0.06406 , 0.5165) | (q[2], q[3])

22 BSgate (0.473 , 0.1176) | (q[1], q[2])

23 BSgate (0.563 , 0.1517) | (q[0], q[1])

24 BSgate (0.1323 , 0.9946) | (q[2], q[3])

25 BSgate (0.311 , 0.3231) | (q[1], q[2])

Listing 3.2: An example of a linear optic circuit initialization using the strawberry

fields python library. In particular, this example shows a Gaussian Boson sampling

circuit for 4 qumodes.

We do not repeat the considerations on the python interface, since it is anal-

ogous to the qiskit’s one. The only differences are that the name of the function

is run sf, and that there is the additional parameter of the fock cutoff, intro-

duced in Section 1.5.

3.2 Results

In this section, we analyze the simulator and study random circuits and important

cases, such as the QFT presented in Section 1.3.2. First, in Section 3.2.1, we check

if the simulator presents correct results, focusing on small-scale simulations that

can be reproduced exactly. Then, in Section 3.2.2, we review its time scaling,

confronting it to the exact simulation performed on the CINECA cluster. Next,

we perform a more in-depth analysis, focusing on the necessary bond dimension to

describe particular systems. Finally, in Section 3.2.3, we study the GBS protocol,

focusing on the necessary Fock space cutoff for a correct description of the system,

the correctness of the simulation and the dependence on the bond dimension.

For the whole section we use a singular value cut ratio of ϵ = 10−9.

3.2.1 Correctness checks

When we develop a simulator, we must be sure that its results are correct. For

this reason, we analyze how close the MPS-simulated state is to the correct one.

We use a measure of closeness, the fidelity F , between two quantum states |ϕ⟩,
|ψ⟩:

F(|ϕ⟩ , |ψ⟩) =
⃓⃓
⟨ϕ|ψ⟩

⃓⃓2
. (3.1)

56

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

This measure is defined in F ∈ [0, 1], and the two quantum states are the same if

their fidelity is 1. To better appreciate the scaling around 1, in this analysis we

employ the Bures distance instead of the fidelity. It is defined as:

B(|ϕ⟩ , |ψ⟩) = 2(1−
√︁

F(|ϕ⟩ , |ψ⟩)). (3.2)

In this way, we are able to look at the error in representing the state, as we see

in the following.

Since we must be able to exactly simulate a quantum state to perform these

checks, we are limited in the number of qubits n. Furthermore, we recall that the

definition of circuit depth is present in Section 1.3.1. We start by investigating

these two cases:

• The QVOLUME quantum circuit [55], developed by IBM, to quantify the

capability of a quantum computer. This circuit is composed of d layers,

where each layer is formed by a permutation of the qubits labels and the

application of random 2-qubit gates. In the following, we choose to set the

depth equal to the number of qubits, i.e. d = n. The important feature of

this circuit is that generates an highly-entangled state. Thus, it should be

a difficult circuit to simulate for QC-MPS, since MPS are used to represent

quantum state with a limited amount of entanglement, controlled by the

bond dimension χ;

• The W quantum circuit, which for n qubits results in the state:

|W ⟩ = 1√
n
(|10 . . . 0⟩+ |010 . . . 0⟩+ · · ·+ |0 . . . 010 . . . 0⟩+ · · ·+ |0 . . . 01⟩) .

(3.3)

It is a uniform superposition of states that present 1 on a qubit and 0 on all

the others. It is a well-known state entangled state, which is easy to prepare.

Moreover, it is possible to write it analytically in MPS representation [56].

In Figure 3.1, we observe how the Bures metric changes in these two cases. Since

the QFT is the main ingredient of many quantum algorithms, we monitor the

evolution of the metric also after its application. We can observe that, in the

QVOLUME case, the application of the QFT does not increase the bond dimen-

sion for a correct simulation, since the starting state is already highly entan-

gled, requiring the maximum bond dimension for the given number of qubits, i.e.

χ = 2⌊
n
2 ⌋ = 27 = 128. In contrast, we can observe that the QFT does increase

the difficulty of representing the state in the W case.

57

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

21 23 25 27 29

Bond dimension χ

10−11

10−9

10−7

10−5

10−3

10−1

B
ur
es

m
et
ri
c
2(
1
−

√
F
)

QVOLUME, n=15 qubits

QVOLUME

QVOL + QFT

21 23 25 27 29

Bond dimension χ

W, n=15 qubits

W state

W + QFT

Fig. 3.1: Correctness checks for n = 15 qubits, showing the Bures distance as a

function of the bond dimension χ in a log-log scale. Moreover, we compare the Bures

metric after the application of the QFT. (left) The QVOLUME circuit drops in the

Bures distance once the bond dimension of the MPS can capture all the entanglement.

(right) The circuit to create a W state does not encounter high entanglement and a low

bond dimension is sufficient.

However, these two very specific cases are at the boundaries of an “easy” state

and a “difficult” one for MPS. For this reason, we decide to proceed in the analysis

using random circuits with a fixed depth, since they can be interpreted as a more

unbiased case of study. With a random circuit with a fixed depth, we denote

a quantum circuit where we apply random 1-qubit and 2-qubit gates, until the

depth of the circuit is the chosen one. In Figure 3.2 we show the necessary bond

dimension to correctly describe a random quantum circuit, as a function of the

depth d. We consider a quantum circuit correctly described if the Bures metric

B is smaller than 10−9, where the metric is averaged over 50 random circuits. We

can observe that the simulator is fully capable of describing the random circuits,

and that the necessary bond dimension is strongly dependent on the depth of the

circuit d. This dependency is the expected behavior since with a high depth we

apply more gates, and thus increase the entanglement. Indeed, we notice that

58

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

the application of the QFT can increase a lot the necessary bond dimension. For

example, the circuit with d = 8 was correctly described with a bond dimension

χ = 25 = 32, but after the QFT the necessary bond dimension increased to

27 = 128, the maximum bond dimension for the given system. We are able to

reach the maximum bond dimension even without the application of the QFT if

the depth is sufficiently high, i.e. for d > 11.

2 4 6 8 10 12

Depth d

21

22

23

24

25

26

27

B
on
d
di
m
en
si
on

χ

Bond dimension to achieve B ≤ 10−9

Random

Random+QFT

Fig. 3.2: Bond dimension χ necessary to exactly describe a random quantum circuit

as a function of the circuit depth d. We consider the MPS simulation of a quantum

circuit to be exact when the Bures metric B is smaller than 10−9. Each data point is

obtained from a Bures metric averaged over 50 circuits.

We are now confident that the simulator is able to reproduce truthfully the

evolution of a quantum circuit, and we can further proceed in the analysis. In

particular, in the next section, we analyze the time scaling of the simulation.

