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Abstract

The SIS model is a stochastic double-state process, valuable to represent
the epidemic spreading within idealized populations of interacting individu-
als. Its exact mathematical formalization has been one of the goals of recent
research on dynamical processes running on networks. In particular, investi-
gations has focused on graphs characterized by highly heterogeneous degree
distributions and short average distances between nodes. Such architec-
tures are very common in nature and are known with the name of complex
networks. Besides, in the thermodynamic limit the SIS model exhibits an
absorbing phase transition from a regime of short-lived active contagion to
a stationary state with constant non-null density of infective individuals.
Critical features - such as finite size scaling - can be explored thanks to
traditional phase transitions tools, inherited from related non-equilibrium
processes defined on a lattice.
Novel developments in the study of the SIS model on networks concern struc-
tures wherein a few strongly connected hubs join a large multitude of periph-
eral nodes. Under such circumstances, it has been shown that the adjacency
matrix - which is the mathematical representation of connections pattern -
undergoes a localization transition, akin to localization in condensed-matter
systems. Theoretical investigations suggest that a dynamical consequence
is the perpetual outliving of infections within a finite number of individu-
als, vanishing in the large size limit. Here we inspect these predictions by
means of a numerical approach applied on networks with uniform connec-
tivity over all nodes with the exception of a single hub. The configuration
model is exploited to randomly build ensembles of graphs, while a contin-
uous time algorithm simulates the SIS dynamics. Findings partially agree
with analytical conjectures. Indeed, a double peaked epidemic susceptibil-
ity is observed, indicating a modified transition occurring in two stages:
by stepwise increasing the infection rate, a contagion outbreak in the hub
neighbourhood anticipates the usual global transition. However, the double
peak scenario is not guaranteed by the mere presence of the hub, but it
turns out to be dependent on nodes degree relationships. This fact reveals
a competition between the hub and the rest of the network in the disease
propagation. Moreover, the precise expected threshold for the localization
transition is not obeyed by simulation data.
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As additional computational aspect, we analyze the same typology of net-
work through a second order parameter, recently claimed to be more ef-
ficient than susceptibility. The quantity under scrutiny is the life span of
non-exploding realizations of the infection process. Results indicate that it
is sensitive to the localization transition, but not able to furnish any useful
information regarding the competition between hub and network. Neverthe-
less, we take advantage of this method to verify that the instability brought
by the hub is actually localized within a restricted number of nodes.
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Introduction

The complex network theory is nowadays understood as a paradigm for stud-
ies on emergent phenomena from the interaction of agents in a system. With
the advancement on computer processing and storing of large amounts of
data - from technological and genetic, as well as socio-economics databases
- this theory has gained a strong interdisciplinary character attracting re-
searchers from numerous fields. In particular, the investigation on dynamical
processes occurring on these structures is an issue of central importance in a
broad spectrum of knowledge, ranging from physics and biology to computer
and economic sciences. In the last decades, a big impulse was given to the
development of a theoretical framework capable to describe and make pre-
dictions on this interdisciplinary subject. All systems of interest consist of
many elements interacting together, hence the proper formalism was found
in graph theory: in mathematics and computer science, a graph is the for-
mal representation of a network, made of abstract entities called nodes (or
vertices) connected by pairwise relations called edges. Moreover, several ty-
pologies of real networks are made of very large systems, whose macroscopic
behaviour cannot be understood from elementary features. This fact has fa-
vored the use of techniques inherited from statistical physics, which properly
capture the connection between microscopic dynamic evolution and collec-
tive phenomena. Such instruments were applied to a variety of real world
situations and constitutes the foundation of a conspicuous amount of re-
search. Hot topics are, for instance, epidemic models [1][3][7][23], random
walks [3], percolation [1][3][7][23], synchronization [3][7][23], and game the-
ory models [3].
In particular, epidemic models touch a wide variety of applications. Ex-
amples are the disease contagion within a population, the virus programs
diffusion throughout a computer network, the spreading of ideas and habits
within a social group, and more. Epidemic phenomena such as these can be
efficiently represented within a graph formalism and modeled according to
specific aspects of interest. In the case of a human population, nodes may
represent individuals - or groups of individuals - and links are the channels
through which an infection can pass from one to another - air transmission,
physical contact or others. In alternative, one can think of nodes as com-
puters and edges as cables and telephone lines, to consider the propagation
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of virus programs.
A typical property of epidemics is their ability in periodically manifesting:
they can have an outbreak, grow, vanish and manifest again. A useful tool
is then provided by the SIS model. Within the SIS model, the complex
scenario of disease transmission, progression or regression is reduced to a
double state framework: the possible states that each individual can as-
sume are only susceptible and infective. An infective individual transmits
the infection to all other individuals he interacts with, at a certain infection
rate, and recovers spontaneously at a certain recovery rate. Vertices evolve
by becoming infective, then turning again susceptible and so forth. This
stochastic chain explains the name of the model. However, though the sim-
plicity of its rules, it is still not fully understood and lacks of an exhaustive
mathematical description.
The main parameter of the model is the reproductive number, that is the
ratio between the infection and the recovery rates. It determines whether
an initial seed of contagion leads to en epidemic outbreak or not: below
a particular value of the reproductive number the disease quickly dies out.
Above, instead, the system may enter in a steady state in which a finite frac-
tion of vertices remains permanently infected. This critical value is called
epidemic threshold. The passage between the two regimes is associated to an
absorbing phase transition and shares many features with other transitions
in completely different systems. In particular, SIS model belongs to the same
universality class of directed percolation model [19][20]. This latter process
was conceived to simulate the diffusion of agents through random media,
and thus it is traditionally studied on lattices. Later on, it was applied also
on networks to study the resistance of particular configurations of graphs to
attacks and failures which can compromise some nodes or links. Physics of
phase transitions acquires, in this context, a key role in the comprehension
of dynamic processes in network science.
Two very common features in real networks are the power-law connectivity
distribution of nodes - which translates in a topological absence of scale -
and the small-world structure - i.e. high node clustering and short average
distance between vertices. They have been verified both for the Internet,
cellular networks and for smaller systems as scientific collaborations nets,
plus many others [6]. The impressive universality of these features led to
an intensive research on scale-free and small-world graphs [5][9][11][12][13].
In particular, recent findings spread light on the role of hubs, namely nodes
with strongly large connectivity with respect to the average. Depending on
topological properties of the network, it has been shown that hubs may lead
to the outliving of infections indefinitely in time, localized within a restricted
number of individuals. This fact finds a practical confirmation in the surviv-
ing of computer viruses for long periods of time - even years - in a very low
density [32]. Further investigations are thus required to comprehend which
factors lead to the outbreak or to the extinction of an epidemic.
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Objectives

The first aim of this project is to verify analytical predictions on the role of
hubs in epidemic diffusion. In the specific, recent studies [15][16] claim the
possibility of a localization transition in networks, analogous to localization
in disordered condensed-matter physics. Spectral analysis reasonings pre-
dict that this fact would spoil the traditional double phase scenario, bringing
an intermediate phase of low density stationary contagion. In this context,
hubs would act as centers of localization of the disease. However, such pre-
dictions have not been accurately verified yet.
As a second aim, we focus on computational strategies devoted to the deter-
mination of epidemic thresholds. A new technique was recently proposed,
building a parallelism between the duration of contagion process realiza-
tions and the size of clusters in percolation [31]. The average life span of
non-enduring realizations is thus indicated as more efficient order parameter
of the transition. The efficiency of this method is put to the test, both in
homogeneous and heterogeneous environments.
At the purpose of fathoming the complexity or real networks, it can be in-
structive to reduce the problem and explore simple but representative struc-
tures. We thus concentrate on regular graphs - i.e. graphs with constant
connectivity on all vertices - with a single embedded hub of large connectiv-
ity. The phase transition is computationally studied around the epidemic
threshold, whose estimation is achieved through the measure of fluctua-
tions in the fraction of infective nodes. Their average value in complex
networks epidemiology is known as susceptibility. Such technique belongs
to traditional phase transition tools, used - for instance - in magnetic sys-
tems [19][20][23] and, recently, in the contact process on scale-free networks
[23][27]. The measure is repeated for different vertex connectivities and for
growing sizes of networks, in order to find a route to the thermodynamic
limit. In addiction, average life span measures are performed on fully regular
networks and regular networks with an additional hub, in order to make a
comparison with the susceptibility method and gain an overall perspective
on the localization transition.
All results are discussed embracing both network theory and phase transi-
tions theory, trying to get deeper into the understanding of epidemic thresh-
olds, which is still a pressing challenge in the field of network science.
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Chapter 1

Fundamentals of complex
networks

Complex networks benefit of a self-consistent mathematical
formalization, able to represent a broad variety of real
systems. Key instruments are macroscopic quantities -
taking the form of statistical distributions or matrices - as
well as variables referring to single vertices or nodes, like
centrality.

A network is a group of interconnected elements. Ordinary experience
tells us that we can build a network starting from physical entities such as
people, objects, or even both combined together. They are usually joined by
relationships of exchange or sharing of resources or information. The world
where we live in contains plenty of different typologies of networks - both in
nature and in human civilization - and many systems of scientific interest
display this structure.
In this highly technological age, the first example one is brought to think
about is the World Wide Web. The bulk of web addresses we daily use are
interconnected by hyperlinks in such a way to allow the navigation on the
web, jumping from a web page to the other. Doing a research on Google or
clicking on a page link means to move from a node of the net to another.
Under this untouchable web, a physical network lies - the Internet - made
of computers and calculation centers scattered on the globe and put into
contact by cables and telephone lines. Data packages travel all through this
network to make people access to information. It is easy to understand how
optimization of data transport and counter-strategies to attacks or damages
at parts of the global structure are important issues.
Considering the natural world, a very important type of nets are biochem-
ical networks. They are chains of intracellular interactions intervening in
cellular metabolism, in the regulation of genetic expression and in signal
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transduction. The whole set of pathways constitutes an intricate web of
interactions between macromolecules and other chemical compounds, whose
reconstruction and deciphering are fundamental to comprehend the com-
plexity of cellular systems. Changing the scale, one can find nets also in
ecology. An ecological network is the set of all species of an ecosystem and
interactions between them. Studying that, it becomes possible to under-
stand the origin of some habits in animals or the dynamics leading to the
extinction of a species, or again to quantify phenomena concerning energy
and carbon flow.
In all cases, it is possible to study the nature of single elements of the net-
work - how a computer works or how an organism behaves - or the nature of
the interactions - the communication protocols used on the Internet or the
dynamics of human friendship. In alternative, it is possible to concentrate
on the pattern of the interconnections. Data on the Internet, for instance,
follow routes dictated by the specific architecture of the web, from which
depends the delivery efficiency and speed. In the same way, connections in a
social network influence how people gather information and form opinions.
This third aspect can then have an essential role in the operating principles
of a system.
A systematic investigation on networks - in mathematical jargon called
graphs - requires proper tools. From an abstract point of view, networks
are studied as sets of nodes - or vertices - connected by links called edges.
This work starts with a survey of the basic mathematical instruments which
will be useful in the following.
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Figure 1.1: A small network composed by eight nodes and nine edges.
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1.1 The adjacency matrix

The first useful thing when dealing with networks is to find a comfortable
manner to handle and work with the multitude of nodes and edges. In this
sense, one needs an appropriate representation. Trivially, the simplest way
to do it is with points and lines, as in Figure 1.1. In the early days of graph
theory, this was also the only way. However, it is likely to have a very high
number of elements to draw - for example, the WWW reaches millions of
nodes (see Picture 1.4). The picture becomes then confused and any kind
of analysis unfeasible.
A more efficient tool is the matrix representation: given a graph with N
nodes, the adjacency matrix A is defined as the N ×N matrix whose non
diagonal elements Aij correspond to the number of links between two nodes
i and j. In the majority of situations, only an edge is present between two
vertices, so A contains only 0 and 1. For example, the adjacency matrix of
the graph in Figure 1.1 is

A =



0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 1 1 0 0
0 1 1 0 0 1 0 0
0 0 1 0 0 0 0 0
0 1 1 1 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0


In case that more than one edge is present between a couple of nodes, they
are collectively called multiedge. Moreover, it can also happen to find a link
connecting a node to itself. In this case this link is called self-edge or self-
loop. The diagonal elements Aii are twice the number of self-loops attached
to the node i. For example, for the graph on the right in Figure 1.2 is
represented by

A =



1 0 0 0 0 0 0 0
0 0 0 1 0 3 0 0
0 0 0 2 1 1 0 0
0 1 2 0 0 1 0 0
0 0 1 0 0 0 0 0
0 3 1 1 0 0 1 1
0 0 0 0 0 1 0 2
0 0 0 0 0 1 2 1


It is possible to find multiple self-edges as well. When a network contains no
multiedges and no self-loops is said simple. In the following, we will assume
to consider exclusively simple graphs, unless specified.
Obviously, when the size of the graph is very large it becomes less convenient
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also to work with a N ×N matrix. In some cases, it can be avoided, as it
will be explained later on.
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Figure 1.2: A small network with two self-loops and three multiedges.

