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Abstract

The present work aims to find a good way to automatically trace the velocity profile in
vessels shown in continuous wave Doppler spectrograms, replacing the more traditional
manual tracing, easy to perform but rich in drawbacks. Different methods of pre-processing
this kind of images in order to prepare the edge detection step are presented. Various
techniques, taken from the literature or newly created, are tested on a set of 18 CW Doppler
spectrograms. The main purpose is to understand which is the best strategy to put into
practice, remembering that the goal is to get the maximum velocity envelope, or the mean
velocity in the vessel. Two main strategies are tested: a mild pre-processing before edge
detection, followed by an edge linking step to fill the gaps in the extracted contour, or a
stronger pre-processing that guarantees a continuous contour without further operations. A
comparison is made on the obtained results and it is shown that the two approaches are
somehow complementary in their pros and cons. In further work, the strengths of the two
strategies should be combined in a hybrid method that would guarantee a good compromise
between continuity of edges and mathematical-based detection of boundaries.
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Introduction

Doppler spectrograms as source of information on blood
flow

Doppler spectrograms, both continuous wave and pulsed wave, are very useful in giving
information about blood velocities in vessels. Mean flow velocity and maximum flow velocity
can be extracted from this kind of images.

The main problem with Doppler spectrograms is that until now the principal way of
investigating them has been manual tracing of the edges seen in the images. This way of
proceeding is clearly rich in drawbacks: although the technician is a well-trained person,
the subjectivity of this method is great, and the results are not comparable with other ones
traced by another technician. The velocity distribution needs to be quantified on the basis
of recognized and replicable techniques.

The human eye is somehow deceived in detecting edges, because sometimes it sees some-
thing that does not really exists. For example a technician who tries to delineate outer
contours in a Doppler sonogram would close the border even if it is not so clear where the
real border is. This happens very easily above all with grey-scale images, and this is the
case of study because Doppler sonograms are usually displayed as grey-scale images.

In this kind of images there are a lot of possibilities to detect different edges one next to
the other and no one can say with absolute certainty which is the most significant one, or
where it starts to be only noise instead of useful information. This is the reason why it is
important to give more objective rules to trace the contour of the velocity profile.

Aim of the project

The purpose of this work is to overcome the limitations exposed above, and to improve
the quantification step in the image analysis. We will develop a repeatable strategy for
performing edge detection in Doppler sonograms, focusing on continuous wave Doppler ones.

Edge detection is however a challenging task and a lot of researchers are still working
on it. The main problem is that the performance of the greatest part of edge detection
algorithms is conditioned by the quality of the image and its typology.

However, of course edge detection is not the only possible approach to the problem. So,
we will test also other techniques, trying to understand which is more reliable and best
performing.

Structure of the work

In the first two chapters the background necessary for the comprehension of the work is
presented. In chapter 1 principles of Doppler imaging technique are briefly introduced,
with a particular attention to spectral continuous wave (CW) Doppler display. Chapter 2
presents some of the most common techniques for cleaning and enhancing medical images,
focusing on those employed in the present work. In chapter 3 the implementative details
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2 Introduction

of the different strategies adopted to extract the velocity profile from CW Doppler spectral
images, and of further processing after it, such as extraction of the baseline and text and
numbers recognition, are shown. Finally, a comparison between the different techniques seen
in chapter 3 is provided by chapter 5. Matlab code described in chapter 3 is given as an
appendix.



Chapter 1

Background. Doppler medical
imaging

1.1 Doppler imaging techniques

Ultrasonic imaging is a very wide field in biomedical imaging. Besides the visualization of
anatomical structures, which can be seen in A-mode, B-mode, C-mode or M-mode images,
the Doppler mode exploits the Doppler effect in order to detect the motion of blood and
tissue.

There are different Doppler modes and each one gives different information:

• Colour Doppler or Colour flow imaging, where velocity information is displayed as a
colour code overlying on a B-mode echographic image.

• Continuous wave Doppler (CW), where the transducer emits and receives the ultra-
sound beam continuously. Because of the continuity in emission and reception of the
signal, two separate piezoelectric elements are needed in the probe, one emitting and
one receiving. Doppler information comes from a line through the body, and all the
velocities found by the beam are shown at every time point.

• Pulsed wave Doppler (PW), where the velocity information comes only from a small
sample volume at a known depth. The transducer emits ultrasound beams in pulses
and the probe needs only one element to emit and receive.

• Duplex, where PW (or CW) Doppler is displayed together with 2D images (B-mode)
or Colour Doppler images.

Both CW Doppler and PW Doppler techniques are called spectral Doppler because of the
way of displaying the information: the spectrum of flow velocities on the y axis and time on
the x axis, while the grey scale indicates the fraction of targets moving at that particular
velocity.

In this work we will focus on Continuous wave Doppler images, mainly because there is
not an upper limit to the Doppler shift that can be detected (like in PW Doppler systems).
This is important when we are analysing diseased arteries: the lumen becomes narrower and
the velocity of blood increases, thus increasing also the frequency shift.

1.2 The Doppler effect

The Doppler effect is the change of frequency of a received sound wave compared to the
transmitted sound wave, and it occurs because of the relative motion between the observer
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4 Background. Doppler medical imaging

and the source. If the source or the observer move one towards the other, the detected
frequency will be higher than the emitted one, while it will be lower if they move away from
each other. The resulting change observed in the frequency is proportional to the relative
velocity between the source and the observer, and it is known as Doppler shift.

In biomedical devices, the transducer acts as a source and blood cells as the observers
when the ultrasonic beam is sent towards the vessel, while on the way back blood cells
become the source and the transducer (which acts also as a receiver) becomes the observer.
So, the Doppler effect occurs twice from the transmission of the beam to its reception. In
this case the transducer is stationary and the blood moves towards the transducer or away
from the transducer.

The Doppler shift frequency fd is the difference between the transmitted frequency (ft)
and the received frequency (fr) and it is defined by the Doppler equation

fd =
2ftv cos θ

c
(1.1)

where v is the velocity of the blood, c is the speed of the ultrasound beam through the tissue
(the average speed 1540 m/s is usually employed), and θ, also called angle of insonation, is
the angle between the transducer and the vessel. This angle can change because of variations
in the orientation of the vessels but it can also be altered manually by the operator, in order
to obtain the highest Doppler frequency shift. The ideal situation is when the probe and
the vessel are aligned, so that the cosine is 1.0, but often this is not achievable. Generally
the goal is to keep the angle of insonation below 60◦.

Figure 1.1: An ultrasonic transducer that transmits waves toward a blood vessel in which
the blood flows with instantaneous speed V . There is an angle θ between the vessel’s
predominant dimension and the direction of the transducer.

Rearranging the Doppler equation (1.1), if we know θ (usually extracted by anatomical
B-scan images), we can obtain an estimation of the blood velocity v. Actually, the Doppler
shift will not contain a single frequency but a spectrum of frequencies, and so a spectrum
of velocities will be displayed. This happens because all the targets in the path of the
ultrasound beam are unlikely to move with the same velocity.

Looking at figure 1.1 we can see how the Doppler effect is exploited in medical ultrasound.
Ultrasound waves produced by the transducer are scattered from the moving blood and this
causes the change in frequency, that depends on the moving direction of the blood as already
mentioned.
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1.3 Spectral CW Doppler display

The spectrum is usually displayed as in figure 1.2. The vertical axis represents Doppler
shift frequency or the velocity of blood, the horizontal axis indicates the time and the grey
scale (or the brightness) is the amplitude of a certain frequency or velocity component at a
certain time. In almost all the analysed images of this work the y-axis presents the velocity
instead of the frequency.

The baseline in the centre of the spectrogram corresponds to zero velocity: the spectrum
of positive velocities (flow towards the transducer) is displayed above the baseline and the
spectrum of negative velocities (away from the transducer) is displayed below.

The range of blood velocities at each time is due both to the actual presence of different
velocities in the sample volume and to the intrinsic spectral broadening. This phenomenon
occurs because of the insonation of the blood at a range of different angles due to the shape of
the beam, that is not planar and has a finite width. Thus it is a problem of the measurement
system and it can not be completely avoided.

There are also other factors that affect somehow the shape of the velocity spectrum,
making it not correspond exactly to the real shape of the velocity distribution (see [9]):

• Non-uniform insonation. The piezoelectric elements that transmit and receive the
beams are not ideal, so some parts of the vessel could be preferentially sampled.

• Attenuation. Echoes from different parts of the vessel can experience different levels
of attenuation.

• Filtering. Filtering must be performed on the received signal, that contains, besides
the component of the blood flow, also information from other moving structures. After
high pass filters, these components are rejected, perhaps also losing part of the low
flow velocities in the vessel.

• Spectral analysis limitations. The analysis is performed in the frequency domain using
fast Fourier transform algorithms, that lead sometimes to very noisy estimates.

• Multiple reflection. It happens in the presence of a strongly reflecting surface, giving
the impression that a signal has been detected outside the vessel.

Figure 1.2: The typical format of a CW doppler sonogram, together with a colour flow image
of the heart’s section of interest.
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1.4 Image resolution and quality

1.4.1 Resolution

Two kinds of resolutions must be considered and kept under control, axial and lateral.
Resolution is the the smallest distance between two points that allows to see them as distinct.
Axial resolution pertains to points that lie on the direction of propagation of ultrasound
beams, while lateral resolution refers to points that lie at a right angle with respect to the
direction of propagation. The first depends on the wavelength of the beam, and thus also on
the frequency of the waveforms. This frequency is reciprocal to the ultrasound frequency, so
the axial resolution improves with an increasing ultrasound frequency. On the other hand,
lateral frequency depends on the width of the ultrasound wave, that has to be kept small.

However, an improved axial resolution is in conflict with the intensity of the received
signal. In fact, the intensity of the signal depends on the attenuation experienced by the
beam: the higher is the frequency, the higher is the attenuation. Therefore, there is a
discrepancy between the resolution for images at smaller depths and images at higher depths.
Usually the transmitted frequencies are in the range 1-10 MHz, but the frequency for a
specific application must be chosen carefully considering what has been said.

1.4.2 Quality

One of the most significant disturbance factors in ultrasound images is speckle noise [22].
Noise degrades the quality of the image, thus affecting feature extraction and analysis.

Speckle noise is a pattern that arises because of the interference of many waves of the
same frequency, but different phases and amplitudes, i.e. waves scattered from different
sites. It implies an increase of the mean grey level of a local area.

Despeckling techniques, although very useful, must be carried out carefully to limit
loss of information. Several filtering techniques have been developed in order to reduce
this phenomenon, from linear methods to non-linear ones, and one should choose the most
appropriate for the specific purpose.



Chapter 2

Background. Medical Image
processing

The Doppler sonograms given by medical devices need to be refined in order to prepare the
detection of the required features in an easier way. Doppler images are affected by noise,
as already said in the previous section. First of all, we need to process the image somehow
before performing the automatic extraction of the velocity profile. This is done in order
to enhance the quality of the image, decreasing the contribution of noise without losing
important details. As a matter of fact, we often do not know exactly what is noise and
what is detail in the image. We have to choose the best compromise between ”cleaning” the
image and preserving useful information.

After this step, feature extraction can be performed in an easier way. Feature extraction
includes different techniques, but we will concentrate here on edge detection (and techniques
to improve it) and template matching, because we will use them in chapter 3.

2.1 Enhancement techniques

Image enhancement is an important step if we want to extract some features of an image,
but it is not free from undesirable effects. While making useful information more apparent,
we can lose something during the process, or even involuntarily increase the contribution of
noise. There are several techniques of image enhancement, both in the spatial and in the
frequency domain, and one should choose the best one, according to the original image and
to the result he wants to get. We will explain only the methods used in this work.

2.1.1 Contrast stretching

Contrast stretching (also called normalization) is an operation that attempts to improve
contrast by stretching the range of intensity values in an image. The aim is to bring the
image into a range that is more familiar to the senses. It is a partly linear process.

First of all, we need to set an upper and lower pixel value limits (the new range of
the image), for example 5% and 95% in the histogram. Each pixel with a value below the
minimum will be set to 0, and each pixel above the maximum will be set to 255 (0 and 255
are often chosen values in 8-bit images). Looking at figure 2.1 as a reference, the slope of the
straight line between k0 and kf is K = 255

(kf−k0) , and the output value is kout = (kin−k0) ·K.

More generally, the transformation is:

Pout =


θ′min if Pin < θmin

(Pin − θmin)
(
θ′max−θ

′min
θmax−θmin

)
+ θ′min if θmin ≤ Pin ≤ θmax

θ′max if Pin > θmax

(2.1)
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8 Background. Medical Image processing

Figure 2.1: Linear contrast stretching in the dynamic range between the limits kf and k0.
Every pixel below k0 is mapped to 0, and every pixel above kf is mapped to 255 (the latter
operation is non-linear).

where Pin and Pout are the values of the pixels in input and output, while θmin, θmax, θ′min,
θ′max are the bounds of the input linear region and of the output range, respectively.

2.1.2 Median filtering

Median filtering is a non-linear method often used to suppress some kind of noise (for
example ”speckle noise” or shot noise, in which some isolated pixels have extreme values),
useful because it preserves edges.
This filter is a local operator. It needs a filter region (usually a p × p square), that must
be centered on each pixel (i, j). The greater is p, the more the image will be filtered. The
neighbouring pixels within the frame of the filter region of each pixel are sorted according
to their brightness and the central pixel is replaced by the median value.

This kind of filtering is better than the smoothing filters, because contrast across steps is
preserved, boundaries are not shifted, and outliers are efficiently removed, without introduc-
ing unrealistic values. However, median filtering is more time consuming than smoothing
filtering.

2.1.3 Gaussian filtering

Gaussian smoothing is a convolution operation that works as a low-pass filtering. It is often
applied in order to remove noise in many practical cases, even if noise having a Gaussian
probability distribution is an ideal case. A 2-D isotropic Gaussian distribution has the form:

G(x, y) =
1

2πσ2
exp

x2+y2

2σ2

It is shown in figure 2.2.
A two dimensional discrete Gaussian kernel must be defined in order to work with pixels

of an image. By ”kernel” is meant a matrix of values to be used for weighted sums or
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Figure 2.2: 2D Gaussian distribution with mean (0,0) and σ = 1.

integrals. In this case, it results from the sampling of a 2D Gaussian distribution and it
represents a discrete approximation of that function. Although the Gaussian distribution is
non-zero everywhere, we can assume that it is almost zero three standard deviations away
from the mean. This fact allows us to truncate the kernel in order to keep a finite and
reasonable dimension for it, and links the kernel dimension to the standard deviation of the
considered Gaussian distribution.

A suitable kernel 5×5 deriving from a Gaussian distribution with a standard deviation
of 1.0 is for example

1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 (2.2)

Note that the mask is normalized, i. e. the sum of the coefficients is one, thus not introducing
an intensity bias.

The Gaussian filter has some important properties:

• Isotropy.

• Monotonically decreasing both in spatial and frequency domains.

• Separability.

Isotropy This property guarantees an identical smoothing in all the directions, thus ig-
noring the orientation of structures in the image. This fact can be shown with a change of
coordinates from Cartesian (x, y) to polar ones (r, θ):

G(r, θ) =
1

2πσ2
exp−

r2

2σ2

where r = x2 + y2. As we can observe, the Gaussian does not depend on the angle θ.
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Monotonically decreasing in frequency domain The Fourier transform of a Gaussian
is a real-valued Gaussian itself. Let us prove this property in the one-dimensional case.

F (G(x)) =

∫ +∞

−∞
G(x) exp (−jux) dx =

=

∫ +∞

−∞
exp

(
− x2

2σ2

)
exp (−jux) dx =

=

∫ +∞

−∞
exp

(
− x2

2σ2

)
(cosux+ sinux) dx =

=

∫ +∞

−∞
exp

(
− x2

2σ2

)
(cosux) dx+ j

∫ +∞

−∞
exp

(
− x2

2σ2

)
(sinux) dx =

=

∫ +∞

−∞
exp

(
− x2

2σ2

)
(cosux) dx =

=
√

2πσ exp

(
− u2

2ν2

)

(2.3)

(see [30], chapter 4 for the last equality) where ν2 = 1
σ2 represents the variance in the

frequency domain. It is the reciprocal of the one in the spatial domain.
So, the higher is the value of the standard deviation in the spatial domain, the lower is
the standard deviation in the frequency domain. If the smoothing is slight (low standard
deviation in the spatial domain), the frequency cut off is high, so high frequencies (sharp
variations) are kept in the processed image. On the contrary, for high values of the standard
deviation in the spatial domain the smoothing will be greater and high frequencies will be
removed, implying a greater attenuation of noise but also a greater removal of details.

