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Chapter 1

Introduction

The fact that almost all the available frequencies are assigned to licensed users
and that these frequencies are often under-utilized caused a lack of spectrum
resources in wireless communication which gives rise to cognitive radio (CR)
as a way to improve spectral efficiency in wireless networks. Cognitive radio
enables the licensed primary user (PU) and unlicensed secondary users (SUs)
to coexist and transmit in the same frequency band; in the underlay cognitive
radio approach, the smart SUs are allowed to simultaneously transmit in the
licensed frequency band allotted to PU, while PU is oblivious to the presence of
SU, so SU needs to control the limited interference it causes at the PU receiver.
The idea of exploiting the ARQ retransmissions implemented by the PU is em-
ployed in [1], [2] and [3]. Levorato et al. in [1] consider a cognitive radio network
composed of one PU and one SU and does not utilize interference cancellation
(IC) at the SU receiver. Tannious and Nosratinia in [2] apply Hybrid ARQ
with incremental redundancy with at most one retransmission, where the SU
receiver tries to decode the PU message in the first time slot and if successful, it
removes this PU message in the second time slot to improve the SU throughput.
Michelusi et al. in [3] propose to exploit the intrinsic redundancy, introduced by
the Type-I HARQ implemented by the PU by enabling IC at the SU receiver;
in particular, they consider an arbitrary number of retransmissions and apply
backward and forward IC after decoding the PU message at the SU receiver.
Forward IC (FIC) provides IC on SU transmissions performed in future time
slots, since the SUrx, after decoding the PU message, performs IC in the next
PU retransmission attempts, if these occur. Backward IC (BIC) provides IC
on SU transmissions performed in previous time slots within the same primary
ARQ transmission window, whose decoding failed due severe interference from
the PU. However the number of SUs is limited to one in all these papers which
leverage the PU ARQ retransmission. Joda and Zorzi in [4] consider an under-
lay cognitive radio network that consists of two SUs and one PU in which the
PU employs Type-I HARQ); exploiting the redundancy in PU retransmissions,
each SU receiver applies IC to remove a successfully decoded PU message in
the subsequent PU retransmissions. Using a Constrained Markov Decision Pro-
cess (CMDP) model, they propose centralized optimum access policies for the
two SUs in order to maximize the average SUs sum throughput under a PU
throughput constraint.



The scenario we consider in our work is a cognitive radio that consists of
two secondary users and one primary user in which there are no centralized
mechanisms, so the SUs make their decisions independently; every SU has only
a partial view of the state of system that is based on what it can observe from
its own perspective. The aim of our work is to analyze the described system and
find decentralized access policies for the two SUs. In order to design optimum
decentralized policies for the considered scenario we should model our system
by a Decentralized Constrained Partially Observable Markov Decision Process
(DEC-CPOMDP) model; however this represents a very hard challenge, so in
our work we decide to concentrate our efforts in the development of some valid
approximation (heuristic policy) and only in the last section we briefly try to
introduce the DEC-POMDP solution to our problem and to suggest some future
research topics.



Chapter 2

Cognitive Radio

2.1 The Birth of Cognitive Radio

Cognitive radio has opened up a new way of sensing and utilizing wireless spec-
trum resources; essentially, CR is a dynamically reconfigurable radio that can
adapt its operating parameters to the surrounding environment, which has made
been feasible by recent advances, such as software-defined radio (SDR) and
smart antennas, that enable flexible and agile access to the wireless spectrum,
and thus improve efficiency in spectrum utilization significantly. So far wireless
networks are characterized by a static spectrum allocation policy, where gov-
ernmental agencies assign wireless spectrum to license holders on a long-term
basis for large geographical region. Recently, because of the increase in spec-
trum demand, this policy faces spectrum scarcity in particular spectrum bands:
recent studies [5] have shown that the licensed spectrum bands are severely
under-utilized mainly due to the traditional command-and-control type spec-
trum regulation that has prevailed for decades. Under such a spectrum policy,
each spectrum band is assigned to a designated party, which is given an exclusive
spectrum usage right for a specific type of service and radio device. Hence, dy-
namic spectrum access (DSA) techniques have been recently proposed to solve
these spectrum inefficiency problems. In particular, the key enabling technology
of DSA techniques is CR technology which allows unlicensed users/devices to
identify the un/under-utilized portions of licensed spectrum and utilize them
opportunistically as long as they do not cause any harmful interference to the
legacy spectrum users’ communications. The temporarily unused portions of
spectrum are called spectrum white spaces (WS) or spectrum holes that may
exist in time, frequency and space domains. Typically, spectrum holes are con-
sidered as the total or partial lack of power in the time-frequency plane. Thus,
a DSA, depicted in Fig. 2.1, which consists in ’jumping’ from a spectrum hole
to another allows to improve the spectrum usage. In particular there are three
different DSA access model:

e Dynamic Fxclusive Access Model: the spectrum bands are allotted to
licensed users for exclusive usage. In order to introduce flexibility in the
spectrum employment two approaches are proposed: spectrum property
rights and dynamic spectrum allocation. The first allows the licensed users
to sell or lease the portions of the spectrum assigned to them and choose



the desired technology. The second allots, for a certain period and in a
given place, a portion of the spectrum for some service at exclusive usage.

e Open Sharing Model: also called common spectrum, it employs an open
spectrum sharing between equal users, i.e., it is an access model in which
there are no licensed and unlicensed users and the radio-frequency spec-
trum is available for use by all. However, sharing spectrum between un-
licensed equipment requires that mitigation techniques (e.g. power lim-
itation, dynamic frequency selection) are imposed to ensure that these
devices operate without interference.

e Hierarchical Access Model: this model adopts a hierarchical access in the
presence of primary users (PUs), the legacy users, and secondary users
(SUs), with the aim of allowing SUs to exploit the spectrum under a
constraint on the interference they cause to PUs. There are two possible
spectrum sharing approaches: underlay spectrum and overlay spectrum
that we describe below. This is the DSA approach we consider in our CR
model.

- ve pe Time
* Spectrum Hole™

Figure 2.1: Spectrum holes and DSA

The concept of CR was first proposed in 1999 by Joseph Mitola III in his
pioneering work; since then, there has been rapidly increasing interest in CR
due to its potential for reshaping the way of utilizing spectrum resources: in the
United States the regulations on exploiting spectrum WS have been developed
by the Federal Communications Commission (FCC) that in 2000 released the
first notice of proposed rulemaking, discussing the necessary actions to remove
barriers to the development of the secondary spectrum market. After proposing
to allow unlicensed operation in the TV white spaces (TVWS), in 2008 the
FCC specified the rules in such unlicensed transmission in rural and urban areas
for fixed and personal/portable devices, thus paving the way for the CR-based
spectrum access. In the United Kingdom the Office of Communications (Ofcom)
launched the Digital Dividend Review (DDR) project in 2005 to explore the
options available after the digital TV switchover. The Ofcom proposed to allow
license-exempt use of interleaved spectrum for cognitive devices and decided to
allow cognitive access unless harmful interference is imposed on the licensed
users. Recently, the Ofcom also proposed parameters for license-exempt CRs
to provide PU protection, including those for spectrum sensing and geolocation
databases ([5]).



In the industrial field, in 2008, to evaluate the potential of WS devices
(WSDs), the FCC tested prototype WSDs in indoor and outdoor environments:
each tested device was capable of performing a combination of functions includ-
ing DTV sensing, wireless microphone sensing, transmission and geolocation.
In 2009 the first public WS network was launched in Virginia using devices
which led to the first large scale ’Smart City’ network in North Carolina in
2010; such movement has shown that TVWS has real market value and thus
draws significant attention from the industry ([5]).

There have also been efforts to create international standards to utilize
TVWS using CR technology, in particular, IEEE 802.22 WRAN and Ecma
392. The former is designed for last-mile service in rural areas with fixed de-
vices including the BS and the end-customer devices called customer premises
equipment (CPE); the latter has been proposed more recently to create an in-
ternational standard for the personal/portable use of TVWS in urban areas.
IEEE 802.11af (also known as Wi-Fi 2.0 or White-Fi) has also been introduced
as a potential application of CR that may enhance the capacity and services of
current Wi-Fi systems by utilizing the TVWS, which provides better channel
propagation characteristics ([5]).

2.2 Cognitive Radio and Spectrum Management
in Cognitive Radio Networks

Although numerous definitions of cognitive radio exist, there are some common
features which characterize a CR:

e observation capability: a CR is aware of its environment and is able to
catch information from the latter;

e adaptability: a CR can dynamically and autonomously change its state
and/or its operating mode according to changes in its environment;

e intelligence: a CR uses information collected by observation to make de-
cisions in order to achieve an objective.

CR networks are envisioned to provide high bandwidth to mobile users via
heterogeneous wireless architectures and DSA techniques; this goal can be real-
ized only through dynamic and efficient spectrum management techniques. CR
networks, however, impose unique challenges due to the high fluctuation in the
available spectrum, as well as the diverse quality of service (QoS) requirements
of various applications.

In order to address these challenges, each CR user in the CR network must:

e determine which portions of the spectrum are available;

select the best available channel;
e coordinate access to this channel with other users;
e vacate the channel when a licensed user is detected.

These capabilities can be realized through spectrum management functions that
address four main challenges: spectrum semsing, spectrum decision, spectrum
sharing and spectrum mobility.



2.2.1 Cognitive Radio Technology and Network Architec-
ture

Formally, a CR is defined as a radio that can change its tramitter parameters
based on the interaction with its environment. Specifying what we have just
pointed out, a CR has to have two main characteristics [6]:

e cognitive capability: through real-time interaction with the radio environ-
ment, the portions of the spectrum that are unused at a specific time or
location (known as spectrum hole or white space) can be identified; con-
seguently, the best spectrum can be selected, shared with other users and
exploited without interference with the licensed user.

e Reconfigurability: a CR can be programmed to transmit and receive on
a variety of frequencies, and use different access technologies supported
by its hardware design. In this way, the best spectrum and the most
appropriate operating parameters can be selected and reconfigured.

As described in [6], in order to provide these capabilities, CR requires a novel
radio frequency (RF) transceiver, whose main components are the radio front-
end and the baseband processing unit. In the former, the received signal is
amplified, mixed, and analo-to-digital converted; in the latter, the signal is
modulated/demodulated. Each component can be reconfigured via a control
bus to adapt to the time-varying RF environment. The novel characteristic of
the CR transceiver is the wideband RF front-end that is capable of simultaneous
sensing over a wide frequency range; this functionality is related mainly to
the RF hardware technologies, such as wideband antenna, power amplifier and
adaptive filter. RF hardware should be capable of being tuned to any part of
a large range spectrum. However, because the CR transceiver receives signals
from various transmitters operating at different power levels, bandwidths and
locations, the RF front-end should have the capability to detect a weak signal
in a large dynamic range, which is a major challenge in CR transceiver design.

As far as CR network architecture is concerned, its components are substan-
tially two: the primary network and the CR network.

The primary (or licensed) network is referred to as an existing network,
where the PUs have a license to operate in a certain spectrum band; if such a
network has an infrastructure, PU activities are controlled through a primary
base station. Due to their priority in spectrum access, the operations of PUs
should not be affected by unlicensed users.

The CR network (or DSA network, or unlicensed network) does not have a
license to operate in a desired band; hence, additional functionality is required
for CR users to share the licensed spectrum band. CR networks also can be
equipped with CR base stations that provide single-hop connection to CR users.
Finally, they may include spectrum brokers that play a role in distributing the
spectrum resources among different CR networks.
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Figure 2.2: Cognitive radio network architecture

Due to spectrum heterogeneity, CR users are capable of both licensed band

and unlicensed band operations. In the first case, they access the licensed
portions of the spectrum that is primarily used by PUs; hence, they are focused
mainly on the detection of PUs: if a PU appears in the spectrum band occupied
by CR users, they should vacate that spectrum band and move to available
spectrum immediately. In the second case, in the absence of PUs, the CR users
have the same right to access the spectrum, so spectrum sharing methods are
required to compete for the unlicensed band. Due to network heterogeneity, CR
users can perform three different access types [6]:

o CR network access: a CR user can access its own CR base station, on
both licensed and unlicensed spectrum bands. Since all interactions occur
inside the CR network, its spectrum sharing policy can be independent of
that of the primary network.

CR ad hoc access: a CR user can communicate with other CR users
through an ad hoc connection on both licensed and unlicensed spectrum
bands.

Primary network access: a CR user can also access the primary base sta-
tion through the licensed band; unlike the other access type, CR user re-
quires an adaptive medium access control (MAC) protocol, which enables
roaming over multiple primary networks with different access technologies.

According to the CR architecture shown in Fig. 2.2 various functionalities are
required to support spectrum management in CR networks.



2.2.2 Spectrum Management

CR networks impose unique challenges, so new spectrum management functions
are required: in particular, CR networks should avoid interference with primary
networks, should support QoS-aware communication considering the dynamic
and heterogeneous environment in order to decide on an appropriate spectrum
band, and should provide seamless communication regardless of the appearance
of the primary users. Specifically, the spectrum management process consists
of four major steps:

e Spectrum sensing: a CR user can allocate only an unused portion of the
spectrum. Therefore, it has to monitor the available spectrum bands,
capture their information and then detect spectrum holes without causing
interference to the primary network. Generally, there are three type of
spectrum sensing techniques [6]: primary transmitter detection, primary
receiver detection and interference temperature management. Transmit-
ter detection is based on the detection of a weak signal from a primary
transmitter through the local observations of CR users; due to the lack
of interactions between PUs and CR users, this type of techniques alone
cannot avoid interference to primary receivers. Therefore, sensing infor-
mation from other users, referred to as cooperative detection, grants more
accuracy minimizing the uncertainty of a single user’s detection and im-
proving the detection probability in a heavily shadowed environment. The
most efficient way to detect spectrum holes is to detect the primary users
that are receiving data within the communication range of a CR user, i.e.,
using primary receiver detection. Interference temperature is a new model
for measuring interference recently introduced by the FCC, it limits the
interference at the receiver through an interference temperature thresh-
old, which is the amount of new interference the receiver could tolerate: as
long as the CR users do not exceed this limit, they can use the spectrum
band.

e Spectrum decision: based on the spectrum availability, CR users can al-
locate a channel; thus, they have to be capable to decide which is the
best spectrum band among the available bands according to the QoS re-
quirements of the applications. Spectrum decision is closely related to
the channel characteristics, such as interference at the PU receiver that
influences the CR transmitting power, path loss, wireless link errors and
link layer delay, and operations of primary users. Finally, also the activ-
ities of the other CR users in the network affect the spectrum decision.
The decision procedure consists of two steps: first, each spectrum band is
characterized, based on not only local observations of CR users but also
statistical information of primary network. Then, based on this character-
ization, the most appropriate spectrum band can be chosen. In particular,
to describe the dynamic nature of CR networks, a new metric is consid-
ered: the primary user activity [6], which represents the probability of a
primary user appearance during a CR user transmission. Because of the
PUSs’ operation, CR users cannot obtain a reliable communication channel
for a long time period; therefore, multiple noncontiguous spectrum bands
can be simultaneously used for CR users’ transmissions, this method can
create a signal that is immune to the interference of the PU’s activity.



e Spectrum sharing: because there may be multiple CR users trying to ac-
cess the spectrum, CR network access should be coordinated to prevent
multiple users colliding in overlapping portions of the spectrum. There
are three possible classification of the spectrum sharing based respectively
on network architecture, allocation behaviour and access technology [6].
In a centralized spectrum sharing the spectrum allocation and access pro-
cedures are controlled by a central entity, while in decentralized spectrum
sharing they are based on local (or possibly global) policies that are per-
formed by each node distributively. From the allocation behaviour point of
view, in a cooperative spectrum sharing collaborative solutions exploit the
interference measurements of each node such that the effect of the com-
munication of one node on other nodes is considered. Tipically, clusters
are formed to share interference information locally. In a non-cooperative
spectrum sharing only a single node is considered in non-collaborative (self-
ish) solutions. Because interference in other CR nodes is not considered,
this type of solutions may result in reduced spectrum utilization; however,
they do not require frequent message exchanges between neighbors as in
cooperative solutions. Considering the access technology, in overlay spec-
trum sharing nodes access the network using a portion of the spectrum
that has not been used by licensed users; this minimizes interference to the
primary network. In underlay spectrum sharing the spread spectrum tech-
niques are exploited such that the transmission of a CR node is regarded
as noise by licensed users. Thus, underlay techniques can utilize higher
bandwidth at the cost of a slight increase in complexity. Finally, spectrum
sharing techniques are generally focused on two types of solutions: spec-
trum sharing inside a CR network (intranetwork spectrum sharing) and
among multiple coexisting CR networks (internetwork spectrum sharing).

o Spectrum mobility: CR users are regarded as visitors to the spectrum.
Hence, if the specific portion of the spectrum in use is required by a
PU, the communication must be continued in another vacant portion of
the spectrum, referred as spectrum handoff [6]. Since each time a CR
user changes its frequency of operation, protocols for different layers of
the network stack must adapt to the channel parameters for the oper-
ating frequency. The purpose of the spectrum mobility management in
CR networks is to ensure smooth and fast transition leading to minimum
performance degradation during a spectrum handoff.

It is evident from the significant number of interactions that the spectrum man-
agement functions require a cross-layer design approach.

