
Università di Padova

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Informatica

PARIRANDOM

Entropy distribution in a p2p network

(Distribuzione dell'entropia in una rete p2p)

RELATORE
Ch.mo Prof. Enoch Peserico Stecchini Negri De Salvi

CORRELATORE TESI DI LAUREA DI
Ing. Michele Bonazza Nicola Moretti

Matr. N. 622066

Anno Accademico 2011/2012

To family,

Francesca,

friends,

everybody who supported me and my work

during this fundamental period of my life.

Welcome the caos, as order did not work.

(Karl Kraus)

An updated version of this document is available at https://github.com/

hanicker/Tesi.

https://github.com/hanicker/Tesi
https://github.com/hanicker/Tesi

Contents

1 Introduction and related work 1

1.1 PariPari . 2

1.1.1 Network layout . 2

1.1.2 Host structure . 3

1.2 Random Number Generation . 5

1.2.1 What is a random bit? . 5

1.2.2 Multiple random bits . 6

1.2.3 Pseudo-Random Number Generators 6

1.2.4 Processing functions . 7

1.2.5 A common problem: Unpredictability 7

1.2.6 A second common problem: Subtle patterns 8

2 PariRandom: Theoretical Analysis 11

2.1 Algorithm . 12

2.2 Minimum entropy level . 14

2.3 Entropy gain . 17

2.4 Statistical basis . 23

2.5 Analysing XOR operation . 24

2.6 Theorems Proofs . 25

3 PariRandom: Development and Testing 31

3.1 PariRandom implementation . 32

3.2 Testing approaches . 34

3.3 Common statistical tests . 38

3.4 Testing suites . 45

3.5 Testbed description . 46

3.6 Testbed implementation . 48

3.7 Testing results . 50

4 Conclusions 57

A Simtec Electronics Entropy Key 59

i

ii CONTENTS

Acknowledgments 61

Abstract

Entropy generation in a machine has always been an area of great interest, especially

given its practical applications. A good source of entropy is a fundamental ingredient

in many simulations of large physical systems, robust cryptographic operations and

non-parametric statistical methods.

Current software entropy generators bring entropy to a level which is not always

suitable for its �nal use. There is a particular trade-o� between the quality of

entropy (see chapter 1.2.2) and the speed needed to generate it.

We propose a novel method to improve the quality of entropy generators that

leverages the ever growing phenomenon of Peer-to-peer networks. PariRandom is

a pseudo-random number generation system that may be used to extend all other

existing Pseudo Random Number Generation (PRNG) algorithms, ensuring they

have an equal or greater level of entropy. An important aspect of our system is that

it does not noticeably increase the underlying tra�c, "piggybacking" instead on

packets that would be transmitted anyway. The theoretical and experimental results

demonstrate an increase in performance, which on a wide-scale, comes close to the

performance achieved by hardware entropy generators. Moreover, they guarantee

resistance to every kind of attack by malicious nodes in the network.

iii

iv CONTENTS

Chapter 1

Introduction and related work

This report describes the design of PariRandom, a random number generating sys-

tem that operates on a P2P network to improve the quality of the entropy available

to its nodes. The system was developed as part of the PariPari project, a new

P2P application designed to o�er in a single, modular solution many mainstream

internet (e-mail, DNS, web hosting, �le hosting, IRC chat, etc.) and peer-to-peer

services (�le sharing, distributed storage, VoIP, distributed calculation, etc.) that

will be described in section 1.1 of this chapter. The individual modules (plugins) of

PariPari often have to generate random values at good quality and speed. Although

individual nodes can generate entropy "on their own", PariRandom can improve the

quality of that entropy.

To understand the innovative features of what has been developed, section 1.2

explains the details of the problem of Random Number Generators and the strengths

and weaknesses of current solutions.

Chapter 2 presents our solution, PariRandom, followed by a theoretical analysis.

Chapter 3 describes its implementation as a PariPari plugin followed by an in-

troduction about statistical tests for randomness, the description of a PariRandom

simulator and, �nally, the results obtained by running three di�erent random testing

suites on the data generated by this simulator.

Finally, chapter 4 summarizes our results, analyses their signi�cance and looks

at directions of future work.

1

2 CHAPTER 1. INTRODUCTION AND RELATED WORK

1.1 PariPari

PariPari is a P2P multi-functional application that o�ers all traditional P2P services

(�le-sharing, distributed storage, VoIP,...) along with a number of traditionally

server-based ones (email hosting, IRC chat, web hosting, NTP,...). It is currently

being developed by 60+ students from the University of Padua, but aims at a larger

community of developers as soon as it is o�cially released. It is written in Java, so

that it runs on all Operating Systems that have a Java Virtual Machine installed

without the need to recompile the code. As a drawback, this comes at the cost of

the impossibility to interact with the machine at low levels (e.g. for direct memory

management). Moreover, students at the University of Padova are very familiar

with Java, and this choice has been done taking that into consideration, to quickly

build a larger initial developers base.

1.1.1 Network layout

PariPari is based on a Distributed Hash Table (DHT) named PariDHT. After a

surge of interest in the academic community (e.g. Chord, CAN, Pastry, Kademlia)

recent years have seen DHTs adopted in several applications with a vast public

(e.g. the popular eMule and Azureus �lesharing clients and the JXTA system)

While DHTs can be implemented by many di�erent data structures, virtually all

the mainstream ones (including all the ones we cited above) function according to

a basic scheme that we summarize below.

Roughly speaking, each node in a DHT is assigned a random address in a b-bit

ID space (b is chosen su�ciently large, typically 160 or more, to avoid collisions).

Some form of distance (pseudo-)metric is de�ned on this address space (e.g. the

XOR metric for Kademlia), so that one can partition the space, for any given node,

in the 2b−1 addresses in the �other half� of the network, the 2b−2 addresses in the

same half but in the other quarter, the 2b−3 addresses in the same quarter and the

other eighth, and so on . Each node then keeps contacts with a small number k of

nodes in the other half of the network, k nodes in the other quarter, k in the other

eighth and so on (see Figure 1.1.1). Theoretically k = 1 would su�ce, but in practice

some redundancy is introduced to provide robustness and typically 5 ≤ k ≤ 20 is

used. Of course less than k nodes might be present in some of the smallest regions,

in which case all the nodes in any such region are kept as contacts.

Each resource r (e.g. a �le) is also mapped into the same address space using

a pseudorandom hash of the keyword(s) that will be used to locate it; information

about how to reach it (e.g. the IP of the machine from which it can be accessed) is

stored in the node v(r) closest to it in the address space. To locate v(r) � whether

to retrieve the information on how to access r, or to store it in the �rst place � a

1.1. PARIPARI 3

u’

u

u’’

r
v(r)

Figure 1.1.1: The search structure in a typical DHT.

node u will forward the query to the node u′, among its contacts, closest to r in the

address space. In the worst case, u′ will be in the other half of the network � but

it will certainly be in the same half as r. It can then forward the query to another

node u′′ that will certainly be in the same quarter as r � and so on, until v(r) is

reached in a number of steps with high probability logarithmic in the size of the

network.

1.1.2 Host structure

PariPari hosts are based on a plug-in architecture. Users can decide which plugins

to load, and can load them at runtime. Plugins cannot communicate directly with

each other, or with the outer world. Every request must pass through the Core. For

security reasons and for a better overall performance, disk and network management

is ruled by two inner circle plugins: Storage and Connectivity. From a user's point

of view, this means that malicious plugins could never write on disk (or on Sockets)

without having the user explicitly allowing it to do so. At the same time, a fair

distribution of resources among plugins is guaranteed, improving user experience.

Figure 1.1.2, from [32], shows how communications between plugins residing in

di�erent hosts take place. Not being able to communicate directly with their coun-

terparts, plugins ask to Connectivity modules residing in the same hosts as they do

for Sockets (or Server Sockets, when they need to listen to incoming requests). Sock-

ets are bandwidth-limited, meaning that Connectivity allocates a di�erent amount

of bandwidth to each plugin, allowing cohabitation of bandwidth-eager modules.

4 CHAPTER 1. INTRODUCTION AND RELATED WORK

Figure 1.1.2: Four hypothetical hosts in PariPari. Three communications are por-
trayed as examples. Connection a represents the beginning of a VoIP session between
hosts S and N: the VoIP module of host S asks a Socket to the Connectivity module
running in its same host. Connectivity then opens a Socket with host N, whose
Connectivity module has previously opened a Server Socket for N's VoIP module.
Connection b represents Torrent plugins of hosts E and S communicating with each
other. Connection c represents host N requesting a web content to host E.

1.2. RANDOM NUMBER GENERATION 5

1.2 Random Number Generation

This section explains the theoretical basis of random values and the existing types

of random number generators.

Random numbers are very important in many computational procedures. In

Monte Carlo methods, random numbers permit sampling of the relevant part of an

extremely large space (multi-dimensional space) to determine e.g. the properties of

some phenomenon, like molecular dynamics1. In games, random numbers ensure

a unique and fair (unbiased) experience2. An e�cient randomization is primarily

useful in cryptographic security, e.g. in symmetric and asymmetric keys generation.

Based on the entropy level, the security of every connected application may vary

considerably3. It is then not surprising that Random and Pseudo-Random Number

Generation has attracted a vast interest from mathematicians, statisticians and

physicists.

Within the PariPari project, it becomes important also for other applications,

like the security systems related to the support of the DHT network or, at a lower

level, the extraction of random values from a database.

Subsections 1.2.1 and 1.2.2 respectively investigate the properties of random

bits and of sequences of random bits. Subsection 1.2.3 introduces Pseudo-Random

Numbers Generators (PRNG), used to speed-up the generation of random values

when a fast RNG is not available. Subsection 1.2.4 describes some ways to improve

the entropy quality of a string by reducing its length. Finally, subsections 1.2.5 and

1.2.6 explains the two main problems of Random Number Generators.

1.2.1 What is a random bit?

Mathematically, a single toss of a fair coin has an entropy of one bit. If the coin

is not fair the entropy is lower (if asked to bet on the next outcome, we would

bet preferentially on the most frequent result). In both cases, it's an example of a

Bernulli trial.

A random bit is the outcome of a process whose possible outcomes are 0 and 1

and that has an expected value of ½. This introduces the notion of unbiased bit,

meaning that a bit has the same probability of being 0 or 1.

1An extensive list of Monte Carlo methods application is available in [26].
2A curious attack is the one being carried out from an american group named Cigital (a secu-

rity company) against a Texas Hold'em Poker software, after discovering that the deck shu�ing
algorithm relied on a seed based on the number of seconds passed after midnight.

3An example of all is the problem that has plagued OpenSSL packet for Debian systems until
2008, which relied on a key generator with an initial seed limited to a space counting only 32.768
values, that imposed the regeneration of every keys created so far and the revocation of existing
ones.

6 CHAPTER 1. INTRODUCTION AND RELATED WORK

1.2.2 Multiple random bits

The property of being unbiased (described in previous subsection) becomes insuf-

�cient to characterize a sequence of random bits stated to be random. In fact, we

can produce an unbiased sequence like e.g. 0101010101 by repeating the block 01,

but this sequence is obviously not radom.

We need to introduce the second important notion of independent bits.

A �true random value� (here, value can be intended as a sequence of bits) of

length m is

a value chosen from all possible values with length m (2^m) where

every value has the same probability to be chosen4.

Thus, a True RNG has to

produce a sequence of 0 and 1's that can be combined in subsequences

or blocks representing true random values 5.

This de�nition includes both properties, and represents the goal of every Random

Number Generator.

From a theoretical point of view, there are no natural or arti�cial processes able

to generate a true random sequence (there isn't any way to achieve true randomness).

Instead, from a practical point of view, some natural processes like the atmo-

spheric noise, the brownian motion, the thermal noise, the photoelectric e�ect, etc.

can be considered as sources of true randomness.

