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“A journeywillhave painandfailure. It isnotonlythe steps forwardthat
we must accept. It is the stumbles. The trials. The knowledge that we will
fail. That we will hurt those around us. But if we stop, if we accept the
person we are whenwe fail, the journey ends. That failure becomes our des-
tination.”
—Life
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Abstract

The threat landscape of the 5G network is quite vast due to the complexity of its architecture
and its use of virtualized network functions. This landscape can be divided into two categories:
Attacks against the Access point and Attacks against the Core. This thesis has been dedicated
to analyzing the threats that plague the 5G network with a special focus on the access point.
The architecture for the access point was simulated with a federated learning environment to
not only secure the privacy of the user data but to also present a realistic scenario from which
to perceive the 5G network. The main objective of the thesis was to secure the access point of
the 5G network in this federated learning environment. This was accomplished by placing an
Intrusion Detection System at the endpoint which would classify the data as either benign or
malicious. The effectiveness of this model was checked by simulating amalicious user and con-
ducting certain adversarial attacks to determine if the model could defend against them. The
study was conducted by performing two specific attacks i.e Label-Flipping attack and Genera-
tive Adversarial Networks. The attacks were successful and revealed that a new system should
be designed and developed that could be resilient against these types of attacks.
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1
Introduction

1.1 5G Intro

The fifth generation (5G) and beyond networks are expected to enhance the user experience
with regard to all kinds of communication, be it human to machine or machine to machine.
It accomplishes this by providing lower latency and higher connectivity and capacity and due
to their projected reliability it will enable industries to provide new and improved services that
will result in a better quality of life experience. According to current consensus, 5G will allow
users to benefit from Enhanced Mobile Broadband (eMBB) which will provide data rates in
excess of 20 Gb per second which is much faster than current technologies [1]. Similarly, the
ultra-reliable low latency communication (uRLLC), will lower the latency to approximately 1
ms, hence, improving the quality of communication between connected devices. This is one
of the features that will ensure the rise in the usage of IoT devices.

The emergence of 5G leads credence to the fact thatmore security is required in order to keep
the threats at bay. The 5G core is quite susceptible to external threats such as DOS, DDOS,
port scans, and even specific adversarial machine learning techniques. The objective behind
this thesis was to form a federated learning environment that would allow the simulation of ei-
ther different 5G smartphones or IoT devices and to secure it. This was followed by the usage
of a supervised machine-learning algorithm on a 5GNetwork Intrusion Detection Dataset to
detect anomalies. However, like all machine learningmodels, there were certain vulnerabilities
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Figure 1.1: 5G Ecosystem Source [1].

that the attacker could exploit through the use of adversarial machine learning or Generated
Adversarial Networks. The primary objective thus was to construct a robust and resilient envi-
ronment for the functioning of the 5G network by protecting it from these external threats.

1.2 Background and Research Problem

Cybersecurity is a continuously evolving field and so are the threats which plague them. The
objective behind this thesis is to improve a certain aspect of 5G security and this involved fully
understanding the threat landscape of the 5G network. While there are multiple standardiza-
tions such as 3GPP and ENISA which have discussed this issue in detail, they are relatively
old when considered from a research perspective. Many novel threats and their solutions have
been found in recent years pertaining to 5G security and a robust yet resilient defense has yet
to be found. Considering the taxonomy of 5G threats, it could be noticed that most of them
target the access point andmost devices have access to the network through their personal user
equipment such as mobile phones. Therefore, the objective of this thesis was to reinforce the
intrusion detection system for the 5G network against certain adversarial attacks. This frame-
work was considered essential when considering the many ways in which the access network
can be penetrated by an adversary connected to the network.

1.3 Novel solution

While none of the techniques discussed in this work by themselves are new to the scientific
world they have been implemented in a unique way. Most adversarial attacks such as data poi-
soning attacks like label flipping and Generated Adversarial Networks (GAN) have been thor-
oughly researched and their potential to subvert the machine learning classifiers is known to
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the research community. The problem however is that the threat landscape utilized in most
of these attacks is quite unrealistic as the majority of these attacks assume a white box setting
where the adversary already has access and knowledge of the training set and the classifier. In
other scenarios they can gain this information by querying the system however in modern in-
trusion detection systems, there are usually only a limited number of queries that the attacker
can do. Considering that the GAN is a neural network, it requires ample data to be properly
trained which is simply not possible through repeated queries.

In this work, a federated learning environment has been proposed for the 5G environment
which is quite realistic when taking into account the privacy concerns that users have with
regard to their data. Nowwhile the federated learning environment has been developed to test
the privacy concerns that plague the 5G network, it has not been properly defended against
adversarial machine learning. The research in this thesis shows the following:

• The vulnerability of the federated learning environment to the GAN model and a de-
fense mechanism has also been designed to combat this vulnerability.

• Similarly, the model has also been shown to be vulnerable to data poisoning attacks due
to which a framework for this threat has also been proposed.

To the best of our knowledge, no researcher has utilized this approach of utilizing GANs
and label-flipping attacks in the federated learning environment.

1.4 Organization of the thesis

In this chapter, a brief introduction was provided regarding the 5G network and its security.
Moreover, a concise summary regarding the scope and objective of the thesis was also given.
The next chapters are organized as follows:

• In Chapter 2, the literature review regarding the relevant works will be conducted. The
literature on this topic is quite vast, hence the focus shall be on the most significant
works. In this chapter, the relevant threats induced by machine learning on the 5G sys-
tem and the related papers regarding the different approaches utilized for intrusion de-
tection frameworks will be discussed. Moreover, the various methodologies utilized to
attackmachine learningmodels such as label-flipping attacks andGANswill also be dis-
cussed.
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• InChapter 3, the systemand threatmodels are examined. Considering that the objective
is to secure the access network, it is imperative to understand the various threats that the
access network faces. A detailed analysis of theworking of these attackswill be presented
followed by a discussion of the adversarial threat model.

• In Chapter 4, the methodology founded by the author will be discussed in detail. This
will be a thorough explanation of the adversary’s objective and the manner in which
they accomplish it. It will provide details regarding the 5G environment, the algorithms
utilized by the adversary, and lastly the framework of the defense that was implemented
to prevent future attacks.

• In Chapter 5, the implementation of the aforementioned strategy is conducted on the
5G dataset. It explains the dataset in detail followed by the measures taken for pre-
processing the data. Lastly, the performance metrics were defined and the results of the
implementation were calculated and analyzed.

• In Chapter 6, the limitations of the work are discussed followed by providing future
research directions and concluding the thesis.
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2
Literature Review

In this chapter, the works related to the current thesis shall be analyzed. The literature with
respect to intrusion detection systems in particular is quite vast with respect to network traffic
and Internet of Things (IoT) devices. Similarly, the ideas behind adversarial attacks such as
GANs and label-flipping attacks are also not unique proponents of this thesis and as such will
be discussed and analyzed in detail.

2.1 Machine Learning threatens 5G

The increasing diversity in networking equipment, end-user devices, applications, and services
in communication networks has made network operations more complex which in turn has
necessitated the utilization of automation [3]. ML has emerged as a critical tool in recent years
for automating the operations in the wireless network and this holds true for 5G as well. One
of the challenges that arise with the usage of machine learning algorithms is security concerns.
This is due to the reliance ofMLmodels on datawhere the collection and dissemination of data
can expose the network to certain vulnerabilities. Therefore, the very first step is to properly
understand the threat landscape of the 5G network in relation to machine learning so as to
understand and avert the risks associated with this strategy.

Considering the fact that ML approaches will be used throughout the network infrastruc-
ture, in order to reduce human involvement, it is paramount to understand the risks associated
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with the technological enablers of 5G such as software-defined networking (SDN), network
functions virtualization (NFV), massive multiple-input and multiple-output (MIMO) anten-
nas, and diverse types of devices and services like the Internet of Things (IoT). This is because
any integration with new technology always exposes previously unseen security vulnerabilities
thus making it fundamental to conduct proper research in order to properly understand the
threat landscape.

There have been ample surveys conducted on the threats represented by the utilization of
machine learning in the 5G network as seen in the Table. There are many aspects to take into
consideration when dealing with this framework such as the application of the technology in
question, the two-way traffic between the server and the user equipment, and the inherent
security of the device itself. The following surveys have taken these variables into account and
also provided certain solutions and research directions which have been implemented in this
thesis.
The high-level application areas which are susceptible to attacks from malicious parties are

the following:

• 1) InfrastructureManagement: Each of the application areas has its own special use case
forML. In InfrastructureManagement, ML can be utilized to improve the deployment
and management of the various components such as the radio antennas and the base
stations. Similarly, it can also be used to decipher network traffic patterns and network
performance so that the operators can recognize the high-capacity areas and the zones
where upgrades might be necessary. Lastly, it could also assist in improving network
availability and preventing network failures.

