
Università degli Studi di Padova

Dipartimento di Matematica

”Tullio Levi-Civita”

Master’s Degree in Computer Science

Physics Informed Neural Networks in

Temporal Graphs

Master’s Thesis

Supervisors

Prof. Nicolò Navarin
Paolo Frazzetto, PhD

Author

Filippo Visentin

Academic Year 2022-2023

2

Abstract

With the recent outbreak of COVID-19, researchers worldwide have come to-
gether in a collaborative effort to model and forecast the disease, in order to
prepare, understand, and control it.
Epidemiological models offer a means to address uncertainties regarding the
spread of the virus by combining available information from experimental stud-
ies and the opinion of experts to gain insight into the dynamics of infection and
disease control.

Machine learning can help with epidemiological modelling, when little exper-
tise is available or the spread is conditioned by the human behaviour, so it is
difficult to capture using only theory.
The problem with classical machine learning techniques is that they require a
lot of data, they are not interpretable and it is not easy to integrate available
domain knowledge.
In order to get better models, usable for forecasting, machine learning can be
enhanced with human knowledge by means of physics informed machine learn-
ing. In fact the virus spread can be interpreted as a physical phenomenon of
which many properties are known and for which there already exist analysis
tools.
Usually this phenomenon is modelled using probabilities that evolve in time.
This evolution can be treated as a kind of dynamics and described using differ-
ential equations, that can be learned from data.

The goal of this thesis is to develop new interpretable physics informed machine
learning techniques for finding epidemiological models, and compare these tech-
niques to existing ones. These models should help understanding the disease
and forecasting it.
Different types of physics information are included in the learned models: the
structure of the social network where the infection spreads, some constraints on
the states reached by the dynamical system and a restriction on which terms
can be present in the differential equations.

To accomplish this, a technique called Sindy, used for dynamics identification,
has been adapted to work on graphs, in this way it is able to extract spatial
features and learn how they evolve in time. This evolution is encoded with
symbolic differential equations that are interpretable.
To improve the generalization ability and plausibility of the models, we added
some constraints in the learned probabilities dynamics. Because of the tempo-
ral evolution, the models are defined recurrently and this makes enforcing these

3

4 ABSTRACT

constraints challenging. Several techniques are proposed to tackle the problem,
some are designed exploiting the characteristics of epidemiological modelling
and some are applicable also in other contexts.
We also faced the problem of dealing with aggregated information. Because
knowing the evolution in time of the infection of every single person is impossi-
ble, only statistics stemming from large populations can be used, often without
knowing how the pandemic spreads spatially. For solving this we used a series
of improving estimates of spread with single person granularity.

The developed techniques are tested to evaluate the forecasting performance,
using datasets generated from simulations, and compared to a type of Spatial-
Temporal Graph Neural Networks.
We find that our technique, Sindy Graph, has lower generalization errors than
STGNNs, because more physics information can be integrated into the learned
models. Moreover Sindy’s models are more interpretable and simpler to train.

Structure

This thesis is structured in the following way:
in chapter Background the concepts required for understanding the problem and
the methods from literature used to solve it are introduced and discussed.
Then in chapter The problem, Epidemiological modelling is introduced together
with the problem tackled in this thesis.
Then Related works are discussed to give a literature overview on epidemiolog-
ical forecasting techniques.
In the Contributions chapter, our techniques are introduced in a formal way,
then implementation is discussed.
In Experimental Results we discuss how our method, called Sindy graph with
aggregated supervision and constraints, performs in the task of epidemiological
forecasting and compare it to an instance of existing techniques called Spatial-
Temporal Graph Neural Networks.
Finally we give Conclusions supported by the experiments.

5

6 STRUCTURE

Contents

Abstract 3

Structure 5

Notation 9

1 Background 11
1.1 Physics Informed Machine Learning 11

1.1.1 Motivations of PIML . 12
1.1.2 Physics knowledge . 14
1.1.3 Physics Informed Neural Networks 17

1.2 Constrained Optimization . 17
1.3 Learning to Simulate Physics . 19
1.4 Sparse Identification of Nonlinear Dynamics 19

1.4.1 Change of coordinates . 20
1.5 Graph Neural Networks . 21

1.5.1 Definitions . 21
1.5.2 Categorization of GNNs 23
1.5.3 Convolutional graph neural networks 24
1.5.4 Spatial-temporal graph neural networks 25

2 The problem 29
2.1 Epidemiological modelling . 29

2.1.1 The SIR model . 30
2.2 Problem formulation . 31
2.3 Diffusion dynamics on graphs . 32
2.4 NDlib . 33

3 Related works 35

4 Contributions 37
4.1 Sindy problem formulation . 37
4.2 Constraints . 38
4.3 Constraints on infinite states . 39

4.3.1 Random sampling . 39
4.3.2 Minima seeking . 40
4.3.3 Restricting dictionary functions 42

4.4 Constraints and gradient descent 44
4.5 Thresholding . 45

7

8 CONTENTS

4.6 Sindy Graph . 45
4.6.1 Definitions . 46
4.6.2 Constraints . 48

4.7 Sindy Graph Implementation . 49
4.7.1 Difference function . 49
4.7.2 Message Passing . 50
4.7.3 Thresholding . 50
4.7.4 Constraints . 51
4.7.5 Training . 52
4.7.6 Node supervision . 52
4.7.7 Aggregated supervision 52
4.7.8 Hyper parameters . 54

5 Experimental Results 55
5.1 Tests introduction . 55
5.2 Sindy Graph . 57

5.2.1 Sindy graph with node supervision 100 59
5.2.2 Sindy graph with node supervision and constraints 100 . 61
5.2.3 Sindy graph with aggregated supervision 100 64
5.2.4 Sindy graph with aggregated supervision 150 65
5.2.5 Sindy graph with aggregated supervision and constraints

100 . 67
5.2.6 Sindy graph with aggregated supervision and constraints

150 . 70
5.3 Spatial-Temporal Graph Neural Networks 71

5.3.1 Implementation . 72
5.3.2 STGNN with aggregated supervision 72
5.3.3 STGNN with aggregated supervision and constraints . . . 73
5.3.4 STGNN with node supervision 76
5.3.5 STGNN with node supervision and constraints 77

5.4 Comparative table . 78

6 Conclusions 81

A Algorithms 83
A.1 Quadratic programming . 83

Notation

Notations Descriptions
x Scalar value
X Set
G Graph
f(x), F (x) Function of scalar input
L(m) Loss function where m is a model
x Vector
A Tensor of ≥ 2 dimensions
c Vector of learnable parameters
x(t) Signal with multiple features that evolve in time continuously
xt Signal with multiple features that evolve in time discretely at timestep t
x̃(t) Approximation of the signal x
σ Generic activation function

Indexing

Tensors are indexed following the PyTorch convention. For example x = A:,i

represents a tensor named A of 2 dimensions (a matrix) from which a vector x
is extracted, corresponding to the ith column of A.
Functions may return a tensor that can be indexed directly, for example a =
f(x):,i represents a function f of input x that returns a matrix, of which only
the ith column is taken to form a vector.

9

10 NOTATION

Chapter 1

Background

In this chapter the concepts required for understanding the problem and the
methods from literature used to solve it are introduced and discussed. The
literature studied is cited to support the theory and to provide useful references
for further insight into the arguments.
At the beginning an high level introduction on the topic of Physics Informed
Machine Learning is given, because our methods rely on physics information to
obtain superior generalization capabilities than traditional techniques. To give
a more general overview on the topic, some useful physics informed techniques
will then be discussed.
Constrained Optimization is an important example of how to include physics
information into a model, and is discussed in a separate section.
Then in Learning to Simulate Physics, the concept of physics simulator will
be introduced, this will give a more clear idea of what a model that solves the
problem should do. The definitions in this section will be then expanded in later
chapters.
Graph Neural Networks follow, as they are a tool useful for modelling viral
dynamics between people, and for this reason are used by us as a foundation on
which building our techniques.

1.1 Physics Informed Machine Learning

Physics Informed Machine Learning (PIML) is the combination of machine
learning techniques with prior knowledge about physics, so high level abstrac-
tions long thought by humans to explain natural phenomenons. While powerful
techniques to learn models by data alone exist and are successful, the intro-
duction of physics has emerged as an effective way to deal with shortage of
training data, to increase the model’s capability to generalize, to ensure
the physical plausibility and explainability of results.
In this section an high level introduction about this area of research will be
done following the categorization introduced in the survey [36] and the many
references provided.

11

12 CHAPTER 1. BACKGROUND

1.1.1 Motivations of PIML

Machine learning techniques have archived incredible success in domains where
large amount of data is available using highly expressive architectures such as
neural networks. The research has since started to explore ways of using these
techniques to advance scientific discovery.
While deep neural networks are really good at finding relations between inputs
and outputs if a lot of data is provided, the optimization process is not simple
and can lead to sub optimal results. Moreover if not enough data is available,
the model tends to overfit. Prior knowledge can help solve these issues by lim-
iting the search space, providing information not contained in the data and
improving the plausibility of the resulting models.
Physics prior knowledge is particularly powerful as it stems from a long history
of observation and abstraction done by humans with scientific rigor, and has
been validated both empirically and theoretically. Compared to other forms of
prior knowledge such as logic rules, physics information requires specific ways
to be integrated in machine learning.

In the following, some more motivations are given by introducing some ap-
plications in which PIML is used.

Physics models enhanced by data driven methods

Physics problems often involve analyzing huge amounts of data. Because ma-
chine learning methods are great at finding useful meaning in the data, interest
has grown in apply these techniques for scientific discovery in physics. Advan-
tages are more flexibility, generalizability and less computational cost.

Simulation

Traditional physics simulations are complex to implement, require specific do-
main knowledge and are heavy computationally. Many surrogate models use
physics information and data to create a simulator without requiring specific
knowledge on the system. For example in [24] a simulator is proposed that
can learn to simulate a wide variety of challenging physical domains, involving
fluids, rigid solids, and deformable materials. Using physics information in the
form of model’s architecture, it is possible to simulate many different scenar-
ios and account for situations difficult to model explicitly (e.g external forces,
boundary conditions), making this techniques more flexible.
A surrogate model made to be physically plausible can also be used to extrap-
olate dynamics not seen in the training set, making it able to generalize.
Moreover if the model is constructed to be explainable, meaningful scientific
discovery can be made just by processing data [3].

Downscaling

Many numerical problems in physics require solving partial differential equations
(PDEs) to then measure certain quantities of the system. In order to solve them
numerically discretization in space and time is required, and for certain problems
this is so fine grained to require huge computational power. Machine learning

1.1. PHYSICS INFORMED MACHINE LEARNING 13

techniques such as neural networks have been used to interpolate information at
a coarser scale, given their ability to represent non linear relationships between
variables and using data to learn a low-resolution to high-resolution mapping
[8].

Parameterization

When modeling complex systems in physics a common technique is to start from
a simple process which has free parameters and find them based on observa-
tions, minimizing the discrepancy with model’s predictions. To accomplish this
machine learning techniques are used increasingly often, by combining physics
information to classical ML architectures [5].

Reduced order models

Often complex systems are difficult to describe in the usual observations space.
Many techniques reduce the complexity or order of the system by using dimen-
sionality reduction techniques based on machine learning and then model the
system in the reduced space, making it more interpretable and controllable (in
control theory) [27].
In fact by doing a projection of the input in a smaller space, a simpler, more
general dynamics is uncovered and this can be captured using standard physics
dynamics discovery. This works well when inputs are noisy, high dimensional
or a change of coordinates is needed to simplify the dynamics.

Counterfactual Analysis of Physical Dynamics

Reasoning about the physical world requires understanding causes and effects
of mechanical systems. The goal of this field of research is predict an outcome
starting from some intervention on the initial conditions of the system [16].
The modeling of relationships between causes and effects and the extraction of
information from an input can be done using ML techniques, informed about
the physics involved in the system studied.

Improvement of Data-Driven Models from External Knowledge

Data driven methods are highly successful nowadays thanks to the expressive
power of Neural Networks and the wealth of data available. The optimization
process is hard in practice though and data can be limited in some problems,
leading to suboptimal models. Moreover optimizing without constraints can
lead to models that do not generalize well and violate physical laws and logic
rules.
To account for this, physics prior information has been added to standard ma-
chine learning techniques that learn only from data.

Object-centric data

When describing the real world many systems are composed by many discrete
objects, that change their properties with time. Graph Neural Networks (GNNs)
are particularly good at modeling many-objects systems and their relationships

14 CHAPTER 1. BACKGROUND

as their inductive bias matches that of data. They are also surprisingly good at
generalize when the structure of the system is perturbed [11].

Spatio-Temporal data

Many physical phenomenons are represented as a multitude of values of interest
evolving in time, for example a system evolving in space. Some techniques
constrain in multiple ways the learned dynamics to be physically plausible, or
inform the system using known PDEs to guide the optimization process.

1.1.2 Physics knowledge

There are several ways to introduce physical knowledge in machine learning.
Some categories of knowledge are general enough to have inspired many useful
techniques.

Lagrangian mechanics

In physics there are several ways to express the motion of a system. The La-
grangian mechanics expresses the dynamics of a system from an energy per-
spective, and through the principle of least action enables the enforcing of some
physical constraints, such as the conservation of some quantities, by construc-
tion.
The state (or configuration) of a system can be defined by its position q and
velocity q′. The trajectory of a system is a function of the state with respect
to time, that describes how an initial state evolves in time changing its position
and velocity.

From the machine learning perspective, the goal is to search for a function
l(q, q′, t) = T (q, q′, t) − V (q, t) where T is the kinetic energy and V is the po-
tential energy of the system.
l represents the system from the energy perspective and completely captures
the dynamics of it. l is the model to be learned and is represented for example
by a neural network.

In the study of mechanics the principle of least action holds. The action
of a trajectory q(t) is expressed as:

L[q(t)] =

∫ t2

t1

l(q(t), q′(t), t) dt

The principle states that the trajectory taken by the system starting from an
initial condition, from time t1 to time t2, minimizes the action taken, so every
physically plausible trajectory must minimize L.
This implies the Euler-Lagrange equation:

∂l

∂q
=

d

dt

∂l

∂q′

Using this equation, one can impose some specific constraints that translate
in conserved quantities. For example by imposing ∂l

∂t = 0, that is l does not
depend on time, the energy of the system is conserved as the trajectory unfolds.

1.1. PHYSICS INFORMED MACHINE LEARNING 15

So by having no time variable and satisfying the Euler-Lagrange equation, the
energy is conserved by construction [19].
Other quantities that can be constrained to conserve, include the linear momen-
tum and the angular momentum.

Symmetries

A symmetry defined on a system is a transformation that keeps certain proper-
ties equivariant [25]. Symmetries are often used in physics to describe regular-
ities and can be incorporated in machine learning techniques to inform them.
Often these symmetries are satisfied by construction of the technique, so all the
hypothesis in the hypothesis space satisfy them.
For example special neural network layers have been conceived such that they
satisfy known symmetries of the domain of study.
Convolutional layers are known to be equivariant under translation of the in-
put image. Graph neural networks are equivariant under the permutation
of nodes, because often only the relations between objects are relevant, not
their order, e.g. for particle systems. Spherical convolutions are invariant over
rotations in the group SO(3), and are used in astrophysics for spherical obser-
vations and chemistry when modelling molecules that exhibit the same symme-
try. LSTMs are invariant over time warping, and that is desirable to model
correctly long-range dependencies on the input sequence.

Koopman theory

Methods based on Koopman theory are used when dealing with dynamics that
are describable using nonlinear differential equations [9]. The theory guaran-
tees the possibility of moving from the state (or input) space to a measures
(or latent) space where the nonlinear dynamics become linear(describable with
linear differential equations), albeit infinitely dimensional. The linearity of the
reduced dynamics renders the study of the system more simple and the integra-
tion and control of it possible using closed form solutions.

As an example of application of this theory we consider the Koopman Oper-
ator and explain how it is used in the measures space, to advance the dynamics
of a modeled system, without dealing with nonlinear differential equations.
If xt is the state of the system at time t, one can advance to the next state by
using its characteristic nonlinear function f that map the state of the system
forward in time:

xt+1 = f(xt)

The Koopman theory says that it is possible to map the state to the measures
space using a nonlinear function ϕ, where the measure mt is infinitely dimen-
sional:

mt = ϕ(xt)

The Koopman operator K is an infinite dimensional matrix that advances the
measure in time:

mt+1 = Kmt

To perform this mapping, an infinite series of measuring functions ϕn(xt) is
used, each outputting a component mn of the measure m, and they must be

16 CHAPTER 1. BACKGROUND

invertible to return to state space. In practice though the number of them is
finite and the mapping only approximate.
If the measuring functions are chosen wisely, each captures a meaningful com-
ponent of the dynamics that can be interpretable [1].

Physics-Informed Computation Graph

There are several classic physical knowledge based methods that have been en-
hanced by neural networks, including some already discussed. These techniques
use computational graphs that mimic the behavior of classical methods but sub-
stituting some fixed parameters with ones learned from data, or replace variables
difficult to estimate with neural networks.
These techniques enforce physics by construction, because of this, the predic-
tion performance is better and less data is required than non physically informed
techniques. Moreover general physical knowledge can be used, to enable less ar-
chitectures to be conceived and leave the burden of specializing the model to
the specific problem to the learnable parameters.
This hybridization has been introduced for example in classical numerical meth-
ods for solving Partial Differential Equations (PDEs), such as the Finite Differ-
ence Method, The Finite Volume Method and the Finite Element Method.
Physics based methods and deep learning can be fused also at higher level: by
creating some modules that are entirely deep and some that employ pure physics
methods, exposing only inputs and outputs to each other.

Physics-Informed Optimization

Prior physical knowledge can be integrated in machine learning techniques that
use optimization to learn a model. This can be obtained by adding a term in
the loss function or by other forms of regularization. The goal is to reshape
the optimization space in order to encourage the training process to converge
to a physically plausible solution.
Because the goal of optimization in ML is to find a model that best solve a
particular task and the measure of its goodness is given by a loss function, by
changing it, it is possible to change the task to penalize the non-physical be-

1.2. CONSTRAINED OPTIMIZATION 17

havior of the model.
This is a form of regularization, others include adding constraints that limit
the hypothesis space eliminating non-physical models, or making the model as
simple as possible, where the notion of simple is derived from physical notions.

Because Physics-Informed Optimization is a form of physics information used in
our work, an entire section that follows is dedicated to constrained optimization
1.2.

1.1.3 Physics Informed Neural Networks

PINNs are a recent contribution to the deep learning field [7]. Their goal is to
learn physically plausible solutions to differential problems, by exploiting the
expressive power of neural networks that are trained to solve supervised learn-
ing tasks while respecting any given law of physics.
This method tries to solve 2 problems: data driven solutions of partial differen-
tial equations and data-driven discovery of partial differential equations.

