
University of Padova

Department of Information Engineering

Master Degree in Telecommunication Engineering

Internet of Things

for Smart Cities:

user interface and security issues

Candidate Supervisor

Chiara Pielli Prof. Michele Zorzi

Assistant supervisor

Prof. Andrea Zanella

Academic Year 2014/2015

A mamma, a papá. A Laura. Perché ci sono sempre.
Agli amici di ieri e di oggi e ai coinquilini di questi anni,

che hanno dato luce ai giorni piú grigi.
Agli ingegneri di Patavina Technologies, che mi hanno accolto.

A chi non c'é ma vorrei ci fosse.
A Pier, ovviamente.

�The hardest thing of all is to �nd a black cat in a dark room,
especially if there is no cat.�

Confucius

Contents

Introduction 1

1 Internet Of Things 3

1.1 Open challenges . 4
1.2 Protocols . 5
1.3 Smart Cities . 6

2 The Patavina Technologies project 8

2.1 System architecture . 9
2.2 LoRa network . 12
2.3 Security . 13

3 The choice of the platform 15

3.1 Required features . 16
3.2 The candidates . 17

3.2.1 OpenHAB . 18
3.2.2 Sentilo . 19
3.2.3 Parse . 20

3.3 Platforms comparison and �nal choice 20

4 The protocol bridge 22

4.1 The protocols . 23
4.1.1 MQTT . 23
4.1.2 REST . 24
4.1.3 Comparison . 25

4.2 The bridge . 26
4.2.1 Patavina MQTT messages 27
4.2.2 Sentilo REST API . 29
4.2.3 The bridge implementation 30
4.2.4 Java project structure 35

4.3 User interface . 38

CONTENTS

5 Security issues 42

5.1 Security in IoT . 42
5.2 Security aspects in Sentilo . 44
5.3 User permissions . 46
5.4 The login server . 47

5.4.1 The user authentication 50
5.4.2 The administration console 51
5.4.3 Password storing . 52

6 Performance analysis 55

6.1 The bridge performance . 55
6.1.1 Simulation scenario . 56
6.1.2 Results . 59

6.2 Security improvements . 63

7 Conclusions 67

Bibliography 75

III

Abstract

The Internet of Things revolution is drastically changing the concept of net-
working: everyday objects are becoming smart and interconnected, forming a
ubiquitous and densely populated network. The work presented in this thesis
is part of a bigger project concerning the development of a complete architec-
ture for the Internet of Things. It consists in the improvement of an existing
Internet of Things middleware, providing a way to seamlessy connect the �-
nal user interface to the 'things' world, and in the development of a security
framework to manage read and write permissions owned by the users with
respect to the 'things' and their observations. The overall project considers
every element of an Internet of Things network, from the physical devices
capable of generating data to the web interface through which the �nal user
accesses and controls those data. The deployment of such architecture is
envisaged in a Smart Cities context.

Introduction

'The Internet of Things has the potential to change the world, just as the
Internet did. Maybe even more so'. This is what Kevin Ashton1 states in
an article appeared in the RFID journal in June 2009 [1]. The Internet of
Things (IoT) is a recent communication paradigm which is deemed to be the
next stage of the information revolution after the massive spreading of the
Internet in every �eld: intelligent sensors are extended into the world of ev-
eryday objects: machines, buildings, vehicles, plants, people themselves, etc.
and they are becoming an integral part of the Internet [2]. Everything is be-
coming linked to everything else and capable of providing us feedback as the
things are getting equipped with sensors and microcontrollers. The IoT shall
therefore be able to seamlessy incorporate a large number of di�erent and
heterogeneous end systems, while providing open access to selected subsets
of data for the development of digital services [3]. The IoT is representing
a central step towards the realization of Mark Weiser's vision of ubiquitous
computing: a world where technology vanishes in the background [4]. A
similar concept has been stated by Eric Schmidt [5], Executive Chairman of
Google, for whom 'the Internet will disappear. . . you won't even sense it, it
will be part of your presence all the time'. The impact of this technology
shift is supposed to be much heavier than the one caused by the integration
of Internet in our lives through smartphones and other technological mobile
devices. Very recent data from Juniper Research have revealed that the num-
ber of IoT connected devices is predicted to be 38.5 billion in 2020, up from
13.4 billion in 2015, a rise of over 285% [6].

In spite of the very fast growth of the IoT technology, many challenges
still need to be addressed, mainly concerning the new transmission paradigm,
security issues and energy e�ciency. The Internet of Things aroused in me a
vivid interest, which pushed me to do this thesis work in collaboration with
Patavina Technologies2, a spin-o� of the Information Engineering Depart-
ment of the University of Padova. It is a system and software house that

1 Cofounder of the Auto-ID Center at the Massachussets institute of Technology (MIT).
2 http://www.patavinatech.com/

1

http://www.patavinatech.com/

deals with Internet of Things and provides services related to monitoring,
actuation, indoor real time positioning and smart cities by using technolo-
gies such as IEEE 802.15.4 [7], IEEE 802.11 [8], 6LoWPAN [9], CoAP [10],
Lo-RaTM [11]. They are currently working at the development of a com-
plete IoT system with the target of Smart Cities (and smart buildings or, in
general, home automation) which involves every element of the IoT architec-
ture, from the physical sensors to the web interface for the �nal user. I took
part in this project, and more speci�cally I worked on the integration of a
middleware to �t in the architecture they developed and in the de�nition of
some security measures at the application level, including the possibility of
assigning di�erent privileges to the users.

Thesis outline

This document is organized as follows. Chapter 1 introduces the Internet of
Things and presents the state of the art of IoT for Smart Cities; Chapter
2 describes the project of Patavina Technologies; Chapters 3, 4 and 5 focus
on the work I did and concern the choice of the middleware to use, the
adaptations I implemented to make the platform �t the existing system and
the security issues and measures concerning the interaction with the Internet,
respectively. Chapter 6 analyzes the results of some measures I made for
evaluating the work I did. Finally, in Chapter 7 the conclusions are drawn.

2

CHAPTER 1. INTERNET OF THINGS

1. Internet Of Things

Although the concept of Internet of Things is quite recent and still not univer-
sally known, the idea of an appliance connected to the Internet was discussed
as early as 1982: a Coke machine at Carnegie Mellon University (Pittsburgh,
Pennsylvania) was modi�ed in order to report its inventory and whether
newly loaded drinks were cold [12]. In the following years the idea of an
extremely connected world got through till the concept of the Internet of
Things shaped up at the end of the XX century: a ubiquitous network of
physical objects able to collect and exchange data.

Any object may be part of the Internet of Things; in his speech [13] at the
TEDx conference of 2012 John Barrett1 explains that three steps are needed
to make an object 'smart': it must be given a unique identi�er, the ability
to communicate with the Internet, and senses for giving you feedback about
what you are interested in. This is clearly a simpli�cation which abstracts
from all the communication and security issues that arise when thousands of
devices are connected to the Internet. However, the basic concept of IoT is
simple: connecting physical objects to the Internet in order to access remote
sensor data and to control the physical world from a distance [14]. Nowadays,
many embedded systems are already connected to the Internet so the real
novelty of the IoT is not in the functional capabilities of smart objects but
rather in the huge number of connected devices and in the heterogeneity of
both types of devices and types of applications. The IoT will in fact have an
impact in various areas which range from personal interests or comfort such
as home automation, to medical services such as health care monitoring and
elderly care, to collective bene�ts like smart cities, intelligent transportation
or environmental monitoring [15]. However, such a heterogeneous �eld of
application makes the identi�cation of solutions capable of satisfying the re-
quirements of all possible application scenarios a formidable challenge. The
realization of a complete IoT network still lacks of a well-established and wid-

1 Head of Academic Studies at the Nimbus Centre for Embedded Systems Research at
Cork Institute of Technology and Group Director of the Centre's Smart Systems Integra-
tion Research Group.

3

CHAPTER 1. INTERNET OF THINGS

ley acknowledged best practice and many issues still need to be addressed [3].

1.1 Open challenges

So far, the main driver for the development of communications technologies
has been Human-to-Human (H2H) communication. Nonetheless, with the
advent of smartphones and the new communication paradigm introduced by
the IoT, human interaction is currently giving way to Machine-To-Machine
(M2M) communication, which is expected to grow exponentially in the near
future. Because of its distinct and unique features, Machine-Type Communi-
cation (MTC) raises numerous challenges which are the object of a intensive
research in both academia and industry, which are trying to keep up with
the fast and increasing growth of IoT technologies [16].

A considerable concern IoT systems need to cope with, is massive access
management. So far, researchers have been investigating cellular based ap-
proaches: in particular they have focused on a revival of GSM [17] [18], the
�rst generation of standards for cellular systems, and on adaptations of the
fourth generation standards, LTE [19] [20]. However, an e�cient solution
still must be found as the requirements of IoT and MTC are considerably
di�erent from H2H communication needs. A general guideline is to imple-
ment an access scheme in between coordinated and completely random, for
avoiding both a too high physical layer signaling and collisions, which would
exacerbate the network congestion already threatened by a sudden surge of
connecting devices. Other well-known issues touch energy e�ciency, exac-
erbated by the strong constraint of the devices, which are typically battery
equipped [16]. The heterogeneity of the devices introduces other complica-
tions such as the management of di�erent Quality of Service (QoS) require-
ments. Finally, when even all these challenged were optimally addressed,
system properties like robustness, scalability and especially security should
also be integrated in the architecture [21].

It is important to mention that various solutions oriented to M2M ser-
vices already exist, such as ZigBee [22] and the Third Generation Partner-
ship Project (3GPP) Proximity-based Service protocol [23], but all of them
are mostly valuable for local area services, while MTC aims at providing
ubiquitous access to the devices across a geographically wide service area.
This thesis concerns the development of an IoT architecture which relies
on LoRaWANTM, a technology standardized by the LoRa alliance (see Sec-
tion 2.2).

4

CHAPTER 1. INTERNET OF THINGS

1.2 Protocols

Any IoT application must specify how things are interconnected, starting
from the bottom of the OSI stack. The IoT poses numerous challenges in
creating the basic interconnections between two things: network topology,
cost, latency, application throughput and security.

The standardization of communication protocols for resource constrained
devices is currently led by the Internet Engineering Task Force (IETF),
which developed the 6LowPAN protocol suite [9] for low power devices al-
lowing IPv62 packets to be transmitted over IEEE802.15.4 networks. IEEE
802.15.4 [7] is a radio technology standard for low-power and low-data-rate
applications with a short radio coverage (few meters), and speci�es both
physical and MAC layers. In [24] the authors have proved that also low-
power WiFi may be counted as a valuable solution, as it considerably reduces
latency and energy consumption with respect to typical WiFi.
As regards the network and transport layers, the Internet Protocol (IP) in
its new version IPv6 and the Transport Control Protocol (TCP) are actually
among the most considered solutions. The User Datagram Protocol (UDP)
instead o�ers lower energy consumption and tra�c overhead than TCP but
grants no reliability at all. Another protocol to consider is the already men-
tioned ZigBee, which is not compatible with the Internet stack but has been
speci�cally developed for industry and home automation applications.
At the application layer, thing-driven protocols have been developed as the
HyperText Transfer Protocol (HTTP), which represents the basis of the Web,
does not suit well M2M communication. A protocol similar in HTTP from
an application layer perspective has recently been designed: CoAP, the Con-
strained Application Protocol [10], which uses UDP as underlying transport
protocol thus reducing the transmission overhead, and supports a basic noti-
�cation mechanism. The most worth mentioning protocols targeting IoT
applications are MQTT and AMQP: Message Queuing Telemetry Trans-
port [25] is a fast and lightweight protocol based on a publish/subscribe
mechanism and working on top of TCP - it will be thoroughly described in
Section 4.1.1 -, whereas the Advanced Message Queuing Protocol is a binary
application layer protocol designed to e�ciently support a wide variety of
messaging applications and communication patterns and uses TCP as the
transport protocol.

2Since the very beginning of researches on IoT, IPv6 has been selected as communica-
tion protocol for providing an identi�cation and location system for the devices as it uses
addresses of 128 bits, much more than the 32 bits provided with IPv4.

5

CHAPTER 1. INTERNET OF THINGS

1.3 Smart Cities

A possible IoT application in which the IoT community is spending e�ort is
the Smart City vision. There is no formal de�nition of Smart City but its
meaning is quite intuitive: a city which exploits the most modern communi-
cation technologies - like the MTC paradigm - to increase the quality of the
services o�ered to citiziens whilst boosting local economies and decreasing
the public administrations' costs [26]. Integrating IoT in an urban context
brings bene�ts to a lot of services: public transportation, tra�c manage-
ment and parking, urban lighting, public safety and monitoring of public
areas, garbage collection, hospitals and many others. The same citiziens are
expected to be actively involved in city services and more aware about the
status of the city where they live. Smart Cities are in fact based on three
cornerstones: technology innovation, environmental sustainability and social
involvement. Navigant Research forecasts that global smart city technology
revenues will grow from 8.8 billions of dollars annually in 2014 to 27.5 billions
in 2023 [27].

Smart City have not really established yet because despite the entusiasm
generally shown by both city administrations and citiziens, some barriers
still prevent their penetration in the existing contexts [28]. These obstacles
concern political, �nancial and technical points of view; technical issues re-
volve around the current inoperability of the technologies actually used in
the cities. Nonetheless some cities are already in the forefront of this urban
technologies shift, leading the actualization of the Smart City vision: Padova
itself [29] [30] is spending e�ort in becoming 'smart', o�ering services for an
overall improvement in the citiziens' lives. Another worth-mentioning exam-
ple is SmartSantander [31] [28], which with more than 1100 active sensors is
probably the largest Wireless Sensor Network in the whole world.

In the development of an urban IoT, the following entities play a funda-
mental role [3]:

- peripheral nodes : the proper 'things' capable of generating data; they may
be sensors or actuators and are typically cheap. They must support
link layer technologies for communicating with the control entities and
they must be univocally addressable, e.g., by using Radio-Frequency
IDenti�cation (RFID)3 [32];

- gateways : intermediary devices in charge of interconnecting the sensors
to the rest of the network. They must provide protocol translation

3 RFID uses wireless electromagnetic �elds for tracking tags attached to objects.

6

CHAPTER 1. INTERNET OF THINGS

for mapping the constrained protocol used by the nodes to the uncon-
strained and more sophisticated protocols of the main communication
infrastructure of the system;

- backend services : responsible for collecting, processing and storing the data
received from the end nodes. By means of a graphical interface, they
represent the access channel for the human users to the things' world.

Patavina Technolgies spent a lot of e�ort in the implementation of an IoT
infrastructure in the context of a project called 'Padova Smart City'. The
next chapter brie�y introduces the main elements of its architecture.

7

CHAPTER 2. THE PATAVINA TECHNOLOGIES PROJECT

2. The Patavina Technologies project

The Patavina Technolgies team developed an architecture that spans all the
elements belonging to an IoT system, from the physical sensors to the �nal
user graphical interface, with the target of smart environments, i.e., home
automation or Smart Cities. Figure 2.1 is a schematic representation of the
architecture they set up.

Figure 2.1: The system architecture

It is possible to identify two main parts in the architecture: the LoRaTM

network, which includes sensors, gateways and a Network Server, and a
second part comprehending the devices that allow the LoRa network (the
'Things') and the �nal user (the 'Internet') to interact.

I will illustrate all the elements involved and how they communicate
among each other.

8

CHAPTER 2. THE PATAVINA TECHNOLOGIES PROJECT

2.1 System architecture

The architecture designed by Patavina Technologies is based on LoRaTM

technology, LoRaWAN [33], a Low Power Wide Area Network (LPWAN)
speci�cation intended for wireless battery operated devices, which may be
either mobile or mounted at a �xed location. LoRaWAN is a network protocol
for networks typically laid out in a star-of-stars topology1. The key elements
are the end-devices, a central network server, and an arbitary number of
gateways which relay messages among the backends. A thorough description
of LoRa speci�cation is given in the next section.