3.2.2 Time scaling

As we have already observed in Section 1.4, simulating a quantum circuit is a

computationally very intensive task even on a supercomputer. To appreciate the

59

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

limitations of this approach we use the qiskit state-vector simulator to simulate

the preparation of a W state, followed by a QFT. We observe in Figure 3.3 that

the implementation time is exponential in the number of qubits, as expected,

and quickly becomes out of reach even parallelizing the processes. We notice two

different exponential scaling, where the change is for n ∼ 20. Our interpretation

of the change of scaling is that it depends probably on CPU constraints, but

we did not investigate any further. To better appreciate the difference between

the different number of threads we present on the right the ratio between the

computational time with m ∈ {8, 16, 32, 64, 128} and 128 threads. We notice

a speedup only with respect to 8 and 16 threads, suggesting that the optimal

number of threads for this task is 32.

10 20 30

Number of qubits n

10−1

100

101

102

103

C
om

pu
ta
ti
on
al

ti
m
e
[s
]

8 threads

16 threads

32 threads

64 threads

128 threads

20 25 30

Number of qubits n

1.0

1.5

2.0

2.5

3.0

S
p
ee
d
up

w
.r
.t
12
8
th
re
ad
s

Fig. 3.3: Time scaling of the exact simulation of the application of the QFT to a W

quantum state using the qiskit state-vector simulator on m100, with different numbers

of threads. (left) We present the results in a y-log scale to highlight the exponential

behavior. The simulation has been repeated 10 time for each data point, and we

thus show the average with the shaded standard deviation. The standard deviation is,

however, not easily seen in the log scale. (right) Ratio between the computational time

with m ∈ {8, 16, 32, 64, 128} and 128 threads for n > 20.

We benchmark the MPS code developed in Fortran on the Cineca cluster, and

precisely on the Marconi 100 (m100) supercomputer. We tested the code together

60

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

with the qiskit MPS simulator, to prove its efficiency. In Figure 3.4, we observe

the results. We simulated the preparation of a W state and the subsequent

application of a QFT: the same circuit of Figure 3.3. We select a bond dimension

χ = 104, which guarantees that the maximum bond dimension is not reached,

and so we keep a faithful representation of the state. We checked that χ = 104

is not reached throughout the simulations. Even though the qiskit simulator

is faster for a reduced number of qubits, namely for n ≤ 18, the Fortran code

outperforms it for larger n. In particular, we can easily state that the developed

code is more efficient since the regime in which we are interested when we use the

MPS simulation is n ≫ 1. Furthermore, analyzing the slope γ of the presented

lines for n > 20, we can observe a significant difference:

γqiskit = (2.134± 0.007)s−1 γFortran = (1.53± 0.02)s−1.

101 102

Number of qubits n

10−2

10−1

100

101

102

103

T
im

e
[s
]

Time comparison, W+QFT, χ = 104

FORTRAN

qiskit

Fig. 3.4: Simulation time for the MPS simulation with both the qiskit and the Fortran

code. We present the plot on a log-log scale, to better visualize the power-law behavior.

The simulation is composed of the creation of aW state and the subsequent application

of the QFT.

The results achieved up to now are really promising to continue our analysis.

However, we underline that for the MPS simulator, the problem is not the number

of qubits, but the necessary bond dimension. For this reason, we analyze now the

61

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

time scaling at a fixed number of qubits n = 20, by varying the maximum bond

dimension. We use the QVOLUME circuit, since we have seen that is a difficult

circuit to represent by MPS, and we are able to observe the scaling properties.

In Figure 3.5, we can observe that for 24 ≤ χ ≤ 28 the behavior is, as expected,

a power law. We use this interval to perform a linear fit in the log-log scale,

obtaining the coefficient:

γχ = (2.40± 0.02)s−1.

The Bures metric of the states was checked through the simulation, and displays

a behavior analogous to the one presented in the left of Figure 3.1. It remains

around zero for χ < 2⌊
n
2 ⌋, which in this case is 210 = 1024, and then the state is

correctly described for χ ≥ 210 with a Bures metric B < 10−11.

In Chapter 2 we learned that the number of coefficients needed to describe for

a quantum state of fixed system size in MPS form scales with O(χ2). Now, we

can observe the computational scaling in terms of the computational time, which

depends for example on the matrix multiplication. Indeed, the scaling coefficient

is affected by the matrix multiplication scaling with the Strassen algorithm [57],

which scales as O(m2.807), with m the order of the matrix. For this reason, in

Section 3.3 we work for minimizing the number of operations needed to simulate

a quantum circuit and present the advantages that we can achieve through par-

allelization. Furthermore, we also recall that in each two-qubits gate application

a SVD is applied, which scales as O(m3).

62

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

22 24 26 28 210

Bond dimension χ

100

101

102

103

C
om

pu
ta
ti
on
al

ti
m
e
[s
]

Time scaling, QVOLUME, n = 20

Fig. 3.5: Time scaling for the QVOLUME algorithm w.r.t. the bond dimension, in a

log-log scale. We can observe that for 24 ≤ χ ≤ 28 the scaling is a power law, and in

particular, we have O(χ2.40±0.02). The description of the state is exact for χ ≥ 210.

3.2.3 Gaussian Boson Sampling

In this section, we analyze the protocol introduced in Section 1.5, the Gaussian

Boson sampling. We aim at minimizing the resources needed for the simulation,

by studying the system with different Fock space cutoffs and bond dimensions.

We observe which is the error induced by a fixed bond dimension in the estimation

of the hafnian of a matrix, as defined in Section 1.5.3.

Before starting the analysis, let us introduce the occupation profile. With

occupation profile we denote the distribution of the number of photons in a GBS

experiment. Namely, we perform 104 measurement of the system, and for each

measurement we compute the total number of photons. For example, if in a

system with n = 5 qumodes we measure the state |0, 5, 0, 1, 2⟩ the total number

of photons would be nph = 8. Then, we plot the probability to measure a state

with given nph, obtaining a plot analogous to Figure 3.6.

Fock space cutoff

First, we need to search for the Fock space cutoff is the most suitable for our

system. Increasing the Fock dimension is very computationally demanding since

it affects all the tensor operations. For this reason, we analyze how the occupation

63

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

0 5 10 15 20 25

Number of photons nph

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

P
ro
ba
bi
lit
y
of

m
ea
su
ri
ng

n
p
h
ph

ot
on
s

n=5, fc=12

Fig. 3.6: Example of an occupation profile plot of a GBS experiments with n = 5

qumodes and a Fock space cutoff of fc = 12. On the x-axis we show the number of

photons measured, while on the y-axis the relative number of measurements, normalized

to the total number of measurements.

profile changes when we modify the Fock space cutoff to discover a heuristic

relation to identify the minimal meaningful cutoff. In Figure 3.7 we show how

the average of the occupation profile distribution changes as a function of the

Fock space cutoff fc. We can notice how increasing the cutoff influences this

average, up to a certain threshold, which increases with the number of modes n

of the system. By analyzing the derivative of the average, we can suggest that

fc ≃ 15 is a good compromise between a correct description of the system and

a computationally sustainable simulation. Furthermore, we can observe the fact

that the curves corresponding to n = 10, 20 are less smooth than the others.