2.2.3 Markov Decision Processes and Reinforcement Learn-
ing in Cognitive Radio

Markov decision processes (MDP) represent a mathematical model useful to
describe and analyze decisional processes when the results are random and/or
under the control of a decision maker. In CR the decision process is crucial
to choose the best action in response to changes in the environment. Another
useful technique in CR is reinforcement learning which concerns how an agent
should make decisions in a certain environment with the aim of maximizing



its reward in a long term horizon. The premise behind this approach is that
an agent receives external responses to the actions it perform, i.e. a ’good’
action will involve a reward, while a ’bad’ action will cause a cost. Thus, the
reinforcement learning algorithms search some rules which could map external
environment states into actions that the agent should select to improve its re-
ward. Typically, the environment is modelled by an MDP with a finite number
of states.

Our work is structured as follows: in Chapter 3 we report the centralized
access policies design developed in paper [4] which represents a reference bound
for our work performance, i.e., a comparing instrument to evaluate the 'good-
ness’ of the access policies we propose; in Chapter 4 we extend the work of [4]
to the decentralized case and we find the optimal access policies for two inde-
pendent SUs in a cognitive radio network under a primary ARQ process. Then,
in Chapter 5, we focus on the search of decentralized heuristic access policies
for the same CR scenario, in particular, we propose three offline and one online
policies considering both the symmetric and the asymmetric case, i.e., since the
SUs have the same transmission parameters (e.g. transmission rates, average
SNRs on channels from SUy, to possible network receivers), first we suppose
they adopt the same access strategy with the same transmission probabilities
and then we consider the possibility they adopt different transmitting behavior.
Furthermore, for each heuristic proposed we present numerical results in order to
analyze and compare the system performance in all considered cases. In Chap-
ter 6 we suggest some interesting starting point to find an efficient solution to
the DEC-POMDP problem; finally, we conclude with some considerations and
we point out some open research problems which can be investigated in future
works.
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Chapter 3

Centralized Access Policies
in a Cognitive Radio
Network with two SUs

The design of centralized access policy for two secondary users under a primary
ARQ process has jet been studied and discussed in [4] where the authors design
an optimum access policy for two SUs, which exploits the redundancy introduced
by the HARQ protocol in transmitting copies of the same PU message and
interference cancellation at the SU receivers. The aim of the paper is the same
we have, i.e., to maximize the average long term sum throughput of the SUs
under a constraint on the average long term PU throughput degradation. The
basic assumption they make is that the number of retransmissions is limited
and both SUs have a new packet to transmit in each time slot. Noting the
PU message knowledge state at each of the SU receivers and also the ARQ
retransmission time, the network is modeled using a Markov Decision Process
(MDP). Due to the constraint on the average long term PU throughput, they
then have a Constrained Markov Decision Process (CMDP).

3.1 System Model and Policy Definition

In the system we consider, there exist one primary and two secondary trans-
mitters denoted by PUy,, SUi,1 and SUi,.s, respectively. These transmitters
transmit their messages with constant power over block fading channels and, in
each time slot, the channels are considered to be constant. The signal to noise
ratios (SNRs) of the channels PU;, — PU,,, PUy — SUpz1, PUp — SU,po,
SUt:L’l — PUrmy SUtzl — SUra:la SUtml — SUT{L’Q? SUt:z:2 — PUra:u SUth —
SUrwla SUth — SUrw2 are denoted by Vpps Vpsls Vps2s Vslps Vslsls Vsls2, Vs2ps
Ys2s1 and ysog0, respectively. We assume that no channel State Information
(CSI) is available at the transmitters. Thus, transmissions are under outage,
when the selected rates are greater than the current channel capacity.

PU is unaware of the presence of the SUs and employs Type-1 HARQ with
at most T transmissions of the same PU message. We assume that the ARQ
feedback is received by the PU transmitter at the end of the time-slot and a
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Figure 3.1: Cognitive radio system model

retransmission can be performed in the next time-slot. Retransmission of the
PU message is performed if it is not successfully decoded at the PU receiver
until the PU message is correctly decoded or the maximum number of trans-
missions allowed, T, is reached. In each time-slot, each SU, if it accesses the
channel, transmits its own message, otherwise stays idle and does not transmit.
This decision is based on its access policy. The activity of the SUs affects the
outage performance of the PU, by creating interference to the PU receiver. The
objective is to find access policies for the two SUs to maximize the average sum
throughput of the SUs under a constraint on the PU average throughput degra-
dation.

In paper [4] it is assumed that there is a central unit which controls the ac-
tivities of the SUs. The central unit sends the ARQ transmission time, PU code-
book, maximum transmission deadline T and feedback from PU,., (ACK/NACK
message). This unit also computes the secondary access probabilities and pro-
vides them to the two SUs.

In the system we want to model, we have four different combinations of
the accessibility of the SUs to the channel, listed in the accessibility vector
o = [{0,0},{0,1},{1,0},{1,1}]; the I*" element of the accessibility vector is
referred to as accessibility action | € A, where A = {0,1,2,3}. For example,
(1) = {0,1} shows that only SU, accesses the channel.

If SU,.1 or SU,.2 succeds to decode the PU message, it can cancel the PU
message from the received signal in the future retransmissions. We refer to
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this as Forward Interference Cancellation (FIC) [5]. We call the PU message
kowledge state as ¢ = [{U,U},{U,K},{K,U},{K, K}], which denotes the
knowledge of the PU message at the two SU receivers. We suppose PU message
knowledge state, ARQ transmission time, maximum transmission deadline, T,
and feedback from PU are known to SUz,1 and SU;zs.

Based on PU message knowledge state ¢ and accessibility actions of the two
SUs, the rate of the secondary user ¢ can be adapted and it is denoted by
Rsi0, i =1,2and [ € {1,2,3}. (If I = 0 the rate is zero.) Therefore, we have:

Rs12,(x,xy = Rs12,{k,uy = Bs12,K (3.1)
R0 v,y = Rs12,{u,vy = Bs120 (3.2)
Raoo1,(x,xy = Rs2,1,{k,uy = Bs21,K (3.3)
Roo1,v.xy = Rs2,1,{v,vy = Bs110 (3.4)

We also define Ry 3 (x k) = Rs1,3,x and Ry 3 (k Kk} = Rs2,3 K. Note that we
can use (1) to (4) for action 3 if the channels from SUy,; to SU,..2 and viceversa
are interference free.

The outage probabilities of the channel PU;, — PU,, in SU accessibility
action 0, 1, 2 and 3 are denoted by pyp.0, pp,1, Pp,2 and p, 3, respectively. Noting
that the SU; and SU, transmissions are considered as background noise at the
PU,,, we have:

ppo=1=Pr(R, < C(ypp)) (3.5)
ppi=1-Pr(Ry < C(%)) i€{1,2} (3.6)
sip
Vpp
=1 - < _ .
pps=1-Pr(Ry < C(= . mp)) (3.7)

where R, denotes the PU transmission rate in bits/s/Hz, C(x) = logy(1 + z)
is the (normalized) capacity of the Gaussian channel with SNR z at the receiver.

The outage probability of the channel SU;,; — SU,.; at the PU message
knowledge state ¢ and accessibility action [ is denoted by psii4, 7 € {1,2}. At
PU knowledge state {K, K} or {K,U}, the PU message is known at SU,,; and
therefore the PU message may be canceled at this receiver. Thus, at accessibility
action 2, i.e., when only SU; transmits its message, we have pgi 2 (x K} =

Ps1,2{K,U} = Ps1,2,K, where:
Ps1,2,K = PT’(Rsl,z,K > C'(Vs1s1)) (3.8)

In contrast, at PU knowledge {U, K} or {U,U}, where the PU message is not
decoded at SU,.1, the outage probability of the channel from SU;,; to SU,;1
is under the influence of the received PU message. Thus, at accessibility action
2, we have pg1 2 (UK} = Ps1,2,{U,U} = Ps1,2,u, Where:

psi2,u = Pr(Rs2vu ¢ Tsi(Re12,0, Rp)) (3.9)
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Similarly, at accessibility action 1, i.e., when only SU, transmits its message,

we obtain Ps21{K,K} = Ps2,1{K, U} = Ps2,1,K and Ps21,{UK} = Ps2,1,{UU} =
Ps2,1,U, Where:

pPs21,x = Pr(Rs21 k> C(7ys2s2)) (3.10)

ps2,1,0 = Pr(Rs21,u € T's2(Re21,0, Rp)) (3.11)

The SNR region I'y;(Rsi v, Rp), ¢, € {1,2} and i # j, is the union of two re-
gion: the first region guarantees that SU; and PU messages, transmitted at rates
R, j,u and R,, respectively, are correctly decoded at SU,,; via joint decoding;
on the other hand, in the second region, only SU; message can be successfully
decoded by assuming the interference from PU as background noise. Note that
the other source is idle.

For accessibility action 3, i.e., when both the SUs transmit their own mes-
sage, we have:

Ps1,3.(K, b2} = Pr(Rs13 (K.65} & Fsl(Rs1,3,{K,¢2},332,3,{1{,@})) (3.12)
ps2,3461.K} = Pr(Re2s (91,5} & Ds2(Ra13 (60,56} Rs2.3,{01.K})) (3.13)
Ps1,3,{Uds} = Pr(Rs13.(U,6) & fsl(Rsl,3,{U,¢2}7Rs2,37{U7¢'2}aRp)) (3.14)

Ps2,3{¢1,U} = PT(RS2,3,{¢1,U} ¢ f‘SQ(RSI,?),{d)l,U}? Rs2,3,{¢1,U}a Rp)) (315)

The SNR region I'i(Rsi 3.6, Rsjz.6), 11,7} € {{1,2},{2,1}}, guarantees that
the SU; message transmitted at rate Rg; 3 4 is successfully decoded at SU,;
when another SU message is transmitted at rate R,;3 4. Note that the PU
message received at SU,.,; is canceled using FIC. On the other hand, if PU mes-
sage is not decoded at SU,.;, the SNR region fsi(Rsi,&d);st,S,(baRp)a {i,j} €
{{1,2},{2,1}}, guarantees that the SU; message transmitted at rate (Rg; 3 ¢ is
successfully decoded at SU.,.,; when other SU and PU messages are transmitted
at rates R34 and R, respectively.

Since the value of R,; ; xk does not affect the outage performance at PU,, and
SUrqj, {1,7} € {{1,2},{2,1}}, this rate is chosen so as to maximize the SU;
throughput. Rate Rg; 3, x does not affect the outage performance at PU,.; thus,
the value of Ry; 3 x nad Ryj3 i are selected such that the SUs sum throughput
is maximized, whereas the same argument can not be applied for the states
in which the PU message is unknown, because in this case there is a tradeoff
between the SUs sum throughput and helping the SU receivers to decode the
PU message.

3.2 Optimal Access Policies for two SUs
The state of the system can be modeled by an MDP s = (¢, ¢(s)), where t €

{1,2,...,T} is the primary ARQ state and ¢(s) € {{U,U},{U,K} ,{K,U} ,{K,K}}
denotes the PU message knowledge state. The set of all states is indicated by S.
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The policy p maps the state of the network, s, to the probability that the
secondary users take accessibility action I € {0,1,2,3}. The probability that
action [ is selected in state s is denoted by py(s). If accessibility action I is
selected, the expected throughputs of SU; and SU; in state s are respectively
computed as:

Rsl,l,d)(s)(l - psl,l,gb(s)) for | € {2a 3}

T@l l,p(s) — (316)
0 forle{0,1}
RsQ,l,d)(s)(l - pSQ,l,gﬁ(s)) for I € {1a 3}

Ts2,1,0(5) = (3.17)
0 forle{0,2}

Since the model considered is a stationary Markov chain, the average long term
SUs sum throughput can be obtained as:

Ts() = Ers=(t.6() [Ts1.1.6(s) + To2,1.6(5))

= E.s (t,¢(s)) [Z ,U'l 51 1, p(s) ( psi,l,d}(s))+

13(8) (Rs1,3,6(s) (1 = Ps1,3,6(s)) T Rs2,3,6(5) (1 = Ps2,3,6(5))) (3.18)
where pg1.2.¢(s)s Ps2,1,6(s)» Ps1.3,8(s) AN Paa 3 4(s) are given in (3.8) to (3.15).

The average long term PU throughput is given by:

3
T, = Ry (1= 3 Beerotop[u(s)ln) (3.19)

=0

Using po =1 — p1 — po — ps, Tp can be rewritten as follows:

3
T, = (1= Y Betuasoplmi(s))op)
=1

3
(ppo ZES (to(s mi(s )]Ppﬁ)
=1

=T, — Rp(Ee—(t.6()) [Pt — Pp0]) (3.20)

where
T! = Ry(1— ppo) (3.21)

Pp,0s Pp,1s Pp2 and pp, 3 are given in (3.5) to (3.7).

Thus, if we request that 7}, > TPI (1 —€epy), the PU throughput degradation
constraint can be computed as follows:

Ty — Ty = RyBio—(t,6()[Ppit — ppol < Bp(1 = ppo)epu (3.22)
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Now we can formalize the optimization problem as follows:

maximize,, ) Ts = By s=t,6(s)) [ Ts1.1,6(s) T Ts2,0,6(5)] (3.23)
8-t B s=(t.(s) [Pt = pp.o] < (1= ppo)epu = € (3.24)
(3.25)

where m;(s) is the probability that accessibility action [ is selected in state s.

In paper [4], the authors first compute an upper bound to the average long
term SUs sum throughput, then they give a solution to (3.25) in low SU access
rate regime and in high access rate regime; in order to do this, they provide the
following definition, which identifies the boundary between low and high access
rate regimes.

Definition 1: Let pinit = {1o,init, 141 inits B2,init, 3,imit } D€ the policy such
that SU; or/and SU; in all states s € Sk = {(¢t,{K,K}):t€{1,2,..,T}}
access the channel as follows:

{0,0,1,0} if max(a,b,c)=a

tinit = {0,1,0,0} if max(a,b,c)=b (3.26)
{0,0,0,1} if max(a,b,c)=c
and for all other states, s ¢ Sk, finit = {1,0,0,0}, where

Rsi2.x(1 — psi,2,x)

o= (3.27)
Pp,2 = Pp,0
Rs 1- S
b— 2.1,k (1 — ps2.1,K) (3.28)
pp,l - pZNO
R 1-— R, 1-
o 18, (1 = ps1.3.k) + Rea gk (1 = ps23.i) (3.29)

Pp,3 — Pp,0

For access probability m;,t, the constraint given in (3.24) can be computed and
referred to as wini- Hence, replacing (3.26) in (3.24) and then computing the
expectation with respect to [ and s, w;,;+ can be obtained as follows:

(pP,Q - pP,O) Z?:l /J(t, {K’ K}) if max(a,b,c):a
Winit = & (pp1 — Pp.0) Sty p(t, {K, K}) if max(a,b,c)=b (3.30)
(pp73 - pp,o) Zf:l /u(tv {Kv K}) if maX(a7b7C):C

where p(t, { K, K}) is the steady-state probability of being in state s = (¢, { K, K'}),
and a, b, ¢ are given in (3.27) to (3.29).
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3.2.1 Upper Bound to the Average Long Term SUs Sum
Throughput

An upper bound to the average long term SUs sum throughput is achieved
when the receivers are assumed to be aware of the PU message, so that they
can always cancel the PU interference. Since each SU always knows the PU
message, there exist an optimal access policy which is independent of the ARQ
state and therefore is the same in each slot. Thus, in this case problem (3.25)
may be rewritten as follows:

2

LD SN E iR r (1 — psip i)
=1

+ p3(Rs13, 5 (1 — ps1,3,5) + Re2.3.x(1 — ps2,3.kx)) (3.31)
3
st Y t(ppi = ppo) < € (3.32)
=1
(3.33)

In paper [4] the solution to problem (3.33) is given by the following proposition:

Proposition 1: An access policy to achieve the upper bound is given by

{1 - —fw 0 L O} if max(a,b,c)=a

Pp,2—Pp,0° " Pp,2—Pp,0’

P — {17 cu u ,0,0} if max(a,b,c)=b (3.34)

Pp,1—Pp,0° Pp,1—Pp,0

{1 — e 0,0, —*c« } if max(a,b,c)=c

Pp,3—Pp,0’ 777 Pp,3—Pp,o

Furthermore, the upper bound to the average long term SUs sum throughput
is obtained as:

—fe R0k (1 —psi2.x) if max(a,b,c)=a

Pp,2—Pp,0
T = s Rk (1 — pea k) if max(a,b,c)=b (3.35)
pp;f“ppo Zle R, k(1 — psisrx) if max(a,b,c)=c

3.2.2 Low SU Access Rate Regime

In low SU access rate regime €, < w;nit; in paper [4] the optimum access policy

is characterized by the following proposition:

Proposition 2: In the low SU rate regime €, < wjns, the optimal access
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policy Vs € S is given by

{1- 320, wj:”,o} if max(a,b,c)=a
p= {1 — o e 0, 0} if max(a,b,c)=b (3.36)

{1— Cv_ 0,0, S« } if max(a,b,c)=c
Winit Winit

and
p*={1,0,0,0} Vs¢ Sc (3.37)

Furthermore, the average long term SUs sum throughput is obtained as:

o= R k(1 —ps12,x) if max(a,b,c)=a

. wfm R0,k (1 = ps21,x)  if max(ab,c)=b (3.38)

ZZ 1 Rsis (1 — psiz ) if max(a,b,c)=c

wmzt

3.2.3 High SU Access Rate Regime

In paper [4] to obtain a solution to the CMDP problem described in (3.25) in
high access rate regime, i.e., €, > w;p;t, the authors employ the equivalent LP
formulation corresponding to CMDP. To provide the equivalent LP, it is nec-
essary the transition probability matrix of the Markov process denoted by P,
where P,y is the probability of moving from state s to s’ if the accessibility
action [ is chosen.