A Random Number Generator (RNG) uses one of these non-deterministic sources
6, along with some processing function (i.e., the entropy distillation process), to

produce randomness. Processing functions are explained in subsection 1.2.4.

1.2.3 Pseudo-Random Number Generators

This subsection introduces another important type of Random Number Generator,

called Pseudo-Random Number Generator (PRNG).

4Part of the de�nition contained in [27].
5De�nition taken from Federal Information Processing Standards 140 [30].
6We can note that even RNGs are susceptible to being �pseudo� and must be subjected to

randomness tests as software generators. Ultimately, it seems to be di�cult to di�erentiate true
randomness in physical processes from mere entropy, a lack of knowledge of some aspect or another
of the system. Only by systematically analysing a series of experimental results for �randomness�
one can make a judgement on whether or not the underlying process is truly random, or merely
unpredictable. Note well that unpredictable and random are often used as synonyms, but they are
not really the same thing. A thing may be unpredictable due to entropy � our lack of the data
required to make it predictable. Examples of this sort of randomness abound in classical statistical
mechanics or the theory of deterministic chaos.

1.2. RANDOM NUMBER GENERATION 7

Computers are deterministic, meaning that given an input, they always produce

the same output.

Pseudo-Random Number Generators are used to generate randomness in a de-

terministic environment. A PRNG takes a small input called seed and produces a

long sequence of pseudo-random values that appears to be random to an observer

with a su�ciently limited computational power. In contexts in which unpredictabil-

ity is needed, the seed itself must be random and unpredictable. Hence, by default,

a PRNG should obtain its seeds from the outputs of an RNG; i.e., a PRNG requires

a RNG as a companion.

As we said, outputs of a PRNG are typically deterministic functions of the

seed; i.e., all true randomness is con�ned to seed generation. The deterministic

nature of the process leads to the term �pseudorandom.� Since each element of a

pseudorandom sequence is reproducible from its seed, only the seed needs to be

saved if reproduction or validation of the pseudorandom sequence is required.

Further we can �nd a subclass of PRNG called CSPRNG: Cryptographically

secure PRNG. CSPRNG is a PRNG with properties that make it suitable for an

application in cryptography.

1.2.4 Processing functions

The entropy of a sequence of bits can be improved by using a group of functions called

randomness extractors. A randomness extractor is a function which, when applied

to an entropy source, generates a random output that is shorter, but uniformely

distributed. The goal of this process is to generate a truly random output stream,

which could be considered as being a true random number generator. Anyway, no

single randomness extractor currently exists that has been proven to work when

applied to any type of high-entropy source.

There is another important class of functions called randomness expanders.

These functions are keyed by secret, uniformly random strings, with each function

taking as input any publicly known value and outputting a value indistinguishable

from one distributed uniformly at random. The key can be so short (e.g. of loga-

rithmic length), that one can often eliminate the need for any truly random bits by

enumerating all choices for the seed.

1.2.5 A common problem: Unpredictability

A �rst problem of Random Number Generators is the di�culty to generate uncor-

related values.

Algorithms like Blum Blum Shub ([21]) reduce their security to the known com-

putational di�culty of some computations (e.g. integer factorization). Anyway, as

8 CHAPTER 1. INTRODUCTION AND RELATED WORK

stated in [2], even having a perfect (cryptographically secure) PRNG, it is necessary

to consider physical sources of randomness. Blum ([5]) shows that criptographycally-

secure theory leaves unsolved a fundamental problem: the source for the random

seed. Using a fair source to generate this seed may be crucial because of the danger

that the pseudo-random number generator might amplify any dependence or bias

in the bits of the seed. In fact, Random and pseudorandom numbers generated

for cryptographic applications should be unpredictable, respecting two important

properties:

1. forward unpredictability : if the seed is unknown, the next output number in

the sequence should be unpredictable in spite of any knowledge of previous

random numbers in the sequence;7

2. backward unpredictability : it should not be feasible to determine the seed from

knowledge of any generated values. Note that this is a stronger property than

1: if you can predict the seed you can also predict the sequence of generated

values.

No correlation between a seed and any value generated from that seed should be

evident; each element of the sequence should appear to be the outcome of an inde-

pendent random event whose probability is as close as possible to ½.

A common way to deal with this problem is to change the local seed with a certain

frequency, so that it becomes impossible to gain an amount of values su�cient to

infer useful information about the generator before seed is changed again.

1.2.6 A second common problem: Subtle patterns

Another problem of Random Number Generators is related to the amount of com-

putation needed to unveil non-randomness.

In the context of modern computer, numerical simulations can consume a lot

of e.g. bits and unsigned integers. Running simulations on large compute clusters

can consume more than 1020 of uniform deviates in a single extended computation

over the course of months to years. Even generators that appear to pass many

tests sampling millions of random numbers may raise problems in these situations.

Many of them are, in fact, state-periodic, repeating a single sequence after a certain

number of returns (very short for some older generators). Then, if the simulation

asks more random numbers than the period, it will reproduce same sample sequence

7An article of June 9, 2011 from Intel ([9]) describes Bull Mountain: a Digital Random Number
Generator (DRNG) hardware implementation in new Intel® 64 Architecture. One result of Intel
studies is that in MT19937 (commonly used variant of Mersenne Twister, an algorithm that pro-
vides fast generation of very high-quality pseudorandom numbers), observing 624 iterates allows
one to predict all future iterates.

1.2. RANDOM NUMBER GENERATION 9

without generating the independent, identically distributed samples that may be

needed.

A related issue is associated with the dimensionality of the correlation. Some

generators produce random values subtly patterned in a space of high dimensionality.

Some tests can reveal non uniformity by distributing random coordinate (N-tuples)

in an N dimensional space. A drawback of this approach is that the space must be

�lled with a certain density, that is related to the number of dimensions. If this

number is elevated, the computation needed is too heavy.

10 CHAPTER 1. INTRODUCTION AND RELATED WORK

Chapter 2

PariRandom: Theoretical Analysis

This Chapter provides an abstract description of PariRandom, and its theoretical

analysis.

Section 2.1 describes PariRandom algorithm: the interactions between nodes of

the network and how local seeds are updated.

Section 2.2 analyses the minimum entropy quality that can be reached in the

worst case (if the network is completely compromised).

Section 2.3 describes a mathematical approach to evaluate the improvement of

local entropy quality for di�erent network models.

Sections 2.4 and 2.5 summarizes the mathematical and statistical instruments

used in section 2.3.

Finally, Section 2.6 lists the proofs of theorems contained in section 2.3.

11

12 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

Figure 2.1.1: PariRandom Algorithm: node A starting a seed-update process.

2.1 Algorithm

PariRandom improves a generic pseudorandom generation algorithm (RND) relying

on a network of N nodes.

Each node stores two variables initialized with two di�erent values generated by

a cryptographically secure pseudo-random number generator.

These variables (v1 and v2) are seeds for two local randomizers based on RND

(RND1 and RND2). RND1 is used to generate random values for normal usage (by

user or other applications). Each time a value is generated by RND1 a local counter

is incremented. When this counter reaches a threshold value for a certain node A,

the node starts a seed-update process, explained in �gure 2.1.1. A asks to k other

nodes1 a random value. Those k nodes sends back k random values (r1, r2,. . . rk)

generated using RND2. When A receives this values it computes

z = f(r1, r2, . . . rk) (2.1.1)

1These nodes can be the next k nodes that communicates with A, so that we can implement
a piggybacking technique (adding random values to the end of transmitted messages). We can
also randomly choose them from the neighbourhood of the network. In a DHT network a valuable
choice would be to contact a set of k nodes that covers the network space.

2.1. ALGORITHM 13

The compression function2 f is an exclusive disjunction (XOR - see 2.2) of input

values with a little variation to make it noncommutative:

z = f(r1, r2, . . . rk) = shift(r1, 1)⊕ shift(r2, 2) . . . shift(rk, k) (2.1.2)

where shift is de�ned as

x = b0 ◦ b1 . . . br; shift(x, t) = br−t−1 ◦ br−t, . . . br ◦ b0 ◦ b1 . . . br−t (2.1.3)

and r is the lenght of x in bit and bi is the bit in the position i of x (e.g.: 00100→
10000 (t = 2), 01001→ 01010 (t = 3)).

Shift is used in some genetic algorithms ([11]) and should be able to catch network

entropy (order of values received from other nodes).

Finally A updates its two seeds accordingly to

v1′ = g(v1, l1, z) (2.1.4)

v2′ = g(v2, l2, z) (2.1.5)

where l1 and l2 are two di�erent values respectively generated by RND1 and RND2

and g represents a compression function3 that is the XOR of three values:

g(x, y, z) = x⊕ y ⊕ z (2.1.6)

2A compression function is a function that transform �xed length inputs to an output of the
same size of one of the inputs ([10]).

3Some algorithms updates the local seed by generating a random value with a third party
generator (/etc/rand or a physical generator). In this case we can choose to generate l1 and l2 in
the same way.

14 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

2.2 Minimum entropy level

This section proves a cornerstone of our algorithm: when applied to an existing

PRNG, PariRandom can only improve its security and performance.

There is no possibility for PariRandom to decrease the quality of the PRNG

that is applied upon it. In this sense we can think of PariRandom as a framework

that can be used to improve existing randomization algorithms in any software that

depends on P2P networks without any drawback except for a little increase of tra�c

that can be lowered through piggybacking technique.

The base of our algorithm is the seed-update process. When we apply formulas

2.1.4 and 2.1.5 we update the local seed of both local PRNG. Usually a PRNG

periodically updates the local seed (s) according to

s′ = h(s, l) (2.2.1)

where l is a random value generated by the PRNG.

As we can see the di�erence between formulas 2.1.1,2.1.4 and 2.2.1 stands in

the value z, that represents the output of compress function f and is XOR'd with

the other input values. Exclusive OR has a very important property, that makes it

widely used in entropy generation �eld4:

[..] as long as at least one string is chosen uniformly at random and

the other numbers are independent of it, x is distributed uniformly at

random. [1]

This property recalls the notion of independency:

A sequence of random variables X1, X2, ... are statistically indepen-

dent if the following is satis�ed for each of variables Xi: the variables

apart from Xi do not provide any useful information for predicting the

value of Xi.

Using this property we can prove that at any time during the execution the entropy

of seed s1 updated with PariRandom algorithm is equal or higher than if the seed

(s2) was updated with a normal local seed-update algorithm (2.2.1).

This proof is based on other two considerations:

1. Each newseed generated is based on last seed:

4This quotes comes from [3] and is referenced by [2] that in QRND algorithm computes a XOR
of multiple uncorrelated bit strings to output a �nal string where each i-bit is the XOR'd product
of all i-bits of initial strings and that has an entropy that is equal or higher than the maximal
entropy of initial strings. An important document that explores the risks of �exclusive or� with
correlated values is [6], that will be used as an input for Section 2.3.

2.2. MINIMUM ENTROPY LEVEL 15

newseed ≈ currentseed⊕ oldseed (2.2.2)

In this way if we go back to the beginning, we see that the last newseed is the

result of an exclusive or from an oldseed that has been generated locally and

does not derive from the network (local starting seed).

2. Other nodes has no direct (or even indirect in RND1) knowledge of local seeds.

This makes it impossible for malicious nodes to communicate values that can

break XOR property due to any correlation between them and local seeds.

We can now demonstrate the following theorem:

PariRandom minimum entropy quality 2.2.1. PRNG P is applied upon Pari-

Random. After any seed-update process performed by PariRandom, the entropy qual-

ity of the newseed is equal or higher than the entropy that can be obtained by P

without the use of PariRandom.

Proof. Proof by induction:

1. When we start PariRandom algorithm, we set s1 by generating a random seed

with a third party generator, in the same way used by most PRNGs. The

entropy is obviously equal.