Separability The convolution of the 2-D Gaussian filter with an image can be split in two
convolutions with two one-dimensional filters, as we show below:

G(x, y)⊗ f(x, y) =
∑
l

∑
k

G(l, k)f(i− l, j − k)

=
∑
l

∑
k

exp

(
− l

2 + k2

2σ2

)
f(i− l, j − k)

=
∑
l

exp

(
− l2

2σ2

)[∑
k

exp

(
− k2

2σ2

)
f(i− l, j − k)

] (2.4)

As we can see the convolution can be performed first with a mono-dimensional Gaussian in
the vertical direction, then the result is convolved with a mono-dimensional Gaussian in the
horizontal direction.

Because of the separability property, the convolution with the kernel of Eq. 2.2 can be
replaced by two consecutive convolutions, one with the kernel

1

17

[
1 4 7 4 1

]
and the second with its transposed.
So, we have reduced the computational complexity from O(j2 · mn) - where j × j is the
dimension of the kernel, and m× n is the dimension of the image - to O ((j + j) ·mn).
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2.2 Edge detection

What is an edge? An edge is a sharp variation of intensity in an image. More exactly, the
mathematical definition states that an edge point is a point in which the first derivative (in
the one-dimensional case) of a function is maximum.
In the case of an image, we should talk about the gradient of the image rather than the first
derivative, but the concept is the same. We should find the points of steepest slope on a
curve running in the gradient direction.

Edge detection is a fundamental task in computer vision, and usually it is the first step
before further manipulation of the images. It can be seen as a case of feature extraction.
The aim of edge detection is extracting an ”edge image” from an RGB or a grey scale image
(as an RGB image can be converted into three grey scale ones, we will concentrate on the
second kind of images), in order to remove redundant information.
The edge image will contain only the contours, or edges, that provide more information than
the original image. The edge image is a black and white image, in which 0 pixels correspond
to everything that is not a contour, and 1 pixels correspond to the contours.

However, the edges obtained with most of the algorithms are usually not completely
satisfactory, as there are some discontinuities in certain parts of a contour, and usually the
detected edges are many more than the required ones (there are a lot of useless edges, often
deriving from noisy details or insignificant structures in the original image).
So, after edge detection, we should perform a cleaning step in order to remove redundant
edges, and a linking step in order to connect different parts of the same logical contour, if
it results discontinuous.

There are two main strategies of edge extraction: the gradient based edge detection and
the Laplacian based edge detection.
The gradient based method looks for local maxima in the first derivative of the image. The
first derivative is positive at dark to bright transitions, and it is negative at bright to dark
transitions. It is zero in constant grey level zones.
The Laplacian based method looks for zero crossings in the second derivative of the image.
The second derivative is positive on the dark side of a contour, and negative on the bright
side, crossing the zero level at the transitions.

The gradient ∇f is a two-dimensional vector (while the Laplacian is a scalar), having
thus a direction, a verse and a magnitude.

∇f(x, y) =

[
∂f(x,y)
∂x

∂f(x,y)
∂y

]

θ(x, y) = arctan

(
∂f(x,y)
∂x

∂f(x,y)
∂y

)

M(x, y) = |∇f(x, y)| =

√(
∂f(x, y)

∂x

)2

+

(
∂f(x, y)

∂y

)2

It is written as the couple (gx, gy), consisting of the horizontal and vertical first derivatives.
Obviously they are only an approximation of the derivatives, because the intensity of a
digital image is a discrete function.

The direction of the gradient is always the direction of maximum variation, perpendicular
to the contour, the verse is positive going from darker to brighter regions, and the magnitude
is maximum at maximum variations.

The first derivatives can be calculated with different types of operators, like Sobel,
Roberts, Prewitt, Kirsch and Robinson, that provide quite different results.
Each operator uses two different masks (kernels), for examples the ones shown in Eqs. 2.5,
2.6, 2.7, respectively Sobel, Roberts and Prewitt.
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Kx =

−1 0 1
−2 0 2
−1 0 1

 Ky =

 1 2 1
0 0 0
−1 −2 −1

 (2.5)

Kx =

[
+1 0
0 −1

]
Ky =

[
0 +1
−1 0

]
(2.6)

Kx =

−1 0 1
−1 0 1
−1 0 1

 Ky =

 1 1 1
0 0 0
−1 −1 −1

 (2.7)

For example, if we consider a cross-correlation operation (while a convolution would use
the mirrored masks), the application of the masks 2.5 gives respectively as results (see table
2.1):

f(i, j) =[(P (i− 1, j + 1)− P (i− 1, j − 1)) + 2 · (P (i, j + 1)− P (i, j − 1))

+ (P (i+ 1, j + 1)− P (i+ 1, j − 1))]

f(i, j) =[(P (i− 1, j − 1)− P (i+ 1, j − 1)) + 2 · (P (i− 1, j)− P (i+ 1, j))

+ (P (i− 1, j + 1)− P (i+ 1, j + 1))]

(i-1,j-1) (i-1,j) (i-1,j+1)
(i,j-1) (i,j) (i,j+1)

(i+1,j-1) (i+1,j) (i+1,j+1)

Table 2.1: Indices of pixels involved in Eqs. 2.5-2.7

The x axis is oriented in the ordinary way, but the y axis is positive in downward because
of a common convention in pixels representation (pixel (0,0) in the upper left corner).

Kirsch and Robinson masks (equations 2.8 and 2.9 ) are called compass masks because
they are obtained from the rotation of a single mask to the eight major compass orientations
(N, NW, W, SW, S, SE, E, NE). In this case the gradient magnitude in every pixel is the
maximum value among the convolution of each mask with the image, while the direction is
given by the mask that leads to the maximum magnitude.

Kn =
[

5 5 5
−3 0 −3
−3 −3 −3

]
Kne =

[−3 5 5
−3 0 5
−3 −3 −3

]
Knw =

[
5 5 −3
5 0 −3
−3 −3 −3

]
Ke =

[−3 −3 5
−3 0 5
−3 −3 5

]
Kw =

[
5 −3 −3
5 0 −3
5 −3 −3

]
Ks =

[−3 −3 −3
−3 0 −3
5 5 5

]
Kse =

[−3 −3 −3
−3 0 5
−3 5 5

]
Ksw =

[−3 −3 −3
5 0 −3
5 5 −3

] (2.8)

Kn =
[

1 2 1
0 0 0
−1 −2 −1

]
Kne =

[
0 1 2
−1 0 1
−2 −1 0

]
Knw =

[
2 1 0
1 0 −1
0 −1 −2

]
Ke =

[−1 0 1
−2 0 2
−1 0 1

]
Kw =

[
1 0 −1
2 0 −2
1 0 −1

]
Ks =

[−1 −2 −1
0 0 0
1 2 1

]
Kse =

[−2 −1 0
−1 0 1
0 1 2

]
Ksw =

[
0 −1 −2
1 0 −1
2 1 0

] (2.9)

The sensitivity of these operators depends on the size of the masks used. The larger is the
mask, the less the edge detector will be sensitive. Sobel operator and Prewitt’s operator give
better results in finding vertical and horizontal edges, while Robert’s operator is designed to
detect edges lying at 45◦ to the pixel grid, but it is more sensitive to noise. Sobel operator
also smooths the image while deriving it (it emphasizes the pixel closer to the center of the
mask), so it is less sensitive to noise.

Another gradient operator that performs some smoothing on the image is the derivative
of the Gaussian (DroG).
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Its two components can be calculated deriving the Gaussian with respect to x and y axis.

∂h

∂x
= − x

σ2
exp

(
−x

2 + y2

2σ2

)
∂h

∂y
= − y

σ2
exp

(
−x

2 + y2

2σ2

)
The respective masks can be obtained sampling these two functions.

Unlike the gradient operator, the Laplacian operator is defined as

∆2f(x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2

Three examples of Laplacian masks are: 0 −1 0
−1 4 −1
0 −1 0

−1 −1 −1
−1 8 −1
−1 −1 −1

−2 1 −2
1 4 1
−2 1 −2


There are a lot of strategies and algorithms to perform the operation of edge detection.
The performance of each algorithm may change dramatically according to the quality of the
image. Above all, it is very difficult to adapt an edge detector so that it can work properly
in different situations. There are some values in the edge detector that are difficult to be
set automatically in order to give satisfying results with different data. So an algorithm can
run almost perfectly with an image but it can be unsatisfactory with another one.

However, there is a trade off between sensitivity and accuracy of an edge detector: if it
is very sensitive, probably it will detect many edge points due to noise, if it is not sensitive
enough, it will miss true edge points.

In this work I have been using a Canny edge detector, which is considered one of the
best performing algorithms in this field.

2.2.1 Canny edge detector

The edge detector suggested by J. F. Canny [8] was designed for satisfying the following
properties:

• Good detection. The operator has a low probability of missing existing edges (high
sensitivity) and a low probability of detecting spurious edges (high specificity).

• Good location. The operator should mark edges as close as possible to the real edges
in the image.

• Minimal response. A real edge should be marked only once.

Canny formalized mathematically these three criteria in order to find the optimal solution.
The fundamental steps performed in the Canny edge detection algorithm are the following
ones, but some variations are possible in order to obtain better results.

• Filtering noise with a Gaussian filter

• Finding the intensity gradient of the image, both its magnitude and its direction

• Performing non-maxima suppression

• Hysteresis thresholding.

We have already spoken about Gaussian filtering of images. The only parameter that
needs to be chosen is the standard deviation σ of the Gaussian distribution (and the dimen-
sion of the kernel, but in general it is related to σ). Increasing the width of the Gaussian
mask implies lowering the detector’s sensitivity to noise and an increased localization error
in the detected edges. Usually the mask is much smaller than the image.
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Computing the intensity gradient of the image can be done in several ways, and all
of them lead to quite different results. For example, we can make use of the Sobel operator.
The kernels

Kx =

−1 0 1
−2 0 2
−1 0 1

 Ky =

 1 2 1
0 0 0
−1 −2 −1


are applied to the image in order to obtain the approximation of the gradient in the x and
y directions respectively, as said in the previous section.

The gradient magnitude can be calculated from its two components by the theorem of
Pythagoras:

|M | =
√
g2x + g2y (2.10)

Also the orientation of the gradient can be obtained with the following equation using the
x and y components of the gradient:

θ = arctan
|gy|
|gx|

(2.11)

Often the direction of the gradient is assigned to one of 4 default directions, for example see
figure 3.4.

Figure 2.3: The gradient directions may be assigned to one of these default directions.

The gradient vector represents the direction and the magnitude of the fastest growth of
intensity. The direction of the edge, that is tangent to the contour, is almost perpendicular
to the gradient direction.

The next step is the so-called ”non-maxima suppression”. The purpose of this oper-
ation is that of setting to zero all pixels that do not represent a local maximum, obtaining
if possible 1-pixel wide contours and removing spurious edges, also trying to preserve con-
nectivity of the contours.
For each pixel (i, j), we have to check the gradient magnitude of its neighbouring pixels
lying in the gradient direction. If (i, j) is a local maximum we keep M(i, j), otherwise we
set M(i, j) = 0 (with M meaning the gradient magnitude).

After non-maxima suppression, the final step is hysteresis thresholding. Some noisy
local maxima are still present in the edge image, and we have to evaluate them exploiting
the information given by the gradient magnitude.
So we choose the real edges by checking the edge strength.
However, usual thresholding with only one threshold may be too selective choosing a high
threshold or too loose choosing a low one. We need to remove weak edges, but at the
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same time we want to keep the connectivity of the contours. As a matter of fact, conven-
tional thresholding based on the image histogram does not take into account the spatial
information, while hysteresis thresholding does.
Two thresholds are needed, Thigh and Tlow. Every pixel (i, j) that is non zero after non-
maxima suppression is classified as strong if M(i, j) > Thigh, and weak if M(i, j) ≤ Tlow.
Pixels with a value within the range {Thigh, Tlow} are considered candidate pixels.
Every weak pixel is immediately discarded, and every strong pixel is accepted as an edge.
We don’t remove candidate pixels immediately, but postpone the decision after further
investigations. We should follow the sequence of connected local maxima along the edge
direction (perpendicular to the gradient direction) until the gradient magnitude is greater
than Thigh. If the point from which we started is connected in this chain to a strong pixel,
it is upgraded to a strong pixel, otherwise it is discarded.

There is a component of subjectivity in the choice of the thresholds, above all because if
we find good thresholds for some image, they could work bad with another image.
Canny suggested to choose the thresholds in order to satisfy the following constraint:

2 ≤ Thigh
Tlow

≤ 3

However, this is an empirical rule and the choice of at least one of the two thresholds is still
subjective, and not so easy to be carried out. For example, the thresholds can be chosen
from an initial set of possible values (e.g. sampling the whole range of intensity values in
the image), on the basis of a visual comparison between the results. Obviously, this is a
time consuming technique and the final choice is operator-dependent.

The thresholds can also be estimated adaptively, on the basis of the image we are working
on. Several researchers have been working on this task in the last years, proposing different
methods with more or less satisfactory results.

Adaptive hysteresis thresholding In recent years, various groups of researchers have
looked for different strategies for finding suitable thresholds in an adaptive way, i. e. devel-
oping a method that takes advantage of the features of a specific image in order to tune the
thresholds on that specific image. The goal is to achieve a completely unsupervised method
for searching the thresholds.

We will briefly describe some of the most recent and significant works. The general idea
is to perform an automatic statistical analysis on the results provided by different sets of
given thresholds. The methods are quite complex to explain and describing them in detail
goes beyond the purpose of this thesis, but we will make a brief outline of the main steps
and ideas for each presented method.

Hancock and Kittler, in 1991, were the first to investigate on an adaptive estimation
of hysteresis thresholds in the context of Canny edge detection [13]. They started from the
assumption that the problem could be formulated in a Bayesian context, with a parametric
approach. In their work, a model of the considered image is developed, taking into account
both the filtering operations to remove noise, and the quantification of connected structures
in the image by edge labelling. The hysteresis thresholds can thus be related to the param-
eters of the model by means of the Bayesian framework. What they deserve is the a priori
probability P (θj = ε) that a pixel j belongs to an edge, which is not easy to obtain, and the
standard deviation σ of noise in the image.

The result of their work is the following:

Thigh = 2σ
√
fu ln 2 Tlow = 2σ

√
fu ln

1 + 2P (θj = ε)

1 + P (θj = ε)
(2.12)

where σ is the noise variance estimated from the mean gradient magnitude, fu = s− l, with
s =

∑N
i=1

∑N
j=1 a

2
i,j and l =

∑N
i=1

∑N
j=3 ai,j · ai,j−2, where the coefficients ai,j are taken

from the kernel of the filter used in the pre-processing step.
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The ratio between the two thresholds is

Thigh
Tlow

=

√√√√ ln 2

ln
1+2P (θj=ε)
1+P (θj=ε)

that equals the ratio proposed by Canny 2:1 when the priors are in the ratio 1:4, i.e. the
frequency of edge pixels is much smaller than the frequency of non-edge pixels.

Yitzhaky and Peli [33] more recently proposed another method that performs an au-
tomated statistical analysis among different detector parameters given as input, selecting
thus the best set. They construct an EGT (estimated ground truth) with different results
from the detection algorithm, compare them by means of a Chi-square test, and keep the
best result as the best choice of the thresholds. The main problem with this strategy is the
dependence of the result from the initial set of hysteresis thresholds employed.

Trying to fix this problem, Medina-Carnicer and Madrid-Cuevas in their first article
in 2008 [25] proposed a method to determine initial candidates for hysteresis thresholds in an
unsupervised way. One of the most interesting features of this method is its being completely
non-parametric, thus not presupposing any model for the image under examination.

