
UNIVERSITÀ DEGLI STUDI DI PADOVA

MASTER THESIS

A Machine Learning-based Test
Program Quality Tool for

Automotive Microcontrollers

Author:
Asma KHEDRI

Supervisors:
Prof. Gian Antonio Susto

Ing. Angelo De Poli
Dr.Ing. Giambattista Carnevale

A thesis submitted in fulfillment of the requirements
for the degree of Master

in ICT for Internet and Multimedia

Infineon Technologies
Department of Information Engineering

November 26, 2019

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

“In god we trust, all others bring data”

— W. Edwards Deming

iii

UNIVERSITÀ DEGLI STUDI DI PADOVA

Abstract
Department of Information Engineering

A Machine Learning-based Test Program Quality Tool for Automotive
Microcontrollers

by Asma KHEDRI

In the semiconductor industry where large amounts of data are generated,
data driven quality control technologies are gaining increasing importance.
In Infineon, production testing is an important aspect in the automotive mi-
crocontroller manufacturing, during which thousands of data are stored, the
purpose of this thesis is to make use of these data to build a quality gate
tool based on machine learning techniques in order to improve testing qual-
ity and facilitate better usage of test information for yield improving. In
fact, tests in the production flow involves a large number of sequential steps,
mainly two important phases, the front-end testing, i.e before packaging, and
the back end-testing, after packaging. In this thesis, we study the possibility
of predicting the final state of the packaged chips based on the tests done
before packaging.
Keywords: Automotive, Semiconductors, Machine-Learning (ML), Produc-
tion Test, Yield, etc.

HTTP://WWW.UNIVERSITY.COM
http://department.university.com

v

Acknowledgements
I would like to take this opportunity to express my heartfelt gratitude to a
number of people whose I was blessed to know and work with.

First, to Professor Gian Antonio Susto, my thesis advisor, the one I turn
to whenever I run into a trouble spot, you were an incredible mentor to me,
your motivational words and insightful suggestions were the reasons behind
the success of this thesis.

To Giambattista, Pierre and Andrea, the best team someone could ever
work with, thank you for the continuous support, patience, motivation, and
immense knowledge. To Pierre, thank you for being optimistic when I first
thought my results are not good enough, you always made it easier for me
and taught me not to give up. To Andrea, thank you for your enthusiasm for
Machine Learning, your brilliance inspired me. To Giambattista, thank you
for trusting my skills, for being there every time I needed help, you boosted
my confidence and encouraged me to move forward. I have learnt a lot from
you all during these months, and for that I am deeply grateful.

To Angelo DePoli, thank you for welcoming me in the MC team in Padua,
my experience in Infineon Technologies was a milestone in my career, thank
you for offering me the chance to be part of such an interesting thesis work.

To Ms. Roberta Pellizzaro, without you this graduation wouldn’t be hap-
pening today, thank you.

To my cousin Nadia, words are not enough to thank you, you supported
me in every step since I set a foot in Padua.

To my family, far from the eyes but close to the heart, thank you for being
patient and strong, for supporting my choices, for being there for me in all
my achievements, you taught me to be the person I am today, thank you.

To Amen, the one I always annoyed when I felt anxious and stressed, the
one who was there through my ups and downs, thank you.

To my dear friend Mouna, the reason I applied for the University of Padova
in the first place, thank you for being my partner in this rest journey.

To anyone who ever offered me a smile and a word of motivation while I
was writing this thesis, it meant a lot to me, thank you.

Asma Khedri

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Introduction . 1
1.2 Infineon Technologies . 1

1.2.1 Automotive MC team in Padua 3
1.3 Motivation and Related Work 4
1.4 Problem Statement . 6
1.5 Thesis Overview . 7

2 Production Test Flows for Non-Volatile-Memory 9
2.1 Introduction . 9
2.2 Device Under Test (DUT) . 9

2.2.1 Flash Memory . 10
2.3 Non-Volatile-Memory Production Test Flow 13

2.3.1 Front End Insertions . 13
2.3.2 Assembly and Packaging 13
2.3.3 Back End . 14
2.3.4 Test Binning . 14

2.4 Test Results . 15
2.5 Data Source For ML . 16

3 Methodological background 19
3.1 Introduction . 19
3.2 Feature Engineering . 19

3.2.1 Density Estimation . 19
3.2.2 Kolmogorov–Smirnov Test 20
3.2.3 Correlation Analysis . 21
3.2.4 Data Normalization . 22

3.3 Dimensionality Reduction . 24
3.4 Machine Learning Techniques 25

3.4.1 Imbalanced Classification 25
3.4.2 ML Classifiers . 28

3.5 Performance Metrics . 33
3.6 Data Split . 38

viii

4 Data preparation 41
4.1 Introduction . 41
4.2 Data Extraction . 41

4.2.1 Esquare Tool . 41
Job Definition . 41

4.2.2 Extraction Specifications 42
4.2.3 EFF File Structure . 42

4.3 Data Cleaning and Pre-processing 45
4.3.1 Data Description . 46

Data Correlation Analysis 47
Density Distribution . 48

4.3.2 Filtering decisions . 50
4.4 Final dataset . 51

5 Tool Development and Results 53
5.1 Introduction . 53
5.2 Model Selection . 53
5.3 Balanced Random Forest Results 56

5.3.1 Performance metrics . 56
5.3.2 Decision Threshold Adjustment 57

5.4 Feature Selection . 59
5.5 Quality gate tool . 61
5.6 Distance of Chip from The Center of Wafer 63

6 Conclusion and Future Work 67
6.1 Summary and Contributions 67
6.2 Future Work . 68

A Appendix 69
A.1 SBIN analysis . 69
A.2 Data Statistics . 70
A.3 Performance metrics of SVM with under-sampled balanced data 71
A.4 List of Features . 72
A.5 Snapshot of Real Data . 74

Bibliography 75

ix

List of Figures

1.1 Infineon’s logo . 1
1.2 From wafer to chip: The process start with a wafer with hun-

dreds of ICs, that goes through FE testing, the dies who pass
the FE are packaged and sent to BE testing, the passing pack-
aged chips are ready to be shipped 7

1.3 Qaulity Gate tool big picture . 8

2.1 AURIX TC39x Feature Table [39] 10
2.2 TestFlow . 14
2.3 Passing and failing chips distributed into Bins [32] 15

3.1 Illustration of the two-sample Kolmogorov–Smirnov statistic.
Red and blue lines each correspond to an empirical distribu-
tion function, and the black arrow is the two-sample KS statis-
tic [2] . 21

3.2 Feature selection Vs feature reduction 25
3.3 Machine learning workflow . 26
3.4 linearly separable SVM classification problem [36] 29
3.5 Decision Tree Example . 31
3.6 Random Forest overview . 31
3.7 Confusion matrix and terminology for a binary classification

problem . 34
3.8 ROC curves [23] . 36
3.9 distribution of predicted probabilities to fail in ideal case [25] 36
3.10 distribution of predicted probabilities to fail in practical case [25] 37
3.11 distribution of predicted probabilities to fail in worst case [25] 37
3.12 overfitting explained in case of oversampling [11] 39

4.1 EFF file structure . 44
4.2 EFF header . 45
4.3 Dataframe with values of FE tests for each extracted chip. In

columns we have chip position, FE tests and label. 45
4.4 Possible types of test results . 47
4.5 correlation matrix of subset of features 49
4.6 Density distribution of feature1 values 50
4.7 Density distribution of feature2 values 50
4.8 probability distribution of discrete values feature 50