The elements of which the whole system consists are the following:

- LoRa nodes : they are the most peripheral elements of the network and are
the devices able to generate observations. Each node can be equipped
with multiple sensors of di�erent types. Currently, nodes are incapable
of supporting an operating system, so network services and applications
are implemented as a monolithic piece of �rmware to install into the
devices. The packets generated by nodes (according to the LoRa spec-
i�cation) are sent in broadcast, via wireless; thus, any LoRa gateway
in the coverage area can overhear them;

- LoRa gateways (GW): they are in charge of forwarding the packets received
from the LoRa nodes to the LoRa Network Server making use of IP
tunnels. They also add some extra information to the packets, mainly
regarding statistical data such as the SNR (Signal-to-Noise Ratio) or
the signal frequency;

- LoRa Network Server (NS): it is a unique element in a LoRa network and
implements the LoRa protocol stack up to the MAC layer in order to
seamlessly interact with the nodes through the gateways. It can also
support other communication protocols, so it represents the point of
access for the LoRa network. In the Patavina Technologies project, for
example, the NS supports also the MQTT communication protocol to
transmit the LoRa messages to the MQTT broker;

- MQTT broker : it is the server in a MQTT application, as will be explained
in Section 4.1.1. It receives the messages from the NS and forwards
them to the other clients through a publish/subscribe mechanism. The
key feature of MQTT is its being a push protcol, so a client does not

1 In star networks each host is connected to a central hub with a point-to-point con-
nection.

9

CHAPTER 2. THE PATAVINA TECHNOLOGIES PROJECT

need to continuously ask for the information it wants, but it just needs
to subscribe to the desired service and the server will be in charge of
sending him the related messages;

- Application Server (AS): it acts as a MQTT client and subscribes to all
the resources published by speci�c LoRa nodes2. Thanks to the MQTT
addressing structure, the AS is able to discriminate the application
used by the node that generated the data, and this is necessary for
interpreting and processing each message in the proper way, according
to the speci�c application;

- Authorization Server (AUS): it manages the authorization and the join
procedure of the nodes. The join procedure is used for the LoRa key
exchange, as described further;

- middleware: it is a platform acting as intermediary between the AS, which
is the representative of the 'Things', and the �nal user, the 'Internet';

- graphical user interface (GUI): it is a web front-end that o�ers a friendly
interface to the �nal user for accessing the data generated by the nodes
applications, change some settings and send commands to the sensors.
Such website is accessible via authentication and displays both the
latest values registered and the graphs of historical data.

The listed elements are all distinguished from a logical point of view, but
they may be physically located in the same device, as typically happens for
the Application and the Authorization Servers. A possible con�guration sees
the Network Server residing in a single device to serve multiple gateways and
the other services all running on a cloud.

Figure 2.2 represents a detailed scheme of the whole architecture. The
openHAB reference is due to the fact that the �rst middleware chosen by
Patavina Technologies was openHAB, a software built for home automation
which supports many di�erent technologies. The current implementation
of the Patavina Technologies considers the possibility for the customers to
choose whether to use openHAB or Sentilo, a platform designed to �t Smart
City architectures. The di�erences between openHAB and Sentilo are de-
scribed in Chapter 3, in which I will also explain why I was in charge of
investigating about new platforms to use in place of openHAB. Anyway,
whatever the platform included in the system, its task is to connect the
MQTT broker to the �nal user interface.

2 For example, it may be interested in all nodes belonging to a certain company.

10

CHAPTER 2. THE PATAVINA TECHNOLOGIES PROJECT

Lora™
Node
LON

S

S

A

LoRa™
gateway
LGW

 LoRa™
NetServer

LNS

database
interface

JSON parser

network
database

MQTT
broker
MQB

MQTT client

User Manager
USM

app app app

LoRa™ link UDP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

S = Sensor
A = Actuator

app = openHab application

JS
O

N

pa
rs

er

Application
Server
APS

MQTT client

Authorization
Server
AUS

application
database

TCP/IP

database interface

MQTT client

OpenHAB web interface
OWI

Figure 2.2: Detailed system architecture

All message payloads are in the Json format, as deducible from the Json
parser elements of the scheme in Figure 2.2. Nodes communicate with the
GWs through the LoRa wireless technology, receive and transmit in broad-
cast. All the other links use standard Internet technologies; the connection
between a GW and the NS is wired because it needs to be quite reliable since
the transport protocol used is UDP, which is faster and lighter than TCP
but less reliable. The connections among the other elements are instead TCP
based.

11

CHAPTER 2. THE PATAVINA TECHNOLOGIES PROJECT

2.2 LoRa network

The LoRaTM alliance developed a speci�cation for networks with Long Range
and Low (power) Radio networks, providing a network architecture that �ts
very well the IoT systems requirements (support for transmission of thou-
sands of short messages, security issues, low energy consumption of the de-
vices, . . .). All communication is generally bi-directional, although uplink
communication from an end-device to the Network Server is expected to
constitute the predominant tra�c. Communication between nodes and GWs
is spread out on di�erent frequency channels and data rates (from 0.3 kbps
to 50 kbps), chosen as a trade-o� between communication range and mes-
sage duration. LoRa supports an adaptive data rate scheme that speci�cally
manages each node individually, so as to maximize the battery life of the
nodes and the overall network capacity.

All the elements belonging to a LoRa network have some common mini-
mum functionalities aiming at e�ciently coping with the energy constraints
of the devices, and they are said to implement the Class A. There exist two
other classes of functionalities named Class B and Class C, which both add
some features to the basic LoRaWAN Class A:

- Class A: it identi�es characteristics that all nodes must implement or, at
least, that have to be compatible with the characteristics of a node. The
end-devices are able to both transmit and receive messages, but not si-
multaneously: an uplink tranmission window is followed by two shorter
downlink receive windows. These communication slots are spaced out
by sleep phases of semi-random duration, which are meant to save en-
ergy and battery life. Downlink communications from the server have
to wait until the next scheduled uplink as they can happen only when
the node is listening;

- Class B : this class has been thought for nodes that must be more reactive
to the commands and messages received from the GWs. It in fact
allows the devices to have more receive slots: in addition to the Class
A random receive windows, Class B devices open extra receive windows
at scheduled times determined by time-synchronized beacons sent by
the GWs;

- Class C : the receive slots are maximized as the downlink windows are
almost continuously open and interrupted only for transmitting. Of
course, this behaviour consumes much more energy but it o�ers a min-
imal latency for communications from the server.

12

CHAPTER 2. THE PATAVINA TECHNOLOGIES PROJECT

The LoRa network set up by Patavina Technologies does not include class
C devices, as the predominant communication is in uplink and implementing
class C features consumes a lot of energy, which is undesirable if the devices
are not connected to a power source.

In order to participate in a LoRaWAN network, each end-device has to be
personalized and activated. Personalization means that each node must be
given a globally unique end-device identi�er, an application identi�er and a
AES-128 key, which is used for the encryption mechanism and whose control
is up to the NS. The activation of a node can be achieved in two di�erent
ways, namely via Over-The-Air Activation (OTAA), when a node is deployed
or reset, or via Activation By Personalization (ABP), in which the two inizial-
ization steps are done as a single one. For OTAA, end-devices must follow a
join procedure prior to participating in data exchanges with the NS. Before
the join procedure takes place, the personalization has to be done; after that
the node sends a join-request message to the Network Server containing its
unique ID and the application ID. If the request is not accepted, no response
is given to the end-device; otherwise it receives a join-accept message. The
ABP procedure, instead, directly ties a node to a speci�c network by-passing
the join message exchange. Anyway, in this case the end-device must be
equipped with the required information for participating in a speci�c LoRa
network when started.

The end-devices and the gateways are equipped with a time counter,
i.e., a clock that measures the time passed since the node activation, but
it is not related to an absolute time. GWs may also have a GPS clock,
whose presence is necessary for the beacon synchronization required by nodes
implementing the Class B. An absolute timestamp is inserted in the message
payload by the Network Server, which can for example make use of the
Network Time Protocol (NTP). The timestamps of the gateways (which are
relative timestamps) have the only goal of calculating the receive windows
of the end-devices. However, this is an extremely important operation, as
messages can be sent neither too late (otherwise the window will be closed)
nor too early, as the node would not be in listening mode and the GW would
not detect the failed transmission (no ACK feedback is implemented).

2.3 Security

Chapter 5 gives an overview of the importance of security measures in an IoT
system. Data privacy should be granted in every element of the architecture
as a single leak would disable the security of the system, representing a point
of access for security attacks, e.g., capture of information, duplication of

13

CHAPTER 2. THE PATAVINA TECHNOLOGIES PROJECT

existing packets or insertion of new fake packets.
For what concerns security in LoRa, the payloads of data frames are

encrypted, but the MAC headers are left in clear. The encryption scheme
is based on the generic algorithm described in IEEE 802.15.4/2006 Annex B
using AES with a key length of 128 bits. AES [34] is a symmetric encryption
algorithm whose key may be of length 128, 196 or 256 bits. For each end-
device there is a speci�c application session key (AppSKey), which is used
by both the NS and the end-device to encrypt and decrypt the payload �eld
of application-speci�c data messages. In the OTAA, the AppSKey is derived
from an application key (128 bits long) assigned by the application owner to
the end-device and most likely derived from an application-speci�c root key
exclusively known to and under the control of the application provider. In the
ABP process the AppSKey is directly stored in the node and provided by the
NS. In both cases, the key control is up to the NS, which is also responsible
for deciding whether the AES key can be known by the gateways or not.
Since the GWs may be unaware of the key used, the information they add
about LoRa statistics are not encrypted. Patavina Technologies is currently
working at the implementation of a Virtual Private Network (VPN), which
essentially extends a private network across a public network thus allowing
to bene�t from the security policies of the private network [35].

Security about the MQTT connections is granted by the enabling of both
authentication and TLS: the MQTT broker used provides username and pass-
word authentication as well as limiting access to topics by using access control
lists, preventing abusers from subscribing to topics, whereas the Transport
Layer Security (TLS) [36]3 is a cryptographic protocol that ensures a safe
transmission. TSL uses X.509 certi�cates and hence asymmetric cryptogra-
phy to authenticate the counterpart with whom they are communicating, and
to negotiate a symmetric session key, which will be used for the encryption
of data �owing between the parties. Thus, MQTT messages are quite safe
against sni�ng attacks and are not forwarded to non authenticated clients.

3TLS is the successor to Secure Sockets Layer (SSL)

14

CHAPTER 3. THE CHOICE OF THE PLATFORM

3. The choice of the platform

The Network Server is the point of access to the LoRa network and the
messages from the 'Things', and supports other protocols (such as MQTT,
for instance) so to transmit LoRa messages outside of the LoRa network.
Anyway, the �nal user communicates through websites and graphical inter-
faces, hence HTTP, and therefore an element to connect the �nal user to
the 'Things' world is needed: it is the component labeled as middleware in
Figure 2.1.

IoT systems often deal with di�erent types of devices, each of them with
its own communication protocol and di�erent requirements, that need to
somehow interact with the �nal user [37]. In order to meet this demand,
IoT architectures require a software platform de�ned as middleware which
fundamentally provides abstraction to applications from the 'things', and of-
fers multiple services. Middleware represents an intermediate layer between
the 'Internet' and the 'things' and acts as a bond joining the heterogeneus
domains of applications communicating over heterogeneous interfaces [38]. A
middleware is in charge of masking the heterogeneity and distribution prob-
lems that are faced when interacting with devices, so that even the average
technology-inexperienced user is able to enjoy IoT services e�ortlessy [39].

The middeware platform originally chosen by the Patavina Technologies
team was openHAB, an open source automation software speci�cally built
for smart houses (see Section 3.2.1). Since openHAB currently lacks some
useful features, e.g. the possibility to de�ne di�erent roles for distinguishing
among users privileges, my �rst task consisted in investigating some existing
middlewares for IoT applications in order to �nd out the one that better
�tted Patavina requirements.
The development of a middleware in the IoT context requires the support
of some functionalities, such as dealing with huge amounts of data, security
and privacy aspects, scalability, device discovery and management. Hence,
a number of challenges needs to be addressed in order to build an e�cient,
robust, scalable and real-time platform. For these reasons, we decided not
to develop a custom middleware from scratch, but rather to use an existing

15

CHAPTER 3. THE CHOICE OF THE PLATFORM

and tested platform and adapt it to ful�ll our requirements, if needed.
In the following sections I will outline the requirements we looked for and

describe three existing platforms we took into consideration, pointing out the
strenghts and the weaknesses of each of them. All of them are open source
projects, which are usable under the constraints of di�erent software licenses,
whose examination falls outsides the objectives of this thesis.

3.1 Required features

The main objective of an IoT middleware platform is to make the sensors
and the �nal user interact. The element in charge of sending the sensors
observations to the end user is the AS, or better, the MQTT broker to which
the AS keeps sending sensors info and data after the processing of the MQTT
messages coming from the LoRa network.
The following list summarizes the key features we identi�ed for the middle-
ware to use:

- modularity : the possibility to add functionalities without altering the ex-
isting core is essential in order to customize the platform in a plug-and-
play fashion for accomodating missing features;

- data format and protocol : since the sensors observations are sent via MQTT,
whereas the �nal user communicates via HTTP, the chosen middleware
is asked to support both protocols. Moreover, sensors data are sent in
the message payload in the Json format and therefore the already built-
in capability of handling such format is appreciable;

- data storage: it is necessary to have historical data stored, mainly in order
to create time-series graphs and to make it possible for the user to
retrieve old observations;

- user active interaction: the user is expected not only to read data from
sensors or retrieve information about the resources registered in the
platform, but also to give orders to the sensors. Such orders may come
from a spontaneous will of the user to change some parameter or the
sensor state, or may be some kind of alarms triggered by the retrieved
observations (e.g, when a monitored quantity goes beyond a certain
threshold);

- customizable sensor representation: we would like to be able to assign cus-
tom properties to the registered items and to group them in a hierarchi-

16

CHAPTER 3. THE CHOICE OF THE PLATFORM

cal way, mimicking the LoRa structure in which many di�erent sensors
belong to the same node and nodes may support di�erent applications;

- data timestamp: as the sensors used send the timestamp at which data were
originated along with the value of the observation, the chosen middle-
ware should support the possibility of transmitting the timestamp in
the data messages payload. This demand is important since transmis-
sion may considerably delay the message arrival at the AS with respect
to the moment the message was originated. Moreover, it could allow
the implementation of message piggybacking to send di�erent sensor
observations in the same message;

- secure and conditional access : as security represents a central issue in IoT
systems, it is fundamental to have a secure and reliable middleware. An
already implemented role division structure also represents a valuable
feature: in such a way, it is possible to give users access according to the
permissions they own, allowing to have users with di�erent privileges;

- administration console interface to manage sensors, i.e., adding new ones,
deleting or modifying existing ones.

Other minor but creditable features are the presence of an already imple-
mented user interface (UI) and the presence of a growing community, which
may play an important role to solve some unexpected issues and to make the
chosen product better, as improvements only come when there is demand.

3.2 The candidates

The three platforms we considered are openHAB, Sentilo and Parse. Open-
HAB, the original Patavina choice, principally addresses the needs of enter-
prising people that want to make their own house smart and provides them
a complete tool for the administration and management of the connected
devices. On the contrary, Sentilo has been developed with the target of
smart cities, where many more users are implied. Finally, Parse is a cloud-
based data management system mainly built to directly communicate with
the hardware devices. All softwares are open source, which is an essential
requirement since Patavina Technologies products should be sold. In this
regard, the analysis of the three middlewares involved also the study of the
licenses under which such tools are available. Anyway, as license investiga-
tion falls outside the purpose of this thesis, I will not go into its details. I
will rather describe the main features of each platform and compare them
with respect to the requirements mentioned above.

17

CHAPTER 3. THE CHOICE OF THE PLATFORM

3.2.1 OpenHAB

OpenHAB [40] is a software platform for home automation born in 2008 from
the need of its creator, Kai Kreuzer, to integrate sensors and actuators in his
own house in Darmstädt (Germany). OpenHAB target is home automation
and therefore it is thought to be used by a restricted number of users with
complete access to all available information. The implementation of user
di�erentiation according to given roles is on the future work list and will
allow to authorize users with di�erent read and write permissions. Anyway
such feature is still missing and this is one the main concerns that made
Patavina team willing to explore other possibilities after initially choosing
openHAB as middleware.

OpenHAB is highly modular and extendible through a plug-and-play
principle. Many modules have already been implemented, such as the MQTT
binding, a component that allows openHAB to act as an MQTT client. A
key concept for openHAB is the notion of an 'item', a data-centric func-
tional atomic building block: all openHAB resources are represented using
this 'item' abstraction, which is independent of the technology used. It is
possible to register, modify or delete items, read and publish data, create
triggers and alarms according to the sensors observations. Historical data
can be stored in relational databases, NoSQL or round-robin databases, in
IoT cloud services or simple log �les, according to the user needs.

The strenghts of the openHAB platform are its high modularity, the pres-
ence of the MQTT binding, the possibility of using Json data format for
payloads. Moreover, an already implemented and partially con�gurable user
interface is available.

The main inadequacies of openHAB concern items, which are supposed
to be an abstract concept not bound to a speci�c context. It is not possible
to add custom properties to characterize them and hierarchy is feasible only
by gathering them into groups. Moreover, as already pointed out, there still
is no architecture to di�erentiate users and condition their access to the data
stored. Another problem faced by using openHAB is the impossibility to
send the timestamp at which sensors data are originated1.

1 This lack is actually a conscious decision of Kai Kreuzer, founder of openHAB. In
response to a user request to add this option, Kreuzer stressed the 'item' abstraction
described previously and stated: 'I do not really like the idea to add these additional
properties [. . .] An item (including its state) is so far not bound in time and space and
this is on purpose - it simply describes a situation without �xing it at a certain point in
time'.