Given an image I, its gradient magnitude M(I) (with values normalized in [0, 1], and
the L-bins histogram, H, of M(I), the main steps for the implementation of their method
are:

1. Construct Hx
b for all x ∈ {1, . . . , L− 1} (Hb

x(0) =
∑x−1
r=0 H(r), Hb

x(1) =
∑L−1
r=x H(r))

2. For each x value, and for all y ∈ 1, . . . , L− 1, with y 6= x

• if x < y

TP (Hb
y, H

b
x) = Hb

y(1)

TN(Hb
y, H

b
x) = Hb

x(0)

FN(Hb
y, H

b
x) = Hb

y(0)−Hb
x(0)

FP (Hb
y, H

b
x) = 0

• else

TP (Hb
y, H

b
x) = Hb

x(1)

TN(Hb
y, H

b
x) = Hb

y(0)

FP (Hb
y, H

b
x) = Hb

y(1)−Hb
x(1)

FN(Hb
y, H

b
x) = 0

3. For each x ∈ {1, . . . , L− 1}
ˆTP (x) = 1

L

∑L−1
y=0 TP (Hb

y, H
b
x)

ˆTN(x) = 1
L

∑L−1
y=0 TN(Hb

y, H
b
x)

F̂P (x) = 1
L

∑L−1
y=0 FP (Hb

y, H
b
x)

ˆFN(x) = 1
L

∑L−1
y=0 FN(Hb

y, H
b
x)

After this, set ρ = ˆTP (x) + F̂P (x) (they show that it is a constant)

4. Calculate Tlow = ρ(L−2)
1+2ρ

5. Thigh is the x threshold with F̂P (x) = ˆFN(x).

The thresholds obtained in this way are a gross approximation of the ideal thresholds, so
this range can be used as a starting point to look for them.

The same authors, in two following articles, proposed methods to obtain optimal hystere-
sis. In the first article [26] they tried to threshold the images without directly determining
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the thresholds, while in the second [27], although the algorithm is very similar in the first
steps, they also provide two thresholds as an output. Both articles assume that a set of
candidate thresholds is known.

Let I be the image of interest, M(I) an approximation of its gradient magnitude,
Mhigh(I) the edge image obtained after thresholdingM(I) with the high threshold. Mlow,high(I)
is the edge image obtained after the hysteresis thresholding with the two given thresholds.
A set of candidate hysteresis thresholds is known, C(I) = (low, high) ∈ [0, 1]. The main
steps in the algorithm of the first article are:

1. Obtain the edge images Mlow,high(I) for each (low,high) couple in C, by hysteresis
thresholding M(I).

2. Obtain the edge images Mhigh(I) for each (low,high) couple, thresholding M(I) only
with the high threshold.

3. Obtain ∆Mlow,high(I) = Mlow,high(I)−Mhigh(I).

4. Compute SM =
∑

(low,high)∈C(I) ∆Mlow,high(I). In each pixel of this image the num-
ber of times that it has been added as an edge with all the candidate thresholds is
contained.

5. Threshold the histogram of SM with a suitable threshold (for example Rosin’s thresh-
old if the histogram is unimodal, or Otsu method, if there are more modes) and obtain
HystSM .

6. Threshold M(I) using sample values in the interval [0, 1], starting from 0.01 and
increasing with a step of 0.01, looking for the first edge image Mth(I) that satisfies
Mth(I)×HystSM = 0.

7. Find the solution in the edge image Edgeproposed(I) = HystSM +Mth(I).

The second algorithm is analogous until the fourth step, then the following operations
are required:

• Obtain the distribution P (Fl(x)), with x ∈ (0, 1), using these positions

– Prob(SM) = SM
|C(I)| , where |C(I)| is the cardinality of the set C(I)

– Probx(SM) is the binary image obtained by thresholding Prob(SM) with x ∈
(0, 1)

– |Probx(SM)| is the number of pixels equal to 1 in the image Probx(SM)

– FI(x) = M(I) ◦ Probx(SM), with ◦ meaning the Hadamard product 1

– |FI(x)| is the number of pixels with grey level x in the image FI(x)

• Finally, obtain the set D = {x ∈ (0, 1)|P (FI(x)) 6= 0}, where

P (FI(x)) =

{
|FI(x)|

|Probx(SM)| |Probx(SM)| > 0

0 |Probx(SM)| = 0

The first and the last local maxima of the image Prob(SM) for the values in D are
the thresholds we were looking for.

1Hadamard product is an operation that generates a matrix of the same dimensions of the two original
matrices, each element (i, j) of the resulting matrix is the product of corresponding elements (i, j) of the
input matrices.
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Finally, we quote another method, reported in Gonzales-Woods [10], for finding hysteresis
thresholds adaptively. Given an image size, this method is thought to give an almost constant
number of edge points as a response.
At first, the histogram of the gradient magnitude (fitted in the range [0,255]) after non
maxima suppression image is computed. From this histogram we can extract the number of
non-zero pixels that cannot be edge points with the following formula:

NumNonEdge = (1− p) · (M ·N −Hist[0])

where M and N are respectively the number of rows and columns in the image, while
parameter p represents the ratio between the number of edge pixels and the number of
pixels with a gradient magnitude different from zero (NumEdgeP ixels = p · (NumPixels−
ZeroGradientModuleP ixels). The value of p usually lies in the range between 0.01 and
0.1.
Excluding the first bin of the histogram, its values are summed until the sum reaches the
value that was calculated before, NumNonEdge. The reached index i is the high threshold,
and the low threshold can be determined multiplying it by a parameter k < 1, for example
0.4 to be in agreement with Canny’s suggestions.

2.2.2 Edge linking (Gap linking)

Detected contours are typically discontinuous even if we have applied all precedent rules
in order to guarantee their continuity. Edge linking or contour tracking can help joining
separate edge segments according to some criteria. Also in this field, a huge number of
different approaches is available, and for sure the research is still open to new strategies and
proposals.
There are two main categories of methods for performing edge linking:

• Local methods. Starting from the end pixel of an edge segment, extend it by looking
for the most suitable candidate pixel in its neighbourhood.

• Global methods. They perform a wider search on the whole image, but they are also
more computationally expensive.

Although faster to be run, local methods fail in bridging big gaps.

Local edge linking methods Contour linking is based on some observations. For ex-
ample, along boundaries both the image and the gradient have an approximately constant
intensity, edges tend to have a low curvature, and there is a small difference between adjacent
edge directions.
The strategy is to look in a neighbourhood (e.g. a 3 × 3 square) of every pixel that rep-
resents an endpoint for an edge segment, and link the central pixel with the neighbour (or
neighbours) that satisfies some similarity constraints like the following

|M(pi)−M(pj)| ≤ T1

|φ(pi)− φ(pj)| ≤ T2
|M(pj)| ≥ T3

i.e. the absolute difference between the magnitudes and the directions of two consecutive
pixels should be smaller than a given threshold, and the magnitude of the new pixel should
be large enough.

Heuristic search, for example, is based on graph searching: edge points correspond
to graph nodes and they are connected to each other if the local rules written before are
satisfied. The idea is to generate different paths between two possibly connected edge points
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and evaluate their cost by means of a cost function. The chosen path will be the one that
leads to the minimum of the cost function. The factors that influence the cost can be for
example the same used for the similarity constraints.

Dynamic programming can be used to search for maxima or minima of some function
by subdividing the problem recursively into sub-problems. For example, in graph searching
we can split a path into two optimal sub-paths recursively, and look for the minimum of the
cost function in each of them, until we find the base case.

Global edge linking methods If the gaps between ending points of edge segments are
wide, we should take into account global methods.

Hough transform can be used to detect shapes and object boundaries in an image,
especially when they lie on curves of a specified shape, like lines, circles, ellipses, etc. (it is
a model-based technique). We now briefly describe the method for detecting straight lines
because we will use it in chapter 3.

A straight line is uniquely identified by two points A(x1,y1) and B(x2,y2). If we consider
straight lines passing through point A, we can write equation y1 = kx1 + q for every real k
and q. The main idea of the method is to switch from the image space (x, y) to the parameter
space (k, q), where the previous equation can be written as q = −x1k + y1. Straight lines
conducted from point B are in the form q = −x2k + y2. If we intersect these two straight
lines, the point (k′, q′) that we get is the couple of parameters representing the straight line
passing through both point A and point B.
So, every straight line is uniquely identified by a point in the parameter space. To perform
the recognition of straight lines in the image, at first all possible line pixels must be detected
by means of an edge detector with a proper threshold. The parameter space must be
discretized in a limited number of values to be handled easily. All straight lines that can
go through the detected line pixels must be transformed in the parameter space, and finally
the points of the parameter space that occur more frequently identify the straight lines that
can be found in the image.
To avoid problems rising from vertical lines (k → ∞), the line representation is indeed
s = x cos θ + y sin θ.

Deformable models (Snakes) or active contours, on the contrary, are used to link
contours of objects having arbitrary shapes. The underlying idea comes from Kass, Witkin,
and Terzopoulos [17], and it is based on the concept of energy-minimizing spline. Active
contours, or snakes, are characterized by an energy that depends on their shape and position
in the image. A starting position and shape must be defined, then the snake will warp and
move on the image according to the minimization criterion.
The energy function to be minimized is a weighted sum of internal forces, depending on the
snake’s shape, and external forces, depending on the image.

2.2.3 Performance evaluation of edge detectors

Although edge detection has been a very much wrought field in the last decades, no stan-
dardized method for evaluating edge detectors’ performances are still available. Actually
some methods were proposed of course, and they can be divided into two main categories:
subjective methods, and objective methods.

Subjective methods are based on the direct observation of the extracted edges, and
they are thus totally dependent on human judgement. The observer should visually detect
differences between various operators, and he should also decide whether detected edges are
real or spurious. This technique is simple to put into practice, but its faults are at the same
time evident. The human eye cannot distinguish every detail of an image, besides results
given by an observer cannot be compared with another one’s judgement.

Objective methods are more reliable, because they are not operator-dependent, but they
still raise some problems in their calculations. Two frequently used parameters are root
mean square error (ERMS) and signal to noise ratio (SNR), defined as follows [16]:
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ERMS =

√√√√ 1

M ·N

M∑
r=1

N∑
c=1

[E(r, c)−O(r, c)]
2

(2.13)

SNR =

√√√√ ∑M
r=1

∑N
c=1 [E(r, c)]

2∑M
r=1

∑N
c=1 [E(r, c)−O(r, c)]

2
(2.14)

where M and N are respectively the number of rows and columns of the image, O(r, c) is
an image containing true edges, and E(r, c) is the image with detected edges.
Another useful parameter is the total localization error (LE)

LE =
|
∑

pixels of exact edges−
∑

pixels of output edges|
N

· 100 (2.15)

The main problem with these measurement techniques is the image O(r, c), containing real
edges. As a matter of fact, we often don’t know what is a real edge and what is a spurious
edge in an image. A common adopted way is to compare the edge image with the so called
ground truth, i.e. a known reference image. We usually know them only for synthetic images,
that are not so reliable in testing an edge detector as a real image can be.

In order to integrate subjective and objective evaluation, Heath et al. [14] in their article
tried to combine human judgement with a statistical approach. They submitted the output
of different edge detectors to a relevant number of trained observers, and on the basis of their
responses (they were supposed to give a rate to the detected edges) they have developed
statistics on different edge detectors’ quality.

2.3 Template matching

Template matching refers to a search of a model pattern (the so called ”template”), that
represents the feature we want to detect, within a given image. The template (t) is slid
all over the image, and the level of similarity with each possible position in the image is
measured. The size of t is usually much less than the target image size.

One of the measures of similarity most often used for this purpose is the cross-correlation
between the template and each portion of the image of the same dimension as the template.
The region with the maximum value of correlation is chosen to contain the feature we are
looking for.

Given a grey-value image f of size M ×N and a template t of size J×K, the correlation
at the position (i, j) is defined as

R(i, j) =
∑
x

∑
y

f(x, y)t(x− i, y − j) (2.16)

where 1 ≤ i ≤M and 1 ≤ j ≤ N , and the summation is taken over the region of the image
covered by the template. Computing Eq. 2.16 for each position (i, j) in the image, the
maximum value of R(i, j) indicates the position of the best match between the image and
the template.

In order to overcome the dependence of R(i, j) on the changes in intensity of the image,
the normalized correlation coefficient is usually computed:

r(i, j) =

∑
x

∑
y

[
f(x, y)− f(x, y)

] [
t(x− i, y − j)− t

]√∑
x

∑
y

[
f(x, y)− f(x, y)

]2 [
t(x− i, y − j)− t

]2 (2.17)

with the same convention of Eq. 2.16, f(x, y) represents the local average of the image in
the region covered by t, and t is the average value of t, computed only once.
This coefficient has an absolute value between 0 and 1.
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Extraction of the velocity profile

The following chapter outlines what has been done on the available images, i.e. what
techniques among those described in the previous chapter have been employed and how
they have been implemented.

The set of eighteen images studied in this work was provided by Britta Lind and Patric
Jonsson from KTH (STH). These images were collected from exams performed on real
patients, and they were stored thanks to the software EchoPACTM (Fairfield, Connecticut).
This software allows the export of images in DICOM or RAW format. We have been
using DICOM images, a format easily handled by Matlab thanks to the built-in function
dicomread. All the considered images have a resolution of 434×636 pixels (they were already
compressed by the software with a lossy compression ratio of 8.2). They are acquired as
RGB images (because of some coloured parts like the Colour Doppler section on the top
of the images) and then converted into grey-scale images. The images contain the spectral
Doppler, a colour-Doppler part that shows the region of interest, some parameters of the
machine, the heart rate, and the ECG line.

All of the following operations are carried out in Matlab (Natick, Massachusetts). Matlab
functions are denoted by italics preceded by the word ”function” the first time they are
mentioned.

Matlab code can be found in Appendix A, while results of all the employed techniques
are presented in chapter 4, where some resulting images are shown and commented.

3.1 Methods

Here follows a scheme that summarizes the alternative strategies adopted for the extraction
of the velocity profile described in this chapter.

1. EDGE DETECTION AND LINKING OF GAPS:

(a) Cleaning and enhancing the image

(b) Canny edge detection

(c) Gap linking

• Exploiting gradient magnitude and grey value
or

• LBE method

2. STRONG PRE-PROCESSING

(a) Magagnin or Kiruthika method, or region growing

21
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(b) Edge detection

3. LEVEL CURVES

(a) Cleaning and enhancing the image

(b) Tracing level curves

3.1.1 Edge detection and linking of gaps

In this section it is described how the strategy focused on extraction of the velocity profile
by means of an edge detector, followed by a gap linking step has been put into practice.

Cleaning and enhancing the image

After reading the image, and converting it from RGB to grey-scale, one or more cleaning
steps must be carried out in order to remove noise from the image and enhance its contrast.

A median filtering on a 3×3 neighbourhood of each pixel is applied. This operation,
as already said in 2.1.2, allows to remove speckle noise without altering the position of the
edges, and thus can be repeated n times. In figure 3.1 it is shown how the repetition of the
median filtering affects the image. However, we have been using images processed with the
median filter only once.

(a) (b)

(c) (d)

Figure 3.1: A Doppler sonogram to which a median filter on a neighbourhood 3×3 has been
applied. (a) the original image, (b) the image after one iteration, (c) the image after 5
iterations, (d) the image after 10 iterations.



Methods 23

As a subsequent passage, a contrast stretching step has been applied. Referring to 2.1.1
and figure 2.1, the thresholds k0 and kf are obtained by means of a clustering operation on
the grey value of pixels. The pixels of the image are divided into two clusters through a
k-means algorithm (function kmeans in Matlab), that gives as an output the two centroids
of the clusters created, used then as the looked-for thresholds. Equation 2.1 is applied and
a contrast stretched image is obtained.

Giving two manually chosen fixed thresholds as k0 and kf would have lead to good results
for some images, but bad ones for others. So the clustering step has been applied in order to
make the operation more easily adaptable to different images. Because of the huge presence
of background in this kind of images, the first centroid (used as k0) is low enough to prevent
too many significant pixels being set to zero in the stretching procedure, while the second
centroid is not too high because only few pixels have an high intensity.

(a) (b)

Figure 3.2: A Doppler sonogram before (a) and after (b) the contrast stretching step with
k0 = 4.45 and kf = 106.36. After contrast stretching we can see that a greater number of
pixels have a higher intensity than before, while the background is almost homogeneously
zero. The image is the same of that in figure 3.1.

In figure 3.2 the effect of the contrast stretching operation can be observed: pixels lying
in the region of interest are brighter than before, while background pixels are set to zero,
except for some minor areas.

As a pre-processing before applying the Canny edge detector, a Gaussian filter has to
be convolved with the image. The choice of the standard deviation σ of the kernel is not so
trivial. A high value for σ would lead to an over-smoothed image, with a consequent shift of
the detected edges from their original position, although they would be more connected and
smooth. A low value for σ prevents undesired translations of edges but implies discontinuities
in the detected edges. A compromise should be clearly chosen in order to guarantee the
greatest possible level of continuity of the edges and at the same time keep them in their
original place. A standard deviation of 1.5 and a mean of 0 have been chosen in the current
work for all tested images.