The Data driven solution of a partial differential equation

f := ut +N [u] = 0 (1.1)

where N is a nonlinear differential operator, and u can be thought as the solu-
tion function u(t, x) where x ∈ Ω is a possible state of the system, t ∈ [0, T].
A nonlinear differential operator is one that takes in a function, differentiates
it and applies some nonlinear function to it. The equation above describes a
relation between u and its derivatives.
The insight is that the function ut can be replaced by a neural network, that
is a universal function approximator, and can be trained from data minimizing
the loss Lu = ||u′ − z|| where z is the training data represented as an array of
states that evolve in time and u′ are the learned states, and together minimizing
Lf = ||f ||, to make the surrogate solution u respect the governing equation 1.1
as much as possible.
Lf is differentiable because the neural network is, and also N , because even if
it is a differential operator, automatic differentiation can be used to make the
gradient pass through it.
The solution u to the equation 1.1 can be found even with no data available, by
optimizing only Lf , making the technique an effective PDEs solver.

The Data-driven discovery of the governing equations of a system is done by
first parameterizing them using coefficients λ,

f := ut +N [u, λ] = 0

and then learning those coefficients from data. So the overall structure of the
equations serve as physics information, but its parameters are learned from data.
At the same time u is learned as before.

1.2 Constrained Optimization

A way to enforce prior physical knowledge is to constrain the optimized model
to satisfy certain properties.

18 CHAPTER 1. BACKGROUND

A classical method for doing that is to introduce a term in the loss function
multiplied by a coefficient λ that decides the tradeoff between the discrepancy
between the model’s prediction and target f and the satisfaction of the con-
straints g. Because when the optimization process concludes, the constraints
can be only partially enforced, they are called soft constraints.

L(x) = f(x) + λg(x)

The problem with soft constraints is that the choice of λ is critical. Too small
and the constraint will not be satisfied completely, too large and the optimiza-
tion cannot pass through unfeasible regions of the search space that often pro-
vide a shortcut to good regions that also satisfy constraints. Moreover a large
λ creates problems for gradient based methods, where the gradient becomes
very large when into unfeasible regions, making the optimization process jump,
possibly missing good minima.

A solution would be to enforce constraints directly into the design of the archi-
tecture, creating an hard constraint, which guarantees that at convergence
the model satisfies the constraints.
This requires designing a new architecture for each new constraint considered
and that can be difficult and time consuming.

There are instead ways, known for a long time in the optimization commu-
nity, that make constraints simple to enforce and hard. An example of hard
constrained optimization in the context of PINNs is found in [30]. There the
authors conduct a study on the performance of different optimization techniques
to enforce hard constraints on the model. They found empirically that the best
technique is that of the augmented Lagrangian.
A similar technique will be now discussed.

Method of Lagrange Multipliers

The goal is to find a λ that is large enough to push the gradient outside the
unfeasible region, but small enough to balance exactly the tendency to move
inside the unfeasible region when on the barrier between feasible/unfeasible
regions. The key insight is that it is possible optimize at the same time the
model and λ, by defining the Lagrangian function:

L(x, λ) = f(x)− λg(x)

Then the objective becomes:

minxmaxλL(x, λ)

This can be thought as a two-player zero-sum game [38], where one player tries
to minimize f(x) and the other tries to enforce the constraint, making this a 2
objective optimization.

It can be shown that stationary points of L are local minima of f(x) that
satisfy the constraints. But because the stationary points are saddle points,
classic minima seeking gradient based methods do not work.

1.3. LEARNING TO SIMULATE PHYSICS 19

Moreover handling a multi-objective optimization is challenging as one gradient
can point in an opposite direction from the other, making the optimization’s
objective oscillate and converge very slowly.
This has been noticed in [21], where an extensive study of this problem in the
context of PINNs is conducted, showing how the generalization capabilities of
the technique are penalized as the physical constraint is not respected. They
solve the issue by introducing a new technique that modifies the gradients dy-
namically.
There are many other techniques for improving the convergence of this kind of
multi-objective optimization, as discussed in [13].

1.3 Learning to Simulate Physics

For many tasks in which the goal is related to understanding the physics of a
system from observed data, maybe because of prediction or system modeling,
ultimately a physics simulator is learned.
Often a system is observed making measures xt of some properties of it, as they
evolve in time. The ordered sequence of snapshots of the measures of the system
is called trajectory of states xt0:k = (xt0 , ...,xtk).
A simulator s : X → X models the dynamics by mapping preceding states to
causally consequent future states [24]. A simulated trajectory x̃t0:k = (x̃t0 , ..., x̃tk)
is calculated sequentially starting from the first state and applying s iteratively:
x̃tk+1

= s(x̃tk).
Simulators use dynamics information contained in the current state of the sys-
tem to update it and get a future state. The assumption is that no previous
information is needed. Simulators view the dynamics in a differential way, e.g.
a numerical differential equation solver uses these equations to get dynamics
information (time derivatives) used to update the current state (by integration).

A learnable simulator sc uses a parameterized function approximator dc to
compute the dynamics information, where c are the parameters that can be
learned. The physics information here is given by how restricted is the space
of functions that can be generated by the approximator, and how these func-
tions respect the a priori information.
The update mechanism can be seen as a function which takes the x̃tk , and uses
dc to predict the next state, x̃tk+1

= Update(x̃tk , dc).
For example in learning to simulate a physical dynamics, dc can represent an
approximation of differential equations that govern the system, and Update()
is a numerical integrator.

1.4 Sparse Identification of Nonlinear Dynamics

System Identification field is concerned with finding mathematical models that
capture physical systems from data. Using differential equations leads to models
that generalize well and are concise and interpretable.
The Sindy algorithm [3] finds a concise description of a nonlinear dynamics by
searching for a set of sparse symbolic differential equations that capture it.
It essentially learns a simulator where dC represents a set of differential equa-

20 CHAPTER 1. BACKGROUND

tions, that are integrated then by the update mechanism.
It finds one differential equation for each variable yi of the state of the system
y, and each equation is a sum of terms:

dC(y)i =
dyi
dt

=
∑
j

Cjifj(y)

Each term is a coefficient Cji learned from data, that multiplies a fixed function
fj(y). All functions are selected by the user, to form a dictionary. That is
the principal source of physical information. If the system is understood quite
well, the dictionary can contain only few functions as candidates to describe the
system, restricting the hypothesis space. If the system is not understood well,
or the level of expertise needed to select appropriate functions is lacking, it is
possible to let the algorithm decide the right combination of terms needed to
describe the system, provided enough data is available.
In order to learn the right coefficients to put in front of the dictionary’s func-
tions, every input dynamics Xt,i of the training set is differentiated with respect
to time, and a regression is performed to fit that.

The other form of physical information is the sparsity of coefficients. It has
been noticed that systems described simply tend to generalize better, if data is
scarce. This is why Sindy tries to zero out the least important coefficients, to
try to fit the data but without introducing terms that might be there as a result
of random fluctuations or chosen by the optimization algorithm arbitrarily as
many models may fit the data well if it is scarce.
The notion of importance of coefficients has not just a single definition, there
are many ways to select the right terms to eliminate. Those have been studied
by the authors of the technique.
This is in essence a form of regularization.

1.4.1 Change of coordinates

A mapping from input states y of physical coordinates, to hidden variables h
in which the same dynamics can still be described is a change of coordinates.
This can be helpful to get a simpler equations that model the system in a more
suitable space. This is useful to linearize nonlinear dynamics or when simpler
dynamics is hidden behind an high dimensional input (e.g. images, Partial
Differential Equations, particles systems).

For PDEs for example, to discover a good change of coordinates one way is
to use a PCA (alternatively Singular Value Decomposition or Proper Orthog-
onal Decomposition), to get eigenfunctions of the dynamics in space, whose
eigenvalues encode the most important features of it. Those eigenvalues evolve
in time and become the hidden variables. The PCA can be actually seen as a
linear, shallow autoencoder [12]. This suggests that a full fledged autoencoder
can be more powerful as it can generate nonlinear changes of coordinates.

To do that, in [12] an autoencoder is constructed with the Sindy regression
built in the latent layer. The encoder learns how to get to the hidden space,

1.5. GRAPH NEURAL NETWORKS 21

then Sindy is used on the hidden features h to learn dh
∂t , then the hidden dy-

namics is integrated and the decoder retrieves physical states y. The loss is
created to account for the reconstruction error, the regularization(sparsity) on
the model’s parameters, the error between real and calculated dh

∂t .
If a linear latent dynamics is desired, it is sufficient to only have linear terms in
the dictionary, doing so is like approximating the Koopman operator.

1.5 Graph Neural Networks

Deep learning has been used with success in a wide range of tasks, that have the
characteristic of being represented in Euclidean space. There is though an in-
creasing number of applications in which data is generated from non-Euclidean
domains that can be represented as graphs.
This is because graphs can model naturally complex relationships and interde-
pendency between objects that doesn’t exhibit the classic grid like structure of
Euclidean domains.

Deep neural networks can leverage statistical properties of the data such as
stationarity and compositionality through local statistics [4]. For example, in
computer vision, these properties are exploited by convolutional architectures,
so far fewer learnable parameters are needed and priors are imposed, decreasing
the need for high quantities of data.
There are applications in which the data is inherently non-Euclidean, for in-
stance in social networks, in sensor networks, in neuroscience and in computer
graphics. In this cases there is no common system of coordinates or shift-
invariance to be exploited, so the key ingredients that make deep methods suc-
cessful have to be adapted to this geometric domain.
A classification of Graph neural networks will be given following the taxonomy
and frameworks identified in [35].

1.5.1 Definitions

Graph

A graph is represented as G = (V,E) where V is the set of vertices or nodes and
E is the set of edges. An edge from node vi to vj is denoted as eij = (vi, vj) ∈ E.
The neighbourhood of a node v is defines as N(v) = {u ∈ V |(u, v) ∈ E}. A
graph can have d attributes associated with each of its |V | nodes. These at-
tributes are defined as the matrix X ∈ R|V |×d with nodes in rows and attributes
in columns.
The graphs considered here are undirected, so edges represent only a link be-
tween nodes without a direction.
The graph may also have edge attributes Xe ∈ R|E|×c where m is the number
of edges and c the number of attributes each.

Spatial-temporal Graph

A Spatial-temporal graph is a graph in which its node’s features Xt,: ∈ R|V |×d
change with time t, describing a graph signal.

22 CHAPTER 1. BACKGROUND

Graph embedding

A Graph embedding is a representation of a graph in a latent space. The
graph is transformed into a low dimensional vector trying to preserve important
properties. Two graphs can be mapped into the latent space and their respective
vectors’ distance tell how similar they are with respect to these properties.

Node embedding

Every node of a graph is mapped to a latent space trying to preserve important
properties. Notably the structure of the graph can be preserved, so that the
proximity of these mapped points recovers the connectivity of the original graph.

Graph Neural Networks

A Graph Neural Network is an optimizable transformation that can operate on
all the attributes of a graph (node, edge, global features) that is invariant to
nodes’ permutations and produces another graph with the same connectivity
but updated embeddings [34].
Several GNN layers are often stacked on top of each other, while latent features
are pooled (aggregated) to represent higher graph-level features, then predictions
are made.

Message Passing Neural Networks

Several Graph neural networks propagate information between nodes, to build
hidden representations, reflecting nodes’ features, edge features and the graph
connectivity.
To abstract commonalities of many neural models for graph structured data,
the Message Passing Neural Networks framework has been proposed [6].

This framework describes 2 phases: the message passing phase and the read-
out or pooling phase.
The message passing phase is repeated for many timesteps T and hidden states
htv of node v are updated using the function Ut based on messages mt+1

v coming
from the direct neighbours of v according to:

mt+1
v =

∑
w∈N(v)

Mt(h
t
v,h

t
w, evw)

ht+1
v = Ut(h

t
v,m

t+1
v)

So node’s features are first transformed according to Mt, then sent to neigh-
bours, aggregated and used to update the current hidden state.
Because this phase is repeated many times, information from far nodes can be
gathered.
The readout phase computes a feature vector for the whole graph using some
readout function R according to:

y = R(hTv |v ∈ G)

M , U and R are learnable functions.
Here the aggregation function is the sum over messages, but different ones can

1.5. GRAPH NEURAL NETWORKS 23

be defined as long as they are permutation-invariant. This is because graphs
are symmetric under node permutation and a change in nodes order should not
change how information is propagated.

1.5.2 Categorization of GNNs

Frameworks

With the features contained in nodes and edges, and the structure of the graph
itself as input, GNNs can solve a variety of tasks, that can be categorized de-
pending on the mechanism:

• Node-level In this case the regression or classification tasks are performed
on each node. The input features are propagated between nodes to build
an higher level (hidden) representation of them, then the task is performed
on this representation.

• Edge-level Given the hidden representation of the 2 nodes connected by
an edge the task is to predict the label or connection strength of it.

• Graph-level Here a single set of features is extracted for the whole graph,
by means of information propagation between nodes and pooling tech-
niques that create a compact representation of the graph. The pooling
techniques extract sub structures of the graph and by repeating informa-
tion propagation and contractions, the graph can be reduced to a single
set of features that preserve the properties of interest. This features are
then used for regression or classification of the whole graph.

Training Frameworks

GNNs can be trained in different ways depending on the task and availability
of data:

• Semi-supervised learning for node-level classification For this kind
of task there exist techniques that can be supervised only for some nodes
(e.g. ConvGNNs) and be robust enough to do the classification correctly
for every node. This depends on how information between nodes propa-
gates.

• Supervised learning for graph-level classification Here propagation
phases are alternated to contraction phases to obtain a compact set of
features fed into a multi-layer perceptron and a softmax layer to classify
the graph.

• Unsupervised learning for graph embedding If no labels are avail-
able a graph embedding can be learned in unsupervised fashion. The task
is to represent the graph using a low dimensional vector that preserves
topological information and important properties. This embedding sim-
plifies then the analysis of the data on the graph with other techniques.

24 CHAPTER 1. BACKGROUND

Taxonomy of GNNs

• Recurrent graph neural networks The RecGNNs are pioneer works
on GNNs. They extract high-level node representations by applying the
same function recurrently over nodes in a graph.
They diffuse nodes information, by updating nodes’ state based on that of
neighbours. This updated state is then propagated many other times and
states are updated accordingly until a stable equilibrium is reached. This
update function has parameters that can be learned and is constructed so
that this procedure converges.

• Graph Autoencoders GAEs are neural architectures that map nodes
from an input graph to a latent space and then decode this representation
to obtain graph information. They can be used for graph embedding or
graph generation. GAEs try to embed the nodes so that the structure of
the graph is preserved (as described by the adjacency matrix), moreover
they also encode node feature information. To do so they use a couple of
activated Graph Convolution Network layers in the encoding step, then
decode the adjacency information by calculating the similarity of couples
of node embeddings.

1.5.3 Convolutional graph neural networks

It is a special kind of message passing neural network where each node’s hidden
features are a linear combination of neighbours’ and its own features, with co-
efficients that depend on the structure of the graph.
GCNNs are a generalization of classic Convolutional neural networks, that in-
stead operate on Euclidean domains which posses special properties that not
present on graph domains. In particular a special definition of convolution on
graphs must be given:
Graphs have less structure than grid-like domains such as images, where instead
the number of neighbours of a pixel is constant and they can be ordered, so a
specific coefficient can be associated to a neighbour based on its direction. The
nodes in a graph are not assumed to be provided in any specific order, so the
latent representations of 2 isomorphic graphs with the same features should be
identical. An implication of this is that graph convolutional filters are oblivious
of direction or isotropic [25].

Spatial-based ConvGNNs

In this approach the convolution operation is generalized on graphs by combin-
ing the neighbouring features of each node [26]:

mt+1
v =

⊕
w∈N(v)

cvwMt(h
t
w)

ht+1
v = Ut(h

t
v,m

t+1
v)

where
⊕

is a aggregation operator that is invariant to the permutation of nodes.
The coefficients cvw are often derived directly from the adjacency matrix, so they
are not parametric. In some works (e.g in Graph Attention Networks) they are

1.5. GRAPH NEURAL NETWORKS 25

learned to express the importance of the link between v and w.
The message passing is more general than convolution, and considers both the
features of the node and of the neighbour to compute each message in the ag-
gregation.
Intuitively, one convolution step smooths the hidden representations locally
along the edges of the graph and ultimately encourages similar predictions
among locally connected nodes.

Spectral-based ConvGNNs

Spectral-based methods are mathematically well founded in graph signal theory.
They exploit the convolution theorem to define the convolution, after the concept
of graph Fourier transform has been established.
This transform derives from the eigen decomposition of the graph’s Laplacian
matrix that carries information about the aggregated difference of each node’s
features and its neighbours’ features.
The convolution theorem then states that

x ∗G c = F−1(F(x)�F(c))

where x ∈ Rn represents a feature of each node, c is the learnable convolution
kernel, F is the graph Fourier trasform and � is pointwise multiplication.
This definition of convolution is very sensible to the graph’s structure, so a
learned kernel cannot applied to a graph with different structure and obtain
similar results. Moreover the computation of the graph Fourier transform is
quite slow.
To improve on this several techniques have been proposed.
ChebNet approximate the kernel using the Chebyshev polynomials, in this way
it becomes localized in space.
Graph Convolutional Network is an approximation of Chebnet where only
the first order neighbours are considered when calculating the value of the con-
volution for a node:

hv = σ(c0hu + c1
∑

u∈{N(v)∪v}

Āv,uhu)

where Ā is the normalized adjacency matrix. Here the multiplication by the
coefficients is done after the aggregation, so every neighbour contributes equally
to a node’s hidden state.

1.5.4 Spatial-temporal graph neural networks

If the features of a graph evolve in time they describe a graph signal. Such a
signal depends both on time and on the graph’s structure, as a node’s dynamics
may depend on that of connected neighbours. The task of STGNNs can be the
prediction of future features value or label.
For example a road network can be described as a graph while the dynamic traf-
fic conditions can be captured by a graph signal that describes the congestion
at each arc. These conditions depend on the road structure and evolve in time
following past congestion.

26 CHAPTER 1. BACKGROUND

Most architectures for STGNNs model the spatial dependency using graph con-
volutions and computing a hidden representation that evolves in time using
either Convolutional Neural Networks or Recurrent Neural Networks.
A graph signal on nodes can be represented by a matrix that changes with time
Xt,:,: ∈ R|V |×d where |V | is the number of nodes in the graph, d the number of
features for each node.
Using CNNs, for each timestep t a feature propagation is performed using a
graph convolutional layer that operates on each graph temporal snapshot Xt,
then a 1-D convolution is performed in time independently for each node, in this
way past hidden representations are aggregated together to predict one snap-
shot in the future.

Recurrent neural networks are used in the machine learning community
to analyze sequences and doing prediction or classification. These tasks are
performed on extracted hidden states h that are found by progressively accu-
mulating the sequence, by means of a learned function. A simple example of a
RNN, operating on a signal xt can be:

ht = σ(Cxt +Dht−1 + b)

where C, D, b are learnable parameters.
A RNN can be modified to use graph spatial features instead, extracted using
a graph convolution technique:

Ht = σ(GConv(C;Xt,A) +GConv(D;Ht−1,A) + b)

where A is the adjacency matrix. Here instead of doing a matrix multiplication
between signal features and learned parameters, graph convolution is used. This
is more appropriate, as in this way spatial features are propagated following the
graph’s structure.