18

CHAPTER 3. THE CHOICE OF THE PLATFORM

3.2.2 Sentilo

Sentilo [41] is the product of a project started in November 2012 by the
Barcelona City Council and conceived for making Barcelona as a reference
point in the �eld of Smart Cities. The name Sentilo was chosen because it
means sensor in Esperanto, underlying the intention of openness and univer-
sality in the use of a platform.

Sentilo is a platform that o�ers an open source API based on REST in-
terface and provides a data publication and subscription Java system based
on Redis. In fact, even if the poll protocol HTTP is used, Sentilo develop-
ers implemented a sort of push system so that users can subscribe to the
services about which they want to receive updates. The REST API de�ned
for Sentilo allows to register new items, modify them or query their charac-
teristics, to read, publish or delete sensors observations and send orders to
the sensors. An alarm mechanism is also provided, in order to trigger com-
mands when some conditions de�ned by the user about sensor data are met.
Items in Sentilo are organized according to a hierarchical structure. They
are identi�ed by a unique ID and can be given other information, even cus-
tom ones. The standard data format used for message payload is Json, but
future releases are going to support XML, too. All information about Sentilo
resources is stored in MongoDB, while sensors observations and orders are
stored in Redis, but relational databases can also be used. Moreover, it is
possible to extend Sentilo's functionalities by implementing internal modules
that do not a�ect Sentilo's core. For what concerns security, Sentilo creators
developed a token-based authentication system to identify the petitioner of
the request.

The strong points of Sentilo are the possibility of extending its func-
tionalities, the presence of a hierarchical and slightly customizable items
representation and the implementation of an authorization and role-based
permission mechanism that facilitates the interaction in the same context of
multiple users with di�erent roles. Sentilo also provides a graphical interface
for the administrator. An interesting feature is the possibility to send the
sensor location in the data message, in order to visualize items on the map
and track their path if they are mobile devices. Unfortunately such feature
cannot be exploited in the Patavina project for the moment, as the sensors
used are not able to send their GPS location.

As regards its weak points, Sentilo lacks an MQTT interface and of an
already implemented graphical user interface.

19

CHAPTER 3. THE CHOICE OF THE PLATFORM

3.2.3 Parse

Parse [42] is a cloud-based data management system that allows people to
quickly develop web and mobile apps. More speci�cally, it is a Backend as a
Service (BaaS) solution, a turnkey service that adds user authentication, push
noti�cations, social media integration, location data, and data analytics into
any app. It was acquired by Facebook in 2013 with the aim of adding Mobile
BaaS capabilities to the existing platform and, as IoT backends are the logical
extension of mobile backends, in the end of March 2015 Facebook announced
Parse for IoT. Parse for IoT is a line of Software Development Kit (SDK) for
connected devices, such as Arduino Yún, a microcontroller board with built-
in WiFi capabilities. Parse SDKs are directly put on hardware platforms and
provide a simple interface for the REST API. Such SDKs make devices able to
receive push noti�cations, save data and take advantage of the Parse Cloud.
All Parse resources are represented as Parse Objects, uniquely identi�ed and
customizable. Particular objects are roles, which group users with common
access privileges in order to support role-based access control. Also storing
data on Parse is built around the Parse Object: there is no need to explicitly
create a database or tables to use Parse, data will be automatically stored
in the cloud. Finally, it is possible to extend Parse for IoT functionalities by
creating the so called Cloud Modules.

The strengths of Parse are the high customization available for Objects
and the presence of a solid permissions and roles structure to condition user
access.

The major weak points are instead the need of installing the SDK on each
device and the lack an existing MQTT binding. Moreover, being Parse for
IoT so recent (it was o�cially announced just a few months ago), there still
is no consolidated user experience to highlight pros and cons of this tool.

3.3 Platforms comparison and �nal choice

Table 3.1 summarizes the presence or lack of the desired features (see Sec-
tion 3.1) for the three platforms. All the three presented platforms represent
valuable middlewares for IoT, but at the same time all of them lack of some
useful feature. We chose not to use Parse for IoT, since it requires the SDK
installation on the hardware devices, whereas Patavina team needed a plat-
form more or less independent of the particular sensors and network topology
used.

20

CHAPTER 3. THE CHOICE OF THE PLATFORM

feature openHAB Sentilo Parse

modularity X X X

MQTT support X × ×
Json support X X X

data storage X X X

send orders to sensors X X kind of 1

items hierarchical representation not really 2 X not really 2

items custom representation × X X

user conditional access × X X

add timestamp to transmitted data × X kind of 3

administration console X X X

already implemented UI X × ×
growing community X X X

1 This service is not explicitally implemented, but it is possible to send push noti-

�cations after objects are saved
2 Items can be gathered into groups
3 Not contemplated, but feasible

Table 3.1: Comparison of the platforms

All the features currently missing in openHAB are instead present in
Sentilo: it is able to handle the data timestamp, to customize the items rep-
resentation and it also provides an authentication infrastructure to manage
the coexistence of multiple users with di�erent privileges. In view of these
considerations, we decided to keep using openHAB and meanwhile adapting
Sentilo to �t Patavina requirements. In this way the most suitable platform
can be chosen time by time according to the use context: openHAB better
�ts small contexts, such as automated houses or buildings, with few users
with same privileges, whereas Sentilo better serves wider scenarios such as
Smart Cities.

I was in charge of adapting Sentilo to the Patavina Technologies project.
The very �rst thing I had to do was the implementation of an MQTT interface
over REST, in order to make Sentilo able to communicate with the MQTT
broker.

21

CHAPTER 4. THE PROTOCOL BRIDGE

4. The protocol bridge

Sentilo, the chosen platform, makes the Things and the Web interact via
REST API over HTTP, a software architecture style illustrated in the fol-
lowing sections. On the contrary, the Application Server acts as a MQTT
client that processes and interprets the messages from the sensors and sends
these 'new' messages to an MQTT broker. HTTP and MQTT are quite dif-
ferent protocols, even just at a macroscopic scale as they use a pull and a
push technology, respectively. Hence, I added Sentilo a 'bridge' module that
works in a plug-and-play fashion in order to make it �t the existing architec-
ture developed by Patavina Technologies. The objective of the bridge is to
connect Sentilo to the MQTT broker by supporting both REST and MQTT
and acting in this way as a protocol bridge that transforms MQTT messages
in HTTP messages and viceversa.

Interoperability between protocols and devices is not a new problem,
albeit it is a key factor for the success of an IoT system. Hence, before
starting to create an architecture from scratch, I �rstly searched for already
existing solutions in the literature. The only contribution worth mention-
ing is Ponte1 [43], a M2M bridge framework that speaks CoAP, MQTT and
HTTP and that is based on Node.JS. In spite of its many excellent and cus-
tomisable features, Ponte has been built in order to work by replacing the
publish/subscribe broker or a REST API provider. But, we did not want
to modify the existing MQTT broker, mainly considering that a complete
system with openHAB as IoT middleware was already functioning. More-
over, the REST provider is part of Sentilo, which we decided to modify as
little as possible in order not to violate the license under which the software
is released: we therefore tried to improve it by exploiting its modular and
extensible structure rather than altering the existing core. Hence, we opted
for not using Ponte and rather develop an ad hoc framework.

In the following sections I will �rstly describe the REST API and the
MQTT protocol, highlighting the di�erences between the two, and then I
will outline how I developed the protocol bridge.

1 Ponte comes out from the Ph.D thesis of Marco Collina (2014).

22

CHAPTER 4. THE PROTOCOL BRIDGE

4.1 The protocols

At the application layer, thing-driven approaches leverage binary protocols
and data formats that are speci�cally designed for M2M communications.
Such protocols typically introduce little overhead and minimize battery con-
sumption, as they are implemented to optimize the exchange of many short
messages, but they are rarely reused for other services. The most widespread
open protocols speci�cally designed for the IoT are MQTT and the Con-
strained Application Protocol (CoAP), which are based on TCP and UDP,
respectively. Patavina Technologies team decided to use MQTT, because of
some useful features that are not supported by CoAP, such as the possibility
of using wildcards for subscribing to many services with a single request and
the possibility of easily having the Network behind a �rewall or NAT.

4.1.1 MQTT

As its developers state [44], the Message Queuing Telemetry Transport pro-
tocol is a lightweight event and message oriented protocol allowing devices
to asynchronously communicate e�ciently across constrained networks to re-
mote systems. MQTT has been implemented for easily connecting the Things
to the Web in a M2M scenario, and therefore it can support unreliable net-
works with small bandwidth and high latency. The shortest message employs
only 2 bytes, as in Machine Type Communication messages are typically short
and a heavy header may become the bottleneck of the communication. The
protocol has a client-server pattern: the server part is represented by a cen-
tral broker that acts as intermediary among the clients, i.e. the entities that
produce and consume the messages.

MQTT revolves around the concept of topic. Topics are UTF-8 strings
used by the broker to �lter messages for each connected client. A topic
consists of one or more topic levels separated by a forward slash and in
this way they provide a logical structure of common themes to be created,
like any �le system. Topics are used by clients for publishing messages and
for subscribing to the updates from other clients. This pub/sub mechanism
avoids a continuous polling to a consumer entity that wants to receive updates
from the data producers: through a topic subscription, a MQTT client is
constantly receiving all the messages sent to that topic by other clients.
When a client subscribes to a topic, it can use the exact topic the message
was published to or it can subscribe to multiple topics at once by using
wildcards2. There exist the single-level wildcard (represented by a +) and

2 Notice that a wildcard can only be used when subscribing to topics and its use is not

23

CHAPTER 4. THE PROTOCOL BRIDGE

the multi-level wildcard (represented by a #) that are substitutes for exactly
one topic level and an arbitrary number of topic levels, respectively.

As to reliability, MQTT is based on TCP, so it provides standard TCP
delivery reliability, in addition to its own Quality of Service (QoS) mecha-
nism, for which there exist three di�erent levels of message delivery quality:
the message can be successfully sent at most once, at least once or exactly
once. The client connection can be interrupted without consequences as the
broker is persistent. Furthermore, MQTT supports the concept of session,
which is maintaned by a continuous exchange of keep-alive messages between
the clients and the broker.

MQTT libraries have been provided for all major IoT development plat-
forms, for the two major mobile platforms, i.e. Android and iOS, and for
several programming languages (Java, C, PHP, Python, Ruby, Javascript).
The MQTT protocol has recently been standardized at the Advancing open
standard for the information society (OASIS) consortium.

4.1.2 REST

The Representational State Transfer (REST) [45] is a a software architecture
style3 for building scalable web services, typically over HTTP. It originated
from the Ph.D thesis of Roy Fielding in the year 2000.

For a service to be identi�ed as RESTful, the following �ve constraints
must be respected:

- client-server : a RESTful service follows a client-server model, with sepa-
ration of concerns;

- stateless : at the server side, no information about session and client con-
text is retained and each request is an independent transaction that is
unrelated to any previous request. So, each client request needs to con-
tain all the information necessary to service the request and the client
is the one that holds the session state. In this way servers are simpler
and this enforces scalability;

- layered system: client and server may not be directly interconnected. In-
termediary servers may improve system scalability by enabling load
balancing and by providing shared caches and may also enforce secu-
rity policies;

permitted when publishing a message.
3 Notice that it is not a standard.

24

CHAPTER 4. THE PROTOCOL BRIDGE

- cacheable: clients and intermediaries can cache responses, allowing an im-
provement in scalability and performance;

- uniform interface: the uniform interface between client and server allows
each part to evolve independently. This constraint is based on four
notions: �rst of all, individual resources must be identi�ed in the re-
quests and, secondly, these resources can be manipulated according to
the CRUD pattern: Create, Retrieve, Update and Delete. The third
constraint binds messages to be self-descriptive thus including all the
information needed to be processed. Finally, the concept of Hyperme-
dia as the Engine of Application State (HATEOAS): a hypermedia-
driven site provides information to navigate the site's REST interfaces
dynamically by including hypermedia links with the responses allowing
the REST client to have no prior knowledge about how to interact with
any particular application or server.

Actually, a sixth constraint has been de�ned, but, as it is tagged as op-
tional, it does not really represent a constraint. It says that servers can
temporarily extend or customize the functionality of a client by the transfer
of executable code.

The concept of resource is central in RESTful services. Every resource is
globally and uniquely identi�ed by a Uniform Resource Identi�er (URI) and
resources are an abstract entity disconnected from their representation: the
server may send data as Json or XML for example, but none of these formats
is the server's internal representation.

Currently, thousands of businesses o�er REST APIs for creating new
applications and the majority of them (included the API provided in Sentilo)
communicate over HTTP.

4.1.3 Comparison

As the above descriptions tell, REST and MQTT have very di�erent char-
acteristics. In an MQTT system, clients subscribe to a pool of topics that
represent the 'data' about which they want to receive updates. There exist
no di�erent methods for performing di�erent actions on items, everything
is about publishing and subscribing to topics, whereas in REST there are
resources and operations that can be done over these resources. It is possible
to mimic in MQTT the di�erent actions that REST allows to perform over
resources by including the action in the meaning of the topic, thereby rep-
resenting with a single topic a speci�c operation over a speci�c item, rather
than a resource.

25

CHAPTER 4. THE PROTOCOL BRIDGE

Through subscriptions in MQTT the pushing mechanism is activated.
On the other side, REST requires the client to autonomously ask the server
for the information he wants. It is possible to build a sort of pushing tech-
nology on REST, like Sentilo developers did, but nonetheless it requires the
capability of having a HTTP server at the client side, which may require a
lot of e�ort, especially in mobile devices. Another technique called pushlet
exploits the persistence of HTTP connections and leaves the response unter-
minated so that the server can keep sending information to the client. The
response is perpetually kept open and the server periodically sends snippets
of JavaScript to update the content of the page, thereby achieving push capa-
bility. The major drawback to this approach is the lack of control the server
has over the browser timing out.

4.2 The bridge

Trying to respect the Patavina Technologies will of not altering Sentilo plat-
form, I developed an external module that acts as an MQTT-HTTP bridge.
When it is not running, Sentilo keeps working but it has no way to commu-
nicate with the Application Server (through the MQTT broker) and hence
with the physical sensors network.

The bridge is made up of two components:

- the HTTP component includes a client, which sends the sensors messages
to Sentilo, and a server, which is needed to handle Sentilo orders4;

- the MQTT component is made up of just a client which interacts with the
MQTT broker.

So, each component is responsible for communicating with an external
element and they internally interact with each other.

Considering that the whole Sentilo project has been written in Java, I
also developed the bridge module in Java. It is implemented as a Sentilo
agent, i.e., Sentilo is independent of it but it needs Sentilo to work, since it
is dependent on it through Maven dependencies. The HTTP elements make
use of the Apache library, whereas I used the Eclipse Paho library for the
MQTT client. Mimicking Sentilo style, I also made use of the Java Spring
framework, an application framework and inversion of control container for
the Java platform.

4 Remember that Sentilo's feature of generating alarms over data is not used because
the physical network does not have the capability of handling alarms.

26

CHAPTER 4. THE PROTOCOL BRIDGE

4.2.1 Patavina MQTT messages

As outlined in Section 2.2, LoRa nodes are uniquely identi�ed by an address
of 8 hexadecimal numbers. Each node is associated to a pool of di�erent
sensors, like humidity and temperature, and to some available commands.
The sensors can send data, receive orders and send responses to these orders,
and the message payloads are in the Json format.

The following list summarizes and describes the available MQTT services:

- getNodeList : when Sentilo publishes this message,

monitoring.patavinatech.com/getNodeList

it triggers several newNode messages from the Application Server, one
for each node. The choice of sending multiple messages aims at simpli-
fying the transmission behaviour when a new node appears when the
architecture is already running: rather than sending a message con-
taining information about all nodes stored in the database, the broker
just needs to publish a message for the single new node;

- newNode: this type of message contains all the information for charac-
terizing a node: its address, the sensors belonging to it together with
their unit of measure, the commands supported by the node and the
corresponding responses.

monitoring.patavinatech.com/<AS>/<NS>/newNode

where AS idenitifes the Application Server and NS the Network Server.
The structure of the Json payload is the following:

{
"addr" : "<addr>",

"data" : [

"sensorString" : "<sensorUnitOfMeasure>",

"sensorString" : "<sensorUnitOfMeasure>",

. . .

],

"commands" : ["<cmdString>", "<cmdString>", . . .],

"responses" : ["<respString>", "<respString>", . . .]