• 2) Network Operations: It is possible to utilize ML for automating and optimizing
different network operations like performance monitoring and network configuration.
Moreover, it can dynamically regulate the network parameters in order to enhance the
network performance. With the help of AI, it can also recommend and perform reme-
dial actions to fix network issues as well.

• 3) Service Orchestration and Management: ML can be used to interpret the data on
performance, service usage, and user behavior to optimize service delivery and offerings
based on the preferences of the user.

• 4) Assurance: ML can be used as an Anomaly Detection System (ADS) to mitigate and
prevent security threats by analyzing the network traffic and detecting malicious access
attempts to the system. Consequently, identifying the major security vulnerabilities to
the access point and user equipment.
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• 5) Security: ML can improve network security by enabling proactive threat detection
and response. ML algorithms can analyze network traffic, system logs, and other data
sources to identify patterns and anomalies that may indicate a security breach [3]. ML
can also be used to identify and respond to advanced persistent threats, such as malware
that may be present in the network over an extended period.

2.1.1 Threats Induced byML

The STRIDE model is a good indicator to study the threats induced by Machine Learning
algorithms in the 5G network. These threats are classified as spoofing, tampering, repudiation,
disclosure of information, DoS, and elevation of privileges. The operating principle behind
a classification ML model is the utilization of raw input and training it according to a certain
algorithm to produce intelligent actionable output.

It is mathematically denoted as a function that maps an input vector representing the fea-
tures of the data point to a discrete output value representing the predicted class label. Let X
be the input vector, Y be the output variable representing the class label, and let f denote the
function that maps X to Y. Then, we can represent a machine learning classifier as:

Y = f(X)

In other words, given an input vectorX, the function f outputs a predicted class labelY. The
function f is typically learned from a training dataset using a machine learning algorithm such
as logistic regression, decision trees, or support vector machines.

There is a myriad of attacks against machine learning models that the adversary can accom-
plish. The adversary can have different abilities depending on the threat landscape and the priv-
ileges that they have access to as such they can perform a wide array of actions depending on
those circumstances. They can submit malicious data to attack the network or theML system
or attempt to intercept, modify, and eavesdrop on transmitted data. Moreover, the adversary
can also attempt to gain access to theMLmodel through model extraction or model inversion
techniques.

• Influence: This describeswhether the attack impacts the trainingprocess throughmodel
poisoning as seen in [5] or if it tampers with the learning outcomes to evade analysis.
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• Specificity: This attribute refers to whether the objective behind the attack is to cause
misclassifications or if it is indiscriminate and affects the overall performance and relia-
bility of the model [6].

• Security Violation: The third attribute is the adversary’s security goal. This can be a
violation of integrity, availability, or privacy.

• Frequency: This describes the occurrence of the attack and whether it happens itera-
tively.

• Knowledge: This refers to the amount of information the adversary has on the target
system. In white-box attacks, the adversary has access to the internal workings of the
machine learning system,while inblack-box attacks, the adversary only knows the inputs
and outputs.

• Falsification: This describes whether the objective is to produce false positives or false
negatives in the MLmodel.

2.2 Anomaly Detection Frameworks

There have been many works done regarding 5G security and each author has attempted to
secure the system against some specific threat. This is due to the wide range of threats that the
5G system is susceptible to as seen in the 3GPP specifications [7] and the guidelines provided
by the ENISA [2]. However, new threats are emerging, and as such the 5G network is still
being extensively researched due to the growing use of this network technology.

While the domain for intrusion detection and anomaly detection for IoT has been exten-
sively studied by researchers, the same cannot be said for the 5G network. The 3GPP has set
the standard for 5g security and has defined the threats that the network should be protected
against [7]. These threats include both passive and active attacks with a special focus on the
MITRE attack framework.

The rule-based algorithm for anomaly detection functioned by creating rules that defined
the benign expected behavior and flagged any deviations from those rules as potential anoma-
lies. The world however is evolving from the usage of these algorithms that manually updated
the signatures from previous attacks. This is because with the 5G network, the connectivity
rates will increase exponentially and the latency will also be reduced as such while rule-based
algorithms might work for certain threats, it will not be possible to base the entire system on it.
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2.2.1 Deep Learning Solutions

Deep learning is a widely used data mining technique that utilizes neural networks to model
abstract concepts. There are a wide array of applications for this algorithm in the following
fields: speech recognition, image classification, natural language processing, and even seman-
tic analysis [8]. These algorithms work by identifying the correlations between large datasets
and are widely used for classification purposes. This class of machine learning algorithms uti-
lizesmulti-layered neural networks to solve complex equations through black-boxmethods [9].
These layers are quite useful in extracting high-level features from raw input as each underly-
ing layer is responsible for a different feature. The idea behind using Deep Learning for IDS
revolves around detecting abnormal traffic or abnormal activities by the users that could point
towards manipulation of the network [10].

It is possible to employ deep learning for intrusion detection using supervised, unsupervised,
or even semi-supervised approaches [10]. Machine learning approaches come with their draw-
backs such as overfitting and under-fitting. Over-fitting occurs when the model is unable to
generalize and only fits the training data. This causes the model to have inaccurate results on
data that it has not yet seen. Under-fitting is the counterpart of overfitting and usually occurs
because the model did not have enough data to learn the patterns in the training data and is
also unable to generalize to the new data.

2.2.2 ConvolutionNeural Network

Anomaly detection is usually modeled as a classification model using supervised learning and
researchers have previously used this approach in combinationwith aConvolutionNeuralNet-
work architecture in order to optimize the accuracy of the model [22]. The dataset used was
theCICIDS2018[23]which is an IntrusionDetectionDataset. The datawas transformed into
100x100x3 images so that the CNN could be utilized thus turning it into a Computer vision
approach to Intrusion Detection. The model had a precision score of 98.2% and a recall score
of 98.1% [22].

The random forest algorithm was also utilized on the aforementioned dataset and provided
an accuracy of 99.99%onbenign traffichowever the accuracy dropped to 82%when classifying
anomalous traffic [24]. Although the three-layered neural network detected anomalous traffic
with an accuracy of 99.3%, the model did not generalize well and was thus overfitted.
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Author Dataset Algorithm Findings

2017 [11] RedIRIS RNN and CNN
In this work, the authors have improvised the
existing deep learning algorithms by modifying
the hidden layers.

2017[12] KDD99 GRU and RF Minimizing the loss function has helped the
researchers to achieve better results.

2018[13] UNSW-NB15 LSTM and
RNN

In this work, feature normalization and
conversion of categorical features to
numeric values have helped them to
generate improvised results

2018 [14] NSL-KDD DNN In this work, SGDwas used to minimize the
loss function of DNN

2019 [15] CICIDS2017
MLP, 1d-CNN,
LSTM, and
CNN+LSTM

In this work, researchers have balanced the
dataset by performing data processing in
which they have duplicated the records

2019 [16] NSL-KDD DBN
The neural network was optimized by
assigning a cost function to each layer
of the model

2019[17] NSL-KDD SDPN The SMO algorithm is used for feature selection
2020[18] NSL-KDD RF Weka tool was used for evaluation purposes

2021[19] KDD99, NSL-KDD ANN The stack-based feature selection technique
has been proposed to optimize the computation

2021 [20] Bot-IoT RF, NB, andMLP In this work, a hierarchical approach was
used for intrusion detection.

2021 [21] CICIDS2017 HW-DBN In this work, the low-frequency attack was
detected

Table 2.1: Analysis of various existing frameworks
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Sr.No Algorithm Accuracy (%)
1 Random Forest [18] 98.73

2 Recurrent neural network+
convolutional neural network [11] 96.12

3 Gated recurrent neural networks [12] 98.91

4 Bidirectional long short-termmemory
recurrent neural network [13] 95.72

5 Distributed deep model [14] 99.2

6 Convolutional neural network+
long short-termmemory [15] 97.16

7 Spider monkey optimization+
stacked-deep polynomial network [17] 99.02

8 Artificial neural network [16] 98.56
9 HybridWeighted Deep Belief Network [19] 99.38

Table 2.2: Results from various Deep Learning frameworks.

2.2.3 Auto encoders

The auto-encoders are an unsupervised approach to deep learning and work by reducing the
dimensionality of the feature space. The model has the same number of layers as its feature
vectors and also has hidden layers to help with the dimensionality problem. The idea behind
this algorithm is to train both an encoder and a decoder where the encoder is responsible for
learning the characteristics and representation of the data by transforming the input into a
lower-dimensional representation. This is followed by passing the results through the decoder
which learns to reconstruct the original input from the compressed representation. This is a
more unique approach to anomaly detection as it does not utilize supervised learning and as
such has no need for labels. The idea behind this approach for anomaly detection is to train
the model to recognize the benign data so that if it does not recognize the representation then
it classifies it as an anomaly. While it is possible for anomalies to not be malicious, most re-
searchers are of the consensus that it is better to classify the anomaly as malicious rather than
the alternative as it leads to fewer security issues [25].