5.1 TPR and FPR of RF models evaluated over cross-validation . . 54
5.2 TPR and FPR of SVM models evaluated over cross-validation 55

x

5.3 TPR and FPR of ML models evaluated over cross-validation . 56
5.4 BRF with cross-validated ROC curve 57
5.5 distribution of predicted probabilities to fail with BRF 58
5.6 TPR & FPR with different number of features by BRF over 10-

fold cross validation . 61
5.7 Quality gate tool on a certain wafer 63
5.8 Number of total failing chips in a specific XY position among

134 failing chips . 64
5.9 Density distribution of distances of FE passing chips from cen-

ter . 64
5.10 TPR & FPR with BRF with and without using the feature Dis-

tance over 10-fold cross-validation 65

A.1 Density distribution of two features with different SBINs . . . 69
A.2 TPR of BRF when detecting different SBINS from Pass 70
A.3 Table of different statistics for a subset of features 70
A.4 ROC curves over 5-fold cross validation with SVM using under-

sampling technique . 71
A.5 Distribution of predicted probabilities to fail with SVM 72
A.6 Snapshot of the Dataset used in the thesis 74

xi

List of Tables

2.1 Example of Result tables of Program, Erase, and verify com-
mands . 16

4.1 Extraction criteria . 43

5.1 Confusion matrix using BRF with threshold 0.5 57
5.2 Confusion matrix using BRF with threshold 0.6 59
5.3 Confusion matrix using BRF with threshold 0.65 59
5.4 Confusion matrix using BRF with threshold 0.7 59
5.5 Confusion matrix using BRF with threshold 0.8 59

A.1 Confusion matrix using SVM with threshold 0.5 71

xiii

List of Abbreviations

MC Micro Controller
ML Machine Learning
FE Front End
BE Back End
NVM Non Volatile Memory
PdM Predictive Maintenance
VM Virtual Metrology
FDC Fault Detection
NN Neural Network
SVM Support Vector Machine
IC Integrated Circuit
ATE Automatic Test Equipment
DUT Device Under Test
HBIN Hard Bin
SBIN Soft Bin
TN Test Number
KDE Kernel Density Estimation
KS Kolmogorov Smirnov
PCA Principal Component Analysis
BRF Balanced Random Forest
TP True Positive
FP False Positive
TN True Negative
FN False Negative
TPR True Positive Rate
FPR False Positive Rate
ROC Receiver Operating Characteristic
CV Cross Validation
QG Quality Gate

xv

For those who answer the call in the middle of the
day or night. For those who answer the call from

near and from far. For those who answer the call for
help with no expectation of personal gain.

This work is dedicated to you all . . .

1

Chapter 1

Introduction

1.1 Introduction

This thesis was entirely realized during an internship at the Padua Develop-
ment Center of the company Infineon Technologies, working as a member of
the Microcontroller team. The aim of this chapter is to introduce the frame-
work this thesis was conceived in: the company and its philosophy as well
as the team itself. It then explains the motivation behind starting this thesis,
as well as a review of some related work. Finally, it discusses the overall goal
and structure of the thesis.

1.2 Infineon Technologies

Infineon Technologies is a leading innovator in the international semiconduc-
tor industry founded in April 1999. It is head quartered in Munich, Germany
but, it has 17 Production sites and 35 Research and Development ones scat-
tered all over Europe, the Americas and the Pacific Regions, and more than
40k employees worldwide.

Today the company is working on 4 business areas. Here follows the
official presentation given by the company for these 4 areas [38]:

• Automotive (ATV): In the ATV segment, Infineon develops products
and solutions for conventional drivetrains while also actively shaping

FIGURE 1.1: Infineon’s logo

2 Chapter 1. Introduction

the keystone trends that define the industry. Demand for our power
semiconductors is on an upward path, fueled by the rising number
of electronic applications in cars –a trend further accentuated by the
growing popularity of electromobility. We are the undisputed market
leader in silicon-based IGBTs and IGBTmodules. Our expertise in sil-
icon carbide is also increasingly relevant for automotive power semi-
conductors. We are paving the way for self-driving cars with our radar
sensors and microcontrollers. Positioned as number two in the radar
sensor market, we are already noting strong momentum from the pro-
liferation of driver assistance systems. In the long term, radar systems
will be fused with other sensor technologies. We are laying the ground
work for this by developing products such as LIDAR solutions. With
our AURIXTM family, we are also benefiting from the trend towards in-
creased automation. Our products here control electronic systems such
as steering and braking, also acting as host controllers to provide func-
tional safety and data security for central computing platforms.

• Industrial Power Control (IPC): The IPC segment specializes in the
efficient conversion of electric energy along the entire supply chain –
from generation and transmission right through to consumption. Ap-
plications here include wind turbines, high-voltage DC transmission
systems, energy storage systems, charging infrastructures for electric
vehicles, and household appliances. Infineon is the world leader in
IGBT-based discrete power semiconductors and power semiconductor
modules. To further strengthen this core IPC business, we are aim-
ing for technology leadership in silicon carbide. Complementary prod-
uct areas are also becoming increasingly important for us, in particular
Intelligent Power Modules (IPMs) integrating controllers, drivers and
switches to enable digital control capabilities.

• Power Management and Multimarket (PMM): Our PMM segment fo-
cuses on power semiconductors for energy management as well as com-
ponents for wireless infrastructures and mobile devices. PMM also spe-
cializes inultrareliable components for applications in industries such
as aerospace. Infineon is the clear leader in the global MOSFET market.
Our CoolMOSTM and OptiMOSTM families deliver excellent levels of

1.2. Infineon Technologies 3

energy efficiency. We also offer leading-edge solutions based on gal-
lium nitride. In parallel to this product group, we are continuing to ex-
pand our portfolio of complementary drivers and controllers. Battery-
operated devices are one of the fastest-growing applications for power
semiconductors. In the high-frequency and sensor space, we have es-
tablished a strong technology footprint with MEMS microphones (sil-
icon in particular),time-of-flight sensors for 3D cameras and radar ap-
plications. We have already established very successful positions in the
respective markets. At the same time, we can apply our expertise in
these areas to more and more use cases that are set to gain momentum
over the coming years. Key examples here include human-machine in-
teraction (HMI) and facial recognition.

• Digital and Security Solutioms (DSS): The Digital Security Solutions
(DSS) segment has over thirty years’ experience delivering some of the
world’s most challenging and large-scale digital security projects. Our
success here is built on our wealth of expertise in conventional smart
card applications. We are transferring our core skills in payment cards
and government documents to the fast-growing field of embedded se-
curity applications. As digitalization shapes more and more areas of
everyday life, security is becoming a key success factor for applications
across industries as diverse as computing, automotive, Industry 4.0 and
smart homes. Parallel to its role as an independent business segment,
DSS acts as a competence center for our other three segments, support-
ing their efforts to hardwire security functionality into the irrespective
system solutions.

1.2.1 Automotive MC team in Padua

Located in the Development Center of Padova, the Microcontroller (MC)
team is part of the product and testing engineering organization of ATV, fo-
cusing on embedded Flash of automotive and industrial microcontrollers.
The team has different responsibilities:

• To contribute to Non-Volatile Memory (NVM) testing concept, analyz-
ability and manufacturability, validation and analysis planning.

• To provide NVM analysis tools to improve automation.

• To provide embedded firmware and test patterns for productive testing
on NVM.

4 Chapter 1. Introduction

• To perform NVM test-chip analysis for design and technology learning.

• To execute NVM validation and characterization.