}

27

CHAPTER 4. THE PROTOCOL BRIDGE

In the data �eld, there are the names of the sensors, e.g., temperature
and illuminance, and the data associated to LoRa statistics, such as
the SNR, the timestamp, the frequency, etc;

- data: this service is used for publishing (and receiving) the sensors obser-
vations. The sensor that is sending data is univocally identi�ed in the
topic through the topic levels of the NS, of the node and of the sensor
string.

monitoring.patavinatech.com/<AS>/<NS>/<nodeAddr>/data/<sensorString>

Sentilo needs to subscribe to the data messages of all nodes (by using
wildcards), thereby receiving all the observations from every sensor.
The Json payload has the following structure:

{
"value" : "<sensorValue>",

"timestamp" : "<timestamp>"

}

where the timestamp �eld is optional;

- command : whenever the user wants to send an order to a speci�c node,
Sentilo has to publish a command message, whose topic is:

monitoring.patavinatech.com/<AS>/<NS>/<nodeAddr>/command/<cmdString>

where the <cmdString> topic level refers to the command name speci-
�ed in the newNode message of that node.
The Json payload is in the following format:

{
"value" : <value>

}

with the value of the value �eld usually being an integer number;

28

CHAPTER 4. THE PROTOCOL BRIDGE

- response: after receiving a command, a node publishes the corresponding
response; hence, Sentilo needs to subscribe to the response service of
all nodes.

monitoring.patavinatech.com/<AS>/<NS>/<nodeAddr>/response/<respString>

where the <respString> topic level refers to the response name speci�ed
in the newNode message of that node.
The structure of the Json payload is the same of the command messages
but with the value that can be 0 or 1, according to the command having
been succesful or not, respectively.

4.2.2 Sentilo REST API

In Sentilo, the items are organized in a hierarchical structure. Any entity
capable of generating data is classi�ed as a sensor and sensors belong to com-
ponents, which correspond to hardware or software elements with a known
geospatial location5, which may be �xed or even mobile. Components, in
turn, are gathered into providers, which represent logical entities that 'ad-
minister' sensors with common features. The decision of a strategy for as-
signing providers to sensors, i.e., how to group sensors into providers, is up
to the user. Providers play a relevant role in Sentilo for two reasons: REST
messages from and to sensors must contain the corresponding provider ID in
the URI, and users permissions are given upon providers, rather than upon
the single sensors.

Sentilo provides the following services:

- catalog : allows to register, update or delete sensors and other entities and
to retrieve information about them. An administration console acces-
sible via authentication lets the administrator perform CRUD opera-
tions about all the entities, i.e., not only sensors but also components,
providers, sensor types, users and the permissions they have. On the
other hand, the REST API allows only some operations: for example
it is not possible to create new providers with a REST request;

- data: this service is for publishing and retrieving the observations of the
sensors (also historical data);

- order : for sending commands to single sensors or to all the sensors of a
provider;

5 For instance, a weather station that contains several sensors.

29

CHAPTER 4. THE PROTOCOL BRIDGE

- alarm: it allows the end user to set internal alerts, e.g., depending on the
last data received, and to the sensors to send alarms associated to these
alerts ;

- subscription: for performing subscriptions to the data, order and alarm
services in order to be updated in the case of new data. In fact Sentilo
developers de�ned a sort of pushing technology over REST and the
subscription service allows the platform clients to subscribe to system
events. For this service to be e�ective, the platform client needs to
have an HTTP server available, to which the Sentilo platform sends
the messages related to the subscriptions the client performed. In this
way the client does not need to perpetually ask the server for updates
but it is directly informed by Sentilo. Notice that this workaround does
not provide a publish/subscribe mechanism as complete as in MQTT
and requires the capability of having an open socket at the client side.

Sentilo's URIs mainly have the following pattern:

http://<domain>:<port>/<service>/<entityId>/<sensorId>

where <service> is one of the services just described, <entityId> can be
either the id of the alert for the alarm service or the id of the provider for
the other services, and <sensorId>, i.e., the id of the sensor, is speci�ed only
in the latter case and may be optional.

4.2.3 The bridge implementation

The bridge's role is to interact with the HTTP Sentilo server and the MQTT
broker. When it is started, it needs to send some messages to both sides
in order to be properly connected. At the HTTP side, the bridge needs to
know which sensors and providers are already registered in Sentilo because
when performing catalog operation it is important not to interchange POST
and PUT methods: the former is used for inserting new elements, the latter
for updating existing ones, and using the wrong HTTP method generates
an error response. To retrieve information about all the items registered
in the platform, the bridge performs a GET catalog request and parses the
payload of its response to extrapolate the information it needs. In this way
the bridge can initialize a map containing the associations between sensors
and providers, needed for building the correct URIs when converting MQTT
messages. Also the subscriptions to existing providers orders' must be done,
assuring in this way the reception of all the orders directed to the sensors
from an external user. For what concerns the MQTT side, the bridge needs to

30

CHAPTER 4. THE PROTOCOL BRIDGE

perform all the subscriptions necessary to receive the data. It �rstly makes a
subscription to all newNode, data and response messages by taking advantage
of the wildcards and thereby ensuring it will receive all messages from all the
existing nodes. After that, it publishes a getNodeList message, which will
launch the sending of newNode messages from the broker, one for each node.
Any MQTT publish message received from the MQTT component is duly
handled and sent to Sentilo through the HTTP client. When the HTTP
server receives a command message, the bridge appropriately manages it and
publishes the corresponding MQTT message to the broker.

The MQTT protocol provides some features that are not present in HTTP,
like the QoS level associated to messages: since HTTP does not support this
option, the bridge always sets the QoS to level 2 (exactly one delivery) for
MQTT messages. As the connection is supposed to be wired, the higher
accuracy implied by level 2 does not represent a big deal. Other �ags con-
templated by the MQTT protocol, such as the retained option that allows
to keep a message 'stored' in the broker, are simply not set since they �nd
no correspondant in HTTP. I will now give a detailed illustration of the mes-
sage conversion mechanism and the choices it implied. Elements concerning
security and users roles and permissions will instead be described in the next
chapter.

New sensors

The MQTT topic and the Sentilo syntax for the registration of new nodes
are, respectively:

<MQTTpre�x>/<AS>/<NS>/newNode

POST/PUT <HTTPpre�x>/catalog/<provId>/<sensorId>

LoRa newNode messages include information about the new node, i.e., the
node address (unique within the NS domain), the supported commands and
corresponding responses, and the types of data the node can generate. For
each sensor, the bridge registers in Sentilo a new sensor through the catalog
service. The component associated to the sensors is the same for all the
sensors of the same node and I chose its unique ID to be <NS>-<nodeAddr>,
so as to make recoverable both the Network Server and the node IDs. A new
sensor is created also for each available command. This is due to the fact
that the payload of order messages is supposed to contain only the value
�eld; to know to which command the value is associated, it is necessary to
address it somewhere, and I decided for the URI6. The mapping between the

6 Another possibility could have been the inclusion of the command name in the value

31

CHAPTER 4. THE PROTOCOL BRIDGE

triplet (NS, nodeAddress, sensorString) that identi�es a sensor in the LoRa
domain and the ID of the sensors registered in Sentilo must be bijective,
so all elements of the triplets should be included in the sensor ID and be
recoverable. My choice has been the following:

(NS, nodeAddr, sensorStr) ←→ sensorID = <NS>-<nodeAddr>-<sensorStr>

where the delimiter '-' has been chosen because it is not used for other
purposes yet. Notice that, although the component ID I chose is a pre�x of
the sensor ID, the REST URIs do not make reference to the component the
sensor belongs to, so all information needs to be provided in the sensors' IDs.
Albeit it is unlikely to have sensors belonging to di�erent Network Servers
with the same name, I decided to include this information in the sensor ID
to avoid troubles in the case of homonimity. In fact, there exists a unique
NS in each LoRa network, but there could be more LoRa networks in the
whole system, e.g., one for each company. However, the reference to the
Application Server is not necessary: �rst of all there typically is only one,
but, even in the case of multiple ASs managing the same LoRa networks,
the physical sensors would be exactly the same and two nodes with the same
name and the same NS would certainly be the same. So there is no need to
include the AS reference to discriminate over nodes. Anyway, the name of
the Application Server needs to be known for sending messages to the sensors
(such as orders), so I decided to save it in Sentilo under the additionalInfo
�eld provided in the sensors pro�le. Each new sensor is assigned to a provider
and this distribution is done according to the logic implemented, as illustrated
further.

Other information registered in Sentilo for each new node includes the
unit of measure indicated in the MQTT payload and the type of the sensor,
which is the sensor name for data sensors (e.g., temperature), statistics if
the sensor is associated to LoRa statistics or commandSensor for the 'fake'
sensors related to the commands. Since new sensor types cannot be created
by simply using the REST API, sensors whose type does not exist in Sentilo
are marked as 'generic' (more information is given further). When inserting
a new sensor in Sentilo, it is necessary to know if it was already registered
or not: in the former case the HTTP request must be a PUT, indicating
an update, in the latter a POST, which is typically used for creations. For

�eld. For example, to send the value 3 in relation to the changeReadingInterval com-
mand, we could have used the syntax "value": "changeReadingInterval-3"' in the payload.
However, this strategy would have required the parsing of the value �eld and a harder
work for the bridge, and might have been misleading for values containing the symbol '-'.
Considering that the number of commands associated to a node is usually small, we opted
for creating the 'fake' command sensors.

32

CHAPTER 4. THE PROTOCOL BRIDGE

this purpose the bridge has a resources map that stores all the IDs of the
registered sensors and their associated providers, along with the components'
names.

Data

The MQTT topic reserved to sensor data and the URI used by Sentilo are,
respectively:

<MQTTpre�x>/<AS>/<NS>/data/<nodeAddr>/<sensorStr>

PUT <HTTPpre�x>/data/<provId>/<sensorId>

To build the URI it is necessary to have the provider ID and the sensor ID;
the latter is easily obtainable from the MQTT topic as <NS>-<nodeAddr>-
<sensorStr>, as explained previously. The corresponding provider is instead
found in the resources map that the bridge keeps updated and that contains
each provider/sensor association. For what concerns the payload, Sentilo
data payload requires the value �eld and considers as optional the �elds of
timestamp and location. The sensors actually used by Patavina do not have
a GPS module and hence they are incapable of tracking their position; so
the location �eld is not used. Instead, the timestamp is usually sent and,
if not present, the timestamp at which the bridge receives the message is
added. Timestamps are converted from the UNIX format used by LoRa
nodes to Sentilo special format: the former indicates the number of sec-
onds passed from the 1st January 1970 at UTC, the latter has the pattern
dd/MM/yyyyTHH:mm:ss. So, the date 28th August 1991 at 14:00:00 is repre-
sented as 683388000 in the Unix timestamp and as 28/08/1991T14:00:00 in
Sentilo format.

Commands and Responses

The orders sent from Sentilo and from the MQTT broker have the following
URI and topic:

PUT <HTTPpre�x>/order/<provId>/<sensorId>

<MQTTpre�x>/<AS>/<NS>/command/<nodeAddr>/<commandStr>

Commands, or orders, are sent from Sentilo (on behalf of some external
user) to a command sensor, whose ID allows the bridge to identify the com-
mand name and the node to which forward the order. If the sensor is not
found in the bridge resources map, the request is simply not handled.

33

CHAPTER 4. THE PROTOCOL BRIDGE

For what concerns responses, remember that this service is not contem-
plated by Sentilo, so MQTT response messages are forwarded to Sentilo as
data messages that target the sensors speci�cally created for handling the
commands. The bridge has a command/response map that contains the
associations between each command name and the corresponding response
name for the all nodes. The responses in MQTT and REST follow this
pattern, respectively:

<MQTTpre�x>/<AS>/<NS>/response/<nodeAddr>/<responseStr>

PUT <HTTPpre�x>/data/<provId>/<sensorId>

Once the bridge has identi�ed the correct sensor ID, it is straightforward
to retrieve the corresponding provider from the sensor-provider map that the
bridge keeps updated. Responses can be either 0 or 1, according to the order
having been respected or not. Thus, the bridge needs to save both the value
used before sending the order and the value sent in the order; in this way, the
data message sent to Sentilo carries the correct value, whether the command
has been succesful or not.

The alarm service provided by Sentilo is not contemplated by the LoRa
architecture for the moment. This way the bridge does not handle alert and
alarm messages.

Operation not supported by the REST API

The REST API provided by Sentilo has some limitations for what concerns
the catalog service and does not allow to perform all the operations that on
the contrary are available when using the administration console. More pre-
cisely, the creation of new providers and of new sensor types is not supported
by the REST API. The reason for this restriction is the belief of the plat-
form developers that only the system administrator should be in charge of
performing such operations, without contemplating the idea that providers
and sensor types could be not �xed a priori. Nonetheless, we deemed the
provider creation to be central in the Patavina Technologies project, as the
strategy for assigning providers to sensors may change from customer to cus-
tomer, thereby disabling the possibility of manually adding each provider in
Sentilo. Furthermore, the use of a single and predetermined provider for all
the registered sensors is to discourage, as providers are central in the user
permissions system and therefore play a non negligible role in the security
framework. Luckily, being the bridge agent dependent on Sentilo, it can take

34

CHAPTER 4. THE PROTOCOL BRIDGE

advantage of its Java code and use the functions that register new entities in
the platform.

Anyway, a problem still arises: as soon as a provider (or a sensor type)
is created, it may not be 'visible' to Sentilo, which means that a sensor
registration for that provider would receive a 403 Forbidden response, thus
resulting in an error. This happens because when a new sensor message
is received, Sentilo �rst veri�es that the petitioner of the request7 has got
administration permissions over the involved provider but, to perform this
check, Sentilo looks up a permission map of the entities registered in the
platform, which is updated every 5 minutes (according to the information
stored in the database, which is always updated). Therefore, when a new
provider is created, Sentilo will recognize it as existing only after 2.5 minutes
in mean and after 5 minutes in the worst case. It is not possible to force
the update of the permission map in the code to notify Sentilo about the
existence of the new provider because the map is accessible in no way (non
public visibility of the necessary methods). The workaround I implemented
to solve the problem consists in starting a new thread every time there is
the need to create a new provider, This thread is responsible for successfully
registering the new nodes under the just created provider. The thread tries
doing it and, if a 403 error response is received, it sleeps for one minute and
retries it. Within 5 minutes the procedure will be completed and the thread
dies. Data messages from the involved sensors are temporarily stored by the
bridge and sent later with the correct timestamp.

Similarly to providers, new sensor types are supposed to be created only
by using the administration console. The same process used for providers
may therefore be used, but we deemed sensor types to be ancillary and the
process described above to be computational heavy. Thus, the sensor types
that are predicted to be used are injected in Sentilo during the installation
phase together with a generic sensor type to which all 'unknown' types are
mapped. It is quite likely to predict all the sensor types that will be used
to classify the nodes, as users know which sensors they are going to use and
what they measure. Notice, however, that it is always possible to add new
types by using the admin console interface.

4.2.4 Java project structure

Sentilo has been written in Java and has a modular structure, with all mod-
ules being related to each other through Maven dependencies. Maven is a
build automation tool that allows to declare the structure of a Java project,

7 Identi�ed by a header �eld in the HTTP request, as explained in Section 5.2.

35

CHAPTER 4. THE PROTOCOL BRIDGE

the external libraries it uses and the dependencies among the di�erent el-
ements of the project. It simpli�es the extension of Sentilo, allowing the
creation of own modules (called agents by Sentilo developers) that are not
necessary to Sentilo to work but that rely on Sentilo and broaden its func-
tionalities.

To start the bridge, the user just needs to run a bash script, which acti-
vates both the MQTT and the HTTP component establishing the necessary
connections with the Sentilo platform and the MQTT broker. Afterwards,
every message received by the MQTT client is redirected to the bridge core,
which identi�es the type of message (newNode, data or response) and sends
an HTTP request to the Sentilo REST interface accordingly. Similarly, when
an order is sent to Sentilo, since the HTTP component of the bridge is sub-
scribed to the order service of all providers, it receives the order and publishes
a command message to the broker, after proper handling. An external �le
contains the con�guration data for initialising the bridge: the IP addresses
of Sentilo server and MQTT broker, the identity token to insert in the REST
requests8, and some con�guration options for the bridge, such as the SSL
enabling, and the credentials if the broker supports client authentication.

The Java project includes the following classes:

- a starter class, whose main method reads con�guration data from an exter-
nal �le and starts the bridge. Thanks to the @PostConstruct notation,
the unique method of this class is invoked as soon as the bridge mod-
ule is started. If Sentilo is not running at the address given in the
con�guration �le, the bridge keeps waiting for it;

- the core class of the bridge, BridgeClient, which provides methods for iden-
tifying the types of messaging received, properly converting MQTT
messages in REST messages and viceversa, and forwarding the corre-
sponding converted message to the speci�c element;

- if the BridgeClient class represents the 'mind' of the bridge, then JsonBridge
is its arm, the class that really processes the messages. It is responsible
for interpretating the payloads of the messages, keeping the volatile
databases updated and building the corresponding payload with the
other syntax;

8 As explained in next chapter, requests to Sentilo must contain an authentication key
in the header to identify who is performing the requests and the permissions he owns upon
the sensor. There exists an all-powerful role which is assigned administration permissions
upon all items, by default. The bridge uses it to be sure that all requests have a successful
response.