Figure 3.3 shows the result after the application of Gaussian filters differing by their stan-
dard deviations, and their dimensions as well (the dimension of the applied kernel depends
on the chosen standard deviation, see 2.1.3). In particular, the convolution was executed
exploiting the separability property of the Gaussian distribution, making it more computa-
tionally efficient. Two mono-dimensional kernels of dimension 5·σ·2+1 are obtained sam-
pling the normal distribution on the values [−5 · σ, 5 · σ] (97% of the area under the Gaussian
curve is thus contained in the vector), and they are convolved one after the other with the
image.
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(a) (b)

(c) (d)

Figure 3.3: The image after the application of four Gaussian filters with different standard
deviations. (a) σ = 0.2, (b) σ = 0.8, (c) σ = 1.4, (d) σ = 2. The image is the same of that
in figures 3.1 and 3.2.

Canny edge detection

After we have cleaned and enhanced the image, we can perform the edge detection step, in
particular implementing Canny’s algorithm (see 2.2.1 for details).

First of all, the filter realizing the derivative of the mono-dimensional Gaussian used in
the cleaning step is created. This filter is then convolved first with the image to obtain the
x-component of the gradient, and then with the transposed version of the image to obtain
the y-component of the gradient (gx and gy).

The gradient magnitude can be calculated from its two components according to equation
2.10, as well as the gradient direction. The latter is discretized in four main directions showed
in figure 3.4.

Non-maxima suppression (cf. figure 3.5) is realized with an interpolation technique, that
exploits the value d as a weight for near pixels. The value d is defined as the cotangent of
the gradient direction if we are considering direction 1 or 2, or as the tangent otherwise.
For example, in figure 3.5, the gradient direction is 2, according to the discretization of
figure 3.4, so d is the cotangent of the angle between the two components of the gradient.
If the gradient magnitude in the considered pixel is greater than the weighted sum of the
two pixels on his left and on his right along the gradient direction, it is kept as a valid edge
point, otherwise, it is set to zero.

Finally, hysteresis thresholding is performed thanks to the function bwselect, with an
eight-connectivity setting. In practice, pixels above the low threshold are found in the
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Figure 3.4: The four directions in which
the gradient direction has been dis-
cretized.

Figure 3.5: Illustration of non maxima
suppression. The gradient direction (2,
according to the discretization) is high-
lighted in red. Pixel (i − 1, j + 1) is
weighted with d, while pixel (i− 1, j) is
weighted with 1 − d. The same occurs
with pixels (i+ 1, j − 1) and (i+ 1, j).

gradient suppressed image, as well as pixels above the high threshold, and then they are
connected with the help of bwselect.

The output for the image we are considering is something like what we can see in figure
3.6. As expected, when we use a higher upper threshold we get less edges than with a lower
one.

In order to make the algorithm more user-independent, the author tried to implement
Medina et al. [27] method (see 2.2.1) for finding the hysteresis thresholds in an automatic
way. Unless the code is quite slow, the thresholds found by it are quite satisfying. Also
Gonzales and Woods’ method [10] shows good results, with a value of p (see 2.2.1 for details)
set to 0.3. We can see both the results in figure 3.7: the first method is more selective than
the second one, with two thresholds significantly higher than the other two.

Main problems in the edge detection algorithm As we can see from figure 3.6, most
of the gaps in the detected edges are situated in those areas that result more faded, where
there is not a clear distinction between the noisy background and the velocity information.
Where does the velocity information end and where does the background start? It is not so
easy to give an answer, neither with eyes nor with a computer. What we find will always
be an approximation. Canny’s algorithm, as well as almost every other edge detector, fails
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(a)

(b)

Figure 3.6: Two results of the Canny edge detector after all the pre-processing steps de-
scribed before, with different hysteresis thresholds. On the left the high threshold is 0.117,
and the low threshold 0.04, on the right the high threshold is 0.273 and the low threshold is
0.109.

to recognize edges there because there is a long and slow transition from brighter to darker
regions without a maximum slope.

Another problem that may occur with the detection of edges is when there is a long
gradual transition in the gradient direction followed by a sudden steep slope. Only the last
one will be detected, unless we can speak about ”edge” (even if in a broad sense) also for
the gradual transition zone, that we may call ”shoulder” instead of edge.
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(a) (b)

Figure 3.7: Two different adaptive hysteresis thresholds applied to the Canny edge detector.
(a) Gonzales and Woods’ method (thigh=0.248, tlow=0.0992), (b) Medina et al. method
(thigh=0.14, tlow=0.011).

Edge linking (gap linking)

After the extraction of the edges with a Canny edge detection algorithm, we can see that
the contour is not connected in every part, making it difficult to obtain useful information
like the maximum velocity envelope (MVE) or the mean velocity from the Doppler image.
The idea is to start from the endpoints of detected edges, i.e. the points of discontinuity
in the traced contour, and extend the contour exploiting information given by the edge
direction, the gradient magnitude, and other features of the image.

First of all, the ending points of every connected part of an edge must be recognized and
marked in order to be used as starting points for the following operations. To this purpose,
the Matlab function endpoints written by F. Bergholm [6] was used. To correctly run the
code, we need to label previously all the connected parts in the edge image, and we do this
by means of the function komponentm4, also written by F. Bergholm [6]. Every connected
part of the edge image is given an identification (id) number, and this can be displayed
graphically with the help of different colours (figure 3.8).

After generating the list of the id numbers present in the edge image, without repetitions
and excluding the background (which is given an id of 0 by default), it is given as input
to the function endpoints, together with the edge image and the value assumed by pixels
both in its background (0) and in its endpoints (1). This function recognizes an endpoint as
such, when surrounded by six or more background pixels. In particular, when the number
of background neighbours is more than six, i.e. seven or eight, the pixel is immediately
recognized as an endpoint, while when the number of background neighbours is exactly
six further controls are performed. Neighbour pixels are investigated in a spiral clockwise
way, and only if non-background pixels are contiguous, the examined pixel is considered an
endpoint.

The output of endpoints is displayed thanks to the function viewEndpoints, and the result
is shown in figure 3.9.
Once we get the coordinates of the endpoints, we can start from them to continue the
interrupted paths of the edges. Two different strategies have been followed in order to reach
our goal.

Exploiting edge directions, gradient magnitude and grey value of the pixels
(edgelinking.m) Assuming the direction perpendicular to the gradient as the direction
along which edges are expected to be found, for the following operations we refer to ”edge
direction”, meaning the direction perpendicular to the gradient one. It is a local direction,
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Figure 3.8: Example of the output of the function komponentm4. All pixels lying on the
same connected portion of an edge are marked with the same colour, that corresponds to
its id number.

Figure 3.9: Detail of the output of the function endpoints displayed thanks to viewEndpoints.
In red we can see the endpoints, in green the connected edges, and in blue the background.

that takes into account information coming from the pixels involved in the computation of
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the gradient.
Three parameters have to be chosen as check conditions for the prosecution of the search

along the same edge branch:

• Mthres, that guarantees that we are looking for edge pixels in a region with a sufficiently
high value of the gradient magnitude

• greythres, that guarantees that we are looking for edge pixels in a region with a suffi-
ciently high value of grey level in the filtered image

• epsgrey, representing a tolerance on the accepted difference between the grey level of
two consecutive edge pixels.

In order to keep the level of subjectivity low, instead of choosing their values empirically, we
select at least the first two of them in an automatic way. Using kmeans set with two clusters,
we find Mthres as the minor centroid of the gradient magnitude image, and greythres as the
minor centroid of the filtered image. The last parameter is arbitrarily set to 5.

The list of the endpoints is scanned: the edge direction is checked at every endpoint, and
accordingly to that the edge branch is expanded in the most plausible direction. Two main
criteria are used: look for the candidate pixel with the highest value of gradient magnitude,
or look for the candidate pixel with the lowest absolute value of difference with the grey
value of the current endpoint. The first criterion is justified by the observation that along
the contour the gradient magnitude is greater than in the rest of the image. The second
relies on the fact that for two contiguous pixels along the contour, grey level does not change
abruptly.

The structure of the code is the following. For every endpoint:

1. check the edge direction in that point

2. check if d > 1− d or not (see 3.1.1 for the definition of d)

3. check if the two adjacent pixels in the correct direction are already edge points or not
in the edge image (black and white image given as output by the edge detector)

• if both of them are not already edge points, choose the one with the greater value
of gradient magnitude, or the one for which the absolute value of the difference
between grey values of the endpoint and the candidate edge point is minor in
the filtered image, checking if it is less than epsgrey. Then the inspection is
restricted between the chosen point and its contiguous, with the same criteria.
In fact, even if we have checked the value of d, it is not always true that the most
proper candidate is the one with a minor value of d. If a point satisfies all the
requests, it is marked with one in the edge image and the list of the endpoints is
updated with this last added point, otherwise, we go to the next endpoint of the
list and repeat the process from point 1.

• if only one of them is not an edge point, we check directly this pixel and its
contiguous, with the same criteria of the previous point.

A detail of the output of this code can be seen in figure 3.10. As we can see, most of the
gaps are closed or at least reduced considerably. The main problem is that sometimes also
undesired edges are extended, and not all of the gaps are closed producing a completely
continuous (or connected) edge, especially the bigger gaps in the bottom of the spectrogram
are not always successfully closed.

LBE method (linklbe.m) A second strategy is based on the concept of Likelihood for
Being Edge (LBE), introduced by V. Lacroix in her work in 1987 [19].
Her idea has been adapted to the present case and exploited to extend existent edges from
their endpoints. In practice, a pixel is assigned a LBE=1 if it’s a ”pure local directional
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(a) (b)

Figure 3.10: Detail of the edge image (a) before and (b) after the linking step.

maximum”, a LBE=0 if it is a ”pure local directional minimum”, and a LBE lying between
0 and 1 according to its probability of being an edge.

First of all, LBE is calculated for all the pixels. Two matrices of the same dimension as
the image, m and v, are computed scanning all the pixels in the image.

Every pixel is inspected together with its two neighbours in the gradient direction (also
considering the quantity d, see 3.1.1 ): v(i, j) is incremented every time that a pixel (i, j) is
visited, while m(i, j) is incremented only if a pixel (i, j) has the maximum value of gradient
magnitude among the three pixels examined.

The quantity LBE for every pixel is defined as the ratio between m and v. Therefore, the
likelihood for being an edge is calculated as the ratio between the times that a pixel has
been recognized as a local maximum of the gradient and the times that it has been visited.
Figure 3.11 shows an example of LBE image.

Once we have the likelihood for every pixel, we use it to extend edges provided by the
edge detector, still starting from the endpoints.

We check for possible paths both on the right and on the left of every endpoint, in the
direction perpendicular to the gradient one.

The algorithm is the following:

• check the direction of the gradient

• both for the left and the right of the endpoint, look for the pixel with maximum LBE
between its two neighbours in the direction perpendicular to the gradient (an example
is provided by figure 3.12: if it is not already an edge point, mark it as an edge point
and update the current endpoint. If both of the neighbour pixels have LBE=1, choose
arbitrarily one of them as the new edge point and set the LBE of the other to 0.99,
thus making it likely to be chosen as an edge point.

The result after the application of this method is shown in figure 3.13.

We can see that all the main gaps are closed or almost closed, but still some spurious
branches can be found.

3.1.2 Strong pre-processing before edge detection

Instead of performing edge detection and then trying to fill the gaps by means of an edge
linking process, another way of proceeding could be performing a more incisive pre-processing
on the given image.
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Figure 3.11: Calculated values for LBE. Red corresponds to an LBE of 1 and yellow to an
LBE of 0.67. Note that the highest LBEs are concentrated on the contour of the spectrogram,
as expected.

Figure 3.12: Example of the extension al-
gorithm for direction 1. The gradient di-
rection of the central pixel is highlighted
in red, and its two right neighbours and
left neighbours perpendicular to the gradi-
ent direction are marked.

The aim is to obtain a new image in which edges, even the ones that are weaker in the
original image, are so pronounced to guarantee the continuity of the edges returned by the
edge detector.

Two methods taken from the literature

The first thing that comes to mind is thresholding the image, but an appropriate threshold,
if exists, is not so trivial to determine. Where does the useful signal end and where do
disturbances and noise start? The problem is still the same.
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(a) (b)

Figure 3.13: Detail of the edge image (a) before and (b) after the LBE extension.

For example, Magagnin et al. [23] in their article divide the image in three partially
overlapped regions. The intensity histogram is computed for each region, and the threshold
L is chosen as the intensity at which the 25% of the pixels has an intensity greater than L.
For the overlapped areas, the threshold is set to the average between the two thresholds.
They don’t even use an edge detector, they just look for the first pixel with intensity lower
than the relative threshold in each region in each column (scanned from bottom to top),
and mark it as edge. In this work we preferred to use an edge detector after the application
of the thresholds. However, this method implies a choice on the division of the image, and
dividing it in an effective way is difficult, also because the performance is image-dependent.
Moreover, 25 % value to select the thresholds was set arbitrarily.

Anyway, testing the method with a set of images (see figure 3.14) gave quite good results,
except for one of them, in which much of the useful signal is clearly missing, because of its
wide range of intensities.

Kiruthika, Prabhakar and Reddy [18] instead, managed to obtain an image with very
sharp edges only through pre-processing steps for noise removal and image enhancement.
The output of the edge detector is already a connected contour that does not need to be
processed further, as can be seen in figure 3.15 d.
The steps of their method are:

1. The original image (converted to greyscale if it is RGB) is filtered with a Gaussian
kernel (σ = 1.5) and contrast enhanced

2. The original image undergoes a morphological closing1 with a disk-shaped structuring
element

3. Images gotten in the previous two steps are subtracted and then the result is adjusted
in intensity (function imadjust in Matlab)

4. Canny edge detection is performed on the output of the third step.

The selection of these steps is justified by the features of Doppler images, in which edges
are more pronounced in the lateral part of the peaks, and fade towards the peaks’ top.

1Morphological closing, in image processing, is used to remove small holes. It needs a structuring element
(a given shape), and it consists of a dilation operation followed by an erosion operation with the same
structuring element. For binary images, dilation works like this: when the center of the structuring element
is at a given point and the structuring element is overlying a non-zero point of the image, this point is set
to one in the resulting image. Regarding erosion, when the center of the structuring element is at a given
point, only if the entire structuring element is included in a non-zero part of the image this point is set to
one in the resulting image.
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(a) (b)

(c) (d)

Figure 3.14: Four examples of the application of Magagnin’s method. As we can see, it works
pretty well even for the third noisy image, but the last one is completely unacceptable.

Region growing

We have seen that because of the morphology of Doppler images, edge based methods are
not always so effective, especially where the signal fades slowly, and borders become difficult
to detect or even don’t exist at all. A different approach for handling the problem can be
the identification of the spectra by region growing methods. The spectrum of the blood flow
can be seen as a region with different properties from the background. So, starting from one
(or more) so called seed point in the region we are interested in, we can associate to it other
neighbouring pixels that are similar somehow. As an example of an aggregation criterion we
can look at the grey value of candidate pixels and compare it with the mean grey value of
the region already created: if the difference is below a certain threshold level, the candidate
is added to the region, and clearly the mean grey value has to be updated. What we look
for in a region is some kind of homogeneity.

The simple algorithm used in this work employs a threshold, checking if the grey value
of the candidate pixel differs from the initial pixel grey value more than the threshold. As
usual, some parameters must be set manually. In this case, we decided to take the strongest
valued pixel in the region of interest as a seed point, and the threshold is in most cases
chosen to be the difference between this value (255, because of the contrast stretching), and
10 times the lowest valued non-zero pixel (its value is 1 because of the contrast stretching).
So in most part of images the threshold is 245.
After region growing, the contour can be extracted and it will be obviously continuous, as
we can see in figure 3.16.
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(a) (b)

(c) (d)

Figure 3.15: The steps of Kiruthika et al. method. (a) original image, (b) morphological
closed image, (c) result of the subtraction between filtered and closed image, (d) edge
detected image superimposed to the original image.

3.1.3 Level curves

Observing the structure of Doppler spectrograms, we can see that they can be compared to
hills: near the baseline there is the strongest signal, coming from blood cells moving at lower
velocities, and it gradually slopes in intensity towards greater velocities until it merges with
the background. In this way, we can get some useful information from image’s level curves,
i.e. lines delimiting those regions of the image having an intensity in a certain range.
So, exploiting the information coming from these level curves we can trace a connected
contour, completely without the use of an edge detector.

The point is that we have to decide how to define the proper ranges for the intensities
in an effective way. In this respect, a clusterization step helped us to divide the image
intensities in homogeneous groups.
The steps of the algorithm are the following:

1. As a previous cleaning step, filter the image with a median filter 3×3, perform a
contrast stretching like in 3.1.1, and filter the result with a Gaussian filter with σ = 1.