• To perform enhanced In-System tests on application conditions.

• To provide Design Validation Reports for Customer presentations.

• To support NVM qualification (product and technology).

• To review test program contents of test package releases (production,
qualification, characterization).

To better respond to these tasks, Padua MC team is divided into two sub-
teams:

• Test Engineering: this group develops embedded software for analysis
and testing. In particular this group is responsible for development of
the Firmware and of test program used for performing Flash memory
tests.

• Product Engineering: this group characterizes Embedded Flash and it
validates robustness of non volatile memories. Its purpose is ensuring
the quality of memory by validating the requirements of customers,
also considering statistical aspect, extending validation to many sam-
ples. It does the analysis, it searches the causes that generate the prob-
lem to solve, and therefore it offers solutions for the designers and tech-
nology experts. The characterization activity tries to push parameters,
like temperature, power and system frequencies, to the limits.

This thesis was entirely realized during an internship with the MC team,
working as member of the Test engineering team.

1.3 Motivation and Related Work

Semiconductor manufacturing is a complex and lengthy process, during which,
voluminous data are generated and collected. This data has received consid-
erable attention from researchers to transfer this complex engineering data
into valuable information and knowledge for process improvement and yield
enhancement [8]. With the rapid progress in artificial intelligence, machine
learning and statistical techniques are widely applied in predicting the out-
comes of manufacturing process and measurement tests. In literature, the

1.3. Motivation and Related Work 5

large amounts of data generated by electrical tests, measurement of physical
parameters, and collection of equipment and process parameters were used
for different purposes such as:

• Virtual Metrology (VM) systems

• Predictive Maintenance (PdM) systems

• Fault Detection (FDC) systems

Virtual Metrology

A VM system consists of a mathematical model that estimates a process re-
sults based on previous metrology measurements, instead of measuring it
practically. In other words, the purpose is to be able to predict these "costly to
measure" quantities from readily available fabrication parameters or sensor
data that can be used without further costs [37]. There are many advantages
to virtual metrology including [3]:

• Reducing wafer scraps: process inspection can be performed through
VM for every wafer to sustain yield performance

• Tighter process control: VM provides a basis to overcome the metrol-
ogy delay problem for run-to-run control

• Increasing throughput: wafer handling from process tool to metrology
tool can be reduced and, thus, production cycle time can be shorted.

VM has been approached by using different techniques, both Linear, such
as Ordinary Least Square (OLS) and Partial Least Squares (PLS) [19], [20],
and Non-Linear, such as Artificial Neural Networks (NNs) [46].

Predictive Maintenance

PdM is a new approach to maintenance management where actions are per-
formed only when necessary, given the fact that PdM systems can statistically
assess the health status of a piece of equipment allowing advance detection of
pending failures, enabling timely pre-failure interventions, thanks generally
to prediction tools based on historical data and statistical inference methods
[36].

Different machine learning techniques were applied in literature for PdM
systems, such as NNs in [45], the Kalman predictor in [34] and Support Vec-
tor Machines in [1] [36].

6 Chapter 1. Introduction

Fault Detection

FDC system does not predict the future behavior of the tool/process, but
aims to detects and classifies different faults in it. FDC systems identify the
root cause of the abnormal behavior. This is of particular interest in the every-
day work of a semiconductor plant: the root causes of faults in a complex pro-
cess may be dozens, sometimes hundreds, and even expert process engineers
have difficulty understanding the pathology and, therefore, how to properly
cope with the faulty process/tool [37]. The FDC systems employ classifica-
tion techniques, for example K-NearestNeighbour (kNN) in [16], Principal
Component-based kNN in [17] and Support Vector Machines (SVMs) in [28]

In following, we describe how ML techniques are used in this thesis, the
goal we want to reach and the challenges faced.

1.4 Problem Statement

The semiconductor manufacturing process, from the first stage up to final
product shipping, is interleaved with the testing of the product itself. There
are mainly two phases:

• The front-end process (FE): in this step the chips (IC) are patterned
and projected on the silicon wafer. In this stage, chips are referred to
as silicon chips or dies, that will be later inside a final package/chip.
However, before the wafer is sent to chip preparation, it goes through
FE testing, where every single die on the wafer is tested, and is ac-
cessed through specialized prober machines (Automatic Test Equip-
ment (ATE)).

• The back-end process (BE): is mainly cutting and packaging of the
wafer to single protected chips. Once packaged the chip goes through
other tests before final shipping, which we refer to as BE testing, in this
stage the chip is accessed trough its standard I/O lines (pads or pins),
the same ones which will be used during its working life.

Throughout the entire process, a microcontroller goes from being a circuit
integrated on a wafer, i.e. die, to a packaged chip, as seen in Figure 1.2. Each
chip has specific (X,Y) coordinates on a wafer, and every wafer has a unique
ID. Usually wafers are organized in groups of 25 or 50, called lots, and each

1.5. Thesis Overview 7

FIGURE 1.2: From wafer to chip: The process start with a wafer
with hundreds of ICs, that goes through FE testing, the dies
who pass the FE are packaged and sent to BE testing, the pass-

ing packaged chips are ready to be shipped

lot has a unique ID as well.

In the automotive MC team in Padua, test engineers are responsible of
developing the Test Program that Infineon’s chips have to go through. Thus,
the quality of the testing algorithms is crucial in order to detect all possible
faulty dies. The aim of this thesis is to build a quality gate tool to our Test
Program, using machine learning techniques as explained in the following
section.

1.5 Thesis Overview

As seen aforementioned, the chip goes through FE then BE testing phases
during which all tests results are stored. Dies that passed the FE testing are
sent to assembly and BE testing. However, some faulty dies may be unde-
tected during the FE tests, yet they will ultimately fail in BE tests. The first
task of our tool is to take into consideration all dies that passed the FE, the
results of each test, and predict whether these dies will pass or fail the BE
test phase. This is done by first extracting chips who passed FE, their FE tests
results, and their corresponding labels (i.e. Fail or Pass) after BE testing, data
extraction is described in Section 4.2. In the context of machine learning, the
test results are the features, and the BE labels present the target. The second
step is to study whom of these features are the ones that are more contribut-
ing in the failure of the chip, also known in this thesis as killer parameters.
We refer to this step as data processing which is detailed in both Section 3.2
and Section 4.3. Once the dataset is ready, it is used to train a ML model. The
model will then, given the FE tests results of new chips, predict the final state
of the chip after the BE. It is important to note that in this step, the dataset is

8 Chapter 1. Introduction

FIGURE 1.3: Qaulity Gate tool big picture

imbalanced, indeed the number of BE failing chips is usually very low com-
pared to the passing ones, which highlight the need of carefully training and
choosing the model for correct classification, details regarding this challenge
is mentioned in Section 3.4.1. The second task of the Quality Gate tool, is to
compare these predictions, to the real labels given to these chips after going
through BE. In case of an accurate model, we expect the labels assigned after
BE testing to be similar to the ones predicted, thus we confirm the reliability
of our test program in detecting failures. The QG tool will either confirm the
results of the BE testing or raise a warning in case of suspicious behavior,
that is a chip is predicted to fail when it actually passed and vice-versa. De-
tails about the selected ML model and the output of the quality gate tool are
presented in Chapter 5.

Fig 1.3 is a simplified representation of the big picture of the entire thesis,
starting from data extraction to final comparison.