An example of Recurrent Graph Neural Network is the Graph Convolutional
Recurrent Network (GCRN) that combines a LSTM network with ChebNet.
The Diffusion Convolutional Recurrent Neural Network (DCRNN) instead works
using a different type of convolution. The task is to learn a function f(.) that
maps T ′ snapshots of the graph signal in the past to T in the future

(Xt−T ′ , ...,Xt)
f(.,G)−−−−→ (Xt+1, ...,Xt+T)

In order to do that the idea is to consider a Gated Recurrent Unit to encode
the temporal information of the signal from the graph, and use a Diffusion
Convolutional Layer to learn spatial information.
A DC layer learns a probability Pi,j for each arc, that represents the likeli-
hood of diffusion from node i to node j, based on graph random walks theory.
The convolution is then a sum of neighbours’ features (each feature separately)
weighted by the diffusion probability.

RNNs and physics

RNNs are more problematic than CNNs when dealing with sequences, as they
are less parallel. In fact the value of the hidden state ht depends on ht−1 so the

1.5. GRAPH NEURAL NETWORKS 27

computation must follow the sequential order of the sequence and this causes
a performance hit. Moreover a small error on the learned parameters is propa-
gated recurrently until the last hidden state, growing exponentially. This causes
the exploding gradient problem and makes this type of networks difficult to train.
Even with these shortcomings, recurrent neural networks provide a useful blueprint
for learning physical dynamics. In fact a physical system that evolves in time is
usually described by differential equations that can be used to map a state into
the next one, just like RNNs can learn how to map previous signal’s states into
the next. In this case the RNNs learns implicitly the differential equations
of the system, and becomes a physics simulator such that

x̃t = ht = s(xt−1)

This analogy is particularly interesting when dealing with physical dynamics
where the states evolution is not completely observable. If there are unobserved
states, the supervision is not available for the whole sequence. In this case they
become hidden states that should be reconstructed following a learned recurrent
relation between each other. For example if xt−k is the last observed state

x̃t = ht = sk(xt−k)

with sk meaning s has been composed with itself k times, having a sequence
ht−k+1:t−1 of intermediate results.

28 CHAPTER 1. BACKGROUND

Chapter 2

The problem

In this chapter Epidemiological modelling is introduced as well as the famous
SIR model. Then the problem tackled in this thesis can be introduced, using the
concepts explained in the Background. A more precise definition of Diffusion
dynamics on graphs is then provided, to better state the problem in terms of
Physics simulator 1.3 that works on graphs. At the end the datasets used to do
experiments are presented under NDlib.

2.1 Epidemiological modelling

Epidemiology is the study of the distribution and causes of health and disease
conditions in specified populations. [39]
Decisions regarding the control of infectious diseases often have to be made
despite an imperfect understanding of how a disease spreads and develops. Epi-
demiological models offer a means to address these uncertainties by combining
available information from experimental studies and the opinion of experts to
gain insight into the dynamics of infection and disease control [2].

A model is a representation of a physical process that is designed to increase
the understanding of that system. Models can be used to understand how ex-
ternal influences change the system’s behaviour and make predictions about its
dynamics.
Epidemiological models predict patterns of spread under different conditions
and give information on how to control the disease, especially when there is
limited practical experience with it. Moreover they can be used to study the
factors linked to the disease and how they affect it.

The approach for modelling changes depending on how well the epidemiology
of a disease is understood, the amount and quality of data available and
the skill of the modellers involved.
Models can be deterministic if they generate only an expected outcome, stochas-
tic if they generate a range of possible outcomes with some probability distri-
bution. Stochastic models are more difficult to construct but they can be used
to investigate the likelihood of different outcomes.
Data quality and quantity is particularly important. The time precision of

29

30 CHAPTER 2. THE PROBLEM

a model depends on how often the disease is measured. If spatial information is
available, locations and distances are taken into account in disease transmission
computations. Modelling invariably involves tradeoffs in terms of the complex-
ity versus the availability of data. So if small datasets are available or they
are taken from specific populations, the model should be simple to be able to
generalize and an expert should provide a priori information to be built into the
model.

Traditionally models assume simple population structures with homogenous
mixing of the people and simplified transmission parameters, they do not neces-
sarily account for spatial or social dimensions. Researches have shown [2] that
spatial effects, population heterogeneity and social behaviour can affect the dy-
namics of the disease.
Recent advances on remote sensing and data analysis methods make it possible
to simulate the effects of a disease on a much smaller scale. For example social
networks can model the interactions between people and capture complex pat-
terns that underlie disease transmission. Another technique is to build a large
scale agent-based model where each entity behaves following a predefined set of
rules.

2.1.1 The SIR model

Compartmental models are a modelling technique that divides the popula-
tion into compartments bases on states in which a person can be. The evolution
of a disease in time makes people change state, so the number of individuals
in a compartment varies. These models use deterministic or probabilistic ap-
proaches to predict how many people will be in every compartment in a future
time.
A common deterministic approach is to describe the dynamics of each compart-
ment using differential equations. In this case the system can be regarded
as physical, and its governing equations follow the biological laws of the infection.

The SIR model is useful to analyse pandemic diseases that spread from per-
son to person. It divides the population into 3 compartments:

• S: Susceptible individuals. When a susceptible person enters in contact
with an infected person, the susceptible individual becomes also infected.

• I: Infected individuals. These individuals can infect other people and grow
the spread of the pandemic.

• R: Recovered individuals. People who have contracted the disease and
are recovered or died.

The number of individuals is assumed to be constant, so no people are born,
and those who die do so because of the disease. Moreover a person who recovers
can never infect again, this is true only for a limited number of diseases and for
a limited amount of time.
There are different compartment based models, such as the SIS where a per-
son that recovers can be susceptible again, that is useful for some diseases such
as the influenza. Another is the SIRD that distinguishes people recovered and

2.2. PROBLEM FORMULATION 31

people that died as a result of the infection. The SEIR model considers that for
many important infections, there is a significant latency period during which
individuals have been infected but are not yet infectious themselves. During
this period the individual is in compartment E (for exposed). The SIR model is
chosen as the subject of study for this thesis as it is one of the simplest to analyse.

The 3 SIR variables vary over time as the infection progresses, so they can
be regarded as functions of time: S(t), I(t), R(t). The change of each vari-
able can be expressed as only dependent on the state of the system, e.g. if the
number of infected people is high, also the rate at which people recover will be
high, this disregarding time. For this reason the evolution of the variables can
be expressed by a system of ordinary differential equations:

dS
dt = −β ISN
dI
dt = β ISN − γI
dR
dt = γI

(2.1)

where N is the total number of people in the population, β is the infection
probability, γ is the recovery removal probability.

An interesting constraint that can be derived from this equations is that:

dS

dt
+
dI

dt
+
dR

dt
= 0

by integrating both parts it can be seen that:

S(t) + I(t) +R(t) = N ∀t ≥ 0 (2.2)

the sum of the variables for each time instant is constant. Moreover the initial
value of each variable is assumed to be positive or equal to 0. Using this fact
together with the previous constraint it can be shown that:

S(t), I(t), R(t) ∈ [0, N] ∀t ≥ 0 (2.3)

These constraints are general enough to be present in a wide range of dynamics,
that means that their enforcement is useful for many problems in which the task
is to find a model for such dynamics, as will be discussed later.

2.2 Problem formulation

Machine learning can be used to help with epidemiological modelling, where a
disease is not fully understood or it is difficult to capture using mathematical
means.
A model can be learned using ML techniques. For example a simulator can
be learned that evolves some properties of the system in time. To learn a SIR
model the three important variables S,I,R can be extracted from data and their
evolution used to train a simulator that captures their fundamental dynamics,
so that the simulation can be brought forward in time to make predictions.

32 CHAPTER 2. THE PROBLEM

Many space based models used in epidemiology, follow a predefined set of rules
valid on a small scale, to simulate the infection on a much larger scale, where
the dynamics are less understood. For example in a social network, represented
with a graph, the dynamics of interaction between near people can be known,
as well as the structure of the network, then, by using a simulation that exploits
this knowledge, the large scale effects can be studied. Once a precise simulation
is available, specific properties of it can be extracted (e.g. the S,I,R features)
without loss of information.
Graph neural networks can be used to learn these small scale interactions
and simulate their effects on a larger scale.

In this thesis, the problem of epidemiological forecasting is attacked by means
of physics informed machine learning. The goal is to learn an epidemiological
model on graph that forecasts the probability for every person of being in a com-
partment (S,I,R). This model is trained on a limited set of data and should be
able to forecast the spread of COVID-19 forward in time. Physics information
is enforced into the model by the choice of the architecture and the application
of constraints. This is useful for dealing with the scarce data available and make
physically plausible predictions. A special focus is given to the interpretability
of the model, that enables insight into the data and encourages a more informed
research on the topic.

The topic of physics informed machine learning will now be introduced and
the main ideas discussed, citing also the works that explored them. This next
section is useful for explaining why physics information is important and to
introduce then the methods used to solve the problem.

2.3 Diffusion dynamics on graphs

Graphs are a very powerful tool for reducing complex phenomena to a common
analytical framework whose basic components are nodes and their relationships.
A special case of modelling is that of dynamic phenomena, meaning realities in
which the relationships between agents as well as their status change with time.
We are interested in the diffusion dynamics on graphs of a viral disease, where
the nodes represent people and the edges their possible contacts, so the virus
spreads between neighbouring nodes. There are several elements that determine
the patterns of spreading through a group of people: the properties of the virus
(its contagiousness, its severity and infection speed), the structure of the social
network and the mobility patterns of people.
Here the graph is supposed to be static, so no people can be added or removed
and their relationships remain the same through time. A person is characterized
by a compartmental state and can be either in the S(Susceptible), I(Infected)
or R(Recovered) state. This is encoded by 3 features that can be either 0 or 1.
The dynamics of the infection is then a graph signal Xt ∈ R|V |×3 where |V | is
the number of nodes(people) in the graph. An initial state of the infection is
X0, this describes the compartment in which each person is at the beginning of
the study of the dynamics.
We suppose that dt = 1 so that each timestep advances by 1 time unit. Each
successive state of the infection is a graph snapshot Xt+1 that depends on the

2.4. NDLIB 33

previous one in time Xt, this dependency can be deterministic or not, in which
case it depends also on chance.
Our task is to learn a simulator s that advances the infection on graph forward
in time X̃t+1 = s(X̃t) by diffusing it from each person to its neighbours.

2.4 NDlib

To train the simulator a source of data is required. In this case a graph sim-
ulation library called NDlib is used [10]. This library is capable of handling a
number of different epidemic models among which the SIR, that will be used.
The first snapshot of the simulation is instantiated by having a small fraction
of people infected and the rest susceptible. At each simulation step the neigh-
bours of each person are considered and those infected can infect also the person
with probability β. If a person is already infected he/she can be removed with
a probability γ. A person cannot transition from the susceptible state to the
removed one directly. A static graph in which the simulation takes place can be
provided.
If a large enough number of people is considered, and the number of individuals
for each compartment are aggregated, a dynamics emerges that can be described
by the classic SIR equations (2.1) with the same β and γ used in the simulation.

34 CHAPTER 2. THE PROBLEM

Chapter 3

Related works

Several techniques have been studied to forecast COVID-19 [33].

An autoregressive model operates on a time series trying to forecast the
next value based on a linear combination of previous values plus a stochastic
term. This type of model has been applied to the problem in different forms,
starting from a simple moving average [17], to the more advanced autoregressive
integrated moving average [22], that is well known in statistics and economics
to treat time series with seasonality.

Regression is a statistical tool used to model a dependent variable given a
set of features or explanatory variables. This technique is useful for forecasting
if a set of interesting predictors is available that can characterize the future
progress of the pandemic [15].

Several models based on differential equations have been discussed in litera-
ture including the logistic growth model and the deterministic compartmental
models (such as SIR, SEIR and SIRD). They model the change in the number
of cases and in the number of people present in a compartment respectively as a
function of the current state of the infection. These models contain parameters
that affect the dynamics of the infection that can be learned from even a small
amount of data. For this reason they can predict the pandemic well in the first
phase on the infection, when data is still scarce [14].

Genetic Programming has been used to construct equations to describe the
dynamics of the virus [23]. These techniques work by combining base formu-
las together to form complex enough models to describe the infection dynam-
ics. The coefficients of such models are learned too during the search process.
Genetic Programming has been found to be reliable for prediction and learns
models that are interpretable.
This method is similar to Sindy, but instead of having a fixed number of func-
tions to be chosen and summed together, Genetic programming can also com-
pose them, making equations more powerful. The learning process is much
slower though and relies on many hyperparameters.

Several machine learning techniques have been employed for forecasting COVID-

35

36 CHAPTER 3. RELATED WORKS

19. They have the advantage of not making many assumptions on the dynamics
and instead learn directly the model from data, if enough is available.
For example [18] use an LSTM recurrent neural network to make predictions
based on the time history of cases. In another work [31] neural networks are
used in conjunction with autoregressive models and special optimization tech-
niques.

Graph neural networks use graphs to reason on social relationships between
people and simulate how the virus spreads on social networks, learning more
detailed models.
In the work [32] a dataset is used that counts the number of cases per region, and
the interconnections between regions are encoded by a graph. Message passing
layers plus an LSTM encode the spatial-temporal information about the pan-
demic to then predict the future number of cases. Moreover they employ transfer
learning, after noticing that past information of the evolution of the pandemic
on another country may share patterns with the county under analysis. So the
model is initialized with parameters learnt from the other country.
Instead [20] takes into account also the mobility of people across regions because
this represents a good indication on how the virus spreads. The flow of people
is modelled with a weight on the edges that changes with time for inter-region
mobility and a weight on the nodes for mobility into the region. Instead of using
a recurrent neural network to capture the temporal dependency of features, a
simple concatenation in time plus activation is used. So a fixed number of flow
snapshots are used to predict the next one.
In [28] mobility data is combined to epidemiology data, by fusing the features
coming from a graph neural network and a probabilistic model respectively, mak-
ing it possible to use different forms of data together to improve the predictions.

The closest work to our own is [29]. It tries to predict more than one time
step in the future by using graph attention networks together with a physics
informed loss. This loss is composed of 2 terms: a short term penalty and a
long term one. The short term error is calculated with respect to the target
graph infection, the long term error is calculated from the SIR model by mea-
suring how close the prediction is to a physically correct one.
This work explores the use of a loss term added to regularize, whereas by using
sindy the regularization is given by the sparsity of coefficients, we use the term
in the loss to enforce constraints instead. The SIR model is used in this work
to determinate how physically plausible is the solution, instead we don’t inform
the model using the SIR directly but only a set of dictionary functions plus
the constraints. Last our model is interpretable, in this work, because neural
networks are used, it is far more difficult to understand what the model learned.

Chapter 4

Contributions

In this chapter our contributions are described. At the beginning, the topics
are discussed in a more formal way, then Sindy Graph Implementation describes
how the various techniques are implemented.

In Sindy problem formulation, it is stated how Sindy can be used to learn
an infection dynamics, without discussing how to integrate graph structure in-
formation just yet. The problem Sindy tries to solve is formalized without
implementation details.
Then in Constraints we list the constraints added to the learned dynamics and
how to define them formally. These definitions are then used in Constraints
on infinite states to present the difficulty of making sure those constraints are
respected. Then some techniques that can be used to find the right constrained
problem formulation are presented.
When the formulation is found, the non linear constrained problem should be
solved. A well known solution method is presented in Constraints and gradient
descent.
Sindy is a technique that encourages sparse symbolic models. A way in which
it can do it is described in Thresholding.
After these introductions, our technique called Sindy Graph is introduced. It
is here explained how Sindy can be informed with graph structure, to learn a
dynamics on graph.
The last section is Sindy Graph Implementation. Here the techniques described
before are enriched with implementation details. In particular it is explained
how to deal in practice with Aggregated supervision, that is a central problem
when learning from data coming from statistics over large populations.

4.1 Sindy problem formulation

Given a time signal Xt,i (where Xt,: is abbreviated with Xt) that varies dis-
cretely with time t for the variables i ∈ {S, I,R}, the goal of this technique is
to learn a simulator sC that advances the signal by one time step in the future
X̃t+1,: = sC(Xt):.
Internally it learns a difference function dC with learnable parameters C:,: so
that sC(Xt), := Xt + dC(Xt) ∗ dt.

37

38 CHAPTER 4. CONTRIBUTIONS

The difference function approximates the real differences of the signal between
successive time steps: the mean square error it has with respect to the real
signal’s differences is to be minimized. More formally the objective is

minc
∑
t,i

(dC(Xt)i −X′t,i)2 (4.1)

where X′t = Xt+1−Xt

dt is a discrete approximation of the time derivative of the
input signal.
The difference function dC actually learns a set of differential equations, one
for each input variable i ∈ {S, I,R}:

dS
dt = dC(y)S
dI
dt = dC(y)I
dR
dt = dC(y)R

(4.2)

Each equation is a linear combination of non linear functions, took from a
predefined dictionary:

dC(y)i =
∑
j

Cjifj(y) (4.3)

where fj(y) is the function j of the dictionary evaluated on a state of the system
y = (yS ,yI ,yR).
Because the value of the functions fj(Xt) can be pre-computed for each state
of the input signal, dC(Xt)i is a linear function of the learned coefficients C.
Because also the input differences X′t can be pre computed, (4.1) represents a
linear least squares problem.

4.2 Constraints

Adding constraints to the reconstructed signals X̃ is a way of adding physical
information that is known a priori and helps to find a good candidate model.
Because we analyse the pandemic spread we know that a the features S, I,R
must be in the range [0, 1], with 1 indicating the maximum number of people.
Moreover the sum of people divided in the 3 compartments is supposed to re-
main constant.
An important consequence of bounding the solutions is that they cannot grow
exponentially as time goes on. In fact unconstrained differential equations
most likely are not bounded and for their nature their solutions grow very fast,
separating quickly from the true behaviour. This means that without constraints
the model most likely generalizes bad.

In order to make sure that the sum of the reconstructed signal’s components
X̃:,S , X̃:,I , X̃:,R, remains constant as the simulation unfolds, it can be noticed
that this is equivalent to set the sum of the respective differences to 0:

dC(Xt)S + dC(Xt)I + dC(Xt)R = 0 ∀t ≤ T

this constraint is easy to add to the initial problem (4.1) as it doesn’t require
the numerical integration of the difference function.