2. Assume that after n updates s1
n has an entropy that is equal or higher than

s2
n.

3. During update n+1, s1
n+1 is the result of an exclusive or between s2

n+1 and

z (the di�erence between eq. 2.1.4 and 2.2.1).

sn+1
1 = sn+1

2 ⊕ z (2.2.3)

z is the output of compression function f. Using the XOR property cited

before, we can state that if z is completely uncorrelated with all other inputs

of the g compression function, the entropy gained by the newseed can't be

lower using PariRandom algorithm.

As described in 2.1, RND1 generates values for local use only. This means that

there is no way for malicious nodes to know the local seed s1
n+1. Value z will

necessarily be uncorrelated with both the local seed and the value generated

by the local seed (respectively v1 and l1 in 2.1.4).

If the entropy gain is not lower, and the entropy in the previous step was not lower,

the sum will not be lower.

16 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

The unpredictability problem (see 1.2.5) has been partially solved by using two

di�erent random generators. This means that the amount of values generated by

RND1 is the same with or without PariRandom.

The worst attack against a PRNG running on PariRandom compared to the

simple PRNGs will involve a complete knowledge of v2 due to the big amount of

random values generated by RND2 and shared across the network. In this scenario,

the quality will at least be the same.

One way to decrease the chance of revealing information regarding v2 is to use

a hashing algorithm before distributing values that are locally generated. This is

computationally expensive but widely used in the literature5. This has not been

implemented yet, due to the need to keep algorithm as simple as possible while

testing its quality. Another element that improves security is the shift function, as

it may be di�cult for malicious nodes to forecast the order in which their messages

will be received.

5In particular, Viega in [7] sees in hashing a tool to accumulate entropy and carefully estimates
computational weight, while the already cited [1] uses hashing for our same scope: �For the random
number generation, we need a bit commitment scheme h, i.e., a scheme where h(x) does not reveal
anything about x. In practice, a cryptographic hash function might be su�cient for h so that the
protocols below can be easily implemented�.

2.3. ENTROPY GAIN 17

Figure 2.3.1: The Davies�Meyer one-way compression function.

2.3 Entropy gain

This section investigates the entropy quality that can be achieved by PariRandom

if some nodes of the network are not malicious. In the �rst part, the algorithm is

modelled to facilitate its analysis. The following part presents the theorems that

describe PariRandom statistical properties from a theoretical point of view.

If the network is not completely compromised, PariRandom obtains entropy from

three di�erent sources:

� other nodes, particularly from their PRNG. An important observation is that

some of them may have a real random entropy generator that shares part of

its entropy to the network6.

� Network structure (that in�uence contacted nodes), especially for interesting

structures as KAD (used in PariPari).

� Network communications, even if some improvements can be done as actually

this entropy is accumulated only from the shift function (order of received

values), and there are better ways to extract randomness from latency delays

and packet content.

To understand how each source in�uences the quality of the local seed we have to

model the algorithm.

With some approximation the seed-update process can be seen as a single Davies�Meyer

one-way compression function (2.3.1):

6This is similar to other algorithms (like PariSync) where some nodes have a higher quality.
The advantage here is that there is no need of authoritative systems to certi�cate them.

18 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

The Davies�Meyer single-block-length one-way compression function

feeds each block of the message (mi) as the key to a block cipher. It

feeds the previous hash value (Hi-1) as the plaintext to be encrypted.

The output ciphertext is then also XORed with the previous hash value

(Hi-1) to produce the next hash value (Hi). In the �rst round when there

is no previous hash value it uses a constant pre-speci�ed initial value

(H0).
7

In fact, each seed-update process consists of some consecutive XOR operations on

the local seed.

On a higher view, all these update processes can be seen as a whole Davies-

Meyer compression function operated on the initialseed and some inputs coming

from nodes all around the network.

In [6] Robert Davies is interested in the e�ectiveness of the XOR operation to

reduce bias (the deviation of the expectation from ½). Bias is the �rst indicator of

the quality of a PRNG, and is easy to use and esaminate.

A RNG that has no bias and whose generated bits are independent, is a perfect

RNG.

Davies connects the notion of independency (see 2.2) to statistical analysis, par-

ticularly: in case of pairs of random bits �correlation = zero� and �independence� are

equivalent. However when more than two random bits are involved, independence

implies zero correlation but not vice versa.

Example: consider X, Y and X⊕Y where X and Y are random bits with expected

value ½, Each pair X,Y and X⊕Y are uncorrelated with each other, but X,Y and

X⊕Y are not independent since given any two of these variables one can calculate

the third.

A �rst result of Davies work is that XOR operation always reduce the bias when

the component bits are independent.

In our algorithm, this means that if the are some good nodes, the quality of the

seed improves. By using previous consideration 2 (par. 1) we can also state that at

least the �rst time input values were independent (�rst XOR with initialseed), so

bias can only be improved.

To model the entropy gain of our algorithm we will need some considerations:

� we will assume that di�erent good nodes has independent initialseeds. This

comes from initial seeds being generated by local RNG depending on entropy

collected from running processes, network, device drivers or memory opera-

tions.8

7Quote from [10].
8A commonly used RNG for seeding in Unix-like operating systems is /dev/random. More

information is available in [17].

2.3. ENTROPY GAIN 19

Figure 2.3.2: Node A updating seed without PariRandom algorithm.

Figure 2.3.3: Node A updating seed with PariRandom algorithm.

� In each node, every generated value has a correlation p with its current seed.

� Every node A contacts nodes N1,N2,N3,..Nn. Some of these nodes are mali-

cious, we can assume from 1 to k (XOR is commutative). Remaining n to k

nodes are good nodes.

� RND (bit stream) has an E(X)=n very close to ½. The generator used for

initialseed has an E(Y)=m very close to ½.

Following results come from a statistical analysis based on calculation tricks

described in section 2.5. To avoid breaking the �ow of the Chapter, the proof of

theorem 2.3.1 (and of all subsequent theorems) can be found at the end of this

Chapter in Section 2.6.

Without PariRandom (2.3.2) we can prove following theorem:

20 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

Expectation of the seed's �rst bit after a seed-update without PariRan-

dom (model described in Figure 2.3.2). 2.3.1.

E(newseed) = E(oldseed⊕ v) (2.3.1)

=
1

2
− 2(µ− 1

2
)(ν − 1

2
)− 2p

√
µ(1− µ)ν(1− ν)

≈
1

2
− 2(µ− 1

2
)(ν − 1

2
)− 1

2
p

(assuming m,n very close to ½).

Correlation between oldseed and newseed �rst bit is de�ned by theorem:

Correlation between the seed's �rst bit before and after a seed-update

without PariRandom (model described in Figure 2.3.2). 2.3.1.

corr(oldseed, newseed) =
cov(oldseed, oldseed⊕ v)√
var(oldseed)var(oldseed⊕ v)

(2.3.2)

=
p
√
µ(1− µ)ν(1− ν)(2µ− 1) + µ2(2ν − 1) + µ(1− 2ν)√

var(oldseed)var(oldseed⊕ v)

With PariRandom (2.3.3), if we have two good nodes sharing values, expectation

and correlations are de�ned by following theorems:

Expectation of the seed's �rst bit after a seed-update with PariRandom

(model described in Figure 2.3.3). 2.3.1.

E(newseed) = E(oldseed⊕ v ⊕ v′ ⊕ v′′) (2.3.3)

=
1

2
+

[
−2(µ− 1

2
)(ν − 1

2
)− 2p

√
µ(1− µ)ν(1− ν)

]
(1− 2ν ′)(1− 2ν ′′)

Correlation between the seed's �rst bit before and after a seed-update

without PariRandom (model described in Figure 2.3.3). 2.3.1.

corr(oldseed, newseed) =
cov(oldseed, oldseed⊕ v ⊕ v′ ⊕ v′′)√
var(oldseed)var(oldseed⊕ v ⊕ v′ ⊕ v′′)

(2.3.4)

=

[
p
√
µ(1− µ)ν(1− ν)(2µ− 1)

+µ2(2ν − 1) + µ(1− 2ν)

]
(2ν ′ − 1)(2ν ′′ − 1)√

var(oldseed)var(oldseed⊕ v ⊕ v′ ⊕ v′′)

As proved by 2.3.1 the resulting bias of 2.3.1 is multiplied by a factor (1−2x) for

each external random received where x, being a bit expectation, must be between 0

and 1. So we have

−1 ≤ (1− 2x) ≤ 1

2.3. ENTROPY GAIN 21

Figure 2.3.4: Two seed-update processes with PariRandom algorithm. One node
has been contacted two times.

that means that newseed �rst bit has an equal or lower bias when using Pari-

Random algorithm.

We see that the correlation derived by 2.3.1 is the correlation derived by 2.3.1

multiplied by a factor:

(2ν ′ − 1)(2ν ′′ − 1)√
var(oldseed⊕ v ⊕ v′ ⊕ v′′)

·
√
var(oldseed⊕ v)

1
(2.3.5)

This factor has a value between -1 and 1, meaning that

|corr(o, o⊕ v ⊕ v′ ⊕ v′′)| ≤ |corr(o, o⊕ v)|

so the newseed has an equal or lower correlation with oldseed when using Pari-

Random algorithm.

We can go further by modelling 2 seed-update processes using a node to get two

random values, one for each seed update (2.3.4).

In this case, the bias using PariRandom algorithm is the bias without the algo-

rithm multiplied by a factor

− 1 ≤ [(1− 2v′)(1− 2v′′′′′) + 4q] (1− 2v′′)(1− 2v′′′′) ≤ 1 (2.3.6)

and the correlation ratio becomes:

[(1− 2v′)(1− 2v′′′′′) + 4q] (1− 2v′′)(1− 2v′′′′)√
var(oldseed⊕ v ⊕ v′ ⊕ v′′ ⊕ v′′′ ⊕ v′′′′ ⊕ v′′′′′)

·
√
var(oldseed⊕ v′ ⊕ v′′′)

1
(2.3.7)

that also has a value between -1 and 1, meaning that

22 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

|corr(o, o⊕ v ⊕ v′ ⊕ v′′ ⊕ v′′′ ⊕ v′′′′ ⊕ v′′′′′′)| ≤ |corr(o, o⊕ v ⊕ v′′′)|

Above equations explain how bias and correlation of the �rst seed bit change

with and without PariRandom. We can perform same computations for following

bits, and particularly we can examine how the correlation between the 1st seed bit

and the 2nd one changes using PariRandom during seed update.

Ratio between the correlation of the �rst bit before seed update and

the second bit after seed update, with and without PariRandom, (model

described in Figure 2.3.4). 2.3.1.

[(1− 2v′2)(1− 2v′′′′′2) + 4q] (1− 2v′′2)(1− 2v′′′′2)√
var(oldseed2 ⊕ v2 ⊕ v′2 ⊕ v′′2 ⊕ v′′′2 ⊕ v′′′′2 ⊕ v′′′′′2)

·
√
var(oldseed2 ⊕ v′2 ⊕ v′′′2)

1

(2.3.8)

The ratio between correlations described in theorem 2.3.1 also has a value be-

tween -1 and 1, meaning that

|corr(o1, o2 ⊕ v2 ⊕ v′2 ⊕ v′′2 ⊕ v′′′2 ⊕ v′′′′2 ⊕ v′′′′′′2)| ≤ |corr(o1, o2 ⊕ v2 ⊕ v′′′2)|

We could go further computing unparameterized values with di�erent models,

anyway this is beyond the scope of this study. Those calculations would need to

introduce more parameters (covariances, ecc) and all the instruments needed to

perform those computations has been presented. Some useful equations are available

in section 2.4.