9

Chapter 2

Production Test Flows for
Non-Volatile-Memory

2.1 Introduction

Infineon Technologies AG is a leading player and pioneer in automotive elec-
tronics. Thanks to its testing quality, Infineon’s microcontrollers are well-
suited for safety-critical applications to support clean, autonomous and con-
nected cars. This chapter is dedicated to explain the entire testing process
within Infineon, starting by an overview on the tested devices, then a de-
scription of the testflow, and finally the test results and binning. In the end
of this chapter, we describe the thesis outlook in the context of the testing
process explained.

2.2 Device Under Test (DUT)

The production data analyzed during this thesis are related to the AURIXTM

2G microcontroller family produced by Infineon, more specifically the prod-
uct line TC39x. In fact, AURIXTM, standing for Automotive Realtime Inte-
grated NeXt Generation Architecture, is Infineon’s current family of micro-
controllers that serve the precise needs of the automotive industry in terms
of performance and safety. With the second generation being a further enor-
mous increase in performance, AURIXTM TC39x were specifically designed
for electric and/or autonomous vehicles. They are equipped with [39] :

• up to 16 Mbytes of embedded Flash memory

• more than 6 Mbytes of RAM

• up to six 32-bit TriCoreTM processor cores.

10 Chapter 2. Production Test Flows for Non-Volatile-Memory

AURIXTM TC39x characteristics are summed up in Figure 2.1. Each of
these modules in the microcontroller is tested in order to deliver reliable
chips. However, as mentioned in Section 1.2.1 ,Flash memory testing is MC
Padua team’s core business. In fact, embedded Flash (eFlash) memories rep-
resent a large percentage of the area of modern automotive microcontrollers,
thus significantly contribute to the overall product quality and yield. In this
context, our main focus in this thesis will be regarding the tests done on
Flash, and in predicting failure caused by flash related tests.

FIGURE 2.1: AURIX TC39x Feature Table [39]

2.2.1 Flash Memory

The embedded flash memory, is a non volatile memory, that comprises the
following components:

2.2. Device Under Test (DUT) 11

• Flash Standard Interface (FSI) : a programmable finite state machine
that handles sequences to perform erase, program and verify (see fol-
lowing section) operations on all Flash memories.

• ProgramFlash(PFLASH): Divided into one or more banks 1 each con-
nected to a CPU. It is used by the application to store program code
and data constants. In addition to the Flash arrays 2, it also contains an
analog block with pumps and regulators.

• Data Flash (DFLASH): The Data Flash Module is divided in banks
and used to emulate an EEPROM (Electrically Erasable Programmable
Read-Only Memory 3) to store data for user and security applications.
DFLASH read accesses are relatively slow compared to PFLASH ac-
cesses. Data Flash Module also contains regions to store configuration
data in User Configuration Blocks (UCBs), and Configuration Sector
(CFS). This last region is not accessible by user and stores system set-up
data needed for the correct working configuration of the chip. In addi-
tion to the Flash Arrays, there is an analog block containing pumps and
regulators.

An AurixTM TC39x contains a total of 16 MB of Program Flash memory.
Each Program Flash memory consists of 5 memory banks with a size of 3
MB and 1 with the size of 1 MB. Each bank can be subdivided into physical
sectors of 1 MB, so every Program Flash bank consists of 3 physical sectors,
with the exception of the 1 MB size one, that has only one physical sector
[24].

In this thesis, all tests done on all Flash components, banks and sectors
are considered. In fact, for flash testing, an approach, based on a software
solution for embedded memories testing called Flash Software Implemented
Self-Test (FSIST), is followed. This technique consists of using the computing
resources of the Device Under Test (DUT) to test its eFlash memory itself.
The FSISTs are portions of software executed by the DUT’s CPU, and could
perform the following tests [10]

• Erase Command: performs erase operation on the flash array and mea-
sures the erase time, pump voltage used, number of erased sectors, etc.

1a Flash module (e.g PFLASH) is divided in separate banks. The banks support concur-
rent operations with some limitations due to common logic

2Flash array is the physical memory used to store information.
3EEPROM is a type of non-volatile memory, used in electronic devices to store small

amounts of data that must be maintained when power is off.

12 Chapter 2. Production Test Flows for Non-Volatile-Memory

According to the module design specification, it is possible to erase dif-
ferent cluster of cells.

• Program Command: performs a program operation with some particu-
lar patterns, and measure program time and pump load used. Possible
patterns could be solid patterns (Program all zeros, Program all ones)
and checkerboard patterns (alternated zeros and ones).

• Verify Command: the verify test reads all the Flash memory and com-
pares the read content (actual content) with the one previously injected
during the programming/erasing step (expected content). it is possible
to verify all kind of patterns, verify all zeros, verify all ones, verify
checkerboard patterns.

• Disturb and Stress Command: executes disturb and stress on the flash
array to stimulate the appearance of faults. Different patterns of disturb
and stress are performed, such as Gate Disturb, Drain disturb, side wall
stress, Burn-In all, etc.

• Redundancy Command: This command handle the repair of the flash
by computing how to allocate the redundancy resources in order to re-
pair the failed Flash cells detected during the verify.

• Analogue Command: performs analogue measurements such as cur-
rent, voltage and frequencies, in order to perform analogue tuning.

• Trimming Command: is used to trigger tuning tests on eFlash. every
time an erase and verify are performed, trimming is performed to ad-
just the parameters to get the minimum bit erros. Trimming is done on
the following parameters: Voltages done chip to chip (aka CTCT Chip
To Chip Trimming), and Flash Oscillator trimming.

• Cycling Command: cycling is a combination of erase and program op-
erations done to disturb the flash.

• Functional Command: contains several test objects that cannot be linked
to any other FSIST command but belong to functional testing.

Each of these commands have a set of failing criteria, i.e. specifications, if
a test does not meet these specifications it fails and the chip is binned.
Indeed, during FE testing some chips are failing during the aforementioned
flash tests if specifications aren’t met. The following section describe in de-
tails the entire test flow, and the binning of chips.

2.3. Non-Volatile-Memory Production Test Flow 13

2.3 Non-Volatile-Memory Production Test Flow

2.3.1 Front End Insertions

The FE test stages can be divided into sub-phases which differ in the testing
temperature (from−40◦ to 125◦ Celsius), and usually referred to respectively
as S1 and S2. Each test phase is composed of a multiple single tests which
are identified by a unique number called test number (TN). For each inser-
tion, we define a test suite, which is a sequence of test routines that are usu-
ally composed of the following steps: Stress, Disturb, Program/Erase, Verify,
Repair, Flash scan, Analogue measurement and trimming. Note that, this
sequence is not strictly followed, it may happen that after a single Erase, sev-
eral kinds of verify are executed and not all of them are followed by a repair.
However, it is possible to differentiate these single tests by their unique TN.

As mentioned before in Section 2.2.1, when describing FSIST commands,
each of these tests produce a set of measurements, that according to certain
specifications, it is decided whether a die should pass or fail that test. For
example, given an erase command, a test can be declared FAIL based on
the following criteria: Erase time too long or Pump load limits exceeded.
For a verify command, a test will fail if the number of SBER detected exceed
SBER_LIMIT, i.e. accepted limit on Single Bit Error found, on overall selected
banks.

Now for each test, if a die failed a test not meeting the criteria, it is filtered
out and it does not undergo the rest of the test-flow. By the end of the FE test,
bad dies are separated from good dies when cutting the wafer, and only dies
that passed all the S1 and S2 insertions remain and will be packaged.