36

CHAPTER 4. THE PROTOCOL BRIDGE

- a class that directly makes use of the methods provided in the original Sen-
tilo project in order to create new providers, operation forbidden by the
REST API (see Section 4.2.3, subparagraph Operation not supported
by the REST API). Another class implements a Thread responsible for
ensuring the correct delivery of the REST messages immediately after
the creation of a new provider (as the Sentilo server detects the pres-
ence of a new provider after a maximum time of �ve minutes and prior
to that moment no message for creating sensors under that provider is
correctly processed);

- a class that implements an MQTT client for handling all message exchanges
with the broker and which is used by the real and proper bridge element;

- a class responsible for performing the HTTP requests to Sentilo server, also
used by the proper bridge;

- a package of classes that implement a HTTP server, to which Sentilo for-
wards the commands addressed to the sensors. It runs on localhost as
it is part of the bridge and it only has to redirect the messages of the
bridge core for their processing prior to transmitting it to the broker;

- other ancillary classes, e.g., for representing elements used by the bridge, for
payload parsing and static classes containing the tokens of the MQTT
and REST message syntax.

As previously mentioned, the sensor-provider association is up to the
user. Nevertheless, knowing the provider assigned to each sensor is essential
for building up the URIs. Furthermore, as already explained, distinguishing
di�erent providers is central to exploit the possibility to give di�erent read
and write permissions to the users, as a user is granted the same privileges
over all the sensors belonging to the same provider. Under these consid-
erations, we wanted to realize the bridge in such a way to be �exible with
respect to the context of use. For this reason we decided to take advantage of
the concept of abstract classes in Java, which allows to de�ne but not imple-
ment abstract methods that will be implemented when extending the class.
They can be thought as in between classes and interfaces. In this respect,
the core class of the bridge (JsonBridge.java) Java project contains the
abstract method assignProvider which returns the provider associated to
the sensor. So, for each scenario the client would like to have, it is su�cient
to create a new class that extends JsonBridge.java and implements such
method. Taking into consideration the context of smart cities, I thought
about possible strategies of assigning providers. I implemented two classes:

37

CHAPTER 4. THE PROTOCOL BRIDGE

- the �rst one gathers together sensors of the same type. So, all command
sensors are under a single provider, and the same happens for all sen-
sors in charge of receiving data about LoRa statistics. Then, all sensors
that measure the same thing belong to the same provider. The reason
behind this choice relies on the idea of having di�erent persons respon-
sible for di�erent measures;

- a more speci�c role di�erentiation may be having people responsible for
areas of sensors, e.g., a user role should have the same privileges over
temperature and humidity sensors as they are both related to the me-
teorological area. So, I developed a class that assigns a provider to a
sensor according to the area to which it belongs. A con�guration �le
in the Json format tells the bridge which are the areas and which are
the sensor types referring to each area.

Another interesting strategy would be to introduce a geospatial division
in addition to the areas division, i.e., grouping together sensors that measure
related quantites and belong to the same city district. In fact, there could be
people specialized for monitoring the CO2 concentration or other factors for
each district. Although �tting the smart cities scenario, this strategy does not
�nd support in the physical technology used by Patavina Technologies, which
lacks a GPS module. Anyway, when using di�erent sensors, this strategy is
implementable in Java by exploiting the abstract method concept.

The Java implementation of the bridge is quite robust and capable of
handling the most probable and common errors, such as problems in reading
the payloads of the message arrived or the reception of error messages from
Sentilo, without interrupting or altering the bridge's functionalities. It is also
highly and easily con�gurable: the sockets of Sentilo and of the MQTT broker
are inserted in a con�guration �le read by the bridge at the very beginning
and also LoRa key words, e.g. the topic levels �xed names and the MQTT
pre�x, are read by the core classes from a static class. So, if changes in the
MQTT syntax happen, it is su�cient to modify the values of the variables
of this class, in a very intuitive way. The same happens for Sentilo syntax.
The security aspects of Sentilo are treated in the next chapter, after a more
general distention about security in IoT.

4.3 User interface

The bridge forwards the nodes information and their data to Sentilo. The
�nal user, however, is not supposed to access Sentilo platform but a speci�c
website showing data in a more friendly.

38

CHAPTER 4. THE PROTOCOL BRIDGE

Figure 4.1:

Figure 4.2:

39

CHAPTER 4. THE PROTOCOL BRIDGE

Figure 4.3:

Figure 4.4:

40

CHAPTER 4. THE PROTOCOL BRIDGE

The data shown depend on the permissions owned by the user, as explained
in Section 5.3. The actual user interface is customised for the nodes used
by Patavina Technologies, which contain sensors of temperature, humidity,
light intensity and battery level; moreover, the gateways add some statistics
mainly regarding the channel conditions. Figures 4.1, 4.2, 4.3 and 4.4 show
some screens of the web interface.

The user can see the the active nodes (over which he owns at least reading
permissions). For each node, the current values of temperature, humidity,
light intensity and of the statistics are shown. It is also possible to visualize
the graphs of the historical data and send some orders to the sensors, such
as switching on or o� the led (Figure 4.3) and changing the reading interval
of the sensors (Figure 4.4). HTTP is not a push protocol, so that it is
necessary to continuously ask Sentilo for the needed information as there is
no mechanism for the server to independently send data to the client without
the client �rst making a request. Anyway, there exists a technique called 'long
polling' which emulates a server push feature: the client makes a request to
the server, which holds it open until new data is available and once available,
the server responds and sends the new information. When the client receives
the new information, it immediately sends another request, and the operation
is repeated. In this way it is possible to dynamically update the web interface
and show the user the current values almost in real time.

41

CHAPTER 5. SECURITY ISSUES

5. Security issues

Security represents a central issue in IoT and revolves about the properties of
identi�cation, con�dentiality, integrity and undeniability [46]. Since the IoT
is built to broadly execute unveri�ed user-implemented applications from dif-
ferent users, both applications and users can be sources of security threats to
the IoT. Moreover the heterogeneous and distributed nature of IoT architec-
tures greatly a�ects the degree of infrastructure protection. Thus, security
needs to be granted at every element of an IoT architecture and to meet
the new requirements implied by the pervasive presence of the Internet in
any aspect of daily life [47]. This chapter sketches an overview of security
in IoT scenarios and then focuses on the security measures concerning the
interaction with the �nal user through the Internet.

5.1 Security in IoT

The Internet is under continual attack and this does not bode well for the IoT
which relies on it and also incorporates many constrained devices for which it
is hard to apply security mechanisms such as frequency hopping comunication
and public key encryption [48]. But as IoT also touches many sensitive areas
such as medical services, intelligent transportation and national economies,
security represents a challenge that cannot be neglected: attacks and mal-
functionings would just outweigh any of the IoT bene�ts. Security experts
are currently investigating whether actual protocols can be integrated in IoT
or new designs are required for accomplishing security goals. What mainly
introduces new threats is the distributed nature of IoT architectures and
the use of fragile technologies, such as limited-function embedded devices
in public areas where they are accessible by anyone and may be physical
harmed [46]. As sensors are typically simple devices with low power, they
cannot even support ordinary security measures: network �rewalls and pro-
tocols can manage the high-level tra�c �owing through the Internet, but the
protection of the endpoint devices with limited resources available to accom-
plish it raises new challenges and demands for revolutionary solutions [49].

42

CHAPTER 5. SECURITY ISSUES

Key features for gaining security are the following [50]:

- identi�cation: the 'things' must be uniquely identi�ed indipendently of
their underlying mechanisms, e.g., the IP address they are associated
to. Assigning a unique ID to devices is the basis for the authentication
step and the consequent authorization [51];

- con�dentiality : it is roughly equivalent to privacy and can be described
as the property that information is not made available or disclosed to
unauthorized individuals, entities, or processes [52]. Privacy is fun-
damental in an IoT scenario, in which a plethora of devices transmit
messages leading to an explosion of data. Access to these data must
be controlled mainly by means of cryptographic mechanisms and users
access lists;

- integrity : for maintaining the consistency, accuracy, and trustworthiness
of data over its entire life cycle. Data must not be changed in transit
or altered by unauthorized people;

- availability : for any information system to serve its purpose, the informa-
tion must be available when it is needed. Availability may be hindered
by legitimate users too, if tampering with shared multimedia data or
exhausting network resources to interrupt services available to other
legitimate users.

Clearly, the IoT is prone to be more susceptible to attacks than the In-
ternet, since billions more devices will be producing and consuming a large
number of di�erent services. From a network perspective, the sensors should
open a secure communication channel with more powerful devices exploiting
cryptographic algorithms and using an adequate system for exchanging the
keys [46]. Such procedure is for example used in LoRa, where the nodes
securely communicate with the Network Server and the keys for the AES
algorithm are exchanged during the join procedure (see Section 2.3). A safe
transmission over TCP/IP connections can be achieved by enabling TLS,
which asks the parties to authenticate themselves and encrypts messages. At
the application level security needs for di�erent application environments are
di�erent, although data privacy, access control and disclosure of information
are likely common requirements. In [53] the authors stress the crucial role
of security and privacy and highlight how the public acceptance of the IoT
will happen only when strong security and privacy solutions will be in place;
as the Internet �rst appeared, no security infrastructure had been built and
when the �rst security problems came out, the solutions proposed were just

43

CHAPTER 5. SECURITY ISSUES

patches. But in IoT security is intrinsic and the scienti�c community must
�nd new solution for addressing this challenge.

5.2 Security aspects in Sentilo

Sentilo creators developed a quite complex security framework, which consid-
ers both a secure transmission of the messages and the existence of di�erent
users roles, features that made the platform gain the role of middleware for
the project (see Chapter 3).

All the HTTP requests received by Sentilo are validated according to
the AAA architecture: Authentication, Authorization and Accounting. This
means that the platform �rst identi�es the petitioner of the request, it then
checks the permission for that user to perform the requested action over the
requested resource, and it �nally traces the request by auditing the action
and who performed it. Notice also that it is possible to use the secure HTTPS
instead of HTTP. The authentication part is enabled by the mandatory use
of an identi�cation �eld in the HTTP headers, resulting in the so-called
token-based authentication [54]. The general concept behind a token-based
authentication system is to allow users to enter their login credentials in
order to obtain a token; this token guarantees access to a speci�c resource
to the remote site for a �nite period of time without using username and
password. This approach introduces many advantages, for example the user
avoids authenticating with username and password for each single request
within a time-limited session, AJAX calls to any server or domain do not
meet cross-domain problems1 and it also enforces the server side scalability,
as there is no need to keep track of the session. The token must be included
in the header of any HTTP request with key IDENTITY_KEY. The very
�rst thing that Sentilo server veri�es is the presence of a valid authentication
token, otherwise it does not even analyze the request and immediately sends
a response with error code 401 (Unauthorized). When the token is valid,
Sentilo checks whether the permissions associated to the token allow the pe-
titioner to perform the request. When the user is not allowed to perform
the requested operation, an HTTP response with error code 403 (Forbidden)
is sent. Finally, every information about the request is properly registered.

1 Cross-origin resource sharing (CORS) [55] is a mechanism that allows only restricted
resources on a web page to be requested from another domain outside the domain from
which the resource originated. Hence, authentications with credentials may encounter
some obstacles when the CORS mechanism is activated. Instead, by using a token, the user
information is transmitted in the HTTP header, thus avoiding cross-domain complication.
See Section 5.4.

44

CHAPTER 5. SECURITY ISSUES

The tokens are stored in a Mongo database, accessible only through authen-
tication. A mechanism to distribute the tokens outside the platform has not
been realized yet, so it is up to the platform user to create one for sending
the tokens among the di�erent users in a secure way.
In Sentilo, entities are associated to tokens made of 26 hexadecimal numbers;
these tokens are built by using a �xed numerical pre�x, the ID of the en-
tity and the time (with milliseconds precision) of the token generation itself.
These three elements are concatenated and the SHA-256 digest2 of this �nal
string is computed and �nally converted to the hexadecimal format. The
fact that the token is not based on a random string creates a signi�cative
security leak, as shown further in Section 6.2.

For what concerns the administrator console, it is accessible only via
authentication and the administrator credentials are declared in a con�gu-
ration �le editable before installing Sentilo. In turn, the administrator may
add other users with administration priviliges.

Adaptations

Sentilo is an open-source project, so the whole code is easily accessible via
GitHub. It is straightforward that all passwords related to secure access
must be changed in order to sell a safe and privacy-caring product. There-
fore, all the credentials needed to access the database used (mongoDB for
the catalog data, Redis for observations data and orders, and mySQL if the
user also wants to store data in a relational database) should be modi�ed.
The administrator's username and password and the token associated to the
all-powerful user (see next section) should be changed, too. To grant a more
secure token-based authentication, the tokens generation function must be
revised: I will prove the weakness of the one implemented by Sentilo de-
velopers. For this reason I traded the timestamp, which can be known or
somehow derived, for a completely random string. In this way the tokens
are still hexadecimal strings of length 26 and cryptographically encoded, but
they are randomly generated and therefore more secure against brute-force
attacks.

2 The Secure Hash Algorithm [56] is a family of cryptographic hash functions which
produce a message digest of �xed length from a �xed-length string and whose security
relies in their not being reversible. SHA-256 produces digests of 256 bits.

45

CHAPTER 5. SECURITY ISSUES

5.3 User permissions

Security and data privacy represent a key point in Internet of Things appli-
cations. Nonetheless, they are not su�cient to ensure a fair and safe system,
as not all users are equal and have the same privileges. Just think about a
building that adopts a home automation architecture: the owners of a speci�c
apartment would certainly be granted administration permissions over every-
thing concerning their own �at, whilst other extraneous people should not
have visibility about their sensors data and information. Now think about
the individual in charge of checking the gas data of all �ats: he should be
able to read such values but not to modify them, hence to have reading but
not writing permissions over the considered entities. So, basically, di�erent
roles should be assigned to di�erent users, with each role being characterized
by permissions over items, i.e., sensors and providers in the case of Sentilo.
User permissions specify what tasks users can perform and what features
users can access. In the Smart Cities context, it is fundamental to di�eren-
tiate among users: common citiziens could be able to read the data of some
sensors, but not to send them orders, whereas the individual responsible for
managing a particular area should be granted also writing permissions over
the concerned sensors. A quite intersting feature in this scope concerns the
capability of temporally triggering stronger privileges when some conditions
are met. For example, when �res occur, the sensors responsible for measuring
the levels of CO2 and CO in the air register very high and anomalous values,
indicating danger. In that case any citizen should have the possibility of
activating some water actuators, if present, albeit in normal situations these
actuators may be activated only by a restricted number of people. Anyway,
this feature has not been implemented yet.

For what concerns Sentilo, its developers have implemented a structure
for managing users permissions. It is in fact possible to de�ne applications,
identi�ed by a unique ID, and each application is associated to speci�c per-
missions over the entities registered in the platform. The permissions are
associated to providers (the logical entities that group components and hence
sensors) and to applications. So, every provider and application has its own
identity token, which must be used in each HTTP request and allows Sentilo
to identify the requester and to ensure that who makes a request is authorized
to do it. The permission can be: only reading, reading and writing, admin-
istration. A read permission allows to retrieve information about the item
and its historical data, a write permission allows also to send observation
data and orders and to update or delete items in the platform. The admin
permission over a provider lets the user create new sensors belonging to it.

46

CHAPTER 5. SECURITY ISSUES

By default, every provider owns administration privileges over its sensors.
There exists an application called sentilo-catalog which owns admin per-

missions over all entities, by default. Hence, when using its token in the
HTTP header, the request cannot be blocked because of invalid authoriza-
tion. The bridge uses its token for all requests it performs, as it must be able
to fully manage everything concerning the sensors.

Being the permissions structure already de�ned in Sentilo, it was much
easier to implement role di�erentiation. Instead such architecture is still
missing in openHAB and the development of a permission infrastructure from
scratch would have required a lot of time and e�ort. In light of this consid-
eration, we opted for letting the �nal customer to choose between the two
platforms, according to his needs. Anyway, we deem Sentilo to be more suit-
able in the Smart Cities context thanks to the users roles system, whereas we
are more likely to use openHAB for home automation. In fact, when used for
making houses 'smart', all people that can access the management platform
are likely to have the same read and write rights, so a simple authentication
via login is su�cient and there is no need to make di�erentiations.

The token-based authentication of Sentilo implies two things:

- the need for implementing a mechanism to safely distribue the tokens to
the users;

- as the token is long and made up of random characters, making its mnemonic
learning di�cult, it is preferable to hide the tokens to the users and
let them only perform the login through username and password inser-
tion, whereas another entity is in charge of automatically inserting the
corresponding token in each HTTP request.

For these purposes, I developed a login server that handles the authentication
to Sentilo and �lters the requests in order to insert the correct identity token
into the header. It also provides an administration console for managing
the user-token association and the insertion, updating or removal of Sentilo
users.

5.4 The login server

The login server has the main objective of authenticating the �nal user and
�ltering its request, so it logically stays between the �nal user backend and
the Sentilo platform, as shown in Figure 5.1.