2.4. STATISTICAL BASIS 23

2.4 Statistical basis

Symbol ⊕ in following proofs is used to denote the exclusive-or operation. So X ⊕
Y = 1 if just one of X and Y is equal to 1; otherwise X ⊕ Y = 0.

The XOR operation is commutative (X ⊕ Y = Y ⊕ X) and associative (X ⊕
(Y ⊕ Z) = (X ⊕ Y)⊕ Z).

Some equations used to compute expected value or mean value (E(X)), variance

(var(X)), covariance (cov(X,Y)) and correlation (corr(X,Y)).

� var(X) = E[{X − E(X)}2]

� cov(X, Y) = E[{X − E(X)}{Y − E[Y]}] = E(XY)− E(X)E(Y)

� corr(X, Y) = cov(X,Y)√
var(X)var(Y)

� var(XY) = E[X2Y 2]−E2[XY] = var(X)var(Y)+E2(Y)var(X)+E2(X)var(Y)

� E(XY Z) = E(X)E(Y)E(Z)+E(X)cov(Y, Z)+E(Y)cov(X,Z)+E(Z)cov(X, Y)+

E{[X − E(X)][Y − E(Y)][Z − E(Z)]}

� E
[∏N

s=1Xs

]
=
∏N

s=1E [Xs] + cov
(∏N−1

s=1 Xs, Xn

)
99K +

∑N−2
s=1

[∏s
k=1E[XN−k+1]cov

(∏N−s−1
m=1 Xm, XN−s

)]
� deriving from previous formula - E(XY Z) = E(X)E(Y)E(Z)+ cov(XY,Z)+

E(Z)cov(X, Y)

� cov(XY,UV) = E(X)E(U)cov(Y, V)+E(X)E(V)cov(Y, U)+E(Y)E(U)cov(X, V)

99K +E(Y)E(V)cov(X,U) + E[D(X)D(Y)D(U)D(V)]

99K +E(X)E[D(Y)D(U)D(V)] + E(Y)E[D(X)D(U)D(V)]

99K +E(U)E[D(X)D(Y)D(V)] + E(V)E[D(X)D(Y)D(U)]

99K −cov(X, Y)cov(U, V)

where D(X) = x− E(X)

24 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

2.5 Analysing XOR operation

Suppose X can take values 0 or 1.

Let a(X) = 1− 2X. So X = {1− a(X)}/2 and a(X) takes the values 1 and -1

corresponding to X's 0 and 1. Then

a(X ⊕ Y) = a(X)a(Y)

The usefulness of this is that we know how to manipulate multiplication in prob-

ability calculations but doing XOR calculations directly is awkward and unfamiliar.

Also

� E{a(X)} = 1− 2E(X)

� var{a(X)} = 4var(X)

� cov{a(X), a(Y)} = 4cov(X, Y)

� corr{a(X), a(Y)} = corr(X, Y)

so we can transform expectations and variances between X and a(X).

Also note that a(X)2 = 1.

A useful considerations is that

� −1 ≤ E{
∏
∀i a(Xi)} ≤ 1 as −1 ≤ a(Xi) ≤ 1 for every Xi.

2.6. THEOREMS PROOFS 25

2.6 Theorems Proofs

This section presents a list of proofs for the theorems presented in section 2.3.

Proof 2.3.1

Suppose o (=oldseed) and v have covariance c.

E(newseed) = E(oldseed⊕ v)

=
1

2
− 1

2
E {a(o⊕ v)}

=
1

2
− 1

2
E {a(o)a(v)}

=
1

2
− 1

2
[E {a(o)}E {a(v)}+ 4c]

=
1

2
− 1

2
(1− 2µ)(1− 2ν)− 2c

=
1

2
− 2(µ− 1

2
)(ν − 1

2
)− 2c

=
1

2
− 2(µ− 1

2
)(ν − 1

2
)− 2p

√
µ(1− µ)ν(1− ν)

Proof 2.3.2

Suppose o (=oldseed) and v have covariance c.

corr(oldseed, oldseed⊕ v) =
cov(oldseed, oldseed⊕ v)√
var(oldseed)var(oldseed⊕ v)

=
1
4
cov {a(o), a(o⊕ v)}√
var(o)var(o⊕ v)

=
1
4
cov {a(o), a(o)a(v)}√
var(o)var(o⊕ v)

=

1
4

[
E {a(o)a(o)a(v)} − E {a(o)}E {a(o)a(v)}

]
√
var(o)var(o⊕ v)

=
1
4

[E {a(v)} − E {a(o)} [E {a(o)}E {a(v)}+ 4c]]√
var(o)var(o⊕ v)

=
1
4

[1− 2ν − (1− 2µ) [(1− 2µ)(1− 2ν) + 4c]]√
var(o)var(o⊕ v)

=
c(2µ− 1) + µ2(2v − 1) + µ(1− 2v)√

var(oldseed)var(oldseed⊕ v)

=
p
√
µ(1− µ)ν(1− ν)(2µ− 1) + µ2(2v − 1) + µ(1− 2v)√

var(oldseed)var(oldseed⊕ v)

26 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

Proof 2.3.3

Suppose o (=oldseed) and v have covariance c.

E(newseed) = E(oldseed⊕ v ⊕ v′ ⊕ v′′)

=
1

2
− 1

2
E {a(o⊕ v ⊕ v′ ⊕ v′′)}

=
1

2
− 1

2
E {a(o)a(v)a(v′)a(v′′)}

=
1

2
− 1

2
[E {a(o)}E {a(v)}+ 4c]E {a(v′)}E {a(v′′)}

=
1

2
− 1

2
[(1− 2µ)(1− 2ν) + 4c] (1− 2ν ′)(1− 2ν ′′)

=
1

2
+

[
−2(µ− 1

2
)(ν − 1

2
)− 2c

]
(1− 2ν ′)(1− 2ν ′′)

=
1

2
+

[
−2(µ− 1

2
)(ν − 1

2
)− 2p

√
µ(1− µ)ν(1− ν)

]
(1− 2ν ′)(1− 2ν ′′)

Proof 2.3.4

Suppose o (=oldseed) and v have covariance c.

2.6. THEOREMS PROOFS 27

corr(o, o⊕ v ⊕ v′ ⊕ v′′) =
cov(oldseed, oldseed⊕ v ⊕ v′ ⊕ v′′)√
var(oldseed)var(oldseed⊕ v ⊕ v′ ⊕ v′′)

=
1
4
cov {a(o), a(o⊕ v ⊕ v′ ⊕ v′′)}√
var(o)var(o⊕ v ⊕ v′ ⊕ v′′)

=
1
4
cov {a(o), a(o)a(v)a(v′)a(v′′)}√
var(o)var(o⊕ v ⊕ v′ ⊕ v′′)

=

1
4

[
E {a(o)a(o)a(v)a(v′)a(v′′)}

−E {a(o)}E {a(o)a(v)a(v′)a(v′′)}

]
√
var(o)var(o⊕ v ⊕ v′ ⊕ v′′)

=

1
4

[
E {a(v)}E {a(v′)}E {a(v′′)}

−E {a(o)} [E {a(o)}E {a(v)}+ 4c]E {a(v′)}E {a(v′′)}

]
√
var(o)var(o⊕ v ⊕ v′ ⊕ v′′)

=

1
4

[
(1− 2ν)(1− 2ν ′)(1− 2ν ′′)

−(1− 2µ) [(1− 2µ)(1− 2ν) + 4c] (1− 2ν ′)(1− 2ν ′′)

]
√
var(o)var(o⊕ v ⊕ v′ ⊕ v′′)

=
[c(2µ− 1) + µ2(2ν − 1) + µ(1− 2ν)] (2ν ′ − 1)(2ν ′′ − 1)√

var(oldseed)var(oldseed⊕ v ⊕ v′ ⊕ v′′)

=

[
p
√
µ(1− µ)ν(1− ν)(2µ− 1) + µ2(2ν − 1) + µ(1− 2ν)

]
(2ν ′ − 1)(2ν ′′ − 1)√

var(oldseed)var(oldseed⊕ v ⊕ v′ ⊕ v′′)

Proof 2.3.5

corr(o, o⊕ v ⊕ v′ ⊕ v′′)
corr(o, o⊕ v)

=
[E {a(v′)}E {a(v′′)}]

√
var(o⊕ v)√

var(o⊕ v ⊕ v′ ⊕ v′′)

=
[E {a(v′)}E {a(v′′)}]

√[
E
{

[a(o)a(v)]2
}
− E2 {a(o)a(v)}

]√
E
{

[a(o)a(v)a(v′)a(v′′)]2
}
− E2 {a(o)a(v)a(v′)a(v′′)}

=
[E {a(v′)}E {a(v′′)}]

√[
E
{

[a(o)a(v)]2
}
− E2 {a(o)a(v)}

]√
E
{

[a(o)a(v)]2
}
E
{

[a(v′)a(v′′)]2
}
− E2 {a(o)a(v)}E2 {a(v′)a(v′′)}

=
[E {a(v′)}E {a(v′′)}]

√
1−X√

1−XY

where

0 ≤ X = E2 {a(o)a(v)} ≤ 1

28 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

0 ≤ Y = E2 {a(v′)a(v′′)} ≤ 1

and

0 ≤
√

1−X√
1−XY

≤ 1,−1 ≤ [E {a(v′)}E {a(v′′)}] ≤ 1

obtaining

−1 ≤ corr(o, o⊕ v ⊕ v′ ⊕ v′′)
corr(o, o⊕ v)

≤ 1

Proof 2.3.6

Without PariRandom we have:

E(oldseed⊕ v ⊕ v′′′) =
1

2
− 1

2
E {a(o)a(v)a(v′′′)}

While with PariRandom we have:

E(oldseed⊕ v ⊕ v′ ⊕ v′′ ⊕ v′′′ ⊕ v′′′′ ⊕ v′′′′′) =
1

2
− 1

2

[
E {a(o)a(v)a(v′′′)}E {a(v′)a(v′′′′′)}

E {a(v′′)}E {a(v′′′′)}

]

Obtaining the bias (|E(X)− 1
2
|) di�erence factor:

E {a(v′)a(v′′′′′)}E {a(v′′)}E {a(v′′′′)}

where every factor E(X) has a value between -1 and 1 and:

E {a(v′)a(v′′′′′)}E {a(v′′)}E {a(v′′′′)} = [(1− 2v′)(1− 2v′′′′′) + 4q] (1−2v′′)(1−2v′′′′)

2.6. THEOREMS PROOFS 29

Proof 2.3.7

corr

(
o,

o⊕ v ⊕ v′ ⊕ v′′

⊕v′′′ ⊕ v′′′′ ⊕ v′′′′′

)
corr(o, o⊕ v ⊕ v′′′)

=
[E {a(v′′)}E {a(v′′′′)}E {a(v′)a(v′′′′′)}]

√
var(o⊕ v ⊕ v′′′)√

var(o⊕ v ⊕ v′ ⊕ v′′ ⊕ v′′′ ⊕ v′′′′ ⊕ v′′′′′)

=

[E {a(v′′)}E {a(v′′′′)}E {a(v′)a(v′′′′′)}]√[
E
{

[a(o)a(v)a(v′′′)]2
}
− E2 {a(o)a(v)a(v′′′)}

]√√√√√E
{

[a(o)a(v)a(v′)a(v′′)a(v′′′)a(v′′′′)a(v′′′′′)]
2
}

−E2 {a(o)a(v)a(v′)a(v′′)a(v′′′)a(v′′′′)a(v′′′′′)}

=

[E {a(v′′)}E {a(v′′′′)}E {a(v′)a(v′′′′′)}]√[
E
{

[a(o)a(v)a(v′′′)]2
}
− E2 {a(o)a(v)a(v′′′)}

]√√√√√E
{

[a(o)a(v)a(v′′′)]
2
}
E
{

[a(v′)a(v′′)a(v′′′′)a(v′′′′′)]
2
}

−E2 {a(o)a(v)a(v′′′)}E2 {a(v′)a(v′′)a(v′′′′)a(v′′′′′)}

=
[E {a(v′′)}E {a(v′′′′)}E {a(v′)a(v′′′′′)}]