This behavior can be explained by the bond dimension χ, which may not be high

enough to correctly describe the system. Just to recall the difficulties of the exact

simulation, the most computationally demanding point in the plot would require

to store 3020 coefficients, which correspond to a system with ∼ 98 qubits.

64

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

5 10 15 20 25 30

Fock cutoff

0

2

4

6

8

10

A
ve
ra
ge

nu
m
b
er

of
ph

ot
on
s

GBS, χ = 100

n=5

n=6

n=7

n=8

n=10

n=20

Fig. 3.7: Average number of photons w.r.t. the Fock space cutoff in the Gaussian

Boson Sampling. We show the results for different number of qumodes n. We can

observe that the average number of photons increases up to a plateau.

Hafnian estimation

In Section 1.5.3 we presented the GBS protocol, focusing on the possibility of

computing the Hafnian of a matrix through photon-click measurements. In this

section, we analyze the error in the Hafnian estimation for small systems that

can be easily simulated classically. For the classical computation we use the

python library the walrus [58], an optimized package developed by Xanadu. We

compute the error over 10 different Hafnian matrices, and take the average as

an indicator. We also monitor the entanglement of the system, to check if the

MPS technique is suitable for this simulation. In particular, we consider the

maximum of the entanglement along the MPS chain, and then take the average

along the different matrices. We show the results of this study in Figure 3.8.

The bond dimension influences the error in the Hafnian estimation. By plotting

the data in a log-log scale, we can notice a power law behavior, with exponent

γgbserror = (−0.4731 ± 0.008). As expected, the bond entropy entanglement EB

grows with the bond dimension, with an exponent of γgbsent = (0.577± 0.005). It is

important to notice that the derivative of both quantities at the right border is

65

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

non-zero, and they will so continue to vary if we further increase χ. This behavior

means that the system is not perfectly described by the given bond dimension

because it is not high enough. The GBS protocol needs a high bond dimension

even for small systems, like n = 6 qumodes. We can so claim that GBS is a

suitable platform to prove quantum supremacy, and that it can not be simulated

easily with MPS. However, we can truncate the bond dimension and analyze the

system with a limited amount of entanglement.

Occupation profile

After understanding how to tune the parameters of the simulation we can finally

analyze the occupation profile of the Gaussian boson sampling protocol more in

detail. We analyze how it varies, in particular increasing the number of qumodes

as much as possible. We stick to a Fock space cutoff of fc = 15 and a bond

dimension χ = 100. From Figure 3.9, we notice that the distribution is charac-

terized by a single mode. It is more probable to measure states with a reduced

number of photons, but as we increase the number of qumodes the maximum

shifts to the right. However, this is not true passing from n = 10 to n = 20.

We can hypothesise that the bond dimension χ = 100 is not enough to describe

the larger system, since it displays a behavior different from the expected one.

For this reason, on the right plot of the figure, we report the distribution of the

singular values cut in the simulation, due to the truncation procedure explained

in Section 2.3. We notice that for n = 5 the ratio between the singular values

cut and the largest singular value kept is very small, but the distribution shifts

to the right while we increase the number of qumodes. In particular, we observe

that for n = 20 we discard a relevant number of non-negligible singular values.

Therefore, we can not trust the occupation profile for n = 20, and we should

increase the bond dimension to obtain meaningful results. Again, the GBS pro-

tocol confirms the fact that it is a suitable platform for the quantum supremacy

claim, being difficult to simulate for our platform. Even though we did not reach

a final conclusion in this domain due to the time constraint for the thesis, further

efforts will be spent to analyze the GBS protocol. Indeed, after the improvement

that is presented in the next section, we may be able to simulate bigger systems

in a manageable computational time.

66

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

10−3

10−2

10−1
E
rr
or

Hafnian estimation, n=6, fc=15

101 102

Bond dimension χ

100

101

A
ve
ra
ge

b
on
d

en
ta
ng
le
m
en
t
E
B

Fig. 3.8: Estimation of the Hafnian of a matrix through GBS protocol with 6 qumodes

and a Fock space cutoff fc = 15. The plots share the x-axis. The shaded area represent

the standard deviation of the quantity, obtained over 10 repetitions of the experiment.

On the top plot, we show the evolution of the error as a function of the bond dimension

χ on a log-log scale. We can notice a power-law behavior, with the error decreasing.

It is interesting to notice that the error does not reach zero for χ < 100. On the

bottom, we present the average bond entropy entanglement EB as a function of the

bond dimension. We notice that the entanglement is growing as a power law with the

bond dimension, and that it does not reach a maximum for χ < 100. The whole set of

simulations lasted 10:33:14 hours on the Marconi supercomputer.

3.3 Future development and improvement

In this section, we overview the possible improvement that we can implement in

the simulator. Even though these advancements are not yet available, and will

not be implemented in the work related to this thesis, it is nevertheless instructive

67

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

0 20 40

Number of photons nph

0.00

0.05

0.10

0.15

0.20

P
ro
ba
bi
lit
y
of

m
ea
su
ri
ng

n
p
h
ph

ot
on
s

n = 5

n = 10

n = 20

0.000 0.005 0.010 0.015

Singular values cutted

0.0

0.2

0.4

0.6

0.8

N
or
m
al
iz
ed

fr
eq
ue
nc
y

n = 5

n = 10

n = 20

Fig. 3.9: These plots are produced with a maximum bond dimension χ = 100 and a

Fock space cutoff fc = 15. On the left, we plot the occupation profile for the GBS pro-

tocol with increasing number of qumodes n. The number of average photons increases

with n from 5 to 10, but then it decreases. On the right, we report the distribution of

the singular values cut during the simulation. We recall that on the x-axis is plotted

the ratio between a singular value cut and the largest singular value kept.

to discuss them, since they will be present in the final product. First, in Section

3.3.1 we discuss how to transform a quantum circuit to minimize the number of

gates, taking into account that we do not have constraints in the unitary matrix

that represents a quantum gate. Then, in Section 3.3.2 we discuss the advantages

and disadvantages of the parallelization of the code among different processes,

discussing which is the best architecture for the tensor network quantum simula-

tor.

3.3.1 Gate merging

In a real quantum computer only a few quantum gates, forming a universal set,

are implemented in the hardware. For this reason, all the remaining gates are

decomposed into a combination of this universal set. However, when working

68

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

q0 : . . . q0 : . . .