1.2 Centrality

An advantage of the graphical representation of graphs is the minimal ef-
fort necessary to spot the crucial vertices. Looking at Figure 1.3, in only
a glance one can tell that the most ”important” vertex is the central one:
all the branches of the tree need pass through the trunk to communicate
within each other. Nevertheless, the definition of centrality is not unique in
network theory. According to what is sought, different types of centrality
can play their role.
The most common is the degree centrality, or simply the degree1, which
is the number of links departing from (or ending in) a node. Vertex number
5 in the simple graph in Figure 1.1 has degree one, while vertex number 6 has
degree five. Intuitively, in the adjacency matrix representation, the degree
of a node i is simply the sum of the elements on the i-th row ki =

∑
j Aij .

This type of centrality awards a node uniquely on the amount of contacts.
In a social network, it can give the idea of how much influence or access to
information an individual has, supposed that all acquaintances are equiva-
lent. But in real world, often this is not the case.

1In the following, the degree will be always labeled by letter k.
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Figure 1.3: A tree-like graph.

To more effectively approach some kind of real situations, the eigenvector
centrality can be more valuable. In social networks, for instance, being in
the circle of popular people or knowing persons with anti-social tendencies
can make the difference. But also popular people are more influential if
their acquaintances are in turn popular. What is to be taken into account
is then the popularity not only of nearest neighbours, but also of second
nearest neighbours, third and so on. Mathematically, this translates in the
following expression of eigenvector centrality vi of node i:

vi =
1

Λ

∑
j

Aijvj (1.1)

The meaning of Λ becomes clear when grouping the centralities vi as com-
ponents of a single vector v. One obtains then that Av = Λv, so that Λ is
an eigenvalue of the adjacency matrix.
Besides as being mere topological features, centralities are fundamental
quantities in dynamical processes. In particular, degree heterogeneities are
the most important factor in how an epidemic spread or how well a network
resists to attacks. Intuitively, a node with a large number of connections
will spread an infection more efficiently than an isolated node. Recently also
the eigenvector centrality has been invoked to describe the role of hubs in
epidemic spreading. Moreover, global behaviour of the degree determine the
critical properties in phase transitions on networks, as will be shown.
Other typologies of centrality exist, but they are not relevant to the topic
of the present work.
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Figure 1.4: Map of the Internet, updated in 2005 (source: www.opte.org). This is

how a scale-free topology looks like.

1.3 Degree distribution

In the preceding paragraph we saw that each node in a graph is charac-
terized by a degree, which is an integer number expressing its number of
connections. Expanding this idea to the whole network, one can talk about
degree distribution P (k), defined as the relative frequency of occurrence of
nodes with degree k. Equivalently, it is the probability of choosing a node
of degree k with random extraction. Indicating with N(k) the number of
nodes of degree k and with N the total number of nodes in a graph, one has
therefore that P (k) = N(k)/N .
Many real-world networks present slowly decaying degree distributions, typ-
ically of a power-law form P (k) ∼ k−γ for large k. This fact has been verified
for an astonishing variety of systems, such as the Internet and WWW, geo-
graphical networks, protein and genetic networks, energy-grid networks, but
also for smaller systems, such as the collaboration and citation networks in
scientific publications [6].
However, the degree distribution does not establish univocally the topology
of a graph. Given a set of nodes of specified degree, there may be multiple
combinations for drawing links, even if the number of nodes is small. For
instance, take the two graphs of Figure 1.5. They have the same degree
distribution

P (1) =
2

5
P (2) =

3

5
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yet their framework is different. This fact leads to the concept of random
graph. Here the word ”graph” does not denote a single network but a statis-
tical ensemble, whose members are all the possible choices for the assignment
of edges. Every configuration has its own statistical weight and represents
a realization of the ensemble. Depending on how random graphs are built,
the degree sequence can be constant for all the ensemble or vary. That is,
the exact degree of each single vertex can be fixed or not. In the latter case,
the degree distribution P (k) is the probability that a randomly chosen node
has degree k, with the following definition

P (k) =
〈N(k)〉
N

(1.2)

Here 〈N(k)〉 is the average number of nodes of degree k, where the averaging
is made over the whole statistical ensemble. We assume the total number
of nodes N in each element of the ensemble to be the same, that is N =∑

k〈N(k)〉. Starting from these concepts, one can define the n-th moment
of the degree k as

〈kn〉 =
∑
k′

k′nP (k′) (1.3)

As will turn out, in mean field approaches for collective processes the first
and the second moment are central quantities in the position of the critical
point.
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Figure 1.5: Two graphs with the same degree distribution and different edge con-

figuration.

To conclude this quick review on complex networks, we remark that, apart
from the degree distribution, a series of other features characterize graphs.
A wide zoology is generated by different construction algorithms or proper-
ties of nodes and edges [1][3][2]. For instance, a weight or a direction can
be assigned to each edge. In these cases, one speaks about weighted or di-
rected graphs, respectively. In the following, we will assume to treat only
unweighted undirected graphs.
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Chapter 2

Epidemic spreading on
networks

Epidemic dynamics is successfully modeled within the com-
plex networks paradigm, but mathematically described only
by a series of mean field approaches. Latest improvements
concern the inclusion of dynamical correlations in master
equations and the role of highly connected vertices.

Epidemics concern plenty of aspects in nature. First of all, infectious
diseases spreading, which propagate from individual to individual mainly
through physical contact or air transmission. Any sick person has a chance
to infect every other person he enters in contact with, so that contagion
is based on interactions among people. In this sense, a population can be
seen as a network in which each individual or community corresponds to a
node and edges correspond to physical interactions1. In the case of virus
programs propagation the dynamics is similar, as well as in the case of ideas
diffusion. Ideally, each system made of several components exchanging some
content can be brought back to the epidemic paradigm. However, in order to
study the real world it is reasonable to reduce the problem to its backbone
and start from a few fundamental assumptions. Simplified populations of
individuals, organized in a network configuration, are the basis for epidemic
spreading.
An extremely simple model is the so called SIS model. The complex sce-
nario of disease transmission, progression or regression is reduced to a dou-
ble state framework. The basic rule is, so, that every node can assume two
possible states: susceptible or infective. An infective node transmits the
infection at a certain rate to all its nearest neighbours, i.e. the vertices with
which it shares an edge. At the same time, it can spontaneously recover at

1To take into account the variable frequency and effectiveness of interactions, weighted
edges can be used. This case is not discussed here though.
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another rate. Infection and recovery rates are usually indicated with greek
letters β and µ, respectively. The ratio between these two parameters is the
reproductive number λ, a fundamental indicator of the behavior of the
system. Vertices pass then from a state to the other following a stochastic
chain of the form: susceptible → infective → susceptible.
A second important model is the so called SIR model, wherein the possible
states of nodes are susceptible, infective or recovered. Within this model the
recovery rate µ is the rate for an infective node to get recovered. Recovered
vertices become immune to the infection and cannot return susceptible or
infective again, so this class may actually include also dead individuals.
A fundamental notion in epidemiology is the prevalence, that is the frac-
tion ρ(t) of infected vertices at a given time. The evolution of this quantity
with time is determined by the epidemic model used. Of particular interest
in the SIS context is ρ(t→∞). Below a particular value of the reproductive
number the disease quickly dies out. This critical value is called epidemic
threshold. Above, instead, the system approaches a steady state in which a
finite fraction of vertices is infected. In the case of the SIR model ρ(t→∞)
is trivially null, since all vertices reach the absorbing recovered state.
The existence and the position of this critical epidemic threshold has been
object of study for many years and is still a crucial topic in the comprehen-
sion of epidemics diffusion. Main results in the mathematical description of
the SIS model are reviewed in this chapter.

2.1 Mean field approaches

Models like SIS and SIR are examples of compartmental models, in the
sense that vertices are subdivided in classes (or compartments) depending
on the stage of the disease. Classes are in these cases the set of vertices in
the ”S” susceptible state and set of vertices in the ”I” infective state, plus
the set of those in ”R” recovered state within the SIR context. Additional
compartments can be introduced to improve the predictive power and to
better resemble real situations, where there is a higher number of possibili-
ties. People can be immune to a disease, and yet be a mean of propagation
of the virus. Moreover, after the contamination a period of latency can fol-
low, before being contagious. Compartments can also be added according
to the age of individuals, to take into account weaknesses or propensities to
some infections [8]. Or again, geographic movement of individuals can be
added into the picture.
In general this kind of models can be mathematically represented by a set
of simple deterministic dynamical equations, which can be exactly solved
at the price of some approximations. As in the most investigations of this
kind, the base lies in a mean field approach, bypassing the stochastic nature
of the process. In this chapter the main progresses are reviewed, from the
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early times up to the last advances. Though we will focus uniquely on the
SIS model, the same considerations can be extended to the SIR.

2.2 Homogeneous mean field

The simplest assumption is to consider the power of infection at a given
instant of time proportional to the average number of contacts with infected
individuals. Each infective vertex spreads the infection with a rate β, so the
probability of a healthy vertex to become infective during a time interval
dt is 1 − (1 − βdt)n, where the exponent n is the number of its infective
neighbours. This number is estimated by noticing that, on average and
neglecting fluctuations, a vertex with k connections has kρ infective neigh-
bours, where ρ is the prevalence. Consequently, for βdt � 1 one obtains
1 − (1 − βdt)kρ ' βkρ dt. This reasoning is carried on a single vertex scale
and is in general true for any network topology. If the vertex degree has
only small fluctuations, it is possible to make the approximation k ' 〈k〉 for
each vertex. Thus, the prevalence evolution equation is given by

dρ(t)

dt
= −µρ(t) + β〈k〉ρ(t)(1− ρ(t)) (2.1)

The right side of the equation is made by a first spontaneous recovery term
and a second contagion term.
This equation can be solved exactly in the early stage of the spreading
process, when the prevalence is still very small, that is ρ(t) � 1. Thus,
the term with a ρ2 factor can be neglected, yielding the linear differential
equation

dρ(t)

dt
= −µρ(t) + β〈k〉ρ(t) (2.2)

The resolution is straightforward and leads to

ρ(t) = ρ0 e
t/τ (2.3)

where ρ0 is the prevalence at time t = 0 and τ is the characteristic outbreak
time

τ = β〈k〉 − µ (2.4)

This last equation introduces the concept of epidemic threshold: if τ > 0 -
i.e. β〈k〉 > µ - the number of infected individuals explodes and ρ(t) increases
exponentially. On the other hand, if τ < 0, then the disease does not spread
far and fades away. The value of the reproductive number λ marking the
passage between the two regimes is [7]

λHOMc =
1

〈k〉
(2.5)
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However, this is still a simplified calculation, determined by the approxima-
tion k ' 〈k〉. The possibly complex architecture of the network is reduced
to an homogeneous structure of identical vertices. Most of networks in na-
ture are strongly inhomogeneous, with a few central hubs connected to the
majority of the other peripheral vertices. In order to deal with such systems
it is necessary then to rise the level of complexity of the equations.