In the development of the Login Server we had to consider the fact that
Cross-site HTTP requests initiated from within scripts are subjected to re-
strictions by browsers because of security reasons. Authorization cookies are

47

CHAPTER 5. SECURITY ISSUES

Figure 5.1: System architecture

in fact transparent among di�erent windows and tabs of the same browser
and this may lead to unwanted and unsafe behaviours. CORS, Cross-Origin
Resource Sharing [55] is a mechanism that allows restricted resources on a
web page to be requested from another domain outside the domain from
which the resource originated. Actually, most browsers currently support
CORS. It de�nes a way in which a browser and a server can interact to
safely determine whether or not to allow the cross-origin request, bypassing
the blocking mechanism that exists among di�erent domains. The CORS
mechanism works by adding some custom HTTP headers to the requests.
When a cross-origin HTTP request to a certain server originates, it is not
immediately sent by the browser that supports CORS. Instead, it sends a
HEAD request3 to the target server, including the headers de�ned in the
CORS standard. If the server does not support the CORS technology, it
is incapable of recognizing the additional headers and simply ignores them,
responding as if the request were a normal request. On the other hand, if the
server identi�es those header �elds, it includes some additional CORS head-
ers in the response, too. In this way the browser understands that CORS is
supported and that it can send the original request even if it is a cross-site

3 A HEAD request asks for the same response that would correspond to a GET request,
but without the response body. Its purpose is to retrieve meta-information contained in
the response headers, without having to transport the entire content.

48

CHAPTER 5. SECURITY ISSUES

request. Anyway, the CORS standard only allows some requests not to be
blocked and they normally are 'simple' ones, such as GET requests or POST
requests with a content type among a restricted group. Requests containing
custom headers or dedicated to authentication are not supported.

For the above explained reasons, we decided to deploy the login server on
Tomcat, i.e., the same domain of the website used by the �nal user (Sentilo is
in fact deployed on the Tomcat web container). It is actually implemented by
exploiting the concept of Java servlet. Java servlets are small Java programs
that run within a Web server and receive and respond to requests from Web
clients, usually across HTTP. They can be thought of as applets that run
on the server side. It is possible to develop more than one servlet within
the same project, making each servlet responsible for handling requests to
a speci�c set of URIs. To deploy and run a servlet, it is essential to use a
web container, i.e., the component of a web server that interacts with the
servlets, such as Tomcat. Web containers simplify the implementation of
HTTP servers, as they are responsible for managing the lifecycle of servlets,
mapping a URI to a particular servlet and ensuring that the URI requester
has the correct access rights.

The Login Server project uses three di�erent servlets for handling the
following tasks:

- the user servlet is in charge of handling all the operations performed by a
user, hence the login phase and the �ltering of all the HTTP requests
in order to redirect them to Sentilo. The same holds for the HTTP
responses coming from Sentilo. If the user has not logged in, the servlet
repels it and blocks its requests. This service has been thought to be
a middle step between the user interface and the Sentilo platform and
supports no GUI, but it is rather used through AJAX requests;

- the login servlet is responsible for the login of the administrators, done by
inserting the username and the password;

- �nally, when an administrator correctly authenticates himself, he can make
use of the administration console, handled by the admin servlet. As
explained further, this console esssentially allows the admin to insert,
update or remove normal users and to insert or remove administrators.

Each servlet is assigned a set of URIs. If no authentication has been made,
the forwarding to Sentilo is not allowed; similarly, only the administrator
can access the user management console, while all other users are blocked. I
exploited the concept of HTTP session in the implementation of the services

49

CHAPTER 5. SECURITY ISSUES

provided by the servlets. An HTTP session is a sequence of network request-
response transactions set up at a certain point in time and then torn down
when one of the parts involved wants to close it or when a certain amount
of inoperative time has passed. HTTP/1.1 supports persistent connection,
whilst the former versions required to open a new connection for each request,
so session parameters were useless (normally there is one session on each
connection). Anyway, HTTP/1.1 is the default HTTP version nowadays.

5.4.1 The user authentication

The user authentication contemplates the insertion of a unique username and
a password. The login server relies on Mongo (the same non-SQL database
used by Sentilo) for storing information about the users. In fact one of
the Mongo collections of the database dedicated to Sentilo stores the list of
applications along with their corresponding tokens. Tokens are unfortunately
saved as they are4, without encoding or hashing, but at least the database
is accessible only through authentication. I created another database in
Mongo dedicated to the login server, which stores the usernames together
with their hashed passwords and roles, i.e., the Sentilo applications, they
have. In this way, when a user tries to log in, the user servlet looks up
the Mongo table: in case of missing username or of incorrect password, the
users' requests are blocked, otherwise after the log in the user is allowed to
communicate with Sentilo and hence with the 'Things'; moreover, session
parameters are exploited to identify the user and to store its authentication
token. In this way the user can dialog with Sentilo during the whole HTTP
session without needing to authenticate himself at every request. The user
servlet is then responsible for handling the HTTP requests and basically
acts as a forwarder: it does not modify the requests received, but it just
inserts the IDENTITY_KEY �eld retrieved from the session parameters in
the HTTP header. Similarly, any response received by Sentilo is forwarded
to the �nal user, without alterations. There exists only one case in which
the �ltering action of the user servlet does not reduce to a mere forwarding:
when the user tries to publish sensors observations. Sentilo is in fact unaware
of who is actually performing a request, e.g., a physical node able to produce
data or a human being that just exploits the REST API. The only thing
that identi�es a petitioner is the authentication token, which carries all the
information about the permissions owned by who is performing the request.
Therefore, it is important to check that only real sensors send data to Sentilo

4 This is how Sentilo developers conceived the storing mechanism. We thought about
hashing tokens before their insertion in the database, but it would have represented an
alteration of the existing code, and we wanted to avoid it.

50

CHAPTER 5. SECURITY ISSUES

in order to avoid a misfunctioning of the whole architecture. The user servlet
intercepts the HTTP requests aimed at publishing observations5 and blocks
them, informing the �nal user that such service is unavailable for him. At
every request, the presence of the correct session parameters is checked.

The user servlet has been thought to be interrogated through AJAX
requests. AJAX, Asynchronous JavaScript and XML, is a technique for cre-
ating fast and dynamic web pages [57]. In fact it allows web pages to be
updated asynchronously6 by exchanging small amounts of data with a server
behind the scenes, thus avoiding the reload of the whole page. The website
developed by Patavina provides a graphical user interface that intuitively
makes the �nal user interact with Sentilo (or openHAB). In the backstage,
the connection with Sentilo is handled through AJAX requests made to the
user servlet.

5.4.2 The administration console

The Login Server also provides a GUI for administration operations, which
can be carried out by any user who has been granted administration privi-
leges. An admin needs to authenticate himself through a login form, using
a mechanism analogous to the users authentication. Credentials are in fact
stored in Mongo (in a collection entirely dedicated to the administrators)
and passwords are hashed with the same algorithm used for normal users'
passwords. If the credentials inserted in the login page are incorrect, the user
is redirected to the failed login page7 and he is given the possibility to try
the login again. When the authentication is done, the admin can access the
administration console, which displays the information about the users and
their roles (although passwords are not shown) and it allows him to delete
a user, to modify its password or role or both of them. All the operations
directly modify the data stored in the Mongo database, so the new informa-
tion is immediately displayed. Any admin can also add new administrators
or delete existing ones and edit his own password.

For what concerns Sentilo roles assigned to administrators, we opted for
always assigning them the all-powerful role. In fact any admin may just add

5 Hence, all PUT requests to an URI containing the label data.
6 An asynchronous event is an event that runs outside the application's main thread.

Asynchronous actions are actions executed in a non-blocking scheme, allowing the main
program �ow to continue processing. In synchronous operations, the main program �ow
is interrupted till the completion of the operation.

7 A message warns the user that something is wrong with his credentials. Anyway, no
hint about what is wrong -the username or the password- is given, as no clue should be
given to potential attackers. In fact, if an attacker knows for sure that a username is valid,
he may perform a brute force attack to retrieve the associated password.

51

CHAPTER 5. SECURITY ISSUES

a new user with such role and then use its credentials for communicating
with Sentilo. So it was simpler to directly grant them all the privileges.

5.4.3 Password storing

As previously said, users' and administrators' passwords are stored in Mongo.
Although the access to the databases requires authorization, it is always a
good habit not to store passwords as they are, as a malicious attacker may
�nd a way to access the database. A very simple system would just store
the passwords themselves, and validation would be a simple comparison.
But if a hostile outsider were to gain a simple glimpse at the contents of
the database table which contains the passwords, then that attacker would
learn a lot [58]. Unfortunately, such partial, read-only breaches do occur in
practice: a mislaid backup tape, a decommissioned but not wiped-out hard
disk, an aftermath of a SQL injection attack. This is why passwords should
never be stored in plain text. However, remember that Sentilo stores the
identity tokens in clear, so anybody who accesses the database can read and
use them, invalidating the security precautions I implemented: a system is
as safe as its least secure part. Hopefully, Sentilo developers may change the
mechanism to store sensitive data.

How to securely store passwords is a hot theme in the literature, there
are plenty of articles and blogs comparing the di�erent existing schemes.
Passwords may be encrypted or hashed. Encryption is a process to render
the password unreadable and that uses an extra piece of secret data, the
key; it is reversible by using the same (symmetric encryption) or a distinct
but somehow mathematically related (asymmetric encryption) key. In this
way the password is kept secret, but it is retrievable if the decryption key
is known. On the contrary, the hashing mechanism uses no key and is not
reversible. Well-known hashing algorithms are MD-5 and the family of the
SHA algorithms [56]. A hash function is deterministic, so you can always
rehash a putative password and see if the result is equal to a given hash value.
Thus, a hashed password is su�cient to verify whether a given password is
correct or not. This is why the most used strategies for attacking hashed
passwords are typically guessing techniques [59]:

- brute force tecnique consists of systematically enumerating all possible can-
didates for the solution and checking whether each candidate satis�es
the problem's statement. Being an exaustive search, it is always suc-
cesful. The key point in the protection against brute force attacks is
making the number of candidates prohibitively large, leading to exceed-
ingly large computational times;

52

CHAPTER 5. SECURITY ISSUES

- dictionary attacks is another guessing attack which uses a precompiled list
of options. Rather then trying every option as in bruteforce, it restricts
the candidates to a dictionary of the options which are deemed as more
likely to work;

- rainbow tables are precomputed tables that allow to perform a simple look
up for each hash. In the web there are many rainbow tables already
built for the most common hashing algorithms and for some hashing
lengths.

The longer the password, the hardest for these strategies to be e�ective.
Anyway, hashing prevents an attacker from retrieving the plain text password
in the event he gets read access to the database. Thus, hashing passwords
will not make a site any more secure, but it will perform damage containment
in the event of a breach.

An expedient to enforce the hashing function is to use a salt [60], i.e., a
non-secret value which is typically appended to the password before getting
hashed. It is used to prevent rainbow table lookups and other parallel attacks.
Among the advantages of the attacker over the defender is parallelism: the
attacker usually grabs a whole list of hashed passwords, and is interested in
breaking as many of them as possible, so he may try to attack several in
parallel. Salting is about using not one hash function, but a lot of distinct
hash functions: ideally, each instance of password hashing should use its own
hash function. Hence, a salt is like a way to select a speci�c hash function
among a big family of hash functions. Properly applied salts will completely
thwart parallel attacks. It is extremely important for the salt associated
to a password to be unique and unrelated to any other information given
by the user, to prevent two databases from returning the same hash for a
given password. Uniqueness makes it more di�cult to perform bruteforce
and dictionary attacks: when attacking a whole database, a di�erent salt
must be taken into account for each password, making the computational
times longer.

Another requirement that good hash functions should ful�ll is slowness,
to counter the always increasing computational speed of computers. Hashing
should be inherently slow and this is obtainable by de�ning the hash function
to use a lot of internal iterations. The process should be slow enough to make
the hashing of many passwords very time-consuming but still fast enough
not to a�ect the hashing of a single password, at least for what concerns the
human perception of time: password hashing function must not be intolerably
slow for the honest system.

53

CHAPTER 5. SECURITY ISSUES

Cryptographic hash functions8 which are deemed to be good are PBKDF2
[61], bcrypt [62] and scrypt [63]. PBKDF2 is a key derivation function that
applies a pseudo-random function, such as a cryptographic hash, to the input
password along with a salt, and then derives a key by repeating the process
as many times as speci�ed. Although it is a key derivation function, it uses
the principle of key strengthening at its core. Bcrypt is a password hashing
function which aims at being slow. It is derived from the Blow�sh block
cipher which uses look up tables to generate the hash. This means that
a certain amount of memory space needs to be used before a hash can be
generated. This can be done on CPU, but when using the power of GPU
it will become a lot more cumbersome due to memory restrictions. Scrypt
instead moves the problem away to another level and instead of doing a lot
of hash function invocations, it concentrates on an operation which is hard
for anything else than a PC, e.g., random memory accesses. Scrypt has been
designed to be far more secure against hardware brute-force attacks than
PBKDF2 or bcrypt. Anyway, it is still relatively new (it has been designed
in 2009) and I prefered to go for the more vetted and tested bcrypt.

In conclusion, I chose the bcrypt hashing mechanism to safely store pass-
words. More precisely, I made use of the already built-in Java library, Bcrypt,
which provides methods for hashing a string and also for generating the
salt. Before storing the password in the database I hash it, and for checking
whether the password introduced in the login form is correct, I compare the
stored hashed password and the hashing of the inserted password.

8 A cryptographic hash function is a one-way hash function, practically impossible to
invert.

54

CHAPTER 6. PERFORMANCE ANALYSIS

6. Performance analysis

My work is just a part of a bigger project, so it was not straightforward to
de�ne a way to measure its goodness. These kinds of works may be evaluated
from a functionality point of view and for their performance intended as
e�ciency.

The choice of the platform is kind of unrelated to the other two tasks and
there is no easy or objective way to tell whether the �nal decision was the
best choice or not, but we can agree that Sentilo does what we expected it
to do. For what concerns the bridge implementation and the login server,
their functioning can be tested only empirically. We tested them many times,
detecting errors or misfunctionings, and their actual versions are considered
to be stable, although when dealing with software nothing can be granted and
unexpected behaviours can always appear. Anyway, they both comply with
their tasks, so I can a�rm that the functionality evaluation is positive. But I
also wanted to somehow measure the e�ciency of what I implemented. In the
next sections I will illustrate the experiments I carried out for determining
the goodness of the bridge and of the login server.

6.1 The bridge performance

Finding a way to test the e�ciency of the protocol bridge has been one of the
most challenging tasks of my thesis. Performance measures of such systems
typically concern scalability, reliability, robustness and energy e�ciency, but
all these metrics usually ask for a deployment of the system on a large scale
and for a long observation period; none of these requirements was reachable
as the project is still under development and I did not have enough time.
Therefore, all I could do was a performance evaluation of the REST interface
over MQTT in order to estimate the 'cost' of the bridge. It is not easy to
�nd similar evaluations in the literature: the topic is not common and IoT
systems are relatively recent, so we had to conceive our own experiment. We
decided to measure the delay (for both transmission and processing) and the
tra�c intensity between the HTTP client of the bridge and Sentilo server in

55

CHAPTER 6. PERFORMANCE ANALYSIS

comparison with the same metrics from the observations generation until the
MQTT messages are received at the MQTT client of the bridge.

6.1.1 Simulation scenario

The whole system network is represented in Figure 2.1. I had to de�ne a use
case, i.e. a realistic network setup for evaluating the performance. For the
sake of the simulation, I made use of virtual devices because the real elements
were used by Patavina Technologies meanwhile. Anyway, they provided me
software tools to mimic the behaviour of LoRa nodes and gateways, of the
Network Server, Application Server and Authentication Server. Although the
virtual nodes, GWs and NS emulate the behaviour of their real counterparts
at upper levels, the LoRaWAN standard de�nes its own speci�cation for the
MAC layer; thus, the evaluation of metrics such as delay and tra�c intensity
cannot be realistic if done with the virtual nodes. For this reason I decided
to put all the 'LoRa' virtual elements on the same machine as the tra�ng
among them does not correspond to the real one and performance would
have not been realistic. The Authentication and the Application Servers are
typically installed in the same hardware, and the MQTT broker may likely
stay alone, whereas the bridge has been though to be an adjucnt to Sentilo,
naturally belonging to the same hardware.

I did not have the possibility to use many physical machines for running
each element of the network setup, so I decided to create virtual machines
(VMs) with the tool Oracle VM VirtualBox [64]. With virtual machines it is
possible to emulate the behaviour of a speci�c computer system by executing
a complete operating system, and this is very useful when real hardware is
not available. The chosen scenario then requires four machines: one for the
virtual LoRa elements, one for the MQTT broker, another for the AS, and a
last one for Sentilo and the bridge. Moreover, there exists a tool provided by
the Linux Foundation called Netem [65], which provides network emulation
functionalities for testing protocols by emulating the properties of wide area
networks. The current version emulates variable delay, loss, duplication and
re-ordering, and allows to specify a transmission rate for a connection, too.
I exploited such tool for mimicking real connections among virtual machines
setting delay and transmission rate. A very likely con�guration sees the
AS (together with the AUS), the broker and Sentilo on a cloud and the
NS close to the GW and connected to the cloud by means of an ADSL or
a GSM connection, thus making the link between the NS and the broker
the bottleneck of the whole connection. The reason of not having the NS
on the cloud is the high latency that the LoRa network would experience:
after some experiments Patavina Technologies established that having the

56

CHAPTER 6. PERFORMANCE ANALYSIS

NS close (within 1 km) to the GWs outperforms the case of having the NS
in the cloud. Reasonable values for the average transmission rates may be
1 Gbps for the links in the cloud and 10 Mbps for the connection between
broker and NS, whereas the average delays experienced by the packets could
be 10 ms in the former case and 100 ms in the latter. Notice that these
values may be highly in�uenced by the network setup: if the NS is connected
to the broker by means of a cellular connection such as GSM, the latency is
much higher than when an ADSL connection is used, especially in case of
�ber-optic.