For any unichain Constrained Markov Decision Process, there exists an equiva-
lent Linear Programming (LP) formulation, where an MDP is considered unichain
if it contains a single recurrent class plus a (perhaps empty) set of transient
states. Thus, the equivalent LP problem for problem (3.25) is:

maxXy Z Z Ta L h(s) + T52 l d)(s)) (Sa l) (339)

s€ESIEAXA
Yo Y (opa—ppo)als,D) < e (3.40)
s€ESIEAXA
Z Z Z (ss',D)z(s,l)=0 Vs' eS8 (3.41)
leAXA sESIEAXA
Y3 as) =1 (3.42)
sESICAXA
z(s,l) >0 VseS, leAxA (3.43)

(3.44)
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The relationship between the optimal solution of LP problem (3.44) and the
optimal solution to problem (3.25) is obtained as follows:

z(s,l)

/LZ(S) = ZL’EAX.AI
arbitrary, otherwise

—, it >, z(s,1') >0
(s,1') e Ax A (345)

3.3 Numerical results

Now we report some numerical results of paper [4]. The channels considered are
Rayleigh fading, thus, the SNRs 7., © € {pp, psl, ps2, slsl, slp, s152, 5252, $2p,

$2s1}, are exponentially distributed random variables with mean 4,. For math-
ematical convenience the links from SU;;; to SU,,2 and viceversa are assumed
interference free. They consider the following parameters: the average SNRs are
Fpp = 10, Vsi =B, Ypsi = 5, Ysip = 2, @ € {1,2}, and the ARQ deadline is T' = 5.
The PU rate R, is selected such that PU throughput is maximized when both
SUs are idle, i.e., R, = argmaxRTpI(R). The SU, rate R,; ;v under PU message
unknown to SU,,; is computed as Rg; ;v = argmaxp_ T v(Rsi, Rp), where
1=1,1€{2,3}ori=2,1¢€{1,3}, so as to maximize the SUs sum throughput.
The SU; rate Ry x under PU message known to the SU,;; is computed as
Rk = argmaxpTs; k(R), where i = 1,1 € {2,3} or i = 2, | € {1,3}. The
PU throughput constraint is set to (1 — ePU)TZf, where epyy € {0.01,0.05,0.08,

0.1,0.13,0.15,0.18,0.2,0.25,0.3,0.4,0.4861,0.6,0.7,0.8, 1}. FIC is exploited at
the SU,4i, @ € {1,2}.

Average SUs Sum Throughput
= =
m [}

[=]
=

=
o

H i L i L H i
u] 0.2 0.4 0.6 0.8 1 1.2 1.4 16
11— epITT

0

Figure 3.2: MMDP: Average SUs sum throughput with respect to PU throughput
constraint

The SUs sum throughput with respect to the PU throughput constraint
by varying the value of epy is depicted in Fig. 3.2. Obviously, as the PU
throughput increases, the average SUs sum throughput decreases.
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Figure 3.3: MMDP: Average PU throughput with respect to PU throughput con-
straint

Fig. 3.3 depicts the PU throughput with respect to the PU throughput con-
straint by varying the value of epyy. Obviously, as epy decreases the constraint
increases and the PU throughput degradation decreases.
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Chapter 4

Decentralized Access
Policies in a Cognitive
Radio Network with two
SUs and a Completely
Observable System

The design of decentralized access policies for two secondary users under a
primary ARQ process has not been studied jet. Thus, the purpose of our work
is to study a decentralized CR network with two SUs and one PU exploiting the
redundancy introduced by the HARQ protocol in transmitting copies of the same
PU message and interference cancellation at the SU receivers. Our aim remains
the same, i.e., we want to maximize the average long term sum throughput of the
SUs under a constraint on the average long term PU throughput degradation. To
start with a simple scenario, we suppose that the system is completely observable
for the two SUs, which means that in each time-slot they know the system state,
s = (t,0(s)) = (t,{¢1,d2}), as in the centralized case, but in this case there is
no central unit which controls the activities of the SUs, i.e., they select their own
action in a certain state independently. Again we assume that the number of
retransmissions is limited and both SUs have a new packet to transmit in each
time slot. Noting the PU message knowledge state at each of the SU receivers
and also the ARQ retransmission time, the network can again be modeled using
a Markov Decision Process (MDP), and due to the constraint on the average long
term PU throughput, using a Constrained Markov Decision Process (CMDP).

4.1 System Model and Policy Definition

The system we consider is the same as in the centralized case. Thus, there are
the same transmitters, receivers and channels, whose signal to noise ratio is de-

noted in the same way, i-e-7 Vpps Vpsls Vps2s Vslps Vslsly Vsls2y, Vs2ps Vs2sl and Vs2s2
are the SNR of the channels PU;, — PU,., PU;, — SU,31, PUp, — SU,40,
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SUtrl — PU’I‘I) SUt:nl — SUracla SUtml — SUTmZ, SUtm2 — PUT&C; SUt:vQ —
SU,z1, SUizo — SU,zo, respectively.

We mantain the same assumptions as in the centralized case about the PU
transmissions and retransmissions, and about the SUs activities and their influ-
ence on the outage performance of the PU. The substantial difference consists
in the absence of a central unit that monitors the activities of the SUs and
provides them with the optimal access policies.

In the system we want to model, we have the same accessibility vector, ¢,
and the same PU message knowledge state, ¢, as in the centralized scenario;
in particular, each element of ¢ can be considered as the couple of actions
performed by the two SUs, {a1, a2} € A X A, in the considered time-slot, where
a; = 1 means that SU; accesses the channel and transmits its message, i =
1,2. The relationship between the accessibility action ! in the MMDP and
a= {aj,az} in the DEC-MMDP is simple, since [ corresponds to a in decimal
notation. For example, | = 1 corresponds to {ai,az} = {0,1}, which means
that only SU; accesses the channel. Similarly, each element of ¢ represents the
couple of PU message knowledge at the two SU,.;s, i.e. {¢1, P2} € D x ®, where
® = {U, K}. The transmission rates for the possible accessible action and the
outage probabilities are the same as in the centralized case, given in (3.1) to
(3.4), and (3.5) to (3.15), respectively.

4.2 Optimal Access Policies for Two Indepen-
dent SUs

As in the centralized case, the state of the system can be modeled by an MDP
s = (t,¢(s)), where t € {1,2,...,T} is the primary ARQ state and ¢(s) €
{U,U0},{U,K} ,{K,U},{K,K}} denotes the PU message knowledge state.
Since we want to analize a decentralized scenario in which each SU selects its
own action independently, there are two policies, one for each SU, denoted by
m and 7e, that map the state of the network s to the probability that the SU
takes one of the two possible action, a; € A, where A = {0, 1}, i.e., each SU can
accesses or not the channel, independently of the action of the other SU. The
probability that action a; is selected by SU; in state s is denoted by m;(a;s),
1 € {1,2}. Since the SUs are independent, the relationship between the policy
w1 of the MMDP case and the policies m; and 72 of the DEC-MMDP Vs € S is
given by:
pi(s) = m(0ls)ma(1]s)

pa(s) = mi(lls)ma(0]s)

pa(s) = m(ls)ma(1]s)

Since there is no central unit which controls the SUs activities and provides them
the optimal access policy, we can adopt the following optimization strategy: first
we assume that SU; has a fixed stochastic policy, ma(az|s) Vas € A, Vs € S,
which is known to SU;, and we try to find SU;’s optimal stochastic policy, given
that the system state, s = (¢, ¢1, ¢2), is known to both the SUs. Then we invert
the perspective, we assume that SU; has the fixed stochastic policy just found,

22



m1(a1ls) Va1 € A, Vs € S, which is known to SUs, and we try to find SUsy’s
optimal stochastic policy, given that the system state, s = (¢, ¢1, ¢2), is known
to both the SUs, and so on until the policies of the two SUs converge to the
optimal ones.

Specifically:

e at optimization round k we fix SU,’s stochastic policy, ma x—1(az|s) (for
k = 0 it is randomly chosen), and find SU;’s optimal stochastic policy,
71,%(a1]s), by solving a LP problem;

e then, we invert the perspective: we fix SU;’s stochastic policy just found,
71,%(a1]s), and find SUs’s optimal stochastic policy, 72k (az2|s), by solving
another LP problem.

e At this point we can check the stopping conditions: 71 j = m1 g—1, T2k =
ma,k—1; if they are satisfied we have convergence and the SU stochastic
policies found are the optimal ones, i.e., 7f = m ; and 75 = 7o 1, otherwise
we have to start another optimization round, i.e., k =k + 1.

Once we have found the optimal stochastic policy for both the SUs to evaluate
the performace we have to calculate the average long term SUs sum throughput,
T,, and the average long term PU throughput, T),:

Ty = EsalTo1,0.005) + Toz0.005)]

S0 Y (Rorasn (0= piras) + Rezasn(l = pizasa) ) milarls)ma(as)s)| Pris)
SES acAxA

(4.1)
T, =R(1- Y Edm(als)ma(als)ppa)
acAxA
:Rp(l— Z (Z 771(a1|s)772(a2|s)Pr(s)>pp7a> (4.2)
a€EAXA seS

where Pr(s) is the stationary probability of being in state s. We know that for
a regular Markov chain the stationary equations are valid: if we let Ps(j) be the
stationary probability of state j, we have

P(j)=> Pik)Py; Vj€S (4.3)
keS

> Pi(k) =1 (4.4)

keS

Pk)>0 keS (4.5)

where Py; is the transition probability from state k& to state j. In matrix form
we have Py =(I- P)~!, where P is the transition probability matrix and I is the
identity matrix. The transition probability Psy , = Pr(s|s’,a) if accessibility

23



action a= {ay, as} is chosen in state s can be computed as:

Pr(s=@t—-1,U00)|s=(t,U,U),a={i,j})

= Pop,{i,5} Pps1,{i,5} Pps2,{i,j}
Pr(s=@t—-1,U00U)|s=(t,U,K),a={i,j})

= Pop, (i3} Pps1, (i} (L = Posa (i)
Pr(s=@t—-1,U0U)s=(t,K,U),a={i,j})

= Pop.fig} (1 = Pps1 {i.3}) Pps2.{ig)
Pr(s=0t-1,U00)s=(t,K,K),a={ij})

= ppp,{'i,j}(l - Ppsl,{i,j})(l - Pps27{i,j})
Pr(s'=(t—1,U,K)|s = (t,U,U),a = {i,j}) =0
Pr(s=0t—-1,UK)|s=(t,U K),a={i,j})

= Ppp.{i,5}Pps1 {inj}
Pr(s'=(t-1,UK)|s=(t,K,U),a={i,j})=0
Pr(s=0t—-1,U,K)|ls=(t,K,K),a={i,j})

= Pow (g} (1 = Pps1, i3y
Pr(s=0t—-1,K,U)ls=(UU),a={i,j}) =0
Pr(s=0t-1,KU)ls=(t,UK),a={i,j})=0
Pr(s=@t—-1,K,U)ls=(t,K,U),a={i,j})

= Ppp,{i.5}Pps2,{i.j}
Pr(s=0t-1,KU)ls=(t,K, K),a={i,j})

= Pop{i} (1 = Pps2 {ij})
Pr(s=@t-1,K,K)|s=(t,U,U),a={i,j})=0
Pr(s' = (t—1,K,K)|s= (t,U,K),a = {i,j}) =0
Pr(s =t—-1,K,K)|ls=(t,K,U),a={i,j}) =0
Pr(s'=(t—-1,K,K)|s=(t, K,K),a = {i,j}) = ppp,1i.j}
Pr(s'=(t—1,¢1,¢2)]s = (1,U,U),a = {i,j})

1= pppqigy, t—1€{0,..,T—2}
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(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
(4.14)

(4.15)

(4.16)

(4.17)
(4.18)
(4.19)
(4.20)

(4.21)

(4.22)



PT(S/ = (Ta¢1a¢2)‘8 = (1a U7 U)’a‘ = {7’).7}) =1 (423)

where pp, (; ;1 are the PU outage probabilities of the channel PU;, — PU,;
given in (3.5) to (3.7), pps1,{i,j3 are the PU outage probabilities of the channel
PUy, — SUyz1 and ppe g4 5y are the PU outage probabilities of the channel
PU;y — SU,2; the last two are given by:

Vpsi1
P (R c( : . )) 4.24
Pps1,{i,j} e > T+ vs1s1 +J - Vs2s1 ( )

'71)52
. i.:P(R >C( . - )) .25
Pps2,{i,j} r P 1 + 7 Vs2s2 T 10 Vs1s2 ( )

The relationship between Py and Py , is given by:

Py = Y Puamar|s)ma(az]s) (4.26)
acAXA

Fig. 4.1 shows the Markov chain behind our MMDP model.

(1,u,U)

P(s,s’)

P(s,s0)

Figure 4.1: Markov Chain behind the model
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4.2.1 SU; Optimal Access Policy

If we consider SU;’s perspective, under the assumptions that it knows the sys-
tem state s and SUs’s policy, in each time slots it has two possible actions to
select, a; € A. Our aim is to maximize the average long term SUs sum through-
put under the average long term PU throughput degradation constraint.

If accessibility action a; is selected by SU;, the expected SUs sum through-
put in state s, denoted by R;(s,a1), can be computed as:

Ri(s,a1) = Y _ Ri(s,a1,a2)m(az|s) (4.27)
az€A
where - -
Rl (87 a1, a2) = Tsl,{al,ag},gﬁ(s) + Ts2,{a1,a2},¢(s) (428)

Specifically, we have:

Ri(s=(t,U,U),a1 =0,a2 =0) =0

Ri(s=(t,U,U),a1 =0,a2 =1) = Reo1.v(1 — ps21,0)

Ri(s= (t,U,U),a1 = 1,a3 = 0) = Ra120(1 — ps12,0)

Ri(s=(t,U,U),a1 =1,a2 =1) = R1 3.0(1 — ps130) + Re2,3,0(1 — ps2,3.,0)
Ri(s=(t,U,K),a; =0,a2 =0) =0

Ri(s=(t,U K),a1 =0,a2 =1) = Reo1, k(1 — ps2,1.K)

Ri(s=(t,U K),a1 =1,a2 =0) = Rs12,0(1 — ps1,2,0)

Ri(s = (t,U,K),a1 =1,a2 = 1) = R13.0(1 — ps1,30) + Re2,3, k(1 — ps2,3,%)
Ri(s=(t,K,U),a1 =0,a2=0) =0

Ri(s=(t,K,U),a1 =0,a2 = 1) = Reo1,u(1 — ps2,1,U7)

Ri(s=(t,K,U),a1 =1,a2 =0) = Rs12. k(1 — ps1,2.K)

Ri(s=(t,K,U),a1 =1,a2=1) = Ra1 3 k(1 — ps1,3,5) + Rs230(1 — ps2,3,0)
Ri(s=(t,K,K),a1 =0,a2=0) =0

Ri(s=(t,K,K),a1 =0,a2 =1) = Reo 1,5k (1 — ps2,1,K)

Ri(s=(t,K,K),a1 =1l,a2 =0) = Rs1 2,k (1 — ps1,2,K)

Ri(s=(t,K,K),a1 =1,a2 =1) = Ro1 3 k(1 — ps1,3,5) + Rs2,3,x(1 — ps2,3.K)

where Rg1,4,, Rs2,1,4, are the SUs transmission rates given in (3.1) to (3.4),
and psi1.1.6,, Ps2,1,¢, are the SUs outage probabilities given in (3.8) to (3.15).
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Similarly, if accessibility action ap is selected by SU;, the expected PU
throughput degradation in state s, denoted by Ci(s,ay), can be computed as:

Ci(s,a1) = Z Ci(s, a1, az)ma(az|s) (4.29)
az€A
where
Cl(sa ai, a2) = Pp,{a1,a2} — Pp,0 (430)

and p,; are the PU outage probabilities given in (3.5) to (3.7).

The optimization problem we want to solve can be formalized as follows:

maximizer, (q,|s)Fa,,s[R1(8, a1)]

s.t. Eq, s[C1(s,a1)] < (1= ppo)epu = €u

(4.31)

where 71 (a1]s) is the probability that accessibility action a; is selected by SU;
in state s.

As in the centralized case, for high SU access rate regime, we can employ
the equivalent Linear Programming (LP) formulation corresponding to CMDP.
To provide the equivalent LP, we need the transition probability matrix of the
Markov process denoted by P, where P,y o, = Pr(s’|s,a1) is the probability
of moving from state s to s’ if accessibility action a; is chosen by SU;. The
transition probability from state s = (¢, ¢1, ¢2) to s’ = (t + 1, ¢}, ¢5) when SUp
selects action a; is given by:

Pr(s'|s,a1) = Z Pr(s'|s, a1, a2)ma(az|s) (4.32)
az€A

Since for every unichain Constrained Markov Decision Process there exists an
equivalent Linear Programming (LP) formulation, where a MDP is considered
unichain if it contains a single recurrent class plus a (perhaps empty) set of
transient states, the equivalent LP problem of problem (4.6) is the following:

maxxz Z Ri(s,a1)x(s,a1) (4.33)

s€SaicA

>3 Cils,an)(s,a1) < e (4.34)

s€SaicA
Z x(s',a1) ZZP (s'|s,a1)z(s,a1) =0 Vs' €8 (4.35)
a1 €A s€Sa;cA
Z Z (s,a1) (4.36)
s€eSaieA
x(s,a1) >0 VseS8, ae€A (4.37)

(4.38)

27



The relationship between the optimal solution of LP problem (4.13) and the
optimal solution to our problem is obtained as follows:

~Zsa) it > x(s,a}) >0
7\ a’ s 1
mi(ar]s) = {  2apeaad) 1€4 (4.39)
arbitrary, otherwise

The symmetric case, i.e., SUy’s optimal access policy search, can be dealt with
in the same way simply by inverting the role of the SUs and exchanging the
indexes.