There are several authors who have worked on using auto-encoders for anomaly detection.
The best results were achieved by [26] who employed an ensemble learning approach based on
the stackingmethodwith the self-attentionmechanism. This helped track the ling term depen-
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dencies in the data samples. Thus this stacking ensemble learning algorithm was composed of
the base learner and the auto-encoder where the auto-encoder reduced the dimensionality of
the dataset and the stacking method integrated the detection results of sample embedding and
the base learner. The algorithm had a high precision score of 99.6% and a recall score of 99.7%.

2.3 Label Flipping Attacks

A label-flipping attack as the name suggests functions by changing the target class in the dataset
to get the classification algorithm to misclassify the input [27]. There have been various tech-
niques that were introduced in the literature that relates to this attack as each technique either
uses a distinct algorithm or a different threat landscape or in certain cases both. This data poi-
soning attack compromises the integrity of the model and is commonly used by attackers to
evade intrusion detection systems [28]. The following paragraph details the recent findings of
the scientific community with regard to these types of attacks.

It is possible to conduct anLF attack following the optimization formulation that focuses on
optimizing the loss function of the model as proposed by Paudice [29]. However, this strategy
was limited towhite box attacks whichwhile useful for comprehending theworst-case scenario
did not truly represent a real-world scenario. Another approachwas found byXiao [30] where
the model was capable of performing an attack on the SVM model however this was again
limited in the sense that it could only work if the defender was using the SVM as a classifier.
Moreover, it did not present a suitable scenario where the attacker could easily gain access to
the dataset. Similarly, there were many different poisoning attacks that targeted the anomaly
detection system [31][32][33]. There have been other approaches as well like neural networks
[34][35][36][37], unsupervised machine learning [38], dimensionality reduction [39], linear
classifiers [40] and regression[41] but all of these adversarial attacks follow the traditional set-
ting of the attacker having access to the network and also having the capacity tomanipulate the
data before the training phase.

The best-related work was the one that the thesis took inspiration from which was con-
ducted by Tolpegin [42]. The idea was to perform data poisoning attacks against a federated
learning system. This was a very feasible and realistic approach due to the fact that the attacker
can manipulate the training data on their own device quite easily. The attack is conducted on
the client’s UE which causes the local model to send poisoned model parameters to the global
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model. The global model is then trained with these poisoned parameters which cause it to
lose its accuracy. While the same objective is accomplished using the same techniques as the
aforementionedmodes, the difference lies in the approach that was undertaken to conduct the
attack.

2.4 AdversarialMachine Learning

Similar to the data poisoning attack, it is possible to generatemalicious samples to evade the de-
tection of the classification machine learning algorithm. However, unlike the aforementioned
attack, the manner in which a traditional GAN attack operates is that it generates synthetic
data which replicates the data distribution of the input that is fed to it [43]. This synthetic
data is malicious however statistically it appears to be benign to the machine learning model
due to which it misclassifies this input [44]. This is a very strong adversarial attack however
it requires that the adversary have access to the training set so that they may train their GAN
model.

There are many white-box adversarial attacks in research as they postulate that the attack-
ers have access to the complete dataset. These attackers generate the adversarial data through
FGSM and JSMAmethods [45] however these methodologies are not very realistic due to the
difficulty of gaining access to the complete dataset. Yang has proposed the usage of the GANs
to elude the deep learning-based network IDS model by utilizing the zeroth-order optimiza-
tion to attack the IDS [46]. The problem with this approach was that the discriminator was
not reliable as the attacker just used one of the common IDS datasets to form the adversarial
examples. One of the approaches that researchers have used for the black box scenario is that
they have assumed that they can query the intrusion detection system and through that make
their own dataset which they can then use to train their GANmodel [47]. While this approach
provides great results as the adversary can essentially create an entire dataset to train their GAN
model, the problem is that in realistic scenarios, it is not possible to query themodel repeatedly
without drawing attention from the defender.
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3
System and Threat Models

The Next Generation Mobile Networks (NGMN) [48] provides suggestions for the improve-
ment and enhancement of the 5G network by taking into consideration the threats present in
the current network architectures. The lack of security measures in the previous generation
networks like 4G and 3G was a great concern when developing 5G. Therefore, since the very
conception of this new-generation technology, research concerning security practices has been
a prime force due to the wide array of cyber threats that can be used against the network. The
EuropeanUnionAgency ofCybersecurity (ENISA) has defined the taxonomyof cyber-threats
[2] that the 5G system can be vulnerable to and this can be seen in 3.1.

3.1 Security Challenges in the Access Network

Secure network access ensures that the user can access the network and its services while be-
ing protected from external threats. This implies that the user is secure from both malicious
network activities and also from unauthorized access attempts. In the modern era, there is a
multitude of threats that can be effectively utilized against the network. These threats are not
restricted to any one component of the network but rather encapsulate the entirety of the net-
work which includes the Network Core, User Equipment, Access points, and also the Cloud
which hosts the services [3]. 5G networks face a greater threat as compared to the technologies
of the previous eras because it utilizes a wide array of access technologies in order to achieve
better coverage, throughput, and lower latencies. This can be seen in 3.2.
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Figure 3.1: Taxonomy of Threats in the 5G Network Source [2]
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Figure 3.2: 5G Threat Landscape Source: [3]

Hence, it is imperative that the access point be secured as it is the first line of defense for
user security. One of the key challenges and concerns for the defense is the possibility of jam-
ming attacks and Denial of Service attacks because the adversary can manipulate the rate of
data transmission and reception due to the increased number of devices that the 5G network
can support [1]. Moreover, this threat can be further exacerbated by flooding the servers with
excessive traffic due to the high likelihood of the attacker gaining access to multiple nodes that
they can manipulate simultaneously. This can result in slower response times and accessibility
issues for the users.

Therefore, 5G must improve the resilience of the system against jamming attacks on radio
channels and signals. These types of signaling traffic and attacks should be detected and pre-
vented before the network is compromised. Another aspect that can improve the security of
the access network can be accomplished by securing the small cell nodes since their wide geo-
graphic distribution and ease of accessibility make them a prime target for the attacker.
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3.1.1 DoS Attacks

Denial of Service (DoS) and Distributed Denial of Service(DDoS) attacks are one of the key
challenges that could impact the performance of the 5G network due to the large number of
connected devices. The objective of the DoS attack is to exhaust the resources of the network’s
operator which would in turn directly affect the subscribers to the network [3]. With DDoS
however, the aim of the attacker is to exhaust both the resources of the users and devices them-
selves which would not only directly impact both the subscribers and their devices but would
also affect the operational capability of the network operator. Furthermore, it can also lead to
the utilization of hijacked devices to launch attacks against the network’s architecture.

In order to carry out the DoS attacks on the 5G network infrastructure, the malicious users
would likely need to focus on the resources related to the connectivity and the bandwidth since
these are critical for meeting the required levels of service. To disrupt 5G services, the DoS
attacks can exploit a wide array of vulnerabilities across the signaling, management, and user
planes of the 5G architecture and their supporting systems. Specifically, the attacker can focus
on the following [25]:

• 1. The signaling plane can be targeted as it would affect the ability of the users to be
authenticated and connected to the network. Moreover, it also assigns bandwidth to
the subscribers and thus would limit their mobility.

• 2. The user plane can also be targeted as it facilitates two-way communication between
the servers and the connected devices.

• 3. The management plane configures the network elements that support the user and
signaling planes.

• 4. The radio resources enable access to the 5G network for the subscribed devices.

• 5. The support systems handle the administrative-related tasks for the users like billing

• 6. The logical and physical resources which support the network clouds like servers, stor-
age, and virtual machines.
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Meanwhile, DoS attacks against the user equipment do so with the objective that they wish
to exhaust the logical and physical resources of the user such as thememory, battery, processing
units, radios, sensors, operating systems, applications, configuration data, and user data. The
attacker can deter the user’s ability to enter and utilize the network resources by compromising
these resources which can also lead to cascading effects on the wider network infrastructure.
In contrast, however, DoS and DDoS attacks against the critical architecture components of a
certain network like the following: energy, health, transportation, and telecommunication can
have long-standing devastating effects on the entire community. It is possible to orchestrate
an attack on these systems from either a large number of geographically dispersed machines or
certain compromised IoT devices. This showcases the need for a robust and resilient security
strategy that can enhance the network’s capability against these threats.

Therefore, the vision for 5G systems is to present highly secure and robust services which
have the tendency to persevere against a wide array of cyber threats while also ensuring privacy
and security for the subscribers and their devices. This necessitates a revamped approach to se-
curity which is comprehensive and encapsulates both the network infrastructure and the end
devices [22]. Moreover, it should also be continuously evolving so that it can adapt to new
threats and vulnerabilities. It is only through this evolution that 5G will become a truly trans-
formative technology that can safely be used for a wide range of applications. The idea behind
this is to fully implement security by design principles at the onset of the development of the
5Gnetwork to ensure that the proper securitymeasures aremaintained throughout the system.