4.3. CONSTRAINTS ON INFINITE STATES 39

A much more strict constraint can be enforced though, because no deviation
from the constant sum should be possible for any feasible state of the system
y ∈ SetS where SetS = [0, 1]3 ∩ {y|yS + yI + yR = 1}.
The constraint becomes:

dC(y)S + dC(y)I + dC(y)R = 0 ∀y ∈ SetS (4.4)

The positivity constraint is added to make sure that starting from a feasible
initial condition, the simulated signal never goes below 0, for any of its com-
ponents S,I,R. To avoid expressing this constraint as a numerical integration, a
formulation based on the difference function is given.
The insight is that for a simulated variable X̃:,i, the only way to go below 0
after some time, if starting from a feasible initial condition, is to have negative
derivative when crossing 0. So by imposing a derivative greater or equal to 0
when the variable is 0, the signal for that variable must slow down when close
to 0 or increase and never become negative.
The constraints are 3, one for each variable S,I,R, and are expressed as:

dC(y)S ≥ 0 ∀y ∈ SetPS
dC(y)I ≥ 0 ∀y ∈ SetPI
dC(y)R ≥ 0 ∀y ∈ SetPR

(4.5)

where

SetPi = {y|yi = 0,yj ∈ [0, 1]∀j 6= i} ∩ {y|yS + yI + yR = 1}

Because the sum remains constant to 1 and the state’s variables remain pos-
itive, if the problem is constrained it is also true that each variable must be ≤ 1.

By combining constant sum and positivity constraints the simulator takes in
input a feasible state and outputs another feasible state. By iterating the sim-
ulation, the trajectory of states remains inside the feasible set SetS for any
number of steps. So SetS is closed under sC .

4.3 Constraints on infinite states

The problem with the constraints (4.4) and (4.5) is that in order to be able
to optimize in practice the objective by enforcing them, they should not be
defined on an infinite number of initial conditions y. Three solutions have been
identified to solve this issue.

4.3.1 Random sampling

The first solution is to discretize the sets SetS, SetPS , SetPI , SetPR into a
finite number of elements taken at random, to represent the real sets as well as
possible. So for example RandSetS is built from SetS by sampling uniformly
n points at random.
The constrained optimization problem then becomes:

40 CHAPTER 4. CONTRIBUTIONS

Figure 4.1: Feasible states in SetS. They are given by the intersection of a cube
where S,I,R are in the range [0,1] and a plane in which the features sum to 1.
The region is a triangle.

minC
∑
t,i

(dC(Xt)i −X′t,i)2 (4.6)

s.t.

dc(y)S + dc(y)I + dc(y)R = 0 ∀y ∈ RandSetS
dc(y)S ≥ 0 ∀y ∈ RandSetPS
dc(y)I ≥ 0 ∀y ∈ RandSetPI
dc(y)R ≥ 0 ∀y ∈ RandSetPR

The problem with this solution is that the states space of the system can become
large if the number of features is high (as it is the case when constraining sindy
graph), the random samples can become sparse into the space, leading to large
volumes of states that are left unconstrained.

4.3.2 Minima seeking

To improve on Random sampling limitations, a second solution is proposed. The
idea is to define a parallel problem to solve that asks for the single feasible
state yk that violates a constraint the most (or is closest to do so). There will
be one critical state for each of the 4 constraints. By asking that the differ-
ence function evaluated on this state doesn’t violate the constraint considered,
by definition the function evaluated on any other feasible state will not violate
either.

4.3. CONSTRAINTS ON INFINITE STATES 41

An interesting observation is that for the positivity and constant sum types
of constraints, the feasible state that violates them the most can be found by
searching for the minimum of a function.
For example to make sure that a positivity constraint is satisfied all the values
of the difference function evaluated on SetPi must be positive. It is sufficient
to make sure that the minimum of the difference function is positive. A similar
reasoning is possible for the constant sum constraint and even for bound con-
straints different from 0.

The new problem searches for a state yk for each constraint k ∈ {S0, S1, Ps, Pi, Pr}
that minimizes (or maximizes) the difference function.

Problem(a) Problem(b)

minC
∑
t,i

(dC(Xt)i −X′t,i)2 miny − dC(yS1) +
∑
k 6=S1

dC(yk)

s.t.

dC(yS0)S + dC(yS0)I + dC(yS0)R ≥ 0 yS0 ∈ SetS
dC(yS1)S + dC(yS1)I + dC(yS1)R ≤ 0 yS1 ∈ SetS
dC(yPs)S ≥ 0 yPs ∈ SetPS
dC(yPi)I ≥ 0 yPi ∈ SetPI
dC(yPr)R ≥ 0 yPr ∈ SetPR

In order to solve in practice this double problem, gradient descent techniques
can be used. A solution is to alternate the calculation of the gradient for the
first problem and update of parameters C and calculation of gradient for the
second problem and update of the minimum candidates yk. In this way the
critical states that are used to constrain the Problem(a) are updated as its ob-
jective is optimized.
The problem of using gradient descent to find the critical states is that it can
converge to local minima. If this happens, to find a non-critical case, the
constraining will not be sufficient.

A solution is to introduce multiple candidate critical states for each constrain
Y:,k ∈ Setk initialized at random, and each should search for a local minima
in parallel. In this way even if there are multiple local minimums they should
be reached by at least one candidate state, given that enough candidate
states are introduced. The number of candidate states needs to depend on
the complexity of the difference function, so simpler functions are more easily
constrained.
Moreover searching for minima dynamically as the first problem is optimized in-
troduces a set of added challenges, for example there are more hyper parameters
to set and the interaction between the 2 problems is not clear, the convergence
of this double problem is more difficult to study.

42 CHAPTER 4. CONTRIBUTIONS

4.3.3 Restricting dictionary functions

Finding the minimum of the difference function can be problematic if no prop-
erties about it are known. Because in Sindy the difference function is given
by linear combinations of dictionary functions, if these functions have known
properties this can simplify the search of minima and thus the constraining of
the problem.

AHarmonic function is a twice continuously differentiable function f : U → R
where U is an open set of Rn that satisfies the Laplace equation

∇2f = 0

everywhere on U .
This class of functions have interesting properties. First a linear combination
of harmonic functions is still an harmonic function.
Another property is that if K is a nonempty compact subset of U (so it is closed
and bounded) then f restricted to K attains its maximum and minimum
on the boundary of K. Now, because the boundary of K has 1 degree of
freedom less than U , the minimum can be found in the boundary decreasing the
search space of 1 dimension. If random sampling is used, the density of points
is increased, making the constraints more precise.

Figure 4.2: A harmonic function on R2. U is an annulus and the minimum and
maximum are on the inner and outer circumferences.

A Multilinear polynomial is a multivariate polynomial p : Rn → R in which
no variable occurs to a power of 2 or higher. It has the property that if all
variables are held constant except for one, the function becomes linear on that
variable.
For example, the multilinear polynomial of 3 variables is:

p(y0,y1,y2) = c0 + c1y0 + c2y1 + c3y2 + c4y0y1 + c5y0y2 + c6y1y2 + c7y0y1y2

Multilinear polynomials are harmonic functions that have additional properties.
They arise from the multilinear interpolation of the vertices’ values of an hyper
rectangle. In this kind of interpolation, when moving a point on an edge con-
necting 2 vertices of the hyper rectangle, its value interpolates linearly between

4.3. CONSTRAINTS ON INFINITE STATES 43

the values of the extremes. This is an intuition on an interesting property of
multilinear polynomials:
If a compact subset K of U is considered that is an hyper rectangle, the mini-
mum of p restricted to K is in one of the vertices of K.

In figure 4.1 there is an cube representing variables bound constraints. If only
those bounds were considered (no constant sum), it would have sufficed to search
for the minimum on the cube’s vertices.
Even if searching on vertices is not sufficient for more complex constraints, it
is possible to calculate exactly where the minimum of p lies if the set K is
determined by a set of linear constraints.

A Multivariate polynomial of degree 2 is a polynomial of many variables
in which at most 2 variables are multiplied together:

p(y0,y1,y2) = c0+c1y0+c2y1+c3y2+c4y
2
0+c5y0y1+c6y0y2+c7y

2
1+c8y1y2+c9y

2
2

These polynomials have the property that every partial derivative is a linear
function. This fact makes the search of their minimum simpler, so solving
problem(b) is possible with exact methods.

Minimum of constrained polynomials of degree 2

If polynomials of degree 2 are used as dictionary functions, to find the criti-
cal states and constrain problem(a) linearly, problem(b) can be solved by using
the Quadratic programming algorithm, listed in the appendix. This is the case
because the objective of (b) is a quadratic polynomial and its constraints are
linear.
Because problem(b) keeps on changing as the optimization of problem(a) goes
on, (b) should be continuously solved. Solving a quadratic programming prob-
lem for every iteration of (a) is very expensive computationally.

Fortunately it is possible to speed up the optimization by exploiting the fact
that every time that (b) is solved there is only a slight change in the coeffi-
cients of the polynomial, if (a) is solved iteratively using gradient descent. This
suggests that (b) is always solved starting from states that are close to the
optima.
Though because there can be a different local minima in each flat that bound K,
by only slightly changing the coefficients it is possible that the global optimal
state of (b) changes the flat in which it lies. However the local minimums cannot
change much, so by doing a parallel optimization in each flat, it is possible to
find the global optima in only few iterations.

Quadratic programming with updating objective Starting from the def-
inition A.1, the new algorithm for solving (b) starting from good guesses from
previous iterations is the same as Quadratic programming, but the linear equa-
tions solver found in the min equality function at line 2, should be iterative and
accept an initial guess. This initial guess yJ will correspond to the previous
local minima in the selected flat J .

44 CHAPTER 4. CONTRIBUTIONS

The new definition is then:

ymin = arg min
J∈2D

pe(min equality(pe,C
′
J ,d
′
J ,yJ) ∩K) (4.7)

where pe is the last update on the polynomial done solving problem(a).

If (a) is constrained using the state 4.7, from an iteration to the next this state
can ”jump”, becoming potentially very different. Not having stable constraints
can make (a)’s current solution forget the contribution of previous critical states.
To improve stability it is sufficient to introduce a constraint for each local min-
imum of (b). This means adding redundant constraints, among which there is
the global minimum. The local minimums are:

yJ∈2D = pe(min equality(pe,C
′
J ,d
′
J ,yJ) ∩K) (4.8)

4.4 Constraints and gradient descent

Supposing that the right constraints have been found, Problem a has to be
solved respecting them and considering that it is has a non linear formulation.
A typical way of solving this kind of problems is by using the method of
Lagrange multipliers. It is based on gradient descent, and it works by adding
the constraints as an additional term to the objective function. During the
iterations the constraints term becomes more and more prevalent, so after a
good region of the search space have been reached by focusing on the objective,
the constraints are enforced.
A Lagrangian function is defined as

L(C,λ) = Lobj(C) + λTLconstr(C)

where Lobj is the objective function (4.1) to be minimized with parameters C,
Lconstr is a loss function derived from the previous constraints, such that it
outputs one loss component for each constraint:

Lconstr(C)eq 0 = −dC(yS0)S − dC(yS0)I − dC(yS0)R (4.9)

Lconstr(C)eq 1 = dC(yS1)S + dC(yS1)I + dC(yS1)R

Lconstr(C)ineq i = −dC(yPi)i

λ is a new vector of parameters, one for each constraint, that will be optimized
alongside C. The inner product of λ and Lconstr is the second term of the
Lagrangian function. The original constrained problem

minCLobj(C)

s.t.

Lconstr(C)eq = 0

Lconstr(C)ineq � 0

4.5. THRESHOLDING 45

becomes

minCmaxλL(C,λ) (4.10)

s.t.

λineq � 0

where � indicates ≥ for each element on the vector.
This new formulation has only some positivity constraints on parameters λ cor-
responding to previous inequality constraints. This is to make sure that inequal-
ities do not constrain the search if they are respected. Because the constraints
on λ are satisfied by simply cutting the gradient, gradient descent techniques
can be now used for solving (4.10) without other considerations.

To optimize this new formulation a library called Cooper for Lagrangian-based
constrained optimization in Pytorch has been selected. It works by alternating
the optimization of C by fixing λ and vice versa. In this way the lagrange
multipliers are adjusted to force the constraints as Lobj gets optimized.
If the optimizer manages to converge to a saddle point, the constraints are guar-
anteed to be satisfied by the Karush–Kuhn–Tucker conditions.

4.5 Thresholding

Sindy or Sparse Identification of Nonlinear Dynamics, as the name implies
searches for the coefficients C so that they are sparse. This means that the
learned difference function uses only some of the functions present in the dic-
tionary, choosing to leave some out, so with the corresponding coefficient to 0.
The procedure used to zero out some coefficients is called thresholding.
Leaving some functions out makes the difference function simpler with the goal
of making the simulator overfit less, and explain the data in the simplest way
possible. This is a form of regularization.
To decide which coefficients put to zero the least important ones are eliminated
until the validation error starts to degrade. This is done to make the model
generalize better.

4.6 Sindy Graph

In order to model the spatial information of the epidemics evolution, a graph
is used. Each node models a person’s infection status at a given time instant,
the arcs of the graph model the social relationships between people: if 2 people
are connected they may come in contact with a certain probability. This is
an instance of Spatial-temporal Graph with a graph signal X ∈ RT×|V |×d
where |V | is the number of nodes and d the number of features per node (3) and
T the number of time steps, Xt is a shorthand for Xt,:,: and is the snapshot of
the graph at time t.
A susceptible person that comes in contact with an infected individual becomes
infected with a certain probability. This probability also changes with time of
exposure, so given the same conditions (infection status of the person and that

46 CHAPTER 4. CONTRIBUTIONS

of neighbours in a given time) two individuals can belong to different depart-
ments.
For this reason, in each node there are features {S, I,R} ∈ [0, 1] that evolve
in time, indicating the probability that a person falls into a category and
S + I +R = 1.
Because those probabilities depend on the node’s local status at the previous
timestep y, the learned model takes as input the previous probabilities {S, I,R}
in addiction to {Sn, In, Rn}, that correspond to the neighbours’ status.
To obtain {Sn, In, Rn} a local aggregation is performed on the graph for each
node, with the idea that the more infected people are near an individual, the
higher the probability of being infected.
Given the local status y, the model then outputs the probabilities of falling into
S, I or R at the next timestep.

The model also has shared parameters between nodes. This is because 2 dif-
ferent nodes with the same y can infect differently by chance, but are supposed
to have the same probabilities of doing so. The model works by probabilities
because given the same y the parameters are determined by averaging and are
not specific per node.

Figure 4.3: Average evolution of nodes with similar local status in 2 different
cases. The learned model accounts for different local statuses and uses the
average behaviour to predict the probabilities evolutions of similar nodes.

Moreover the fact that the parameters remain the same for each node, and
neighbours features are aggregated, creates a separation between infection dy-
namics and graph structure: the model does not depend on the structure, only
on local infection state, the structural information is used only in the aggre-
gation phase to diffuse the infection based on how people are socially related.
This means that the model can be potentially learned on a graph with certain
structural features and work also on a very different one.

4.6.1 Definitions

From a message passing point of view, the propagation is done in only one step
by simply summing neighbours’ features, because only first order neigh-

4.6. SINDY GRAPH 47

bours infect a person. A sum is preferred over the average as a node with more
neighbours should be more affected by their state.
The message function simply copies the input:

Mt,v,: = aggr(Xt, v) =
∑

w∈N(v)

Xt,w,:

Ht = mess pass(Xt) = concat(Xt,Mt, 1)

The concat function concatenates the 2 matrices along the features axis.
This is repeated for each time step t for each node v to obtain the matrix
H ∈ RT×|V |×2d. Its last dimension contains the 3 node’s features plus the 3
new features given by the message passing.

The task is now to learn a simulator that describes a state transition and that
does a message passing first before using the leaned difference function. This
new simulator is called sg or simulator on graph:
X̃t+1 = sgC(Xt) if node level supervision is used.
X̃t+1 = sgC(X̃t) if aggregated supervision is used.
If node supervision is available, the train set contains information on how the
features of each node evolve in time, otherwise only the mean evolution of the
features is available. In the second case the state of each node at a specific
time is estimated from the output of sg at the previous timestep. sg is trained
to make sure that the predicted snapshot has the average of node’s features
corresponding to the supervision.

sg integrates the difference function, that is called after a message passing step
is done:

sgC(Xt) = Xt + dC(mess pass(Xt)) ∗ dt (4.11)

The difference function is now computed in parallel for each node:

dC(Ht)v,i =
∑
j

Cjifj(Ht,v,:) ∀t, v ∈ V, i ∈ {S, I,R}

With node supervision the simulator is trained by solving the problem:

minC
∑
t,v,i

(dC(Ht)v,i −X′t,v,i)2 (4.12)

where X′t = Xt+1−Xt

dt is the discrete approximation of the time derivative for
each node and feature of the graph.
If aggregated supervision is used, the problem becomes:

minC
∑
t,i

(mean(sgtC(X0):,i)−mean(Xt,:,i))
2 (4.13)

where sgt(X0) is the t-th step of simulation starting from the initial condition
X0; it is actually an integration in time of the learned difference function. The
graph simulator is iterated because there is no supervision at node level, so
the input needed for the simulator to calculate the next snapshot is simply the
output at the previous iteration. This is only an approximation of the real

48 CHAPTER 4. CONTRIBUTIONS

input, but this is expected to become increasingly better during optimization.
Because now the error is calculated after an average, there is little telling how
the single node’s signal should behave, there is only aggregated information and
the inductive bias. The dictionary’s functions should limit the freedom of
choice of the node’s behaviour, in order to avoid overfitting.

4.6.2 Constraints

The problems (4.12) and (4.13) are constrained to make sure that the prob-
abilities make sense. Because the simulator sgC has parameters shared, each
node of the graph behave the same given the same input state. For this reason
the simulator is constrained disregarding nodes distinction, and considering all
possible input states.
The idea is to find the most critical state h for a single node, for which the
learned difference function maximally breaks a constraint and request that in-
stead the constrain on the critical state is not broken. So problem(a) is solved
substituting X with augmented state snapshots H, and using the method of
Lagrange multipliers to solve the constrained problem.
In order to find the most critical h, it is sufficient to solve problem(b) in parallel
with (a), and adding some bound constraints for the new features Sn, In, Rn.
Those feature must be positive and less than an upper bound. Because they
come from the sum of neighbours features, and those features cannot be larger
than 1, the maximum value they can get is the maximum degree among every
node:

0 ≤ hi ≤ max(deg(v)) ∀v ∈ V, i ∈ {Sn, In, Rn}

4.7. SINDY GRAPH IMPLEMENTATION 49

4.7 Sindy Graph Implementation

For implementing an optimizer for learning the simulator sg, the library Py-
Torch is selected. This machine learning library contains many functions useful
for doing parallel optimization, the methods are extensible and can be used for
automatic differentiation. Moreover there are libraries based on PyTorch,
such as Torch Geometric, that can be used for doing optimization on graphs.
For implementing Sindy Graph it is sufficient to define the inputs, the simula-
tor’s structure, the tensor operations that lead to an output and thanks to the
automatic differentiation and with a constrained optimizer, it is possible to find
the model’s parameters.
The hyper parameters are found using specific techniques. The trained model
is then tested on much data, this is possible because the datasets are generated
by NDLib.

Every component of the implementation is discussed in the next sub sections.