2.3 Heterogeneous mean field

To obtain a more accurate analysis it is required to take into account topo-
logical heterogeneities, which means introducing an explicit dependence of
variables on the degree of vertices. The first step in this direction is a degree
block approximation approach: nodes are subdivided into classes labeled by
their degree and elements of the same class are assumed statistically equiva-
lent. In other words, all vertices of coordination number k are grouped into
the same class and respond to the variable ρk(t), reproducing the prevalence
in the class. At each of these class variables corresponds an evolution equa-
tion, so that the dynamics of the system is described by a set of differential
equations of the type

dρk(t)

dt
= −µρk(t) + β(1− ρk(t))kΘk(t) (2.6)

Here Θk(t) represents the density of infected neighbours of nodes belonging
to the class k:

Θk(t) =
∑
k′

k′ − 1

k′
P (k′|k)ρk′(t) (2.7)

The probability P (k′|k) is the conditional probability that a link emanating
from a node of degree k arrives to a second node of degree k′. It is usu-
ally difficult to estimate, except when doing a further approximation - i.e.
neglecting degree correlations. This means assuming that the probability
P (k′|k) does not depend on k. It is possible to show that, in this case,
P (k′|k) = k′ P (k′)/〈k〉. Exploiting this last assumption and Equation (2.6),
the evolution equation of Θ(t) can be written as

dΘ(t)

dt
= β

(
〈k2〉
〈k〉
− 1

)
Θ(t) (2.8)

where 〈k〉 and 〈k2〉 indicate respectively the first and the second moment of
the degree distribution P (k), being the n-th moment is defined according
to Equation (1.3). Equation (2.8) can be easily solved and allows to earn
the solution of Equation (2.6) as well. The expression giving the epidemic
threshold λc becomes then [7]

λHMF
c =

〈k〉
〈k2〉

(2.9)
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In networks with uniform degree distribution, this outcome coincides with
that of Equation (2.5) for the homogeneous assumption. If, instead, there
are heterogeneities, they weigh more on the denominator and, in general,
the resulting critical λ is smaller. In the extreme cases with diverging degree
second moment the epidemic threshold gets even to disappear. For instance,
in scale-free networks - i.e. P (k) ' k−γ - with γ < 3, it can be shown that
the second moment diverges with maximum degree kmax. This leads to a
threshold scaling as λHMF

c ∼ kγ−3
max, which goes to 0 in the thermodynamic

limit. Thus, for γ < 3 the system is always in a super-critical regime. The
epidemic threshold and consequently the phase transition appears only for
γ > 3, when the second moment is finite. The relevance of this finding
is due to the fact that several real world scale-free networks have a degree
distribution with a scaling exponent between 2 and 3 [9].
This heterogeneous mean-field theory finds confirm in numerical simulations
only in annealed networks, which mean that their configuration changes
more quickly than typical dynamics rate, in order to destroy degree corre-
lations. The degree distribution is assumed fixed.
A more accurate line of reasoning is accomplished in the quenched mean field
theory. Still neglecting dynamical correlations and fluctuations between in-
fected neighbours, it focuses on the particular topological configuration of
the network - in the specific through the spectral analysis of the adjacency
matrix A [12]. The term ”quenched” underlines that the particular edges
configuration is fixed inside the adjacency matrix, in contrast with annealed
networks. Most of real networks have actually a quenched structure, so this
approach is more valuable to explore real world systems. The evolution
equation is written, this time, for each vertex i of the system:

dρi(t)

dt
= −µρi(t) + β(1− ρi(t))

N∑
j=1

Aijρi(t) (2.10)

Mathematical analysis of Equation (2.10) tells us that the solution is a
linear combination of exponential functions of the eigenvalues Λi of A. The
dominant behaviour is dictated by the term of the largest eigenvalue Λ1, i.e.
ρ(t) ∼ eΛ1t. The new value of the epidemic threshold is so

λQMF
c =

1

Λ1
(2.11)

For networks made of nodes with the same degree k, the main eigenvalue is
equal to Λ1 = k and the outcome coincides again with that of homogeneous
mean field. In general, it can be demonstrated that λQMF

c < λHMF
c . This

fact has important repercussions, in particular, on scale-free nets. For γ < 3,
both approaches agree on the vanishing of the epidemic threshold, although
with a different scaling in the interval 2, 5 < γ < 3. But when γ > 3,
the quenched mean field approach still predicts a vanishing threshold in the
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thermodynamic limit, even if the network maintains a finite 〈k2〉. Further-
more, the exact value of Λ1 has been calculated for several real networks,
obtaining strongly different results in the corresponding epidemic threshold
with respect to the heterogeneous mean field [16].
An alternative strategy to locate the epidemic threshold is to study what
happens for t → ∞. Indeed, one expects to find a zero prevalence below
the epidemic threshold and a positive prevalence above. Setting to zero
the derivative in Equation (2.10), one obtains the following expression for
ρi = ρi(∞):

ρi =
β
∑

j Aij ρj

µ+ β
∑

j Aij ρj
(2.12)

This equation has a trivial solution ρ = 0 and a non-null solution ρi > 0
over a certain value of λ, which marks the epidemic threshold. The outcome
so obtained coincides with the result in Equation (2.11).

2.3.1 Pair-Quenched Heterogeneous mean field

Previous analysis still do not take into account dynamical correlations be-
tween neighbouring nodes. Only recently, this difficulty was partially over-
come by means of a perturbative technique, yielding new powerful results
[14].
Let us then introduce a further notation, wherein [Ai] is the probability that
the vertex i is the state A. In the same way, [Ai, Bj ] is the probability for
vertices i and j to be respectively in the states A and B. So on, this idea
extends to groups of indefinitely many nodes. Consistently with the previ-
ous notation, we have that ρi = [1i] and, therefore, [0i] = 1− ρi. Additional
variables can now be presented:

ψij = [1i, 1j ], ωij = [0i, 0j ] (2.13)

φij = [0i, 1j ] φ̄ij = [1i, 0j ] (2.14)

The single-vertex evolution equation takes now the form

dρi
dt

= −µρi + β
∑
j

φijAij (2.15)

where the dependence on time was dropped. Within this notation it is
possible to add an equation to the problem, which is the dynamical equation
for a pair of connected vertices (i, j) in the state (0,1)

dφij
dt

= −µφij − β φij + µψij + β
∑

l∈N (l),
l 6=i

[0i0j1l]− β
∑

l∈N (l),
l 6=j

[1l0i1j ] (2.16)

where N (i) is the neighbourhood of vertex i. First three terms represent
the possible events within the pair that permit to leave or get to the state
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(0,1) - i.e. vertex j spontaneously recovers, j infects i, or i recovers. The
two summations consider the interaction of i and j with their other neigh-
bours. Equations (2.15) and (2.16) were solved thanks to the one vertex
approximation φij ≈ ρi(1− ρi) and to the following pair approximation:

[Ai, Bj , Cl] ≈
[Ai, Bj ][Bj , Cl]

[Bj ]
(2.17)

Performing a linear stability analysis around ρi = φij = ψij = 0 an analytical
solution was found in some simple cases, namely the random regular graph,
the star graph and the wheel graph. The most relevant result for the scopes
of this project is for the random regular network, that is

λPQMF
c =

1

k − 1
(2.18)

Numerical simulations confirm this predicted threshold.

Figure 2.1: Three types of network: (a) Random regular graph. (b) Star graph.
(c) Wheel graph.

2.4 Localization transition in networks

Recent efforts in SIS model research concern the role of eigenvector central-
ity in epidemic spreading2. In particular, it has been shown that important
consequences might arise depending on the eigenvector centrality of the most
connected vertices. Indeed, the leading eigenvector of the adjacency matrix
can undergo a localization transition [15]. This implies that most of the
weight of the vector concentrate around a few components, leaving a neg-
ligible weight on the others. If this happens the eigenstate is said to be
localized. The weight of eigenvector components is tied to the entity of
entries in the adjacency matrix - namely to the number of edges of corre-
sponding nodes - as one can see from Equation (1.1). Hubs - i.e. nodes with
high connectivity - are thus the responsible for the localization transition. If,
instead, the network has weak heterogeneities, all nodes have similar eigen-
vector centrality and all entries of the eigenvector are of the same order of

2See Paragraph 1.2.
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magnitude. In this case the eigenstate is said to be delocalized.
It has been demonstrated that this fact might break the traditional double-
regime picture of the SIS dynamics [16]. In fact, if Λ1 corresponds to a
localized eigenstate then, in the upper neighbourhood λQMF

c = 1/Λ1, the
system can reach a stationary state wherein the contagion is restricted within
a finite number of vertices. In the infinite graph limit, this number consti-
tutes a negligible fraction of the total number of vertices and vanishes. With
further increase of λ more and more nodes get permanently infected until
they become a finite fraction of the total. On the other hand, if Λ1 cor-
responds to a delocalized eigenstate, right above λQMF

c the disease infects
a finite fraction of vertices and the usual transition to the active state is
preserved.
The demonstration exploits again the spectral analysis of the adjacency ma-
trix A. Probabilities ρi = ρi(∞), taken from the steady state Equation
(2.12), can be written as a linear superposition of components of the eigen-
state vi(Λ)

ρi =
∑

Λ

c(Λ) vi(Λ) (2.19)

where coefficients c(Λ) are the projections of the vector ρ on eigenstate v(Λ).
Setting µ = 1, so that without loss of generality β = λ, and substituting the
last equation into Equation (2.12), one obtains

c(Λ) = λ
∑
Λ′

Λ′ c(Λ′)
N∑
i=1

vi(Λ) vi(Λ
′)

1 + λ
∑

Λ′′ Λ′′ c(Λ′′) vi(Λ′′)
(2.20)

Solving this equation with respect to c(Λ1) yields λc = 1/Λ1, returning
the result of quenched mean field. Near the epidemic threshold, only the
principal eigenvector counts and ρi ≈ c(Λ1) vi(Λ1). At λ ≥ λc, expanding
ρ =

∑
i ρi as a function of ε = (λ− λc)/λc one obtains

ρ ≈ ε
∑N

i=1 vi(Λ1)

N
∑N

i=1 v
3
i (Λ1)

(2.21)

This expression gives the prevalence right above the epidemic threshold as
a function of the components of the leading eigenvector. The parameter
establishing whether it is a localized eigenvector is the inverse participation
ratio:

IPR(Λ) =
N∑
i=1

v4
i (Λ) (2.22)

If, in the limit N →∞, IPR(Λ) is of the order of O(1), then the eigenvector
v(Λ) is localized. This because for a localized v(Λ), only a few components
are of the order vi(Λ) ∼ O(1), while the rest are negligible. If the main eigen-
vector is localized, the fractionary factor in Equation (2.21) becomes of the
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order of O(1/N), implying that ρ ∼ O(1/N). The stationary infected state
in the upper neighbourhood of λc is then limited to a ρN number of vertices.
Conversely, if a generic v(Λ) is delocalized usually one has vi(Λ) ∼ O(1/

√
N)

for all vi(Λ) and therefore IPR(Λ) → 0. If this is the case for v(Λ1) one
obtains ρ ∼ O(1). A finite fraction of vertices are then trapped into the
active stationary state and the traditional phase transition is preserved.

Figure 2.2: (a) Regular Bethe lattice with degree k = 3. (b) Bethe lattice with
one hub of degree q > k. (c) Bethe lattice with two connected hubs.

Localization phenomena has been verified for scale-free networks, wherein
the localization of the main eigenvalue appears to be bound to the maximum
degree kmax and occurs if it exceeds a certain threshold kloc. This happens
if the degree distribution is slowly decaying, namely if γ > 5/2. In real
networks known to have a scale-free topology, the estimation of IPR(Λ1)
led to the conclusion that the localization transition does not take place for
all cases considered and this was imputed to the fact that kmax < kloc [16].
Moreover, a simple analytical condition for the localization transition has
been found in the case of a Bethe lattice, which is an infinite graph with
a tree-like structure and vertices of constant degree (see Picture 2.2). The
adjacency matrix for such a graph with vertices of degree k has all eigen-
values equal to Λ1 = k, corresponding to delocalized eigenvectors with
vi(Λ1) = N−1/2. Introducing a hub of degree q > k, one instead finds

Λ1 =
q√

q − k + 1
(2.23)

and entries of the leading eigenvector have maximum value in correspon-
dence of the hub and exponentially decrease with increasing distance. More-
over, if q � k the inverse participation ratio tends to IPR(Λ1)→ (1 + 1/q),
so the corresponding eigenstate is localized. With two connected hubs an
analogous solution was found. Note that Equation (2.23) returns the same
threshold of the homogeneous mean field approach in the completely homo-
geneous case q = k.
However, a satisfying numerical confirmation on this issue is missing and up
to now it was not clear what are the implications of the localization transi-
tion in the SIS dynamics. This is the central point of this project and will
be faced in the final chapter.
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Chapter 3

Phase transition in the SIS
model

Statistical mechanics is essential to comprehend collective
phenomena on complex networks. In particular, current
efforts focus on non-equilibrium processes characterized by
absorbing phase transitions - like epidemic spreading. Uni-
versal relationships bind the SIS model and the percolation
process.