...
...

qi : . . . H Z X Y merging−→ qi : . . . HZXY
...

...
qn : . . . qn : . . .

Fig. 3.10: Simple example of single-qubit gates merging. This process is advantageous,

since instead of performing 4 contraction between the state, tensor of dimension (χ ×
χ× 2), and the gates, tensors of dimension (2× 2), we first contract together with the

gates. Then, we only have to perform a single contraction with the state.

with a simulator we have no such constraint. The gates are represented as unitary

matrices, and their application, as seen in Section 2.3, is simply the contraction

between two tensors. We can apply any unitary matrix, regardless of its physical

implementation.

Following this intuition, we can strongly simplify the tensor network which

represents a quantum circuit before simulating it. For example, if we want to

simulate the circuit in Figure 3.10 and proceed with the algorithm presented in

Chapter 2, we would need to perform 4 contraction between the state, a tensor

of dimension (χ× χ× 2), and the gates, tensors of dimension (2× 2). However,

we can first contract the gates together, and then apply only a single contraction

with the state.

Merging one-qubit gates is, however, the first trivial step. We can further

simplify the network, by executing the following steps:

1. Contract together adjacent one-qubit gates;

2. Contract one-qubit gates with the adjacent two-qubit gate;

3. Contract together two-qubits gates that share both the application qubits.

It is important to restrict the contraction in such a way since we are still

limited to the application of at most two-qubit gates.

The steps above are presented in the tensor network notation in Figure 3.11.

3.3.2 Parallelization

In Section 3.2.2 we analyzed the time scaling of the simulator. By using a su-

percomputer like m100, we can handle matrices of relatively big size in small

69

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

G0

G1

G2

G3

G4 G5

D1 D2

1.

2.

G0,4,5

G3

D̃1 D2

3.

Fig. 3.11: Procedure to simplify a quantum circuit, by contracting the gates before

the contraction with the quantum state. First (1.), we contract together adjacent one-

qubit gates. Then (2.), we contract these one-qubit gates with their adjacent two-qubit

gate. Finally (3.), we contract two-qubit gates which act on the same two qubits.

computational times. As an example, if we are working with a maximum bond

dimension χ = 100 then a single tensor has a dimension (2× 100× 100) = 2 · 104,
which is easily managed in the RAM of the device. Even the most computation-

ally intensive task, the contraction of 2-sites gates, can be simply reduced to the

multiplication of matrices with at most (2× 2× 100× 100) = 4 · 104 elements. As

already stated, it is possible that the bottleneck of the simulation is not in the

single tensor contraction, but rather in the number of tensor contractions. From

now on, we denote this quantity as the number of operations. We could assume

that the parallelization of the operations speeds up the computations. We call a

set of parallel operations parallel cycle. The number of parallel cycle and oper-

ations is the same in the case of a serial code. This statement, however, is not

trivial. In the canonical TEBD technique, presented in Section 2.3.1, the paral-

lelization always produces a speedup, since we have to apply two-site operators

to the full chain. In the quantum circuit case, however, we encounter a circuit

structure that is not regular or periodic. This means that parallelization is not a

straightforward improvement. For this reason, we investigate some example cases

to check if the introduction of a parallel code through Message Passing Interface

(MPI) [59] produces a sufficient improvement. This topic is particularly impor-

tant, since the parallelization on the quantum hardware is still an open question,

and we may take inspiration from this work to tackle that problem.

Moreover, parallelizing the MPS evolution is not trivial. To minimize the

70

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

truncation error we set the center of orthogonality at each two-site contraction.

This approach is not possible if we want to apply more two-site operators in

parallel. We do introduce a new algorithm, which creates a fake orthogonality

center [60]. The algorithm, presented in Figure 3.12, is the following:

1. We must store the singular values after each SVD. We denote the singular

values between site k and k + 1 as Λ[k]. We denote (Λ[k])−1 = Λ̃
[k]
.

2. Insert an identity 1 = (Λ[k])−1Λ[k] in the link preceding the application of a

two-site operator. This means that if we want to apply a CNOT between

sites (1, 2) and (4, 5) we insert the identity only link (3).

3. Contract Λ[k] to the tensor on the right side, in our example (U4). Due to

the contraction, these tensors are no longer unitary but locally mimic the

orthogonality center, since the sites on the left and on the right are unitary.

4. Apply all the two-site operators in parallel, including the truncation. It

is important to notice that the singular values are not necessarily valid

anymore from a global perspective. The left-right unitary structure is a

priori destroyed, arguing that the truncation of singular values is a non-

unitary operation.

5. Perform a series of QR decomposition, taking care of (Λ[k])−1 to bring back

the unitary structure.

It is important to underline that, even though points 1.− 4. can be performed in

parallel, point 5. must be serial.

Now that we have defined a parallel algorithm, we rigorously enounce when a

set of operations is parallelizable. Given a quantum circuit Q with n qubits we

denote an operation on the qubits set qα at time t as oqαt . Then, a set of subsequent

operations O = {oqαt }α=1,··· ,nop

t=1,2,··· ,nop
is parallelizable if and only if the intersection of

all the qα is empty.

O = {oqαt }α=1,··· ,nop

t=1,2,··· ,nop
is parallelizable ⇐⇒

nop⋂︂
α=1

qα = ∅. (3.4)

In other words, operations in the same layer of the quantum circuit are paral-

lelizable. This means that we have an upper bound to the number of parallel

operations, which is the number of sites of the MPS n. Instead, if we consider

the case of a circuit obtained after the transformation of the previous section,

71

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

M12. U2 U3 Λ̃
[3] Λ[3] U4 U5 U6

GATE GATE

1

M13. U2 U3 Λ̃
[3] Λ[3] U4 U5 U6

GATE GATE

contraction

M14. U2 U3 Λ̃
[3] M4 U5 U6

GATE GATE

gate application gate application

Fig. 3.12: Parallel algorithm for the application of gates. We follow the numbering

of the text, thus starting from step 2. First, we insert an identity 1 = (Λ[k])−1Λ[k] =

Λ̃
[k]
Λ[k] in the link preceding the application of a two-site operator. We recall that the

Λ[k] are the diagonal matrices obtained by the singular values after the SVD decom-

positions. In the above example, this means inserting Λ̃
[3]
Λ[3] on the third link, since

the gates are applied on tensors (M1,U2), and (U4,U5). We do not insert the iden-

tity before the tensor M1 since it is the first of the chain, and the true orthogonality

center. Then, on step 3, we contract Λ[k] with the tensor on the right, Uk+1 (U4 in

the example). In this way, we are mimicking an orthogonality center in the new tensor

M4. Finally, in step 4, we apply in parallel the operators, as explained in Section 2.3.