2.3.2 Assembly and Packaging

As a first step, the wafer is cut into singular dies. These dies are actually
functional but are impossible to use without an external protective package,
indeed any scratch would impact the reliability of the chip, and any shock
would cause its failure. Therefore, as a second step, the individual chips
are placed in a package and terminals are attached. The result is a finished
semiconductor device, that should go through several other tests, i.e. BE
testing, in order to be shipped to the customer in the highest quality.

14 Chapter 2. Production Test Flows for Non-Volatile-Memory

2.3.3 Back End

Similar to FE testing, Back End tests can also be divided into sub-phases with
different testing temperatures. However, the first step in BE testing is IBIS,
IBIS testing is the crucial part of BE testing, as it is the step where most stress
is applied on packaged chips, the following insertions usually do not bring
any additional test coverage 4 with respect to NVM operations. For that rea-
son, in this thesis we consider the labels assigned right after IBIS testing as a
final label of the packaged chip, yet we will refer to it as BE. Figure 2.2 is a
representation of the entire test process.

FIGURE 2.2: TestFlow

2.3.4 Test Binning

When a chip fail the testing it is discarded into specific bins according to the
type of the failing part of the chip, or the failing test. There are two types of
BINS: Hard-Bins and Soft-Bins.

• HBIN: a HBIN is defined by a single-digit number indicating the con-
tainer index for failing devices depending on the filing module. For
example, the HBIN1 is the bin that contains all the passing devices.
HBIN8 is the BIN that contains all the chips that have failed because
of flash related reasons. As we are interested in this thesis in the Flash
binning, only these failing chips of this bin are considered.

• SBIN: a soft bin could be seen as a sub-bin of the HBIN where the fail-
ing devices are binned based on particular module tests, e.g. for flash
testing, a chip exceeded the number of SBER tolerated in a verify test
is binned in HB8 and a certain SBIN. SBIN is defined by a three-digit
number which more precisely identifies the faults causing the rejection.

4Test Coverage: the ability of the test to detect a given set of faults that may occur on the
DUT. It is the ratio of detected failures over the total failures

2.4. Test Results 15

FIGURE 2.3: Passing and failing chips distributed into Bins [32]

In our case, we will consider only the chips that passed the FE testing, so
chips in HBIN1 after FE tests, among these chips we consider only the ones
that either failed or passed IBIS testing for flash related issues, therefore we
are considering passing chips, and chips binned in HBIN8 after IBIS tests.
Further details about the dataset are provided in Chapter 4.

2.4 Test Results

All the test algorithms produce some results, which contain the results of the
test and some other additional information. According to the specific test
algorithm, we have two kind of results:

• Bitmaps: are special output of a verify and a repair test. As its name
indicate, a bitmap is a topographical map of bit error position. This
kind of results is not used in this thesis, and therefore is not detailed in
this section and it will not be again referenced in the following chapters.

• Parametric results: are the results returned by FSIST tests and that can
be expressed in numeric format via two parametric tables , the result
table and the debug table. These data are stored into reserved RAM por-
tions during the tests execution and are then downloaded by the ATE
which save them in an Infineon’s shared database for data analysis pur-
pose.

16 Chapter 2. Production Test Flows for Non-Volatile-Memory

Result Table

The result table is the main output of a test algorithm, it comprises up to 6
parametric results. Each FSIST fills the result table with different informa-
tion, depending on the relevance it has for that specific test. In table 2.1 the
result table of the Program, Erase and Verify algorithms is reported [10] .

Parametrs Program Erase Verify

PARAM1 Program Time [s] Erase time [s] Number of SBER
PARAM2 Pump Max Load

[%]
Pump Max Load
[%]

Number of MBER

PARAM3 Pump Avg Load
[%]

Pump Avg Load
[%]

Number of failing zeros

PARAM4 Pump Sigma
Load [%]

Number of failing ones

PARAM5 Number of RED BL (i.e
Redundancy bit line)
used.
Number of RED
MNSEC (i.e Redun-
dancy word line) used.

PARAM6 Number of new RED BL
used.
Number of new RED
MNSEC used.

TABLE 2.1: Example of Result tables of Program, Erase, and
verify commands

Debug Table

The debug table is a much larger results table. It collects all the other in-
formation that may be useful to know about the executed test algorithm. It
is optional and it is actually dumped only when expressively required for
debug purposes. For example the program test reports in the debug table:
Number of programmed pages, Mean page program time, Max page pro-
gram time, etc.

2.5 Data Source For ML

In this thesis, as explained in chapter 1, we aim to predict the final state i.e.
Pass/Fail of the packaged chip based on the passed FE tests that it went

2.5. Data Source For ML 17

through, that is given a new chip that passed FE, depending on the results
of these test, we predict whether it will fail or pass the BE. However, as ex-
plained aforementioned, each testing algorithm produce two tables of 4 to
6 parameters. Therefore, for each chip, each parameter of each test in FE is
a feature in our ML problem, lot and wafer ID are excluded, and the final
label assigned after IBIS, will be our target. The final label assigned is ei-
ther HBIN1 indicating pass or HBIN8 indicating flash related fail. However,
in HBIN8, we have different possible failures indicated by soft bins as ex-
plained previously, some of these soft bins only have less than 10 instances,
some occurs more than others in the dataset, and some are easier differenti-
ated it from pass than others. For that reason, we will focus on this thesis,
as a first step, on predicting one of the most occurring SBIN, SBIN555 (anal-
ysis regarding the choice of SBIN are provided in appendix). Therefore, the
dataset is re-labeled as following, only samples with the selected SBIN are
designated by a binary "0" indicating fail and all others (even samples that
had a different fail mode, i.e different SBIN) are designated by a binary "1"
indicating pass. This model thus uses a binary classifier, however in next
step, other SBINs could be considered, or as well as a multi-classifier pre-
dicting different SBINs. Further details regarding the data are explained in
Chapter 4

19

Chapter 3

Methodological background

3.1 Introduction

This chapter is dedicated to explain the theory behind the techniques used
in this thesis work. According to usual workflow of Machine Learning [22]
[9], the work is divided in four steps: data extraction, data processing, model
selection and performance evaluation. The following chapter is structured as
following, we first describe the statistics done on data and feature engineer-
ing 1 techniques used, we then introduce the challenge of data imbalance and
present the proposed solutions, finally we define the possible classifiers we
are using, the data used to train and test them, and how to evaluate them.

3.2 Feature Engineering

This section is dedicated to explain the theory behind the techniques adopted
for feature filtering and processing.

3.2.1 Density Estimation

When the distribution of the data is unknown, it is rather useful to be esti-
mated in order to understand the behavior of the data. There are two main
density estimation techniques we use in order to visualize our data:

• Kernel Density Estimation (KDE) : Kernel density estimation (KDE) is
a non-parametric way to model the probability distribution that gen-
erated a dataset. A basic example is the histogram, an histogram di-
vides the data into discrete bins, counts the number of points that fall in
each bin, and then visualizes the results in an intuitive manner. Kernel

1feature engineering field contains a variety of issues and tasks. The most representa-
tive issues and tasks are feature transformation, feature generation and extraction, feature
selection, automatic feature engineering, and feature analysis and evaluation

20 Chapter 3. Methodological background

density estimates are closely related to histograms, but can be enriched
with properties such as smoothness or continuity by using a suitable
kernel [30]. In this thesis, we use the python function kdeplot, with a
typical kernel that is the Gaussian kernel, to plot the density distribu-
tion of our data [31].

• Probability barplot: Another way to visualize the distribution of data,
is to measure the probability of occurrence of each possible values in
the data. This is usually done when dealing with data with discrete
values.