3.1.2 Port Scanning

Port scanning is a type of reconnaissance attack that attackers use to identify and target open
ports on a network. These scans are typically performed before carrying out an attack on the
vulnerable host. These scans are executed by sending traffic to a series of different ports on
the target system and then analyzing the response sent back by the system. This response al-
lows the attackers to determine whether the ports are open and to check which services they
are currently running. It is also possible to determine the operating system of the target from
the response of the system [49]. Port scanning can be a significant threat to the 5G network
because of the high traffic that the system will need to manage. There are different types of
port scanning techniques that the adversary uses and while they all have the same objective,
they utilize different techniques to accomplish it. The most common difference between the
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various types of port scans is that the message requests contain different flags and protocols
[48]. A network architecture generally has a multitude of devices connected to it and as such
the different ports of the network are each responsible for providing their own unique service
to the device. A single UE device can have 65546 ports which are further divided into three
categories i.e the well-known ports (0 - 1023), the registered ports (1024 - 49151), and private
ports (59152 -65535) [49].

Adversaries utilize port scanning attacks to gain information about the network in order to
identify its vulnerabilities so that they can perform the ideal attack on the system. Aport scan is
conducted by sending amessage to the port and waiting for the response which is generally the
port’s status. The port scans can be classified as shown in the figure. The most common type
of port scan is the Transmission Control Protocol (TCP) based port scan due to it providing
the adversary withmore information as it is connection-oriented. This scan sends a request for
a three-way TCP handshake which makes it difficult to detect. The stealth scan functions by
transmitting SYN,TCP, FIN, or other stealth flags to the network ports and analyzingwhether
or not the ports are accepting connections. These scans can inform the attacker about the
services that are running on the target system as certain services like HTTP traffic or HTTPS
traffic always use the same port for communicating. Socket Secure (SOCKS) on the other hand
is an internet protocol that allows users to securely communicate over the network with the
servers. This internet protocol acts as a proxy between the server and the client to keep their
communication secure. The SOCKS port scan however allows the attacker to conceal their
location and identity when sending requests to the ports. Bounce scans utilize is a third-party
system to send requests to the target system. This works by changing the source IP address by
spoofing and then sending the message to the network. These scans use one of the features of
the File Transfer Protocol (FTP) called ”Bounce Attack” to mask the scanning requests. This
is easily accomplished due to the fact that it is not a vulnerability of the FTP protocol but
rather a misconfiguration of the FTP server which allows the server to be used as a proxy when
conducting the scan. TheUDPport scan is connection-less and as suchwhile it canbeobserved,
it does not provide adequate information to the attacker.

In conclusion, port scanning attacks pose a significant threat to 5G systems, which are de-
signed to support massive amounts of traffic and connectivity. Port scanning attacks can be
used by attackers to gain information about a target system, identify potential vulnerabilities,
and plan further attacks. To defend against port scanning attacks, network operators and secu-
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rity teams can use a range of mitigation strategies, including firewalls, intrusion detection and
prevention systems, network segmentation, and threat intelligence. By implementing these
measures, 5G networks can be made more secure and resilient against port scanning attacks
and other forms of cyber threats.

3.1.3 TrafficMonitoring

Observing network traffic is crucial for the detection and prevention of security breaches and
it has become even more important due to the diverse new technologies and services provided
in 5G. The Intrusion Detection System and Intrusion Prevention Systems are mainly utilized
for themonitoring of network traffic, the identification of security threats, and the application
of countermeasures for the protection of the network.

3.2 Intrusion Detection System

There are numerous deployment options for the Intrusiondetection system in the 5GNetwork
depending on the particular use case. These particular use cases are defined by two attributes:
specific requirements of the network and the types of attack that the system should detect.

NetworkEdge: Thefirst option is to install the IDS at theNetwork edge so that it candetect
the traffic entering and exiting the network. This is the approachmost suited for the detection
and prevention of attacks that originate from outside the network i.e a malicious actor. Some
common attacks that target this domain of the network are DoS attacks, DistributedDenial of
Service (DDoS) attacks, malware downloads, and phishing attempts.

Endpoints: Another option is to deploy the IDS on the endpoints of the particular devices
that utilize the network such as laptops, smartphones, and IoT devices so that it is possible to
discover and avert the attacks that target the devices of the user. Some of these attacks include
malware infections, data exfiltration, and privilege escalation attempts.

Network Core: The IDS can also be employed at the core of the network so that it may de-
tect traffic between the different modules of the core and prevent attacks that target the archi-
tecture of the core. These attacks include protocol attacks, routing attacks, or traffic hijacking.
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Cloud or Data Center: It is also possible to deploy the IDS in the cloud or data center
where the network services are hosted. This approach is useful in monitoring and preventing
attacks that target the network infrastructure and services. These attacks include SQL injection
attacks, cross-site scripting (XSS) attacks, or unauthorized access attempts.

The positioning of the IDS depends primarily on the objective that it needs to accomplish.
In the case of this thesis, we are primarily concerned with defending the access points and the
end devices themselves frommalicious actors. Hence, the IDS should be designed in a manner
such that it provides comprehensive coverage and effective threat detection and prevention of
both the Endpoints and the Network Edge.

3.3 ThreatModel

The Federated learning environment developed in this thesis consists of a central server that
acts as a global model and a set of nodes that are decentralized and represent the client devices
just as in a regular FL system. For the scope of this thesis, the adversary is considered to be
an entity that intends to infiltrate the system either via a direct poison attack such as a label
flipping attack, or a model poisoning attack through the implementation of GAN.

The threat model is based on the 5G federated learning environment. As such it will utilize
the general characteristics of 5G networking. The attacker has access to one or more clients
i.e the UE and as such operates as a client within the 5G network where there already exist nu-
merous clients. The attacker has the ability to use their device to interact with the 5G network
interface and send malicious data to the global model. In actuality, the 5G interface will not
actually receive malicious data but rather it will receive the statistical results of the local model
being trained on the malicious data. This in turn will poison the model and lower its overall
accuracy.

In this scenario, a subset of the total participants is considered to be malicious. Let K be
the compromised clients andN be the total number of clients. Themalicious clients are incen-
tivized to poison the global modelM. The assumption is made that the malicious users have
full control over their user equipment and can thus freely manipulate the data on their devices.
It is further assumed that the global model is not initially compromised by outside sources.
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The global model is a black box for the adversary and as such, they do not have any informa-
tion regarding the inner working of the model. Considering that the adversary has complete
control over his own UE, this would indicate that the attacker has complete access to all the
data stored in it. The first assumption in order to conduct the LF attack is that the adversary
has knowledge of the feature space F, and can also manipulate the training data on their device.
Due to these assumptions, an LF attack becomes possible.

3.3.1 Label Flipping attack

The malicious users intend to corrupt a certain percentagem% of the total local dataDi avail-
able to them. The adversary can modify the datasetDi by changing the source class to a target
class from C which represents the total classes. This is mathematically denoted as ci → cj.
Therefore, in a binary classification problem, they can switch the class from benign to mali-
cious or vice versa. The objective of the attacker is to reduce the overall accuracy of the global
model M.It is possible to conduct this black box attack as the attacker does not require any
knowledge of the architecture of the global model, the data distribution of the global model,
the optimizer, etc.

3.3.2 GAN attack

The adversary controls K poisonous node i.e the User Equipment and can use these nodes to
conduct the attack. The adversary has complete control over his UE, however, they are not
aware of the total nodes,N, in the system. The model will take the client updates from all the
nodes including themalicious userwho controls the poisonous nodes. Themalicious userswill
use the locally available dataDi to create synthetic data by using GANs. They can accomplish
this as they are aware of the Data distribution on their own device. They can then use these
synthetic examples to attack the global model.
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4
Methodology

The initial idea was to consider the project as three distinct entities and then to join them to-
gether as one. The primary step was to construct a black box poison attack which in this case
was a label-flipping attack and check whether it resulted in a drop in accuracy. This was fol-
lowed by designing a system that would alert the system and prevent this attack. The second
entitywas the development of aGenerativeAdversarialNetworkmodel thatwould insert noise
in the training data to confuse the model and cause it to misclassify the samples. The idea to
prevent this attack was to develop a similar GANmodel and train the model to recognize the
noise so that it would not misinterpret this kind of attack. The last step was to construct the
environment where the 5G network would be used. For practical purposes, the best environ-
ment was the federated learning one as it would not only improve the model due to the new
data that it would receive from the clients but also maintain the privacy of the users.

4.1 Federated Learning Environment

The Federated Learning environment enables the training of a machine learning algorithm
without having access to any private user data rather individual participants share the statistical
information such as model parameters which are used instead. A good example of this type
of environment is the Deep Neural Network which consists of multiple layers of nodes. Each
node corresponds to a certain set of parameters and receives input from either the previous
layer or the original training data. This is then followed by the node applying certain mathe-
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matical functions to the input and sending it to the next layer. The final layer is responsible for
generating the predictive result.