It is then necessary to apply a series of QR decomposition to come back to step 2.

the circuit is composed of only two-qubits gates. In this scenario, the maximum

number of parallel operations is n/2.

We proceed with the first case of analysis, a GHZ circuit. We compare the

number of operations in the serial case, which coincides with the number of gates

in the circuit, with the number of parallel cycles set in the parallel case. The

non-local version of this circuit is composed of subsequent CNOT, each of which

72

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

is connected to the same qubit. The topology of this circuit is not parallelizable,

as we can see in the left plot of Figure 3.13. However, in the MPS simulator,

we cannot use non-local operators, and so we need to first linearize the circuit

using qiskit transpiler. We can observe in the right plot of Figure 3.13 that there

actually is an improvement in the number of cycles needed. Indeed, by looking

at the slope of the lines we can compute the scaling with the number of qubits:

γghz−lin
seq = (1.055± 0.007), γghz−lin

par = (1.026± 0.002).

As we expect from the plot, the scaling is the same (linear) even though the

number of parallel cycles is less than the serial one. It is not a problem that the

number of parallel cycles on the right plot is higher than the number on the left

plot since the simulator is not able to reproduce a general, non-local GHZ circuit,

but only its linearized counterpart.

101 102

Number of qubits n

101

102

N
um

b
er

of
op

er
at
io
ns

GHZ circuit

Sequential

Parallel

101 102

Number of qubits n

101

102

N
um

b
er

of
op

er
at
io
ns

Linearized GHZ circuit

Sequential

Parallel

Fig. 3.13: Comparison between the number of cycles needed to obtain a GHZ state

starting from the void state in log-log scale. On the left, we use the non-local version

of the circuit, usually found in the literature, while on the right we show the results for

the circuit linearized through the qiskit transpiler.

We can analyze a further example: the Quantum Fourier Transform. We

tackle the problem with two different approaches, as before. We look at the

73

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

number of cycles of the non-local QFT and those of the linearized one introduced

in Section 1.3.2. In Figure 3.14 we can observe that, even though in the non-local

case a parallelization is not worth the effort, the linearized case greatly benefits

from it. Indeed, optimal planning of the circuit also brings an improvement in

the number of cycles with respect to the non-local case. In particular, we can

understand the scaling by looking at the slope of the lines in log-log scale:

γqft−nl
seq = (1.86± 0.02) γqft−lin

seq = (2.0± 0.0) γqft−lin
par = (1.13± 0.02)

The parallelization strongly affected the scaling behavior, passing from a quadratic

to an almost linear one.

101 102

Number of qubits n

101

102

103

N
um

b
er

of
op

er
at
io
ns

Non-local QFT

Sequential

Parallel

101 102

Number of qubits n

101

102

103

104

N
um

b
er

of
op

er
at
io
ns

Linearized QFT

Sequential

Parallel

Fig. 3.14: Comparison between the number of cycles needed for a QFT circuit in

log-log scale. On the left, we use the non-local version of the circuit, usually found in

the literature, while on the right we show the results for the linearized circuit.

74

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

Even though these results seem very promising we still have to remember that

the cardinality of the set of cycles O applied in parallel is also bounded by the

number of parallel processes available in the machine. For this reason, we improve

this analysis, focusing on two possible architecture:

• A cartesian structure, shown in Figure 3.15. In this technique, we divide

the MPS chain into equal chunks, and each worker performs computations

only on his subset of the system. To make operations between boundaries

possible we perform a copy of the first tensor of the (i + 1)-th subset into

the i-th subset. These copies are called halo regions. The advantage of this

approach is that we only need to perform communications between workers

when we modify the boundaries.

• A master-workers (MW) approach, shown in Figure 3.16. In this procedure

a worker, called the master, administrate the computations, sending them

to the other workers when they are free. The advantage of this technique

is that we have fewer idle workers, but we need to communicate for each

computation.

M1 M2 M′
3 M3 M4 M′

5 M5 M6

Worker 1 Worker 2 Worker 3

Fig. 3.15: Cartesian parallel architecture. We divide the MPS chain into equal chunks

between workers 1, 2 and 3. We perform a copy of the first tensor, identified as M′
j, of

worker (i+ 1) in worker i to compute operations across boundaries. This architecture

requires communications between workers each time one of the boundary tensors is

modified. We can perform at most w operations in parallel, where w is the total

number of workers. If no operation is applied to tensors assigned to worker i on a

certain layer that worker remains idle.

To check which of these two architectures is better suited for the quantum

simulator, we analyze the number of parallel cycles and communications in two

different cases. First, we improve the analysis started of the QFT, then we look

at the behavior using random circuits.

In Figure 3.17 we observe the number of cycles needed to apply the QFT with

either of the architectures. We repeat the analysis for different number of threads,

75

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

Master M1 M2 M3 M4 M5

Worker 2Worker 1 Worker 3

Ta
sk

R
es
ul
t

T
ask

R
es
u
lt

TaskR
esult

M1 M2

G

M4 M5

G Idle

Fig. 3.16: Master-workers architecture. In this procedure, the master keeps all the

information about the system, the full MPS chain. At each step, it sends a task, i.e.

the application of a gate, to a free worker. The workers perform the computations in

parallel, and then sends back to the master the results. In this approach, it is more

difficult to have idle processes, even though it is possible. The problem is that for each

task the worker must communicate with the master twice, once for receiving the data

and once to send back the results.

i.e. 4, 16 and 64. We can notice, differently from the ideal version in Figure 3.14,

the algorithm displays a different scaling with respect to the sequential one only up

to a certain number of qubits, which depends on the number of available threads.

This behavior is particularly clear in the master-worker approach with 16 threads.

Around n = 30 there is a change in the line slope. For every number of threads

the master-worker approach perform the simulation with fewer parallel cycles.

However, we must keep into account the number of communications involved in

the parallel algorithm, displayed in the lower plot. We notice that the number of

communication for a given circuit is independent of the number of threads in the

master-worker procedure, while it is strongly affected by the number of threads in

the cartesian one. Indeed, fewer threads require less communications, as expected.