2. Clusterize the processed image using the function kmeans. Divide the image pixels in
12 clusters according to their grey value and set the parameter ’emptyaction’ with the
option ’singleton’ to prevent the interruption due to the creation of an empty cluster.

3. Use the Matlab function contour on the filtered image, giving as input the vector of
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(a) (b)

(c) (d)

Figure 3.16: Region growing method. (a) the seed point, (b) the selected region after
the application of region growing, (c) contour obtained with the Canny edge detector, (d)
contour superimposed to the original image.

the ordered centroids (mean values of the clusters) created in the previous step, and
saving the output C. C is a two-row matrix specifying all the contour lines. Each
contour line defined in matrix C begins with a column that contains the value of the
contour and the number of (x, y) vertices in the contour line. The remaining columns
contain the data for the (x, y) pairs.

4. Look for the positions in the image of the level curve corresponding to the centroid
chosen as a representative of the contour. (The fourth centroid, chosen in an empirical
way, works well for several images, but it does not suit all of them).

5. Plot the level curve on the original image.

The results can be seen in figure 3.17. Different choices for the level curve are reported,
obviously leading to different contours. Where does the velocity profile end and where does
the noise start?

3.2 Further processing after velocity profile extraction

According to the literature, after performing edge detection somehow (a lot of different
approaches have been given, and only few of them have been discussed in this chapter),
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(a) (b)

(c) (d)

Figure 3.17: Method of the level curves. (a) level curves for all of the clusters, (b) contour
obtained using the fourth centroid superimposed to the original image, (c) contour obtained
using the third centroid superimposed to the original image, (d) contour obtained using the
second centroid superimposed to the original image.

further processing can be done on the image. First of all, the baseline, that is the line
separating positive velocities from negative ones, can be recognized automatically.

Doppler images show also some extra information besides the Doppler spectrum. For
example, next to the baseline the text [m/s], indicating the units for the velocity measure,
can be found, as well as the text HR, that stands for heart rate, near the ECG. Moreover
there are numbers on the right side of the figure indicating the velocity at a certain level of
height in the image. Numbers and text can be recognized in the image, and they can help
to map the information from the intensity of Doppler spectrum to the value of the velocity
profile in that point.

3.2.1 Baseline identification

In order to detect with certainty the position of the baseline, we can take advantage of the
Hough transform, already briefly outlined in 2.2.2. We used the Matlab built in function
hough on the output of the Canny edge detector. This function gives as output the matrix
H (the Hough transform matrix), rho and theta, which are the arrays of the values used to
compute the transform. Then the function houghpeaks looks for the peaks in the matrix H.
We set 5 as number of peaks to be found. Finally, the function houghlines takes as input the
edge image, theta, rho and the output peaks of houghpeaks, and gives as output the lines.
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We are interested in finding the position of the longest line, because the baseline is for sure
the longest straight line in the image. So, we scan all the detected lines and check which is
the longest one among them.

The result is displayed in figure 3.18. The baseline is always positioned in the right zone
but sometimes a bias of one pixel occurs in the vertical dimension.

(a) (b)

(c) (d)

Figure 3.18: Results of the detection of the baseline on different images. The baseline is
positioned correctly in (a) and (b), while there is a bias of one pixel in (c) and (d).

3.2.2 Numbers and text recognition

Recognizing the numbers that appear in Doppler images is quite an easy task if we exploit
template matching techniques (see 2.3).

For template matching, the original image (before filtering and other processing) is em-
ployed, because little features like numbers and text are more visible and clear in it.

The interactive function template matching has been created for finding the coordinates
of the center of the region that best matches a template. It asks the user to type in the
number or the text (among the allowed ones) he is interested in, and then let him crop the
corresponding template from the image by himself. This is repeated until a signal of stop is
given by the user.

For each selected template the normalized correlation coefficient is computed at each position
(i, j) in the image by means of the Matlab function normxcorr2. In figure 3.19 we can see
an example of correlation coefficient calculated for an image. Then the position of the
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maximum of the correlation coefficient is found, and from it the center of the best matching
region is obtained.

Figure 3.19: Computed correlation coefficient for a Doppler spectral image with the template
representing ”-1”. The position of the maximum peak localizes the template in the image.

After finding the position of the numbers an idea is that of associating every pixel in
the Doppler spectrum region with its velocity value, thus making possible for example the
calculation of the mean velocity. In fact, as we know the position of the baseline, and the
position of 1 or -1, it is possible to compute the sampling step of the velocity for each pixel
in the vertical direction. So every pixel within the Doppler spectrum can be associated to
the velocity of the blood particles it represents.

The intensity of a pixel is in relation with the quantity of blood elements moving with a
certain velocity, so computing a weighted sum of each pixel’s velocity for every column gives
as a result the mean velocity of the flow at each time sample.



Chapter 4

Results, discussion, and
comparison

The results obtained with all the techniques we have tested in chapter 3 are compared here,
trying to understand which are better and more reliable. While doing this comparison we
must take into account that what we have obtained should be useful for finding the numerical
values of the maximum velocity envelope, the mean flow velocity, and other parameters
usually extracted to analyse this kind of data.

The so called ”filtered image” is obtained from the original image after a median filtering
(3×3 window, one application), a contrast stretching, and a Gaussian filtering (σ=1.5, same
for all images), carried out as described in 3.1.1. All figures are displayed in colormap(jet)
to make the eye better appreciate changes in intensity, even if usually the part of Doppler
images containing velocity spectrum is displayed in grey scale mode.

4.1 Visual comparison of results

As we can see from figure 4.1, different approaches show different strengths and weaknesses.
In fig. 4.1 (b) the edge image after hysteresis thresholding (Thigh = 0.14, Tlow = 0.012,

chosen with the adaptive method in 2.2.1) can be seen. It is superimposed to the filtered
image, because edges have been actually extracted from that processed image, and detected
contours are highlighted in red. Noticeable discontinuities can be found above all in those
regions where intensity fades slowly, and there is not a neat separation between background
and velocity spectrum. In addition to the external contour, also some internal branches
detect abrupt changes in intensity within the spectrum.

Fig. 4.1 (c) and (d) show the edge image after two different gap linking attempts: in
(c) edges are extended from endpoints of contour branches along the local edge direction
(see 3.1.1 for details), exploiting information coming from the grey level of the filtered image
and from the gradient magnitude, while in (d) from endpoints the so called likelihood for
being an edge is taken as an expansion criterion (see 3.1.1). In both cases some gaps are
successfully closed and some others are not, and of course not the same in the two cases,
because of the different expansion criterion adopted. Sometimes the resulting edge is no
more thin, filling more than one pixel in width.

In fig. 4.1 (e) and (f) the edge images resulting from the application of Magagnin [23]
and Kiruthika [18] are shown respectively, superimposed to the original image. In these
two cases, in fact, extracted contours are obtained without the pre-processing steps that
lead to the filtered image visible in (b)-(d). In (e) some minor discontinuities can be still
found, while in (f) almost all contours are continuous. The second method seems to be
more conservative, keeping most of the spectrum inside the bevelled contour, while the first
leaves the weaker part of the signal out of the sharper contour.

39
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Method Pros Cons

Gap linking 1 Mathematically based (edge de-
tection); low subjectivity; almost
closed contour.

Some persisting gaps; some spu-
rious branches; loss of thinness;
dependence of the results on the
chosen thresholds.

LBE Mathematically based (edge de-
tection); low subjectivity; almost
closed contour.

Some persisting gaps; some spu-
rious branches; loss of thinness;
dependence of the results on the
chosen thresholds; time consum-
ing.

Magagnin et al. Closed contour; adaptive
threshold-based method.

Performance depending on the
image; tendency to cut part of
probable useful signal.

Kiruthika et al. Closed contour; quite conserva-
tive.

Heavy pre-processing on the im-
age.

Level curves Closed contour; no need of an
edge detector.

Subjectivity in the choice of the
level curve representing the con-
tour; great dependence of the
contour on the chosen level.

Region growing Closed contour. Too conservative; great depen-
dence of the correct region selec-
tion on the chosen threshold.

Table 4.1: Comparison of all the methods employed. Magagnin, Kiruthika, and region
growing are intended together with edge detection.

Fig. 4.1 (g) shows the contour resulting from the application of the level curves method
(3.1.3), superimposed to the filtered image. The fourth centroid of the 12 clusters in which
pixels of the filtered image have been divided has been chosen as a limit. The contour is
closed and plausible, but maybe a different choice of the level curve could be better, having
some criteria for deciding where the useful signal stops.

Finally, in fig. 4.1 (h) the contour of region growing strategy (3.1.2) is highlighted,
superimposed to the filtered image. The homogeneous region representing the spectrum is
grown from one of the brightest pixels in the central part of the image. In this case the
chosen threshold is 240 and in fact we can see that some less bright pixels are left out of the
spectrum.

4.2 Discussion

Making a visual comparison of the different techniques employed for the velocity profile
extraction, it is clear that some approaches are somehow complementary to others. As table
4.1 summarizes, edge detection oriented methods rest on a solid mathematical basis, but the
counterpart is that the obtained profile is not completely continuous, and sometimes the gap
linking step creates some spurious and undesired branches. The last are created because of
”wrong” decisions taken at a certain point of the extension of an edge branch. In fact, the
choice of the prosecution pixel done by the gap linking methods (both of them) is not always
appropriate, leading to undesired ramifications as we can see from figure 4.2. We can also
notice that the different methods close in a different way the gap left by the edge detector,
and that the spurious branch on the left (first gap linking method) goes down, while the one
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on the right (LBE method) goes up. So these two methods do not behave in the same way.

Image Gap linking 1 LBE
test image 1 57 102
test image 2 32 69
test image 3 69 136
test image 4 57 126
test image 5 77 134

Table 4.2: Number of endpoints in five test images after gap linking with two different
methods.

Looking at figure 4.2, at a first glance it seems like the gap linking method that exploits
gradient magnitude and grey value of the pixels closes more edges than the other one.
Actually, checking how many endpoints are still present in the image after gap linking, it
comes out that they are more after the application of the LBE method, in all tested images.
Table 4.2 shows this phenomenon for five test images. As we can see, endpoints after LBE
gap linking are about double of endpoints after the other gap linking method. This means
that the second method is more effective in filling the gaps in discontinuous contours.

With regard to Magagnin method, it can be observed that its performances change deeply
according to the image we are considering.

The shape of the velocity profile is different according to the vessel or the place of the vessel
in which the exam was performed. In particular, for shapes analogous to that in figure 4.2,
Magagnin method does not work very well, leaving out of the traced contour most part of
the profile, as we can see in figure 4.3. This is highly undesirable of course. The reason
for this might be sought in the fact that Magagnin method is threshold-based (even if more
refined than a trivial unique threshold). For images in which a large range of intensities
appears, the chosen threshold may be too low, and this is what actually happens with this
kind of images. Kiruthika method, on the contrary, is not affected by these problems and it
performs quite well even with elongated shapes. For other shapes, where the velocity range
is more limited, both methods work in a satisfactory way, even if they give different results
(figure 4.4).

Level curves and region growing methods do not show this kind of weaknesses and their
performance is quite independent of the shape, but it deeply depends on the selection of the
level curve for the first method, and of the threshold for the second one.

4.3 Possible improvements

Considering weaknesses and strengths of the proposed methods emerged from the previous
comparison, we can say that there is not an optimal strategy to trace the ”true” velocity
profile.

However, considering that we would like to obtain a contour that is continuous as much as
possible but preferably supported by edge detection at the same time, we can think about
integrating two methods, thus creating a hybrid approach to the problem.

The method that exploits gradient magnitude and grey level of pixels for extending
branches of open contours after edge detection gave good results, surely better than LBE
method. As we can see in table 4.1, combining pros of this gap linking method with level
curves method, for example, could give rise to an interesting compromise.

For example, starting from an endpoint of a discontinuous branch in the edge image, the
edge can be extended, still following its local direction, finding the level curve that passes
through that point. This level curve should be traced until it reaches another endpoint or
an edge point.
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Another possible strategy of integration could be the following. Still starting from an
endpoint of a discontinuous branch and considering the local direction of the edge, edges
could be extended with a more efficient method than those already tested (in a way that it
does not stop until it does not reach another endpoint or edge point), with an additional
constraint of being between two predetermined level curves. In this way, we guarantee that
the edge does not exceed a zone of homogeneity in the image.

Obviously, these proposals should be tested in order to check the final result, but they
seem ideally promising, opening the way to further investigation.
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(a)

(b)

(c)

(d)

Figure 4.1: Comparison of different employed techniques. (a) original image, (b) edge image
after Canny edge detector superimposed to the filtered image, (c) edge image after edge
linking superimposed to the filtered image, (d) edge image after LBE method superimposed
to the filtered image.
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(e)

(f)

(g)

(h)

Figure 4.1: Comparison of different employed techniques. (e) edge image after Magagnin
method superimposed to the original image, (f) edge image after Kiruthika method super-
imposed to the original image, (g) edge image after level curves method superimposed to
the filtered image, (h) edge image after region growing method superimposed to the filtered
image.
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(a) (b)

Figure 4.2: Comparison of the method that exploits gradient magnitude and grey level of
pixels (a) and LBE (b) method for a particular image.

(a) (b)

Figure 4.3: Comparison of Magagnin (a) and Kiruthika (b) methods for a particular image.

(a) (b)

Figure 4.4: Comparison of Magagnin (a) and Kiruthika (b) methods for a particular image.





Conclusions

In the present work, different techniques for the automatic extraction of the velocity profile
from Doppler spectral images have been tested and compared. Most of the tested methods
can be divided in two main groups, i. e. approaches based on edge detection and gap
linking, and approaches that are more focused on the pre-processing phase, resorting to
edge detection only at a later time. Level curves method lies outside these two groups, as
it is totally independent from edge detection. In this way, it can represent an alternative,
or, more realistically, an interesting supplement to integrate with edge detection. In fact,
strengths and weaknesses of edge detection are complementary to those of level curves. The
first is based on a mathematical definition of edge, meaning a discontinuity in the grey
level of the image, thus being reliable and little subjected to arbitrary decisions. The only
elements of subjectivity are the choice of the standard deviation of the Gaussian filter and
of the thresholds adopted for the selection of meaningful edges (we have seen that this
choice can be somehow automatized). However, the main weakness of edge detection is the
fragmented result almost always obtained: edges are far from being continuous and it is not
so trivial to fill the gaps in a proper way. On the other hand, level curves guarantee closed
contours, but the price is the manual choice of the limit level we assume to convey useful
information. Combining these two approaches can be interesting and promising in further
work.