4.7.1 Difference function

The functions fj ∈ R6 → R that are linearly combined to form the differ-
ence function, take as input a state y with a component for each local feature:
S, I,R, Sn, In, Rn and output a single real value.
They are chosen to represent the possible interactions between features that
condition the change in probability of a variable S, I,R with time (4.2).
This is the list of functions introduced in the dictionary divided by type of in-
teraction between features:

Node only S I R I ∗ S R ∗ S R ∗ I 1
Neighbours only Sn In Rn In ∗ Sn Rn ∗ Sn Rn ∗ In

Mixed S ∗ In I ∗ Sn R ∗ Sn S ∗Rn I ∗Rn R ∗ In
These functions are multilinear polynomials of degree 2, this makes the
constraining simpler.
Because features are multiplied together they influence each other. For example
the rate of change of the probability that a person is infected dI

dt may depend
on the neighbours infected In. But this sensibility on In is there only if the
person is susceptible, so the function S ∗ In gets a large value only if the person
is susceptible and with many infected neighbours, so is expected to get a large
learned coefficient.

The difference function contains then 57 parameters C, because there is a co-
efficient for each dictionary function for each of the 3 differential equations to
learn. The forward pass of the difference function is simply a tensor multipli-
cation between C and the functions evaluated on the input features. Because
using node supervision also the inputs to the model are supervised per node,
this is equivalent to doing teacher forcing, and this means that the functions
evaluations can be precomputed to gain performance.

50 CHAPTER 4. CONTRIBUTIONS

4.7.2 Message Passing

The message passer is an essential component of the simulator sg. It is required
for being able to train sg in the case of aggregated supervision and test sg.
A message passer that aggregates neighbours using the sum is already imple-
mented in Torch Geometric, so a class of this library is extended. The extended
class is able to calculate features Sn, In, Rn for every node of an input snapshot
Xt and also measure nodes’ features, meaning evaluate the dictionary func-
tions fj on them.

The integration on graph sgtC is implemented by iterating the simulator
starting from an initial snapshot X0. This is a cause of a major bottleneck
because by working recursively on a previous iteration’s output creates a very
long critical length, meaning that the code is less parallel. In order to improve
performance several integrations are done in parallel, when it is possible to pack
many together.

4.7.3 Thresholding

By training sgC , the coefficients C each get a value. Sindy is a sparse technique,
meaning that it tries to reduce the complexity of the model by selecting only
some terms to put on the difference function. In this way the model is more
interpretable and less prone to overfitting.
To exclude some terms from dC , the corresponding coefficients are zeroed out by
multiplying C with a mask before the matrix multiplication with the measures.

The terms are removed after an initial training of the model is performed in
a phase called thresholding. The initial training is done for estimating each
term ”worth”, so how much it contributes to the difference function. Based
on the worth a certain percentage of less important coefficients are excluded.
Then another train phase is performed to adjust the truncated model and then
many other thresholding cycles are performed.
Because for every cycle only a few coefficients are excluded, the train procedure
becomes an increasingly better heuristics for deciding terms’ worth.

Because the difference function dC comprises functions of different nature (e.g.
I and In), simply looking at coefficients to know which terms to threshold can
lead to bad results. So a term worth is calculated as:

w(i, j) = Ci,j
∑
t,n

|fj(Xt,n,i)|

this is to take into account the fact that different functions can have different
bounds. In fact if a function has a large bound, the model can learn to multiply
it by a small coefficient to compensate. If only small coefficients were selected
that would exclude such coefficients, even if they are important.

The percentage of terms to be eliminated at each cycle is controlled by an
hyper parameter (thr percent). The elimination of terms is done in relative
terms, ordering them by worth and thresholding a percentage of the smallest
ones. In this way the hyper parameter is more interpretable and less sensitive

4.7. SINDY GRAPH IMPLEMENTATION 51

than a fixed threshold.
The elimination is not done in one shot but gradually between epochs, so that
the coefficients have the time to readjust after the truncations.
The number of thresholds is decided via early stopping using the validation
set. This gradual elimination of coefficients corresponds to a feature selection
technique called Recursive feature elimination with cross-validation im-
plemented also in scikit learn.

1 n_zero_coeffs = thr_percent*n_coeffs *(thr_index +1)/n_thr

2 ind_zero = argsort(w(f))[: n_zero_coeffs]

Listing 4.1: coefficients selection

4.7.4 Constraints

In order to optimize the problem (4.10) a library called Cooper has been selected.
It uses the method of Lagrange multipliers to optimize non linear constrained
problems and integrates with the PyTorch workflow. Because it works by gra-
dient descent on top of the PyTorch engine, it can handle a large number of
parameters and constraints.
From all the available optimizers, the Extra gradient SGD has been selected. It
is based on stochastic gradient descent and works in 2 steps:

F (w) = [∇CL(C,λ),−∇λL(C,λ)]

wt+ 1
2

= wt − ηF (wt)

wt+1 = wt − ηF (wt+ 1
2
)

Essentially it updates parameters C and λ by doing gradient descent separately
on the 2 and the gradient is also extrapolated. The extrapolation is similar to
the Runge–Kutta methods, and is useful for having more convergence guaran-
tees.
The parameters are all initialized to zero, in this way the problem is initially
unconstrained and this makes it possible to reach more easily a good region
before constraining. This is because as λ parameters grow, the gradient is less
prone to cross unfeasible regions.

The method chosen for the constraining is the random sampling. A cer-
tain number of samples are taken at random from the feasible region of states,
and the constraints are enforced on these states hoping that they are sufficiently
close to the critical ones.
Because the constraints are approximated, after the train, the constraint error of
the model can be recalculated more precisely by focusing on more specific states,
for example those reached by the model in the test set. For doing this a new set
of states is considered and the constraints error is calculated on them. Because
the model was not trained on this new set, this new error should generalize well:

constr err(C) =
∑

y∈NewSetS
|Lconstr(C,y)eq|+

∑
y∈NewSetP

relu(Lconstr(C,y)ineq)

(4.14)
where Lconstr are the constraint functions of (4.6).

52 CHAPTER 4. CONTRIBUTIONS

Another method for constraining that could have been used is Quadratic pro-
gramming with updating objective. It has the disadvantage that it is
specifically designed for dictionary functions that are polynomials of degree 2.
The advantages though is that it is exact, so no constraints have to be approx-
imated and it is reasonably fast.

4.7.5 Training

The training set consists of a series of snapshots Xt that are subdivided into
consecutive time intervals to form the training set, the validation set and the
test set. The validation set is 20% of the training set and because the dataset
is generated and the test set can be as long as wanted, it is the same length as
the training set.

The train cycle consists of a certain number of epochs in which the whole train-
ing set is used. The number of epochs is decided by early stopping by using
the validation error and the constraint error.
The early stopping works by considering the best epoch so far and stopping the
train cycle if there is no improvement after a certain number of epochs (the
tolerance). The best epoch is decided with:

1 def is_best_epoch(constr_err , val_err , best_constr_err ,

best_val_err):

2 return (constr_err <= 1e-4 and val_err < best_val_err) or (

constr_err > 1e-4 and constr_err < best_constr_err)

Listing 4.2: function for selecting the best model so far

The constraint error is minimized until it is below a threshold, then the valida-
tion error is used.
The validation error is calculated by integrating the current learned model from
the first time step until the end of the validation set, then the MSE is calculated
only on the validation interval.

val err(C) = MSE(sgval tC (X0)train t:val t,:,:,Xtrain t:val t,:,:)

4.7.6 Node supervision

When node supervision is used, all input and output snapshots Xt are available.
This means that the model can be trained using teacher forcing (4.12), for this
reason the train loss can be computed in parallel for each timestep and the train
goes fast.
During the train, multiple thresholding cycles are performed, until there is no
improvement on the validation error for a certain number of cycles.

4.7.7 Aggregated supervision

With supervision at node level, for every time step the expected output Xt+1

is available for each node. Because of this also every input Xt is available for
each node, by simply considering the previous time step.

4.7. SINDY GRAPH IMPLEMENTATION 53

With aggregated supervision the graph’s signal is unknown, and the only avail-
able supervision is given by the aggregation of the signal with respect to all
the nodes (4.13):

m(t, i) = mean(Xt,:,i)

Because no input is available at node level for a given time step there is no way
of calculating the output of the model and then the loss. For this reason the
graph’s signal has to be approximated someway.
Two strategies have been formulated to approximate the inputs:

1. Trying to recover node level information from m by spreading it equally:

X̃t,:,i = m(t, i)

2. Estimate input from the output given by the model at current epoch e:

X̃t = sgCe
(X̃t−1)

The problem with the first technique is that it does not model how the infection
evolves with clusters of infected individuals. All individuals have all the same
probability of being infected regardless of the number of neighbours and their
infection probability, so the model does not learn how to handle the spatial
spread of the virus.
The problem with the second technique is that it heavily relies on the goodness
of the prediction at previous time steps to give a precise input. When at e = 0
the model gives bad predictions, leading to an increasing error from a time step
to the next that makes the training procedure completely diverge.

Because the downsides of 1. and 2. are complementary, the techniques are
combined initializing the model with the first technique and slowly transition-
ing to the second. This can be seen as a curriculum learning technique [37].
The idea is to define a window of length l and calculate the outputs by inte-
grating the model for l timesteps with 2., starting from t0 with an estimation
from 1. By using many shifted windows all the outputs can be calculated.

X̃t0+t = sgtCe
(m(t0, :)) ∀t < l

The training is performed in multiple phases, by growing the window’s length
every time, starting from l = 1 that correspond to 1., to l = train points that
correspond to 2. In this way the model is initialized good enough to avoid
divergence, and slowly it learns how to differentiate the probabilities based on
the local infection status.
To exploit the dataset as much as possible, the windows are overlapped. Using
curriculum learning the objective function (4.13) becomes:

minC
∑
j,t<l,i

(mean(X̃jo+t,:,i)−m(jo+ t, i))2 (4.15)

where j is the index of a window and o is the offset between windows.

After the curriculum learning a thresholding phase is performed composed

54 CHAPTER 4. CONTRIBUTIONS

of many cycles. The training in between cycles is done using (4.15) with
l = train points.
As the windows grow, the performance of the optimizer degrade, this happens
because the integrations become longer and longer, and they are not very par-
allel operations.
As the curriculum learning unfolds, neighbours’ features should be more and
more exploited to follow the aggregated supervision. A better model means
also better estimated inputs to learn an even better model.

4.7.8 Hyper parameters

There are multiple hyper parameters to be selected: the primal and dual learning
rates, the tolerance of epochs, the tolerance of thresholds, then increment on the
size of the windows for the aggregated supervision, the percentage of coefficients
to remove at each thresholding cycle.
The primal and dual learning rates are the only hyper parameters searched for
during the testing, using grid search. The others are fixed, in order to improve
performance.

Chapter 5

Experimental Results

The goal of this chapter is to discuss how our method, called Sindy graph
with aggregated supervision and constraints, performs in the task of epi-
demiological forecasting and compare it to an instance of existing techniques
called Spatial-Temporal Graph Neural Networks.
We notice that our technique works well for forecasting and outperforms STGNNs.

We include many more experiments to evaluate how Sindy graph’s performance
are increased by enforcing constraints, how it would perform if node supervision
was available, and how sensible is the technique to the length of the training
set.
To show that Sindy is a good starting point on which adding our contributions,
we compare it to STGNNs improved with same constraints and aggregated su-
pervision found in our technique.

5.1 Tests introduction

For testing, all the experiments are done in the same way for each method con-
sidered, in order to be able to compare them.
In this section the methodology, datasets, statistics and plots used for testing
are described.

All the methods tested require information about the structure of the graph
that represents the relations between people in the population. All the ex-
periments are run on the same graph, that has 1000 nodes and is generated
randomly using the Erdős–Rényi model. For this type of graph each edge has
a fixed probability of being present or absent, so no considerations on how peo-
ple might cluster together are included, this is less realistic but more simple to
study.
Each person has on average 5 neighbours, this means that the virus has to pass
from many people before infecting everyone. This makes the spread dynamics
more interesting and similar to what happens when people are isolated.

The datasets are generated with NDlib, that is capable of simulating the evo-
lution of a viral disease on a known graph. NDlib makes it possible to define

55

56 CHAPTER 5. EXPERIMENTAL RESULTS

some infection parameters that in our case have values β = 0.01 and γ = 0.02
and a seed, that is used to initialize the random number generators.

To test the different methods, 20 runs are done for each, using 20 datasets
generated by NDlib choosing each time a different seed. All the results are then
averaged across the runs, to have more meaningful statistics.
In case some tests fail because some of their statistics have a nan value, those
are excluded from the average calculation, but their count is reported.

For each run a grid search is performed to find the best set of hyperparame-
ters. The best model is selected by looking at the validation error. Usually a
small set of hyperparameters is used, to accelerate the tests, in fact from a run
to another the best set of hyperparameters does not change significantly.
Because focus has been given to get the best performing models, the train time
is quite long. It is possible to greatly reduce it by doing little compromises
with performance, for example by reducing the various tolerances or avoiding
spending much time for slow computations such as the sequential integration in
Sindy with aggregated supervision.
The hyper parameters considered in the grid search are reported for each method.
For each method the size of the train, validation and test set in terms of num-
ber of timesteps is given. Then the learning rates are reported as well as the
tolerance used for epochs, this describes how much the early stopping waits for
improvement before finishing the training.

A model’s performance is evaluated by calculating different statistics:

• mean time: is the average across runs of the time taken to train and
evaluate the model while doing grid search

• mean train error: it is the value of the loss corresponding to the best
model selected. It is specific for Sindy graph and the STGNNs so they
cannot be compared. It is averaged across runs

• mean test errors: there are 4 types of test errors presented. The test
MSE is an error calculated between the true dynamics and the learned one
that gives more weight to instances with large errors. The MAPE error
is an absolute percentage error. This means that it is more interpretable
and relative to the true value, meaning that behaviours close to 0 have
more weight.
The mean test forecast % indicates for how many timesteps into the test
set the MAPE error is below the given percentage. This is useful to
understand what are the forecast capabilities of the model.
All these errors are calculated on the test set after an aggregation, that is
an average of every node’s dynamics. This aggregation can be interpreted
as the expected number of people on a compartment at a given time.

• mean constraint errors: for the tests, these are calculated differently
than the constraint losses used for training. The errors are calculated
by considering only the states reached in the test set by using 4.14. This
gives a measure of how much the model’s predictions diverge as time grows
because of the non satisfaction of the constraints.

• specific statistics: some methods have more statistics to

5.2. SINDY GRAPH 57

Different types of plots are presented along with the results:

• Node’s dynamics plot represent how the learned probability of being
in a compartment changes with time as the infection spreads for a single
sample node. Along with the probability it shows the real changes of com-
partment given by the simulation.

• Aggregated plot shows the expected number of people in a compartment
as a function of time, with 0 meaning no one and 1 meaning everyone. This
functions are found by averaging the probabilities of each node for every
timestep. It is split into train, validation and test time windows.

• Constraints evolution plot shows how the approximated constraint loss
evolves as the number of epochs increases. The various phases are delim-
ited along with the target constraint loss.

• Validation error plot shows how the mean squared error in the valida-
tion set evolves with the number of epochs.

5.2 Sindy Graph

Sindy is the technique used as the basis for our method. We added the possi-
bility of using it on graphs, added constraints and the possibility of training it
using aggregated supervision.

The way we extended Sindy to graphs is explained in more detail in Sindy
Graph. In short Sindy identifies dynamics from data by selecting some functions
from a dictionary, and combining them linearly to discover the differential equa-
tions that govern the physical phenomena under study. With graph snapshots as
inputs, the relationships between nodes, that form the graph’s structure, should
be taken into consideration. This information is encoded as spatial features ex-
tracted from the graph and is added to Sindy by combining those features into
new dictionary functions.

For selecting the right functions, Sindy uses a procedure called Thresholding.
This is not a simple task as for performing the right selection a good model
should be learned first, but for learning a good model, only a good subset of
functions should be considered. The exclusion of terms from differential equa-
tions is performed iteratively and controlled by the validation error.
A new hyper parameter is added for Sindy called tolerance thresholds, that
indicates how many iterations of the threshold to perform before stopping and
selecting the best model found. Another hyper parameter coeffs increment
tells the percentage of the total coefficients that are 56 is removed at each thresh-
old iteration.
Also a new statistic is added, called mean nonzero coefficients that gives an
idea of how many terms are present in the differential equations.

Aggregated supervision is the only one available in practice from real world

58 CHAPTER 5. EXPERIMENTAL RESULTS

datasets. In fact knowing the dynamics of infection of every single person in
a population is nearly impossible. Only estimates and probabilities regarding
the number of infected individuals at a given time can be known. For this rea-
son Sindy Graph is trained using only aggregated supervision and approximate
teacher forcing. The approximations are improved as epochs increase.
Because the datasets come from simulations, also node supervision is available,
and is useful to see how Sindy would perform if perfect information was avail-
able. So also this kind of tests is included.

For the experiments using constraints, the Random sampling technique that
we introduced is used, to find the constraint problem formulation adapted to
graph 4.6.2. The implementation is discussed in 4.7.4. This technique is chosen
for its simplicity and stability.
Constraints prove to be an important tool for improving the performance of the
models, as will be discussed.

The models are tested using shorter and longer training sets to understand
how performant is Sindy Graph with a lack of large quantities of data.

Because Sindy models are interpretable, the learned differential equations can
be written in symbolic form.
Each of the 20 tests lead to different differential equations because the train-
ing set is very small so little variations in the simulation can lead to changes in
the coefficients and in the selected terms. Only an average of the terms present
in the differential equations is presented. To do this the coefficients are averaged
across runs, and the mean absolute deviation (MAD) of each coefficient is cal-
culated, then only the top 5 most important terms are kept. A term importance
is given by how few times it has been thresholded across the tests.

5.2. SINDY GRAPH 59

5.2.1 Sindy graph with node supervision 100

In this model, Sindy is adapted to work on graphs, without constraints or ag-
gregated supervision. It functions as a baseline for the other methods based on
Sindy to then understand how our other contributions affect the performance.

Dataset 1
constraints no
supervision node

train,validation,test size [100,125,225]
learning rates [0.002,0.022]

coeffs increment 0.05
tolerance thresholds 3

tolerance epochs 2000
mean time 1025s

mean constr error 856 * 10−4

mean train error 25.33
test MSE 27.68 * 10−4

test MAPE 40.96%
mean test forecast 10% 5.0
mean test forecast 20% 9.63

mean nonzero coefficients 50
failed tests 0

The mean constr error is an average error over all types of constraint, mean-
ing that with a single value it is possible to get a sense of how bad the constraint
violations are.
It can be noticed how the mean constraints error is close to 0.1. This means
that on average a node’s dynamics on the test set, violates the constraints by
nearly 0.1. For example, instead of having constant sum, the sum varies by 0.1
on average and a variable becomes < 0 or > 1, violating the bounds constraints
by an average value of 0.1.
This is a noticeable violation and indicates that without constraints enforced,
the learned dynamics are not physically plausible.
By looking at the test MSE and MAPE, the errors are reasonable, and observing
the mean test forecasts, it can be noticed how the models found are even able to
make forecasts on the future dynamics for a few time steps within a reasonable
MAPE (10% and 20%).
The fact that the constraints are violated though, indicates that as the number
of time steps increases so do the test errors, probably in an exponential way. In
fact because of the amplifying nature of differential equations it is easy to learn
solutions that explode exponentially. This invalidates all possible forecasts after
a certain time limit.