4.1.1 Architecture

In a traditional DNN model, there exists a training set T where T = (x0, x1, x2.....xn) and
n ∈ N. The model also has a specific loss function L and each data sample xi ∈ T has a set
of features fi ∈ F and a class label ci ∈ C. The values F and C represent the entirety of the
Feature Space and Class values respectively. Furthermore, in a classification scenario, the final
layer of the DNN shall contain nodes equal to the total class values, C, where each node will
correspond to a subsequent class. The loss of the DNN given the total parameters θ is denoted
by:

L =
1
n

n∑
i

L(θ, xi)

When the DNN model is given fi with model parameters θ as input then the model will
output a set of probabilities pi. The predicted probability pc,i ∈ pi represents the likelihood of
the given sample xi having class c ∈ C. The probability pc,i is calculated in the final layer of the
neural network and each node outputs the predicted probability for the class associated with it.
The results for a specific sample passed through a modelMwith parameters θwould generally
be:

Mθ(xi) = argmaxc∈Cpc,i

The architecture for the environment can be seen in 4.1.

4.1.2 Model Parameters

While there are different loss functions that can be implemented with theDNN,we aremostly
concerned with the classification and as such will use the cross-entropy loss function which is
mathematically computed through the following equation:

L(θ, xi) = −
∑
c∈C

yc,i log(pc,i)
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Figure 4.1: FL environment.

The objective of the DNN model is to reduce the loss function L to improve the model’s
accuracy. This is usually accomplished through the use of different optimizers such as ADAM
or Stochastic Gradient Descent (SGD). These iterative processes work through themini-batch
strategy where at each step the optimizer selects a batch of samples B ⊂ T and computes the
gradient of the loss function.

gB =
1
|B|

∑
x∈B

∇θL(θ, x)

As the objective of the model is to reduce the loss function which can be accomplished by
reducing the gradient, therefore the parameters θ are updated in the direction opposite to the
calculated value. The mini-batch strategy works by evenly dividing the training set into prede-
fined batches so that no samples occur in multiple batches. The optimizer is then applied a set
number of times on each of these batches where one iteration is referred to as one epoch.

27



4.1.3 GlobalModel

In Federated Learning environments, there is a dynamic allocation of the training dataset T
as the global aggregator does not have access to the complete dataset rather the clients K each
hold their own private dataset [T1,T2,T3.....Tn]. The clients execute the optimizer on their
own UE and then upload the final updated model parameters to the global model which acts
as the aggregator. Therefore, the model is first trained locally before being sent to the global
model for further updates. At the global training round r, a subset of the participants k ⊂ K
is chosen based on availability. Hence, each available participant k locally trains the model on
their data Ti and sends the updated model parameters to the global model. The global model
then aggregates the parameters θ:

θg =
1
k
∑
i

θr,i

This process is repeated for a set number of predefined rounds R after which the model M
finishes the training process and has its final updated parameters θR

4.1.4 Adversarial Capabilities

The adversary views the system as a black box however they have access to a certain percentage
of the total clients. They can thus influence the systemwith their user equipment and also have
knowledge and access to their local dataset.

4.2 GANmodel

The security of the Intrusion Detection system is questionable when faced with adversarial at-
tacks as the classification algorithm is usually based on supervisedmachine learning. With label
poisoning, the attacker attempts to change the classification class of the input data in order to
decrease the accuracy of the model, however, there are other methods for the attacker to con-
duct adversarial attacks as well. One of themore popular methods is the usage of GANmodels
where the attacker generates adversarial examples through the use of noise. The attacker ob-
scures the data with noise which causes the model to misclassify the query. Therefore, while
the poison-based model directly attacked the system, the GANmodel is a more passive attack
as the attacker simply understands the patterns that the model has learned and obscures them
with the help of noise. Thus, the objectives behind this model are two-fold. The primary ob-
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jective behind this model is to protect it from the GAN attack as most supervised classifying
algorithms are susceptible to it. The second objective is to enhance the dataset through the
usage of these GAN examples in order to improve both the data volume and the classification
effect.

4.2.1 AdversarialModel Design

The attacker constructed a Conditional Generative Adversarial Networkmodel to accomplish
the task. The architecture for this framework is the proposed CGAN model which consists
of the following components i.e. Generator network, Discriminator network, and the black
box classifier. The idea is to take the malicious traffic and use the GAN to generate adversarial
traffic.

The network design is based on two feed-forward neural networks which are referred to as
Generator andDiscriminator respectively. These two networks are then trained in an adversar-
ial way in order to generate data. The generator is constructed by taking the input which is the
random noise and labels and acts as a nonlinear mapping function as defined below:

G : (Z x Y) → X

The noise Z is generated randomly throughN(μ, σ). We assume that the attacker has access
to the class pairs i.e

[(x0, y0), (x1, y1), (x2, y2), ....., (xn, yn)] , n ∈ [1,N]

Thus, the generator works by taking samples from the prior distribution pz(z)where z ∈ Z
generates adversarial samples. These samples should be approximately close to the original class
pairs. The objective of the generator is thus to learn the data distribution p(x, y) and then to
produce samples xwhich are similar enough to the class pairs in order to confuse the machine
learning models.
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Figure 4.2: GAN architecture.

The discriminator is also a feed-forward neural network but takes the generated samples x
and the class y as input. It then maps the input to either 0 or 1 i.e whether the input samples
are real or generated from the distribution pz(z) :

D : (X× Y) → [0, 1]

The architecture for the model can be seen in 4.2

4.2.2 Training theModel

The two networks are trained simultaneously by competing in a two-player min-max game
where the objective of the generator is to confuse the discriminator and the goal of the discrim-
inator is to properly classify the output. Thus this value function is defined as:

minG maxD V(D,G) = ED + EG (1)

The expectation of the generator is calculated in the following way:
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EG = εz∼pz(z),y∼p(y)[log (1−D(G(z, y) | y))]

Similarly, the expectation calculated for the discriminator is:

ED = εx,y∼pdata(x,y)[log D(x | y]

Now through simple substitution, the value becomes

minG maxD V(D,G)

= εz∼pz(z),y∼p(y)[log (1−D(G(z, y) | y))] + εx,y∼pdata(x,y)[log D(x | y)] (2)

In the above equation, the generator is conditioned over the data distribution and the class la-
bels as it is the objective of the generator to fully understand and learn the data distribution.
The discriminator however is conditioned over the data distribution of x, y as it utilizes the
original data in order to distinguish it from the generated data. The SGD is the optimizer used
in this model to lower the loss of the model however ADAM could also be used. The training
data is split into smaller subsets calledmini-batches. Thus rather than computing the gradients
of the loss function with respect to the model parameters on the entire dataset, the gradients
are computed on eachmini-batch separately. The parameters are then updated after taking the
average gradient across all the mini-batches. We repeat this process for multiple epochs. For
this case, the following loss function is used as it is based on the combined loss of both the gen-
erator and the discriminator as can be seen from equation (2)

J(θ)D = − 1
2m

(
m∑
i=1

logD(xi | yi)

+
m∑
i=1

log(1−D(G(zi, yi) | yi))) (3)

J(θ)G = − 1
m

m∑
i=1

logD(G(zi, yi) | yi) (4)

The KL divergence is a measure of how different two probability distributions are. The KL
divergence is calculated between the generated dataset and the original dataset as this is the
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metric we utilize to check the success of this model. In this case, the KL divergence is used to
evaluate howwell the generated datamatches the real data. It is calculated in the followingway:

KL(Distribution(Pdata)||Distribution(Pz))

= pdata(x) log(
pdata(x)
pzi

(x) (5)

In the optimal case, the accuracy of the discriminator becomes approximately 50% while the
KL-divergence converges to 0. This means that the samples produced by the generator have
the exact same class as the real data distribution. Therefore, the discriminator can no longer
differentiate between the real and generated samples. The reason behind using KL divergence
is to check the network stability and also to check whether the quality of the generated samples
will mimic the original samples. In this case, the value of Pdata is known to the attacker and
they are inferring the distributionPz of the generator network in thismodel during the training
phase. The detailed algorithm is presented below:

4.2.3 Data Generation

Now after the model has been trained, it is possible to generate adversarial synthetic data. It is
significant to factor in the amount of data that the model should generate as the objective of
the attacker is not only to get the machine learning classifier to mislabel the data but also not
to decrease the accuracy significantly as it would then become noticeable to the defender. In
order to keep the dataset balanced, we generate the samples with the same class distribution as
the original data distribution. The effectiveness of thismodel is then checked through the com-
parison with the test set and with performance metrics such as precision, recall, and accuracy.