√
1−X√

1−XY

where

0 ≤ X = E2 {a(o)a(v)a(v′′′)} ≤ 1

0 ≤ Y = E2 {a(v′)a(v′′)a(v′′′′)a(v′′′′′)} ≤ 1

and

0 ≤
√

1−X√
1−XY

≤ 1,−1 ≤ [E {a(v′′)}E {a(v′′′′)}E {a(v′)a(v′′′′′)}] ≤ 1

obtaining

−1 ≤ corr(o, o⊕ v ⊕ v′ ⊕ v′′ ⊕ v′′′ ⊕ v′′′′ ⊕ v′′′′′)
corr(o, o⊕ v ⊕ v′′′)

≤ 1

Proof 2.3.8

Proceeding similarly to 2.6:

30 CHAPTER 2. PARIRANDOM: THEORETICAL ANALYSIS

corr

(
o1,

o2 ⊕ v2 ⊕ v′2 ⊕ v′′2
⊕v′′′2 ⊕ v′′′′2 ⊕ v′′′′′2

)
corr(o1, o2 ⊕ v2 ⊕ v′′′2)

=
[E {a(v′′2)}E {a(v′′′′2)}E {a(v′2)a(v′′′′′2)}]

√
1−X√

1−XY

where

0 ≤ X = E2 {a(o2)a(v2)a(v′′′2)} ≤ 1

0 ≤ Y = E2 {a(v′2)a(v′′2)a(v′′′′2)a(v′′′′′2)} ≤ 1

and

0 ≤
√

1−X√
1−XY

≤ 1,−1 ≤ [E {a(v′′2)}E {a(v′′′′2)}E {a(v′2)a(v′′′′′2)}] ≤ 1

obtaining

−1 ≤ corr(o1, o2 ⊕ v2 ⊕ v′2 ⊕ v′′2 ⊕ v′′′2 ⊕ v′′′′2 ⊕ v′′′′′2)

corr(o1, o2 ⊕ v2 ⊕ v′′′2)
≤ 1

Chapter 3

PariRandom: Development and

Testing

While the theoretical analysis in section 2.3 provides an accurate way to study

algorithm �aws and capabilities, understanding the performance of PariRandom on

a large network using that approach becomes unfeasible, as equations size grows

exponentially with the number of connected nodes.

Section 3.1 describes the implementation of PariRandom as a plugin for PariPari.

After the spread of PariPari, this will allow to test it in a large real network. Until

this time, theoretical analysis have been integrated with practical tests on a large

amount of values generated using a simulator.

Sections 3.2 and 3.3 respectively describes the ability of statistical tests to eval-

uate entropy quality for a given sequence and some of these tests.

Section 3.4 explains which testing suites has been used to perform this tests.

Sections 3.5 and 3.6 summarize the development and the implementation of the

simulator used to produce tested sequences.

Finally, section 3.7 exhibits and reasons over the results obtained by running

testing suites over the data produced by PariRandom simulator.

31

32 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

3.1 PariRandom implementation

This section describes the structure of the library implementing PariRandom.

The PariRandom Library (written in JAVA�) has been designed to work both

as a standard library or as a PariPari plugin.

First of all, a main PariRandom class is used to start two di�erent threads:

� PariRandomInternalServerThread: answers to requests performed lo-

cally by other applications and/or other PariPari plugins;

� PariRandomExternalServerThread: is responsible of sharing the local

entropy with the network.

Both these threads are represented by interfaces. In this way, it that can be used to

easily deploy a customization of existing standard implementations. For example,

a class implementing PariRandomInternalServerThread may automatically

place the entropy generated by PariRandom in the kernels pool.

Standard PariRandomInternalServerThread implementation listen to mes-

sages asking for a random number generator and replies with an istance of the class

PariRandomNumberGenerator.

PariRandomNumberGenerator extends java.util.Random and mantains 2

di�erent local seeds (the normal Random seed and another seed called networkSeed).

Every time an application calls the next() method of this class (which generates the

next pseudorandom value and is used by all other methods, like nextByes, nextLong,

etc.) a static counter is incremented. If this counter reaches a certain limit, Pari-

RandomNumberGenerator starts a thread called PariRandomSeedUpdate

that is responsible of the seed-update process.

After receiving a list of other nodes running PariRandom from the PariRan-

domNetwork class, PariRandomSeedUpdate performs following operations:

� asks a random value to every node of the list;

� XOR every received value using the shift function de�ned in section 2.1;

� XOR obtained value with a new random value

(PariRandomNumberGenerator.nextLong()) and with the last seed

(PariRandomNumberGenerator.getSeed());

� set this value as the new seed of PariRandomNumberGenerator (Pari-

RandomNumberGenerator.setSeed()).

This procedure is repeated to update networkSeed.

3.1. PARIRANDOM IMPLEMENTATION 33

PariRandomNetwork is an abstract class containing a method (getNeigh-

bours()) used to retrieve a list of those nodes that can be contacted by PariRan-

domSeedUpdate. The current implementation of this abstract class is PariRan-

domNetworkBucket that contains a public Vector variable where the application

running PariRandom has to keep an updated list of the addresses of reachable nodes

running PariRandom (and/or a part of them, as used in PariPari due to the DHT

structure).

PariRandomExternalServerThread listens for requests of random values

and calls PariRandomNumberGenerator.getNetworkLong() to generate the re-

sponse. This method generates a random value using the networkSeed.

Finally, class PariSyncSettings is used to de�ne the main parameters of Pari-

Random, while ensuring that these parameters are supported by other nodes in the

network using this library. Important parameters of this class are:

� the number of random values generated by PariRandomNumberGenera-

tor before starting a seed-update process;

� an alternative class to java.util.Random to be extended by PariRandom-

NumberGenerator. In this way PariRandom may improve the quality of

a custom pseudo-random generation algorithm.

PariSyncSettings is also used to de�ne the way to interact with the network. In

fact PariRandom libraries contains four interfaces (PariRandomPacket, Pari-

RandomPiggyback, PariRandomSocket, PariRandomSocketAddress) im-

plemented using standard Java classes (PariRandomPiggyback is used to extend

PariRandomPacket) that can be customized to work in di�erent contexts, e.g. with

JXTA1.

1JXTA (Juxtapose) is an open source peer-to-peer protocol speci�cation begun by Sun Mi-
crosystems in 2001. The JXTA protocols are de�ned as a set of XML messages which allow any
device connected to a network to exchange messages and collaborate independently of the underly-
ing network topology. As JXTA is based upon a set of open XML protocols, it can be implemented
in any modern computer language. JXTA peers create a virtual overlay network which allows a
peer to interact with other peers even when some of the peers and resources are behind �rewalls
and NATs or use di�erent network transports.[28]

34 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

3.2 Testing approaches

This section explains existing approaches for statistical testing of random sequences

and their validity, that is the ability of these tests to e�ectively evaluate the entropy

of the generator that produced those sequences.

An initial test is the simple visual analysis, by creating an image with produced

values. Humans are really good at spotting patterns. One example is shown in

�gure 3.2.12.

Figure 3.2.1: Visualisation of Random.org compared with PHP rand() on Microsoft
Windows.

Randomness is a probabilistic property; that is, the properties of a random

sequence can be characterized and described in terms of probability. The likely

outcome of statistical tests, when applied to a truly random sequence, is known a

priori and can be described in probabilistic terms.

PariRandom has been tested with di�erent random testing suites. These suites

are batteries of statistical hypothesis tests for measuring the quality of a random

number generator. They analyse the distribution pattern of a set of data.

In stochastic modelling, as in some computer simulations, the expected random

input data can be veri�ed to show that tests were performed using randomized data.

In some cases, data reveals an obvious non-random pattern, as with so-called "runs

in the data" (such as expecting random 0�9 but �nding "4 3 2 1 0 4 3 2 1..." and

rarely going above 4). If a selected set of data fails the tests, then parameters can

be changed or other randomized data can be used which does pass the tests for

randomness.

There are many practical measures of randomness for a binary sequence.

Given a binary sequence s, we want to establish whether or not s passed or failed

a statistical test. [8] identi�es three evaluation approaches, that are not exhaustive

2Example images has been taken from [22]

3.2. TESTING APPROACHES 35

and are intended to illustrate contrasting techniques:

1. Threshold Values: computing test statistics for a binary sequence and compar-

ing it to a threshold value. The decision rule in this case states that a binary

sequence fails this test �whenever the value of c(s) falls below the threshold

value�.

2. Fixed Ranges: still computing a statistic test as before, but in this case the

decision rule states that �s fails a test if the test statistic falls outside a range�.

3. Probability values: involves computing a test statistic for s and its corre-

sponding probability value (P-value). Typically, test statistics are constructed

so that large values of a statistic suggest a non-random sequence. The P-value

is the probability of obtaining a test statistic as large or larger than the one

observed if the sequence is random. Thus, small values (e.g. <0.05 or <0.01)

are interpreted as evidence that a sequence is unlikely to be random. The

decision rule in this case states that �for a �xed signi�cance value a, s fails the

statistical test if its P-value < a�.

The �rst two methods are lacking because they do not represent su�ciently stringent

measures in most cases and because of their needs of pre-computed signi�cance levels

and acceptable ranges. If signi�cance levels are modi�ed in the future, the range

values must be recomputed.

The third method, instead, while not being trivial in some cases, has the added

advantage that it does not require the speci�cation of signi�cance levels. Once a

P-value has been computed, the P-value can be compared to an arbitrary a.

Typically the P-Value are computed using special functions according to the

Central Limit Theorem3 such as the error function:

p = erfc

(
|µ− x|
σ
√

2

)
This is the P-value associated with the null hypothesis (H0, the sequence being

tested is random). Associated with this null hypothesis is the alternative hypothesis

(Ha), which is that the sequence is not random. We assume that the generator

is good, create a statistic based on this assumption, determine the probability of

obtaining that value for the statistic if the null hypothesis is correct, and then

interpret the probability as success or failure of the null hypothesis. This tests are

conclusion-generation procedures that have two possible outcomes: either accept H0

or accept Ha. Table 3.1, from [12], shows the possible conclusions.

3For a random sample of size n from a population with mean μ and variance σv2, the distribution
of the sample means is approximately normal with mean μ and variance σv2/n as the sample size
increases.

36 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

TRUE SITUATION
CONCLUSION

Accept H0 Accept Ha (reject H0)
Data is random (H0 is true) No error Type I error

Data is not random (Ha is true) Type II error No error

Table 3.1: Status of the data at hand to the conclusion arrived at using the testing
procedure.

If the data is, in truth, random, then a conclusion to reject H0 will occur in a

small percentage. That's what is commonly known4 a Type I error. The probability

of this type of error is usually called the level of signi�cance of the test, and can be

denoted with a. It can be set before the test and it is the probability that the test

will indicate that the sequence is not random when it really is random (sequence

appears having non-random properties even when produced by a �good� generator).

Common values for a are in the range [0.001,0.01].

The probability of Type II error is denoted as b and is the probability that

the test will indicate that the sequence is random when it is not; that is, a �bad�

generator produced a sequence that appears to have random properties.

These two probabilities have an important di�erent property: unlike a, b is not

�xed and can take on many di�erent values because there are an in�nite number

of ways that a data stream can be non-random, and each di�erent way yields a

di�erent b. That's why the calculation of the Type II error is more di�cult than

the calculation of Type I error: there are many possible types of non-randomness.

All the suites considered for testing try, as a primary goal, to minimize the

probability of a Type II error. Obviously, the probabilities a and b are related to

each other and to the size of n in such a way that if two of them are speci�ed, the

third value is automatically determined.