These techniques provide an accessible way to see and understand trends,
outliers, and patterns in data. Indeed these techniques were used in this the-
sis to analyze the features. In fact, in case of features with continuous values,
KDE was used to present the distribution of the measurements, meanwhile
for features with discrete values, it was more reasonable to use histograms
and barplots.

3.2.2 Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov K-S test [21], is a non-parametric test that com-
pare continuous or discontinuous probability distributions. It could be used
to compare a representative sample of data with a reference probability dis-
tribution, which is usually referred to as one-sample K–S test, or to compare
two samples, usually referred to as two-sample K–S test. In this thesis, we
are interested in the two-sample K–S test.

The K-S test is actually constructed as a statistical hypothesis test. We de-
termine a null hypothesis, that the two samples we are testing come from the
same distribution. Then we search for evidence that this hypothesis should
be rejected. This is done by computing the K-S statistic D, if D exceeds a cer-
tain confidence level, we reject the null hypothesis that the samples are from
the same distribution. On the other hand if the K-S statistic D is very small
we cannot reject the hypothesis that the distributions of the two samples are
the same.

The Kolmogorov–Smirnov statistic is defined as:

Dn,m = supx|(F1,n(x)− F2,m(x)| (3.1)

Where where F1,n and F2,m are the empirical distribution functions of the
first and the second sample respectively, sup the supremum function, and

3.2. Feature Engineering 21

FIGURE 3.1: Illustration of the two-sample Kol-
mogorov–Smirnov statistic. Red and blue lines each cor-
respond to an empirical distribution function, and the black

arrow is the two-sample KS statistic [2]

n, m are the sizes of first and second sample respectively. It could also be seen
as the maximum vertical distance between the empirical cumulative distri-
bution functions of the two samples [41], as in figure 3.1.

During this thesis, K-S test was a very efficient way to study the signifi-
cance of the features. In fact, K-S test was used to determine if for a certain
feature, the failing instances and the passing ones were different from each
other. In other words, if we take one feature, and consider a sample of only
passing chips and a sample of only failing chips, we can make use of K-S
statistics to know whether these two samples are different or similar, in case
of a very small K-S statistic the failing chips sample is similar to the pass-
ing chips sample and this feature is not actually bringing any information
on how to separate these two classes. These results are better described in
Chapter 4.

3.2.3 Correlation Analysis

One of the most common approaches to dimensionality reduction is correla-
tion analysis [35] [7], the purpose of this analysis is to identify the correlations
between each pair of features, or between a feature and the target, to under-
stand which features are the most relevant to the model.
The correlation between two variables is defined as:

ρx,y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
(3.2)

22 Chapter 3. Methodological background

where X and Y are two vectors, with mean values µX and µY and standard
deviations σX and σY. E[.] is the expected value operator, and cov denotes
covariance. The correlation coefficient ρX,Y cannot exceed 1 in absolute value,
and is a measure of the degree of linear relationship between two random
variables.
The closer the correlation coefficient in absolute value to 1 the more closely
the two variables are related. In case of correlation between a feature and
the target, a high correlation shows that the feature is strongly related to the
target, and therefore an interesting feature to keep. However, in case of two
features, a high correlation means these two features are related, therefore
bringing the same information to the model, and it is rather more reasonable
to keep only one of them. Note that, ρX,Y is a measure of linear correlation,
thus it does not take into consideration non linear correlations.

In order to exploit linear relationships between all pair of features, we
compute the correlation matrix, given the matrix X = [X1, . . . , Xn]:

X =

x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
...

xd1 xd2 xd3 . . . xdn

Where X1, X2, . . . , Xn vectors are the n features of our dataset, d is the size

of instances in our dataset. The correlation matrix RX could be defined as
following:

RX =

ρX1,X1 ρX1,X2 ρX1,X3 . . . ρX1,Xn

ρX2,X1 ρX2,X2 ρX2,X3 . . . ρX2,Xn
...

...
...

ρXn,X1 ρXn,X2 ρXn,X3 . . . ρXn,Xn

RX is a symmetric matrix with the correlation measures, ρXi,Xj is the cor-

relation coefficient between the ith and jth features, where i, j = {1, . . . , n},
and n is the number of features. The correlation matrix for our features is
computed and analyzed in Chapter 4.

3.2.4 Data Normalization

To better describe the data normalization, some definitions of the related
statistics are firstly given:

• Mean: the statistical mean refers to the mean or average that is used to
derive the central value of a discrete set of numbers, it is determined by

3.2. Feature Engineering 23

adding all the data points in a variable X and then dividing the total by
the number of points:

µX =
∑i xi

n
(3.3)

Where µX is the mean value of the variable X, n is the size of X, and xi

is the ith point of X.

• Standard deviation: often represented by σ, is a statistical parame-
ter that measures the dispersion of a dataset relative to its mean. It
is calculated as the square root of variance by determining the varia-
tion between each data point relative to the mean, for a variable X=
[x1, . . . , xn], σ is calculated as following:

σ =

√
∑i(xi − µX)

n
(3.4)

If the data points are further from the mean, there is a higher deviation
within the data set; thus, the more spread out the data, the higher the
standard deviation. A low standard deviation means that most of the
numbers are close to the average. Note that, this statistic is also useful
to get an idea about the range of values of our features in this work.

In the context of machine learning, while training the model, when fea-
tures have different range of values, data normalization is rather important to
change the values of features to a common scale without changing its behav-
ior or nature, thus no feature has more importance than another due to hav-
ing larger values. The common feature normalization technique we adopting
in this thesis is Z Normalization (Standardization) [43] , that is computed as
following:

Xi,scaled =
Xi − µi

σX
(3.5)

Note that in case of variable where all observations have the exact same
value, σX will be equal to zero, and hence data normalization cannot be com-
puted for such variable. However, a feature with σ = 0 is actually not affect-
ing the final target, as it is completely uncorrelated to the class, so it can be
dropped anyway.

The importance of data normalization actually depends on the choice of
the ML model. Some models exploit "Distance" or "Similarities" between data
samples, such as SVM, in this case, if the data is not scaled, some features may
be given higher priority than others. On the other hand, other graph-based

24 Chapter 3. Methodological background

models, such as Random forest and Naive Bayes, are invariant to data scal-
ing. Some other models like Neural Network may not necessarily need data
scaling, but that could help speed up the learning and lead to faster conver-
gence. Further details about the ML algorithms are presented in Section 3.4.2.

3.3 Dimensionality Reduction

As we are dealing with a lot of possible features, it is important to consider di-
mensionality reduction techniques. In this thesis we give priority to filtering
techniques, that is, choosing features based on their correlations and proper-
ties as explained above, however, feature selection and reduction techniques
were studied. In literature there are two ways to reduce the dimensions and
granularity of features:

• Feature Selection: is selecting the most informative features and ex-
cluding the least informative ones without changing them. Example of
feature selection techniques is to consider random forest algorithm to
rank features by importance, and take the top ones. [27]

• Feature Reduction: is transforming features into a lower dimension,
creating new features that are a combination of the original features.
The most known and effective technique for feature reduction is PCA
(Principal Component Analysis) [44].

However, these two techniques have their pros and cons, Fig 3.2 is a sum-
mary of the difference between these two techniques. In fact, reduction tech-
nique are rather efficient yet such methods do not select a set of features
present in the original dataset, and thus cannot be used to know the killer
features in the testflow, in other words, we will not be able to know which
feature, i.e FE test is influencing the chip failure in IBIS. On the other hand,
feature reduction techniques are not robust to feature set variation. In fact,
test program may slightly change in terms of test time, number of tests and
flow tests, hence a variation in the features set. Therefore we want to keep
track of the exact name of the killer test, to extend the same ML model to
other test programs in the future.