We so need to look for a maximum on the performance for the cartesian approach,

which balances the number of cycles and communications. To find out the best

technique for this quantum circuit we must balance the information from Figure

3.17. In particular, it is beneficial to look for the fraction ηmax of resources that

a communication requires such that the MW approach become more operational

76

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

101

102

103

104
N
um

b
er

of
cy
cl
es

QFT, Parallel analysis

Serial

MW, 4 th

CART, 4 th

MW, 16 th

CART, 16 th

MW, 64 th

CART, 64 th

101 102

Number of qubits n

101

102

103

104

N
um

b
er

of
co
m
m
un

ic
at
io
ns

Fig. 3.17: Comparison between the master-worker and the cartesian parallel approach

for the QFT circuit. We present the results on a log log scale, and the two plots share

the x-axis and the legend. On the upper plot, we notice the number of cycles needed

to simulate the circuit. We can observe that the slopes of the data points follow the

serial one after a certain number of qubits, which depends on the number of threads

th. On the bottom plot, we report the number of communications involved in the

parallelization versus the number of qubits. This number is independent of the number

of threads in the MW case, while it varies in the cartesian one.

intensive than the cartesian one. We can formally define ηmax by denoting the

number of cycles (communications) for the MW approach with nmw
cyc(com) and with

ncart
op(com) for the cartesian one:

ηmax | ncart
cyc + ηmaxn

cart
comm < nmw

cyc + ηmaxn
mw
comm. (3.5)

77

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

The result is thread-dependent: for 64 threads we have ηmax = 6 · 10−3, while

for 4 threads ηmax = 6 · 10−2. This discussion can be further deepened. For

example, the communication scales quadratically with the bond dimension, while

the operations scale cubically. And, on top on that, the computational time can

be greatly influenced by any prefactor in front of the scaling. Therefore, even

though the previous analysis is instructive, we should study the algorithm once

it is implemented.

We repeat the analysis in the case of random quantum circuits, presenting the

results in Figure 3.18. We generated random circuit with n qubits and a depth

of 2n layers. Each configuration is an average over 10 realization of the circuit.

We can observe that the differences between the MW and cartesian technique

are less accentuated in these plots. Indeed, the number of cycles needed in the

parallel approach is different only in the case of 16 threads, and that difference

is smaller then in the QFT case. However, the differences in the number of

communications persists: the MW approach requires more communications rather

than the cartesian one. If we assign a weight to the communications, as we did in

Equation (3.5), it is clear that the cartesian method requires less computational

resources, and it is so preferable to the MW.

78

CHAPTER 3. QC-MPS: MPS SIMULATOR FOR QUANTUM COMPUTERS

101

102

103

104

105

N
um

b
er

of
cy
cl
es

RANDOM, Parallel analysis

Serial

MW, 4 th

CART, 4 th

MW, 16 th

CART, 16 th

MW, 64 th

CART, 64 th

101 102

Number of qubits n

101

102

103

104

105

N
um

b
er

of
co
m
m
un

ic
at
io
ns

Fig. 3.18: Comparison between the master-worker and the cartesian parallel approach

for random circuits. We present the results on a log log scale, and the two plots share

the x-axis and the legend. On the upper plot, we notice the number of cycles needed to

simulate the circuit. In this case, the number of parallel cycles is the same for the two

methods in all cases but with 16 threads. On the bottom plot, we report the number

of communications as a function of the number of qubits. We notice that the number

of communications needed in the MW case are constant for a given circuit, and thus

the star-shaped markers are superimposed.

79

Conclusions

In this thesis, we implemented and explored a classical quantum simulator for

quantum gates and photonic circuits. First, we introduced the concepts of quan-

tum computation, starting from the definition of its fundamental unit, the qubit.

We presented the procedure to evolve a quantum state in the quantum computing

paradigm, i.e. through quantum gates. We also presented the continuous vari-

ables quantum computing paradigm using photonic modes as fundamental units.

We focused on the Gaussian Boson sampling protocol, which was recently used

in an experiment that claims quantum supremacy [12]. We listed the different

methods to simulate these quantum evolutions, highlighting the limitation of such

an approach in the exact case. For this reason, we introduced efficient methods to

compress the information of a quantum state and simulate its evolution, namely

the tensor network methods.

We described thoroughly the representation of quantum states using the Ma-

trix Product State technique, a particular tensor network method suitable for

describing one-dimensional chains, such as a quantum circuit. This approach let

us evolve systems with many more qubits or qumodes. We listed the different op-

erations that we can apply on Matrix Product States and the underlying sources

of errors. We briefly discuss the Time Evolving Block Decimation procedure,

which serves as the basis of our algorithm.

We developed a Quantum Computer simulator based on Matrix Product

States, called QC-MPS. We wrote the numerical core in Fortran, to push the

performances of the simulator as much as possible, and developed a python in-

terface for easiness of use, which supports packages already established in the

community, such as qiskit and strawberry fields. This simulator applies to both

the quantum circuit and the quantum linear optic circuit cases. We then tested its

correctness and computational time scaling on different quantum circuits, con-

cluding that the simulator is working correctly and that the time scaling is as

80

Conclusion

expected. We then focused on studying the Gaussian Boson sampling circuit

circuit: we benchmarked the effect of the Fock cutoff necessary to describe the

system faithfully. We monitored the evolution of the occupation profile using

an increasing number of modes. From the simulations, we discovered a far more

complex domain than the qubit’s one, which will require further effort to be fully

explored.

Finally, we discussed possible ways to improve the efficiency of the simula-

tor by parallelizing the workload. First, we showed a way to reduce the number

of operations in a quantum circuit, by contracting one-qubit gates and adjacent

two-qubit gates. We debated the advantages and disadvantages of different Mes-

sage Passing Interface architectures, concluding that the cartesian architecture

is the most appropriate for our task. Even though the master-workers approach

generally involves less parallel operations, the advantage can vanish due to more

communications.

The implementation of the parallel algorithm is beyond the scope of this work,

but future effort will be spent in this direction. Furthermore, additional studies

will be addressed to better characterize the Gaussian Boson sampling protocol,

and linear optical circuit in general. The simulator will be used for many different

topics. For example, the possibility of simulating many qubits will enable us to

study quantum error correction codes, or analyze the entanglement scaling in

quantum machine learning models.

In conclusion, we developed an efficient tensor network quantum simulator,

that, when completely mature, will be freely available for the scientific commu-

nity.

81

Bibliography

[1] Kent A Peacock. The quantum revolution: a historical perspective. Green-

wood Publishing Group, 2008. doi: 10.5860/choice.45-6849.

[2] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechan-

ics. Cambridge University Press, 2018. doi: 10.1017/9781316995433.

[3] R Feynman. Simulating Physics with Computers, 1982, reprinted in: Feyn-

man and Computation. 1999. doi: 10.5860/choice.45-6849.

[4] Michel H Devoret, Andreas Wallraff, and John M Martinis. “Superconduct-

ing qubits: A short review”. In: arXiv preprint cond-mat/0411174 (2004).

url: https://arxiv.org/abs/cond-mat/0411174.

[5] Hartmut Häffner, Christian F Roos, and Rainer Blatt. “Quantum comput-

ing with trapped ions”. In: Physics reports 469.4 (2008), pp. 155–203. doi:

https://doi.org/10.1016/j.physrep.2008.09.003.