In this chapter we embrace a more general perspective to present the
properties of the SIS model seen as a stochastic process. We start by re-
calling that the spectra of the reproductive number splits into two distinct
regions - or phases1: the first phase has a rapidly collapsing prevalence, while
the second phase has an ever-lasting non-null prevalence. The boundary re-
gion between these regimes is what in statistical physics is called a phase
transition. More in general, a phase transition is the passage between
different regimes in systems governed by stochastic rules. Such phenomena
were historically first observed in thermodynamical fluid systems and so they
are usually described in terms of statistical mechanical quantities. Within
the modern classification, they are discerned into two main categories. In
first order phase transitions, the two phases are separated by a coexistence
line, on which they live together in a mixed-phase regime. Systems crossing
this line accomplish the transition part by part and thermodynamic quanti-
ties present a discontinuous behaviour. Second order phase transitions are
instead characterized by a smooth uniform variation in the behaviour of the
system and do not present a coexistence line. For these reasons, they are
also called continuous phase transitions. This latter typology is induced by
long range correlations that span the whole size of the system. In systems

1See Chapter 2.
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made of many interacting agents, this phenomenon translates in a collective
behaviour in the microscopic degrees of freedom.
Research on phase transitions started on equilibrium systems, typically
many-particle systems in contact with a thermal reservoir that controls the
temperature. However, much of the knowledge on equilibrium transitions
can be extended to non-equilibrium ones, and particularly to absorbing
phase transitions. These can be found when the microscopic dynamics is
irreversible and manifest as continuous transitions from fluctuating station-
ary states into absorbing states. The essential difference is that here time
plays the role of independent degree of freedom.
In the last few years, an intense effort was put in extensively investigate
phase transitions on networks. Examples are the equilibrium processes such
as the Ising model [3] [17] [7], but also those of non-equilibrium like epidemic
models [3] [17] [7], percolation [3] [17] [7], synchronization [3] [17] [7] and
many others [3] [17] [7]. A motivation for investigating phase transitions on
networks is the theoretical interest in understanding how the topology of
the substrate affects critical phenomena, traditionally studied on regular Zd
spaces. Indeed, a network with N vertices is equivalent to a space of dimen-
sion N −1, since in principle a vertex can be connected to all other vertices.
Depending on the degree distribution, networks can thus work as strongly
irregular spaces, even infinite dimensional in the thermodynamic limit. On
the other hand, there are also more practical repercussions: for example,
the Ising model framework may represent not only magnetic systems, but
also other entities, such as social systems wherein people are reciprocally
influenced. Unraveling the complexity of a model can then return new im-
plications on more fronts.
Intuitively, the SIS phase transition belongs to the category of non-equilibrium
absorbing phase transitions. As soon as the systems reaches the condition
of being fully healthy, it becomes trapped in a completely inactive state
forever. In the following, features of this transition are presented, briefly
retracing main exemplifying models.

3.1 Ising model

The Ising model is a paradigmatic case of study in the field of phase tran-
sitions and critical phenomena. It is the precursor of a variety of models
useful in physics as well as in other fields, like epidemiology. Originally, it
was created to describe ferromagnetic systems. Indeed, in materials such
as iron, nickel or cobalt, the dipole orientation of each atom is temperature
sensitive and, at the same time, neighbouring atom dipoles tend to align in
the same direction to minimize interaction energy.. When temperature is
high, all atoms change orientation very quickly and the average magnetiza-
tion is null. When, on the other hand, the temperature is lowered under a
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certain value, spins in the material freeze and a nonzero net field appears.
The passage from an ordered regime with a preferential axis and a disor-
dered one represents a spontaneous symmetry breaking.

Figure 3.1: On the left, subcritical regime of the Ising model, where spins freeze
trying to align with the neighbours. On the right, overcritical regime, where spins
continuously change orientation at random.

The set up of the Ising model is the following: imagine to have a regular
pattern made of all equal cells2, filling an N-dimensional space to the infi-
nite. This is what is called a lattice. Now suppose every site on the lattice
contains a particle, in order to obtain a crystalline structure. Particles are
polarizable and have a spin which can freely rotate in space. In principle
spins can be oriented in any direction, but we assume that the admissible
values of the spin for each particle i are only σi = ±1. This corresponds
to the simplified idea that polarization exists only in an ”up or down” di-
rection3. Any spin conveys the orientation of other spins, so that it tends
to assume the same orientation of neighbour sites. Plus, spins randomly
switch orientation with a frequency proportional to the temperature T . In
presence of an external field H, the total energy of the system is given by
the Hamiltonian

HIsing = −
∑
{i,j}

Jijσiσj −
∑
i

Hiσi (3.1)

The first sum runs over all couples of neighbour spins i and j. The factor
Jij expresses the coupling energy of a pair of confining spins and Hi repre-
sents the local field on atom i. In the simplest case Jij = J and Hi = H.
This system can pass from any global configuration {σi} to any other, so

2Usually, cells are called sites.
3Other models, as the XY model, consider spins assuming continuous values between

−1 and +1.

21



the dynamics is reversible and there is equilibrium. When the external field
H is turned off a second order phase transition separates the disordered
regime at large T and zero overall magnetization M =

∑
i σi from the or-

dered regime at small T and non-null M . Consequently, one can study the
phase transition on the basis of the behaviour of M , which is then the order
parameter of the transition.
In general, equilibrium phase transitions are described in terms of order pa-
rameters associated to conjugated fields, imposed on the system by external
conditions. The response in the order parameter to variations of the ex-
ternal field is given by the susceptibility χ, defined as the derivative of the
order parameter with respect to the field. In the considered case, we have
that the total magnetization M is associated to the external field H. The
susceptibility is then defined as

χ(T,H → 0+) =
∂M

∂H

∣∣∣
H=0+

(3.2)

This variable has the peculiar beahaviour to diverge at the particular com-
bination of parameters which marks the phase transition, called critical
point. For this reason, it is a useful tool to investigate the specific condi-
tions that trigger the transition, as will be shown later on.
In recent times the Ising model was applied also on networks [3] [17] [7].
Here the pairs of spins in (3.1) are not the spatial confining sites, but near-
est neighbours in the graph configuration. The Hamiltonian acquires thus
the form

HIsing = −
∑
i<j

JijAijσiσj −
∑
i

Hiσi (3.3)

where Aij is the entry of the adjacency matrix corresponding to the pair i
and j. As was shown in previous chapters, the topology of graphs can vary
considerably and Ising on graphs is solvable in a mean field approximation.
Exactly like in the SIS heterogenous mean field4, we can partition the ver-
tices in classes of the same degree. The criticality condition was calculated
for general uncorrelated networks and the critical temperature obtained is
given by

Tc = 2J/ ln

(
〈k2〉

〈k2〉 − 2〈k〉

)
(3.4)

It is important to notice that, even in equilibrium processes like this, the
value of the critical point is influenced by connectivity properties of the
graph. In particular, in networks with a heavy-tailed degree distribution,
the second moment of k diverges in the thermodynamic limit N →∞, and
the critical temperature goes to infinity. Consequently, in scale-free networks
the phase transition disappears, just like in the SIS mean field.

4see Paragraph 2.3.
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3.2 Critical scaling

In the modern era of critical phenomena, the research focused more and
more on the determination of sets of numbers called critical exponents,
which are deeply bound to the nature of the system considered. Let us now
show how.
Let us assume the external field to be given by the temperature T , like
for the Ising model. In general, around the critical point, a function f(T )
behaves as f(ε), where

ε ≡ T − Tc
Tc

(3.5)

is a dimensionless coordinate expressing the distance from the critical tem-
perature. We assume that f(ε) is a positive and continuous function for
sufficiently positive and small values of ε and that the limit

α ≡ lim
ε→0

ln f(ε)

ln ε
(3.6)

exists. Close to the critical point it is then true that f(ε) ∼ eα. The number
α takes the name of critical exponent of f(ε).
A ferromagnetic system described by the Ising model presents critical scaling
for many quantities. For example, the total magnetization scales as M ∼ |ε|β
and the susceptibility scales as χ ∼ |ε|−γ . However, all critical exponents can
be related to the critical exponent of the correlation length ξ, which defines
the typical size of domains of aligned spins. For T → Tc, the correlation
length diverges according to the law ξ ∼ |ε|−ν . This means that the systems
becomes more and more ”aware” of itself approaching the critical point.
At criticality, domains of all sizes appear on the lattice with a frequency
that decreases as a power-law with growing size and the system is invariant
under suitable scaling transformations. This phenomenon is known under
the name of scale invariance.
However, the power-law form is just an approximation and contains less
information than the complete form of the function. So why study critical
exponents? There are two main reasons for which this is important. First,
there is the experimental fact that, close enough to the critical point, the
power-law behaviour dominates. This means that critical exponents are
always measurable, while the entire functions may not be. Linear fitting of
experimental data in log-log plots are usually used at this purpose.
A second reason is that critical exponents are bound with each other by
relationships arising from general statistical reasonings, which transcend
any peculiar system. The discovery that different systems might share the
same critical scaling lead to the concept of universality class. Universality
classes are the groups of systems with an equal set of critical exponents. SIS
model belongs to the directed percolation universality class, that is presented
in Paragraph 3.4.
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3.3 Finite-size scaling

So far, we tacitly treated phase transitions only in the thermodynamic limit.
However, boundaries have relevant effects on the critical point, emerging
more and more as the system size diminishes. For instance, consider the
susceptibility χL of the 2D Ising model on an infinitely long slab of finite
width L. The susceptibility does not diverge as χL ∼ |ε|−γ , but grows up
to a maximum at some pseudo-critical temperature Tc(L). If the system
is sufficiently large it is expected that the distance from the real critical
temperature scales with a certain exponent λ′,

Tc(L)− Tc(∞)

Tc(∞)
∼ L−λ′ (if L→∞) (3.7)

which is called shift exponent5 [17]. A second outcome is the broadening of
the curves for finite L. It is described in terms of a rounding temperature
T ∗(L), defined such that if (T−Tc)/Tc ≥ (T ∗−Tc)/Tc, then ξL(T ) ' ξ∞(T ).
In analogous way as before,

T ∗(L)− Tc(∞)

Tc(∞)
∼ L−θ (if L→∞) (3.8)

where θ is the rounding exponent. These considerations influence the scaling
of all variables. The fundamental hypothesis of the finite-size scaling asserts
that these two exponents are equal.
The concept of phase transition is then defined only in the thermodynamic
limit. However, real systems have finite size, as well as systems modeled in
numerical simulations, hence it is fundamental to comprehend the role of
finite size effects. Moreover, in finite size systems the order parameter is a
fluctuating quantity and fluctuations have maximum intensity at the critical
point. It is then convenient to define the variance of the magnetization per
unit volume [18]

χ′ = lim
L→∞

Ld(〈M2〉 − 〈M〉2) (3.9)

where the brackets 〈 . . . 〉 denote the temporal average, L is the lateral size
of the system and d its dimensionality. In finite size systems - such as those
of computational use - and in the absence of a symmetry-breaking field,
this quantity scales with an exponents equal to γ for T < Tc, so that it
can be measured in the place of the real susceptibility. This will turn very
important in the final chapter.