3.4. Machine Learning Techniques 25

FIGURE 3.2: Feature selection Vs feature reduction

3.4 Machine Learning Techniques

3.4.1 Imbalanced Classification

The imbalanced data is characterized by having many more instances of cer-
tain classes than others [33]. In our case, fail instances are rare compared to
pass instances, therefore respectively the minority and majority class. The
fundamental issue with the imbalanced learning problem is the ability of im-
balanced data to significantly compromise the performance of most standard
learning algorithms [15]. In fact, most learning techniques are designed to
maximize the expected accuracy by empirical risk minimization. That is to
say, looking for the method that minimizes the loss as follows :

min
f

∑
i

L(f (xi), yi) (3.6)

where x is the input, f (x) is the predicted output, and y ∈ 1, 0 is the real
label, as also seen in Fig. 3.3. However, when the data is imbalanced, as in
our case, the majority class is Pass instances, labeled as y = 1, the minimum
value of (3.6) may be achieved by setting f to be as simple as f (x) ≡ 1, ∀x. In
other words, a " high accuracy" classifier may be achieved simply by declaring
or classifying all samples as being in the majority class [6]. A model who
always predict pass is actually useless, for that, different techniques were
suggested in literature to deal with the imbalance challenge, whether tech-
niques to re-balance the dataset, or techniques to bias the model in order to

26 Chapter 3. Methodological background

take into consideration the imbalance issue of dataset. In the following sec-
tion we summarize the techniques we tried in this thesis:

• Data level:

– undersampling

– oversampling

• Algorithm level:

– Cost-Sensitive Learning (CSL)

– Balanced Random Forest

However various other techniques are available based on different ML
problems, the interested reader may refer to [15].

FIGURE 3.3: Machine learning workflow

Balancing Data:

Without any changes in the learning algorithm, we need to modify the dataset
itself to provide a balanced training set for the classifier. There are two ways
to balance the dataset, augmenting the minority class to be equal to the ma-
jority or reducing the number of majority class instances to be equal to the
minority class, these techniques are called respectively Oversampling and
Undersampling.

3.4. Machine Learning Techniques 27

• Oversampling: consist of augmenting the minority class, by adding
replicates of failing samples. Although this solves the imbalance is-
sue, it may lead to an increase in computation time and to overfit due
to a large number of identical minority training instances. However,
another recommended oversampling technique is to create new syn-
thetic instances of the minority class, instead of only replications, this
technique is known as SMOTE oversampling (Synthetic Minority Over-
sampling) and it creates entries that are interpolations of the minority
class [4], which is one of the techniques adopted in this work, the results
are presented in Chapter 5.

• Undersampling: consist of randomly picking samples from the major-
ity class, thus removes data from the original data set. Although this
may reduce the number of the training instances, but will not append
any new data to the original dataset. Results of this technique are also
presented in Chapter 5.

ML Algorithms For Imbalanced Data:

Instead of creating a balanced data set for the model to train, other approach
consist of changing the ML algorithm to handle the imbalance of data. Two
approaches are suggested in this thesis:

• Cost-Sensitive algorithms : consists in using models which take into
consideration the unbalancing of the data by weighting the training
samples differently, depending on the class they belong to [13]. In-
tuitively, we want to give higher weight to minority class and lower
weight to majority class. A possible way to set weights is to consider
the ratio between the minority and majority class.

• Balanced Random Forest (BRF) : inspired by Random Forest to ensem-
ble trees induced from balanced down-sampled data. The BRF algo-
rithm does the following [5]:

– For each iteration in random forest, draw a bootstrap sample from
the minority class. Randomly draw the same number of cases,
with replacement, from the majority class.

– Induce a classification tree from the data to maximum size, with-
out pruning. The tree is induced with the CART algorithm (Clas-
sification And Regression Tree algorithm) [29], with the following

28 Chapter 3. Methodological background

modification: at each node, instead of searching through all fea-
tures for the optimal split, only search through a set of randomly
selected features.

– Repeat the two steps above for the number of times desired. Ag-
gregate the predictions of the ensemble and make the final predic-
tion.

3.4.2 ML Classifiers

Several machine learning classifiers could be used to predict whether a chip
is among the Pass class or the Fail class based on data measured on FE test,
in this section we provide an overview of the classifiers studied in this thesis
work. We use three different approaches:

• Support Vector Machine (SVM): as a techniques based on similarity
between data samples.

• Random Forest (RF): as graph-based technique.

• Neural network (NN): as a deep learning approach.

Support Vector Machine:

In a nutshell, SVM is a supervised machine learning algorithm that is based
on the idea of finding an hyperplane that best divides a dataset into two
classes, as shown in the Figure 3.4. In fact, in case of linearly separated, We
suppose that a training dataset S is available

S = {xi ∈ R1×d, yi ∈ {0, 1}}, i = 1, . . . n. (3.7)

the values -1,1 are assigned to the two classes which the data belong to, could
be referred to as class A and class B, for example yi = −1 if the sample ∈ class
A, and yi = 1 if the sample ∈ class B.

The hyperplane F0 in the Rd space is defined as:

F0 = {x| f (x) = xβ + β0 = 0} (3.8)

where β ∈ Rd with ‖β‖ . = 1. The classification is then based on the choice
of f (x) (and consequently of F0):

3.4. Machine Learning Techniques 29

FIGURE 3.4: linearly separable SVM classification problem [36]

for a new sample xnew 6∈ S, we classify1 ynew = −1 if f (xnew) > 0

2 ynew = 1 if f (xnew) < 0
(3.9)

Since, by assumption, the two classes are separable, then it is possible to
find a function f (x) s.t.

yi f (x) > 0 ∀i (3.10)

We choose the hyperplane yielding the largest margin M between the two
classes as seen in Fig 3.4.

This can be rephrased in terms of the maximization problem:

max
β,β0,‖β‖.

M subject to yi f (x) > 1, i = 1, . . . , n (3.11)

that can be further translated into a more convenient minimization problem:

min
β,β0
‖β‖ . subject to yi f (x) > 1, i = 1, . . . , n (3.12)

The best hyperplane is found by optimum β that maximizes the margin.
The boundaries of the defined margin, are called the support vectors [36].

However, in case of non linearly separable data, SVM is employed in com-
bination with Kernel Methods. To put it briefly, the idea of kernel methods
is to map the non-linear separable dataset into a higher dimensional space
where it is possible to find an hyperplane that can separate the samples. The
kernel function defines inner product of the mapping function [36].

30 Chapter 3. Methodological background

Popular choices for the kernel function K are:

• Polynomial: K(xi, xj) = (1 + 〈xi, xj〉)d

• Radial Basis (RBF): K(xi, xj) = exp(−‖xi−xj‖
σ2)

• Neural network: K(xi, xj) = tanh(〈xi, xj〉+ b)

Radial Basis kernels are the most widely used and the ones considered in
this thesis.