[6] Mark Saffman. “Quantum computing with atomic qubits and Rydberg in-

teractions: progress and challenges”. In: Journal of Physics B: Atomic,

Molecular and Optical Physics 49.20 (2016), p. 202001. doi: 10.1088/

0953- 4075/49/20/202001. url: https://doi.org/10.1088/0953-

4075/49/20/202001.

[7] Jeremy L O’brien, Akira Furusawa, and Jelena Vučković. “Photonic quan-

tum technologies”. In: Nature Photonics 3.12 (2009), pp. 687–695. doi:

https://doi.org/10.1038/nphoton.2009.229.

[8] Javier Rodriguez-Laguna. “Real space renormalization group techniques

and applications”. In: arXiv preprint cond-mat/0207340 (2002). url: https:

//arxiv.org/abs/cond-mat/0207340.

[9] Simone Montangero, Montangero, and Evenson. Introduction to Tensor

Network Methods. Springer, 2018. doi: https://doi.org/10.1007/978-

3-030-01409-4.

82

BIBLIOGRAPHY

[10] L. Tagliacozzo et al. “Scaling of entanglement support for matrix product

states”. In: Phys. Rev. B 78 (2 July 2008), p. 024410. doi: 10 . 1103 /

PhysRevB.78.024410. url: https://link.aps.org/doi/10.1103/

PhysRevB.78.024410.

[11] Jacob Biamonte and Ville Bergholm. “Tensor networks in a nutshell”. In:

arXiv preprint arXiv:1708.00006 (2017). url: https://arxiv.org/abs/

1708.00006.

[12] Han-Sen Zhong et al. “Quantum computational advantage using photons”.

In: Science 370.6523 (2020), pp. 1460–1463. doi: 10 . 1126 / science .

abe8770.

[13] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information. 2002. doi: https://doi.org/10.1017/CBO9780511976667.

[14] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer

circuits”. In: Physical Review A 70.5 (2004), p. 052328. doi: 10.1103/

PhysRevA.70.052328. url: https://link.aps.org/doi/10.1103/

PhysRevA.70.052328.

[15] Sergey Bravyi et al. “Simulation of quantum circuits by low-rank stabilizer

decompositions”. In: Quantum 3 (2019), p. 181. doi: 10.22331/q-2019-

09-02-181.

[16] Christoph Adami and Nicolas J Cerf. “Quantum computation with linear

optics”. In: NASA International Conference on Quantum Computing and

Quantum Communications. Springer. 1998, pp. 391–401. doi: https://

doi.org/10.1007/3-540-49208-9_36.

[17] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. “A scheme

for efficient quantum computation with linear optics”. In: nature 409.6816

(2001), pp. 46–52. doi: https://doi.org/10.1038/35051009.

[18] Pieter Kok et al. “Linear optical quantum computing with photonic qubits”.

In: Reviews of modern physics 79.1 (2007), p. 135. doi: 10.1103/RevModPhys.

79.135. url: https://link.aps.org/doi/10.1103/RevModPhys.79.135.

[19] Craig S Hamilton et al. “Gaussian boson sampling”. In: Physical review

letters 119.17 (2017), p. 170501. doi: 10.1103/PhysRevLett.119.170501.

url: https://link.aps.org/doi/10.1103/PhysRevLett.119.170501.

83

BIBLIOGRAPHY

[20] CS Peirce. A Boolean algebra with one constant, Collected papers of Charles

sanders Peirce, eds. C. Hartshorne and P. Weiss, vol. 4. 1933. url: http:

//www.math.uic.edu/~kauffman/Penrose.pdf.

[21] Wolfgang Tittel et al. “Violation of Bell inequalities by photons more than

10 km apart”. In: Physical Review Letters 81.17 (1998), p. 3563. doi: 10.

1103/PhysRevLett.81.3563.

[22] Albert Einstein, Boris Podolsky, and Nathan Rosen. “Can quantum me-

chanical description of physical reality be considered complete?” In: Phys-

ical review 47.10 (1935), p. 777. doi: 10.1103/PhysRev.47.777. url:

https://link.aps.org/doi/10.1103/PhysRev.47.777.

[23] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-

tum Information: 10th Anniversary Edition. 10th. USA: Cambridge Univer-

sity Press, 2011, p. 109. isbn: 1107002176.

[24] Don Coppersmith. “An approximate Fourier transform useful in quantum

factoring”. In: arXiv preprint quant-ph/0201067 (2002). url: https://

arxiv.org/abs/quant-ph/0201067.

[25] Peter W Shor. “Algorithms for quantum computation: discrete logarithms

and factoring”. In: Proceedings 35th annual symposium on foundations of

computer science. Ieee. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.

365700.

[26] Giuliano Benenti, Giulio Casati, and Giuliano Strini. Principles of Quantum

Computation and Information-Volume II: Basic Tools and Special Topics.

World Scientific Publishing Company, 2007. doi: https://doi.org/10.

1142/5838.

[27] Mikhail Smelyanskiy, Nicolas PD Sawaya, and Alán Aspuru-Guzik. “qHiP-

STER: The quantum high performance software testing environment”. In:

arXiv preprint arXiv:1601.07195 (2016). url: https://arxiv.org/abs/

1601.07195.

[28] Koen De Raedt et al. “Massively parallel quantum computer simulator”. In:

Computer Physics Communications 176.2 (2007), pp. 121–136. doi: https:

//doi.org/10.1016/j.cpc.2006.08.007.

[29] Daniel Gottesman. “The Heisenberg representation of quantum computers”.

In: arXiv preprint quant-ph/9807006 (1998). url: https://arxiv.org/

abs/quant-ph/9807006.

84

BIBLIOGRAPHY

[30] Simon Anders and Hans J Briegel. “Fast simulation of stabilizer circuits

using a graph-state representation”. In: Physical Review A 73.2 (2006),

p. 022334. doi: 10.1103/PhysRevA.73.022334. url: https://link.

aps.org/doi/10.1103/PhysRevA.73.022334.

[31] Daniel Gottesman, Alexei Kitaev, and John Preskill. “Encoding a qubit in

an oscillator”. In: Physical Review A 64.1 (2001), p. 012310. doi: 10.1103/

PhysRevA.64.012310.

[32] Kevin E Cahill and Roy J Glauber. “Ordered expansions in boson am-

plitude operators”. In: Physical Review 177.5 (1969), p. 1857. doi: 10.

1103/PhysRev.177.1857. url: https://link.aps.org/doi/10.1103/

PhysRev.177.1857.

[33] P Král. “Displaced and squeezed Fock states”. In: Journal of Modern Optics

37.5 (1990), pp. 889–917. doi: https://doi.org/10.1080/09500349014550941.