4.2.2 Numerical results

Now we present some numerical results. The channels considered are Rayleigh
fading, like in the centralized case, thus, the SNRs 7., € {pp, psl,ps2, s1sl, slp,
s1s2, 8252, $2p, s2s1}, are exponentially distributed random variables with mean
~z-. For mathematical convenience the links from SU;,; to SU,.2 and viceversa
are assumed interference free. We consider the same parameters as in the cen-
tralized case, i.e., the average SNRs are 7pp, = 10, ¥s; = 5, Ypsi = 5, Ysip = 2,
i € {1,2}, and the ARQ deadline is T = 5. The PU rate R, is selected such that
PU throughput is maximized when both SUs are idle, i.e. R, = argmaxzT} (R).
The SU; rate Ry ;v under PU message unknown for SU,.; is computed as
Ry v = argmaxp_ Ty 1,v(Rsi, Rp), where i = 1,1 € {2,3} ori = 2,1 € {1,3}
so as to maximize the SUs sum throughput. The SU; rate R, ; x under PU mes-
sage known for the SU,,; is computed as Ry x = argmaxpTy; 1 x (R), where
i=1,1€{2,3}ori=2,1€ {1,3}. The PU throughput constraint is set to
(l—ePU)TpI, where epy € {0.01,0.05,0.08,0.1,0.13,0.15,0.18,0.2,0.25,0.3, 0.4,
0.4861,0.6,0.7,0.8,1}. FIC is exploited at the SU,.;, i € {1,2}.

T T
—&— &Us The DEC

Average 3Us Sum Throughput
= o
m m

=
.

=
8]

i i i i i i i &
] 0.2 0.4 0.6 0.4 1 1.2 1.4 16
f1- EPU)TL

0

Figure 4.2: DEC-MMDP: Average SUs sum throughput with respect to PU through-
put constraint
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The SUs sum throughput with respect to the PU throughput constraint
by varying the value of epy is depicted in Fig. 4.2 in contrast with the SUs
sum throughput in the centralized case (MMDP) that can be considered as an
upper bound for the network performance in the decentralized case. Obviously,
as the PU throughput increases, the average SUs sum throughput decreases.
Furthermore, we can note that the performance in the decentralized case (DEC-
MMDP) is almost the same as in the centralized ones.

Average PU Throughput

0.4 i ‘ i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16
(1 - EPU)T{:

Figure 4.3: DEC-MMDP: Average PU throughput with respect to PU throughput
constraint

Fig. 4.3 depicts the PU throughput with respect to the PU throughput con-
straint by varying the value of epyy. Obviously, as epyy decreases the constraint
increases and the PU throughput degradation decreases.
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Figure 4.4: DEC-MMDP: Average SUs sum Throughput vs 7sip

So far we have considered only one specific SNR value, vs;p = 2; it is inter-
esting to analyze the perfomance of the system for varying SNRs, 7s,. Fig. 4.4
depicts the average SUs sum throughput with respect to 7, for varying epy;
it shows different evolutions based on the PU constraint: for epy < 0.08 the
average SUs sum throughput decreases as 7, increases, this is because as the
SNR grows the interference power of the SUs affects more significantly the PU
performace, so they have to limit their channel accesses in order to respect the
PU constraint with a consequent reduction of the maximum achievable through-
put. For 0.1 < epy < 0.8 the average SUs sum throughput increases for v,
below a certain value and decreases for v, over it; this is due to the fact that
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the PU degradation constraint is not active for small values of the SNR, i.e.,
for a low interference level at PUy,, thus, the SUs can exploit the transmitting
chances much more and utilize their transmitting power to gain a higher reward.
On the other hand, when the interference power of the SUs become too high
they affect significantly the PU performace, so they have to limit their channel
accesses in order to respect the PU constraint with a consequent reduction of
the maximum achievable throughput. For epy = 1 instead the average SUs
sum throughput tends to grow as the SNR increases, i.e., the PU degradation
constraint is not active for the considered SNRs and the SUs can exploit the
transmitting chances as much as possible.
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Figure 4.5: DEC-MMDP: Average SUs sum throughput with respect to PU through-
put constraint

Fig. 4.5 depicts the average SUs sum throughput with respect to the PU
throughput constraint for varying epy for different values of vy;p; we can note
that for small values of epy as vsip increases there is a performance degrada-
tion since the SUs create a higher level of interference at PU,., (see Fig. 4.6),
thus, since the PU constraint is active, they have to limit their own channel
accesses and consequently the chances to increase their average reward. On the
other hand, as 7,;, decreases there is an improvement since the SUs’ interference
power affects less the PU performance, thus, they can exploit more transmitting
chances. Considerations developed so far do not hold for high values of epy:
performance results degrade as the SNR decreases and improve as the SNR in-
creases; this is reasonable since for small values of SUs’ SNR the interference
level is very low, so the PU retransmits rarely and the SUs have less chances to
transmit successfully and increase their own reward, whereas for high values of
SUs’ SNR the situation is inverted, i.e., the PU retransmits more frequently and
so the SUs have more chances to exploit FIC and improve their own through-
put. In effect, the curves corresponding to 7, < 5 have an initial flat part that
corresponds to epy values for which the PU constraint is not active, i.e., the
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SUs behavior does not degrade further the PU performance and so the SUs can
exploit the transmitting chances as much as possible with a consequent maxi-
mization of their own throughput. Then, in correspondence to the activation
of the PU constraint the performace begins to degrade in order to satisfy the
transmission limitations. For «s;, > 5 the curves are decreasing, but epy =1
is probably a borderline case in which the PU constraint has an unperceivable

effect on SUs’ reward that consequently is very close to the maximum they can
achieve.
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Figure 4.7: DEC-MMDP 45y: Average SUs sum Throughput vs 7,2,

Another interesting aspect to analyze is the influence of the asymmetries in
the SNR on the system performance, i.e., we suppose that 71, = 2 whereas
Vs2p 7 Vs1p and varying. Fig. 4.7 depicts the average SUs sum throughput with
respect to ys9p for varying epy; as in the symmetric case we can note three
different evolutions, obviously the epy bounds change, in particular the region
in which the average SUs sum throughput decreases as 2, increases is larger
(until epyy = 0.4861); this is reasonable since SU; creates a constant interference
level at PU,., with a significant effect on the PU performance especially when the
constraint is very tight, i.e., for small € p;;, whereas in the absence of asymmetries
Ys1p grows in parallel to v42, and the effect of SUs interference power is weaker at
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PU,,. Consequently the region in which the SUs first exploit as much as possible
the opportunities to increase their reward and then limit their accesses to the
channel in order to satisfy the constraint is narrower, but for epy = 1 the PU
degradation constraint is not active, thus the SUs can exploit the transmitting
chances as much as possible and the average SUs sum throughput tends to grow
as the SNR increases.
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Figure 4.8: DEC-MMDP4sy: Average SUs sum throughput with respect to PU
throughput constraint

Fig. 4.8 depicts the average SUs sum throughput with respect to the PU
throughput constraint for varying e pyy in different asymmetric situations, i.e., for
different values of 752,. We can note that for vs2, > 751, there is a performance
degradation since SUs creates a higher level of interference at PU,.,, than in the
symmetric case (see Fig. 4.9), thus it has to limit its own channel accesses and
consequently the chances to increase the average reward. On the other hand,
for vs2p < 7s1p there is an improvement since SU, interference power affects
less the PU performance than in the symmetric case, so can mainly exploit the
transmitting chances. Finally, it is important to note that the considerations
done so far do not hold for epy = 1: performance results are worse than the
symmetric case for vso, < 7s1p, Whereas they are better than the symmetric
case for 7,2, > 7s1p; this is probably due to the fact that for small values of
SUsy’s SNR the interference level is very low, so the PU retransmits rarely and
the SU; has less chances to transmit successfully and increase its own reward,
whereas for high values of SUs’s SNR the situation is inverted, i.e., the PU
retransmits more frequently and so SU; has more chances to exploit FIC and
improve its own throughput.
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Figure 4.9: DEC-MMDP 45v: Average PU throughput with respect to PU through-
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Fig. 4.9 depicts the average PU throughput with respect to the PU through-
put constraint by varying the value of epy in the same asymmetric situations
illustrated in Fig 4.5. We can note that for epy > 0.4861 the asymmetries in the
SNR influence the PU throughput degradation, in particular, for v, > Ys1p
SUs’s interference power at PU,., causes a degradation of PU performance with
respect to the symmetric case, whereas for 52, < 751, there is an improvement
in PU performance due to the lower interference level SUs creates at PU,...

Fig. 4.10 and 4.11 depict SU’s optimal transmission probabilities, denoted
by 73, for epy = 0.2 and epy = 1, respectively, in different system states.
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p Vs2p
In Fig. 4.10 we can note that SU, tends to transmit more than in the
symmetric case for ., = 0.25, i.e., when its interference power is almost un-
perceivable at PU,,, instead for 7,2, > 2 it mantains the same transmitting
behavior as in the symmetric case because, even if the interference it creates at
PU,, is higher, the PU performance is not affected significantly, as shown in
Fig. 4.9.
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In Fig. 4.11 it is evident that SU; mantains the same transmitting behavior
as in the symmetric case irrespective of its SNR changes; we suppose this is
related to the relaxation of the PU constraint which induces SUs to access the
channel as much as possible.
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Chapter 5

Heuristic Decentralized
Access Policies in a
Cognitive Radio Network
with Two Independent SUs

In the previous chapter we found the optimal access policies for the decentralized
case of two independent SUs in a CR network and we obtained that their perfor-
mance was almost the same as that of the optimal centralized policy described
in Chapter 3. Now we are interested in developing some heuristic policies for
the same decentralized scenario and in analyzing their performance. In order
to achieve our purpose, we developed a network simulator which reproduces
the behavior of a decentralized cognitive radio scenario with one PU and two
independent SUs.

In simulation our work consists in monitoring the evolution of the system
we model in order to evaluate the average long term SUs sum throughput and
the corresponding average long term PU throughput degradation due to the
SUs interference. In the system we consider, there exist one primary and two
secondary transmitters denoted by PUy,, SUi.1 and SUy,o, respectively. These
transmitters transmit their messages with constant power over block fading
channels and, in each time slot, the channels are considered to be constant.
The signal to noise ratios (SNR) of the channels PUy, — PU,,, PUy, — SU, 41,
PUt:t — SUrbea SUtzl — PUrma SUtml - SUT‘Il? SUtzl — SUer; SUth —
PUrxa SUt:vQ — SU’I‘Ilv SUtm2 — SUT:EZ are denoted by Ypps Vpsls Vps2y Vslps
Vsisls Vsis2s Vs2ps Vs2s1 and Yeae2, respectively. We assume that no channel
State Information (CSI) is available at the transmitters. Thus, transmissions
are under outage, when the selected rates are greater than the current channel
capacity. The system model, trasmission rates and outage probabilities are de-
scribed in Section 4.1.

The harder step in building a CR network simulator consists in evaluat-
ing the decoding event at PU,,, SU,;1 and SU,;s. Thus, it is necessary to
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identify some outage conditions which help to characterize whether or not de-
coding is successful We denote by ay;y; the fading coeflicient on the channel
Uitw — U]rw

We first consider the PU message correct decoding at the PU,,. The con-
ditions to have a successful transmission of the PU message in SU accessibility
actions 0, 1, 2 and 3 are respectively:

Ry, < C(vppapp) = loga (1 + yppapp) if1=0 (5.1)

Yppr©pp Tpp%pp i i
Ry <O ) —og, (14 12922 ) if1=1,2, ie {12
P = 1 + ’ysipasip g2 1 + ’Ysipasip { }

(5.2)
R, < C( TepCpp ) = log, (1+ YopQpp ) if1=3
1+ Vs1pQsip + Vs2ps2p 1+ Vs1pQsip + Vs2pQlis2p
(5.3)

From the simulation point of view it is interesting to consider the SNRs which
influence the evolution of the system in each time-slot and the messages of in-
terest for the various receivers. PU,, is interested in decoding only its own
message and it is oblivious of the presence of the SUs in the network; thus, their
messages are considered as background noise when they transmit. The condi-
tions to check to establish the possible success of the PU message transmission
are given in (4.52) to (4.54).

SU,.; is interested in decoding its own message, but also the PU message,
if it is unknown, in order to perform FIC. At PU knowledge state {K, K} or
{K,U} ({U,K}), the PU message is known at SU,;1 (SU,.2) and therefore the
PU message may be canceled at this receiver. The condition to have a successful
transmission of the SU; message, ¢ € {1,2}, in SU accessibility action | € {1,2},
l # i, i.e. when the other SU is idle, is:

Rgip i < C(7ysisisisi) = 10go (1 4+ ysisiusisi), @ € {1,2} (5.4)

In contrast, at PU knowledge state {U,U} or {U, K} ({K,U}), where the PU
message is not decoded at SU,,1 (SU,.2), the outage probability of the channel
from SUiz1 (SUg2) t0 SUpz1 (SUrg2) is under the influence of the received PU
message. Thus, we have two different SNRs to consider corresponding to the
two messages of interest:

SNRp = VpsiOlpsi
1+ VsisiXsisi

SNRSZ _ VsisiXsisi
1+ VpsiApsi

Hence, the conditions to have a successful decoding of the SU; message when
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the other SU is idle are:

VsisiXsisi
Rusgor <O( 2200 )
b 1+ VpsiApsi

VsisiUsisi .
—1o (1 + 7) if R, > C( S0l ) 5.5
g2 1+ YpsiCipsi P VpsiOp (5.5)

Rsi,l,U SC(’YsisiO‘sisi)
- 10g2(1 + ’Ysisiasisi) if Rp S C(Vpsiapsi) (56)

Similarly, the conditions to have a successful decoding of the PU message at the
SU,.; when the other SU is idle are:

Rp SC< VpsiCpsi )
1+ Vsisisisi

VpsiApsi s
=1 (1 7) f Rsi > C( sisi sisi) 5.7
082 * 1+ Vsisisisi ' by g “ ( )

Rp gc(’ypsiapsi)
= 10g2(1 + 'Vpsiapsi) if Rsi,l,U é C(’Ysisiasisi) (58)

For accessibility action 3 and PU message known by SU;, SU,.,; is interested in
decoding its own message like for [ = 1,2, the only difference is the presence of
the other SU message. In this case, we have only one SNR corresponding to the
message of interest:

VsisiUsisi
SNRg; = —sisi®sisi
‘ 1+ varsiousisi

Hence, the condition to have a successfully decoding of the SU; message is:

VsisiXsisi VsisiXsisi
P < O( 0 ) gy () D ) g
b= 1 + VslsiOslsi B2 1 + VslsiOslsi ( )

For accessibility action 3 and PU message unknown by SU;, SU,.,; is interested
in decoding its own message, but also the PU message in order to perform FIC,
like for [ = 1,2, the only difference is the presence of the other SU message.
Again we have two different SNRs corresponding to the two messages of interest:

SNRp VpsiQpsi
1+ VsisiXsisi + Vslsislsi

SNRSZ _ VsisiXsisi
1+ VpsiCpsi + VslsiCslsi

Hence, the conditions to have a successful decoding of the SU; message when
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the other SU is not idle are:

75isiasisi
Rgiivu §C< )
I+ VpsiApsi + VslsiCslsi

:10g2 (1 + VsisiAsisi ) if Rp > C( VpsiQpsi )
1+ VpsiOpsi + VslsiQslsi 1+ varsiousisi
(5.10)

75isiasisi
Rusgor <O(; 2ot
1+ VslsiCslsi

VsisiAsisi . VpsiQpsi
Cogo (1 LT ) e o Ty oy
? 1+ VslsiCslsi b 1+ Vslsilslsi ( )

Similarly, the conditions to have a successful decoding of the PU message at the
SU,.; when the other SU is not idle are:

Rp SC( VpsiQpsi )
1+ VsisiOsisi T VslsiQslsi

VpsiApsi . VsisiOsisi
. ) i R > o)
? 1+ VeisiQsisi + VslsiOslsi > 1+ vasiosisi
(5.12)
Rp SC( VpsiCpsi )
1+ Vslsislsi
VpsiApsi . VsisiOsisi
=lo (1 + 7) if Ryyv < 0(7) 5.13
82 1+ Vslsislsi s 1+ VslsiCslsi ( )

5.1 Heuristic Access Policy H;

The evolution of a CR network is deeply influenced by the state of the sys-
tem. In the model we develop, the state of the system is represented by the
PU message knowledge state, ¢, and the primary ARQ state, t; since the PU
message knowledge state of the single SU can assume only two possible values,
¢; € {U,K}, with i € {1,2}, the first idea we have in designing a heuristic
access policy for the two SUs consists in identifying two different transmission
probabilities for the two possible PU message knowledge state, denoted by «
and 3, respectively. We mean that « is the probability that the SU accesses the
channel and transmits its own message when it knows the PU message in the
current time-slot, whereas § is the probability that the SU accesses the channel
and transmits its own message when it does not know the PU message in the
current time-slot. Obviously, a > 3, since the probability of success for the SU
is higher when it knows the PU message and so can perform FIC. We suppose
that the two SUs are symmetric, i.e., they have the same transmission parame-
ters, thus, it is reasonable to suppose they adopt the same access policy.