Certainly, edge extraction is still a challenging task not only regarding Doppler images. In
this work we have only seen a few techniques, but further investigation with other approaches
is possible.
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Appendix A

Matlab code

1 f unc t i on imst re tch=con t r a s t s t r e t c h ( im)
2 % This func t i on r e tu rn s the contras t−s t r e t ched ve r s i on o f the input

image
3

4 [ nr , nc ]= s i z e ( im) ;
5

6 %Clu s t e r i z a t i o n step (2 c l u s t e r s )
7 [ x , c ]=kmeans ( im ( : ) ,2 , ’ emptyaction ’ , ’ s i n g l e t o n ’ ) ;
8

9 c=so r t ( c ) ;
10

11 %Output l e v e l s
12 y1=0;
13 y2=255;
14

15 imst re tch=ze ro s ( nr , nc ) ;
16

17 %Contrast s t r e t c h i n g
18 f o r i =1: nr
19 f o r j =1:nc
20

21 i f im( i , j )>=0 && im( i , j )<=c (1)
22 imst re tch ( i , j )=y1 ;
23

24 e l s e i f im( i , j )>c (1 ) && im( i , j )<=c (2)
25 imst re tch ( i , j )=(y2−y1 ) /( c (2 )−c (1 ) ) . . .
26 ∗( im( i , j )−c (1 ) )+y1 ;
27 e l s e
28 imst re tch ( i , j )=y2 ;
29 end
30 end
31 end

1 f unc t i on f i l t=g a u s s f i l t ( im , sigma )
2 % Function per forming gauss ian f i l t e r i n g with a standard dev i a t i on

sigma
3 % on the image im
4

5 % Vector conta in ing 97% of the area under the Gaussian curve
6 x = [−(5∗ sigma ) : ( 5∗ sigma ) ] ;

49
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7

8 % Creat ion o f the Gaussian curve on the po in t s s p e c i f i e d by the vec to r
9 G = normpdf (x , 0 , sigma ) ;

10

11 % Convolution along the rows
12 f i l t x=conv2 ( im ,G, ’ same ’ ) ;
13

14 % Second convo lut ion along the columns
15 f i l t=conv2 ( f i l t x ,G’ , ’ same ’ ) ;

1 f unc t i on [ bw,M, dir , gx , gy , d ,M1, th , t l ]=imcanny ( Img , sigma , method )
2 %Function that e x t r a c t s the edges in an input image with a
3 %Canny algor i thm .
4

5 %−−− Input −−−
6 %Img = input image
7 %sigma = standard dev i a t i on o f the Gaussian f i l t e r
8 %method = method employed f o r the cho i c e o f the double th r e sho ld
9 %( ’ gonz ’= Gonzalez−Woods method , ’med ’ = Medina et a l . method ,

10 %’0 ’= f i x ed th r e sho ld s )
11

12 %−−− Output −−−
13 %bw = edge image
14 %M = grad i ent magnitude
15 %di r = grad i en t d i r e c t i o n
16 %gx , gy = components o f the g rad i ent
17 %d = grad i ent s l ope
18 %M1 = grad i en t magnitude a f t e r non maxima suppre s s i on
19 %th , t l= hy s t e r e s i s th r e sho ld s
20

21

22 [ nr , nc ]= s i z e ( Img) ;
23

24 %% Creat ion o f the Gaussian
25 % Vector with 97% of the area under the Gaussian curve
26 x = [−(5∗ sigma ) : ( 5∗ sigma ) ] ;
27 % Gaussian monodimensional d i s t r i b u t i o n
28 G = normpdf (x , 0 , sigma ) ;
29 % Der iva t ive o f Gaussian
30 dG = d i f f (G) ;
31

32

33 %% Sepa r ab i l i t y
34 % Convolution o f the image with dG ( along the rows )
35 gx = conv2 ( Img ,dG, ’ same ’ ) ;
36 % Convolution o f the image with dG ( along the columns )
37 gy = conv2 ( Img ’ ,dG, ’ same ’ ) ’ ;
38

39 %% Gradient magnitude and d i r e c t i o n
40 % Gradient magnitude
41 M =sqr t ( gx .ˆ2 + gy . ˆ 2 ) ;
42 % Gradient magnitude normal ized
43 M1=M/(max(max(M) ) ) ;
44 % Vec to r i z a t i on and norma l i za t i on
45 M =(M( : ) /max(M( : ) ) ) ;
46

47 %% Choice o f the double th r e sho ld
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48

49 % Gonzalez method
50 i f strcmp (method , ’ gonz ’ )
51 n p i x e l s=length (M ) ;
52

53 ct =0;
54 f o r i =1: n p i x e l s
55 i f M ( i )==0
56 ct=ct+1; %number o f ze ro p i x e l s
57 end
58 end
59

60 p=0.3;
61 n edgep=p∗( n p i x e l s−ct ) ; %number o f edge po in t s
62

63 x = [ 0 : 0 . 0 0 4 : 1 ] ;
64 %Histogram o f the g rad i en t magnitudes on the b ins in vec to r x
65 [ n , c ]= h i s t (M , x ) ;
66 %Number o f non edge p i x e l s
67 n nonedge=(1−p) ∗( n p i x e l s−n (1) ) ;
68

69 r=1;
70 s=0;
71 whi le s<n nonedge && r<l ength (n)
72 s=s+ n( r+1) ;
73 r=r+1;
74 end
75

76 th=c ( r ) ; %High thre sho ld
77 t l =0.4∗ th ; %Low thre sho ld
78

79 % Medina method ( see Medina et a l .
80 % ”On Candidates s e l e c t i o n f o r h y s t e r e s i s th r e sho ld s
81 % in edge de t e c t i on ” , ”A nove l method to look f o r the
82 % hy s t e r e s i s th r e sho ld s f o r the Canny edge de t e c to r ”)
83 e l s e i f strcmp (method , ’med ’ )
84

85 L=100; %number o f b ins
86 [ p , q]= h i s t (M1( : ) ,L) ; %Histogram of g rad i ent magnitudes
87 p=p/sum(p) ;
88 x= [1 : 1 :L−1] ;
89

90

91 f o r x=2:1 :L
92 sumh0=0;
93 f o r r=1:x
94 sumh0=sumh0+p( r ) ;
95 end
96 H0(x−1)=sumh0 ;
97 sumh1=0;
98 f o r r=(x+1) :L
99 sumh1=sumh1+p( r ) ;

100 end
101 H1(x−1)=sumh1 ;
102 end
103

104

105 f o r x=2:L
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106 f o r y=2:L
107 i f x<y
108 TP(y−1,x−1)=H1(y−1) ;
109 TN(y−1,x−1)=H0(x−1) ;
110 FN(y−1,x−1)=H0(y−1)−H0(x−1) ;
111 FP(y−1,x−1)=0;
112 e l s e i f x>y
113 TP(y−1,x−1)=H1(x−1) ;
114 TN(y−1,x−1)=H0(y−1) ;
115 FP(y−1,x−1)=H1(y−1)−H1(x−1) ;
116 FN(y−1,x−1)=0;
117 end
118 end
119

120 end
121

122 f o r x=2:L
123 sumtp=0;
124 sumtn=0;
125 sumfp=0;
126 sumfn=0;
127 f o r y=2:L
128 sumtp=sumtp+TP(y−1,x−1) ;
129 sumtn=sumtn+TN(y−1,x−1) ;
130 sumfp=sumfp+FP(y−1,x−1) ;
131 sumfn=sumfn+FN(y−1,x−1) ;
132 end
133 TP (x−1)=1/L∗sumtp ;
134 TN (x−1)=1/L∗sumtn ;
135 FP (x−1)=1/L∗sumfp ;
136 FN (x−1)=1/L∗sumfn ;
137 end
138

139 rho=TP (x−1)+FP (x−1) ;
140 TL=(L−2)∗ rho /(1+2∗ rho ) ;
141 perc=1−rho ;
142 x=1;
143 s=0;
144 whi le s<perc
145 s=s+p(x ) ;
146 x=x+1;
147 end
148

149 TH=x ;
150 f o r x=round (TL) :TH
151 SN (x )=TP (x ) /(TP (x )+FN (x ) ) ;
152 SP (x )=TN (x ) /(FP (x )+TN (x ) ) ;
153 end
154 SP2=d i f f ( SP , 2 ) ;
155 SN2=d i f f (SN , 2 ) ;
156 [ maxsp2 , imaxsp2 ]=max(SP2) ;
157 [ minsp2 , iminsp2 ]=min (SP2) ;
158 [ maxsn2 , imaxsn2 ]=max(SN2) ;
159 [ minsn2 , iminsn2 ]=min (SN2) ;
160

161

162 se th=[TL : 1 :TH] / 2 55 ; %s e t o f p o s s i b l e high th r e sho ld s
163 s e t l =0.4∗ se th ; %s e t o f p o s s i b l e low th r e sho ld s
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164 s e t l 2 =0.5∗ se th ;
165 s e t l 3 =0.3∗ se th ;
166

167 %Set conta in s p o s s i b l e coup l e s o f th r e sho ld s
168 s e t ( 1 , : ) =[ seth , seth , se th ] ;
169 s e t ( 2 , : ) =[ s e t l , s e t l 2 , s e t l 3 ] ;
170

171 deltaG=ze ro s ( nr , nc , l ength ( s e t ) ) ;
172

173 bw=ze ro s ( nr , nc ) ;
174 f o r i =1: l ength ( s e t )
175 th=se t (1 , i ) ;
176 t l=s e t (2 , i ) ;
177 aboveT1=M1>t l ;
178 [ aboveT2r , aboveT2c ] = f i nd (M1 >th ) ;
179

180 bw = bwse l ec t ( aboveT1 , aboveT2c , aboveT2r , 8) ;
181 G high=M1>th ;
182 deltaG ( : , : , i )=bw−G high ; %eqn 1 paper
183 end
184

185 SM=sum( deltaG , 3 ) ;
186 ProbSM=SM/ length ( s e t ) ;
187 s e tx = [ 0 . 0 0 1 : 0 . 0 0 1 : 0 . 9 9 9 ] ; %po s s i b l e va lue s f o r x
188 pos=1;
189

190 f o r i =1: l ength ( se tx )
191 x=setx ( i ) ;
192 ProbxSM=ProbSM>x ;
193 numProbxSM=sum(sum(ProbxSM) ) ;
194 Fx=chop (M1.∗ProbxSM , 2 ) ; %rounding at two s i g n i f i c a t i v e d i g i t s
195

196 ind=f i nd (Fx==x) ; %i nd i c e s at which Fx=x
197 [ k , l ]= ind2sub ( [ nr , nc ] , ind ) ;
198 numFx=sum(Fx(k , l ) ) ;
199 i f numProbxSM>0
200 PFx=numFx/numProbxSM ;
201 i f ne (PFx , 0 )
202 D( pos )=x ;
203 pos=pos+1;
204 end
205 e l s e
206 PFx=0;
207 end
208 end
209

210 [m, n]= h i s t (ProbSM ( : ) ,D) ;
211 bar (n ,m)
212

213 t l=n (1) ; %low thre sho ld
214 th=n( end ) ; %high th re sho ld
215

216 %Fixed thr e sho ld
217 e l s e i f method==0
218 th =0.28;
219 t l =0.4∗ th ;
220

221 end
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222

223 %% Searching the l o c a l maxima
224 %
225 % 1 2
226 % X−−−−−−−−X−−−−−−−−X
227 % | |
228 % 4 | −gy ˆ | 3
229 % | | |
230 % | | gx |
231 % X P−−−−> X
232 % | |
233 % 3 | | 4
234 % | |
235 % | |
236 % X−−−−−−−−X−−−−−−−−X
237 % 2 1
238

239

240 M2=M1>0;
241

242 %% Computation o f the g rad i ent d i r e c t i o n accord ing to
243 %% the d i r e c t i o n s in the f i g u r e
244 d i r=ze ro s ( nr , nc ) ;
245 f o r i =1: nr
246 f o r j =1:nc
247 d i r ( i , j )=d i r e c t i o n ( gx ( i , j ) , gy ( i , j ) ) ;
248 end
249 end
250

251 %% Non maxima suppre s s i on
252 d=ze ro s ( nr , nc ) ;
253 f o r i =2:nr−1
254 f o r j =2:nc−1
255

256 switch d i r ( i , j )
257 case 1
258 d( i , j )=abs ( gx ( i , j ) /gy ( i , j ) ) ; %cotangent
259 i f M2( i , j )
260 M2( i , j )=M1( i , j )>(1−d( i , j ) ) ∗ . . .
261 M1( i +1, j )+d( i , j ) ∗M1( i +1, j +1) & . . .
262 M1( i , j )>(1−d( i , j ) ) ∗M1( i −1, j )+d( i , j ) ∗M1( i −1, j−1) ;
263 end
264 case 2
265 d( i , j )=abs ( gx ( i , j ) /gy ( i , j ) ) ; %cotangent
266 i f M2( i , j )
267 M2( i , j )=M1( i , j )>(1−d( i , j ) ) ∗ . . .
268 M1( i −1, j )+d( i , j ) ∗M1( i −1, j +1) & . . .
269 M1( i , j )>(1−d( i , j ) ) ∗M1( i +1, j )+d( i , j ) ∗M1( i +1, j−1) ;
270 end
271 case 3
272 d( i , j )=abs ( gy ( i , j ) /gx ( i , j ) ) ; %tangent
273 i f M2( i , j )
274 M2( i , j )=M1( i , j )>(1−d( i , j ) ) ∗ . . .
275 M1( i , j +1)+d( i , j ) ∗M1( i −1, j +1) & . . .
276 M1( i , j )>(1−d( i , j ) ) ∗M1( i , j−1)+d( i , j ) ∗M1( i +1, j−1) ;
277 end
278 case 4
279 d( i , j )=abs ( gy ( i , j ) /gx ( i , j ) ) ; %tangent
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280 i f M2( i , j )
281 M2( i , j )=M1( i , j )>(1−d( i , j ) ) ∗ . . .
282 M1( i , j +1)+d( i , j ) ∗M1( i +1, j +1) & . . .
283 M1( i , j )>(1−d( i , j ) ) ∗M1( i , j−1)+d( i , j ) ∗M1( i −1, j−1) ;
284 end
285 end
286

287 end
288 end
289

290

291 %M2 i s a mask conta in ing the l o c a l maxima o f the g rad i en t
292 M1=M1.∗M2;
293

294 %% Hys t e r e s i s th r e sho ld ing
295 aboveT1=M1>t l ;
296 [ aboveT2r , aboveT2c ] = f i nd (M1 >th ) ;
297 bw = bwse l ec t ( aboveT1 , aboveT2c , aboveT2r , 8) ; %obtained edge

1 f unc t i on d i r = d i r e c t i o n ( gx , gy )
2 %Function that c a l c u l a t e s the d i r e c t i o n o f the g rad i en t
3 %( subfunct ion o f imcanny )
4 %gx , gy=components o f the g rad i ent
5

6 d i r =0;
7

8 i f abs ( gy )>abs ( gx )
9 i f ( gx∗gy )>0

10 d i r =1;
11 e l s e i f ( gx∗gy<0)
12 d i r =2;
13 end
14 e l s e
15 i f ( gx∗gy )>0
16 d i r =4;
17 e l s e i f ( gx∗gy )<0
18 d i r =3;
19 end
20 end

1 f unc t i on [ bw2 , endp2 , i ]= rep (bw2 , r , c , d i r , i , d ,M, f i l t , Mthres , g reythres ,
epsgrey , endp2 )

2 %subfunct ion o f edge l i nk ing
3

4 i f d i r ( r , c )==1
5 l e f t =[ r+1,c +1] ;
6 r i g h t =[r−1,c−1] ;
7 up=[r−1, c ] ;
8 down=[ r+1,c ] ;
9 e l s e i f d i r ( r , c )==2

10 l e f t =[ r+1,c−1] ;
11 r i g h t =[r−1, c +1] ;
12 up=[r−1, c ] ;
13 down=[ r+1,c ] ;
14 e l s e i f d i r ( r , c )==3
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15 l e f t =[ r+1,c−1] ;
16 r i g h t =[r−1, c +1] ;
17 up=[r , c +1] ;
18 down=[r , c−1] ;
19 e l s e
20 l e f t =[r−1,c−1] ;
21 r i g h t =[ r+1,c +1] ;
22 up=[r , c +1] ;
23 down=[r , c−1] ;
24 end
25