3.4 Percolation

The Ising model phase transition belongs to the more general category of
equilibrium phase transitions, in the sense that the microscopic evolution of

5The ′ superscript aims to prevent confusion with the reproductive number λ.
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the system is reversible. Processes such as the SIS model manifest instead a
non-equilibrium phase transition, wherein an absorbing state compromises
the microscopic reversibility. These latter processes inherit all critical fea-
tures from the formers, yet with some differences. A paradigmatic group of
models is in this case that of percolation models [19][20][25].
The term percolation derives from Latin and means ”filter gradually through
a porous surface or a substance”. In science, it is traditionally adopted as a
geometrical model for the study of the permeability through random media.
It can be applied first of all on the filtration of solutions in solid materials,
but also on the spreading of wildfires in forests. However, percolation has
also a dynamical interpretation. Indeed, it has been widely studied through
simple models which try to imitate the microscopic penetration dynamics
in a porous filter, just like the Ising model tries to imitate the microscopic
dynamics in magnetic materials. The filter is conceptually represented by
a lattice, whose sites are ”open” and ”closed” if they correspond, respec-
tively, to an empty interstice or to an impenetrable cell. The medium is
made irregular by asserting that every site is open with probability p - the
percolation probability - and closed with probability 1 − p. The dynamics
can be formulated as a stochastic process driven by several choices of rules.
Usually it starts from a single site, the seed, and proceeds along an axis
representing a spatial or temporal dimension, as in Picture 3.2. For ease of
visualization it is drawn as a waterfall subjected to the gravity force field.
At each step the water can flow on open sites of the underlying layer. The
phase transition occurs at a precise threshold of the percolation probability
pc. At low p, only open paths of finite size exist, but over pc the lattice can
become macroscopically permeable.
Moreover, percolation exists in two main forms: in the undirected or isotropic
percolation, the flowing is allowed in all directions, while in the directed per-
colation the agent is forced to flow in a preferred direction of space. Both
versions of the model display a phase transition, yet they have diverse crit-
ical parameters and universal properties. Directed percolation constitutes
the landmark universality class for non-equilibrium phase transitions into
absorbing states. Its importance is comparable to that of the Ising model
for equilibrium phase transitions. In this kind of systems, the steady state
is characterized by a constant density of active sites ρs > 0 in the thermo-
dynamic limit. For finite size systems, however, ρs is a fluctuating quantity.
Analogously to the equilibrium case, one can measure the magnitude of ρ
fluctuations - which is so adopted as order parameter - and obtain informa-
tion on the critical point. Here one therefore uses the following definition:

χ′ = lim
N→∞

Ld(〈ρ2〉 − 〈ρ〉2) (3.10)

In the non-equilibrium case, this quantity scales with an exponent γ′ 6= γ,
though.
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Figure 3.2: Visualization of directed percolation on a square lattice. In the table
on the right, N(t) represents the number of open sites found at layer t by the
percolated water.

After the advent of network science, percolation was also exploited to deal
with resistance and resilience of network structures, traffic and congestion
in a roadway tissue and even epidemic spreading. The most considered case
is, however, the resistance to removal or failure of nodes or links6. Indeed,
in some contexts the solidity of the structure of a network is of crucial im-
portance. Take, for example, the case of power grids or transport networks.
In case an element of the net damages or fails to do its job it is necessary
to have an efficient reaction strategy. This requires the knowledge of which
are more important at their specific function.
In this case, the phase transition lies between a regime with only finite dis-
connected sub-graphs and a regime wherein a giant component of connected
vertices appears. The order parameter is the probability PG for a node to
belong to a giant cluster. The complementary probability 1 − PG is the
probability, for a node of degree k, that none of its edges lead to the giant
component. This definition translates into the following expression [7] [17]

PG = 1−
∑
k

P (k)qk (3.11)

where we define q as the probability that a randomly chosen edge does not
lead to a vertex of the giant cluster. It is possible to write the following
self-consistent equation for q:

q =
∑
k

kP (k)

〈k〉
qk−1 (3.12)

6As in the lattice version, it is possible to distinguish between node or edge percolation.
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The condition for the existence of a giant cluster is determined by searching a
non-trivial solution for Equation 3.11. In uncorrelated networks, the critical
value for the probability p is found to be

pc =
〈k〉

〈k2〉 − 〈k〉
(3.13)

In particular, for regular graphs this expression is equivalent to pc = 1/(k−
1).
In network percolation, the role of the susceptibility is played by the average
size of non-giant clusters 〈s〉. Critical scaling affects order parameter and
relative response response function as

PG ∼ (p− pc)β (3.14)

〈s〉 ∼ |p− pc|−γ (3.15)

The use of γ as exponent of 〈s〉 stresses its function, equivalent to suscepti-
bility in the lattice case.
The main difference between equilibrium and non-equilibrium critical phe-
nomena - such as for percolation - is in the correlation length. In the first
category, continuous phase transitions are characterized by a single corre-
lation length ξ that diverges at the critical point as ξ ∼ |ε|−ν . Besides, in
the second case time acts as additional degree of freedom, implying that
there are two different correlation lengths, ξ⊥ and ξ‖. Subscripts ⊥ and
‖ denote, respectively, spatial and temporal properties. Approaching the
critical point, these quantities diverge as

ξ⊥ ∼ |ε|−ν⊥ ξ‖ ∼ |ε|−ν‖ (3.16)

with exponents that are generally different. Critical phenomena of non-
equilibrium can all be related to these two correlation lengths, as happens
for the contact process and the SIS model.

3.5 Contact process

The process that is most strictly bound to the SIS model is the contact
process. This latter is a stochastic model for interacting particle systems,
traditionally applied on reaction kinetics. It is the simplest version of a cat-
egory of models aimed to mathematically describe how the concentration of
one or more substances changes because of the effect of local chemical reac-
tion and spread in space. Such models are called reaction-diffusion processes.
Later on, the contact process was exported also on networks environment
to investigate epidemic spreading. Within its framework, vertices are sites
that can be occupied by a particle or be empty. Particles can self-annihilate
with a rate µ and generate new offspring particles with a rate λ/k in each

27



neighbour site - with k the degree of the generating particle. Usually, the
annihilation rate is set at µ = 1 - choice that fixes the time scale without
loss of generality. The similarity with the SIS dynamics is evident, though
the terminology is different. The only gap is that in contact process the
strength of spreading is equally subdivided within the neighbours of occu-
pied vertices, and so depends on their degree. In the SIS, sick vertices infect
with a constant rate, independently on connectivity heterogeneities. The
two models coincide only when applied on lattices or networks of constant
degree distribution. To give a proof of this fact, we briefly present a theoret-
ical approach for the determination of the critical point in contact process.
Just like for the SIS model, the mathematical survey has been attempted
by means of a heterogeneous mean field approach. Similarly to what was
presented in Paragraph 2.3, the master equation for the class of nodes of
degree k reads as

dρk(t)

dt
= −ρk(t) + λ(1− ρk(t))k

∑
k′

P (k′|k) ρk′

k′
(3.17)

where we set µ = 1. Despite its formulation, this approach fails in taking into
account degree fluctuations and predicts without distinctions λc = 1. In the
attempt of fixing this issue, a heterogeneous pair-approximation approach
was used [27]. The symbolism is analogous to that of Paragraph 2.3.1, with
the only exception that subscripts refer to the degree of node compartments
and not to the degree of single nodes. The set of single-vertex density
evolution equation becomes

dρk
dt

= −ρk + λ k
∑
k′

φkk′ P (k′|k)

k′
(3.18)

and the evolution equation for φkk′ = [0k, 1k′ ] is

dφkk′

dt
= −φkk′ − λ

φkk′

k′
+ ψkk′ + λ(k′ − 1)

∑
k′′

[0k0k′1k′′ ]P (k′′|k′)
k′′

− λ(k − 1)
∑
k′′

[1k′′0k1k′ ]P (k′′|k)

k′′
(3.19)

Performing a quasi-static approximation - dρk/dt ≈ 0, dχkk′/dt ≈ 0, in
the limit t → ∞ - it is possible to get to a general condition equation for
criticality in uncorrelated networks. It was analytically solved for random
regular networks, i.e. with degree distribution P (k) = δkm. The solution is

λc =
m

m− 1
(3.20)

and achieves to get very close to numerical simulation results. The result is
then the same as for the SIS model, since at criticality the effective creation
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rate through each link is rescaled of a factor m.
Contact process undergoes a non-equilibrium phase transition whose order
parameter is the particle density ρ∞ in the stationary state. The subcritical
phase has rapidly decaying ρ(t) into an absorbing state, with null particle
density. The overcritical phase arises at a certain value of λ and is an
active state, with constant average particle density. In this context, the
susceptibility is defined as the answer in the order parameter to a variation
of an external field h, which can be interpreted as a source of spontaneous
creation of particles. However, more often the alternative definition is used
for computational purposes, that is

χ = N(〈ρ2〉 − 〈ρ〉2) (3.21)

This is variance of the particle density multiplied by the size N of the graph,
namely a measure of stochastic fluctuations in the density of particles.
In d−dimensional lattices, a full set of critical exponents was calculated.
Defining ∆ = λ − λc, the system enters in the active phase according to
ρ ∼ ∆β. Close to the critical point, the correlation length and time diverge
scaling as ξ⊥ ∼ |∆|−ν⊥ and ξ‖ ∼ |∆|−ν‖ . Other critical exponents exist, but
they can all be expressed in terms of β, ν⊥ and ν‖ by scaling and hyperscal-
ing relations [20][22].
Analogous considerations are valid for the SIS model. In fact, both the
contact process and the SIS model belong to the directed percolation uni-
versality class in homogeneous lattices. In complex networks, however, the
topologic heterogeneities dramatically affect both models. At a heteroge-
neous mean field level, they show different critical exponents.
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Chapter 4

SIS model on networks

In networks science, computer simulation assumes a key role
in the confirmation of theoretical predictions. Probabilistic
operative methods and algorithms are required to fulfill
this task. To reproduce networks with precise connectivity
properties, the configuration method is the simplest technique.

In this chapter are presented methods and algorithms used to face the
issues introduced in the prelude. The SIS model is a stochastic process and
consequently has to be investigated by means of a probabilistic approach.
For dynamical processes acting on complex networks, this does not only
mean to perform a large number of repetitions of the process and extract
average values. To get some insight of general validity, it is required also to
equip of all possible graphs with the requested degree distribution. In other
words, we need a random graph1.
In continuity with the the study of Dorogovtsev et al. [16], the type of net-
work here considered is the random regular graph, a network with equal
degree on all the randomly linked vertices - i.e. having degree distribution
P (k) = δkm, with m constant. Taking any node as central, the structure of
such a graph can be seen as a tree-like with long random loops added. In
the large size limit, loops in short distances are so rare that, in any point,
the graph is locally tree-like and can be seen as a Bethe lattice [23]. The
trivial degree distribution makes this kind of network easy to study and, if
a hub is introduced, its effects can be clearly observed. Plus, it is important
for graphs to be simple, that is they must not contain self connected nodes
and multiple links. Operative methods are presented in the following.

1See Paragraph 1.3
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4.1 The configuration method

A series of models for the generation of random graphs have been developed.
The majority of them are able to work only for specific degree distributions.
Above all, the configuration method - or pairing method - is able to produce
graphs of whatsoever degree distribution [1]. Actually, this model allows to
create a network starting from any arbitrary degree sequence. That is, the
starting point is the exact set of degrees of every node. This, in turn, fixes
the number of edges L by means of the constraint

∑
i ki = 2L.

Consider a set of vertices of specified degree ki of arbitrary choice. To each
of them is assigned a number ki of edge stubs. In total, there are initially 2L
stubs. The procedure consists in picking a pair of stubs uniformly at random
and joining them together, in order to create a complete edge. After that,
2L − 2 free stubs are present. The operation is iterated until no free stubs
are present and all the L links are built. This final matching corresponds to
a network in which each vertex has exactly the desired degree.
Clearly, the graph so obtained is just one possible configuration. Choos-
ing each single stub pairing with equal probability implies that each final
matching has equal probability to be produced. One can then see how the
effective overall result is the random graph in which every configuration of
specified degree sequence appears with the same probability.
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Figure 4.1: Configuration method for random regular graph of degree distribution

P (k) = δk3. The dashed line represents the union process between two stubs.

However, there are some issues that make this method imperfect. In prin-
ciple, the pairing can take place also between stubs of the same vertex, or
between stubs of vertices already connected. It means that a fraction of the
ensemble generated is made of non simple networks, containing self-loops
and multiedges. Indeed, it was calculated that, for random regular graphs,
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simple configurations appear with probability proportional to e−k
2/4, at least

for relatively small k [29].
A second fact is that different final matchings can be mapped in the same
network, simply by permuting the stubs in every possible way. The number
of permutations for the ki stubs in a node i is ki! and consequently the num-
ber of final matchings corresponding to a given graph is M({ki}) = Πi ki!.
This number is the same for all graphs, since every degree ki is fixed. In-
dicating with Ω({ki}) the number of all possible matchings, each network
appears with constant probability M/Ω. Yet, this property is valid only
for simple networks. Admitting self-loops and multiedges, it is no longer
true that any permutation of the stubs leads to a new matching. This fact
becomes clear looking at Figure 4.2. Furthermore, in the context of dynam-
ical processes running on networks - such as the SIS model - impurities like
multiedges and self-loops may alter the dynamics.
Though the density of impurities goes to zero in the thermodynamic limit,
we will work mostly at small network sizes. For this reason, we need to
ensure to have only simple graphs.
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Figure 4.2: Permutation of stubs in self-loops and multiedges. Exchanging stubs

a and b the corresponding edge remains the same. Switching members both in the

couple c− d and in the couple e− f returns the same two edges.