The aim of our policy design is to develop a heuristic access policy which has to
maximize the SUs sum throughput as much as possible under the PU through-
put degradation constraint. Thus, it is useful to identify which values of o and
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[ guarantee the higher possible SUs sum throughput. Considering the same av-

erage SNRs, transm
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Fig. 5.1 illustrates the o — 3 search for various values of epy;; it shows that
the higher epy, the bigger the tendency to grow of the  and 8 which grant the
maximum SUs sum throughput, denoted by a* and *, i.e., as epy increases and
the PU throughput constraint is relaxed, the two SUs adopt a more aggressive
policy to exploit the transmitting chances as much as possible (see Fig. 5.2).
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Figure 5.3: Hi: Average SUs sum throughput with respect to PU throughput con-
straint

The SUs sum throughput with respect to the PU throughput constraint for
various values of epy is depicted in Fig. 5.3 and compared with the upper bound
represented by the centralized case (MMDP). Obviously, as the PU throughput
increases, the average SUs sum throughput decreases. The numerical results are
obtained by selecting for each value of epy considered the couple (a, §) which
guarantees the maximum SUs sum throughput achievable under this heuristic.

Fig. 5.4 depicts the average PU throughput with respect to the PU through-
put constraint for various values of epy. Obviously, as epy decreases the con-
straint, (1 — € pU)TZf , increases and the PU throughput degradation decreases.
In other words, as epy increases and the PU thoughput constraint is relaxed,
the SUs can mainly exploit the transmitting chances and gain a higher through-
put; although, in doing so they create more interference at the PU,, and con-
seguently cause a degradation of the PU throughput which is more significant
as the transmitting chances grow, i.e., as epy increases. Furthermore, since the
MMDP case represents the upper bound for the maximum achievable SUs sum
throughput, on the other hand it represents the lower bound for the maximum
allowable PU throughput degradation.
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Figure 5.5: Hi: Average SUs sum Throughput vs 7sp

The numerical results obtained so far consider only one specific value of SNR
for the SUSs, v4ip = 2, ¢ € {1,2}. Fig. 5.5 depicts the average SUs sum through-
put with respect to v, for varying epy; it shows different evolutions based on
the PU constraint: for epy < 0.2 the bigger the SNR, the lower the maximum
SUs sum throughput; this is reasonable, since small values of epy correspond
to a tight constraint, i.e., harder to satisfy, which implies a decrease in the SUs
sum throughput as they create a higher interference level at PU,., since they
have to limit their transmissions. For 0.2 < epy < 0.8 the average SUs sum
throughput increases for 7., below a certain value and decreases for 7, over
it; this is due to the fact that the PU degradation constraint is not active for
small values of the SNR, i.e., for a low interference level at PUy,, thus, the SUs
can exploit the transmitting chances much more and utilize their transmitting
power to gain a higher reward. On the other hand, when the interference powers
of the SUs become too high they affect significantly the PU performace, so they
have to limit their channel accesses in order to respect the PU constraint with
a consequent reduction of the maximum achievable throughput. For epy =1
instead the average SUs sum throughput tends to grow as the SNR increases,
i.e., the PU degradation constraint is not active for the considered SNRs and
the SUs can exploit the transmitting chances as much as possible.

Fig. 5.6 depicts the o and 8 which grant the maximum SUs sum through-
put with respect to 7, for varying epy; as we already observed, for v, = 2
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they tend to increase as epy increases since the SUs exploit the transmitting
chances as much as possible. If we consider their evolution with respect to the
SNR they tend to decrease as <ys;p grows and this is reasonable since the level
of interference they cause at PU,, increases, so they have to limit their access
to the channel to satisfy the PU constraint; only for epyy = 1 do the SUs always
transmit since the PU constraint is not active for the considered SNRs.
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In order to analyze the degradation of H; performance, we test it by using
the o* and B* obtained for vs1p = vs2p = 2 and imposing vs1p = Vs2p 7# 2.
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Figure 5.7: Hi Robustness: Average SUs sum throughput vs vsip

Fig. 5.7 depicts the degradation of the average SUs sum throughput with
respect to the PU throughput constraint for various value of 74;;; it shows the
gap between performance obtained for v;;, = 2 and performance obtained for
different SNRs values grows as the SNR decreases. This is reasonable since
for v4p < 2 the SUs create a lower interference level at PU,;, thus the PU
retransmits less and they have less chances to exploit FIC and increase their
reward, whereas for vy, > 2 the transmitting behavior adopted, which is the
optimal one for vs;, = 2, is too aggressive and we are not able to find a result
because the SUs do not succeed in satisfying the PU throughput constraint
except for epy = 1 for which the constraint is not active (see Fig. 5.8) and for
epy = 0.01 case in which probably the transmission probabilities adopted are
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very low or the transmitting chances very sporadic. We can note that for high
SNRs, i.e., for v, > 2, and epy = 1 there is a performance improvement; we
suppose it is due to the fact that the higher SUs interference power at PU,.,
makes PU to retransmit frequently so gives them more chances to increase their
throughput. This consideration clearly appear in Fig. 5.8.
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Figure 5.8: Hi Robustness: Average PU throughput vs 7sip
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Figure 5.9: H; Robustness: Average SUs sum throughput-Average PU throughput
tradeoff

Fig. 5.9 is very useful to better understand the tradeoff that affects the
heuristic performance: it depicts the average long term SUs sum throughput
with respect to the average PU throughput in the same situations examined in
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Fig 5.7. We can note that as the SNR of the interference channel, 7;p, decreases
the performance generally improves and the ranking reverses with respect to the
results shown in Fig. 5.7. It is evident that greater SNR values allow to reach
a higher average SUs sum throughput but at price of a more significant degra-
dation of PU performance, i.e., the tradeoff between what we can gain and the
cost we have to pay clearly appears, whereas in Fig. 5.7 the PU advantage due
to the interference level reduction as v, decreases is not evident because it
underlines only the effect of using a transmitting behavior too conservative in
respect to the real interference level at PU,.,.

In the performance analysis it is interesting to consider also the asymmetric
case, i.e., to suppose that the SUs have different transmission probabilities,
denoted by «; and 3;, which represents SU; transmission probability when the
PU message is known and unknown, respectively, i € {1,2}. Asin the symmetric
case, we explore the space of all possible transmission probabilities and find the
a1, B1, ag and Py which maximize the SUs sum throughput.
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Figure 5.10: Hi: (of, 87, 05,85) vs epu

Fig. 5.10 illustrates the best transmissions probabilities for varying epy
compared with the optimal ones in the symmetric case; it is interesting to note
that in almost all the considered cases the best choice is represented by the sym-
metric behavior. This is reasonable since the SUs have the same transmission
parameters, i.e., the same transmission rates and the same average SNRs on the
accessible channels, so they can exchange their role and access the channel with
the same frequency in order to maximize their reward.

Fig. 5.11 instead illustrates the best transmission probabilities for varying
€py, again compared with the optimal ones in the symmetric case, but imposing
that a; # ag and 31 # [, i.e., considering the first suboptimal case; we can
note that for intermediate values of epy the optimal transmission probabilities
in the asymmetric case are distributed around the symmetric ones, in particular
one is bigger and the other is smaller than o™ or 8%, i.e., there is a sort of bal-
ance between the SU activities. This is reasonable since the SUs have the same
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transmission paremeters, thus, if one of them is a little more aggressive the other
has to be a little more ’idle’ in order to gain a reward close to the symmetric one
which represent the best case. For low and high values of epy, instead, one of
the SU reaches the symmetric transmission probability while the other adopts
the closest one to respect the asymmetric conditions; this is reasonable since for
extreme values of epyy the SUs in order to gain the maximum reward have to
transmit as much as possible (for high epy, i.e., when the PU constraint is more
relaxed) or the least as possible (for low epy, i.e., when the PU constraint is
very tight), thus they try to exploit or not the transmitting chances in the best
way they are allowed to. Finally, in both figures we can note that the higher
epy, the bigger the tendency to grow of the a; and §; which maximize the SUs
sum throughput, denoted by o and 3/, i.e., as usual as epy increases the two
SUs adopt a more aggressive policy to exploit the transmitting chances as much
as possible, i € {1,2}.

The SUs sum throughput with respect to the PU throughput constraint for
varying epy is depicted in Fig. 5.12 and compared with the upper bound rep-
resented by the centralized case (MMDP). As in the symmetric case, as the
PU throughput increases, the average SUs sum throughput decreases and the
numerical results are obtained by selecting for each value of e py considered the
values of «; and ; which maximize the SUs sum throughput under this heuris-
tic, ¢ € {1,2}. In Fig. 5.12 is also depicts the symmetric case; we can note that
the performace in the first suboptimal case almost coincides with the symmetric
one for low and intermidiate € py;, whereas are below the latter for high epy;, this
is because as we have just evidence examining the transmission probabilities,
the SUs manifest a tendency to balance their actions in order to reach the best
reward for intermediate value of epyr; when the PU constraint is relaxed instead
the best performance can be reached only with a symmetric approach, i.e., to
completely exploit the transmitting chances, the SUs have to transmit with the
same probability, and thus there exist an unavoidable degradation due to the
asymmetry imposed to the transmission probabilities.
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constraint

A final aspect interesting to analyze is the effect of the asymmetries in the
SNR on the heuristic performance; Fig. 5.13 depicts the average SUs sum
throughput with respect to the PU throughput constraint for three specific
values of 7,2, and compares them with the symmetric case.
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Figure 5.13: Hi,asy: Average SUs sum throughput with respect to PU throughput
constraint

In all the examined scenarios there is SU; which creates a constant average
interference level at PU,., and affects the PU performance more or less in depen-
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dence of the tightness of the constraint, then there is SU; whose SNR changes:
for vs9, = 0.25 SU; creates an interference level almost unperceivable at PU,.,
thus it can exploit its transmitting chances more than in the symmetric case, i.e.,
for vs0p = 2, and increase the average SUs reward. Obviously, once it reaches
its maximum transmission capability there is a saturation of the SUs through-
put which correspond to the maximum degradation of PU throughput (see Fig.
5.14). On the other hand, for 52, > 2 the total interference caused by the SUs
at PU,, is higher than the symmetric case with a consequent degradation of
the performace, in effect as 7,2, increases SU, has to limit its accesses to the
channel in order to respect the PU constraint. As we already unerlined in the
DEC-MMDP analysis, the considerations done so far do not hold for epy = 1:
performance results are worse than the symmetric case for 2, = 0.25, whereas
they are better than the symmetric case for 2, > 2; this is probably due to the
fact that for small values of SUs’s SNR the interference level is very low, so the
PU retransmits rarely and the SUs has less chances to transmit successfully and
increase its own reward, whereas for high values of SUs’s SNR the situation is
inverted, i.e., the PU retransmits more frequently and so SU; has more chances
to exploit FIC and improve its own throughput.
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Figure 5.14: H; asy: Average PU throughput with respect to PU throughput con-
straint

Fig. 5.14 depicts the average PU throughput with respect to the PU through-
put constraint by varying the value of epy in the same asymmetric situations
illustrated in Fig 5.13. We can note that for epy > 0.6 the asymmetries in
the SNR influence the PU throughput degradation, in particular, for vs, > 2
SUs’s interference power at PU,.,, causes a degradation of PU performance with
respect to the symmetric case, i.e., for vs2, = 2, whereas for 2, = 0.25 there
is an improvement in PU performance due to the lower interference level SU;
creates at PU,.,.
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Fig. 5.15 is very useful to better understand the tradeoff that affects the
heuristic performance: it depicts the average long term SUs sum throughput
with respect to the average PU throughput in the same asymmetric situations
examined in Fig. 5.13. We can note that as the SNR of the interference channel,
Vs2p, decreases the performance generally improves; furthermore, it is evident
that greater SNR values allow to reach a higher average SUs sum throughput but
at price of a more significant degradation of PU performance, i.e., the tradeoff
between what we can gain and the cost we have to pay clearly appears, whereas
in Fig. 5.13 the PU advantage due to the interference level reduction as 7,2y
decreases is not so evident.
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Figure 5.16: Hi,asy: af and B8] vs ys2p

Fig. 5.16 and 5.17 depict SU;’s and SUs’s optimal transmission probabilities,
respectively, for the same values of 752, we just considered compared with the
optimal ones in the symmetric case. We can note that for v, = 0.25 SU,
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adopts a more aggressive behavior than in the symmetric case as we supposed
before, in particular for small values of epy and if it does not know the PU
message, whereas SU; limits its accesses to the channel; on the other hand, as
vs2p increases the SUs exchange their roles, i.e., SU; tends to limit its accesses
to the channel as SU; exploits as much as possible the transmitting chances.
In other word, there is a sort of balance of the SUs behavior: according to its
SNR SU; adopts a certain trasmitting behavior and SU;, whose SNR does not
change, tries to balance the effects of SUs’s interference at PU,.,.

5.2 Heuristic Access Policy H;

A simpler heuristic policy we analyze, denoted by Hs, does not consider the
influence of the PU message knowledge in the activities of the SUs. We simply
suppose that there is only one transmission probability, 7, irrespective of the
PU knowledge state of the system. As in heuristic H1, we need to identify which
value of 17 guarantees the highest possible SUs sum throughput. Considering the
same average SNRs, transmission rates and PU throughput constraints used to
obtain numerical results in the optimal centralized and decentralized case, we
examine the performance of the CR network for different values of 7.
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Figure 5.18: H: Average SUs sum Throughput vs 5

Fig. 5.18 illustrates the n search for varying epy; it shows again that the
higher epy, the bigger the tendency to grow of the i which grants the maximum
SUs sum throughput, denoted by n*, i.e., as epy increases the two SUs adopt a
more aggressive policy to exploit the transmitting chances as much as possible
(see Fig. 5.19). Note that when n = 0 or the SUs sum throughput is zero means
that it is impossible to respect the PU throughput constraint.
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The SUs sum throughput with respect to the PU throughput constraint
for varying epy is depicted in Fig. 5.20 and compared with the upper bound
represented by the centralized case (MMDP). Obviously, as the PU throughput
increases, the average SUs sum throughput decreases. The numerical results
are obtained by selecting for each value of epy considered the value of 17 which
maximizes the SUs sum throughput under this heuristic.
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Figure 5.20: Hs: Average SUs sum throughput with respect to PU throughput con-
straint
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As for Hy, in Fig. 5.21 we consider the average SUs sum throughput with
respect to vs;p, for varying epy; again, it shows different evolutions based on the
PU constraint: for epyy < 0.2 the bigger the SNR, the lower the maximum SUs
sum throughput, for 0.2 < epyy < 0.8 the SUs reward increases for 7., below a
certain value and decreases for 74, over it, and for epy = 1 the average SUs sum
throughput tends to grow as the SNR increases. As in H; case, we can explain
the different behaviors repeating the same considerations on the effect of the
SUs interference power on the PU performance and the consequent limitation
of the SUs accessibility actions to satisfy the PU degradation constraint.
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Figure 5.21: H,: Average SUs sum Throughput vs vsip

Fig. 5.22 depicts the n which grants the maximum SUs sum throughput with
respect to 74 for varying epy; as we already observed, for v, = 2 it tends
to increase as epy increases since the SUs exploit the transmitting chances as
much as possible. As o and 8 in H, if we consider its evolution with respect to
the SNR it tends to decrease as 7,;, grows because the interference SUs cause
at PU,, increases, so they have to limit their access to the channel to satisfy
the PU constraint; only for epyy = 1 do the SUs always transmit since the PU
constraint is not active for the considered SNRs.
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Figure 5.22: Ha: 1™ vs vsip

Asin H; case, in order to analyze the degradation of Hs performance, we test
it by using the 1™ obtained for vs1, = V52, = 2 and imposing ys1, = Vs2p # 2.
Fig. 5.23 depicts the degradation of the average SUs sum throughput with
respect to the PU throughput constraint for various value of v;p,; while in H;
case the gap between curves corresponding to different ~y;, is almost costant
as the PU constraint changes, in this case there is no gap for small values of
epy, while as the PU constraint is relaxed the gap grows. This is because for
small value of epyy the PU constraint is more difficul to satisfy, thus SUs limit
their transmission and even if the n we adopt is lower than the best one for
Ysip < 2, the SUs performance degradation is unperceivable due to the scarsity
of transmitting chances created by the PU that retransmits rarely. On the other
hand, as epy increases SUs tend to mainly exploit the transmitting chances and,
since they adopt a transmission probability that is ideal for a higher SNR, they
do not exploit as much as possible their trasmitting power with a consequent
degradation of the maximum achievable reward which becomes more evident for
high epy values, i.e., when they waste much more transmitting opportunities.
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Figure 5.23: H; Robustness: Average SUs sum throughput vs vsip

Fig. 5.24 is very useful to better understand the tradeoff that affects the
heuristic performance: it depicts the average long term SUs sum throughput
with respect to the average PU throughput in the same situations examined
in Fig 5.23. As in H; case, we can note that as the SNR of the interference
channel, y;p, decreases the performance generally improves and the ranking
reverses with respect to the results shown in Fig. 5.23.
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Figure 5.24: H, Robustness: Average SUs sum throughput-Average PU throughput
tradeoff

It is evident that greater SNR values allow to reach a higher average SUs
sum throughput but at price of a more significant degradation of PU perfor-
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mance, i.e., the tradeoff between what we can gain and the cost we have to pay
clearly appears, whereas in Fig. 5.23 the PU advantage due to the interference
level reduction as 7ys;, decreases is not evident because it underlines only the
effect of using a transmitting behavior too conservative in respect to the real
interference level at PU,.,.