26 i f d ( r , c )>1−d( r , c )
27 i f bw2( l e f t (1 ) , l e f t (2 ) )==0 && bw2( r i g h t (1 ) , r i g h t (2 ) )==0
28 i f (M( l e f t (1 ) , l e f t (2 ) )>=M( r i gh t (1 ) , r i g h t (2 ) ) . . .
29 && ne (M( l e f t (1 ) , l e f t (2 ) ) , 0 ) ) | | . . .
30 ( abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) <=...
31 abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) . . .
32 && abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) )<=epsgrey )
33 i f ( (M(down(1) ,down(2) )>=M( l e f t (1 ) , l e f t (2 ) ) . . .
34 && ne (M(down(1) ,down(2) ) ,0 ) && (M(down(1) ,down(2) )>=Mthres ) ) . . .
35 | | ( abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) <=...
36 abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) . . .
37 && f i l t (down(1) ,down(2) )>=grey th r e s ) ) && bw2(down(1) ,down(2) )==0
38 bw2(down(1) ,down(2) )=1;
39 endp2 ( i , : ) =[down(1) ,down(2) ] ;
40 e l s e i f (M( l e f t (1 ) , l e f t (2 ) )>=M(down(1) ,down(2) ) &&.. .
41 ne (M( l e f t (1 ) , l e f t (2 ) ) , 0 )&&(M( l e f t (1 ) , l e f t (2 ) )>=Mthres ) ) | | . . .
42 ( abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) > . . .
43 abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) . . .
44 && f i l t ( l e f t (1 ) , l e f t (2 ) )>=grey th r e s )
45 bw2( l e f t (1 ) , l e f t (2 ) )=1;
46 endp2 ( i , : ) =[ l e f t (1 ) , l e f t (2 ) ] ;
47 e l s e i=i +1;
48 end
49 e l s e i f (M( r i gh t (1 ) , r i g h t (2 ) )>=M( l e f t (1 ) , l e f t (2 ) ) &&.. .
50 ne (M( r i gh t (1 ) , r i g h t (2 ) ) , 0 ) ) | | . . .
51 ( abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) > . . .
52 abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) . . .
53 && abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) )<=epsgrey )
54 i f ( (M(up (1) , up (2 ) )>=M( r i gh t (1 ) , r i g h t (2 ) ) . . .
55 && ne (M(up (1 ) ,up (2 ) ) , 0 ) && (M(up (1) , up (2 ) )>=Mthres ) ) | | . . .
56 ( abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) <=...
57 abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) . . .
58 && f i l t (up (1 ) , up (2 ) )>=grey th r e s ) ) && bw2(up (1) , up (2 ) )==0
59 bw2(up (1) , up (2 ) )=1;
60 endp2 ( i , : ) =[up (1 ) , up (2 ) ] ;
61 e l s e i f (M( r i gh t (1 ) , r i g h t (2 ) )>=M(up (1) , up (2 ) ) &&.. .
62 ne (M( r i gh t (1 ) , r i g h t (2 ) ) , 0 )&&(M( r i gh t (1 ) , r i g h t (2 ) )>=Mthres ) ) . . .
63 | | ( abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) > . . .
64 abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) . . .
65 && f i l t ( r i g h t (1 ) , r i g h t (2 ) )>=grey th r e s )
66 bw2( r i g h t (1 ) , r i g h t (2 ) )=1;
67 endp2 ( i , : ) =[ r i g h t (1 ) , r i g h t (2 ) ] ;
68 e l s e i=i +1;
69 end
70 e l s e i=i +1;
71 end
72 e l s e i f bw2( r i g h t (1 ) , r i g h t (2 ) )==0
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73 i f ( (M(up (1) ,up (2 ) )>=M( r i gh t (1 ) , r i g h t (2 ) ) &&.. .
74 ne (M(up (1) , up (2 ) ) ,0 ) && (M(up (1) , up (2 ) )>=Mthres ) ) | | . . .
75 ( abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) <=...
76 abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) . . .
77 && abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) )<=epsgrey &&.. .
78 f i l t (up (1 ) , up (2 ) )>=grey th r e s ) ) && bw2(up (1) , up (2 ) )==0
79 bw2(up (1) , up (2 ) )=1;
80 endp2 ( i , : ) =[up (1 ) , up (2 ) ] ;
81 e l s e i f (M( r i gh t (1 ) , r i g h t (2 ) )>=M(up (1) , up (2 ) ) &&.. .
82 ne (M( r i gh t (1 ) , r i g h t (2 ) ) , 0 )&&(M( r i gh t (1 ) , r i g h t (2 ) )>=Mthres ) ) . . .
83 | | ( abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) > . . .
84 abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) . . .
85 && abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) )<=epsgrey . . .
86 && f i l t ( r i g h t (1 ) , r i g h t (2 ) )>=grey th r e s )
87 bw2( r i g h t (1 ) , r i g h t (2 ) )=1;
88 endp2 ( i , : ) =[ r i g h t (1 ) , r i g h t (2 ) ] ;
89 e l s e i=i +1;
90 end
91 e l s e i f bw2( l e f t (1 ) , l e f t (2 ) )==0
92 i f ( (M(down(1) ,down(2) )>=M( l e f t (1 ) , l e f t (2 ) ) &&.. .
93 ne (M(down(1) ,down(2) ) ,0 )&&(M(down(1) ,down(2) )>=Mthres ) ) | | . . .
94 ( abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) <=...
95 abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) . . .
96 && abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) )<=epsgrey &&.. .
97 f i l t (down(1) ,down(2) )>=grey th r e s ) )&& bw2(down(1) ,down(2) )==0
98 bw2(down(1) ,down(2) )=1;
99 endp2 ( i , : ) =[down(1) ,down(2) ] ;

100 e l s e i f (M( l e f t (1 ) , l e f t (2 ) )>=M(down(1) ,down(2) ) &&.. .
101 ne (M( l e f t (1 ) , l e f t (2 ) ) , 0 )&&(M( l e f t (1 ) , l e f t (2 ) )>=Mthres ) ) | | . . .
102 ( abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) > . . .
103 abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) . . .
104 && abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) <=...
105 epsgrey && f i l t ( l e f t (1 ) , l e f t (2 ) )>=grey th r e s )
106 bw2( l e f t (1 ) , l e f t (2 ) )=1;
107 endp2 ( i , : ) =[ l e f t (1 ) , l e f t (2 ) ] ;
108 e l s e i=i +1;
109 end
110 e l s e i=i +1;
111 end
112 e l s e i f d ( r , c )<=1−d( r , c )
113 i f bw2(down(1) ,down(2) )==0 && bw2(up (1) , up (2 ) )==0
114 i f (M(down(1) ,down(2) )>=M(up (1) , up (2 ) ) &&.. .
115 ne (M(down(1) ,down(2) ) ,0 ) ) | | . . .
116 ( abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) <=...
117 abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) . . .
118 && abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) )<=epsgrey )
119 i f ( (M( l e f t (1 ) , l e f t (2 ) )>=M(down(1) ,down(2) ) &&.. .
120 ne (M( l e f t (1 ) , l e f t (2 ) ) , 0 )&&(M( l e f t (1 ) , l e f t (2 ) )>=Mthres ) ) | | . . .
121 ( abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) <=...
122 abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) . . .
123 && f i l t ( l e f t (1 ) , l e f t (2 ) )>=grey th r e s ) )&& bw2( l e f t (1 ) , l e f t (2 ) )==0
124 bw2( l e f t (1 ) , l e f t (2 ) )=1;
125 endp2 ( i , : ) =[ l e f t (1 ) , l e f t (2 ) ] ;
126 e l s e i f (M(down(1) ,down(2) )>=M( l e f t (1 ) , l e f t (2 ) ) &&.. .
127 ne (M(down(1) ,down(2) ) ,0 )&&(M(down(1) ,down(2) )>=Mthres ) ) | | . . .
128 ( abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) > . . .
129 abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) . . .
130 && f i l t (down(1) ,down(2) )>=grey th r e s )
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131 bw2(down(1) ,down(2) )=1;
132 endp2 ( i , : ) =[down(1) ,down(2) ] ;
133 e l s e i=i +1;
134 end
135 e l s e i f (M(up (1) , up (2 ) )>=M(down(1) ,down(2) ) &&.. .
136 ne (M(up (1) , up (2 ) ) ,0 ) ) | | . . .
137 ( abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) > . . .
138 abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) . . .
139 && abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) )<=epsgrey )
140 i f ( (M( r i gh t (1 ) , r i g h t (2 ) )>=M(up (1) , up (2 ) ) &&.. .
141 ne (M( r i gh t (1 ) , r i g h t (2 ) ) , 0 )&&(M( r i gh t (1 ) , r i g h t (2 ) )>=Mthres ) ) | | . . .
142 ( abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) <=...
143 abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) . . .
144 && f i l t (up (1 ) , up (2 )−1)>=grey th r e s ) )&& bw2(up (1 ) ,up (2 )−1)==0
145 bw2( r i g h t (1 ) , r i g h t (2 ) )=1;
146 endp2 ( i , : ) =[ r i g h t (1 ) , r i g h t (2 ) ] ;
147 e l s e i f (M(up (1) , up (2 ) )>=M( r i gh t (1 ) , r i g h t (2 ) ) &&.. .
148 ne (M(up (1) , up (2 ) ) ,0 ) && (M(up (1) , up (2 ) )>=Mthres ) ) | | . . .
149 ( abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) > . . .
150 abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) . . .
151 && f i l t (up (1 ) , up (2 ) )>=grey th r e s )
152 bw2(up (1) , up (2 ) )=1;
153 endp2 ( i , : ) =[up (1 ) , up (2 ) ] ;
154 e l s e i=i +1;
155 end
156 e l s e i=i +1;
157 end
158 e l s e i f bw2(up (1 ) ,up (2 ) )==0
159 i f ( (M( r i gh t (1 ) , r i g h t (2 ) )>=M(up (1) , up (2 ) ) &&.. .
160 ne (M( r i gh t (1 ) , r i g h t (2 ) ) , 0 )&&(M( r i gh t (1 ) , r i g h t (2 ) )>=Mthres ) ) | | . . .
161 ( abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) <=...
162 abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) . . .
163 && abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) )<=epsgrey &&.. .
164 f i l t ( r i g h t (1 ) , r i g h t (2 ) )>=grey th r e s ) )&& bw2( r i g h t (1 ) , r i g h t (2 ) )==0
165 bw2( r i g h t (1 ) , r i g h t (2 ) )=1;
166 endp2 ( i , : ) =[ r i g h t (1 ) , r i g h t (2 ) ] ;
167 e l s e i f (M(up (1) , up (2 ) )>=M( r i gh t (1 ) , r i g h t (2 ) ) &&.. .
168 ne (M(up (1) , up (2 ) ) ,0 )&& (M(up (1) , up (2 ) )>=Mthres ) ) | | . . .
169 ( abs ( f i l t ( r , c )− f i l t ( r i g h t (1 ) , r i g h t (2 ) ) ) > . . .
170 abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) ) . . .
171 && abs ( f i l t ( r , c )− f i l t (up (1 ) , up (2 ) ) )<=epsgrey . . .
172 && f i l t (up (1 ) , up (2 ) )>=grey th r e s )
173 bw2(up (1) , up (2 ) )=1;
174 endp2 ( i , : ) =[up (1 ) , up (2 ) ] ;
175 e l s e i=i +1;
176 end
177 e l s e i f bw2(down(1) ,down(2) )==0
178 i f ( (M( l e f t (1 ) , l e f t (2 ) )>=M(down(1) ,down(2) ) &&.. .
179 ne (M( l e f t (1 ) , l e f t (2 ) ) , 0 )&&(M( l e f t (1 ) , l e f t (2 ) )>=Mthres ) ) | | . . .
180 ( abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) <=...
181 abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) . . .
182 && abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) )<=epsgrey &&.. .
183 f i l t ( l e f t (1 ) , l e f t (2 ) )>=grey th r e s ) )&& bw2( l e f t (1 ) , l e f t (2 ) )==0
184 bw2( l e f t (1 ) , l e f t (2 ) )=1;
185 endp2 ( i , : ) =[ l e f t (1 ) , l e f t (2 ) ] ;
186 e l s e i f (M(down(1) ,down(2) )>=M( l e f t (1 ) , l e f t (2 ) ) &&.. .
187 ne (M(down(1) ,down(2) ) ,0 )&&(M(down(1) ,down(2) )>=Mthres ) ) | | . . .
188 ( abs ( f i l t ( r , c )− f i l t ( l e f t (1 ) , l e f t (2 ) ) ) > . . .
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189 abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) ) . . .
190 && abs ( f i l t ( r , c )− f i l t (down(1) ,down(2) ) )<=epsgrey . . .
191 && f i l t (down(1) ,down(2) )>=grey th r e s )
192 bw2(down(1) ,down(2) )=1;
193 endp2 ( i , : ) =[down(1) ,down(2) ] ;
194 e l s e i=i +1;
195 end
196 e l s e i=i +1;
197 end
198 end

1 f unc t i on bw2=l i n k l b e (bw, endp ,M, dir , pend )
2 %Function that extends edges from endpoints accord ing
3 %to LBE
4

5 %−−− Input −−−
6 %bw=edge image
7 %endp=endpoints in bw
8 %M=grad i en t magnitude o f the source image
9 %di r=grad i en t d i r e c t i o n o f the source image

10 %pend=s l ope ( s ee imcanny , parameter d)
11

12 %−−− Output −−−
13 %bw2= edge image a f t e r ex tens i on
14

15

16 [ nr , nc ]= s i z e (M) ;
17

18 bw2=bw; %copy o f edge image
19

20 %matr i ce s i n i t i a l i z e d
21 v=ze ro s ( nr , nc ) ;
22 m=zero s ( nr , nc ) ;
23

24 %% Computation o f matr i ce s m, v , and LBE f o r each p i x e l
25 f o r i =2:nr−1
26 f o r j =2:nc−1
27

28 [m, v]=comp( i , j ,M, pend ,m, v , d i r ) ;
29

30

31 end
32 end
33

34 LBE=ze ro s ( nr , nc ) ;
35 f o r i =1: nr
36 f o r j =1:nc
37 i f ne ( v ( i , j ) , 0 ) %handle the case o f nu l l denominator
38 LBE( i , j )=m( i , j ) /v ( i , j ) ;
39 end
40 end
41 end
42

43

44 endpl=endp ; %copy o f endpoints ’ l i s t ( l e f t branch )
45 endpr=endp ; %copy o f endpoints ’ l i s t ( r i g h t branch )
46
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47 pos=1; %i n i t i a l i z a t i o n
48

49 whi le pos<l ength ( endp )
50 y=endp ( pos , 1 ) ; %row
51 x=endp ( pos , 2 ) ; %column
52 f r =1; %f l a g f o r the r i g h t branch o f the edge
53 f l =1; %f l a g f o r the l e f t branch o f the edge
54 whi le f r==1 %r i gh t branch
55 y=endpr ( pos , 1 ) ;
56 x=endpr ( pos , 2 ) ;
57 i f y>1 && x>1 && x<(nc ) && y<(nr )
58

59 [ bw2 , endpr , f r ,LBE]= r i gh t (y , x , pos , bw2 ,LBE, dir , endpr , f r ) ;
60

61

62 e l s e f r =0;
63 end
64 end
65 whi le f l==1 %l e f t branch
66 y=endpl ( pos , 1 ) ;
67 x=endpl ( pos , 2 ) ;
68 i f y>1 && x>1 && x<(nc ) && y<(nr )
69

70 [ bw2 , endpl , f l ,LBE]= l e f t (y , x , pos , bw2 ,LBE, dir , endpl , f l ) ;
71

72 e l s e f l =0;
73 end
74 end
75 pos=pos+1;
76 end
77

78 %Delete shor t cha ins
79 bw2=bwareaopen (bw2 , 1 0 ) ;

1 f unc t i on [m, v]=comp( i , j ,M, pend ,m, v , d i r )
2 %subfunct ion o f l i n k l b e to compute ve c t o r s m and v
3

4 i f d i r ( i , j )==1
5 a=[ i −1, j −1] ;
6 b=[ i +1, j +1] ;
7 c=[ i −1, j ] ;
8 e=[ i +1, j ] ;
9

10 e l s e i f d i r ( i , j )==2
11 a=[ i −1, j +1] ;
12 b=[ i +1, j −1] ;
13 c=[ i −1, j ] ;
14 e=[ i +1, j ] ;
15

16 e l s e i f d i r ( i , j )==3
17 a=[ i −1, j +1] ;
18 b=[ i +1, j −1] ;
19 c=[ i , j +1] ;
20 e=[ i , j −1] ;
21

22 e l s e
23 a=[ i −1, j −1] ;
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24 b=[ i +1, j +1] ;
25 c=[ i , j +1] ;
26 e=[ i , j −1] ;
27

28 end
29

30 i f pend ( i , j )>1−pend ( i , j )
31

32 v ( a (1 ) , a (2 ) )=v( a (1 ) , a (2 ) )+1;
33 u=M(a (1) , a (2 ) ) ;
34 v (b (1 ) ,b (2 ) )=v(b (1 ) ,b (2 ) )+1;
35 d=M(b (1) ,b (2 ) ) ;
36 v ( i , j )=v ( i , j )+1;
37 p=M( i , j ) ;
38 vect=[u , d , p ] ;
39 [ va , in ]=max( vect ) ;
40 i f ne ( va , 0 )
41 i f in==1
42

43 m(a (1) , a (2 ) )=m(a (1 ) , a (2 ) )+1;
44

45 e l s e i f in==2
46 m(b (1) ,b (2 ) )=m(b (1 ) ,b (2 ) )+1;
47

48 e l s e
49 m( i , j )=m( i , j )+1;
50 end
51 end
52 e l s e
53 v ( c (1 ) , c (2 ) )=v( c (1 ) , c (2 ) )+1;
54 u=M( c (1 ) , c (2 ) ) ;
55 v ( e (1 ) , e (2 ) )=v( e (1 ) , e (2 ) )+1;
56 d=M( e (1 ) , e (2 ) ) ;
57 v ( i , j )=v ( i , j )+1;
58 p=M( i , j ) ;
59 vect=[u , d , p ] ;
60 [ va , in ]=max( vect ) ;
61 i f ne ( va , 0 )
62 i f in==1
63