After both the generator and discriminator have been defined, the model is trained. The
two models are trained separately and their loss and accuracy are calculated. This is followed
by training the combined model and calculating its loss and accuracy. The model and training
history are then saved. The accuracy of the model is then checked by taking a set of random
labels and generating synthetic data.

Testing theModel

It is important to check the quality of the synthetic data which can only be accomplished by
using it to train different machine learning classifiers. The idea is to train the machine learn-
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ing algorithm on the original data that was used to train the GAN and test it with Ts which is
the synthetic data. If the test accuracy is high then it would indicate that the model is robust
and not affected by the synthetic data whereas the alternative would be that the accuracy is
low and that the model is incapable of classifying the generated data. The most common ma-
chine learning classifiers are the following: Random forest, SVM, multi-level perception, and
decision trees.

4.2.4 DefenseMechanism

The defense mechanism is analyzed through its performance on several machine learningmod-
els. The mechanism works in the following way:

Before feeding the model into the federated learning environment, the defense for the ad-
versarial setting is checked on the global model itself. The idea is that feature permutation i.e
noise makes it so that adversarial examples can not be detected by the ML model. Therefore,
the idea is to train the model on CGAN examples by appending the generated examples with
the original dataset so that the model is more robust.

Initially, down-sampling of the training data is done in order to keep the balance of the ma-
licious and benign data samples by using one of several methods ADASYN, SMOTEENN,
BorderlineSMOTE, or SVMSMOTE. The function then generates some synthetic data the
generator function concatenates the synthetic data with the original training data to create a
new training set, and trains and tests several machine learning models on this new data.

The first step was to check whether the GAN model is effective against the current IDS
system. The attack was tested on multiple classification algorithms such as Support Vector
Machines, RandomForests, Decision trees, andMulti-layer Perceptrons in order to ensure that
the attackwas successful against eachmodel. The results of themodel before the attack showed
an accuracy of 98% on the test set whereas it dropped down to 39% after the GAN-generated
samples were considered as the test set. Thus, it demonstrated a loss of approximately 50%
showcasing the success of this strategy against this particular system.
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4.3 Development of the Label Flipping Attack

It is imperative to understand the threat landscape that this attack is being conducted under so
as to better understand the objectives the attacker needs to achieve and the obstacles that they
need to face. There are two possible scenarios that exist for the attacker: the model is either a
black box or a white box.

4.3.1 Traditional Scenarios

In the case of a model being a white box, the attacker has all possible knowledge of the model
including themodel design, classifying algorithm, and even the underlying features of the data.
While this case is unlikelier to occur in the real world as compared to its counterpart, however
both the attack and defense for this scenario have already been researched and published [50].

In the black box scenario, the attacker has no knowledge of the model parameters but they
can access the training set and query the model. As such when the attacker inputs traffic into
the model, they gain access to the output and understand whether the model will label their
attack as malicious or benign. Hence, if the adversary were to query any input x then they
would receive the predicted class probabilities P(y|x) for all the classes y. Both the attack and
defense for this scenario have also been researched and published [29].

4.3.2 Implementation

This is an important area to explore as in the modern era most of the refined datasets are in
the public domain and it is those very datasets that are used for commercial purposes. A good
example of this in intrusion detection is the UNSW-NB15 and KDDCUP where both have
been used for scientific research. Similarly, the MNIST dataset is also quite famous for image
classification and recognition. Hence, it canbe difficult to keep a dataset obscure in themodern
world as they are usually open source.

The objective of the attacker is to use their access to the training set in order to implement an
adversarial attack on the binary classification model. This is accomplished by looping through
each sample xi in X andmaking changes to the label according to the poison parameter epsilon.
As such only a certain portion of the data is perturbed in order to keep it unnoticeable to the
defender. The feature values for the chosen example are perturbed by adding epsilon times
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Figure 4.3: Label Flipping Model.

the sign of the difference between the true label and the predicted label. The function then
predicts the class for the perturbed feature values using the black box IDS model. Lastly, as a
precaution, if the accuracy of the model on the perturbed features is greater than its accuracy
on the original features, the perturbed feature values are set back to their original values. The
attack model is shown in 4.3

Defending against a black box label-flipping attack can be challenging because the attacker
has access to the full training dataset and can modify the labels in a way that is difficult to de-
tect. One strategy to defend against black box label flipping attacks is to use an ensemble of
models, each trained on a different subset of the data or using a different learning algorithm.
Combiningmultiplemodels tomake predictions can lead to better robustness against adversar-
ial attacks. For example, using an ensemble of classifiers can help reduce the impact of flipping
a single label. This approach assumes that the attacker cannot modify the labels in a way that
affects all of the individual models in the ensemble, making it more difficult for the attacker to
succeed in the attack.

4.4 Implementation of the Autoencoder

An autoencoder is an unsupervised machine-learning algorithm and is widely utilized for IDS.
The initial idea was to protect the system in the best possible manner as such the unsupervised
approach was considered superior to other methodologies.
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Adeep autoencoder was chosen as themodel for the federated learning environment so that
it may recognize the patterns of the benign data and learn the feature representation through
its numerous neurons and layers. The benign data was split into three parts so that one part
could be used to train themode, the second part could be used to calculate the threshold for the
reconstruction error and the last part could be used to test the model. The model was trained
on one part of the benign data so that it could extract significant information and learn the
input representation. The Mean Squared Error loss (MSE) was considered due to it being an
unsupervised classification problem. The threshold is calculated with the second part of the
benign data by inputting it into the trained deep autoencoder. Lastly, the third part of the
benign data is concatenated with the malicious data in order to check whether the intrusion
detection system would correctly classify the malicious and benign data respectively.
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5
Datasets and Results

5.1 Existing Datasets

A wide array of Datasets for intrusion detection and anomaly detection have been released in
the past two decades where each dataset has something which makes it unique and better for
a particular problem. The first dataset for ML-based intrusion detection was DARPA [43]
which consisted of the following attacks: buffer overflow, synflood, simulatedDenial of Service
(DoS) attacks guess the password, and NAMP attacks. However, in recent years the research
communities have advanced by providing datasets that not only have better quality but have
also improved the weaknesses of their predecessors. The following are the most commonly
used datasets: KDDCup 99 [51], NSLKDD [52], DEFCON [53], CAIDA [54], LBNL [55],
CTU-13 [56], UNSW-NB 15 [57], and Bot-IoT [58] datasets. Considering the advancements
made in recent yearswith regard to telecommunication,most of these datasets have alsobecome
outdated formodern networks. Currently, themost widely used dataset are theUNSW-NB15,
CICIDS2017, and Bot-IoT as they are not only recent but are also useful for a wide array of
tasks that involve machine learning.

The CICIDS2017 dataset is an intrusion detection dataset and contains a wide array of at-
tacks which include DDoS, DoS, infiltration and heart bleed attacks [23]. The dataset is based
on a realistic network and the benign traffic contains protocols that mimic a real network such
as the Hypertext Transfer Protocol Secure (HTTPS), Hypertext Transfer Protocol (HTTP),
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File Transfer Protocol (FTP), email protocols, and Secure Shell Protocol (SSH). On the other
hand, the UNSW-NB15 dataset that was created by the IX-IA Perfect-Storm tool in the Cyber
Range Lab ofUNSWCanberra had real traffic for benign activity whereas themalicious traffic
was generated through synthetic data [57]. However one of the good qualities of this dataset
was that it containednine types of attacks, whichwereBackdoors, Fuzzers, DoS,Generic, Anal-
ysis, Exploits, Reconnaissance, Worms, and Shellcode.

Lastly, the Bot-IoT dataset was similar to the UNSW-NB15 as it was also created in a virtual
environment where both the attackers and the defenders were virtual instances. It contained
approximately 72 million records and a wide array of attacks such as DoS attacks, probing at-
tacks, and information theft that was simulated in an IoT network through the Node-red tool
[58]. The IoT devices included a smart fridge, motion-activated lights, a weather station, a re-
motely activated garage door, and a smart thermostat. Although these datasets have been used
for ample research projects, researchers have listed problems that have arisen from using these
data. Some of the issues are the usage of synthetic data, redundant data, ignorance of real-world
conditions, and the lack of diversity [59].

5.2 5GNetwork Intrusion Detection Dataset

Before 2022, there did not exist a dataset based on real 5G traffichowever researchers [4] created
a 5GNetwork IntrusionDetectiondataset through theutilizationof 5GTestNetworkFinland.
The benign andmalicious trafficwas real as it utilized a real 5G architecture. The test-bed [4]is
shown in 5.1. This dataset is thus novel as a real network flow for 5G traffic did not exist prior
to the release of this dataset. The two attacks that this dataset contains are the different variants
of the DoS and port scan attacks.