As for Hy, it is interesting to analyze also the asymmetric case, i.e., to sup-
pose that the SUs have two different transmission probabilities, denoted by 7,
and 752, respectively, irrespective of their own PU message knowledge. Fig. 5.25
illustrates the 77y — 12 search for varying epy; while in the symmetric case for
each considered value of epy there exists only one i which grants the maximum
SUs sum throughput, in the asymmetric case there exist two couples of trans-
mission probabilities, (n},n5) and (n{,n4), which maximize the SUs reward,;
in particular, the elements of each one of these couples are ’symmetric’, i.e.,
1y = n4¥ and n5 = n}. This result is reasonable because the two SUs have the
same transmission parameters, i.e., the same transmission rates and the same
average SNRs on the accessible channels, thus we can exchange their role with-
out altering the performance of the system.
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Figure 5.25: Hz asy: Average SUs sum Throughput vs (n1,72)

As in the symmetric case, we can note that the higher epy, the bigger the
tendency to grow of the n; and 7, which maximize the SUs sum throughput,
denoted by nj and 13, i.e., as epy increases the two SUs adopt a more aggressive
policy to exploit the transmitting chances as much as possible (see Fig. 5.26).
Note that when epyy = 0.01 there exist no values of the transmission probabil-
ities which satisfy the PU constraint, i.e., the heuristic access policy analyzed
creates too much interference at PU,..
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Fig. 5.26 also represents the optimal transmission probability in the sym-
metric case, n*; we can note that the optimal transmission probabilities in the
asymmetric case are distributed around the symmetric one. The fact that one
is a little bigger and the other a litte smaller than n* reveal a balance between
the SU activities, this is reasonable since the SUs have the same transmission
parameters so if one of them is a little more aggressive the other has to be a
little more ’idle’ in order to gain a reward close to the symmetric one.
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Figure 5.27: Hz asy: Average SUs sum throughput with respect to PU throughput
constraint

The SUs sum throughput with respect to the PU throughput constraint for
varying epy is depicted in Fig. 5.27 and compared with the upper bound rep-
resented by the centralized case (MMDP). As in the symmetric case, as the
PU throughput increases, the average SUs sum throughput decreases and the
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numerical results are obtained by selecting for each value of epy considered
the values of n; and 1y which maximize the SUs sum throughput under this
heuristic. Fig. 5.27 also depicts the symmetric case; we can note that the
performace in the asymmetric case almost coincides with the symmetric one,
indeed is slightly above the latter, since, as we have just evidenced examining
the transmission probabilities, the SUs manifest a tendency to balance their
actions in order to reach the best reward. Only for high epy is the symmetric
approach better than the asymmetric one since, to completely exploit the trans-
mitting chances, the SUs have to transmit with the same probability, i.e., always.

5.3 Heuristic Access Policy H;

The third heuristic policy we analyze, denoted by Hs, is a mix between H; and
H,, and represents an interesting case for the performance analysis: we suppose
that one of the two SUs, for example SUj, has a fixed transmission probability,
71, irrespective of its own PU message knowledge state, while the other SU has
two different transmission probabilities, one selected if it knows the PU message
and the other chosen otherwise, denoted by s and fs, respectively. In particu-
lar, we consider three possible values of 77 (1, 0.5 and 0.05), which correspond
to an aggressive, a moderate or a weak SUj, respectively, and for each possible
case we identify which values of ay and [y guarantee the higher possible SUs
sum throughput. In other words, considering the same average SNRs, transmis-
sion rates and PU throughput constraints used to obtain numerical results in
the optimal centralized and decentralized case, we examine the performance of
the CR network for different values of the probability couple (as, 82), given a
certain value of 71, and we choose the one that gives us the maximum achievable
SUs sum throughput.
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Figure 5.28: Hj: Average SUs sum Throughput vs (a2, 82) given m = 1

Fig. 5.28 illustrates the as — (5 search for varying epy and given n; = 1; as
for the previous heuristic, we can do the same considerations about the increase
of epy and the parallel growth of the as and (2 which grant the maximum
SUs sum throughput, denoted by a3 and (5, respectively, (see Fig. 5.29). It
is important to note that there exists no couple (ag,32) which satisfies the
PU throughput constraint when epy < 0.4861. This is because the value of
71 chosen determines a too aggressive channel access of SU;, which creates a
costant level of interference at PU,, that makes it impossible to satisfy the PU
constraint when the latter is very tight, i.e., for small values of epy .
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Figure 5.29: Hs(m =1): (a3,35) vs epu

The SUs sum throughput with respect to the PU throughput constraint
for varying epy is depicted in Fig. 5.30 and compared with the upper bound
represented by the centralized case (MMDP). Obviously, as the PU throughput
increases, the average SUs sum throughput decreases. As before, the numerical
results are obtained by selecting for each value of epy; considered the couple
(a2, B2) which maximizes SUs sum throughput under this heuristic, given 7, =
1.
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Figure 5.30: Hs(m = 1): Average SUs sum throughput with respect to PU through-
put constraint

Fig. 5.31 depicts the average PU throughput with respect to the PU through-
put constraint for varying epyy. Again, as e py decreases the constraint increases
and the PU throughput degradation decreases and the same considerations de-
veloped for previous heuristics are valid.
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Figure 5.31: Hs(n = 1): Average PU throughput with respect to PU throughput
constraint

Fig. 5.32 illustrates the ag — P search for varying epy and given 1, = 0.5;
as before, it shows that as e py; increases SUs; adopts a more aggressive policy to
exploit the transmitting chances as much as possible, i.e., aj and 5 grow (see
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which creates a costant level of interference at PU,., that makes it impossible
to satisfy the PU constraint. On the other side, when epyy > 0.25 SU; does not
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The SUs sum throughput with respect to the PU throughput constraint
for varying epy is depicted in Fig. 5.34 and compared with the upper bound
represented by the centralized case (MMDP). Again, as the PU throughput
increases, the average SUs sum throughput decreases, and the numerical results
are obtained by selecting for each value of epy considered the couple (aq, f2)
which maximizes the SUs sum throughput under this heuristic, given 7, = 0.5.
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Figure 5.34: Hs(n1 = 0.5): Average SUs sum throughput with respect to PU through-
put constraint
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Fig. 5.35 depicts the average PU throughput with respect to the PU through-
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Fig. 5.36 illustrates the ap — B2 search for varying epy and given 7; = 0.05;
as before, it shows the growth of the as and o which grant the maximum SUs
sum throughput and simultaneously the increase of epy, i.e., the relaxation of
the PU throughput constraint (see Fig. 5.37). It is important to note that
there exists no couple (g, B2) which satisfies the PU throughput constraint
when epy = 0.01. This is because the value of n; chosen determines a too
aggressive channel access of SU; for epy = 0.01, which creates a costant level of
interference at PU,, that makes it impossible to satisfy the PU constraint. On
the other side, for high values of epyy SU; does not exploit as much as possible
the opportunity of accessing the channel and thus the SUs sum throughput
achieved is lower than the optimal case.
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Figure 5.38: Hs(m = 0.05): Average SUs sum throughput with respect to PU
throughput constraint
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The SUs sum throughput with respect to the PU throughput constraint
for varying epy is depicted in Fig. 5.38 and compared with the upper bound
represented by the centralized case (MMDP). Obviously, as the PU throughput
increases, the average SUs sum throughput decreases. As for previous cases, the
numerical results are obtained by selecting for each value of e py considered the
couple (ag, B2) which maximizes the SUs sum throughput under this heuristic,
given 1, = 0.05.
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Figure 5.39: Hs(n = 0.05): Average PU throughput with respect to PU throughput
constraint

Fig. 5.39 depicts the average PU throughput with respect to the PU through-
put constraint for varying epy;. As in previous cases, the increase of epy leads
to a more significant PU throughput degradation.

Fig. 5.40 offers a comparison of the performance given by heuristic Hs in
the three different cases considered. Since SU; transmission probability, 7, is
fixed, it creates a constant level of interference at the PU receiver. Thus, if
is too high, for example 1; = 1, the PU throughput degradation constraint can
not be satisfy since the latter is very tight; this is why it is not possible to find a
valid (aq, B2) couple for epy under a certain value. On the other side, the fact
that SU; has a fixed transmission probability affects negatively the SUs sum
throughput for high values of epy; in these cases if 1 < 1 SU; does not exploit
the transmitting chances as much as possible at the expense of the maximum
achievable SUs sum throughput.
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Figure 5.40: Hs comparison: Average SUs sum throughput with respect to PU
throughput constraint

5.4 Heuristic Access Policy Hy

The heuristic access policies proposed so far are offline strategies since, af-
ter a research of the optimal transmission probability values, we analyze the
performance of a CR network where the SUs select their action according to
an established policy strictly depending on the identified optimal transmission
probabilities. The last heuristic policy we propose, denoted by Hy, is an online
strategy, i.e., the SUs do not follow an established policy, but try to rearrange
their transmission probability during the evolution of the system according to
the PU feedback they receive and their own PU message knowledge with the
aim of maximizing their own throughput under the PU throughput constraint.
Since the state of the system deeply influences the network evolution, as in Hy,
we consider two different transmission probabilities for each one of the SUs in
each time-slot; thus, we have a; and 3;, ¢ € {1,2}, which are the SU; probabil-
ity of accessing the channel when it knows and does not know the PU message,
respectively. At the beginning of the simulation, «; and (; are initialized ran-
domly with «; > B; and we suppose they are the same for the two SUs; instead,
during the evolution of the system they are not bound to assume the same value.
The aim of each SU is to maximize its own throughput under the PU through-
put constraint. The primary ARQ feedback gives the SUs the notion of how
the system is evolving; in addition, they know the maximum PU throughput,
Tpl , and the constraint they have to satisfy. In each time-slot the SU can check
if the PU throughput constraint is satisfied, i.e., if Tpl — T, < Rpe,, and thus
rearrange its own transmission probability to regulate the level of interference
at the PU receiver. In other words, if the primary ARQ feedback, t, is equal to 1
and the PU message is successfully decoded at PU,.,, each SUs can compute the
PU throughput collected until this moment, 7}; if it is too high, i.e., T, > Tpf,
the SUs transmission probabilities are too small so they can increase them by
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an arbitrary small quantity (in simulation we use an increment of 0.05). On the
other hand, if t > 1, i.e., the PU is retransmitting, and the PU message is not
successfully decoded at PU,.;, each SU can check the PU throughput constraint;
if it is not satisfied, i.e., Tzf — T, > Rye,, the SUs create too much interference
at the PU receiver, so they have to decrease their transmission probability by
the same arbitrary small quantity. This kind of approach allows to rearrange
the SU access policy according to the evolution of the system.
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Figure 5.41: Hy: Average SUs sum throughput with respect to PU throughput con-
straint

Fig. 5.41 depicts the SUs sum throughput with respect to the PU through-
put constraint for varying epyy and compared with the upper bound represented
by the centralized case (MMDP). Obviously, as the PU throughput increases,
the average SUs sum throughput decreases. The gap between the performance
of H4 and the upper bound is not very large; thus, we can consider this heuristic
approach as a good approximation of the optimal decentralized case.
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Figure 5.42: H,: Transmission probabilities convergence

The offline heuristic, Hy, represents the best we can do since after a search
among all possible cases we choose the optimal transmission probabilities which
maximize the SUs sum throughput under the PU throughput constraint; the on-
line heuristic, Hy, instead is an adaptive algorithm which rearranges the trans-
mission probabilities as the system evolves with the aim to gain the higher
reward and satisfy the PU constraint. Thus, H, transmission probabilities have
to converge to the optimal ones or at least to get them as close as possible.
Fig. 5.42 depicts the evolution of a7, o3, 57 and 85 compared with the optimal
ones for varying epy. We can note that for small and high values of epy the
transmission probabilities tend to easily converge to the optimal values, while



for intermediate values the convergence is not completely reached. This clarifies
why the gap between Hy and H, is larger for intermediate values of epy; if the
SUs adopt transmission probabilities far from the optimal ones the best reward
can not be achieved with a consequent degradation of the performance.

As in H; case, it is interesting to analyze the effect of the asymmetries in
the SNR on the heuristic performance; Fig. 5.43 depicts the average SUs sum
throughput with respect to the PU throughput constraint for three specific val-
ues of s, and compares them with the symmetric case. It is important to
underline that the online heuristic is based on the rearrangement of the SUs
transmission probabilities according to the fluctuations of the PU throughput
with the aim of maximizing the channel accesses, but under the PU constraint.
In all the examined scenarios there is SU; which creates a constant average inter-
ference level at PU,., and affects the PU performance more or less in dependence
of the tightness of the constraint, then there is SU, whose SNR changes: for
YVs2p = 0.25 SU; creates an interference level almost unperceivable at PU, ., thus
it can exploit its transmitting chances more than in the symmetric case, i.e., for
vYs2p = 2, and increase the average SUs reward. Obviously, once it reaches its
maximum transmission capability there is a saturation of the SUs throughput.
For 742, > 2 the total interference caused by the SUs at PU,, is higher than
the symmetric case with a consequent degradation of the performace, in effect
as 7s2p increases SU; has to limit its accesses to the channel in order to respect
the PU constraint. We can note that the performance is almost the same for
Ys2p = 5 and ys2, = 10 until epyy < 0.6, then the performance degradation SU,
causes is more significant as its SNR increases; this is reasonable if we observe
Fig. 5.44: it clearly shows that for epy > 0.6 the degradation of PU perfor-
mance grows as sgp increases and thus SUs has to rearrange its transmitting
behavior in a different way according to the interference it creates at PU,..
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Figure 5.43: Hj asy: Average SUs sum throughput with respect to PU throughput
constraint
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Figure 5.44: Hy asy: Average PU throughput with respect to PU throughput con-
straint

Fig. 5.45 is very useful to better understand the tradeoff that affects the
heuristic performance: it depicts the average long term SUs sum throughput

with respect to the average PU throughput in the same asymmetric situations
examined in Fig. 5.43.
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Figure 5.45: H4 asy: Average SUs sum throughput-Average PU throughput tradeoff

As in the offline case, we can note that as the SNR of the interference channel,
Vs2p, decreases the performance generally improves; furthermore, it is evident
that greater SNR values allow to reach a higher average SUs sum throughput but
at price of a more significant degradation of PU performance, i.e., the tradeoff
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between what we can gain and the cost we have to pay clearly appears, whereas
in Fig. 5.43 the PU advantage due to the interference level reduction as 7,2,
decreases is not so evident.
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Figure 5.46: H4 asy: o] and BT vs vs2p

Fig. 5.46 and 5.47 depict SU;’s and SU,’s optimal transmission probabili-
ties, respectively, for the same values of s, we just considered compared with
the optimal ones in the symmetric case. As we already underlined in the offline
case, for 750, = 0.25 SU, adopts a more aggressive behavior than in the sym-
metric case, in particular for small values of epyy and if it does not know the PU
message, whereas SU; limits its accesses to the channel; on the other hand, as
Vs2p increases the SUs exchange their roles, i.e., SU; tends to limit its accesses
to the channel as SU; exploits as much as possible the transmitting chances.
In other word, there is a sort of balance of the SUs behavior: according to its
SNR SU; adopts a certain trasmitting behavior and SU;, whose SNR, does not
change, tries to balance the effects of SUy’s interference at PU,.,.

1 . . T . ‘ , 1 . . , . , . .
e TG v 83 o &4
0Bb e Y Y 7 R 4 1)) ST OOt SUUPOPO DRPION: SO @ ]
: PO : i
[a1=] NETT I Soi [ T & Q ............. 4 OB E ooyt T : 4
o0 : : : ;
o7t G : i 1 o7t ; 1
: ; G0 ; :
06t ‘ : ; : 1 06t : : ; O 1
6 1 © © : &
ATy : : : 1 ®osp & : : : : 1
: & : : :
Lo : : :
Db ; ; : i 1 Db ; : G 1
ozl a0 : & ohfor v =025 | | 03l : s} & A for g = 0.28
@ P O ebfroa =2 o Merpa=t
D2b i ; bt J D2bdid i
5 LEDS : o for Pz =8 Aot g =5
LR SIS L N B 4 LR SRS i _
b i & ehRr g =10 : . O AR e =10
R N S S S B v s s P AR5/ N N AR I B S S e
0 01 02 03 04 05 0B 07 08 09 | o 01 b2 03 04 05 06 07 08 09 1
Ry B2

Figure 5.47: Hy asy: o5 and B85 vs Ys2p

90



Fig. 5.48 offers a comparison of the performance given by the offline heuris-
tic Hy and Hs, and the online heuristic Hy.
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Figure 5.48: H; — H> — H4 comparison: Average SUs sum throughput with respect
to PU throughput constraint

If we consider the two offline heuristic, H; and Hs, the best is Hy. This
result is reasonable since the access policy proposed in H; depends on the PU
message knowledge of the SUs and thus exploits the information which the SUs
know about the state of the system, while the access policy proposed in Hy does
not exploit the PU message knowledge, which leads to inferior performance in
general.