Resuming, once a signi�cance level a has been chosen, if P-value≥a, then the

null hypothesis is accepted (sequence appears to be random). If P-value≤a, then
the null hypothesis is rejected (the sequence appears to be non-random. With an

a of 0.01 one could expect 1 sequence in 100 sequences to be rejected by the test

if the sequence was random. A P-value≥0.01 would mean that the sequence would

be considered to be random with a con�dence of 99%. A P-value≤0.01 would mean

that the conclusion was that the sequence is non-random with a con�dence of 99%.

Usually, if a p-value is very, very low (<10-6) we are pretty safe in rejecting the

null hypothesis and concluding that the RNG is �bad�. We could be wrong, but

the chances are a million to one against a good generator producing the observed

value of P. This consideration is insu�cient if the value is not so close to 0. By

itself the P-value from a single trial tells little in most cases. Repeated tests must

4These terms are precise technical terms used in statistics to describe particular �aws in testing
process (see [25]).

3.2. TESTING APPROACHES 37

Figure 3.2.2: Examples of empirical distributions, from [14].

be done, and we need to examine the probability that the resulting sequence of P-

values might occur if the underlying distribution of P-values is in fact uniform (as

a new null hypothesis).

Used suites apply Kolmogorov-Smirnov (KS)5 test to the p-values observed to

determine the probability of obtaining them in a random sampling of a uniform

distribution. This is itself a P-value, but now it applies to the entire series of

independent and identically distributed trials.

In 3.2.2 we see an example of 20 observations with p-values falling between

the 5 and 95 per cent levels, so we would not have regarded any of them suspicious,

individually; yet collectively the empirical distribution shows that these observations

are not at all right. KS is able to reject null hypothesis for this sequence of p-values.

By using this process (collect p-values, test them with KS) we get two parameters,

the number of samples and the number of trials. If we are able to adjust these

parameters and repeatedly obtain very low overall p-values (the p of the distribution

of the p-values of the distribution of p-values of the experiment), we can safely reject

the null hypothesis. If we can't do that, we are justi�ed in concluding that the RNG

passes that type of test.

This doesn't mean that the null hypothesis is correct. It only means that the test

is unable to prove the alternative hypothesis.

This is the common idea among almost every RNG test, with few exceptions6.

5Kolmogorov-Smirnnov is a test for the equality of continuous, one-dimensional probability
distributions that can be used to compare a sample with a reference probability distribution.

6Like the bit persistence test, common in many suites, that does successive exclusive-or tests of
succeeding unsigned integers returned by a RNG. After some trials, the result is a bitmask showing
if some bits did not change throughout the sequence.

38 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

3.3 Common statistical tests

In the previous section the p-value has been described as a way to evaluate if the

null-hypothesis can be refused or not. This section contains a list of common tests

that are used in the testing suites described in section 3.4 and explains how these

tests generate p-values.

Chi-square (q2)

Most common one is probably the �Chi-square� test, that represents a basic method

also used in connection with many other tests.

Considering a particular example, we can apply this test to die throwing. For

an unbiased die (a die verifying H0) each integer should occur with probability

P (i) = 1/6 for i ∈ [1, 6]. Getting too many 1's or 2's in a large trial would suggest

that the dice is not truly random, as rolling (say) twenty sixes in a row can happen

one in about 3.66 x 1015 trials using a random die. Even obtaining exactly 1M in all

bins over 6M rolls would also suggest that die was not random, as some �uctuation

should occur compared to this special outcome.

The q2 test determines the probability distribution of observing any given ex-

cursion from the expected value if the die is presumed to be an unbiased perfect

die.

In general, suppose that every observation can fall into one of k categories. We

take n independent observations; this means that the outcome of one observation has

absolutely no e�ect on the outcome of any of the others. Let ps be the probability

that each observation falls into category s, and let Ys be the number of observations

that actually do fall into category s. We form the statistic (Pearson's chi-squared

test statistic [14, 15]) 3.3.1.

V =
k∑

s=1

(Ys − nps)2

nps
(3.3.1)

Comparing the resulting value with values of the chi-square distribution with

same degrees of freedom we get a p-value, valid if n is large enough7.

Frequency (Monobit) Test

Based on Chi-square, it tests the proportion of zeroes and ones in the entire sequence.

First of all, zeros and ones of the input sequence (E) are converted to values of -1

and +1. In a sequence of identically distributed Bernoulli random variables (X's or

E's, where X = 2E − 1, and so Sn = X1 + . . . + Xn = 2(E1 + . . . + En) − n), the

7Knuth [14] suggests, as a rule of thumb, to take n large enough so that each of the expected
values nps is �ve or more.

3.3. COMMON STATISTICAL TESTS 39

probability of ones is 1/2. Using the classic De Moivre-Laplace theorem ([16]) for a

su�ciently large number of trials, the distribution of the binomial sum, normalized

by »n, is closely approximated by a standard normal distribution.

Thus, we get a P-value

2

[
1− Φ

(
‖X1 + . . .+Xn‖√

n

)]
= erfc

(
‖X1 + . . .+Xn‖√

n
√
n

)
where erfc is the complementary error function

erfc(z) =
2√
π

∫ ∞
z

e−u
2

du

A variant of this test is the Frequency Test within a Block, where the original

string is partitioned into N substrings, each of length M (n = NM). A Chi-square

test is applied to every subsequence for a homogeneous match of empirical frequen-

cies to the ideal 1/2. For each of these substring, the probability of ones is estimated

by the observed relative frequency of 1's, pi, i=1,...,N. With N degrees of freedom

we get a P-value

∫∞
χ2(val)

2

e−uu
N

2−1du

Γ
(
N
2

) = igamc

(
N

2
,
χ2(val)

2

)
with

χ2(val) = 4M
N∑
i=1

[
πi −

1

2

]2
and where igamc is the incomplete gamma function ([12, sec. 5.5.3]).

Runs Test

This test looks at �runs� de�ned as substrings of consecutive 1's and consecutive 0's,

and considers whether the oscillation among such homogeneous substrings is too

fast or too slow.

Test checks the distribution of the total number of runs Vn.

Vn =
n−1∑
k=1

r(k) + 1

where, for k = 1, ..., n− 1, r(k) = 0 if ¹k = ¹k+1 and r(k) = 1 if ¹k 6= ¹k+1.

Finally we get a P-value

erfc

(
|Vn(obs)− 2nπ(1− π)|

2
√

2nπ(1− π)

)

40 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

A similar test is the Largest Run of Ones in a Block, that measures the length

of the longest consecutive subsequence of ones after partitioning the sample n=NM

into N substrings. Again, q2 is used to get a P-value.

Rank Test

Rank test, also called Binary Matrix Rank Test, checks for linear dependence among

�xed-length substrings of the original sequence: constructs matrices of successive

zeroes and ones from the sequence, and checks for linear dependence among the

rows or columns of the constructed matrices. The test �nally checks the deviation

of the rank of these matrices from a theoretically expected value (using q2).

Spectral Test

Also called Discrete Fourier Transform Test, is one of the spectral methods. It is

used to detect periodic features in the bit series (as explained in 1.2.6) that would

indicate a deviation from the assumption of randomness (see Figure 3.3.1).

Template Matching

Counts the occurrences of a given aperiodic pattern, and checks if they are too many

or too few. Pattern lengths normally go from 2 to 8. Central Limit Theorem and Chi-

square distribution are used in this test. It comes in two variants: non-overlapping

and overlapping template matching, the last one counting the occurrences of m-runs

of ones, using a Compound Poisson distribution.

Universal Statistical Test (Maurer's Test)

The Universal Statistical Test ([31]) is a test introduced in 1992, closely related

to the per-bit entropy, which is asserted to be (from Ueli Maurer, who introduced

this test) �the correct quality measure for a secret-key source in a cryptographic

application�. Maurer's test is not designed to detect a speci�c pattern or a speci�c

type of statistical defects. Instead, it is designed to detect a very general class of

statistical defects �that can be modelled by an ergodic stationary source with �nite

memory�, then subsuming some of the standard statistical tests.

This test is a compression-type test: the generator should pass the test if and

only if its output sequence cannot be compressed signi�cantly. This type of test,

requiring a long sequence of bits, looks back through the entire sequence while

walking through the test segment of L-bit blocks, checking for the nearest previous

exact L-bit template match and recording the distance - in number of blocks - to

that previous match. It then computes the average over all the expansion lengths

by the number of test blocks.

3.3. COMMON STATISTICAL TESTS 41

Figure 3.3.1: Two charts showing di�erent results of Spectral Test.

42 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

Linear Complexity Test

This test uses linear complexity to test for randomness. Linear complexity is related

to a part of keystream generators, the Linear Feedback Shift Registers. This register

of length L consists of L delay elements, each having one input and one output. In

every moment the output sequence (eL−1, . . . , e1, e0) satis�es the recurrent formula

ej = (c1ej + c2ej−2 + . . .+ cLej−L)mod2

having initial state (eL, eL+1, . . .). Coe�cients (c1, . . . , cL) are coe�cients of the

polynomial connection corresponding to a given LSFR.

An LSFR is said to generate a given binary sequence if the sequence is the output

of the LFSR for some initial state. The linear complexity of a given sequence is the

length of the shortest LFSR that generates the sequence as its �rst n terms. There

are some known formulas to evaluate the mean and variance linear complexity for

truly random sequences. By using two di�erent limiting distributions (for even and

odd n, with n the length of the string) in conjunction to Chi-square it is possible to

evaluate the P-values.

Serial Test or Bit Distribution Test

This test, as explained by [4], subsumes Frequency Test and many other tests (DNA,

OPSO, OQSO), but it doesn't substitute them due to computational weight. It tests

the uniformity of distributions of patterns of given lengths, by running through the

set of all 2m possible 0,1 vectors of lenght m. It uses a Chi-square type statistic (the

distribution converges to the Chi-square distribution).

Approximate Entropy Test

The approximate entropy ApEn(m) measures the logarithmic frequency with which

blocks of length m that are close together remain close together for blocks aug-

mented by one position. Thus, small values of ApEn(m) imply strong regularity, or

persistence, in a sequence. Alternatively, large values of ApEn(m) imply substan-

tial �uctuation, or irregularity. For a �xed block length m, one should expect that

in long random strings, ApEn(m)≈log2. With χ2(obs) = n [log2− ApEn(m)] the

reported P-value is

igamc
(
2m−1, χ2(obs)/2

)

3.3. COMMON STATISTICAL TESTS 43

Cumulative Sums Test

It checks the maximum absolute value of the partial sums of the sequence with 0

and 1's respectively represented by -1 and +1. Large absolute values of this statistic

indicate that there are either too many ones or too many zeros at the early stages.

Instead, small values indicate that ones and zeros are intermixed too evenly. Dual

test can be derived by reversing sequences with random walks.

With the statistic z = max1≤k≤n |Sk| (obs)/
√
n, the randomness hypothesis is

rejected for large values of z, and the corresponding P-value is

1−H (max1≤k≤n |Sk| (obs)/
√
n) with H(z) = limn→∞ P

(
max1≤k≤n
|Sk|

≤ z
)
.

Random Excursions Test

Test based on considering successive sums of the binary bits (as previously, ±1) as

a one-dimensional random walk. Thus, it detects deviations from the distribution

of the number of visits of the random walk to a certain state.

Speci�c tests

Other tests were developed for the Diehard battery by George Marsaglia, and some

of them are still available in Dieharder Suite:

� Birthday spacings : the spacings between randomly chosen points on a large

interval should be asymptotically exponentially distributed (also named birth-

day paradox).

� Overlapping permutations : (subsumed by serial test), analyse sequences of �ve

consecutive random numbers and checks the frequency of all 120 orderings.