Figure 6.1 shows the network setup, highlighting the division in di�erent
physical machines.

Figure 6.1: Simulation setup

For obtaining measures about the tra�c, I made use of tcpdump, a packet
analyzer that runs under the command line and allows the user to display
TCP/IP and other packets being transmitted or received over a network to
which the computer is attached. It allows to extract statistics over the cap-
tured packets; however, after running a complete simulation I realized the
impossibilty of extracting the delays measures from the capture �les of tcp-
dump. The problem arises from the fact that the packets arriving at the
MQTT client of Sentilo bridge need to be matched to the corresponding

57

CHAPTER 6. PERFORMANCE ANALYSIS

packets originated from the nodes in order to compute the time it took each
packet to be transmitted and processed by the various elements. My original
idea consisted in hashing the packet headers by using the CRC-32 algorithm.
This technique has been succesfully used in [66] and allows to compare ar-
riving and departing packets in an easy and fast way. The authors of [66]
measure the single-hop delay on an IP backbone network, so that the IP
header of a packet remains unmodi�ed till it arrives at the destination host,
with the exception of some �elds such as the Time To Live (TTL) which
may be modi�ed by routers. However, the messages coming from the nodes
and those published to the MQTT client of Sentilo are completely di�erent
(although they provide the same information) as the AS processes the mes-
sages published by the NS and rearrange them in a human-readable fashion.
We may identify two di�erent tranmission moments: in the former the nodes
send their data to the NS, which publishes the corresponding MQTT mes-
sages to the broker, which in turn forwards them to the AS; the latter involves
the messages elaborated by the AS which are published to the bridge. Two
main problems arise: �rst of all, even if it were possible to measure the two
delays from the NS to the AS and then from the AS to the bridge, the time
needed by the AS for the elaboration process would be omitted; secondly,
MQTT publish messages to and from the broker appear to be the same at
the application level, but look completely di�erent at the network and trans-
port levels: the IP and TCP headers are totally uncorrelated and this makes
it hard to �nd the correct matching. Moreover, long messages are likely to
be rearranged in separated packets by the broker, so it is very di�cult to
make packets correspond. For all these reasons, I had to �nd another way to
compute delays.
The delay experienced by a packet from its departure from the NS till its
arrival at Sentilo can be written as:

delay = tTX,NS→brk + tbrk + tTX,brk→AS + tAS

+ tTX,AS→brk + tbrk + tTX,brk→bridge + tbridge

+ tTX,bridge→Sentilo + tbridge + tTX,Sentilo→bridge

(6.1)

The processing times of the AS and of the bridge, namely tAS and tbridge,
can be computed by tracking each packet directly in the sofware code. Simi-
larly, the average time needed by the broker for redirecting a message to the
clients subscribed to the message topic can be retrieved from the tcpdump
capture �les. Finally, the propagation times are highly dependent on the
network con�guration itself, the setup of Figure 6.1 is just one of many pos-
sibilities. Notice that since the bridge and Sentilo are meant to run on the

58

CHAPTER 6. PERFORMANCE ANALYSIS

same machine, the transmission times tTX,bridge→Sentilo and tTX,Sentilo→bridge

are supposed to be negligible.
The time elapsed from the arrival of a packet in the broker and its tranmis-

sion to the subscribed clients, namely tbrk, highly depends on the QoS used.
We always set the QoS level to 2, which means that the packet is ensured
to be received exactly once1, and it is handled by the MQTT speci�cation
with a three-way handshake message exchange: the party that received the
publish (PUB) message sends a PUBREC to mean that the publish has been
received, the other party sends then a PUBREL to say that the publish has
been released and �nally the �rst party sends a PUBCOMP message to tell
the publish has been completed. It takes a negligible time for the broker
to look up the list of subscribed clients to which sending the PUB message
received, but actually it needs to wait for the reception of the PUBREL mes-
sage. Hence, tbrok is expressable in a valid way as the propagation time of two
short messages (they only have a 4-bytes header from an application point
of view, plus the headers of the lower layers).

Simulation technical parameters

I ran the simulations on a Dell computer with an Intel R© CoreTM i7-2600
Quad core unlocked with Hyper-Treading (which means that there are 2
threads per core). Since I needed 3 virtual machines plus the host machine,
there was one core per machine. The OS of the host machine is Xubuntu,
which is based on Linux Ubuntu-Trusty, while I installed Linux Mint on the
VMs.

6.1.2 Results

I executed two independent simulations: the former considers non-secure
connections, the latter examines the network behaviour when TLS is enabled.
The �nal deployment of the system will very likely make use of TLS, however
the analysis of the former scenario is for the sake of a comparison with the
purpose of determining the additional load of TLS in tra�c intensity and
transmission delay. The other settings were the same for both simulations in
order to guarantee a fair comparison. Hence, both experiments used the same
network con�guration with one single gateway and 8 nodes running, each of
them publishing 17 observations every 10 seconds and with the observations
of two nodes spaced by 1 s. Based on the fact that the predominant tra�c
is in uplink - i.e., with many more messages generated by the nodes rather

1 QoS 1 corresponds to receving a packet at least once, whereas QoS 0 gives no guarantee
about the reception of the packet, which is known to be received at most once.

59

CHAPTER 6. PERFORMANCE ANALYSIS

than commands sent from the users to the sensors - I decided to run the
simulations considering only uplink tra�c.

The analysis of the tcpdump logs let me identify the type of messages
exchanged between the parties in each connection, which correspond to the
expected �ows scheduled by the MQTT and HTTP protocols. The following
descriptions refer to a steady-state �ow and thus neglect the extra messages
exchanged at the very begininning of the network setup: the MQTT clients
need to connect to the broker and make the proper subscriptions, whilst the
HTTP client of the bridge must send some catalog and subscribe requests
to the Sentilo server. Anyway, these messages are supposed to happen only
once, and therefore should be excluded by the 'normal' �ows.

1. Network Server ↔ broker

The message exchange between the NS and the broker regards the
MQTT messages containing the sensors' observations that the NS pub-
lishes to the broker. The pattern of the transaction is the following.
The NS publishes a message coming from a sensor with QoS set to 2,
so fundamentally, for each message generated by a LoRa node, 4 mes-
sages are exchanged between the NS and the broker: one for the data
delivery and 3 more for con�rming correct data reception. It is also
possibile to pinpoint a TCP �ow with ACK messages in the capture
logs. Notice that streams of MQTT keep alive messages (i.e. PING
and PONG messages) are missing since the NS sends PUB messages
at a fast pace.

2. Application Server ↔ broker

The exchanges between the AS and the MQTT broker are more com-
plex than those of the previous case as the AS is both subscribed to the
messages coming from the NS and publishes its own messages. Looking
at the capture �les we can identify the following pattern. The MQTT
broker sends a PUB message to the AS which is followed by the PUB-
REC, PUBREL and PUBCOMP as described previously. Meanwhile,
the AS processes the information received from the NS and sends some
PUB messages containing the elaborated data, each of them followed
by the acknowledging messages envisaged by QoS equal to 2. Notice
that in MQTT it is possible to send multiple messages in the same
packet, reducing the number of headers -and therefore bytes- sent.

3. broker ↔ bridge

The data �ow is toward the bridge, which is subscribed to the messages
coming from the AS. Similarly in the connection between broker and

60

CHAPTER 6. PERFORMANCE ANALYSIS

NS, it is possible to identify the MQTT messages scheduled by the QoS
2 and an underlying TCP stream.

4. bridge ↔ Sentilo

The tra�c �owing between the bridge and Sentilo is of a completely
di�erent nature. Then a HTTP request is sent for each data message
received and the corresponding response is sent back from Sentilo, after
the server has correctly processed it. Every node data message includes
observations of multiple sensors, for a total numer of 15 with the nodes
used. Thus, for each node message, the bridge performs at least 15
di�erent HTTP requests to Sentilo -there might be retranmissions or
unexpected responses from Sentilo causing the sending of multiple re-
quests.

The simulations ran for about 15 hours, which correspond to more than
2.5 · 106 data observations from the peripheral nodes. Table 6.1 shows the
average number of Bytes exchanged at every connection for each data obser-
vation sent by a node.

NS → broker AS → broker broker → bridge bridge↔ Sentilo

no TLS 0.6kByte 3.9kByte 3.4kByte 7.7kByte

TLS 0.8kByte 6.7kByte 6.2kByte 7.7kByte

Table 6.1: Bytes exchanged at each link for one node observation

Notice that the MQTT tra�c between the AS and the broker or between
the broker and the bridge is considerably higher than the tra�c between
the NS and the broker. This is due to the fact the the NS sends a single
packet for every node message, publishes it to a single topic and moreover
the data payload is extremely compressed as the sensors information is sent
as a hexadecimal string. The AS interpretes such message and breaks it up
in many messages published at di�erent topics, as outlined in Section 4.2.1.
Whereas the MQTT messages can be sent in the same packet, mimicking
the piggybacking technique2, the bridge must send separate HTTP requests
to Sentilo, as the URI typically change for each data message (they include
the ID of the provider associated in Sentilo to that speci�c sensor). The

2 Bi-directional data transmission technique in the network layer in which the acknowl-
edgement appended to a data frame in the reverse direction rather than being sent in an
individual frame.

61

CHAPTER 6. PERFORMANCE ANALYSIS

use of TLS increases the size of the exchanged messages, as it requires and
additional header and the data encryption also a�ects the packet size. Al-
though the overhead for a single packet may not be signi�cant, it becomes a
considerable weight when thousands of messages are transmitted; however,
this is the price to pay for having a secure tranmsission.

For what concerns the delay metric, Equation 6.1 gives an expression of
the delay experienced by a packet from the Network Server till the reception
of Sentilo response to its corresponding HTTP message. The delay indicated
as tbrk is the time elapsed since the reception of a data message from the
broker until the departure of that message3 and highly depends on the QoS
level: if it is set to 2, the broker has to wait till it receives the PUBREL
message from the other party before sending the message to the subscribed
client. Thus, tbrk actually is the propagation time of two short messages
- PUBREC and PUBREL - plus the time the broker needs to identify the
clients to which to redirect the message; the latter is almost negligible, so tbrk
can be calculated as twice the time needed for sending packets whose length
is given by 4 bytes of the MQTT application layer plus the headers of the
lower layers.
In order to evaluate the cost of the bridge in terms of delay, expression 6.1
must be compared with the time elapsed since the NS publishes a messages
till the moment in which the MQTT client of the bridge receives the cor-
responding message. Table 6.2 shows the average values of each factor of
Equation 6.1, considering about 2.5 ·106 elements. Remember that the trans-
mission times are those of a speci�c network con�guration and notice that
the processing times are highly in�uenced by the features of the hardware
machine, so they may be lower if more powerful hardware were used, which
will likely happen in a real deployment of the system.

delay [ms] ttx,all tbroker,NS tAS tbroker,AS tbridge tSentilo

no TLS 130 200 4 20 8.5 120

TLS 130 200 3.7 20 8 120

Table 6.2: Delays

It is clear that the use of TLS does not increase the average propagation
and processing delays in a signi�cant way. As expected, the poor connection
between the NS and the broker a�ects the overall delay, as it in�uences not

3 From an application level point of view the message is the same, altough the headers
of the lower layers are not correlated at all.

62

CHAPTER 6. PERFORMANCE ANALYSIS

only tTX,NS→brk but also tbrk,NS for the reasons already explained. Another
huge contribute is given by the processing time of Sentilo, which performs a
lot of operations upon receiving a message.

Summing up, the conversion from MQTT to HTTP and the successive
processing of the HTTP requests highly in�uence the communication between
the user and the 'things'. In the used network scenario, the 'Internet con-
nection' represents about 24.9% of the total tra�c intensity in both cases,
and the time needed for properly converting an MQTT message and then
handling it constitutes 26.6% of the total delay. It is evident that the cost
of the REST interface over MQTT is quite high.

6.2 Security improvements

Security is a big concern in the design of a system, mainly because there is no
way to tell how secure the system is. The developer should always think as
an attacker if he wants to �nd the leaks and weak points of the architecture
in order to take measure against them. The login server I implemented
allows only authenticated users to dialog with Sentilo; after the user logs
in, the server keeps track of the session and identi�es the user by exploiting
the session parameters. Anyway, malicious users could by-pass this measure
by exploiting a valid computer session: this attack strategy is called session
hijacking and it is made possible by the use of cookies and session parameters,
which on the other hand are necessary for avoiding that the �nal user has
to log in at every request to the server [67]. There exist some techniques
for preventing session hijacking, such as the use of a long random number or
string as the session key, the regeneration of the session ID after a successful
login or at each request, or the encryption of the data tra�c between client
and server by using TLS, which is the method we opted for.

Anyway, what the login server wants to keep secret is the authentication
token associated to the role the user has been assigned. The orginal Sentilo
implementation builds tokens by hashing some non random values: a pre�x
retrievable in the source code, the easily known name of the entity for which
the token is being generated, and the creation time of this entity, with a mil-
lisecond accuracy. The hashing process produces a hexadecimal string made
of 26 characters but still guessable as ground for a dictionary attack based
on the knowledge of the creation date. I myself tried to perform a brute-
force attack to retrieve the token associated to a particular Sentilo role, an
attack that ended with success. The code I wrote for retrieving the token
associated to the particular Sentilo entity, considers a given timestamp in

63

CHAPTER 6. PERFORMANCE ANALYSIS

the Unix format4, calculates the token associated to that role for that times-
tamp, makes a request to Sentilo inserting the token in the HTTP header
and, in case of a response with HTTP code 403 Unauthorized, increments
by 1 the timestamp and the process is repeated until the correct token is
found or a given number of tries has been made. In this way, on the same
Intel R© CoreTM i7-2600 processor previously described, the mean computing
time for an attempt is 4.003 ms. This number has been computed as the av-
erage time out of 106 consecutives attempts and is associated to a standard
deviation of 8.762 ms. Thus, approssimating such mean time to 4 ms per
attempt and considering that every time second corresponds to 1000 possible
timestamps, if the attacker knows the creation time with an accuracy of one
unit, it will take him 4 units to guess it in the worst case. So, if he knows the
day in which the entity has been created, he just needs four days to derive
the corresponding token. And this is an over-estimation of the time needed,
as the code I used for performing the brute-force attack might be improved
for speeding up the process and parallel computing could be exploited, too.
Moreover, it is well-known that running code on a GPU (Graphics Proces-
sor Unit) rather than on the CPU (Central Processing Unit) considerably
accelerates the process [68].

The original token generation is clearly unsafe and represents a big leak in
the security of Sentilo, so we decided to change it for a more secure function.
The essence of the algorithm does not change, we just traded the creation
timestamp for a completely random hexadecimal number. If a brute-force
attack is perpetrated by trying all possible strings of 26 hexadecimal charac-
ters, the average time for determining the correct token increases consider-
ably. There are 1626 ' 2.03 · 1031 possible combinations but the number of
tries before a success cannot be represented as a geometric random variable
as the attempts, despite being independent of each other, are not identically
distributed: after one (wrong attempt), 1626 − 1 combinations remain and
in general 1626 − k are still to be considered after k attempts. Let X be the
random variable that models the number of failures before getting the token
and let pj be the probability of success at the jth attempt. It holds:

pj = 0 for j < 0

pj =
1

1/p− j
for 0 ≤ j < 1626

pj = 1 for j ≥ 1626

where p = 16−26 is the probability of a single combination of 26 hexadec-
4 Reminder: the Unix timestamps are represented as the number of seconds passed

since January 1st, 1970.