[34] MS Kim et al. “Entanglement by a beam splitter: Nonclassicality as a pre-

requisite for entanglement”. In: Physical Review A 65.3 (2002), p. 032323.

doi: 10.1103/PhysRevA.65.032323. url: https://link.aps.org/doi/

10.1103/PhysRevA.65.032323.

[35] William R Clements et al. “Optimal design for universal multiport interfer-

ometers”. In: Optica 3.12 (2016), pp. 1460–1465. doi: https://doi.org/

10.1364/OPTICA.3.001460.

[36] F. Verstraete, V. Murg, and J.I. Cirac. “Matrix product states, projected

entangled pair states, and variational renormalization group methods for

quantum spin systems”. In: Advances in Physics 57.2 (Mar. 2008), pp. 143–

224. issn: 1460-6976. doi: 10.1080/14789940801912366. url: http://

dx.doi.org/10.1080/14789940801912366.

[37] Román Orús. “A practical introduction to tensor networks: Matrix product

states and projected entangled pair states”. In: Annals of Physics 349 (Oct.

2014), pp. 117–158. issn: 0003-4916. doi: 10.1016/j.aop.2014.06.013.

url: http://dx.doi.org/10.1016/j.aop.2014.06.013.

[38] J. Eisert. Entanglement and tensor network states. 2013. arXiv: 1308.3318

[quant-ph]. url: https://arxiv.org/abs/1308.3318.

[39] Jens Eisert, Marcus Cramer, and Martin B Plenio. “Colloquium: Area laws

for the entanglement entropy”. In: Reviews of Modern Physics 82.1 (2010),

p. 277. doi: 10.1103/RevModPhys.82.277.

85

BIBLIOGRAPHY

[40] Matthew B Hastings. “An area law for one-dimensional quantum systems”.

In: Journal of Statistical Mechanics: Theory and Experiment 2007.08 (2007),

P08024. doi: https://doi.org/10.1088/1742-5468/2007/08/P08024.

[41] Pietro Silvi. Tensor Networks: a quantum-information perspective on nu-

merical renormalization groups. 2012. arXiv: 1205.4198 [quant-ph]. url:

http://hdl.handle.net/20.500.11767/4293.

[42] Mikel Sanz. “Tensor Networks in Condensed Matter”. PhD thesis. Apr.

2011. doi: 10.14459/2011md1070963.

[43] Roger Penrose. “Applications of negative dimensional tensors”. In: Com-

binatorial mathematics and its applications 1 (1971), pp. 221–244. url:

http://www.math.uic.edu/~kauffman/Penrose.pdf.

[44] Glen Evenbly. Tutorial 3: Gauge Freedom. url: https://www.tensors.

net/tutorial-3 (visited on 02/12/2021).

[45] Sebastian Paeckel et al. “Time-evolution methods for matrix-product states”.

In: Annals of Physics 411 (Dec. 2019), p. 167998. issn: 0003-4916. doi:

10.1016/j.aop.2019.167998. url: http://dx.doi.org/10.1016/j.

aop.2019.167998.

[46] Pietro Silvi et al. “The Tensor Networks Anthology: Simulation techniques

for many-body quantum lattice systems”. In: SciPost Physics Lecture Notes

(Mar. 2019). issn: 2590-1990. doi: 10.21468/scipostphyslectnotes.8.

url: http://dx.doi.org/10.21468/SciPostPhysLectNotes.8.

[47] Ulrich Schollwöck. “The density-matrix renormalization group in the age

of matrix product states”. In: Annals of physics 326.1 (2011), pp. 96–192.

doi: https://doi.org/10.1016/j.aop.2010.09.012. url: https:

//www.sciencedirect.com/science/article/pii/S0003491610001752.

[48] Rohit Chandra et al. Parallel programming in OpenMP. Morgan kaufmann,

2001. isbn: 978-1-55860-671-5.

[49] EM Stoudenmire and Steven R White. “Minimally entangled typical ther-

mal state algorithms”. In: New Journal of Physics 12.5 (2010), p. 055026.

doi: 10.1088/1367-2630/12/5/055026. url: https://doi.org/10.

1088/1367-2630/12/5/055026.

86

BIBLIOGRAPHY

[50] Guifré Vidal. “Efficient simulation of one-dimensional quantum many-body

systems”. In: Physical review letters 93.4 (2004), p. 040502. doi: 10.1103/

PhysRevLett.93.040502. url: https://link.aps.org/doi/10.1103/

PhysRevLett.93.040502.

[51] Naomichi Hatano and Masuo Suzuki. “Finding exponential product for-

mulas of higher orders”. In: Quantum annealing and other optimization

methods. Springer, 2005, pp. 37–68. doi: https://doi.org/10.1007/

11526216_2.

[52] Héctor Abraham et al. Qiskit: An Open-source Framework for Quantum

Computing. 2019. doi: 10.5281/zenodo.2562110.

[53] Héctor Abraham et al. Qiskit terra standard gates. url: https://github.

com/Qiskit/qiskit- terra/tree/main/qiskit/circuit/library/

standard_gates. (accessed: 10.08.2021).

[54] Nathan Killoran et al. “Strawberry fields: A software platform for photonic

quantum computing”. In: Quantum 3 (2019), p. 129. doi: 10.22331/q-

2019-03-11-129.

[55] Andrew W Cross et al. “Validating quantum computers using randomized

model circuits”. In: Physical Review A 100.3 (2019), p. 032328. doi: 10.

1103/PhysRevA.100.032328.

[56] Amandeep Singh Bhatia and Ajay Kumar. “Quantifying matrix product

state”. In: Quantum Information Processing 17.3 (2018), pp. 1–16. doi:

https://doi.org/10.1007/s11128-017-1761-1.

[57] V Strassen CM970438RF. “Gaussian elimination is not optimal”. In: Nu-

mer. Math 13 (1969), pp. 354–356. doi: https://doi.org/10.1007/

BF02165411.

[58] Brajesh Gupt, Josh Izaac, and Nicolás Quesada. “The Walrus: a library

for the calculation of hafnians, Hermite polynomials and Gaussian boson

sampling”. In: Journal of Open Source Software 4.44 (2019), p. 1705. doi:

https://doi.org/10.21105/joss.01705.

[59] Brandon Barker. “Message passing interface (mpi)”. In: Workshop: High

Performance Computing on Stampede. Vol. 262. 2015. url: http://cac.

cornell.edu/Education/training/StampedeJan2015/IntroMPI.pdf.

87

BIBLIOGRAPHY

[60] EM Stoudenmire and Steven R White. “Real-space parallel density matrix

renormalization group”. In: Physical review B 87.15 (2013), p. 155137. doi:

10.1103/PhysRevB.87.155137. url: https://link.aps.org/doi/10.

1103/PhysRevB.87.155137.

88