� Monkey tests : some sequences are treated as �words�. The number of words

that don't appear should follow a known distribution.

� Parking lot test : randomly place unit circles in a 100 x 100 square. If a

circle overlaps an existing one, it is replaced. After 12k trials, the number of

successfully parked circles should follow a certain normal distribution.

� Minimum distance test : randomly place 8k points in a 10k x 10k square, then

�nd the minimum distance between the pairs. The square of this distance

should be exponentially distributed with a certain mean.

� Random spheres test : randomly choose 4k points in a cube of edge 1k. Center

a sphere on each point, whose radius is the minimum distance to another

point. The smallest sphere's volume should be exponentially distributed with

a certain mean.

44 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

� The squeeze test : random �oats on [0,1) multiplied with 231 until 1 is reached.

After repeating this 100k times, the number of �oats needed to reach 1 should

follow a certain distribution.

� The craps test : play 200k games of craps, counting the wins and the number

of throws per game. Each count should follow a certain distribution.

3.4. TESTING SUITES 45

3.4 Testing suites

Tests were performed using three di�erent testing suites:

� Ent ([18]), a pseudorandom number sequence test program, based on 5 tests:

� entropy (testing for optimum compression),

� chi-square,

� arithmetic mean,

� Monte Carlo's method to compute p,

� Serial correlation coe�cient.

� NIST Statistical Testing Suite (STS, v. 2.2.1, [12]), created and maintained by

the National Institute of Standards and Technology, containing almost every

type of test described before, except for some Monte Carlo's tests.

� Dieharder (v. 3.31.1, [20]), a refactoring of the Diehard tests developed by

George Marsaglia in 1995, containing every test described in 3.3. Every original

Dieharder test has been revised to almost subsume NIST Suite ([4]).

Ent suite has been used to de�ne the best parameters for LCG, using criteria ex-

pressed in 3.5, as the time needed to test every simulation with STS and Dieharder

is much longer. These last suites are usually considered the state of art for random

testing, covering the majority of the tests currently available.

46 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

3.5 Testbed description

Most of the suites explained in 3.4 needs a large amount of random data to output

reliable statistical results. Furthermore, PariRandom performs better in big net-

works. Both these considerations lead us to the creation of a testbed that simulates

the algorithm on a completely con�gurable network relying on a model that is as

close as possible to a real environment running PariRandom.

Our testbed consists in a simulator mostly written in Java�and partly in bash

scripting to interact with the testing suites. Every part of this simulator has been

built to ensure the reproducibility of any experiment, that means that running

simulator twice without changing parameters will produce same random values at

any time.

A �le, called realrandom, is built upon a large amount (~1GB size) of highly

random bits8. This is used as a source of real entropy: RealRandom is a random

generator that returns values sequentially taken from realrandom (the i byte gener-

ated by RealRandom is the i byte of realrandom).

The simulator creates a network of n nodes, each one with two local random

generators:

� a LCG random generator;

� PariRandom applied to the same LCG.

LCG (Linear Congruential Generator) represents one of the oldest

and best-known pseudorandom number generator algorithms. It's easy

to implement and very fast.

It is de�ned by the recurrence relation:

Xn+1 = (aXn + c) (mod m)

where Xn is the sequence of pseudorandom values, and

m, 0 < m - the �modulus�,

a, 0 < a < m - the �multiplier �,

c, 0 ≤ c < m - the �increment�,

X0, 0 < X0 < m - the �seed � or �start value�

are integer constants that specify the generator. LCG strength is

extremely sensitive to the choice of the parameters c, m and a9.

8This �le derives from [22]. RANDOM.ORG is a true random number service that generates
randomness via atmospheric noise.

9History of LCG and further information are available in [24].

3.5. TESTBED DESCRIPTION 47

m 264

a 1220703125
c 0

Table 3.2: Set of LCG parameters used by the simulator.

Setting up LGC parameters was probably the hardest problem during implementa-

tion. There is a long list of commonly used LCG parameters, but we needed two

particular features:

� the generator has to output values in a space of 264 bits, so it must be m = 264

10;

� the quality of output values has to be enough to pass common statistical tests

but also su�ciently low to show the improvement between this algorithm and

PariRandom applied to the same algorithm.

Our �nal set of parameter (shown in table 3.2) is a small variation of the APPLE

LCG11.

As the idea of PariRandom algorithm is to capture the entropy of the network,

we decided to model the di�erent starting situation of each node of the network by

setting a unique initial seed, generated by RealRandom.

To keep simulation as simple as possible, during seed-update process each node Ni

(where i is the index of nodes in our array of nodes) contacts nodesNj=i+1,Nj+1,..Nj+k-1.

Compress functions f and g are simple XOR operations, without any use of the

shifting algorithm.

More information about the structure of the simulator are available in following

section 3.6.

10The long data type is a 64-bit signed two's complement integer.
11It is described in [23].

48 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

3.6 Testbed implementation

This section describes the implementation of the simulator described in previous

section.

PariRandom Simulator is able to simulate the behaviour of the algorithm in a

P2P network. It is written in Java TM®.

A Main class collects some inline parameters like the number of nodes in the

network (n), the number of random values locally generated before a seed update,

the size of the sequence of random values to be produced for each node and which

testing suites has to be enabled. This helps automating executions with di�erent

parameters, due to the time needed by testing suites to produce results.

After doing that, this class calls the startSimulation() method in the Engine

class. Engine.startSimulation() in order:

� instantiates a Network object;

� instantiates n Node objects, and adds each Node to the Network object;

� instantiates a Randomizer object for each Node. Randomizer class retrieve

random values both from a �really random� �le (method getNextRealRan-

dom()) and a CustomRandom class that extends di�erent pseudo random

algorithm like the custom LinearCongruentialGenerator described in

previous section. Each node is initialized with a random initial seed (generated

by the �really random� �le) used by LinearCongruentialGenerator.

� starts a the main simulation loop:

� a random Node of the Network is chosen randomly (with the �really

random� �le);

� the chosenNode generates two random values through theRandomizer

class, with and without PariRandom algorithm, and stores generated

values through the Stats class for later analysis;

� if the chosen Node has generated enough values from last seed-update, it

retrieves from Network (through the getSomeNeighbours() method of

Network class) a list of neighbours to perform a seed-update by receiv-

ing random values from them. Network.getSomeNeighbours() returns

a de�ned number of nodes, chosen with the criteria described in section

3.5.

� after a de�ned number of iterations Engine stops the loop and asks Stats to

perform the analysis of generated number values with di�erent testing suites

3.6. TESTBED IMPLEMENTATION 49

(through methods Stats.runEntStats(), Stats.runNistStats() and

Stats.runDieharderStats()).

Finally, a Utils class is used to debug the simulator.

50 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

3.7 Testing results

We performed di�erent type of tests to analyse the behaviour of PariRandom in

di�erent situations.

First of all, we analysed the di�erence between the quality of the entropy obtained

using the LCG with and without PariRandom for di�erent number of nodes.

Dieharder was run on �les containing from 10M to 100M random �longs� gener-

ated by a random node (the �rst node instantiated by the simulator), after a startup

period of 100K generations12.

To evaluate the time needed to make the system operative, we can estimate a

seed-update process every minute (really a�ordable if we are under a common P2P

network with �le sharing and other bandwidth consuming services), that is actually

activated after 5 random values generated, meaning a total time of ~14 days13.

Results of Dieharder battery of tests are available in �gures 3.7.1,3.7.2, and table

3.3.

Figure 3.7.1: First part of Dieharder tests using LCG (3.2) without and with Pari-
Random for di�erent amounts of nodes. 10M random cycles performed.

These charts exhibit how the algorithm consistently increase the quality of gen-

erated values, and how this quality is related to the number of nodes. Remembering

12The startup period has been introduced to misalign nodes. It represents a period where
generated values are not stored for analysis. By introducing it we avoid having the �rst part of
PariRandom generated random values too similar to values generated without PariRandom.

13100K (generated values)/5 (values per minute)/60 (minutes per hour)/24 (hours per day)

3.7. TESTING RESULTS 51

Figure 3.7.2: Second part of Dieharder tests using LCG (3.2) without and with
PariRandom for di�erent amounts of nodes. 10M random cycles performed.

that P-values shown are second order P-values (obtained by evaluating the unifor-

mity of a sequence of P-values, as described in 3.2), we know that they should be

in [0 + α, 1 − α] to pass the test, with α = 0.01 (and with α = 0.01 to pass the

test with some suspect). In Opso, Count 1st bit, and some rgb tests, after failing

without PariRandom, the test passes by running PariRandom between two nodes.

Tests like Filtree, DNA and Oqso pass only with PariRandom running on more than

two nodes, showing how, as also stated in the theoretical analysis, the general per-

formance of the algorithms depends on the amount of entropy available in all the

network (and thus on the number of nodes).

Same results have been con�rmed running NIST sts, as shown in �gure 3.7.3 and

in table 3.4.

In fact, we see the same behaviour for BlockFrequency (even with 8 nodes it

doesn't pass the test), Rank, FFT, ApproximateEntropy and, partly, LinearCom-

plexity tests.

A second run of tests were performed using a HRNG ([29]), described in ap-

pendix A. A random node, far from the one being analysed by testing suites (they

never communicates directly), generated �real random� values. We evaluated the

performance in this situation and compared them to the performance obtained be-

fore.

The results (�gures 3.7.4, 3.7.5 and table 3.5) show that the algorithm is capa-

52 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

Table 3.3: Results of Dieharder tests using LCG (3.2) without and with PariRandom
for di�erent amounts of nodes. 10M random cycles performed.

ble of sharing the entropy of nodes in a network. Especially craps, runs monobit

and �lltree tests show a general improvement if the hardware number generator is

available in the network. Thus, if a node has a good quality entropy source, it will

improve the quality of every other random generator in the network.

3.7. TESTING RESULTS 53

Figure 3.7.3: NIST tests using LCG (3.2) without and with PariRandom for di�erent
amounts of nodes. 10M random cycles performed.

Table 3.4: Results of NIST tests using LCG (3.2) without and with PariRandom for
di�erent amounts of nodes. 10M random cycles performed.

54 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

Figure 3.7.4: First part of Dieharder tests using LCG (3.2) without and with the
hardware generator for di�erent amounts of nodes. 100M random cycles performed.

Figure 3.7.5: Second part of Dieharder tests using LCG (3.2) without and with the
hardware generator for di�erent amounts of nodes. 100M random cycles performed.

3.7. TESTING RESULTS 55

Table 3.5: Values of Dieharder tests using LCG (3.2) without and with the hardware
generator for di�erent amounts of nodes. 100M random cycles performed.

56 CHAPTER 3. PARIRANDOM: DEVELOPMENT AND TESTING

Chapter 4

Conclusions

PariRandom describes a new way to use a network as an entropy source. Previous

solutions only involved transmission delays. Every RNG (either hardware or soft-

ware) can work over the PariRandom framework, guaranteeing at least the same

quality it would provide in the absence of PariRandom even if the entire network

is completely compromised. The only drawback is the increase in network tra�c

but it can generally be reduced to negligible levels using the piggyback technique

described in Section 2.1.

We presented a theoretical analysis to understand entropy gain performance,

providing a computational model that can be used to perform statistical analysis,

following the proofs of theorems described in sections 2.2 and 2.3. Due to the

di�culty of using that approach for large network models, we performed tests using

the best random testing suites available, after generating big random data �les with

the PariRandom simulator described in section 3.6 (simulating up to ~100K nodes).

Results obtained prove the quality demonstrated with the theoretical analysis,

even if, as explained in 3.2, they may not be able to spot every pseudo algorithmic

artifact.

Further work

There are three main working guidelines.