64

CHAPTER 6. PERFORMANCE ANALYSIS

imal characters to be the correct one. The probability of making exactly k
attempts is P (X = k) =

∏k−1
j=0(1 − pj) · pk, and the cumulative distribution

function (c.d.f.) of X is:

P (X ≤ k) = 1− P (X ≥ k + 1) = 1−
k∏

j=0

(1− pj) (6.2)

It is quite complex and di�cult to manage, so I computed lower and
upper bounds to it. Considering that pk+1 ≤ pk ∀k ≥ 0, it holds:

1−
k∏

j=0

(1− p0) ≤ 1−
k∏

j=0

(1− pj) ≤ 1−
k∏

j=0

(1− pk) (6.3)

k∏
j=0

(1− pk) ≤
k∏

j=0

(1− pj) ≤
k∏

j=0

(1− p0) (6.4)

(1− pk)
k+1 ≤

k∏
j=0

(1− pj) ≤ (1− p0)
k+1 (6.5)

Bernoulli inequality states that (1 + x)r ≥ 1 + r x ∀ integer r ≥ 0 and
real number x ≥ 1 [69]. Therefore,

(1− pk)
k+1 ≥ 1− pk (k + 1) (6.6)

Another useful bound states that (1 + r/k)k ≤ er[69], from which

(1− p0)
k+1 = (1 +

−p0 (k + 1)

k + 1
)k+1 ≤ e−p0 (k+1) (6.7)

So, in the end:

1− pk (k + 1) ≤
k∏

j=0

(1− pj) ≤ e−p0 (k+1) (6.8)

1− e−p0 (k+1) ≤ P (X ≤ k) ≤ pk (k + 1) (6.9)

Figure 6.2 shows the upper and lower bounds to the c.d.f of X , i.e. to
the probability of needing at least k attempts before succesfully �nding the
authorization token, for 1029 ≤ k ≤ 2 · 1031 ' # possible combinations.
For k = 2 · 1030 the probability is still low, about 0.1. With an average
computing time of 4 ms per attempt, about 1020 years would be needed for
trying k = 2 · 1030 combinations. It is evident that using a random token
certainly improves security against brute force attacks.

65

CHAPTER 6. PERFORMANCE ANALYSIS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
(X

<
k)

Upper bound
Lower bound

Figure 6.2: Bounds to the cumulative function of X

Actually, when using a random string, no hashing is needed. So probably
Sentilo creators decided for the described solution in order to be able to
regenerate the identity token a second time. We deem they make use of an
application �rewall in the Sentilo deployment in Barcelona for making it hard
to perpetrate brute force attacks: application �rewalls are �lters that apply
a set of rules to an HTTP conversation for covering security attacks, such as
cross-site scripting (XSS) and SQL injection. Anyway, we think it is safer
to use random strings as we do not see any advantage in being capable of
generating the same token again.

Of course, developing strategies against brute-force reduces the risk of
succesful attacks, but this is not enough: it is extremely important to pro-
vide protection to Mongo, too. Access control has already been enabled,
nonetheless somebody may try to intrude. This is why we deem safer to
hash user passwords before inserting them in the database, and this should
be done with the identity tokens, too.

66

CHAPTER 7. CONCLUSIONS

7. Conclusions

The Internet of Things is a new paradigm thus no consolidated solution
has been established yet. Certainly many issues need to be addressed and
albeit the scienti�c world is already investigating the validity of di�erent ap-
proaches, an integrated solution that embraces all the challenges described
in Chapter 1 is still missing. The architecture developed at Patavina Tech-
nologies is complete and even if it has not enough scalability for covering
wider scenarios, it �ts very well Smart Cities schemes. It is quite complex
and is based on many elements - LoRa, MQTT, REST, ... - making them
�tting together. Security is granted at all levels and parts of the connection,
and user access di�erentiation is also provided. Thanks to LoRa the energy
consumption of the sensors is minimized when not fast reacting nodes are
needed, and Class B and class C nodes respond faster to stirrings coming
from the NS in spite of a higher energy consumption.

My thesis work was just a part of the whole architecture. It is threefold:

- I �rstly analyzed and compared three di�erent platforms with the objective
of detecting the one better �tting Patavina Technologies requirements,
�nally choosing Sentilo;

- I adapted Sentilo in order to communicate with the existing architecture
by developing a protocol bridge;

- I implemented a system for the users authentication by exploiting the users
privileges infrastructure provided in Sentilo.

Sentilo proved to satisfy all requirements of the system, and thanks to
the bridge it is able to convert MQTT messages into HTTP messages, whose
information is displayed to the human user through a friendly interface and
according to the permissions he owns. Permissions allow to e�ciently manage
the secure access to the platform and to treat users accordingly.

67

CHAPTER 7. CONCLUSIONS

Future work

The Patavina Technologies project represents a proprietary solution for IoT
application that is the proof of the feasibility of IoT systems being simulta-
neously secure, robust and energy e�cient. Anyway it targets speci�c nodes
features and speci�c application requirements thus it is not a fundamental
contribution in the more general research of a world-wide MTC vision out-
lined in Section 1.1. Future work may focus at making the bridge faster
in computing and in enhancing the role management of the di�erent users
priviliges. This thesis project is intended to be the prologue of my work in
the Internet of Things world: I would like to research about more general
solutions capable of addressing the issues arising in the IoT.

68

Bibliography

[1] K. Ashton, �That 'Internet of things' thing. In the real world, things
matter more than ideas.� http://www.rfidjournal.com/articles/view?

4986, Jun 2009.

[2] F. Xia, L. Yang, L. Wang, and A. Vinel, �Internet of Things,� Interna-
tional Journal of Communication System, vol. 25, 2012.

[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, �Internet
of Things for Smart Cities,� IEEE Internet of Things Journal, vol. 1,
Feb 2014.

[4] M. Weiser, �The computer for the 21st century.� http://www.ubiq.com/
hypertext/weiser/SciAmDraft3.html, Feb 1991.

[5] E. Schmidt, � World Economic Forum in Davos,
Switzerland.� http://www.hollywoodreporter.com/news/

google-chairman-eric-schmidt-internet-765989, Jan 2015.

[6] �Juniper Research, 'Internet of Things' connected devices to almost
triple to over 38 billion units by 2020,� Jul 2015.

[7] �IEEE Standard for Local and Metropolitan Area Networks-Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs),� IEEE Stan-
dard 802.15.4, 2011.

[8] �IEEE Standard for Local and Metropolitan Area Networks-Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Speci�cations (Includes IEEE Std 802.11, 1999 Edition; IEEE
Std 802.11A.-1999; IEEE Std 802.11B.-1999; IEEE Std 802.11B.-
1999/Cor 1-2001; and IEEE Std 802.11D.-2001),� IEEE Standard
802.11, 2005.

[9] G. Mulligan, �The 6LoWPAN architecture,� Proceedings of the 4th work-
shop on Embedded networked sensors, pages 78-82, 2007.

http://www. rfidjournal.com/articles/view?4986
http://www. rfidjournal.com/articles/view?4986
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://www.hollywoodreporter.com/news/google-chairman-eric-schmidt-internet-765989
http://www.hollywoodreporter.com/news/google-chairman-eric-schmidt-internet-765989

BIBLIOGRAPHY

[10] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, �Constrained appli-
cation protocol (CoAP),� IETF 2013, 2013.

[11] http://www.semtech.com/wireless-rf/lora.html.

[12] Carnegie Mellon University, �The 'Only' Coke Machine on the Internet.�
https://www.cs.cmu.edu/~coke/history_long.txt.

[13] �The Internet of Things: Dr. John Barrett at TEDxCIT.� http://

tedxtalks.ted.com/video/The-Internet-of-Things-Dr-John, 2012.

[14] H. Kopetz, Internet of Things. in "Real-Time Systems", Springer New
York, Feb 2011.

[15] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, �Internet of
Things (IoT): A vision, architectural elements, and future directions,�
Future Generation Computer Systems, vol. 29, 2013.

[16] A. Biral, M. Centenaro, A. Zanella, L. Vangelista, and M. Zorzi, �The
challenges of M2M massive access in wireless cellular networks,� Digital
Communications and Networks, vol. 1, 2015.

[17] G. Madueno, C. Stefanovic, and P. Popovski, �How many smartmeters
can be deployed in a GSM cell?,� 2013 IEEE International Conference
on Communications Workshops (ICC), Jun 2003.

[18] P. Jain, P. Hedman, and H. Zisimopoulos, �Machine type communica-
tions in 3GPP systems,� IEEE Communication Magazine, vol. 50, Nov
2012.

[19] A. Lo, Y. Law, M. Jacobsson, and M. Kucharzak, �Enhanced
LTE-Advanced Random-Access Mechanism for Massive Machine-to-
Machine (M2M) Communications,� 27th World Wireless Research Fo-
rum (WWRF) Meeting, 2011.

[20] A. Laya, L. Alonso, and J. Alonso-Zarate, �Is the Random Access Chan-
nel of LTE and LTEA Suitable for M2M Communications? A Survey of
Alternative,� IEEE Communications Surveys & Tutorials, vol. 16, 2014.

[21] J. Kim, J. Lee, J. Kim, and J. Yun, �M2M Service Platforms: Survey,
Issues, and Enabling Technologies,� IEEE Communications Surveys &
Tutorials, vol. 16, 2014.

[22] P. Kinney, �Zigbee technology: Wireless control thatsimply work,� Com-
munications Design Conference , Oct 2003.

71

http://www.semtech.com/wireless-rf/lora.html
https://www.cs.cmu.edu/~coke/history_long.txt
http://tedxtalks.ted.com/video/The-Internet-of-Things-Dr-John
http://tedxtalks.ted.com/video/The-Internet-of-Things-Dr-John

BIBLIOGRAPHY

[23] �3GPP Speci�cation, Feasibility Study for Proximity Services (ProSe).�
http://www.3gpp.org/DynaReport/22803.htm, 2003.

[24] S. Tozlu, �Feasibility of wi-� enabled sensors for internet of
things,� Wireless Communications and Mobile Computing Conference
(IWCMC), 2011 7th International, 2011.

[25] �IEEE Computer Society, Advanced Message Queuing Protocol,� IEEE
Internet Computing, vol. 10, 2006.

[26] T. Nam and T. Pardo, �Conceptualizing smart city with dimensions of
technology, people, and institutions,� Conceptualizing smart city with
dimensions of technology, people, and institutions, 2011.

[27] NavigantResearch, �Smart Cities.� http://www.navigantresearch.com/

research/smart-cities.

[28] V. Guitérrez, J. Galache, J. Santana, P. Sotres, L. Sánchez, and
L. Muñoz, �The Smart City Innovation Ecosystem: A Practical Ap-
proach,� Multimedia Communications Technical Committee IEEE COm-
munications Society, vol. 9, Sep 2014.

[29] http://www.padovasoftcity.it/.

[30] A. Cenedese, A. Zanella, A. Vangelista, and M. Zorzi, �Padova Smart
City: an Urban Internet of Things Experimentation,� 2014 IEEE 15th
International Symposium on A World of Wireless, Mobile and Multime-
dia Networks (WoWMoM), 2014.

[31] http://www.smartsantander.eu/.

[32] R. Want, �An introduction to RFID technology,� IEEE Pervasive Com-
puting, vol. 5, 2006.

[33] LoRaAlliance, �LoRa Speci�cation,� 2015.

[34] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer-Verlag, 2002.

[35] MicrosoftTechnet, �Virtual Private Networking: An Overview,� Sep
2001.

[36] RFC5246, �The Transport Layer Security (TLS) Protocol Version 1.2.�
https://tools.ietf.org/html/rfc5246, Aug 2008.

72

http://www.3gpp.org/DynaReport/22803.htm
http://www.navigantresearch.com/research/smart-cities
http://www.navigantresearch.com/research/smart-cities
http://www.padovasoftcity.it/
http://www.smartsantander.eu/
https://tools.ietf.org/html/rfc5246

BIBLIOGRAPHY

[37] G. Fersi, �Middleware for Internet of Things: a study,� International
Journal of Communication System, 2015.

[38] S. Bandyopadhyay, M. Sengputa, S. Maiti, and S. Dutta, �Role of Mid-
dleware for Internet of Things,� International Journal of Computer Sci-
ence & Engineering Sutvey, vol. 2, no. 3, 2011.

[39] S. Bandyopadhyay, M. Sengputa, S. Maiti, and S. Dutta, �Middleware
for the Internet of Things, design goals and challenges,� IEEE Journal
on Selected Areas in Communications, vol. 21, Aug 2003.

[40] http://www.openhab.org/.

[41] http://www.sentilo.io.

[42] https://parse.com.

[43] M. Collina, G. Schiele, A. Vanelli Coralli, and G. Corazza, �The ponte
project: Platform architecture, primitives, and data formats for inter-
operability in the internet of things,� IEEE Internet of Things Journal,
2014.

[44] �OASIS standard: MQTT Version 3.1.1.� http://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html, Apr 2014.

[45] R. Fielding and R. Taylor, �Principled Design of the Modern Web Ar-
chitecture,� ACM Transactions on Internet Technology (TOIT), vol. 2,
May 2002.

[46] R. Roman, P. Najera, and J. Lopez, �Securing the Internet of Things,�
IEEE Network, Sep 2011.

[47] R. Weber, �Securing the Internet of Things,� Computer Law & Security
Review, vol. 26, 2010.

[48] H. Suo, J. Wan, C. Zou, and J. Liu, �Security in the Internet of Things:
A Review,� 2012 International Conference on Computer Science and
Electronics Engineering, 2012.

[49] K. Zhao and L. Ge, �A Survey on the Internet of Things Security,�
2013 Ninth International Conference on Computational Intelligence and
Security, 2013.

[50] A. Riahi, Y. Challal, E. Natalizio, Z. Chtourou, and A. Bouabdallah,
�A systemic approach for IoT security,� 2013 IEEE International Con-
ference on Distributed Computing in Sensor Systems, 2013.

73

http://www.openhab.org/
http://www.sentilo.io
https://parse.com
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

BIBLIOGRAPHY

[51] C. Medaglia and A. Serbanati, An Overview of Privacy and Security
Issues in the Internet of Things. in "The Internet of Things", Springer
New York, 2010.

[52] �ISO Standards: ISO/IEC 27000.� http://www.iso.org/iso/home/

store/catalogue_tc/catalogue_detail.htm?csnumber=63411.

[53] L. Tan and N. Wang, �Future Internet: The Internet of Things ,� 2010
3rd International Conference on Advanced Computer Theory and Engi-
neering(ICACTE), 2010.

[54] L. Holmquist, J. Redström, and P. Ljungstrand, Token-Based Access
to Digital Information. in "Handheld and Ubiquitous Computing",
Springer Berlin Heidelberg, 1999.

[55] W. Recommendation, �Cross-Origin Resource Sharing.� http://www.w3.
org/TR/cors/, 2014.

[56] B. Forouzan, Cryptography and Network Security. Mc Graw-Hill Edu-
cation, 2011.

[57] J. Garrett, �Ajax: A New Approach to Web Applications.� http://

adaptivepath.org/ideas/ajax-new-approach-web-applications/, 2005.

[58] O. De Coi and D. Olmedilla, A review of trust management, security
and privacy policy languages. International Conference on Security and
Cryptography, 2008.

[59] S. Marechal, �Advances in password cracking,� Journal in Computer
Virology, vol. 4, 2008.

[60] D. Klein, �'Foiling the Cracker': A Survey of, and Improvements to,
Password Security,� Proceedings of the 2nd USENIX Security Workshop,
1990.

[61] B. Kaliski, �PKCS #5: Password-Based Cryptography Speci�cation
Version 2.0,.� http://tools.ietf.org/html/rfc2898, Sep 2000.

[62] N. Provos and D. MaziÃ�res, �A Future-Adaptable Password Scheme,�
USENIX Annual Technical Conference, 1999.

[63] C. Percival, �Stronger Key Derivation via Sequential Memory-Hard
Functions.� http://www.tarsnap.com/scrypt/scrypt.pdf, 2009.

[64] https://www.virtualbox.org/.

74

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63411
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63411
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://tools.ietf.org/html/rfc2898
http://www.tarsnap.com/scrypt/scrypt.pdf
https://www.virtualbox.org/

BIBLIOGRAPHY

[65] http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem.

[66] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, �Mea-
surement and Analysis of Single-Hop Delay on an IP Backbone Net-
work,� International DisCoTec Workshop on Context-aware Adaptation
Mechanisms for Pervasive and Ubiquitous Services (CAMPUS 2010),
vol. 28, 2010.

[67] M. Kol²ek, �Session Fixation Vulnerability in Web-based Ap-
plications.� http://www.acrossecurity.com/papers/session_fixation.

pdf, Dec 2002.

[68] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
�GPU computing,� Proceedings of the IEEE, vol. 96, May 2008.

[69] J. Gubner, Probability and Random Processes for Electrical and Com-
puter Engineering. Cambridge University Press, 2006.

75

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.acrossecurity.com/papers/session_fixation.pdf
http://www.acrossecurity.com/papers/session_fixation.pdf

	Introduction
	Internet Of Things
	Open challenges
	Protocols
	Smart Cities

	The Patavina Technologies project
	System architecture
	LoRa network
	Security

	The choice of the platform
	Required features
	The candidates
	OpenHAB
	Sentilo
	Parse

	Platforms comparison and final choice

	The protocol bridge
	The protocols
	MQTT
	REST
	Comparison

	The bridge
	Patavina MQTT messages
	Sentilo REST API
	The bridge implementation
	Java project structure

	User interface

	Security issues
	Security in IoT
	Security aspects in Sentilo
	User permissions
	The login server
	The user authentication
	The administration console
	Password storing

	Performance analysis
	The bridge performance
	Simulation scenario
	Results

	Security improvements

	Conclusions
	Bibliography