60 CHAPTER 5. EXPERIMENTAL RESULTS

dS
dt

−0.44(±0.06)S + 0.41(±0.05)I + 0.39(±0.05)R − 0.38(±0.06) −
0.21(±0.15)Sn

dI
dt

+0.63(±0.21)S − 0.64(±0.21)I + 0.02(±0.03)R + 0.07(±0.04) +
0.21(±0.13)Sn

dR
dt

−0.38(±0.03)S + 0.41(±0.09)I − 0.38(±0.03)R + 0.35(±0.06) +
0.08(±0.07)Sn

Because Sindy is an interpretable method, the learned differential equations
can be reasoned upon. By looking at dI

dt , the change of probability of a node’s
infection, should depend on the probability that the neighbours are infected. In
particular the neighbours contribution should depend also on how probably the
node is susceptible.
An important term is then S∗In for the derivative of I, that makes the infection
probability of a node rise if it has high probability of being susceptible and it
has many infected neighbours.
Now, the most important terms here don’t include S ∗ In, this happens prob-
ably because without constraints the model has less physical information so it
overfits the training set more easily.
Another noticeable thing is that the most important terms in the derivatives
are not neighbours features. This means that the learned models rely on an
average behaviour that is only slightly corrected by neighbours contributions.

Thresholding in Sindy Graph, as it will be seen also in the other tests, tends
to keep many coefficients and spread the learned dynamics among them. This
conservative approach seems to reflect the complexity of selection. A more
throughout study of thresholding will certainly be helpful for extending the
method in future.

By looking at the aggregated 5.1a and node 5.1b plots it is clear how the model
diverges quickly as time goes on. Also it can be seen that the node’s constraints
are much violated.

By looking at the figure 5.1c, it can be seen how the validation error changes
as the number of epochs increases, the epochs in which a thresholding is done
are shown. The error remains relatively stable after the first threshold, then it
starts to increase, indicating that with less terms in the differential equations,
the model generalizes worse.

5.2. SINDY GRAPH 61

(a) Aggregated plot (b) Node’s dynamics

(c) validation error

Figure 5.1

5.2.2 Sindy graph with node supervision and constraints
100

This method adds constraints to the previous Sindy graph with node supervi-
sion. Because Random sampling is used to find the constrained problem formu-
lation, the constraints definition is approximated. Moreover the optimizer used
to solve the constrained problem is different, meaning that the behaviour of the
errors during the training is expected to be different. Now the learning rates
are 2: one used to solve the primal problem and one for setting the lambdas.

62 CHAPTER 5. EXPERIMENTAL RESULTS

Dataset 1
constraints yes
supervision node

train,validation,test size [100,125,225]
learning rates (primal,dual) [0.002,0.022],[0.2,2.2]

coeffs increment 0.05
tolerance thresholds 3

tolerance epochs 2000
mean time 2469s

mean constr error 3.99 * 10−4

mean train error 25.298
mean test MSE 12.83 * 10−4

mean test MAPE 37.02%
mean test forecast 10% 0.0
mean test forecast 20% 0.0

mean nonzero coefficients 41
failed tests 0

It can be observed that adding constraints, the constraint loss target is easily
met 5.2c and the test constraint error is very low, meaning that the solutions to
the differential equations should remain bounded and with constant sum even
after many timesteps. This happens even though the constraints definition is
approximated. This is probably due to the problem 4.6 being relatively simple,
without many local minimums and with a smooth enough behaviour to be cor-
rectly sampled even with few points.
The MSE and MAPE are good too, the mean test forecast is 0 though, indicat-
ing that the learned solution parts too much from the true behaviour to make
reliable forecasts.

dS
dt

−0.75(±0.06)S + 0.25(±0.02)I + 0.25(±0.02)R − 0.25(±0.02) −
0.01(±0.09)Sn

dI
dt

+1.00(±0.06)S − 1.00(±0.05)I − 0.00(±0.02)R + 0.00(±0.02) +
0.65(±0.18)S ∗ In

dR
dt

−0.25(±0.02)S + 0.75(±0.05)I − 0.25(±0.02)R + 0.25(±0.02) +
0.03(±0.10)I ∗ Sn

Also in this case the most important features in the differential equations are
S, I,R that are then corrected with neighbours terms. The other important
term is S ∗ In for the derivative of I, it also has low variation meaning that
across the tests, models agree on its presence. This is a good sign indicating
that with constraints the model is more physically correct, and its interpretation
can lead to insight into the phenomenon.

The aggregated plot 5.2a shows good adherence of the learned dynamics to the
true one.
The node plot 5.2b shows that because the constraints error is very low, the
dynamics remain well bounded for every node. In fact the 3 functions flex near
the bounds 0 and 1 indicating that they slow down as they approach the bounds.

5.2. SINDY GRAPH 63

(a) Aggregated plot (b) Node’s dynamics

(c) Constraints evolution (d) Validation error

Figure 5.2

The constraints evolution plot 5.2c displays many interesting details regard-
ing the way the training behaves. A noticeable thing is the oscillatory nature
of constrained optimization, in fact because the Lagrange multipliers are opti-
mized with the model’s parameters (4.10) the objective tends to alternate the
focus between the constraints and the parameters of the model. This behaviour
is useful to improve the search in the hypothesis space, by exiting local minima
more easily.
Looking at the constraints and validation plots 5.2d is clear how after any thresh-
olding phase the model needs some epochs to return to the error it had before
and improve it.
Moreover it can be noticed how the constraints error and validation error strug-
gle to decrease at the same time. In fact the best validation error that respects
the constraints goal is close to the target threshold. The constrained optimizer
is working hard to find a good compromise as with constraints the search free-
dom is restricted, but at the same time the constraints lead the search towards
good regions.
As epochs increase, the validation error tends to increase as well because of
overfitting. Instead the constraints error keeps on decreasing. In fact the con-
strained optimizer should reach error 0 if enough epochs are done.

64 CHAPTER 5. EXPERIMENTAL RESULTS

5.2.3 Sindy graph with aggregated supervision 100

This method implements aggregated supervision meaning that it receives much
less information from the simulation, but is more realistic and better reflects
the results that can be obtained using real world datasets.
For dealing with aggregated supervision a technique has been proposed 4.7.7,
that works by generating better and better approximations of node supervision
as epochs increase. Using this technique the model should learn by itself how
the virus spreads spatially, by only considering the graph’s structure and how
many people is in a given compartment at a given time.
Because no teacher forcing is available, the model is trained by running it re-
currently for 100 steps before calculating the loss. This causes instability in
the training process, for this reason it is split into more phases in which the
recurrent steps grow, slowly.

Dataset 1
constraints no
supervision aggregated

train,validation,test size [100,125,225]
learning rates [0.005,0.055]

coeffs increment 0.05
tolerance thresholds 3

tolerance epochs 3000
bootstrap increment 25

mean time 10352s
mean constr error 1064 * 10−4

mean train error 0.017
mean test MSE 15.19 * 10−4

mean test MAPE 30.27%
mean test forecast 10% 1.63
mean test forecast 20% 9.05

mean non zero coefficients 50
failed tests 8

First of all, in this case 40% of the tests failed because the solutions to the found
difference function increase exponentially so the test errors become nan. This
happens because the constraints are not enforced. For the tests that did not
fail, the test error is initially not bad but then diverges.
For the valid tests the mean constraint error is similar to that of Sindy graph
with node supervision, and the test errors are not bad, indicating that the model
is able to forecast for some time steps into the test set, before exploding.

dS
dt

+0.90(±0.69)I + 0.30(±0.33)R − 0.05(±0.13) + 0.70(±0.55)In −
0.10(±0.21)Rn

dI
dt

+0.59(±0.51)S − 1.74(±1.02)I − 0.48(±0.43)R + 0.41(±0.40) −
0.50(±0.62)Sn

dR
dt

+0.67(±0.44)I + 0.06(±0.22)R + 0.17(±0.22) + 0.40(±0.37)In −
0.07(±0.15)Rn

5.2. SINDY GRAPH 65

Also in this unconstrained case the most important coefficients don’t reflect
intuition, and the mean deviation is high, indicating that the models from dif-
ferent test runs don’t agree on the terms to use.

Looking at 5.3b it is clear how constraints are not respected and because

(a) Aggregated plot (b) Node’s dynamics

(c) validation error

Figure 5.3

of this the dynamics in the test set tend to be straight lines going past the
bounds instead of curving.
The training phase without constraints is much more chaotic and unstable 5.3c
as the method is used recurrently with larger and larger windows. To compen-
sate for this, the learning rate is kept much lower, potentially increasing training
times.
Even if unstable, the validation error decreases as approximated teacher forcing
is used less and less.

5.2.4 Sindy graph with aggregated supervision 150

This method is the same as 5.2.3, but it uses a larger training set, while the
validation and test sets are shifted forward in time. This experiment is carried
out to evaluate how the performance of Sindy graph change as available data

66 CHAPTER 5. EXPERIMENTAL RESULTS

increase. This is done to get a sense of how soon reliable forecasts can be had,
after the pandemic strikes.

Dataset 1
constraints no
supervision aggregated

train,validation,test size [150,175,275]
learning rates [0.005,0.055]

coeffs increment 0.05
tolerance thresholds 3

tolerance epochs 3000
bootstrap increment 25

mean time 20106s
mean constr error 1266 * 10−4

mean train error 0.019
mean test MSE 5.61 * 10−4

mean test MAPE 31.93%
mean test forecast 10% 14.78
mean test forecast 20% 35.31

mean non zero coefficients 52
failed tests 0

In the unconstrained case of sindy aggr, growing the training set does improve
performance. In fact there are now 0 tests failed and the test errors are better.
Moreover forecast errors indicate that the model is now able to better extrapo-
late future dynamics.

dS
dt

−0.81(±0.33)S + 0.93(±0.72)I + 0.18(±0.36)R + 0.04(±0.18) +
0.48(±0.34)Sn

dI
dt

+0.84(±0.46)S − 2.02(±0.75)I − 0.63(±0.33)R + 0.56(±0.33) −
1.01(±0.37)Sn

dR
dt

−0.51(±0.37)S + 0.86(±0.48)I − 0.15(±0.24)R + 0.30(±0.24) +
0.14(±0.41)Sn

Differential equations’ terms still don’t reflect intuition and still have great vari-
ability.

The constraints error is still high, in fact by observing 5.4b, it is clear how the
dynamics is still not aware of the bounds and simply passes through them, al-
beit at a later time than 5.2.3.

5.2. SINDY GRAPH 67

(a) Aggregated plot (b) Node’s dynamics

Figure 5.4

5.2.5 Sindy graph with aggregated supervision and con-
straints 100

This is the method with all our contributions. It is realistic as only aggregated
supervision is used, with only 100 time steps in the training set. Even if aggre-
gated supervision is usually unstable as seen in 5.3c, the usage of constraints
here has a positive effect, not only for lowering generalization error, but also for
stabilizing the train process.

Dataset 1
constraints yes
supervision aggregated

train,validation,test size [100,125,225]
learning rates (primal,dual) [0.1],[10]

coeffs increment 0.05
tolerance thresholds 3

tolerance epochs 3000
bootstrap increment 25

mean time 9089s
mean constr error 2.68 * 10−4

mean train error 0.027
mean test MSE 6.27 * 10−4

mean test MAPE 24.86%
mean test forecast 10% 12.68
mean test forecast 20% 29.78

mean non zero coefficients 46
failed tests 0

By using aggregated supervision the errors are all lower than Sindy graph with
node supervision and constraints 100 and the forecast capabilities are higher.
This probably happens because by aggregating, the model is less sensible to
noise. In fact Sindy Graph with node supervision is supervised by first calcu-

68 CHAPTER 5. EXPERIMENTAL RESULTS

lating a discrete derivative of the dynamics at node level, that is by definition
very noisy as it follows a probability distribution. The derivative operation am-
plifies the noise even more, making Sindy struggle. With aggregated supervision
the noise is reduced as it is the mean of all nodes’ dynamics.
The generalization errors are also better than Sindy graph with aggregated su-
pervision 100, thanks to constraints, whose error is now much lower. The model
forecasts better because with constraints it is much less prone to later explosions
of the dynamics.

dS
dt

−0.62(±0.11)S + 0.21(±0.03)I + 0.22(±0.04)R − 0.20(±0.04) +
0.25(±0.07)Sn

dI
dt

+0.76(±0.13)S − 0.77(±0.07)I − 0.23(±0.07)Sn + 1.39(±0.34)S ∗ In +
0.38(±0.10)I ∗ Sn

dR
dt

−0.14(±0.04)S + 0.56(±0.06)I + −0.23(±0.03)R + 0.18(±0.02) −
0.06(±0.03)Rn ∗ In

Here the term S ∗ In has the largest coefficient indicating that despite not
knowing how the simulation behaves at node level, the model correctly captures
how neighbours contribute to a node’s infection probability.
Also the term I ∗ Sn is large, indicating that if a node is likely infected and
many neighbours are susceptible, the infection probability grows. This is prob-
ably because when the spread is at the beginning the probability of infection is
low, so many susceptible neighbours does not mean more probability of a future
spread, the situation changes when the infection is spread more.
This kind of insight is only possible because the constraints make the models
physically plausible.

Figure 5.5b shows how the dynamics curve so they will never go past the
bounds. Moreover the sum remains constant throughout all time steps. In fig-
ure 5.5a it can be appreciated how this method is able to exploit the physics
information given, to follow the true behaviour many steps into the validation
and test sets.

Here the validation error 5.5d tends to rise a bit as the supervision window
grows, to then drop as the thresholding eliminates unnecessary coefficients that
worsen the generalization capabilities of the model.
Also the validation error drops in the first 1000 epochs to then rise, this is due to
the fact that the Lagrange multipliers rise slow, so the problem is unconstrained
at the start. This is useful to reach a good region of the hypothesis space fast,
without being pushed away by the constraints.

5.2. SINDY GRAPH 69

(a) Aggregated plot (b) Node’s dynamics

(c) Constraints evolution (d) validation error

Figure 5.5

70 CHAPTER 5. EXPERIMENTAL RESULTS

5.2.6 Sindy graph with aggregated supervision and con-
straints 150

Dataset 1
constraints yes
supervision aggregated

train,validation,test size [150,175,275]
learning rates (primal,dual) [0.005],[0.5]

coeffs increment 0.05
tolerance thresholds 3

tolerance epochs 3000
bootstrap increment 25

mean time 20487s
mean constr error 18.13 * 10−4

mean train error 0.028
mean test MSE 2.33 * 10−4

mean test MAPE 46.13%
mean test forecast 10% 0.6
mean test forecast 20% 9.4

mean non zero coefficients 57
failed tests 0

Incrementing the size of the training set to 150 does not lead to an improvement
of the performance. The MSE is lower, but the other statistics are worse than
sindy aggr 100. This is probably because the most interesting part of the dy-
namics is in the first 100 timesteps and growing the training set does not make
much difference. Moreover the constraints help keeping the dynamics close to
the true values.

dS
dt

−0.73(±0.03)S + 0.26(±0.01)I + 0.27(±0.01)R − 0.42(±0.07)I ∗ S −
0.14(±0.03)R ∗ S

dI
dt

+0.77(±0.05)S − 0.66(±0.03)I − 0.04(±0.01)R + 0.32(±0.07)I ∗ S −
0.05(±0.02)R ∗ S

dR
dt

−0.04(±0.04)S + 0.40(±0.03)I − 0.23(±0.00)R + 0.10(±0.01)I ∗ S +
0.19(±0.01)R ∗ S

In this case the terms corresponding to neighbours features are not included
in the 5 most important terms, but they have large coefficients nonetheless.

5.3. SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS 71

(a) Aggregated plot (b) Node’s dynamics

5.3 Spatial-Temporal Graph Neural Networks

Sindy graph is a symbolic technique that has been adapted to learn dynamics
on graphs. This technique is compared to a more traditional approach, a type
of Spatial-Temporal Graph Neural Network, to understand how they compare.

Spatial-Temporal Graph Neural Networks 1.5.4 usually work by extracting first
spatial feature using a GNN, then the evolution in time of those features is
captured by a RNN. In our case the RNN is kept simple, because no long term
memory is needed. In fact the learned model should use only the previous state
to forecast the current one.

Given graph signal X ∈ RT×|V |×d where |V | is the number of nodes and d
the number of features per node (3) and T the number of time steps, the task
is to learn a simulator sgC that advances the signal by one time step in the
future.
X̃t+1 = sgC(Xt) if node level supervision is used.
X̃t+1 = sgC(X̃t) if aggregated supervision is used.

Where X̃t is the estimation given by sg of the real snapshot Xt.
The graph simulator takes in a graph snapshot and extracts spatial features
that are then fed into a multilayer perceptron.

sgC(Xt) = mlpCm(gcnCg (Xt)) (5.1)

The parameters C are shared for every node in the graph, so all nodes behave
identically given the same state.
The gcn is a GraphConv. This type of gnn only aggregates information of
first order neighbours by summation, so the spatial features extracted are local,
then linearly combines the aggregated features.
The mlp is introduced to process the extracted spatial features, and combine
them non linearly (a leaky Relu is used as non linear activation function). Also
in Sindy the spatial features are first aggregated by summation then processed
non linearly by the dictionary functions.

72 CHAPTER 5. EXPERIMENTAL RESULTS

The objective of the problem to solve in the case of node supervision is:

minC
∑
t,v,i

(sgC(Xt)v,i −Xt+1,v,i)
2 (5.2)

If aggregated supervision is used, the loss is calculated by considering only
the mean value of the features:

minC
∑
i,t

(mean(sgtC(X0):,i)−mean(Xt,:,i))
2 (5.3)

The constraining works by defining a parallel problem(b) that searches for
the states that maximally break the constraints. In this case, because the mlp
introduces complex non linearities solving problem(b) becomes more compli-
cated.
A solver must deal with a non linear objective of linear constraints. A solution
is to use random sampling, another more precise technique would be to solve
(b) using the method of lagrange multipliers. The solution is not guaranteed to
be optimal though, because there is un unknown number of local mimimums
and the method of lagrange multipliers is not guaranteed to find the global op-
timum in this case.
Given approximate constraints then problem(a) is solved by using objectives
(5.2) or (5.3) and the method of lagrange multipliers as with Sindy graph.

5.3.1 Implementation

The training is divided in 2 phases: a first phase in which the mlp layers are
ignored, and only the gcn is trained.
In the second phase some dense layers are introduced (their number and the
number of hyper parameters are given by hyper parameters) and initialized to
the identity matrix, in order not to make them change the output of the gcn.
Then the gcn’s parameters are freezed and only the dense layers are trained.
Each phase is trained using either node or aggregated supervision, as seen for
sindy graph.

The constraints are enforced by using the method of Lagrange multipliers for
optimizing. To write the constraints (4.9) the difference function is required.
The difference function is found by feeding the gcn directly with the random
states, skipping the message passing step and then differentiating the input and
the output of (5.1).