The online heuristic curve, Hy, stays a little below the offline heuristic H1; in
particular, it shows slightly worse performance for intermediate values of epy;.
This means that the auto-rearrangement of the SUs transmission probabilities
does not allow them to completely exploit the transmitting chances in these
cases. In our opinion this is due to the fact that for intermediate epy the sys-
tem evolution affects more significantly the SUs behavior, i.e., there is more
diversification in SU transmission probabilities than when epy is high and the
SUs try to transmit as much as possible or when epy; is small and the SUs limit
their channel accesses as much as possible. In other words for intermediate val-
ues of epy the system possible changes and evolutions are more heterogeneous,
thus simulative results are more approximate.

In terms of control informations used by the heuristics, the offline policies
only exploit the knowledge of the state of the system, i.e., the primary ARQ
feedback and the PU message knowledge, while the online one is more complex,
since in each time- slot it has to evaluate the instantaneous PU throughput, 7,
and check if the PU constraint is satisfied.
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Chapter 6

Decentralize Access Policies
in a Cognitive Radio
Network with two SUs and
a Partially Observable
System

The problem to efficiently model a partially observable decentralized system is a
very hard challenge; it can not be reduced to the adaptation of a POMDP model
to a decentralized scenario because a lot of factors affect the system evolution
and the lack of information is an obstacle very difficult to overcome. As a final
contribute to our work we suggest some starting strategy which combined or re-
elaborated could offer some interesting idea for a solution to the DEC-POMDP
problem.

A first interesting paper is represented by [25] which offers a new framework
for learning without state estimation in a partially observable scenario: typically
in an MDP the value of the state of the system, s, under a specific policy, ,
can be written recursively as follows:

V7(s) =) Plalr,s)[R*(s) + > P*(s,s)-V"(s)]
acA s'eS

but in a POMDP the value of an observation, x, under a specific policy, 7, cannot
be defined in a similar form. However, the value of a state in the underlying
MDP does not change just because it is inacessible; therefore the value of an
observation, x, under a specific policy, 7, can be define as follows:

VT(z) = P(slz) - V7(s)

sES

where P7(s|z) is the asymptotic probability that the state of the underlying
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MDP is s when the observation is known to be x and can be defined as:

profay - PEDPTE) _ PEl)PT(s)

P (x) Yy es Plx]s)Pm(s")

Note that the last equation is only a definition of V™ (x) because the states are
not observable in POMDPs. The authors use a Q-learning algorithm applied
with a fixed stationary persistent exitation learning policy, i.e. a policy that
assigns a non-zero probability to every action in every state and for which the
underlying Markov chain is ergodic; in POMDPs that satisfy the assumption
that the underlying MDPs are ergodic for every stationary policy all station-
ary policies with the characteristics just illustrated are persistent exciting. In
the paper is demonstrated that in a POMDP of the type just described, if a
persistent excitation policy 7 is followed during learning, the Q-learnimg algo-
rithm will converge to the solution of the following system of equations with
probability one: Vxr € X

Q(xv a) = Z pm™ (S|l‘, a) [Ra(s) + v Z Pa(s71'/) sMaXg e A {Q(xla al)}} (61)

s€S r’eX

where P™(s|z,a) is the asymptotic probability, under policy 7, that the under-
lying state is s given that the observation-action pair is (z, a), and P%(s,z’) =
> oes P(s,8")P(2'|s"). Since the scenario we are considering is decentralized,
i.e. the SUs are independent and take their action independently to each other
on the base of their own observation of the state of the system, our approach
will consists on fixing the policy of one SU and finding the optimum policy for
the other, and viceversa. A possible way to exploit this approach can be the
following: since we aim to find the optimal policy of agent SU; assuming that
policy of agent SU; is fixed and known to agent SU;, with 4,5 € {1,2} and
i # j, we have to use equation (6.1) assuming that P™ (s|x,a) is the asymp-
totic probability, under policy 7;, that the underlying state is s given that the
observation-action pair is (z,a), and P%(s,2’) = > s P%(s,s)P(z'|s"). To
implement equation (6.1) we have to calculate previously the single compo-
nents; we assume that ¢ = a; € {0,1}, s = (¢,¢;,¢;) with ¢t € {1,...,T} and
¢i,¢; € {U K}, © = (t,¢;) is the observation on PU message knowledge of
agent SU;.

The probability that SU; observes  when the system is in state s, P(x|s),
can be calculated as follows:

Pla; = (t,U)]s = ((t.U, )] =1
P[xi:(taU”Sz((taK?(bj)] =0
Plz; = (t,K)|s = (t, K.¢;)] =1 (6.2)
Plz; = (t.K)|s = ((t.U.¢;)] =0

The instantaneous SUs sum throughput when the system is in state s and SU;
take action a, R%(s), can be computed as follows:

R?(S) = Za]-eA Ri(s’ Qi, aj)ﬂ-j (aj "rj)

(6.3)
= ZajE.A Rl(.’bz, ai,aj)wj(aj\xj)
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where R;(s,a;,a;) = R;(x;,a:,a;) since in simulations we suppose that there is
no interference between SU; trasmitter and SU; receiver.

The instantaneous PU throughput degradation when the system is in state s
and SU; take action a, C(s), can be computed as follows:

Ci(s) = 2a,eaCils,ai,a5)m;(aj|z;)

(6.4)
=2 a,ea Cil@i, ai, a5)m;(as]z;)
where C;(s,ai,a;) = pp(ar,a0) — Pp0 = Ci(xi,ai,a;) for the same reason as
before.
The transition probability from state s to s’ when SU; take action a, P%(s,s’) =
P(s']s,a), can be calculated as follows:

P (s,s") = P(s']s,a;) = Z P(s']s, ai,a)m;(aj|z;) (6.5)
a; €A

The asymptotic probability under policy m; that the underlying state is s given
that the observation-action pair of SU; is (x,a), P™ (s|z,a), can be compute in
the following way:

PTi(s|lz,a) = P™i(s|x;,a;)

_ P(x;|s,a;)P(s|la;) (66)
Zg res Pl@ils’sai) P(s'|as)
where
P(xi]s,a;) = P(x4]s) (6.7)
and P(s|a;) is I
P(sla;) = S Pl Bl
_ m;(ailz:) P(s) (6.8)

S s milasl ) P(s))

Let be s = (t, ¢1, ¢2) the actual state, s’ = (t — 1, ¢}, ¢%) the previous state and
a = (a1, az) the actions selected by the two agents in state s’; the probability
of being in state s, P(s), can be compute as follows:

Z Z (8", s)mi(ar]2)) w2 (az|s) (6.9)

s'eS ac Az A

where P?(s,s) is the transition probability from state s’ to state s under the
action pair a.

However, this procedure does not consider any constraints and thus the opti-
mum policies we can obtain are deterministic, even if we fix stochastic starting
policies at convergence the optimum policies are deterministic.

A second interesting perspective is represented by paper [28] in which the
authors demonstrate that a constrained optimization problem can often be re-
duced to one with no constraints through the introduction of parameters, called
Lagrange multipliers. They illustrates as a discrete-time Markovian system with
a finite state space, a compact action space and an average reward subject to a
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global constraint can be optimized by simple dynamic programming equations
and the use of Lagrangian multipliers; moreover, they demonstrate that there is
always a stationary optimal policy and that it can be simple (non-randomized)
or a mixed policy, i.e. a mix of two non-randomized policies. Therefore, the
solution of our problem can be divided in two steps:

1) solve the Lagrangian unconstrained POMDP problem using a suitable policy
iteration algorithm;

2) compute the optimal randomized policy as a probabilistic mixture of two
pure policies.

The problem we have to solve is the following;:

J = max, {Ega [Zs@ R(s, a)] }

(6.10)
st BT, [, Cls,a)] < ew

where R(s,a) is the SUs sum throughput for the state s = (s1,s2) and the
SUs joint action a = (a1, az), and C(s, a) is the PU throughput degradation in
the state s = (s1, $2) when the SUs take the joint action a = (a1, az). Since
the analyzed scenario is distributed, i.e., agents SU; and SU, take their action
indipendently from each other and have only a partial view of the state of the
system, the observation x, we can use the same strategy adopted before, i.e.,
first we consider the perspective of agent SU;, so we fix agent SUs stochastic
policy and try to find the optimum stochastic policy for agent SU; with the
Lagrangian procedure, then we exchange the role of the two agents and after
fixing the policy of agent SU; just found we try to find the optimum stochastic
policy for agent SUs in the same way; henceforward when we refer to action,
a, and observation, x, we intend action and observation of the agent SU; for
which we want to find the optimum policy. In the Lagrangian perspective the
problem above described can be reformulated as follows:

B*(s,a) = R(s,a) — \C(s,a) (6.11)

VM, a) = maxaeA{Z P7(slz,a) [B)‘(s, a) + Z P(s,z) - V’\(x/)] }
s€S z'€
) : (6.12)

7 (x) = argmax,c 4 {V*(z,a)} (6.13)

where, since each agent does not know the state of the system, s, but only its
own perspective, the calculation of V* depends on the actual observation of
agent SU;, . R(s,a) = R%(s) given in (6.3) and C(s,a) = C%(s) given in (6.4)
are respectively the SUs sum throughput and the PU throughput degradation
when the system is in state s = (s1, s2) and agent SU; take action a = a;, for
i € {1,2}, and P (s|z,a) is the asymptotic probability under policy 7 that the
underlying state is s given that the observation-action pair is (z,a) = (z;, a;).
Thus for every possible observation, z € X;, and SU; action , a € A;, we
have VA (z,a) and we can find the deterministic corresponding policy by policy
iteration.

Finding a policy iteration algortithm that solve problem (6.10) is anything but
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simple, beacuse the update of V*(x,a) has not to depend on the policies to
grant convergence. Supposing to have an efficient policy iteration algorithm, at
the end of this procedure we have 7 optimum associated to a certain A, thus
we can evaluate the corresponding PU throughput degradation:

Cr= > CNz)- P(x) (6.14)
zeX;
where N
)= 3 (3P lwa) - C(s) ) male) (6.15)
acA; seS
and

P(z) = ZP(CC|S) - P(s) (6.16)

ses
where C*(s), P(z|s), P(s) are given in (6.4), (6.2) and (6.9), respectively.

Since V* and C* are monotone non-increasing function in A (as demon-
strated in [28]), we can find two different values of A (A1 and Az), such that
the corrisponding PU throughput degradations (C*' and C*2) are respectively
CM > ey and C*? < ey in the most strictly way, i.e., A; is the greater value
of A for which C* > ey and \g is the smaller value of \ for which C*? < ey,
where ey is the constraint we have to satisfy in the optimization procedure.
The optimum policy we expected to find is an optimal constrained policy in the
form:

pi (@) = (@) + (1 - Qu*(2) Va € X; (6.17)

where ,uf‘l and pf‘z are respectively the trasmission probability for A1 and Ao
associated to the policy obtained by policy iteration, ¢ € [0,1] and it has to
satisfy CMZ (x) = ew Va € X; that can be calculate as follows:

Cur(v) = Z (Z P (s|z,a) - C“(s))ﬁf(am), Vo € X; (6.18)

acA; seS

where 7} is the SU;’s optimum stochastic policy we aimed to find and is related
to u; simply by

‘(ale) 7 (0lzr) =1-pf(x), VrelX;
7} (alx) =
m () = pi(e), VeeX,

The last approach we suggest is the optimal one from the analitical point
of view: an optimization procedure based on belief states. A POMDP model
can be formally defined by the 6-tuple = = (S, A, Z,R,T,0) where: S is
the state space, A is the action set, 7 is the transition probability from one
state to another given the action, Z and O are the observation set and related
probabilities and R generalizes the COMDP rewards to add a dependency on
the observation. As in any MDP our goal is to find the optimal policy and the
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only way for a policy to specify the truly optimal behavior is to remember the
entire history of the process. In a POMDP it is possible to derive a summary
statistic for the entire history of the process, called information state or belief
state, that unlike the entire history is of fixed dimension. A belief state is a
sufficient statistic for the history, which means that optimal behavior can be
achieved using the belief state in place of the history. A belief state, b, is simply
a probability distribution over the set of the states, I1(S), with b(s) being the
probability of occupying state s; thus, we can define B = II(S) to be the space of
all probability distributions over S. A single belief state can capture the relevant
aspects of the entire previous history of the process and more importantly can
be easily updated after each transition to incorporate one additional step into
the history.

A starting point we suggest for a complete formulation is the following: assuming
that SU; has a fixed stochastic policy, m;, and we want to find SU;’s optimal
stochastic policy, with 4,5 € {1,2} and i # j, our state is spypp = (¢, ¢i, @) =
(x;, ¢;) in underlay MDP, where z; = (¢,¢;) and ¢;,¢; € & = {U,K}. The
unknow part of the state is ¢;, while the action selected by SU; given x; =
(t,¢;) is known to SU;, since it knows SU;’s fixed stochastic policy. Hence,
in new model, we can use the belief on ¢; and our new state is given by s =
(t,¢iypr(¢j|hi)) = (xl,bl((lﬁ])), where bl((]ﬁj) = PT(¢j|hi) and hi is the hiStOI‘y
of previous actions and observations in SU;. The new MDP model for SU; is a
tuple (S P, R;, CZ), where S is the state space, P is the transition probability
matrix, RZ is the instantaneous reward function and CZ is the instantaneous cost
function.

In order to characterize our new model we need to find a formula which given
a belief state vector b;(¢;) computes the resulting belief state, bfz; (¢}), after
a transition in the process, then we have to compute P, R;, C;. Once we
have all this elements, since for every unichain Constrained Markov Decision
Process there exists an equivalent Linear Programming (LP) formulation, where
an MDP is considered unichain if it contains a single recurrent class plus a
(perhaps empty) set of transient states. The equivalent LP problem of the
problem we want to solve is the following:

maxzz Z Ri(s,a;)z(as, s) (6.19)

seS a; €A

s.t. Z Z Ci(s,a:)2(ai, s) < ew (6.20)

SES aiE.A

Z 2(a;,s') — Z Z P(s'|s,a;)2(a;,s) =0 Vs €8 (6.21)

a; €A s€S a;€EA

SN zais) =1 (6.22)
SES a;EA

2(a;,8) >0 VseS, a; €A (6.23)

(6.24)
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The relationship between the optimal solution of LP problem (6.24) and the
optimal solution to our problem is obtained as follows:

2(a;i,zi,bs) ;
— if >, ca2(ai,zi,b;) >0
7T7,(al|xz7bl) = ZaiEAz(ai’Ii’bi)7 @< v
arbitrary, otherwise

The development of an efficient DEC-POMDP formulation based on belief states
remain an open research problem that could be investigated in future works.
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Chapter 7

Conclusions

Cognitive radio represents an innovative and intelligent way to exploit the fre-
quency spectrum and offers a lot of idea for interesting future research work.
In this thesis work we focus on the decentralized access policies design in a CR
network with one PU and two independent SUs under a primary ARQ process;
exploiting FIC we extend previous research works which considered only the
centralized scenario and/or a network with only one secondary agent. The de-
centralized scenario is very actual and recurrent in many applications and real
contests, thus our work can be considered as a little stone in the wall of future
reasearch on cognitive radio network. Cognitive radio represents a very hard
challenge for complexity, lack of information, problems in system modelling and
expecially in analytical formulation; for these reason we concentrate our efforts
on the decentralized heuristic policies design. We suggest some interesting of-
fline and online access strategies and we point out that in such a scenario with
independent secondary users characterized by the same transmission parame-
ters a symmetric approach gives good results very closed to the optimal ones.
Since the only partial knowledge of the state of the system represents a crucial
element which affects significantly the SUs performance, we show how impor-
tant could be exploiting this information in the development of a good channel
access strategy. Finally, we point out the lack of an efficient analytical formu-
lation of the DEC-POMDP problem and suggest some starting point for future
research work, like Q-learning exploitation, Lagrangian multipliers utilization
and formulation based on belief states. Cognitive radio represents a continuous
challenge and thus a rich inspiration source for future research works: in addi-
tion to the development of a correct analytical formulation, another interesting
field to investigate is the multiple CR scenario, i.e., to study how the growth in
SUs number affects the performance of system and thus design suitable access
policies which let to efficiently employ the spectrum bands.
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Appendix A

MATLAB Code

In this appendix we report some fragment of the Matlab code developed to
implement the access policies proposed.