The threemost commoncategories ofDoS/DDoS attacks are volume-based, protocol-based,
and application layer attacks [60]. In volume-based DoS attacks, the adversary sends high traf-
fic to the server in order to deplete the resources. Malicious users thus exploit this weakness by
usingmultiple end devices to send traffic simultaneously in order to cause system failure or slow
it down. User Datagram Protocol(UDP) floods, Internet Control Message Protocol (ICMP)
floods, and SYN floods are the most common examples of volume-based DoS attacks. While
the manner in which these attacks are conducted is different however they each have the same
objective. TheUDPflood attackworks by the attacker sending theUDPpackets at a faster rate

38



Figure 5.1: 5G Testbed Architecture. Source: [4]

and this is possible due to the fact that this is a connection-less protocol. Similarly, the ICMP
flood attacks use the ICMP echo requests to request the same Internet Protocol (IP) repeatedly
and this high frequency of requests results in overwhelming the network and making services
unavailable to the users. This dataset contains all these examples of DoS attacks.

Port scans on the other hand are not actual attacks but rather they precede the attacks in
order to identify the vulnerabilities in the architecture. These port scans send the requests to
the host of the system and monitor the response given by the system for that particular input.
This response is usually sufficient to determine the status of the port however in certain cir-
cumstances the attacker may require a higher understanding of the network architecture. This
scan allows the malicious user to determine the exploitable host in the network and target the
attack toward that specific network point. This dataset contains the following classes for port
scans: TCP Connect Scan, SYN scan, and UDP scan.
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Figure 5.2: Data Preprocessing.

5.3 Data Preprocessing

The data was collected by capturing malicious and benign traffic passing through the network
at the two base stations. The data was captured in the pcap format and this was followed by a
series of processing steps in order to convert it into aCSVfile. The packets contained aGTP-U
layer as the data was captured from the radio of the base station. GTP-U is a new protocol spe-
cific to 5G as it is an evolution of the GTP which was used in the 4G networks. Therefore, in
order to recognize the significant features available in the data, it is paramount that the GTP-U
layer be removed. This was followed by converting the data from a packet-based format to a
network flow-based format. While there are certain techniques that can be used through the
packet level analysis, it is not the best approach for 5G networks. This is because of the bottle-
neck problem that is caused by the high traffic and low latency due to the massive number of
packets and the high amount of time it takes to monitor each specific packet. Flow-based data
is thusmore popular in the recent era as it can be utilized in conjunctionwithmachine learning
and deep learning algorithms. While there are inherent problems with the probabilistic nature
of these algorithms, they are still a better option as they will with relativistic certainty be accu-
rate for a long period of time. The CSV file had 112 features and each network flow had a label
classifying it as malicious or benign traffic, and the dataset contained a total of 1,215,800 flows
[4]. The data preprocessing steps are shown in 5.2

5.3.1 Encoding

The categorical data in the 112 features were converted into numerical data through one hot
encoding. One hot encoding works in the following manner. Suppose that there exists a cate-
gorical variable that has ′d′ distinct values denoted by (v1, v2, v3.....vd), then, in order to convert
this categorical data into numeric data, a unique integer value is assigned to each index starting
from 0. Therefore, index 0 is assigned to v1, followed by index 1 being assigned to v2 up till
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the last index which is d− 1 for vd. Furthermore, for each categorical value, a binary vector of
length d is createdwhere the value of the element is either 0 or 1. The value of the binary vector
is 1 in the position that corresponds to the index of the categorical value while it is 0 otherwise.
The following is the mathematical notation for one hot encoding:

xi[j] = 1 if j = i− 1 where the index of vi = i− 1

else xi[j] = 0

It is important to convert the data into numeric data so that all the data types are uniform and
it is easy to apply the machine learning algorithms. The null values present in the dataset were
also removed however rather than removing the entire network flow, the median of the values
was taken instead.

5.3.2 Feature Selection

The objective of feature selection is to identify and select a subset of relevant features from the
feature space in order to utilize the features which provide the most value to the predictive
mode. This in turn helps to improve the accuracy of the model by reducing the prevalent
noise in the data and helps with the interpretability of the model by ensuring that it focuses
on the most significant features. Moreover, it is one of the essential techniques for preventing
the overfitting of the model which occurs either when the model does not generalize well due
to the complex nature of the model or due to the model being overly biased by the training
data. The model, therefore, performs inadequately on the new data. Another advantage of
feature selection is also the reduction in the computational power as themodel is comparatively
simpler.

There are several different approaches that can be utilized to perform feature selection such
as filter methods, wrapper methods, and embedded methods. Filter methods utilize a ranking-
based approachwhere the features are given a hierarchy based on their importance with respect
to the target class. This hierarchy is calculated based on certain statistical measures such as
correlation, mutual information, or chi-squared test. Wrapper methods on the other hand
involve selecting the features based on their performance against different machine learning
algorithms such as MLP, SVM, decision trees, random forest, etc. The features are iteratively
selected at random and the performance of each subset is evaluated. The subset with the best
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performance is then selected. There were three distinct approaches that were utilized to find
the relevant features for this dataset.

Pearson Correlation

Thefirst approach thatwas used for feature selectionwasPearsonCorrelation. The idea behind
this approach is that if one single feature has the exact same relationshipwith another feature i.e
correlation is very high then that feature is considered redundant and removed. These features
can thus be removed without affecting the quality of the data. The mathematical notation for
Pearson Correlation is given by :

px,y =
COV(X,Y)

σxσy

=
E(X− μx)(Y− μy)

σxσy
This correlation is calculated for every single pair of features and as both positive and negative
correlation indicate a strong association thus the absolute values of the coefficient are taken.
The arbitrary threshold was kept at 0.85 to determine whether any pair had a strong relation-
ship and todroponeof the two in case they did. Themethodologybehinddropping the feature
was to eliminate the feature which had a lower correlation score with the label which was the
target variable. The statistical score is calculated after dropping these redundant features. The
result of applying this is shown in 5.3

ANOVA F-scores

The ANOVA F-score is one of the many statistical measures which can be utilized to rank the
importance of the feature in a hierarchical manner [61]. This score is calculated based on the
ratio between the variances of the features [61]. The following equationswere used to calculate
both the variances within the groups and between them:

Variance between groups = VG =

∑n
i=1 ni(Yi − Y)
K− 1
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Figure 5.3: Pearson Correlation.
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Variance within groups = Vwg =

∑K
i=1

∑ni
j=1(Yij − Y)

N− K

The F-score is thus simply the ratio of the above two values

ANOVA F− Score =
VG

Vwg

In the above equations, Y is the total data available in the dataset, N is the total sample size,
and Yi refers to the mean of the group i. Moreover, ni is the number of observations in that
particular group, K is the total number of groups, and Yij is the observation j in group i. This
statistical analysis was conducted using the sci-kit library available in python and the top 22
features were considered for both themulti-class classification and the binary classification. 5.4
shows the features selected for the binary classification.

5.3.3 DataNormalization

After eliminating the redundant features, the next step is to scale the training data. A uniform
scale is needed so that more weight is not assigned to higher values. While there are many op-
tions to choose from such as Min-Max scaler, Z-score normalization, and Standard scaler, this
dataset was normalized through the implementation of the standard scaler. This technique
works by subtracting the mean of each observation from the mean of the dataset and then di-
viding the result by the standard deviation of the dataset. The mathematical notation is given
by:

zi,n = (xi,n − ui)/σi

44



Figure 5.4: Feature Scores.
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5.4 PerformanceMetrics

Considering that this problem canbe amulti-label andmulti-class classification task or a binary
classification task, it was not possible to measure the performance of the system with the usual
accuracy score; since the latter, in fact, is calculated on the number of correctly guessed targets
divided by the number of total samples in a test dataset. Even if this could still work, it suffers
from a big problem: it’s hard to state how to count the semi-correct inferred samples; if we
count only the totally correct samples, we would probably get a close-to-zero accuracy even
with a pretty precise model, because only a wrong inferred label on a sample invalidates the full
inference.

There are certain performance metrics that need to be utilized in order to understand the
performance of themachine learning algorithm, Themost commonly usedmetrics for the pur-
pose of evaluation are precision, recall, accuracy, and F-score. These are shown in conjunction
with the confusion matrix.

5.4.1 Precision

Precision is defined as ameasure of the percentage of positive predictions correctly classified by
the model. It is the proportion of all the correct predictions to the total positive predictions
made by the model. Therefore, a high precision score shows that the model is making accurate
predictions whereas a low precision would state that the model is making more false predic-
tions as compared to true predictions. Mathematically, precision is the ratio of the sum of all
the true positives for each class with respect to the total number of true positives and false pos-
itives of all classes. In this domain, we express precision as the proportion of correct inferred
labels on the total number of inferred labels; it is, therefore, an expression of how precise our
model is, disregarding howmany labels are inferred.