5.3.2 STGNN with aggregated supervision

This technique used with aggregated supervision to understand how it compares
to Sindy graph with aggregated supervision 100.

5.3. SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS 73

Dataset 1
constraints no
supervision aggregated

train,validation,test size [100,125,225]
learning rates [0.00005]
mlp neurons [3,15]
dense layers [1,2,3]

tolerance epochs 2000
bootstrap increment 25

mean time 18583s
mean constr error 10181 * 10−4

mean train error 0.0002
mean test MSE 317.23 * 10−4

mean test MAPE 139.54%
mean test forecast 10% 0.0
mean test forecast 20% 0.36

failed tests 0

Looking at the table it is immediately clear how the generalization error is very
bad. This is due to the huge constraints error.

(a) Aggregated plot (b) Node’s dynamics

Figure 5.7

5.3.3 STGNN with aggregated supervision and constraints

This technique is directly compared to Sindy graph with aggregated supervision
and constraints 100.

74 CHAPTER 5. EXPERIMENTAL RESULTS

Dataset 1
constraints yes
supervision aggregated

train,validation,test size [100,125,225]
learning rates (primal,dual) [0.01],[1]

mlp neurons [3,15]
dense layers [1,2,3]

tolerance epochs 3000
bootstrap increment 25

mean time 14535s
mean constr error 400.2 * 10−4

mean train error 0.00027
mean test MSE 76.9 * 10−4

mean test MAPE 71.92%
mean test forecast 10% 0.0
mean test forecast 20% 0.0

failed tests 0

STGNNs with aggregated supervision and constraints tend to perform bad when
considering the constraints error. This is due to the fact that constraining neu-
ral networks is much harder because of the complexity of the learned function.
In fact the constraints are approximated much worse here than with Sindy when
using Rand Sampling. Also the constrained optimizer struggles more as it deals
with more complexity.
Because of the reduced physics information encoded into STGNNs and the con-
straints violation, the generalization error is much worse than Sindy.

Because the activation function for the MLP is a LeakyRelu, if the node dy-
namics approaches 0, it is clamped, avoiding negative values. Other activation
functions have been tested but LeakyRelu is the one that performs best.

From the constraints 5.8c and validation 5.8d plots it can be seen that gnns
struggle to find a good compromise between constraints satisfaction and gener-
alization error.
In fact if no MLP layer is used, the GCN is similar to Sindy, with only linear
terms in the dictionary. Because of this restriction, it is good at satisfying the
constraints when the supervision is simple. When the supervision becomes more
realistic because the approximated supervision window grows though, the vali-
dation error improves but the constraints satisfaction worsens. This is probably
due to the limited expressivity of GCNs.
Adding the MLP introduces non linearities and improves the expressivity, but
they but this does not seem to help much. Instead the constraints satisfaction
is even worse as it is harder to force it.

5.3. SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS 75

(a) Aggregated plot (b) Node’s dynamics

(c) Constraints evolution

(d) validation error

Figure 5.8

76 CHAPTER 5. EXPERIMENTAL RESULTS

5.3.4 STGNN with node supervision

Dataset 1 GNN node no constr 100
constraints no
supervision node

train,validation,test size [100,125,225]
learning rates [0.002]
mlp neurons [3,15]
dense layers [1,2,3]

tolerance epochs 3000
mean time 747s

mean constr error 429 * 10−4

mean train error 0.010
mean test MSE 25.96 * 10−4

mean test MAPE 46.54%
mean test forecast 10% 0.36
mean test forecast 20% 1.05

failed tests 0

Using node supervision increases the performance of STGNNs, differently from
Sindy Graph. This is probably because STGNNs are not supervisioned with
the time derivative of nodes’ signals but directly with the signal, avoiding the
noise amplification feature of the derivative operation.

(a) Aggregated plot (b) Node’s dynamics

Figure 5.9

5.3. SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS 77

5.3.5 STGNN with node supervision and constraints

Dataset 1 GNN node 100
constraints yes
supervision node

train,validation,test size [100,125,225]
learning rates (primal,dual) [0.02],[0.02]

mlp neurons [3,15]
dense layers [1,2,3]

tolerance epochs 3000
mean time 301s

mean constr error 673 * 10−4

mean train error 0.010
mean test MSE 34.74 * 10−4

mean test MAPE 54.82%
mean test forecast 10% 0.0
mean test forecast 20% 0.0

failed tests 0

Adding constraints in this case does not improve performance, confirming the
bad interaction between STGNNs and constraints.

(a) Aggregated plot (b) Node’s dynamics

Figure 5.10

78 CHAPTER 5. EXPERIMENTAL RESULTS

5.4 Comparative table

method name
Sindy node
100

Sindy node
constr 100

Sindy aggr
100

Sindy aggr
150

mean constrain error 856 * 10−4 3.99 * 10−4 1064 * 10−4 1266 * 10−4

test MSE 27.68 * 10−4 12.83 * 10−4 15.19 * 10−4 5.61 * 10−4

test MAPE 40.96% 37.02% 30.27% 31.93%
mean test forecast 10% 5.0 0.0 1.63 14.78
mean test forecast 20% 9.63 0.0 9.05 35.31

method name
Sindy aggr
constr 100

Sindy aggr
constr 150

STGNN
aggr

STGNN
aggr constr

mean constrain error 2.68 * 10−4 18.13 * 10−4
10181 *
10−4 400.2 * 10−4

test MSE 6.27 * 10−4 2.33 * 10−4
317.23 *
10−4 76.9 * 10−4

test MAPE 24.86% 46.13% 139.54% 71.92%
mean test forecast 10% 12.68 0.6 0.0 0.0
mean test forecast 20% 29.78 9.4 0.36 0.0

method name
STGNN
node

STGNN
node constr

mean constrain error 429 * 10−4 673 * 10−4

test MSE 25.96 * 10−4 34.74 * 10−4

test MAPE 46.54% 54.82%
mean test forecast 10% 0.36 0.0
mean test forecast 20% 1.05 0.0

The tests performed are done to compare the technique with all our contribu-
tions and a standard technique adapted to work with aggregated supervision.
From the experiments it can be seen that Sindy graph with aggregated super-
vision and constraints 100 performs much better than STGNN with aggregated
supervision. There are multiple reasons why Sindy Graph proves to have supe-
rior performance.

First, all the methods that use Sindy as basis perform better, considering the
generalization error and test forecasts lengths, than STGNNs with the same
techniques used on top. This means that Sindy is better in general at dis-
covering dynamics, and this can be attributed to the fact that Sindy is more
physically informed. In fact the dictionary functions can be chosen to reflect
domain knowledge.
In our case, polynomials of degree 2 have been chosen to reflect the characteris-
tics of terms present in the standard SIR model, providing a solid clue on how
a model should be like.
Dictionary functions are also chosen to be relatively simple, this helps much
with the satisfaction of constraints.

Adding constraints to Sindy Graph helps in various ways. The generalization
errors become lower, except when using longer training sets. Solutions to the
learned differential equations don’t tend to explode after a certain period of
time, remaining bounded. Models are more physically correct and this, to-

5.4. COMPARATIVE TABLE 79

gether with the interpretability of Sindy, makes it possible to reason on and
study the analysed phenomena.

Instead STGNNs satisfy constraits much less, by having higher mean con-
straint error everywhere except for STGNN with node supervision. Moreover
adding constraints to an STGNN technique does not always mean lower con-
straint error.
This can be attributed to the higher complexity of neural networks, that create
more complex hypothesis functions than Sindy. This makes minima search-
ing techniques such as Random Sampling work bad, leading to a constrained
problem formulation that is too approximated to really enforce the wanted con-
straints.

Another thing can be noticed from the experiments. With Sindy Graph, aggre-
gated supervision works better than node supervision and this is probably due
to the sensitivity of Sindy to noise.

To conclude, Sindy Graph with aggregated supervision and constraints proves to
be a powerful tool for epidemiological forecasting, outperforming all other tested
techniques with the same training set length, thanks to the physics information
that can be included in Sindy and the constraints.

80 CHAPTER 5. EXPERIMENTAL RESULTS

Chapter 6

Conclusions

Epidemiological modelling is a difficult task that requires human expertise. To
make the task easier, classical machine learning techniques may be considered,
but they require a lot of data, are not interpretable and it is not easy to inte-
grate domain knowledge.
In order to get a better model, useful for forecasting the infection dynamics,
machine learning should be enhanced with human knowledge in the form of
physics informed machine learning.

The first form of physical information exploited in our techniques is the graph
structure of the social networks where the infection spreads. Graphs are very
powerful tools for modelling discrete entities that have some sort of relationship
and can be used as a computational carrier for passing information between
nodes following a structure.
The structure of the graph can be decoupled from the dynamics of interaction
between nodes that can be learned separately. The same interaction dynamics
will work then on different graphs without the need for retraining.

Another form of physical information added is constraints. By requiring that
the learned simulator outputs a dynamics with certain characteristics we are
adding domain knowledge, meaning that the hypothesis space is smaller and
contains only well behaved functions. This has important consequences:
Thanks to the bound constraints the explosion of solutions of the simulator is
avoided and predictions can be performed for large time frames.
With constraints the training is more stable (fig 5.3c) and can be performed at
much higher learning rates, improving learning time.
Without constraints, Sindy has more difficulty finding good terms because of
the reduced regularization.
The tests indicate that with constraints the generalization errors for Sindy
Graph are lower.
A technique has been devised for dealing with Sindy constraints specifically
when the dictionary functions are polynomials of degree 2, called Quadratic pro-
gramming with updating objective. It demonstrates that Sindy’s interpretabil-
ity also helps with the enforcing of constraints.

A classic technique has been tested, for learning a temporal model of the dy-

81

82 CHAPTER 6. CONCLUSIONS

namics on graph, that uses a GCN to aggregate neighbours features, plus a
MLP that adds non linearities to the learned simulator. This technique is an
instance of STGNNs.
This technique whether with or without aggregated supervision has proven in-
effective for forecasting. This is due to the poor expressive power of the GCN
and the fact that the MLP makes the model very difficult to constrain. In fact
it is difficult to have an expressive model that is also easy to constrain.

The other technique used to tackle the problem is Sindy that is used to find
sparse nonlinear symbolic differential equations that describe a dynamics from
data. This technique has been modified by us to work on graphs enforcing some
constraints.
Using this method it is possible to define a dictionary of functions that will
become terms in the differential equations. Because these functions are rep-
resented symbolically, it is easy to integrate more domain knowledge into the
model.
Moreover the dictionary functions can be chosen to make constraining easier,
as it is not a simple task in general.
Because of these reasons and the regularization given by the selection of terms
done by Sindy, we found that this technique is more powerful than STGNNs,
and is able to provide good forecasting capabilities.
Sindy’s models are interpretable and it is interesting to see that the most im-
portant terms from their symbolic equations reflect the expected behaviour.
Interpretability enables understanding and reasoning about the learned model,
and this helps with scientific discovery.

There are many ways in which our work could be extended.
More powerful optimizers could be implemented for dealing with constraints,
that could be used for training Sindy Graph with more complex dictionary
functions, improving the expressivity of the method.
More features could be added in the graph nodes, for example the age of each
person, to improve the realisticness of the models.
Real world data could be used to train the models, to see how our method per-
forms concretely.
The developed techniques could be also used to study other physical phenom-
ena characterized by a graph dynamics, for example material deformations in
mechanical engineering.

Studying epidemiology helps preventing and controlling serious outbreaks of
viruses, that threaten public health. We hope that with our work we will con-
tribute to understand and prevent future viral diseases.

Appendix A

Algorithms

A.1 Quadratic programming

Let p be a multivariate polynomial of degree 2 restricted to K that is a com-
pact subset of Rn determined by linear constraints. The task is to prove some
properties of p that will lead to an exact algorithm to calculate its minimum
restricted to K.

Property 1: for every possible unconstrained p there exist 0, 1 or infinite
stationary points.
To find the stationary points of p it is sufficient to check for which y

∇p(y) = 0

Because the partial derivative of p with respect to any variable is a linear func-
tion

∂p

∂yi
= ayi + b

Finding the set of y corresponding to stationary points becomes solving a linear
system of equations

Ay = b

Now, a linear system can have either 0, 1 or infinite solutions.

Property 2: if p has infinite stationary points they all have the same value.
This means that the system has infinite solutions S and p(s) = k ∀s ∈ S.
S is a linear affine subspace of Rn.
Lets choose an s′ ∈ S, because it corresponds to a stationary point ∇p(s′) = 0

p(s′) = p(s′ + dv)

where v ∈ Rn is a vector parallel to S. Because S is continuous, every con-
tinuous movement on it does not change the value of p. This implies that
p(s) = k ∀s ∈ S.

Property 3: if p(S) is the image of a polynomial of degree 2 evaluated on
an linear affine subspace S of Rn (geometrically a flat) of dimension d, it is

83

84 APPENDIX A. ALGORITHMS

possible to construct p′ : Rd → R so that p′ is still a polynomial of degree 2 and
p(S) = p′(Rd).
A flat of Rn with d degrees of freedom can be represented by a system of linear
parametric equations

y = At+ b

where A is a n × d matrix, t ∈ Rd is the parameters vector, b ∈ Rn and
y′ ∈ Rn. This system describes a function f : Rd → Rn that maps the vector
of parameters t into unique points on the flat in Rn, and f(Rd) = S.
Now, the function p can be evaluated on the flat by doing a function composition
with f :

p′(t) = p(f(t))

So p′ : Rd → R and p′(Rd) = p(S).
Moreover p′ is still a polynomial of degree 2 because p contains monomials that
involve multiplications between at most 2 variables (e.g. ckyi ∗yj) and because
of the composition with f , those variables are linear combinations of parameters
t:

ckyi ∗ yj = ck(Ai,:t+ bi) ∗ (Aj,:t+ bj)

because any multiplication involves only linear functions, the maximum degree
of any monomial in p′ is 2.

With these properties it is possible to understand how to find the y corre-
sponding to the minimum of a polynomial p of degree 2 when restricted to a
flat S of parametric function f :

1 def min_flat(p,f):

2 if f = y: return y
3 p_(t) = p(f(t))
4 g(t) = grad(p_)

5 sol = solve(g(t) = 0)

6 if sol = ∅ or not is_min(sol [0]): return None

7 return f(sol)

Listing A.1: min flat function

If f has d = 0 it represents a flat that is a point, that point is automatically the
y corresponding to the minimum.
Otherwise the polynomial p′ restricted to the flat is given symbolically by com-
position. Because of property 3 it has degree 2, and its image is equal to p(S),
so contains the same minimum.
Then its gradient is evaluated symbolically by taking the partial derivatives with
respect to the parameters t. The set of t that correspond to stationary points
is found by solving a linear system. This is possible because p′ has degree 2 so
the partial derivatives are linear.
For property 1 the system has either 0, 1 or infinite solutions. If the solutions
are 0 there is no stationary point, so there cannot be a minimum and the poly-
nomial does not have a lower bound. For property 2 if there are infinite solutions
they must all evaluate to the same value so the first is picked. The stationary
point can be a minimum and in that case it is a global minimum as no minimum
with different value can exist (property 2). If it is not a minimum then there is
none and the polynomial is again not lower bounded.

A.1. QUADRATIC PROGRAMMING 85

Because solving the system gives a t corresponding to a stationary point, the
non parametrized solution is found by computing y = f(t).
So min flat returns the input(s) y corresponding to the global minimum of p
restricted to S if it exists, otherwise None.

It is now possible to understand how to find the y corresponding to the mini-
mum of p when y ∈ K for a K determined by a system of linear equality
constraints:

K = {y ∈ Rn|Ay = b}

1 def min_equality(p,A,b):
2 sol = solve(Ay = b)
3 if sol = ∅: return None

4 f(t) = find_flat(sol)

5 return min_flat(p,f)

Listing A.2: min equality function

If the system has no solution, K = ∅, so there cannot be any minimum.
Otherwise the system describes a flat. The same flat can be described by a
linear parametric function f . There are actually more functions that describe
the same flat and they can be found by keeping some variables free, these are
the parameters t, and map them linearly to Rn. This linear map is determined
by solving the system.
The y corresponding to the minimum is then found by computing min flat(p,f).

If K is determined by also including inequalities, finding the y corresponding
to the minimum is a bit more involved.

Property 4: if K is a compact subset of Rn, determined by linear equality
or inequality constraints it is a Convex polytope.

K = {y ∈ Rn|Ay = b,

Cy ≥ d}

Property 5: If K 6= ∅ is a convex polytope and K ′ is K but relaxed of the
inequalities, if ∃y ∈ K such that p(y) = min(p(K ′)), then p(y) = min(p(K)).
If there is no such y, the min(p(K)) lays on the boundary of K.
If there is such y, then because

K ⊆ K ′ = {y ∈ Rn|Ay = b}

p(K) ⊆ p(K ′)

min(p(K)) ≥ min(p(K ′))

then if p(y) = min(p(K ′)) then p(y) ≤ min(p(K)) but because y ∈ K,
p(y) = min(p(K)).
If there is no such y then there is no local minimum of p(k′),k′ ∈ K ′ with
y ∈ K, this is true for properties 1,2 and 3. In fact if there are multiple station-
ary points on p(y′),y′ ∈ Rn they must all have same value and this is true also
for p(k′),k′ ∈ K ′ for property 3, as K ′ is a flat. So all local minima of p(k′) is

86 APPENDIX A. ALGORITHMS

also global minima. But by hypothesis @y ∈ K such that p(y) = min(p(K ′)).
Because there is no local minima of p(k′) on K and K 6= ∅, min(p(K)) must
lay on the boundary of K.

Property 5 suggest a way to search for the minimum were there are inequal-
ities: either the minimum is inside K ′ or it is in a lower dimensional flat defined
by transforming some inequalities into equalities making them active.
In general, we can define KJ to be the set of points of Rn where the set of
inequalities corresponding to indexes in J ∈ 2D is active, D is the set of all
inqualities indexes and m = |J |:

KJ = {y ∈ Rn|Ay = b,

CJ,:y = dJ}

where CJ,: is a m× n matrix.

Now, to find the y corresponding to the minimum of p restricted to K it is
sufficient to search for a minimum in all possible active sets. If there are many
minimums it is sufficient to choose the smallest:

ymin = arg min
J∈2D

p(min equality(p,C′J ,d
′
J) ∩K) (A.1)

where
C′J = concat(A,CJ,:)

d′J = concat(b,dJ)

Bibliography

[1] Clarence W. Rowley et al. “Spectral Analysis of Nonlinear Flows”. In:
Journal of Fluid Mechanics 641 (Dec. 25, 2009), pp. 115–127. issn: 0022-
1120, 1469-7645. doi: 10 . 1017 / S0022112009992059. url: https : / /

www.cambridge.org/core/product/identifier/S0022112009992059/

type/journal_article (visited on 12/21/2022).