64 m( c (1 ) , c (2 ) )=m( c (1 ) , c (2 ) )+1;
65

66 e l s e i f in==2
67 m( e (1 ) , e (2 ) )=m( e (1 ) , e (2 ) )+1;
68

69 e l s e
70 m( i , j )=m( i , j )+1;
71 end
72 end
73 end

1 f unc t i on [ bw2 , endpr , f r ,LBE]= r i gh t (y , x , pos , bw2 ,LBE, dir , endpr , f r )
2 %subfunct ion o f l i n k l b e to extend edges towards r i g h t d i r e c t i o n
3

4 i f d i r (y , x )==1
5 a=[y−1,x+1] ;
6 b=[y , x+1] ;
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7

8 e l s e i f d i r (y , x )==2
9 a=[y+1,x+1] ;

10 b=[y , x+1] ;
11

12 e l s e i f d i r (y , x )==3
13 a=[y+1,x+1] ;
14 b=[y+1,x ] ;
15

16 e l s e
17 a=[y+1,x−1] ;
18 b=[y+1,x ] ;
19

20 end
21

22 pr=LBE( a (1 ) , a (2 ) ) ;
23 dr=LBE(b (1) ,b (2 ) ) ;
24

25 r=[pr , dr ] ;
26 [ vr , i r ]=max( r ) ;
27

28 i f ne ( vr , 0 )
29

30 i f i r==1 && bw2( a (1 ) , a (2 ) )==0
31 bw2( a (1 ) , a (2 ) )=1;
32 endpr ( pos , : ) =[a (1 ) , a (2 ) ] ; %update endp r i gh t
33 i f dr==1
34 LBE(b (1) ,b (2 ) ) =0.99;
35

36 end
37 e l s e i f i r==2 && bw2(b (1 ) ,b (2 ) )==0
38 bw2(b (1 ) ,b (2 ) )=1;
39 endpr ( pos , : ) =[b (1 ) ,b (2 ) ] ;
40

41

42 e l s e f r =0;
43 end
44

45 e l s e f r =0;
46

47 end

1 f unc t i on [ bw2 , endpl , f l ,LBE]= l e f t (y , x , pos , bw2 ,LBE, dir , endpl , f l )
2 %subfunct ion o f l i n k l b e to extend edges towards l e f t d i r e c t i o n
3

4 i f d i r (y , x )==1
5 a=[y+1,x−1] ;
6 b=[y , x−1] ;
7

8 e l s e i f d i r (y , x )==2
9 a=[y−1,x−1] ;

10 b=[y , x−1] ;
11

12 e l s e i f d i r (y , x )==3
13 a=[y−1,x−1] ;
14 b=[y−1,x ] ;
15
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16 e l s e
17 a=[y−1,x+1] ;
18 b=[y−1,x ] ;
19

20 end
21

22 pl=LBE( a (1 ) , a (2 ) ) ;
23 dl=LBE(b (1) ,b (2 ) ) ;
24

25 l =[pl , d l ] ;
26 [ vl , i l ]=max( l ) ;
27

28 i f ne ( vl , 0 )
29

30 i f i l==1 && bw2( a (1 ) , a (2 ) )==0
31 bw2( a (1 ) , a (2 ) )=1;
32 endpl ( pos , : ) =[a (1 ) , a (2 ) ] ;
33 i f d l==1
34 LBE(b (1) ,b (2 ) ) =0.99;
35 end
36

37 e l s e i f i l==2 && bw2(b (1 ) ,b (2 ) )==0
38 bw2(b (1 ) ,b (2 ) )=1;
39 endpl ( pos , : ) =[b (1 ) ,b (2 ) ] ;
40

41 e l s e f l =0;
42 end
43 e l s e f l =0;
44

45 end

1 f unc t i on [ imm,bw]=magagnincaiani (imm)
2 %Function that implements Magagnin and Caiani ’ s method
3 %in ”Semi−Automated ana l y s i s o f coronary f low Doppler images :
4 %va l i d a t i o n with manual t r a c i n g s ”
5

6

7

8 %% Creat ion o f the over lapp ing r e g i on s
9 reg1=imm( : , 1 : 2 0 0 ) ;

10 reg2=imm( : , 1 5 0 : 3 5 0 ) ;
11 reg3=imm( : , 3 0 0 : end ) ;
12

13 %% Histograms o f the r e g i on s
14 [ p1 , q1]= h i s t ( reg1 ( : ) ,256) ;
15 [ p2 , q2]= h i s t ( reg2 ( : ) ,256) ;
16 [ p3 , q3]= h i s t ( reg3 ( : ) ,256) ;
17

18 r =0.25;
19 tot1=sum(p1 ) ;
20 t a rge t1=r ∗ tot1 ;
21 i=length ( q1 ) ;
22 sum1=0;
23 whi le sum1<t a rge t1 && i>1
24 sum1=sum1+p1 ( i ) ;
25 i=i −1;
26 end
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27 L1=q1 ( i ) ;
28

29 tot2=sum(p2 ) ;
30 t a rge t2=r ∗ tot2 ;
31 i=length ( q2 ) ;
32 sum1=0;
33 whi le sum1<t a rge t2 && i>1
34 sum1=sum1+p2 ( i ) ;
35 i=i −1;
36 end
37 L2=q2 ( i ) ;
38

39 tot3=sum(p3 ) ;
40 t a rge t3=r ∗ tot3 ;
41 i=length ( q3 ) ;
42 sum1=0;
43 whi le sum1<t a rge t3 && i>1
44 sum1=sum1+p3 ( i ) ;
45 i=i −1;
46 end
47 L3=q3 ( i ) ;
48

49 %% Thresholded r e g i on s
50 reg1=imm( : , 1 : 1 4 9 )>L1 ;
51 reg12=imm( : , 1 5 0 : 2 0 0 ) >((L1+L2) /2) ;
52 reg2=imm( : , 2 0 1 : 2 9 9 )>L2 ;
53 reg23=imm( : , 3 0 0 : 3 5 0 ) >((L2+L3) /2) ;
54 reg3=imm( : , 3 5 1 : end )>L3 ;
55 im1=[ reg1 , reg12 , reg2 , reg23 , reg3 ] ;
56

57 im1=im f i l l ( im1 , ’ ho l e s ’ ) ;
58 im1=bwmorph( im1 , ’ c l ean ’ ) ;
59 im1=bwareaopen ( im1 , 3 0 ) ;
60

61 bw=edge ( im1 , ’ canny ’ ) ;

1 f unc t i on [ J ,bw]= k i ru th i ka (imm)
2 %func t i on implementing Kiruthika et a l . method in
3 %”Automated assessment o f a o r t i c r e gu r g i t a t i o n us ing
4 %2D Doppler echocardiogram”
5

6 %−−− Input −−−
7 % imm = cropped image ( r eg i on o f i n t e r e s t )
8

9 %−−− Output −−−
10 % f i l t = reg i on o f i n t e r e s t a f t e r median f i l t e r i n g , c on t r a s t s t r e t c h i n g

and
11 % Gaussian f i l t e r i n g
12 % J = proces sed image
13 % bw = ext rac t ed edge
14

15 %% Pre−pro c e s s i ng
16 % Median f i l t e r i n g
17 im=med f i l t 2 (imm, [ 3 3 ] ) ;
18

19 % Contrast s t r e t c h i n g
20 f i l t=c on t r a s t s t r e t c h ( im) ;
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21

22 %Gaussian f i l t e r i n g
23 sigma=1;
24 f i l t=g a u s s f i l t ( f i l t , sigma ) ;
25

26 %st ru c tu r i n g element
27 se=s t r e l ( ’ d i sk ’ , 5 ) ;
28 %morpho log ica l c l o s i n g
29 im2=imc lo se (imm, se ) ;
30

31 %d i f f e r e n c e image
32 out=f i l t −im2 ;
33 %in t e n s i t y adjustement
34 J=imadjust ( out ) ;
35 %f i l l i n g o f ho l e s
36 J=im f i l l ( J , ’ ho l e s ’ ) ;
37

38

39 %% Edge ex t r a c t i on
40 bw=edge (J , ’ canny ’ , 0 . 4 , 0 . 7 ) ;
41 bw=bwareaopen (bw, 2 0 ) ;

1 f unc t i on b=l e v e l c u r v e s ( f i l t , c l u s t e r )
2 %Function that e x t r a c t s the edge o f a Doppler spectrum on the ba s i s o f

the
3 %l e v e l curves o f i t s i n t e n s i t y
4

5 %−−− Input −−−
6 %f i l t = f i l t e r e d image
7 %c l u s t e r = c l u s t e r to be taken as a contour
8

9 %−−− Output −−−
10 %b = l e v e l curve o f i n t e r e s t
11

12 %% Clu s t e r i z a t i o n (12 c l u s t e r s )
13 [ z , c ]=kmeans ( f i l t ( : ) ,12 , ’ emptyaction ’ , ’ s i n g l e t o n ’ ) ;
14 [ nr , nc ]= s i z e ( f i l t ) ;
15 %recons t ruc t ed image with c l u s t e r s
16 pos=1;
17 imgrec=ze ro s ( nr , nc ) ;
18 f o r r=1:nc
19 f o r k=1:nr
20

21 imgrec (k , r )=z ( pos ) ;
22 pos=pos+1;
23

24

25 end
26 end
27

28 c=so r t ( c ) ;
29

30 %% Extract ion o f the l e v e l curves from the f i l t e r e d image
31 f i g u r e (10)
32 [C, h]= contour ( f i l t , c ( 1 : end ) ) ;
33 t i t l e ( ’ Leve l curves ’ )
34
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35 % f ind the po s i t i o n o f the l e v e l curve corre spond ing
36 % to the four th c en t r o id
37 pos=f i nd (C( 1 , : )==c ( c l u s t e r ) ) ;
38 numpoints1=C(2 , pos ) ;
39 k=1;
40 f o r r=1: l ength ( pos )
41 f o r i=pos ( r )+1: pos ( r )+numpoints1 ( r )
42 y1 (k )=round (C(1 , i ) ) ;
43 x1 (k )=round (C(2 , i ) ) ;
44 k=k+1;
45 end
46 end
47

48 % b conta in s the chosen l e v e l curve ( edge )
49 b=ze ro s ( nr , nc ) ;
50

51 f o r i =1: l ength ( y1 )
52 b( x1 ( i ) , y1 ( i ) )=1;
53 end

1 f unc t i on J = reg iongrowing ( im , pos , thres , d i s t )
2 % Region growing a lgor i thm f o r 2D gray s ca l e images
3 % −−− Input −−−
4 % im : g r ay s c a l e image
5 % pos : Coordinates f o r i n i t i a l seed po s i t i o n ( i f not g iven ginput i s

used}
6 % thre s : Absolute th r e sho ld l e v e l ( i f not g iven
7 % i t i s s e t to 5% of max−min)
8 % d i s t : Maximum d i s t anc e to the i n i t i a l p o s i t i o n in [ px ] ( i f
9 % not given i t i s s e t to I n f )

10 %
11 %−−− Output −−−
12 % J : Binary mask ( with the same s i z e as the input image ) i nd i c a t i n g
13 % 1 f o r p i x e l s in the r eg i on and 0 f o r ou t s id e
14

15 i f ˜ e x i s t ( ’ pos ’ , ’ var ’ ) | | isempty ( pos )
16 himage = f i ndob j ( ’Type ’ , ’ image ’ ) ;
17 i f isempty ( himage )
18 himage = imshow( im , [ ] ) ;
19 end
20

21 % graph i c a l user input f o r the i n i t i a l p o s i t i o n
22 p = ginput (1 ) ;
23

24 % get the p i x e l p o s i t i o n concern ing to the cur rent axes coo rd ina t e s
25 pos (1 ) = round ( axes2p ix ( s i z e ( im , 2) , get ( himage , ’XData ’ ) , p (2 ) ) ) ;
26 pos (2 ) = round ( axes2p ix ( s i z e ( im , 1) , get ( himage , ’YData ’ ) , p (1 ) ) ) ;
27 end
28

29 i f ˜ e x i s t ( ’ th r e s ’ , ’ var ’ ) | | isempty ( th r e s )
30 th r e s = double ( (max( im ( : ) ) − min( im ( : ) ) ) ) ∗ 0 . 0 5 ;
31 end
32

33 i f ˜ e x i s t ( ’ d i s t ’ , ’ var ’ ) | | isempty ( d i s t )
34 d i s t = In f ;
35 end
36

37 [ nr , nc ] = s i z e ( im) ;
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38

39 % i n i t i a l p i x e l va lue
40 va l = double ( im( pos (1 ) , pos (2 ) ) ) ;
41

42 % text output with i n i t i a l parameters
43 di sp ( [ ’ RegionGrowing : I n i t i a l p o s i t i o n ( ’ num2str ( pos (1 ) ) . . .
44 ’ | ’ num2str ( pos (2 ) ) ’ ) with ’ . . .
45 num2str ( va l ) ’ as i n i t i a l p i x e l va lue ’ ] )
46

47 % pr e a l l o c a t e matrix
48 J = ze ro s ( nr , nc ) ;
49

50 % add the i n i t i a l p i x e l to the queue
51 queue = [ pos (1 ) , pos (2 ) ] ;
52

53 %% REGION GROWING ALGORITHM
54 whi le s i z e ( queue , 1)
55 % the f i r s t queue po s i t i o n determines the new va lues
56 x = queue (1 , 1 ) ;
57 y = queue (1 , 2 ) ;
58

59

60 % de l e t e the f i r s t queue po s i t i o n
61 queue ( 1 , : ) = [ ] ;
62

63 % check the ne ighbors o f the cur rent p i x e l
64 f o r i = −1:1
65 f o r j = −1:1
66

67

68 i f x+i > 0 && x+i <= nr &&.. .
69 y+j > 0 && y+j <= nc &&.. .
70 . . .
71 any ( [ i , j ] ) &&.. . % the cur rent p i x e l i s redundant
72 ˜J (x+i , y+j ) &&.. .
73 s q r t ( ( x+i−pos (1 ) ) ˆ2 + . . .
74 ( y+j−pos (2 ) ) ˆ2) < d i s t &&.. .
75 im(x+i , y+j ) <= ( va l + th r e s ) &&.. .
76 im(x+i , y+j ) >= ( va l − th r e s )
77

78

79 J (x+i , y+j ) = 1 ;
80

81

82 % add the cur rent p i x e l to the computation queue
83 queue ( end+1 , : ) = [ x+i , y+j ] ;
84 end
85 end
86 end
87 end
88

89 %F i l l the ho l e s in the reg ion , i f they e x i s t
90 J ( : , : ) = i m f i l l ( J ( : , : ) , ’ ho l e s ’ ) ;
91

92 % text output
93 di sp ( [ ’ RegionGrowing Ending : Found ’ num2str ( l ength ( f i nd ( J ) ) ) . . .
94 ’ p i x e l s with in the th r e sho ld range ’ ] )
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1 f unc t i on r=ba s e l i n e ( im)
2

3 %This func t i on r e tu rn s the row conta in ing the ba s e l i n e
4 %in Doppler s p e c t r a l images
5

6 [ nr , nc ]= s i z e ( im) ;
7

8 BW=edge ( im , ’ canny ’ ) ;
9

10 %% Hough trans form
11

12 [H, theta , rho ] = hough (BW) ;
13 P = houghpeaks (H, 5 , ’ th r e sho ld ’ , c e i l ( 0 . 3∗max(H( : ) ) ) ) ;
14 l i n e s = hough l ine s (BW, theta , rho ,P, ’ Fi l lGap ’ ,5 , ’MinLength ’ , 7 ) ;
15

16 f i gu r e , imagesc ( im) , colormap ( gray ) , hold on
17

18 %Detect ion o f the l ong e s t s t r a i g h t l i n e
19 max l = 0 ;
20 f o r k = 1 : l ength ( l i n e s )
21 %s t a r t i n g ( column , row ) and ending po int o f the l i n e segment
22 xy = [ l i n e s ( k ) . po int1 ; l i n e s ( k ) . po int2 ] ;
23

24 l en = norm( l i n e s ( k ) . po int1 − l i n e s ( k ) . po int2 ) ;
25 i f ( l en > max l )
26 max l = len ;
27 xy long = xy ;
28 end
29 end
30

31 % h i gh l i g h t the l ong e s t l i n e segment
32 p lo t ( xy long ( : , 1 ) , xy long ( : , 2 ) , ’ LineWidth ’ ,2 , ’ Color ’ , ’ red ’ ) ;
33 r=xy long (1 , 2 ) ; %row corre spond ing to the ba s e l i n e
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