4.2 The Steger-Wormald method

An improvement of the configuration method was given by A. Steger and
N.C. Wormald [29]. The new algorithm guarantees of generating only simple
graphs and, at the same time, maintains the runtime low. Though their
formulation is specifically for random regular graphs, it is here presented in
the general case of arbitrary degree sequence.
The procedure works in the same way as in the configuration method, but
additionally checking at each stubs pairing that the operation does not create
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a multiedge or a self-loop. In an operative way, one proceeds as follows.
The starting condition is a set U of N(

∑
i ki) unpaired points, divided in

N groups of cardinalities ki. Then, one chooses uniformly at random two
points i and j in U . If they are suitable, they are deleted from U and the pair
i− j is created. The term suitable indicates two points that lie in different
groups and such that no currently existing pair contains points in the same
two groups. The pairing is repeated until no suitable couple can be found.
In the end, a graph is created, with a link between vertices a and b if and
only if there is a pair containing points in the a-th and in the b-th groups.
The drawback of this procedure is that it might not return a regular graph
and it might be necessary to start all over from the beginning. For instance,
one possible situation is to remain only with two unpaired points within the
same group. In this case there is no suitable matching, and at the same time
two stubs are left free. However, even considering this inconvenience, the
algorithm is still fast. In calculators, the overall runtime for random regular
graphs was estimated to go as kN .
The Steger-Wormald method is the algorithm adopted in this project to
generate random regular graphs, both fully regular and with one hub added.
In the former case, the initial condition sees N groups of k points. In the
latter case, being q the degree of the hub, the initial set of unpaired points
U consists of one group of q points and N − 1 groups of k points, for a total
of q + k (N − 1) points.

4.3 The adjacency list

The easiest way to represent a graph is usually through its adjacency matrix,
but for large N it requires a huge amount of memory resources. In the case of
random regular networks with small coordination number k � N , however,
using a so large amount of memory would be pointless, since most of the
elements are null. Instead of the adjacency matrix, it is convenient to use
the adjacency list. It is a set of N vectors where the components of the
vector i are the labels of the nearest neighbors of node i, with i = 1, 2, ..., N .
This is in general convenient for all sparse networks, namely networks with
small average degree 〈k〉. The total number of required entries is close to
〈k〉N , versus the N2 � 〈k〉N elements of the adjacency matrix.
Furthermore, the finite size of the networks generated requires to take into
account some restrictions in the degree of the nodes. As pointed out in
Paragraph 4.1, setting the degree sequence implies in turn to fix the total
number of edges L through the constraint

∑
i ki = 2L. Since each edge

occupies two entries in the adjacency list, which for random regular networks
has kN components, the following condition must be satisfied:

kN = 2L (4.1)
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Then, to have a physically reasonable L, the number kN must be even.
In the case a hub is introduced the condition becomes

k(N − 1) + q = 2L (4.2)

Then, k(N − 1) + q must be even.
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Figure 4.3: Example of adjacency list of a small graph.

4.4 Epidemic dynamics

Once the network is built it is possible to assign to each vertex its initial
state at time t0 = 0, that can be susceptible or infective. The state of
the entire system is given by the particular configuration of susceptible and
infective vertices. The temporal evolution of the SIS model is a Markov
jump process, that is performed by means of a continuous time algorithm
[30][31].
In the contagion process two quantities determine the successive state of
the system and when the state transition occurs. These quantities are the
number of infected vertices NI(t) and the number of active links LA(t),
defined as the total number of links emanating from any infected vertex. In
this definition, links between two infected vertices are counted twice. Two
different lists keep track of vertices and edges belonging to these two groups.
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The event determining the state transition is selected at random: recovery
with probability

PR(t) =
µNI(t)

µNI(t) + βLA(t)
(4.3)

and infection with probability

PI(t) = 1− PR(t) =
βLA(t)

µNI(t) + βLA(t)
(4.4)

As in Chapter 1, here µ indicates the recovery rate and β the infection rate.
If the recovery is chosen, a vertex is picked randomly in the list of infected
vertices and removed. Otherwise, if the infection is chose, a link is chosen
randomly in the list of active links and, if it ends to a susceptible vertex,
this latter is turned into infective and added to the respective list. In both
the circumstances, time is increased according to

t −→ t+ ∆t = t+
1

µNI(t) + βLA(t)
(4.5)

This procedure is iterated until all vertices are in the healthy state or the
process reaches the maximum time.
It is possible to simply rearrange expressions 4.3 and 4.4 as follows2:

PR(t) =
µNI(t)

µ(NI(t) + λLA(t))
=

NI(t)

NI(t) + λLA(t)
(4.6)

PI(t) =
µλLA(t)

µ(NI(t) + λLA(t))
=

λLA(t)

NI(t) + λLA(t)
(4.7)

This way it visible that the evolution of the system is determined by a single
parameter, the reproductive number. It is thus convenient to set µ = 1 and
vary β. In such a way one sets the time scale as

∆t =
1

NI(t) + βLA(t)
=

1

NI(t) + λLA(t)
(4.8)

In this project, this algorithm was implemented and used to study the SIS
phase transition. Results and relative discussions are the subject of the next
chapter.

2λ = β/µ, see Chapter 2
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Chapter 5

Investigation on the
epidemic threshold

A computational investigation on the SIS dynamics is
accomplished by means of two different techniques. The
first derives from traditional phase transition tools, while
the second exploits a parallelism with percolation process.
The focus is the critical point position and features in
homogeneous structures in presence of isolated hubs of large
connectivity.

In this chapter we present the analysis and the results object of this work.
The SIS phase transition is investigated on networks generated by using the
configuration method, described in Chapter 4. The dynamics is performed
through the continuous time algorithm outlined in the same chapter.
It is widely accepted that the measure of the susceptibility - meant as magni-
tude of fluctuations in the order parameter1 - represents a valuable method
to determine the critical point [14] [27] [30]. Conversely, a new method was
recently proposed, exploiting the duration of the contagion process [31]. A
first comparison between the two techniques is made on random regular net-
works, while later on we focus on the analysis of localized states introducing
a hub in the network architecture. By using both methods we get a complete
comprehension of the dynamical implications of localization transition. As
final discussion, we present their advantages and disadvantages.

5.1 General picture

In the SIS framework, the ensemble of states of the system is the set of the
possible infective-susceptible configurations and includes an absorbing state

1See Chapter 3
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- i.e. the configuration with all vertices in the S state. A contagion process
is meant to start from an initial configuration with n(t = 0) = 1 seed nodes
and stop until the absorbing state is reached. Depending on the value of the
reproductive number λ, the infection can remain active inside the system
for a certain lapse of time. At low λ the number of infected nodes falls
rapidly to zero. At growing λ, the time needed to reach a null prevalence
gradually increases and at a point it dramatically diverges. After this point,
the epidemic may enter in a stationary state of non-null prevalence in the
thermodynamic limit. Otherwise, in a finite network it survives until an
extreme fluctuation kills it completely. Picture 5.1 displays the behaviour
of n(t) for three different values of λ, evolving from an initial configuration
with a single contagious node in a network of size N = 5 · 104.

Figure 5.1: Absolute number of infected vertices in function of time, for different
values of the reproductive number λ. The initial condition is n(0) = 1 and the
graph size N = 5 · 104.

However, we are analyzing a stochastic process, so we need a sample of
realizations to build a statistics. Averaging over a large number of repeti-
tions, the prevalence shows an initial outbreak terminating in a peak or in a
plateau depending whether λ is set below or above the epidemic threshold.
In the former case, after the peak the prevalence exponentially relaxes to
zero with a law of the form

ρ ∼ e−t/τ (5.1)

as it is visible in Picture 5.2. The quantity τ is called relaxation time and is
the characteristic time of the prevalence decay. Its behaviour as a function
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Figure 5.2: Number of infected vertices versus time on the log-normal scale, for
different values of λ. Below λc, after a brief transient interval the decay is expo-
nential.

of the reproductive number was calculated and is shown in Picture 5.3.
Calculations were performed with graphs of size N = 5·104 and coordination
number k = 3. The relaxation time τ was calculated through a linear fitting
of −log(ρ(t)) and averaging over 100-200 realizations in 10 different graphs
to reduce fluctuations. The neat divergence of τ around λ ' 0, 54 evidences
the proximity of the phase transition and translates into a sudden increase
in the average lifetime 〈T 〉 of the spreading process. We measured this
latter quantity in function of λ, together with the maximum duration Tmax.
Results are shown in Pictures 5.4 and 5.5.
The analysis proceeds with a profile of the prevalence in the intermediate

region between the sub-critical and the over-critical regimes. The heigh of
the peak preceding the exponential decay grows with increasing reproductive
number, meaning that the prevalence on average grows. At greater λ the
initial boost in the number of infected nodes ends in a plateau, lasting
indefinitely in time.
Given a set of a high number of realizations of the process, it is possible to
build the prevalence distribution P̄n, defined as the probability distribution
for the system to be in a state with n infected vertices. It is computed by
taking the absolute frequency of the state n over all simulation runs. We
can now define the moment of order m of the number of infective nodes
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Figure 5.3: Relaxation time as a function of λ in networks of size N = 5 · 104 and
connectivity k = 3.

Figure 5.4: Average life span of the whole set of infection processes 〈t〉 as a function
of λ. Networks size is N = 5 · 104 and connectivity is k = 3.
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Figure 5.5: Maximum lifetime of the infection process Tmax as a function of λ.
Parameters used are N = 5 · 104 and k = 3.

distribution as

〈nm〉 =
N∑
n=1

nmP̄n (5.2)

where the sum extends up to the network size N . The first moment is the
average number of infective vertices 〈n〉.
Calculations focus on 〈n〉 and on the maximum number of infected nodes
ever reached nmax. As previously, they are performed over 100-200 realiza-
tions for 10 different graphs of size N = 5·104. Clearly, at high λ, 〈n〉 will be
close to the value in the plateau, and what is observed is again a continuous
divergence in the proximity of λ ' 0, 54, as can be seen in Picture 5.6.
Variables τ and 〈n〉 help us to draw a general picture of what goes on in a

typical contagion process. We can see that the position of the critical point is
generously out of range with respect to the predictions of both homogeneous,
heterogeneous and quenched mean field theories. In the case of random reg-
ular networks, in fact, they all state λc = λHOMc = λHMF

c = λQMF
c = 1/3 '

0, 33. This confirms the fact that dynamical correlations, that are not taken
into account in these approaches - have a primary role in the value of the
epidemic threshold. Indeed, the pair-quenched mean field approach succeeds
in getting closer, predicting λPQMF

c = 1/2 = 0, 5. However, these are just
qualitative reasonings. To get deeper into the investigation it is needed to
know the exact position of the critical point.
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Figure 5.6: Average number of infective nodes over the whole infection process
〈n〉 = 〈ρ〉N as a function of λ. Networks size and connectivity are, respectively,
N = 5 · 104 and k = 3.

Figure 5.7: Maximum number of infected nodes reached in the ensemble of real-
izations of the infection process nmax = ρmaxN , as a function of λ. Networks size
is set equal to N = 5 · 104, while the connectivity is set equal to k = 3.
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5.2 Susceptibility method

As described in Chapter 2, the exact theoretical prediction of the epidemic
threshold in a generic network is an open task. On the side of the numerical
prediction, one needs to equip with an effective technique in order to com-
pare and verify analytical results. It is then fundamental to choose the right
order parameter, able to spot the real critical point in an arbitrary graph
architecture. A widely adopted technique is the study of the susceptibil-
ity, inherited from traditional absorbing phase transitions research2. Here
it represents the magnitude of stochastic fluctuations in the density of in-
fective vertices and, in the thermodynamic limit, it diverges at the epidemic
threshold. In fact, in the sub-critical and over-critical phase 〈ρ〉 approaches
the null value of the absorbing healthy state and the finite value of the
stationary fluctuating state, respectively. In the intermediate regime, any
realization of the contagion process can undergo a different evolution and
ρ presents extreme fluctuations. In the limit N → ∞, the value of 〈ρ〉 in
the steady state is infinite, which entails fluctuations of infinite amplitude
at the transition.