[2] M.G. Garner and S.A. Hamilton. “Principles of Epidemiological Mod-
elling: -EN- -FR- Les Principes de La Modélisation Épidémiologique -
ES- Principios de Modelización Epidemiológica”. In: Revue Scientifique
et Technique de l’OIE 30.2 (Aug. 1, 2011), pp. 407–416. issn: 0253-1933.
doi: 10.20506/rst.30.2.2045. url: https://doc.oie.int/dyn/
portal/index.xhtml?page=alo&aloId=31251 (visited on 01/02/2023).

[3] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. “Discovering
Governing Equations from Data by Sparse Identification of Nonlinear Dy-
namical Systems”. In: Proceedings of the National Academy of Sciences
113.15 (Apr. 12, 2016), pp. 3932–3937. doi: 10.1073/pnas.1517384113.
url: https://www.pnas.org/doi/10.1073/pnas.1517384113 (visited
on 03/29/2022).

[4] Michael M. Bronstein et al. “Geometric Deep Learning: Going beyond
Euclidean Data”. In: IEEE Signal Processing Magazine 34.4 (July 2017),
pp. 18–42. issn: 1053-5888, 1558-0792. doi: 10.1109/MSP.2017.2693418.
arXiv: 1611.08097 [cs]. url: http://arxiv.org/abs/1611.08097
(visited on 12/29/2022).

[5] Justin Gilmer et al. Neural Message Passing for Quantum Chemistry.
June 12, 2017. arXiv: arXiv:1704.01212. url: http://arxiv.org/abs/
1704.01212 (visited on 12/19/2022). preprint.

[6] Justin Gilmer et al. Neural Message Passing for Quantum Chemistry.
June 12, 2017. arXiv: arXiv:1704.01212. url: http://arxiv.org/abs/
1704.01212 (visited on 12/30/2022). preprint.

[7] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics In-
formed Deep Learning (Part I): Data-driven Solutions of Nonlinear Par-
tial Differential Equations. Nov. 28, 2017. arXiv: arXiv:1711.10561. url:
http://arxiv.org/abs/1711.10561 (visited on 12/23/2022). preprint.

[8] Thomas Vandal et al. DeepSD: Generating High Resolution Climate Change
Projections through Single Image Super-Resolution. Mar. 8, 2017. arXiv:
arXiv:1703.03126. url: http://arxiv.org/abs/1703.03126 (visited
on 12/19/2022). preprint.

87

https://doi.org/10.1017/S0022112009992059
https://www.cambridge.org/core/product/identifier/S0022112009992059/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112009992059/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112009992059/type/journal_article
https://doi.org/10.20506/rst.30.2.2045
https://doc.oie.int/dyn/portal/index.xhtml?page=alo&aloId=31251
https://doc.oie.int/dyn/portal/index.xhtml?page=alo&aloId=31251
https://doi.org/10.1073/pnas.1517384113
https://www.pnas.org/doi/10.1073/pnas.1517384113
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1611.08097
http://arxiv.org/abs/1611.08097
https://arxiv.org/abs/arXiv:1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/arXiv:1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/arXiv:1711.10561
http://arxiv.org/abs/1711.10561
https://arxiv.org/abs/arXiv:1703.03126
http://arxiv.org/abs/1703.03126

88 BIBLIOGRAPHY

[9] Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. “Deep Learn-
ing for Universal Linear Embeddings of Nonlinear Dynamics”. In: Nature
Communications 9.1 (Dec. 2018), p. 4950. issn: 2041-1723. doi: 10.1038/
s41467-018-07210-0. arXiv: 1712.09707. url: http://arxiv.org/
abs/1712.09707 (visited on 03/21/2022).

[10] Giulio Rossetti et al. “NDlib: A Python Library to Model and Analyze
Diffusion Processes Over Complex Networks”. In: International Journal of
Data Science and Analytics 5.1 (Feb. 2018), pp. 61–79. issn: 2364-415X,
2364-4168. doi: 10.1007/s41060-017-0086-6. arXiv: 1801.05854 [cs].
url: http://arxiv.org/abs/1801.05854 (visited on 01/13/2023).

[11] Alvaro Sanchez-Gonzalez et al. “Graph Networks as Learnable Physics
Engines for Inference and Control”. June 4, 2018. url: http://arxiv.
org/abs/1806.01242 (visited on 03/23/2022).

[12] Kathleen Champion et al. “Data-Driven Discovery of Coordinates and
Governing Equations”. In: Proceedings of the National Academy of Sci-
ences 116.45 (Nov. 5, 2019), pp. 22445–22451. doi: 10 . 1073 / pnas .

1906995116. url: https : / / www . pnas . org / doi / 10 . 1073 / pnas .

1906995116 (visited on 03/30/2022).

[13] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A Unified Anal-
ysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point
Problems: Proximal Point Approach. Sept. 5, 2019. arXiv: arXiv:1901.
08511. url: http://arxiv.org/abs/1901.08511 (visited on 12/23/2022).
preprint.

[14] Abdullah M. Almeshal et al. “Forecasting the Spread of COVID-19 in
Kuwait Using Compartmental and Logistic Regression Models”. In: Ap-
plied Sciences 10.10 (10 Jan. 2020), p. 3402. issn: 2076-3417. doi: 10.
3390/app10103402. url: https://www.mdpi.com/2076-3417/10/10/
3402 (visited on 01/08/2023).

[15] Ricardo Manuel Arias Velásquez and Jennifer Vanessa Mej́ıa Lara. “Fore-
cast and Evaluation of COVID-19 Spreading in USA with Reduced-Space
Gaussian Process Regression”. In: Chaos, Solitons & Fractals 136 (July 1,
2020), p. 109924. issn: 0960-0779. doi: 10.1016/j.chaos.2020.109924.
url: https : / / www . sciencedirect . com / science / article / pii /

S0960077920303234 (visited on 01/08/2023).

[16] Fabien Baradel et al. CoPhy: Counterfactual Learning of Physical Dynam-
ics. Apr. 7, 2020. arXiv: arXiv:1909.12000. url: http://arxiv.org/
abs/1909.12000 (visited on 12/19/2022). preprint.

[17] Rabia M Chaudhry et al. “Coronavirus Disease 2019 (COVID-19): Fore-
cast of an Emerging Urgency in Pakistan”. In: Cureus (May 28, 2020).
issn: 2168-8184. doi: 10 . 7759 / cureus . 8346. url: https : / / www .

cureus.com/articles/32115- coronavirus- disease- 2019- covid-

19- forecast- of- an- emerging- urgency- in- pakistan (visited on
01/08/2023).

https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://arxiv.org/abs/1712.09707
http://arxiv.org/abs/1712.09707
http://arxiv.org/abs/1712.09707
https://doi.org/10.1007/s41060-017-0086-6
https://arxiv.org/abs/1801.05854
http://arxiv.org/abs/1801.05854
http://arxiv.org/abs/1806.01242
http://arxiv.org/abs/1806.01242
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1073/pnas.1906995116
https://www.pnas.org/doi/10.1073/pnas.1906995116
https://www.pnas.org/doi/10.1073/pnas.1906995116
https://arxiv.org/abs/arXiv:1901.08511
https://arxiv.org/abs/arXiv:1901.08511
http://arxiv.org/abs/1901.08511
https://doi.org/10.3390/app10103402
https://doi.org/10.3390/app10103402
https://www.mdpi.com/2076-3417/10/10/3402
https://www.mdpi.com/2076-3417/10/10/3402
https://doi.org/10.1016/j.chaos.2020.109924
https://www.sciencedirect.com/science/article/pii/S0960077920303234
https://www.sciencedirect.com/science/article/pii/S0960077920303234
https://arxiv.org/abs/arXiv:1909.12000
http://arxiv.org/abs/1909.12000
http://arxiv.org/abs/1909.12000
https://doi.org/10.7759/cureus.8346
https://www.cureus.com/articles/32115-coronavirus-disease-2019-covid-19-forecast-of-an-emerging-urgency-in-pakistan
https://www.cureus.com/articles/32115-coronavirus-disease-2019-covid-19-forecast-of-an-emerging-urgency-in-pakistan
https://www.cureus.com/articles/32115-coronavirus-disease-2019-covid-19-forecast-of-an-emerging-urgency-in-pakistan

BIBLIOGRAPHY 89

[18] Vinay Kumar Reddy Chimmula and Lei Zhang. “Time Series Forecast-
ing of COVID-19 Transmission in Canada Using LSTM Networks”. In:
Chaos, Solitons & Fractals 135 (June 1, 2020), p. 109864. issn: 0960-
0779. doi: 10 . 1016 / j . chaos . 2020 . 109864. url: https : / / www .

sciencedirect.com/science/article/pii/S0960077920302642 (vis-
ited on 01/08/2023).

[19] Miles Cranmer et al. Lagrangian Neural Networks. July 30, 2020. arXiv:
arXiv:2003.04630. url: http://arxiv.org/abs/2003.04630 (visited
on 12/20/2022). preprint.

[20] Amol Kapoor et al. Examining COVID-19 Forecasting Using Spatio-Temporal
Graph Neural Networks. July 6, 2020. arXiv: arXiv:2007.03113. url:
http://arxiv.org/abs/2007.03113 (visited on 01/04/2023). preprint.

[21] Jungeun Kim et al. DPM: A Novel Training Method for Physics-Informed
Neural Networks in Extrapolation. Dec. 4, 2020. arXiv: arXiv : 2012 .

02681. url: http://arxiv.org/abs/2012.02681 (visited on 12/22/2022).
preprint.

[22] Leila Moftakhar, Mozhgan Seif, and Marziyeh Sadat Safe. “Exponentially
Increasing Trend of Infected Patients with COVID-19 in Iran: A Compari-
son of Neural Network and ARIMA Forecasting Models”. In: Iranian Jour-
nal of Public Health 49 (Supple 1 Apr. 28, 2020), pp. 92–100. issn: 2251-
6093. doi: 10.18502/ijph.v49iS1.3675. url: https://ijph.tums.ac.
ir/index.php/ijph/article/view/20549 (visited on 01/08/2023).

[23] Rohit Salgotra, Mostafa Gandomi, and Amir H Gandomi. “Time Series
Analysis and Forecast of the COVID-19 Pandemic in India Using Ge-
netic Programming”. In: Chaos, Solitons & Fractals 138 (Sept. 1, 2020),
p. 109945. issn: 0960-0779. doi: 10 . 1016 / j . chaos . 2020 . 109945.
url: https : / / www . sciencedirect . com / science / article / pii /

S0960077920303441 (visited on 01/08/2023).

[24] Alvaro Sanchez-Gonzalez et al. Learning to Simulate Complex Physics
with Graph Networks. Sept. 14, 2020. arXiv: arXiv:2002.09405. url:
http://arxiv.org/abs/2002.09405 (visited on 12/19/2022). preprint.

[25] Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges. May 2, 2021. arXiv: arXiv:2104.13478.
url: http://arxiv.org/abs/2104.13478 (visited on 12/20/2022).
preprint.

[26] Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges. May 2, 2021. arXiv: arXiv:2104.13478.
url: http://arxiv.org/abs/2104.13478 (visited on 01/01/2023).
preprint.

[27] Steven L. Brunton et al. “Modern Koopman Theory for Dynamical Sys-
tems”. Oct. 29, 2021. url: http://arxiv.org/abs/2102.12086 (visited
on 03/30/2022).

[28] Cornelius Fritz, Emilio Dorigatti, and David Rügamer. Combining Graph
Neural Networks and Spatio-temporal Disease Models to Predict COVID-
19 Cases in Germany. Jan. 3, 2021. arXiv: arXiv:2101.00661. url:
http://arxiv.org/abs/2101.00661 (visited on 01/04/2023). preprint.

https://doi.org/10.1016/j.chaos.2020.109864
https://www.sciencedirect.com/science/article/pii/S0960077920302642
https://www.sciencedirect.com/science/article/pii/S0960077920302642
https://arxiv.org/abs/arXiv:2003.04630
http://arxiv.org/abs/2003.04630
https://arxiv.org/abs/arXiv:2007.03113
http://arxiv.org/abs/2007.03113
https://arxiv.org/abs/arXiv:2012.02681
https://arxiv.org/abs/arXiv:2012.02681
http://arxiv.org/abs/2012.02681
https://doi.org/10.18502/ijph.v49iS1.3675
https://ijph.tums.ac.ir/index.php/ijph/article/view/20549
https://ijph.tums.ac.ir/index.php/ijph/article/view/20549
https://doi.org/10.1016/j.chaos.2020.109945
https://www.sciencedirect.com/science/article/pii/S0960077920303441
https://www.sciencedirect.com/science/article/pii/S0960077920303441
https://arxiv.org/abs/arXiv:2002.09405
http://arxiv.org/abs/2002.09405
https://arxiv.org/abs/arXiv:2104.13478
http://arxiv.org/abs/2104.13478
https://arxiv.org/abs/arXiv:2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2102.12086
https://arxiv.org/abs/arXiv:2101.00661
http://arxiv.org/abs/2101.00661

90 BIBLIOGRAPHY

[29] Junyi Gao et al. “STAN: Spatio-Temporal Attention Network for Pan-
demic Prediction Using Real-World Evidence”. In: Journal of the Amer-
ican Medical Informatics Association 28.4 (Mar. 18, 2021), pp. 733–743.
issn: 1527-974X. doi: 10.1093/jamia/ocaa322. url: https://academic.
oup.com/jamia/article/28/4/733/6118380 (visited on 01/09/2023).

[30] Lu Lu et al. Physics-Informed Neural Networks with Hard Constraints
for Inverse Design. Feb. 8, 2021. arXiv: arXiv:2102.04626. url: http:
//arxiv.org/abs/2102.04626 (visited on 12/22/2022). preprint.

[31] Suyel Namasudra, S. Dhamodharavadhani, and R. Rathipriya. “Nonlin-
ear Neural Network Based Forecasting Model for Predicting COVID-19
Cases”. In: Neural Processing Letters (Apr. 1, 2021). issn: 1573-773X.
doi: 10.1007/s11063-021-10495-w. url: https://doi.org/10.1007/
s11063-021-10495-w (visited on 01/04/2023).

[32] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis.
“Transfer Graph Neural Networks for Pandemic Forecasting”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence 35.6 (6 May 18,
2021), pp. 4838–4845. issn: 2374-3468. doi: 10.1609/aaai.v35i6.16616.
url: https://ojs.aaai.org/index.php/AAAI/article/view/16616
(visited on 01/04/2023).

[33] Iman Rahimi, Fang Chen, and Amir H. Gandomi. “A Review on COVID-
19 Forecasting Models”. In: Neural Computing and Applications (Feb. 4,
2021). issn: 1433-3058. doi: 10.1007/s00521-020-05626-8. url: https:
//doi.org/10.1007/s00521-020-05626-8 (visited on 01/04/2023).

[34] Benjamin Sanchez-Lengeling et al. “A Gentle Introduction to Graph Neu-
ral Networks”. In: Distill 6.9 (Sept. 2, 2021), e33. issn: 2476-0757. doi:
10.23915/distill.00033. url: https://distill.pub/2021/gnn-
intro (visited on 12/30/2022).

[35] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”.
In: IEEE Transactions on Neural Networks and Learning Systems 32.1
(Jan. 2021), pp. 4–24. issn: 2162-237X, 2162-2388. doi: 10.1109/TNNLS.
2020.2978386. arXiv: 1901.00596 [cs, stat]. url: http://arxiv.
org/abs/1901.00596 (visited on 12/26/2022).

[36] Chuizheng Meng et al. When Physics Meets Machine Learning: A Sur-
vey of Physics-Informed Machine Learning. Mar. 31, 2022. arXiv: arXiv:
2203.16797. url: http://arxiv.org/abs/2203.16797 (visited on
12/15/2022). preprint.

[37] Petru Soviany et al. Curriculum Learning: A Survey. Apr. 11, 2022. arXiv:
arXiv:2101.10382. url: http://arxiv.org/abs/2101.10382 (visited
on 10/26/2022). preprint.

[38] Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. “Two-Player Games
for Efficient Non-Convex Constrained Optimization”. In: ().

[39] What Is Epidemiology? — Teacher Roadmap — Career Paths to Public
Health — CDC. url: https://www.cdc.gov/careerpaths/k12teacherroadmap/
epidemiology.html (visited on 04/13/2023).

https://doi.org/10.1093/jamia/ocaa322
https://academic.oup.com/jamia/article/28/4/733/6118380
https://academic.oup.com/jamia/article/28/4/733/6118380
https://arxiv.org/abs/arXiv:2102.04626
http://arxiv.org/abs/2102.04626
http://arxiv.org/abs/2102.04626
https://doi.org/10.1007/s11063-021-10495-w
https://doi.org/10.1007/s11063-021-10495-w
https://doi.org/10.1007/s11063-021-10495-w
https://doi.org/10.1609/aaai.v35i6.16616
https://ojs.aaai.org/index.php/AAAI/article/view/16616
https://doi.org/10.1007/s00521-020-05626-8
https://doi.org/10.1007/s00521-020-05626-8
https://doi.org/10.1007/s00521-020-05626-8
https://doi.org/10.23915/distill.00033
https://distill.pub/2021/gnn-intro
https://distill.pub/2021/gnn-intro
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://arxiv.org/abs/arXiv:2203.16797
https://arxiv.org/abs/arXiv:2203.16797
http://arxiv.org/abs/2203.16797
https://arxiv.org/abs/arXiv:2101.10382
http://arxiv.org/abs/2101.10382
https://www.cdc.gov/careerpaths/k12teacherroadmap/epidemiology.html
https://www.cdc.gov/careerpaths/k12teacherroadmap/epidemiology.html

	Abstract
	Structure
	Notation
	Background
	Physics Informed Machine Learning
	Motivations of PIML
	Physics knowledge
	Physics Informed Neural Networks

	Constrained Optimization
	Learning to Simulate Physics
	Sparse Identification of Nonlinear Dynamics
	Change of coordinates

	Graph Neural Networks
	Definitions
	Categorization of GNNs
	Convolutional graph neural networks
	Spatial-temporal graph neural networks

	The problem
	Epidemiological modelling
	The SIR model

	Problem formulation
	Diffusion dynamics on graphs
	NDlib

	Related works
	Contributions
	Sindy problem formulation
	Constraints
	Constraints on infinite states
	Random sampling
	Minima seeking
	Restricting dictionary functions

	Constraints and gradient descent
	Thresholding
	Sindy Graph
	Definitions
	Constraints

	Sindy Graph Implementation
	Difference function
	Message Passing
	Thresholding
	Constraints
	Training
	Node supervision
	Aggregated supervision
	Hyper parameters

	Experimental Results
	Tests introduction
	Sindy Graph
	Sindy graph with node supervision 100
	Sindy graph with node supervision and constraints 100
	Sindy graph with aggregated supervision 100
	Sindy graph with aggregated supervision 150
	Sindy graph with aggregated supervision and constraints 100
	Sindy graph with aggregated supervision and constraints 150

	Spatial-Temporal Graph Neural Networks
	Implementation
	STGNN with aggregated supervision
	STGNN with aggregated supervision and constraints
	STGNN with node supervision
	STGNN with node supervision and constraints

	Comparative table

	Conclusions
	Algorithms
	Quadratic programming