A.1 DecMmdp.m

% ..Transmission paramiters initializationm..
% T = maximum number of primary transmission
% Ns = cardinality of states space

% Na = number of possible actions

% gammaP = max power of PU

% gammaSlimax = max power of SU1

% gammaSimin = min power of SU1

% gammaS2max = max power of SU2

% gammaS2min = min power of SU2

% alphaBarS1S2 = ch. coeff. from SUl to SU2

% alphaBarS2S1 = ch. coeff. from SU2 to SU1

% alphaBarS1S1 = ch. coeff. from SU1l to SU1

% alphaBarS2S2 = ch. coeff. from SU2 to SU2

% alphaBarS1P = ch. coeff. from SUl to PU

% alphaBarS2P ch. coeff. from SU2 to PU

% alphaBarPS1 ch. coeff. from PU to SU1

% alphaBarPS2 = ch. coeff. from PU to SU2

% alphaBarPP = ch. coeff. from PU to PU

% gammaPS1 = average SNR on ch. PUtx->SUlrx;
% gammaPS2 = average SNR on ch. PUtx->SU2rx;
% gammaPP = average SNR on ch. PUtx->PUrx;

% R_P = PU tx rate

% gammaS1 = power of SU1

% gammaS2 = power of SU2

% R_SK1 = SU1l tx rate if PU msg known

% R_SK2 = SU2 tx rate if PU msg known
% R_SU1 = SU1 tx rate if PU msg unknown
% R_SU2 = SU2 tx rate if PU msg unknown

% rhoP = PU outage on ch. PUtx->PUrx
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% rhoPS1 = PU outage on ch. PUtx->SUlrx
% rhoPS2 = PU outage on ch. PUtx->SU2rx
% rhoS1K = SU1 outage when PU msg known
% rhoS2K = SU2 outage when PU msg known
% rhoS1U = SU1l outage when PU msg unknown
% rhoS2U = SU2 outage when PU msg unknown

EpsPU = [.01 .05 .08 .1 .13 .15 .18 .2 .25 .3 .4 .4861 .6 .7
Nsim = length(EpsPU);

% Optimization procedure..

for ns = 1:Nsim

fprintf (’Optimization for epsPU=)f..\n’,EpsPU(ns));

epsPU = EpsPU(ns) ;

epsW = (1-rhoP(1,1))*epsPU; ¥ PU thr degradation constraint

ThrSmax = 0;
ThrPmin = O;
pilopt = zeros(Na,Ns);
pi2opt = zeros(Na,Ns);
Nit = 1000;
for iter = 1:Nit

if mod(iter,1000)==0

fprintf (’Simulation #Jd..\n’,iter);

end
ThrS = 0;
ThrP = 0;

% initialization of SU1’s policy
pil = zeros(Na,Ns);
mul = zeros(1,Ns);
% initialization of SU2’s fixed policy
pi2 zeros(Na,Ns) ;
mu2 = zeros(1,Ns);
for s = 1:Ns
mu2(s) = random(’unif’,0,1);

end
for s=1:Ns
for j=1:Na
if j==
pi2(j,s) = 1-mu2(s);
else
pi2(j,s) = mu2(s);
end
end
end
stop = 0;

pil_old = zeros(Na,Ns);
pi2_old = zeros(Na,Ns);
round = 1;
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while(stop~=1)

if round==10
break;

end

foundl = O;

% LP problem formulation for SU1L..

% transition probability from state s to state sprim

% when agent SUl1 selects action al=i (P"{al}(s,s’)=Pr(s’l|s,al))
Ptranl = zeros(Ns,Ns,Na);

for i = 1:Na

for s = 1:Ns
for sprim = 1:Ns
PR = 0;

for j = 1:Na
PR = PR+Ptran(s,sprim,i,j)*pi2(j,s);
end
Ptranl(s,sprim,i) = PR;
end
end

end
% reward when SU1 is in state s
% and selects action al=i (R"{al1}(s)=R1(s,al))
R1 = zeros(Ns,Na);
for i = 1:Na

for s = 1:Ns

Ri(s,i) = rwdl(s,i,mu2);

end
end
% cost in terms of PU thr degradation when SUl is in state s
% and selects action al=i (C~{a1}(s)=Cil(s,al))
C1 = zeros(Ns,Na);

for i = 1:Na
for s = 1:Ns
Cl(s,i) = costl(s,i,mu2);
end
end
Ts = zeros(Ns*Na,1); % SUs reward
for s = 1:Ns

for i = 1:Na

Ts((s-1)#*Na+i) = R1(s,i);
end
end
Tc = zeros(1,Ns*Na); % PU thr degradation(cost)
for s = 1:Ns
for i = 1:Na
Tc((s-1)*Na+i) = Ci1(s,1i);
end
end

DeltaMinusP = zeros(Ns,Nsx*Na);
for sprim = 1:Ns
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for s = 1:Ns
delta = 1*(s==sprim)+0*(s~=sprim);
for i = 1:Na
DeltaMinusP(sprim, (s-1)*Na+i) = DeltaMinusP(sprim, (s-1)*Na+i)
+(delta-Ptranl(s,sprim,i));
end
end
end
sumZ = zeros(1,Ns*Na);
for s = 1:Ns
for i = 1:Na
sumZ (1, (s-1)*Na+i) = 1;
end
end
Aeqg=[DeltaMinusP;sumZ] ;
beq=[zeros(Ns,1);1];
1b=zeros (Ns*Na,1);
options=optimset (’LargeScale’,’on’,’Simplex’,’off’,’Display’,’off’);
[z,fval,exitflag,output,lambda]=linprog(-1*Ts,Tc,epsW,Aeq,beq,1b, [], [],options);
if length(z)==0
break;
end
pil_old
for s =
sum

pil;
:Ns
03
for i =

o=

:Na
sum+z ((s-1)*Na+i) ;

[

sum
end
if sum>0
for i = 1:Na
pil(i,s) = z((s-1)*Na+i)/sum;
if i==
mul(s) = pil(i,s);
end
end
else
pil(l,s) = random(’unif’,0,1);
pil(2,s) = 1-pil(1,s);
mul(s) = pil(2,s);
end
end
if exitflag==
foundl = 1;
elseif exitflag==-2
fprintf (’No feasible solution found!\n’);
end
found2 = 0;
% ..LP problem formulation for SU2 identical to SU1l case..
if exitflag==
found2 = 1;
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elseif exitflag==-2

fprintf (’No feasible solution found!\n’);

end

% check stopping condition..

eql = 0;
eq2 = 0;

for s 1:Ns

if abs(pil_old(1,s)-pi1(1,s))<0.001

eql = eql+l;
end

if abs(pi2_old(1,s)-pi2(1,s))<0.001

eq2 = eq2+1;
end
end
if (eql==Ns) && (eq2==Ns)

if foundl==1 && found2==

% Average SUs sum throughput calculation:
[ThrS,ThrP] = thr(pil,pi2,Ptran);

stop = 1;
if ThrS>ThrSmax
ThrSmax = ThrS;
ThrPmin = ThrP;
pilopt = pil;
pi2opt = pi2;
end
else
break;
end
else
round = round+1;
end
end
end

end

end

A.2 System evolution in CR network simulator

% ..Transmission paramiters initialization (as in DecMmdp.m) ..

% Rp = PU tx rate
% R1 = SU1 tx rate
% R2 = SU2 tx rate
% al =
% a2 =

SU1 action in current time-slot
SU2 action in current time-slot
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% fpp = fading coeff. on ch. PUtx->PUrx
% fpsl = fading coeff. on ch. PUtx->SUlrx

% fps2 = fading coeff. on ch. PUtx->SU2rx
% fslp = fading coeff. on ch. SU1tx->PUrx
% fs2p = fading coeff. on ch. SU2tx->PUrx

% fslsl = fading coeff. on ch. SU1ltx->SUlrx

% fs1s2 = fading coeff. on ch. SU1tx->SU2rx
% £s2s2 = fading coeff. on ch. SU2tx->SU2rx
% fs2s1 = fading coeff. on ch. SU2tx->SUlrx

% t = primary ARQ feedback
% S1k = SU1’s knowledge of PU msg
% S2k = SU2’s knowledge of PU msg

if al==0 && a2==0 ¥ only PU tx
snrPP = gammaPP*fpp;
snrPS1 = gammaPS1x*fpsl;
snrPS2 = gammaPS2*fps2;
if Rp<=log2(1+snrPP) 7 PU success
succPU = succPU+1;
t =1;
Sik =
S2k =
else
if t==
t =1;
Sik =
S2k
else
t = t+1;
if S1k==0
if Rp<=log2(1l+snrPS1)
Sik = 1;
end
end
if S2k==0
if Rp<=log2(1+snrPS2)
S2k = 1;
end
end
end
end
elseif al==1 && a2==0 Y, PU and only SU1l tx
% SU1l tx success/insuccess
if S1k==0
R1 = R_SU1l(al+l,a2+1);
snrPS1 = gammaPS1*fpsi;
cP = (Rp<=log2(1+snrPS1));
if cP==
snrS1S1 = gammaS1S1(al+1l)*fsisi;
cS1 = (Ri<=log2(1+snrS1S1));

0;
0;

0;
0;
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cPS1 = ((R1+Rp)<=log2(1+snrS1S1+snrPS1));
if cS1==1 && cPS1==1 % SU1 success;
succSU1l = succSU1+1;
thrS1 = thrS1+R1;
Sik = 1;
end
elseif cP==0
snrS1S1 = (gammaS1S1(al+1)*fsisl)/(1+gammaPS1*xfpsl);
cS1 = (R1<=log2(1+snrS1S1));
if ¢S1==1 Y, SUl success
succSU1l = succSU1+1;
thrS1 = thrS1+R1;
end
end
if S1k==0
snrS1S1 = gammaS1S1(al+1l)*fsisi;
cS1 = (R1<=log2(1+snrS1S1));
if cS1==0
snrPS1 = (gammaPS1*fpsl)/(1+gammaS1S1(al+1)*fsisl);
cP = (Rp<=log2(1l+snrPS1));
if cP==
Sik = 1;
end
end
end
elseif Si1k==
R1 = R_SKi(al+l,a2+1);
snrS1S1 = gammaS1S1(al+l)*fsisl;
if R1<=log2(1+snrS1S1) % SU1 success
succSU1 = succSU1+1;
thrS1 = thrS1+R1;
end
end
% PU tx success/insuccess
snrPP = (gammaPP*fpp)/(1+gammaS1P(al+1)*fsip);
snrPS2 = (gammaPS2*fps2)/(1+gammaS152(al+l)*£fsls2);
if Rp<=log2(1+snrPP) 7% PU success
succPU = succPU+1;
t =1;
Sik = 0;
S2k = 0;
else

if Rp<=log2(1+snrPS2)
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S2k = 1;

end
end
end
end
elseif al==0 && a2==1 Y, PU and only SU2 tx
% SU2 tx success/insuccess
if S2k==0

R2 = R_SU2(al+1,a2+1);
snrPS2 = gammaPS2*fps2;
cP = (Rp<=log2(1+snrPS2));
if cP==
snrS5252 = gammaS2S2(a2+1)*fs2s2;
cS2 = (R2<=log2(1+snrsS2S2));
cPS2 = ((R2+Rp)<=log2(1+snrS282+snrPS2)) ;
if ¢S2==1 && cPS2==1 %, SU2 success
succSU2 = succSU2+1;
thrS2 = thrS2+R2;
S2k = 1;
end
elseif cP==0
snrS252 = (gammaS2S52(a2+1)*fs2s2)/ (1+gammaPS2*fps2) ;
cS2 = (R2<=log2(1+snrS2S82));
if ¢S2==1 % SU2 success
succSU2 succSU2+1;
thrS2 = thrS2+R2;
end
end
if S2k==0
cS2 = (R2<=log2(1+gammaS252(a2+1)*fs2s2));
if ¢S2==0
snrPS2 = (gammaPS2*fps2)/(1+gammaS252(a2+1)*fs2s2);
cP = (Rp<=log2(1+snrPS2));
if cP==
S2k = 1;
end

end
end
elseif S2k==
R2 = R_SK2(al+l,a2+1);
snrS5252 = gammaS2S2(a2+1)*fs2s2;
if R2<=log2(1+snrS2S2) 7% SU2 success
succSU2 = succSU2+1;
thrS2 = thrS2+R2;
end
end
% PU tx success/insuccess
snrPP = (gammaPP*fpp)/(1+gammaS2P (a2+1)*fs2p);
snrPS1 = (gammaPS1xfpsl)/(1+gammaS2S1(a2+1)*£fs2s1);
if Rp<=log2(1+snrPP) % PU success
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succPU = succPU+1;
t =1;
Sik = 0;

if Rp<=log2(1+snrPS1)
Sik = 1;
end
end
end
end
elseif al==1 && a2==1 7 PU and both SUs tx
% SU1l tx success/insuccess
if S1k==0
R1 = R_SUl(al+1,a2+1);
snrPS1 = (gammaPS1*fpsl)/(1l+gammaS2S1(a2+1)*fs2s1);
cP = (Rp<=log2(1+snrPS1));
if cP==
snrS5151 = (gammaS1S1(al+l)*fsisl)/(1+gammaS2S1(a2+1)*£fs2s1);
cS1 = (R1<=log2(1+snrS1S81));
cPS1 = ((R1+Rp)<=log2(1+snrPS1+snrS1S1));
if cS1==1 && cPS1==1 %, SUl success
succSU1l = succSU1+1;
thrS1 = thrS1+R1;
Sik = 1;
end
else
snrS1S1 = (gammaS1S1(al+1)*fslsl)/(1+gammaPS1*fpsil+gammaS2S1(a2+1)*£fs2s1);
cS1 = (Ri<=log2(1+snrS1S1));
if ¢S1==1 %, SUl success
succSU1l = succSU1+1;
thrS1 = thrS1+R1;
end
end
if S1k==0
snrS5181 = (gammaS1S1(al+1)*fsisl)/(1+gammaS2S1(a2+1)*£fs2s1);
cS1 = (Ri<=log2(1+snrS1S1));
if cS1==0
snrPS1 = (gammaPS1*fpsl)/(1l+gammaS1S1(al+1)*fsisl+gammasS2S1(a2+1)*£fs2s1);
cP = (Rp<=log2(1+snrPS1));
if cP==
Sik = 1;
end
end
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end
elseif Silk==
R1 = R_SKi(al+l,a2+1);
snr5151 = (gammaS1S1(al+l)*fsisl)/(1+gammaS2S1(a2+1)*£fs2s1);
if R1<=log2(1+snrS1S1) % SU1l success
succSU1 = succSU1+1;
thrS1 = thrS1+R1;
end
end
% SU2 tx success/insuccess
if S2k==0
R2 = R_SU2(al+l,a2+1);
snrPS2 = (gammaPS2*fps2)/(1+gammaS152(al+1)*fsls2);
cP = (Rp<=log2(1+snrPS2));
if cP==
snrS5252 = (gammaS2S2(a2+1)*fs2s2)/(1+gammaS152(al+l)*fs1s2);
cS2 = (R2<=log2(1+snrS2S82));
cPS2 = ((R2+Rp)<=log2(1+snrPS2+snrS2S2));
if cS2==1 && cPS2==1 7 SU2 success
succSU2 = succSU2+1;
thrS2 = thrS2+R2;
S2k = 1;
end
else
snr5252 = (gammaS2S52(a2+1)*fs2s2)/(1+gammaPS2*fps2+gammaS152(al+1)*fsls2) ;
cS2 = (R2<=log2(1+snrS282));
if c82==1 ¥ SU2 success
succSU2 = succSU2+1;
thrS2 = thrS2+R2;
end
end
if S2k==0
snrS252 = (gammaS2S2(a2+1)*fs2s2)/(1+gammasS152(al+l)*fs1s2);
c82 = (R2<=log2(1+snrS2S82));
if ¢82==0
snrPS2 = (gammaPS2+fps2)/(1+gammaS2S2(a2+1)*fs2s2+gammasS1S2(al+l) *fs1s2);
cP = (Rp<=log2(1+snrPS2));
if cP==
S2k = 1;
end
end
end
elseif S2k==
R2 = R_SK2(al+l,a2+1);
snr852S2 = (gammaS2S52(a2+1)*fs2s2)/(1+gammaS152(al+1)*fsl1s2);
if R2<=log2(1+snrS52S2) I SU2 success
succSU2 = succSU2+1;
thrS2 = thrS2+R2;
end
end
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% PU tx success/insuccess

snrPP = (gammaPP*fpp)/(1+gammaS1P(al+1)*fslp+gammaS2P (a2+1)*£fs2p);

if Rp<=log2(1+snrPP) ¥ PU success
succPU = succPU+1;
t =1;
Sik = 0;
S2k = 0
else
if t==

)

end

A.3 H,: transmission probabilities rearrangement

% ..Transmission paramiters initialization (as in DecMmdp.m)..

% alphal = SUl tx prob when PU msg known
% alpha2 = SU2 tx prob when PU msg known
% betal = SU1 tx prob when PU msg unknown
% beta2 = SU2 tx prob when PU msg unknown
% Rp = PU tx rate

% t = primary ARQ feedback

% S1k = SU1’s knowledge of PU msg

% S2k = SU2’s knowledge of PU msg

% phil = S1k in current time-slot

% phi2 = S2k in current time-slot

if Rp<=log2(1+snrPP) % PU success
succPU = succPU+1;
% E4 tx prob. updating
if t==
Tp = (Rp*succPU)/n;
if Tp>Tpl % too much PU success
if phil==
if alphal<0.96
alphal = alphal+0.05;
else
alphal = 1;
end
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else
if betal<0.95
if (betal+0.05)<alphal
betal = betal+0.05;
end
else
if alphal==
betal = 1;
end
end
end
if phi2==
if alpha2<0.96
alpha2 = alpha2+0.05;
else
alpha2
end
else
if beta2<0.95
if (beta2+0.05)<alpha?2
beta2 = beta2+0.05;
end
else
if alpha2==
beta2 = 1;
end

1

end
end

S2k
else
% E4 tx prob. updating
if t>1
Tp = (Rp*succPU)/n;
if (TpI-Tp)>Rp*epsW % too much SUs interference
if phil==1
if (alphal>0.05) && ((alphal-0.05)>betal)
alphal = alphal-0.05;
end

]
o

else
if betal>0.05
betal = betal-0.05;
else
betal = 0;
end
end
if phi2==
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if (alpha2>0.05) && ((alpha2-0.05)>beta2)
alpha2 = alpha2-0.05;
end
else
if beta2>0.05
beta2 = beta2-0.05;
else
beta2 = 0;
end
end
end
end
if t==

ot
O |

1

wn

1
2
else
t = t+1;
if S1k==0
if Rp<=log2(1+snrPS1)
Sik = 1;
end
end
if S2k==0
if Rp<=log2(1+snrPS2)
S2k = 1;
end
end
end
end

0;
0

0]

’
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