Figure 5.8: Susceptibility peaks for networks of connectivity k = 3 and growing
sizes.

Moreover, it has been shown that, rescaling χ by a factor 〈ρ〉, it maintains its
scaling properties, while returning clearer results [30]. Thus, the definition

2See Chapter 3.
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Figure 5.9: Susceptibility peaks for networks of connectivity k = 6 and growing
sizes.

Figure 5.10: Susceptibility peaks for networks of connectivity k = 10 and growing
sizes.
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Figure 5.11: Average and maximum number of infective vertices as a function of
the distance from the critical point. Parameters are k = 3 and N = 104. Blue
line represents a function proportional to |λ− λc|α1 with α1 ' −0, 86 (correlation
index r ' 1) and red line a function proportional to |λ − λc|α2 with α2 ' −0, 85
(correlation index r ' 0, 96).

Figure 5.12: Average and maximum life span of the infection process as a function
of the distance from the critical point. Parameters are k = 3 and N = 104. Blue
line represents a function proportional to |λ− λc|α1 with α1 ' −0, 44 (correlation
index r ' 1) and red line a function proportional to |λ − λc|α2 with α2 ' −1
(correlation index r ' 0, 96).
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that will be adopted in the following is

χ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉
=
〈n2〉 − 〈n〉2

〈n〉
(5.3)

Simulations were performed to spot the critical point in random regular
graphs of degree k = 3, 6, 10, whose outcome is illustrated in Picture 5.8, 5.9
and 5.10. Curves are obtained by averaging over 1000-5000 realizations for
each of 10-100 different graphs. To overcome finite-size limitations, networks
of growing sizes are used. For technical reasons the top value of N is not
very large, but still sufficient to build a route to the thermodynamic limit.
In all charts, peaks move toward the value depicted by pair-quenched mean
field theory as N increases. Indeed, for k = 3 one has λPQMF

c = 1/2 = 0, 2,
while for k = 6 one has λPQMF

c = 1/5 = 0, 2 and for k = 10 one has
λPQMF
c = 1/9 ' 1, 11. These values agree with some published results on

random regular networks [30].
Moreover, we performed an analysis on the scaling of quantities presented
in the first paragraph of the chapter. Data show a good power-law scaling
for all of them.

5.3 Life span method

A second technique, of recent conception, proposes to seek a threshold be-
haviour in the time variable and concentrate on the duration of epidemics
[31]. This method is based, again, on the analysis of the SIS diffusion process
starting from a single infected vertex. In the sub-critical regime, the closer
the critical point and the longer realizations on average survive. Right over
the critical point, instead, if N → ∞ there is a non null probability that
the infection lasts indefinitely in time. Realizations for which it is the case
are said to be endemic. The appearance of at least an endemic realization
signals that the epidemic threshold has been passed over. The situation is
thus similar to that of percolation model3, wherein clusters size increases
up until the formation of a giant component. As in that case one measures
the average size of finite clusters, here the strategy consists in measuring
the average lifetime Tfinite of those realizations that die out in a finite time.
Varying the order parameter, the outcome is a curve with a peak at the
value of λ at which realizations are more long-lasting before they start to
become endemic.
To discriminate whether a realization is finite or endemic, a new quantity
is defined: the epidemic coverage (here indicated with C). It represents
the fraction of distinct vertices ever infected during the whole realization.
In the thermodynamic limit, it is a secure indicator of the belonging to one
of the two classes of realizations: if the infection dies out in a finite time it

3See Paragraph 3.4
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has also a finite coverage, which disappears with N tending to infinity. Vice
versa, finite C means finite life span. Moreover, to obtain a coverage equal
to 1 it is required an infinite time and if the disease infects the network for
an infinite time then C is equal to 1. In definitive, C = 1 if and only if the
system finds the active stationary state.
Difficulties arise when one wants to measure the coverage, having systems
of finite size. How to establish in this case when a realization is endemic?
Using the same criteria of the infinite size case can be too expensive in terms
of computational time. The proposal is to exploit the fact that, if N → ∞
and C reaches a finite value different from 0, then the realization must be
endemic. It would, therefore, be possible to set a threshold of C different
from 1 to distinguish between endemic and finite realizations. An immediate
advantage is that, after a realization has reached this value of coverage, it
is possible to truncate it - saving precious time.
This technique has been successful in confirming epidemic thresholds for
scale-free networks, obtained by a new theoretical approach which takes into
account the characteristic reinfection time of distant vertices [31]. However,
the validity of both the theoretical approach and the life span method is still
under debate. Data presented in the following aim to verify the reliability
of the life span method in the simplest possible configuration, namely pure
homogeneous random graphs.

Figure 5.13: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 3 and growing sizes.

According to previous tests [31], the value of C would be non influential
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Figure 5.14: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 6 and growing sizes.

Figure 5.15: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 10 and growing sizes.
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Figure 5.16: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 20 and growing sizes.

in the position of the critical point. We thus set the coverage threshold at
C = 0, 5 and performed a Tfinite measure again with k = 3, 6, 10 and varying
N . Pictures 5.13, 5.14, 5.15 and 5.16 show the curves obtained.
At a first glance one can notice that peaks are stable around a precise value
of the reproductive number and the shift exponent is close to 0. At small
scales, results strongly differ from those provided by the susceptibility. The
critical point, however, is located again in the proximity of λPQMF

c for all
vertex degrees. This technique seems then to catch the thermodynamic limit
value of the epidemic threshold much better than susceptibility. Finite size
seems to have slight effects on the position of the peak. However, there is
an evident failure in finding the critical point at the effective system size.
To support this conclusion, we performed a study on critical scaling of the
relaxation time. The epidemic thresholds given by both methods were esti-
mated through a quadratic fit of the top of peaks with N = 104. Taking as
λc the value given by the susceptibility, data are well fitted by a power-law
function. On the other hand, taking the value obtained with the life span
method, data do not align on a double logarithmic plot (Figure 5.17).The
life span method seems therefore to be imprecise at small size scales. In the
large size limit, however, the method seems to successfully yield results in
agreement with the susceptibility method, but further tests at larger scales
are required.
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Figure 5.17: Relaxation time of the infection process as a function of the distance
from the critical point, obtained both by the χ (blue series) and Tfinite (red series)
measures. Parameters are k = 3 and N = 104. Blue line represents a function
proportional to |λ− λc|α with α ' −1, 29 (correlation index r ' 0, 995).

5.4 Transition with localized states

The subsequent analysis concerns the effect of hubs on the epidemic phase
transition, aiming to investigate the predictions on networks with a local-
ized principal eigenstate4. In particular, we look for numerical evidences of
the outliving of the infection in a restricted number of vertices, most likely
around the hub.
A single node of degree q > k was so introduced in the regular architecture
and its degree was set at q = 10 · k, with k = 3, 6, 10, 20. All parameters
values give an inverse participation value IPR(Λ1) ' 0, 20, indicating that
the principal eigenstate is localized. To efficiently capture the dynamical ef-
fects of the hub, this node was also imposed to be the seed of the infection.
Analysis on the susceptibility was repeated, revealing a different scenario.
The hub has multiple consequences on the susceptibility peaks.

First of all, peaks are shifted toward the left on the order parameter axis,
as one can see in Pictures 5.18, 5.19, 5.20 and 5.21. This reflects the intuitive
fact that the higher connectivity of the hub allows it to spread the infection
more efficiently and so it works as a sort of ”amplifier” of contagion. At
the same time, even if the hub turns susceptible, it is sufficient that one of
its several nearest neighbours infects it again to return an active spreader.

4See Paragraph 2.4
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Figure 5.18: Susceptibility peaks for networks of connectivity k = 3, hub degree
q = 30 and growing sizes. Sizes are those indicated in the legend box plus one, to
fulfill the condition 4.2.

Figure 5.19: Susceptibility peaks for networks of connectivity k = 6, hub degree
q = 60 and growing sizes.
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Figure 5.20: Susceptibility peaks for networks of connectivity k = 10, hub degree
q = 100 and growing sizes.

Figure 5.21: Susceptibility peaks for networks of connectivity k = 20, hub degree
q = 200 and growing sizes.
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Consequently, a smaller value of λ is necessary to the disease to stay alive.
Furthermore, the shift of the peaks with respect to the fully regular case is
more evident as network size decreases. The reason is that q is fixed and
N varies, so the heterogeneity of the hub is perceived more when the dy-
namics is restricted to a limited number of vertices, while tends to vanish
in larger and larger systems. An evidence of this fact is that the scaling
toward infinite size seems to tend again to the value close to prediction of
the pair-quenched mean field approach for random regular graphs. Poor
agreement is found instead with the epidemic threshold given by quenched
mean field λQMF

c (k, q) = 1/Λ1. Indeed, by using Equation (2.23), one ob-
tains λQMF

c (3, 30) ' 0, 176, λQMF
c (6, 60) ' 0, 124, λQMF

c (10, 100) ' 0, 095
and λQMF

c (20, 200) ' 0, 067. Clearly none of these is the limit value of
the scaling for any susceptibility peak. This discrepancy is not a surprise
though, considered that these results are extracted within a quenched mean-
field approach, not taking into account dynamical correlations.
A second aspect is the height of the peaks, which means the magnitude
of prevalence fluctuations. It is clear from the charts that the hub has a
dampening effect on susceptibility, since all peaks are lower than in the cor-
responding regular graphs. This can be explained by conjecturing that the
hub creates an island of infective vertices around itself which, on average,
determines the mean prevalence in the network and leaves to the dynamics
in the homogeneous rest of the graph a little influence.
Later on, simulations were repeated setting k = 3, 4, 6 and fixing the hub
degree at q = 100. This time, results of susceptibility measures are dramat-
ically different from the previous ones. In fact, in charts 5.22 and 5.23 a
second peak appears on the left of the peak associated to the phase tran-
sition. The new peak is in the same position for all k at small scales - i.e.
N = 103 - and scales with N according to k. In the large size limit the two
peaks tend to overlap and add up to a single peak.
In chart 5.24 relative to k = 6 only one peak is present, though. This fact
led us to the idea that in previous analysis with smaller hubs the same thing
could have happened. Consequently, we performed a further analysis using
as parameters k = 3, q = 60 and k = 2, q = 30.
From charts 5.25 and 5.26 it is possible to see that the position of peaks rel-
ative to the localization transition depends on the degree of the hub. With
q = 100, its top value is around λ ' 0, 20, with q = 60 is around λ ' 0, 28
and with q = 30 around λ ' 0, 40. The highest is q and the lowest is the
reproductive number required to generate an explosive dynamical instabil-
ity. The new peak reflects thus the strong fluctuations caused by the high
number of connections hub. This instability explodes at a precise value of
λ determined by the degree q at small scales and shifts with growing size
according to the value of k. A threshold value of the reproductive number
associated to the hub emerges, which will be indicated as λh in the following.
Even without precise quantitative results we can extract some observations.
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Figure 5.22: Susceptibility for networks of connectivity k = 3, hub degree q = 100
and growing sizes. Sizes are those indicated in the legend box plus one, to fulfill
the condition 4.2.

Figure 5.23: Susceptibility for networks of connectivity k = 4, hub degree q = 100
and growing sizes.
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Figure 5.24: Susceptibility for networks of connectivity k = 6, hub degree q = 100
and growing sizes.

Figure 5.25: Susceptibility for networks of connectivity k = 3, hub degree q = 60
and growing sizes.
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Figure 5.26: Susceptibility for networks of connectivity k = 2, hub degree q = 30
and growing sizes.

If λh < λc, then the double peak scenario turns out. At small N , the
leftmost peak dominates, suggesting that hub is able to bring a stronger
instability then the network itself. Yet, increasing N the rightmost peak
grows faster than the other and rapidly absorbs it. This fact indicates that
the hub instability is actually restricted within a limited number of vertices
and, in the limit N →∞ vanishes. On the other hand, if λh > λc then the
result is the usual one peak scenario. Even so, the top value of the peak
is lowered by the presence of the hub, which dampens density fluctuations.
These two alternative pictures suggest a competition between the hub and
the rest of the network in a infection outbreak.