Precision =
TP

TP+ FP

The value of precision is quite significant in conditions where false positives can prove detri-
mental such as in anomaly detection or medical diagnosis. This indicator is quite powerful
when combined with recall and F-1 scores.
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5.4.2 Recall

The recall is defined as the capacity of the classifier to correctly identify the positive instances in
a dataset. Thismeasures the percentage of positive instances that themodel identified correctly.
In an ideal scenario, the recall of the model would be high as it would indicate that the classi-
fier is capable of classifyingmost of the positive instances whereas a lower recall would indicate
that the model does not recognize the positive instances with a good frequency. This metric is
mathematically defined as the number of true positives divided by the number of true positives
and false negatives:

recall =
TP

TP+ FN
In this domain, the recall was defined as the proportion of correct inferred labels among the
total number of correct labels; it is, therefore, an expression of how many correct labels are
inferred by the model. The recall, contrarily, to the precision focuses on the cases where false
negatives are costly.

5.4.3 F1-score

This metric is defined as the harmonic mean of precision and recall. This performance metric
is the combination of precision and recall to provide the overall measure of the accuracy of the
model. It is mathematically computed in the following way:

F1 =
2 ∗ precision ∗ recall
precision+ recall

The precision and recall are both given an equal priority in this measurement so that there is
a balance where both the recognition of the false positives and the false negatives. A high score
would indicate that both theprecision and the recall are highwhereas a low scorewould indicate
that either both of the aforementioned values are low or at least one of them is. This would
imply that the model is either making incorrect predictions or missing many of the positive
instances in the dataset.

These three metrics enable a complete understanding of the performance of the system. For
example, if the model has low precision and high recall, then it would imply that the system is
inferring an incorrect label for most of the network flows on average i.e. the model is making
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Figure 5.5: GAN loss

incorrect predictions. However, if there is a high precision and low recall then the system is
probably inferring fewer labels, but most of them are correct.
Inorder to compare theoverall performanceof twoormore versionsof the system (e.g. different
hyperparameters or a different network structure), the best practice is to use the F1-score: a
lower score on system Ameans that system B is performing somewhat better, and vice versa.

In the implementation, all three metrics were computed both during the training phase and
during the testing phase: during the former, themeasurements were received after every epoch,
in order to have an idea of the training process whereas in the latter, it was computed only to
understand the final performance of the system.

5.5 Results of GAN

The following section is dedicated to displaying and explaining the results obtained from the
implementation of section 4.2 on the 5GNIDS dataset. The following hyperparameters were
turned in order to provide the best results for the GANmodel:

• Batch size: The following batch sizes were tried 32, 64 , 128 and 256 both for the train-
ing and the testing phase;

• Learning Rate: The following learning rates were used: 0.001 0.01, 0.05, 0.1 and
0.5;

• Number of epochs: While the different number of epochs was attempted however due
to the time constraints regarding training only the following epochs were used: 5, 10
and 20 epochs and tweak the patience parameter instead;
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Parameter Values
Batch Size 128
Learning Rate 0.01
Activation Threshold 0.3
Weight Decay 0.1
Activation tanh
Optimizer Stochastic Gradient Descent
Epochs 10
Loss Cross Entropy
Layers 10

Table 5.1: Hyperparameters for the GAN model

• Patience: A variable patience between 5 and 15was used;

• Activation threshold: An activation threshold of 0.2 and 0.4, sometimes with some
adjustments such as 0.25 or 0.35;

• Weight decay: we tried a weight decay equal to 0.01, 0.1 and 0.5.

The hyperparameters for this model are shown in 5.1:
The following graph i.e 5.5 shows the training loss for the GANmodel. The discriminator

and generator loss along with the KL divergence are shown in the table. After training the
GAN, the samples were tested on the global model to check whether they would reduce the
performance of the model. The results of the attack on the machine learning algorithm are
given in the table:

This was followed by the development of a defense for this model which was done by stack-
ing the generated samples in the dataset and then retraining and testing themodel. Themodels
used were the following: random forest, decision tree, multi-layer perception, and SVM. The
new results after this mechanism was in place showed the following results:

5.6 Results of Label Flipping Attack

The label-flipping attack was an adversarial machine-learning algorithm explained in section
4.3. The results from the attack and defense are depicted through the confusion matrix, ac-
curacy, recall, and the F-1 score. The algorithm used to check the original accuracy was the
Gaussian NB. The attacker had access to the dataset and changed the ”epsilon” percentage of
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Figure 5.6: Label Flipping results

Parameters Device 1 Device 2 Device 3 Device 4
Accuracy 99.987% 99.968% 37.625% 99.792%
Precision: 0.999 0.998 0.997 0.999
Recall: 0.999 0.999 0.351 0.998
F1score: 99.992 99.988 51.933 99.931
TPR: 0.99888 0.99994 0.35017 0.99768
FPR: 0.00701 0.4121 0.00465 0.02128

Table 5.2: Results of Autoencoder before attack

labels which in this case was 0.1. Lastly, a defense mechanism was put in place to prevent the
attack. The results of this attack and its defense are shown in 5.6.

5.7 Results for Autoencoder

While the deep autoencoder in conjunction with the federated learning environment provided
good results unfortunately due to time constraints it was not possible to defend it against the
different attacks defined in this thesis as such this task has been left for future research work.

The autoencoder used the MSE loss function and the SGD optimizer. It was run for 10
epochswith a learning rate = 0.01, weight decay=0.01, andmomentum=0.6. The performance
metrics for the deep autoencoder are shown in 5.3 and 5.2.

50



Parameters Device 1 Device 2 Device 3 Device 4
Accuracy 46.462% 50.540% 53.438% 53.376%
Precision: 0.962 0.936 0.630 0.630
Recall: 0.283 0.352 0.725 0.724
F1score: 43.785 51.121 67.459 67.396
TPR: 0.28343 0.35169 0.72544 0.72443
FPR: 0.03117 0.06736 0.84537 0.84506

Table 5.3: Results of Autoencoder after attack

Parameter Values
Batch Size 128
Learning Rate 0.01
Log Interval 5
Dropout 0.1
Activation Rectified Linear-unit
Optimizer Stochastic Gradient Descent
Epochs 5

Table 5.4: Hyperparameters for the FL model

5.8 Results with Federated Learning Environment

The federated learning environmentwas set upwith 4 devices throughpysyft andpytorch. The
pysyft library was utilized to decouple the training data for the local model training. Both the
global and local models were neural networks i.e Multi-Layer Perceptrons. The hyperparame-
ters used for this model are shown in 5.4.
The learning rate was set to 0.01 and the SGD optimizer was used. Moreover, the cross

entropy loss functionwas used as it performswell for both binary andmulti-class classification.
The loss for the global model and its accuracy can be seen in 5.7.
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Figure 5.7: FL loss.
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6
Conclusion and Future Work

The objective of the thesis was to study the 5G network and to understand its threat land-
scape in order to design and develop a framework that would protect it against malicious users
and adversaries. The federated learning architecture was chosen as the environment for the 5G
network to protect the privacy of user data. However, on further analysis of the federated learn-
ing environment from the 5G perspective, it was observed that certain exploitative adversarial
attacks could be performed against the system. These attacks showed that they could bypass
the standard network intrusion detection systems placed at the access point of the 5G network.
This revealed that the FL environment while great for privacy concerns had issues against ad-
versarial machine learning as these attacks decreased the overall accuracy of the model which
increased the vulnerability of the 5Gnetwork. Moreover, it demonstrated the effectiveness that
malicious users can have on the IDS through their possession of the user equipment, hence the
scope of this thesis mostly revolved around studying the model poisoning attacks from two
unique perspectives.

The adversarywas able to accomplish their objective through the utilization of label-flipping
attacks and GANs. The first idea for the model poisoning attack was the label flipping attack
which was responsible for interfering with the training process of the ML model by changing
the labels of the target class. This would induce the model to misclassify the data and allow
the malicious network data to enter the system. While the first attack was focused on targeting
the model during its training stage, the second attack was more direct. The idea was that the
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malicious user could create synthetic data which appears to be benign but is howevermalicious
and can use that to infiltrate the system. A defense strategy was also proposed for both of these
attacks.

6.1 FutureWorks

There are certain limitations to this work which would ideally be done for future work. One
of the biggest limitations of this model is that it is based on supervised learning and as such
can only detect certain threats for which it has been trained. The autoencoder would be the
ideal model to be used in conjunction with federated learning as it is an unsupervised model.
However, the work has shown that the autoencoder model is currently unable to detect the
anomalous data generated by the GANs, and as such, it is susceptible to failure. The ideal case
wouldbe for future researchers tomodify the autoencoder so that it can recognize the generated
samples.

The 5G NIDS dataset was used for both the training and testing of these strategies and as
such it is possible to modify the current by using a different dataset. Moreover, this thesis was
limited to checking against attacks on the access network however there is data transmission
in the 5G core as well such as inside the SEPP. Therefore, another research direction would be
aimed towards checking the presence of the intrusion detection systems placed at the SEPP and
whether the same adversarial approaches can be conducted or not.
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