First, as explained in section 3.2, it's di�cult to evaluate the real entropy gain

using statistical testing suites. That's why the creation of a simulator for the theo-

retical model would allow a better investigation of the performance of PariRandom

in big networks. This simulator should use theorems explained in 2.3 to mathe-

matically evaluate the level of entropy of each node in the network after computing

some statistical measures, like the bias of the seed in each node and the correlation

between these seeds.

A second line regards the size of the simulations. A more powerful cluster should

57

58 CHAPTER 4. CONCLUSIONS

be used to evaluate the entropy quality produced by PariRandom Simulator if mil-

lions of nodes are connected to the network. While the simulator is fast to generate

this data, statistical testing suites needs weeks on a powerful computer to produce

results.

Finally, the spread of PariPari software will raise the opportunity to test Pari-

Random on a real testbed made of nodes with di�erent randomization techniques

within a real network. Testing the entropy quality of some nodes in this network

will show some realistic results that can't be obtained with previous two methods.

It will also allow to evaluate with better con�dence the startup time needed to reach

a considerable entropy level.

Appendix A

Simtec Electronics Entropy Key

Figure A.0.1: Photo of Simtec Entropy Key

A hardware random generator has been used due to high amount of random data

needed for some simulations.

The HRNG used was the Simtec Electronics Entropy Key, a USB device contain-

ing two high-quality quantum noise sources and an ARM Cortex CPU that actively

measures and checks all generated random numbers, before encrypting them and

sending them to the server. It also detects attempts to corrupt or sway the de-

vice. It aims towards FIPS-140-2 Level 3 compliance with some elements of Level

4, including tamper-evidence, tamper-proo�ng, role-based authentication, and envi-

ronmental attacks.

It works by using a P-N semiconductor junctions reverse biased with a high

enough voltage to bring them near to, but not beyond, breakdown in order to gen-

59

60 APPENDIX A. SIMTEC ELECTRONICS ENTROPY KEY

Figure A.0.2: Sections of the USB device.

erate noise. In other words, it has a pair of devices that are wired up in such a way

that as a high potential is applied across them, where electrons do not normally �ow

in this direction and would be blocked, the high voltage compresses the semiconduc-

tion gap su�ciently that the occasional stray electron will quantum tunnel through

the P-N junction (sometimes referred to as avalanche noise). It is impossible to

predict when this happens, and this type of entropy is measured by the key.

Acknowledgments

The author would thank Enoch Peserico, Paolo Bertasi and Michele Bonazza for

giving him the opportunity to carry out this work on an argument of full personal

interest and for the collaboration in the creation of the algorithm.

61

62 APPENDIX A. SIMTEC ELECTRONICS ENTROPY KEY

Bibliography

[1] Baruch Awerbuch and Christian Scheideler, Robust Random Number

Generation for Peer-to-Peer Systems, Theoretical Computer Science,

v.410 n.6-7, p.453-466, February, 2009.

[2] Santha and Vazirani, Generating Quasi-Random Sequences from

Slightly-Random Sources, 1984.

[3] Andrew C. You, Theory and Applications of Trapdoor Functions, 1982.

[4] Robert G. Brown, DieHarder: A Gnu Public Licensed Random Num-

ber Tester, Duke University Physics Department, 2008.

[5] M. Blum and S. Micali, How To Generate Cryptographically Strong

Sequences of Pseudo-Random Bits, FOCS, 1982.

[6] Robert B Davie, Exclusive OR (XOR) and hardware random number

generators, 2002.

[7] John Viega, Practical Random Number Generation in Software, Vir-

ginia Tech, 2003.

[8] Juan Soto, Statistical Testing of Random Number Generators, Na-

tional Institute of Standards & Technology, 1999.

[9] Bull Mountain Software Implementation Guide, Intel, 2011.

Available at http://software.intel.com/en-us/articles/

download-the-latest-bull-mountain-software-implementation-guide/.

[10] Alfred J. Menezes, Handbook of Applied Cryptography, CRC Press,

1996.

[11] Marek Obitko, Crossover and mutation, 1998. Retrieved 10-3-2012

from http://www.obitko.com/tutorials/genetic-algorithms/

crossover-mutation.php.

63

http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php
http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php

64 BIBLIOGRAPHY

[12] NIST group, A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications, National Institute

of Standards and Technology, 2010.

[13] Song-Ju Kim, Ken Umeno, and Akio Hasegawa. Corrections of the

NIST Statistical Test Suite for Randomness, 2004.

[14] Donald Knuth, The Art of Computer Programming, Seminumerical

Algorithms, Volume 2, 3rd edition, Addison Wesley, Reading, Mas-

sachusetts, 1998.

[15] R.L. Plackett, Karl Pearson and the Chi-Squared Test, International

Statistical Review, 1983.

[16] W. Feller, An Introduction to Probability Theory and Its Applications,

Wiley, 1968.

[17] Zvi Gutterman, Benny Pinkas and Tzachy Reinman, Analysis of the

Linux Random Number Generator, 2006.

[18] John Walker, ENT: A Pseudorandom Number Sequence Test Program,

2008. Available at http://www.fourmilab.ch/random/.

[19] NIST: Statistical Test Suite. Available at http://csrc.nist.gov/

groups/ST/toolkit/rng/documentation_software.html.

[20] Dieharder: A Random Number Test Suite. Available at http://www.

phy.duke.edu/~rgb/General/dieharder.php.

[21] Lenore Blum, Manuel Blum, and Michael Shub, A Simple Unpre-

dictable Pseudo-Random Number Generator, SIAM Journal on Com-

puting, 1986.

[22] Mads Haahr, Random.org. Retrieved 10-4-2012 from http://www.

random.org/analysis/.

[23] Karl Entacher, Classical LCGs, 2000. Retrieved 10-4-2012 from http:

//random.mat.sbg.ac.at/results/karl/server/node4.html.

[24] Vivien Challis, Pseudo-Random Number Generators, 2008.

[25] Neyman and Pearson, On the Use and Interpretation of Certain Test

Criteria for Purposes of Statistical Inference, Cambridge University

Press, 1967.

http://www.fourmilab.ch/random/
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.random.org/analysis/
http://www.random.org/analysis/
http://random.mat.sbg.ac.at/results/karl/server/node4.html
http://random.mat.sbg.ac.at/results/karl/server/node4.html

BIBLIOGRAPHY 65

[26] C. P. Robert and G. Casella, Monte Carlo Statistical Methods (2nd

ed.), Springer, 2004..

[27] USA - Federal Standard 1037C. Retrieved 11-4-2010 from http://

www.its.bldrdoc.gov/fs-1037/fs-1037c.htm.

[28] JXTA, The Language and Platform Independent Protocol for P2P

Networking. Available at http://jxta.kenai.com/.

[29] Simtec Entropy Key. Available at http://www.entropykey.co.uk/.

[30] Federal Information Processing Standards 140, FIPS PUB 140-

2, 2001. Retrieved 4-4-2012 from http://csrc.nist.gov/

publications/fips/fips140-2/fips1402.pdf.

[31] Maurer, U. (1992). A universal statistical test for random bit genera-

tors. J. Cryptology, 5, no. 2, 89�105.

[32] Michele Bonazza, PARICORE, 2009.

http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://jxta.kenai.com/
http://www.entropykey.co.uk/
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

List of Figures

1.1.1 The search structure in a typical DHT. 3

1.1.2 Four hypothetical hosts in PariPari. Three communications are por-

trayed as examples. Connection a represents the beginning of a VoIP

session between hosts S and N: the VoIP module of host S asks a

Socket to the Connectivity module running in its same host. Connec-

tivity then opens a Socket with host N, whose Connectivity module

has previously opened a Server Socket for N's VoIP module. Con-

nection b represents Torrent plugins of hosts E and S communicating

with each other. Connection c represents host N requesting a web

content to host E. 4

2.1.1 PariRandom Algorithm: node A starting a seed-update process. . . . 12

2.3.1 The Davies�Meyer one-way compression function. 17

2.3.2 Node A updating seed without PariRandom algorithm. 19

2.3.3 Node A updating seed with PariRandom algorithm. 19

2.3.4 Two seed-update processes with PariRandom algorithm. One node

has been contacted two times. 21

3.2.1 Visualisation of Random.org compared with PHP rand() on Microsoft

Windows. 34

3.2.2 Examples of empirical distributions, from [14]. 37

3.3.1 Two charts showing di�erent results of Spectral Test. 41

3.7.1 First part of Dieharder tests using LCG (3.2) without and with Pari-

Random for di�erent amounts of nodes. 10M random cycles performed. 50

3.7.2 Second part of Dieharder tests using LCG (3.2) without and with

PariRandom for di�erent amounts of nodes. 10M random cycles per-

formed. 51

3.7.3 NIST tests using LCG (3.2) without and with PariRandom for di�er-

ent amounts of nodes. 10M random cycles performed. 53

1

2 LIST OF FIGURES

3.7.4 First part of Dieharder tests using LCG (3.2) without and with the

hardware generator for di�erent amounts of nodes. 100M random

cycles performed. 54

3.7.5 Second part of Dieharder tests using LCG (3.2) without and with the

hardware generator for di�erent amounts of nodes. 100M random

cycles performed. 54

A.0.1Photo of Simtec Entropy Key . 59

A.0.2Sections of the USB device. 60

List of Tables

3.1 Status of the data at hand to the conclusion arrived at using the

testing procedure. 36

3.2 Set of LCG parameters used by the simulator. 47

3.3 Results of Dieharder tests using LCG (3.2) without and with Pari-

Random for di�erent amounts of nodes. 10M random cycles performed. 52

3.4 Results of NIST tests using LCG (3.2) without and with PariRandom

for di�erent amounts of nodes. 10M random cycles performed. 53

3.5 Values of Dieharder tests using LCG (3.2) without and with the hard-

ware generator for di�erent amounts of nodes. 100M random cycles

performed. 55

3

Index

alternative hypothesis, 35

Approximate Entropy Test, 42

birthday paradox, 43

Birthday spacings, 43

Central Limit Theorem, 35

Chi-square, 38

compression function, 13

Cryptographically secure PRNG, 7

Cumulative Sums Test, 43

Davies Meyer compression function, 17

Ent, 45

Frequency (Monobit) Test, 38

independency, 14

Kolmogorov-Smirnov, 37

level of signi�cance, 36

Linear Complexity Test, 42

Linear Congruential Generator, 46

Minimum distance test, 43

Monkey tests, 43

null hypothesis, 35

Overlapping permutations, 43

P-value, 35

PariRandom, 12

Parking lot test, 43

piggybacking technique, 12

Pseudo-random number generators, 7

Random Excursions Test, 43

Random number generators, 6

Random spheres test, 43

Rank Test, 40

Runs Test, 39

seed, 7

seed-update process, 12

Serial Test, 42

Spectral Test, 40

Template Matching, 40

The craps test, 44

The squeeze test, 44

Universal Statistical Test, 40

XOR property, 14

4

	1 Introduction and related work
	1.1 PariPari
	1.1.1 Network layout
	1.1.2 Host structure

	1.2 Random Number Generation
	1.2.1 What is a random bit?
	1.2.2 Multiple random bits
	1.2.3 Pseudo-Random Number Generators
	1.2.4 Processing functions
	1.2.5 A common problem: Unpredictability
	1.2.6 A second common problem: Subtle patterns

	2 PariRandom: Theoretical Analysis
	2.1 Algorithm
	2.2 Minimum entropy level
	2.3 Entropy gain
	2.4 Statistical basis
	2.5 Analysing XOR operation
	2.6 Theorems Proofs

	3 PariRandom: Development and Testing
	3.1 PariRandom implementation
	3.2 Testing approaches
	3.3 Common statistical tests
	3.4 Testing suites
	3.5 Testbed description
	3.6 Testbed implementation
	3.7 Testing results

	4 Conclusions
	A Simtec Electronics Entropy Key
	Acknowledgments