5.4.1 Life span of localized states

The analysis continues with a comparison between the life span and the
susceptibility methods in the case a hub is added to the regular configura-
tion. We performed again simulations with the same parameters as before,
namely k = 3, 6, 10, 20 and q = 10 · k.
Also in this case, we find that all peaks are shifted toward low λ values with
respect to the corresponding peaks of equal connectivity and network size
in the fully regular case. The peak shift here is more consistent at smallest
scales, in the same way as in the susceptibility analysis. Again, it reflects
the fact that a smaller value of λ is required for the phase transition in pres-
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ence of a strong spreader vertex. The limit value of the epidemic threshold
seems to be again close to that of pair-quenched mean field. Moreover, it is
worth to be noted that the height of the peaks is sensitively larger than in
the regular configuration, leading to the observation that the hub actually
expands the lifetime of the spreading activity.

Figure 5.27: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 3, hub degree q = 30 and growing sizes.

Nevertheless, by setting k = 3, 4, 6 and q = 100 the scenario remains basi-
cally the same. Figure 5.31, 5.32 and 5.33 illustrate the outcome. Also in
this case only one peak is visible, while with the same parameters the sus-
ceptibility presents two peaks. The life span method appears to be sensitive
to the localization transition, but is not able to give any information on the
competition between the hub and the network. In the specific, it is not use-
ful to say whether the contagion dynamics is local or global. Instead, with
parameters corresponding to the double-peaked susceptibility, this method
returns a peak that is located in between the top values of χ. Particularly
for k = 3 and q = 100, it is visible that Tfinite yields a peak that is midway
between λh and λc. In this case the present method clearly fails in its prin-
cipal task, determining the epidemic threshold.
In any case, combining the susceptibility and the life span method we can
verify that, as expected, a hub in a homogeneous network configuration pro-
vokes a long-lasting, localized active dynamics, starting below the critical
point.
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Figure 5.28: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 3, hub degree q = 60 and growing sizes.

Figure 5.29: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 10, hub degree q = 100 and growing sizes.
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Figure 5.30: Peaks of lifetime of non-endemic realizations for networks of connec-
tivity k = 20, hub degree q = 200 and growing sizes.

Figure 5.31: Measure of Tfinite for networks of connectivity k = 3, hub degree
q = 100 and growing sizes.
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Figure 5.32: Measure of Tfinite for networks of connectivity k = 4, hub degree
q = 100 and growing sizes.

Figure 5.33: Measure of Tfinite for networks of connectivity k = 6, hub degree
q = 100 and growing sizes.
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As additional helpful consideration, we have to cite a very recent work on this
subject [33]. Here the life span method is tested by performing simulations
on double random regular graphs, namely two random regular graphs of
degrees k1 and k2 connected by a single link. Results show a double-peaked
susceptibility in correspondence of 1/(k1 − 1) and 1/(k2 − 1), in agreement
with pair-quenched mean field. Differently, the life span method yields only
one peak in an intermediate position with respect to the other two peaks.
The scenario is thus similar to that with a random regular network and a
hub.
These results suggest also that, using random regular networks with two
distinct hubs strong enough, three peaks will emerge. For now, however,
this remains an hypothesis.

5.5 Critical scaling of localized states

To gain a wider view of the role of hubs in the dynamics, we studied as final
thing the critical scaling of characteristic quantities described in the first
paragraph of the chapter. The scaling is considered below the transition
point λc. In order to get a better comparison with the scaling in the com-
pletely delocalized networks, parameters were set, as previously, k = 3 and
N = 104. The hub size was taken q = 100. We resorted to the susceptibility
method and to a quadratic interpolation on the top of the right peak to
determine precise values for λc.
As regards the density of infected vertices, the power-law scaling is lost and
both 〈n〉 and nmax increase exponentially approaching λc. Temporal vari-
ables appear instead approaching a typical power-law scaling. The duration
of the active spreading is enhanced by the hub but follows ordinary scaling
rules. This fact underlines two different scaling behaviours for temporal and
spatial variables dictated by two different correlation lengths ξ⊥ and ξ‖.

61



Figure 5.34: Average and maximum number of infected vertices as a function of
the distance from the critical point. Networks size is set N = 104.

Figure 5.35: Relaxation time of infection process as a function of the distance
from the critical point. Networks size is set N = 104.
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Conclusions

In this project, dynamical and critical properties of the SIS phase transition
were explored by means of a numerical approach. The analysis focused on
the role of hubs inserted in random regular networks, i.e. sets of graphs in
which edges extremes are casually assigned in equal number to each vertex.
With the addiction of the hub, such structures build a bridge between reg-
ular spaces such as a Bethe lattice and complex networks, characterized by
highly heterogeneous degree distributions. Moreover, the choice of a homo-
geneous structure with a single heterogeneity allows to isolate and better
capture its effect on the SIS dynamics.
The investigation aimed to verify analytical predictions deriving from a spec-
tral analysis in networks of this typology. The presence of the hub deter-
mines a localization transition in the leading eigenvector of the adjacency
matrix, which has been predicted to affect the traditional SIS phase transi-
tion. In particular, analysis of the contagion process stationary states leads
to find an intermediate regime - right over the epidemic threshold - with
long-lasting epidemics surviving within a restricted number of vertices. An
analytical expression for the critical point was also calculated in the case of
a Bethe lattice with a hub.
The transition from the healthy to the endemic phase was inspected through
epidemic susceptibility measures, which is the most widely accepted tech-
nique to detect and study phase transitions within the contact process and
the SIS model. Simulations first concerned fully random regular configu-
rations and yielded outcomes in agreement with pair-quenched mean field
theory, in the large size limit, and markedly far from previous mean field
approaches. As expected, the pair-approximation approach turns out to be
the most effective tool in the theoretical prediction of the epidemic thresh-
old position in homogeneous environments. Indeed, it is the only approach
taking into account dynamical correlations of the state space.
Introducing a single hub is sufficient to produce visible repercussions. While
the limit value of the critical reproductive number remains the same, a dif-
ferent finite size scaling appears, reflecting the major ease of reaching a pow-
erful contagion in the presence of a strong spreader vertex. The epidemic
threshold, thus, shifts from low toward larger values of the reproductive
number as the system size grows. At larger and larger size, hub effects tend
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to disappear, so that susceptibility peaks approach again the pair-quenched
value. In addiction, all peaks display a smaller top magnitude than in the
corresponding fully regular networks with same connectivity, suggesting that
the contagion dynamics is controlled and stabilized by the hub.
Moreover, by using a stronger hub with very high connectivity - in low
degree networks - enables us to testify the emerging of an additional sus-
ceptibility peak, associated to a highly fluctuating activity within the hub
neighbourhood. The new peak separates the absorbing phase and a regime
with long-term - but not endemic - dynamics, wherein the activity is con-
centrated around the hub and is due to its greater spreading capacity. The
endemic phase is reached only at further increase of the reproductive num-
ber, when it reaches the typical critical point of random regular graphs. The
position of the leftmost peak appears to depend on the hub degree at small
graph scales - i.e. 103 vertices - and to be affected by finite size scaling
according to the degree of the homogeneous component of the graph. Plus,
if the epidemic threshold is at a smaller value of the reproductive parameter
than the hub threshold, only one peak arises. There seem to be then a sort
of competition between the hub and the rest of the graph. Which of the two
causes an outbreak in order parameter fluctuations at lower reproductive
number depends on the degree of both the former and other vertices. If hub
connectivity is large enough, an outbreak in its neighbourhood requires a
lower reproductive parameter than the global transition. On the other hand,
if a lower reproductive parameter is needed to trigger the phase transition,
then relative fluctuations hide the fluctuation outbreak given by the hub.
However, even in the double peak case, with increasing network size fluc-
tuations corresponding to the global transition overcome fluctuations of the
hub. A wide region of high infective density instability therefore originates.
It seems plausible that, in the thermodynamic limit, the leftmost part of
this region, relative to a finite number of vertices, tends to vanish under the
infinite entity of the phase transition.
To complete the survey, we analyzed the critical scaling of characterizing av-
erage quantities in the double peak framework. Findings confirm the break-
ing in the typical SIS phase transition. Approaching the epidemic threshold
from below, in fact, average lifetime of the spreading process scales as a
power-law, while average number of infective vertices follows an exponential
behaviour. The hub brings then an enhanced dynamics thanks to its high
degree.
These outcomes partially agree with the predictions under survey, that claim
the appearance of an intermediate regime right above the epidemic thresh-
old. Nevertheless, none of the peaks is located at the expected epidemic
threshold for a Bethe lattice with a hub, which results underestimated. This
can be understood by remembering that this result was obtained within a
quenched mean field context, which was proved to be strongly imprecise.
Moreover, the intermediate regime is not guaranteed by simply introducing
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a hub, but seems to depend on relationships between degrees of both the
hub and the rest of the nodes.
Our second aim was to verify the efficiency of the life span of finite realiza-
tions as order parameter of the SIS phase transition. The measure of this
variable was proposed as new technique for the detection of endemic transi-
tions in the SIS model on complex networks. Tests were performed again in
random regular networks, both in presence and in absence of a hub. In the
former case, this method yields a peak in correspondence of values predicted
by pair-quenched mean field theory at all network sizes, with shift exponent
close to zero. On one hand, it is a positive finding: it allows to obtain a
rough estimate of the epidemic threshold by inspecting systems of small size,
which require a feeble computational effort. Nevertheless, at small scales the
life span measure leads to dramatically discording results with respect to the
susceptibility measure. This means that it misses completely the effective
epidemic threshold determined by critical finite size effects and turns out to
be a bad order parameter for small systems.
In networks with a localized eigenstate, the critical shift appears more evi-
dent, one more time reflecting the major ease in activating the phase tran-
sition. Even though the life span of finite realizations approaches the pair-
quenched value increasing the system size, the critical point is again in sys-
tematic defect with respect to the corresponding susceptibility peak at small
sizes. Moreover, the life span method totally fails in detecting the twofold
behaviour of a network composed by a homogeneous component and a lo-
calized heterogeneity. In fact, even at parameters yielding a double-peaked
susceptibility, the lifetime of finite realizations displays only one peak. Tem-
poral variables are able to identify only the passage to a long term activity,
without discriminating its origin: a localized infection persistence is not
distinguished from a global contagion. This is not the greater problem,
however. Indeed, when the susceptibility shows a double peak, the limit
position of the life span peak is not in correspondence of the right one, nor
in correspondence of the left one, but midway between the two. The life
span peak seems then trapped between two competing spreading activities
due to the hub and the whole network, without being faithful to none of
the two. These results lead to the conclusion that attention is needed when
dealing with heterogeneous topologies. Certainly, the present investigation
requires further developments, but it is not meaningless to presume that the
same issues might appear also in other network topologies with strong het-
erogeneities, even in scale-free and real networks. Also in the homogeneous
case, however, the susceptibility method is more reliable, as previously dis-
cussed.
To conclude, we take advantage of all results and vulnerabilities of this inves-
tigation to suggest possible developments and future directions. Certainly,
as the first thing it is required to perform numerical analysis on the SIS
dynamics in presence of a single isolated hub at larger network sizes. This
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would allow to improve the present analysis and acquire a broader perspec-
tive on a wider scale, a step closer to the thermodynamic limit. It would
also be useful to quantitatively study the position of the peak connected
to the hub activity in relation to its degree and see if a vanishing epidemic
threshold is reachable, like in scale-free connectivity configurations. Since
hub impact depends on the size of the system, it seems likely that, if there
is a threshold for a vanishing critical point, then it will be size dependent.
The critical scaling deserves more accurate analysis as well.
Furthermore, the relationship between the localization transition and mod-
ifications of the ordinary SIS phase transition remains incomplete. This
aspect deserves to be further explored by seeking more precise analytical
results, including dynamical correlations and thus most likely combine the
adjacency matrix spectral analysis and the pair-approximation approach.
Plus, the position of the peak relative to the hub remains to be determined.
Another situation to consider is what happens when more than one hub is
present on a homogeneous multitude of vertices. Intuitively, an equal num-
ber of peaks will appear if at lower reproductive parameters than the global
transition. Numerical surveys are required to clarify this occurrence.
In addiction, the emerging of anomalous scaling behaviour gives the role of
topology heterogeneities a special role in a wider critical phenomena perspec-
tive. Ulterior developments might also focus on absorbing phase transitions
in different models, such as the contact process. Definitely, the role of hubs
in complex networks is worth to be further investigated, in order to get
deeper in the comprehension of complex networks.
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