Random Forest:

Decision Tree Model: Decision tree models are a non-parametric super-
vised learning method used for classification and regression. The goal is to
create a model that predicts the value of a target variable by learning simple
decision rules inferred from the data features [29]. In a decision tree, each in-
ternal node represents a “question” on an attribute (e.g. whether the number
of SBER of a verify test is above a certain value or no, see Section 2.3.1 and
Section 2.4), each branch represents the outcome of the question, and each
leaf node represents a class label. Each branch can generate other branches
until a a final predicted labels are reached, which correspond to the leaves
of the tree. Figure 3.5 , is an example of a simple decision tree, using Gini
inpurity as splitting quality metric, and a maximum depth set to 3 [29]

Random Forest Random forest classifiers are among the widely known and
the most robust classifiers [12]. A random forest is a meta estimator that fits a
number of decision tree classifiers on various sub-samples of the dataset and
uses averaging to improve the predictive accuracy and control overfitting. In
random forests, each tree in the ensemble is built from a sample drawn with
replacement (i.e., a bootstrap sample) from the training set, see Fig. 3.6. In
addition, when splitting a node during the construction of the tree, the cho-
sen split is no longer the best split among all features. Instead, the split that
is picked is the best split among a random subset of the features. As a re-
sult of this randomness, the bias of the forest usually slightly increases(with
respect to the bias of a single non-random tree) but,due to averaging, its vari-
ance also decreases, usually more than compensating for the increase in bias,
hence yielding an overall better model, less prone to overfitting.

3.4. Machine Learning Techniques 31

FLASH_R_D_CNT_SGVT_1_32_ST200_VT_SG_V0_1_20V_55131042_S1 <= 18182715.0
gini = 0.495

samples = 117
value = [98, 80]

class = 0

FLASH_T_B_FH_E_TM_VDDC_55131281_S2 <= 0.213
gini = 0.383

samples = 66
value = [25, 72]

class = 1

True

FLASH_T_B_FC_E_PSEUDO_UM_VDDC_55131521_S2 <= 0.212
gini = 0.178

samples = 51
value = [73, 8]

class = 0

False

gini = 0.214
samples = 57

value = [10, 72]
class = 1

gini = 0.0
samples = 9

value = [15, 0]
class = 0

gini = 0.282
samples = 29
value = [39, 8]

class = 0

gini = 0.0
samples = 22
value = [34, 0]

class = 0

FIGURE 3.5: Decision Tree Example

FIGURE 3.6: Random Forest overview

32 Chapter 3. Methodological background

Neural network

In this thesis, we are using a feedforward artificial neural network, some-
times referred to as multi-layer perceptron. It consists of, at least, three lay-
ers of nodes: an input layer, a hidden layer and an output layer. Except for
the input nodes, each node is a neuron that uses a nonlinear activation func-
tion. It utilizes a supervised learning technique called backpropagation for
training and is able to distinguish data that is not linearly separable [14]. The
model uses a ReLU activation function for the hidden layers:

ReLU : f (x) = max(0, x) (3.13)

and a sigmoid function for its output single neuron

sigmoid : f (x) =
1

1 + exp−x (3.14)

The usage of a sigmoid activation function in the output node enables
to predict a probability, thus the the predictor does not produce a label, but
rather a probability of belonging to one or the other class. The predicted
label is then the one corresponding to the most likely class. In this thesis, the
implemented neural network is constituted of2

• 3 hidden layers.

• 512 nodes with 0.5 dropout

• optimizer: Adamax

• L2 Regularizer 3 of the neurons weights of 10−3

• batch size: 64

• epochs: 40

Note that the results obtained by the NN were not as promising as the
other models, thus we will not present its results in this thesis. However,
further study of these model will be among the next steps of this thesis.

These three models are able to predict a probability, i.e. to predict how
likely it is for a new instance to belong to a certain class. Given a new chip,

2These hyperparameters were chosen based on a grid search for the model’s optimization
3The regularization is a technique to discourage the increasing of the complexity of a

model during its training.

3.5. Performance Metrics 33

the model predict a measure of probability to be among the fail class, if that
probability surpass a certain threshold the chip is classified as fail. The de-
fault threshold is usually set to 0.5. These predicted probabilities allow us to
to better evaluate our ML model as seen in Section 3.5 and Chapter 5

3.5 Performance Metrics

Once a model is chosen and trained, it is rather important to find out how
effective is this model and its performance on new test datasets. However,
the choice of the evaluation metrics is very important, in fact, different per-
formance metrics are used to evaluate different Machine Learning problems.
In this thesis, as we are facing a class imbalance challenge, we pay a lot of
attention to how we evaluate the goodness of our predictions. In fact, some
of the known and usually used metrics is the accuracy, i.e. the percentage of
correctly classified input points with respect to the total amount of them, this
metric can be very misleading in our case, where the fail class is the minority
class, if a model always predict Pass, the accuracy will be very high, as the
only miss-classified instances will be the true fails that are anyway very few.
Although this accuracy is high, the model is indeed useless.
In such cases, it is more suitable to deal with each class separately, and to be
able to visualize what happens when a prediction is performed on a test set.
This could be done by considering the confusion matrix and some metrics that
could be easily derived from it.

Confusion Matrix

The Confusion matrix is one of the most intuitive and easiest performance
metric in classification problems. Indeed, calculating a confusion matrix can
give a better idea of what the model is getting right and what types of errors
it is making. In binary classification, the confusion matrix is a 2× 2 matrix,
where each column of the matrix represents a possible predicted condition
(output of the classifier), while each row of the matrix represents a possible
true condition (ground truth), and is shown in the following graph 3.7

The Confusion matrix in itself is not a performance measure, however,
most of the metrics could be derived from the numbers inside it. Taking
into consideration that we define the Fail class as the positive class and the
Pass class as the negative class, we can describe the terms associated to the
confusion matrix as following:

34 Chapter 3. Methodological background

FIGURE 3.7: Confusion matrix and terminology for a binary
classification problem

• True Positive (TP): The positives instances that were correctly classified,
i.e. the fail chips that were indeed predicted as fail.

• False Positive (FP): The negative instances that were misclassified, i.e.
the pass chips that were predicted as fail.

• False Negative (FN): The Positive instances that were classified as neg-
ative, i.e. the fail chips that were predicted as pass

• True Negative (TN): The negative instances that was correctly classi-
fied, i.e. the pass chips that were indeed predicted as pass.

Based on the confusion matrix, the following derivations are developed:

True Positive Rate TPR:

A measure of how well the model is able to detect the positive class. It is also
referred to as Recall, or Sensitivity and it is defined as following:

TPR =
TP

TP + FN
(3.15)

The higher is the TPR, the better is the model.

False Positive Rate FPR:

The FPR is the ratio of negative instances that were misclassified as Positive
to the total number of negative instances. It could be seen as 1- TNR, i.e True

3.5. Performance Metrics 35

Negative Rate, also referred to as Specificity, thus the lowest is the FPR, the
higher is the specificity, the better is the model in detecting the negative class.
It is defined as follows:

FPR =
FP

FP + TN
= 1− TN

FP + TN
(3.16)

The lower is the FPR, the better is the model.
In the literature of machine learning, some other metrics are often used.

For example, the precision of a classifier is defined as:

• Precision of the Fail class: PrecisionFail =
TP

TP+FP

• Precision of Pass class: PrecisionPass =
TN

TN+FN

Precision is known as a measure of exactness, in other words when pre-
dicting a class how many points of the other class the model is including.
For example when predicting fail, how many of these predictions is actually
Pass instances and not fail. The less these instances, the higher is the preci-
sion of the model in predicting failures. However this measure may not be a
good candidate in case of imbalanced dataset since the pass instances are too
many compared to the fail ones. However this measure is related to the FPR,
indeed a low FPR means a small number of FP, the lower is the FP the better
is the precision.

Hence, in this thesis, we will focus on the TPR and FPR, as the two more
adequate metrics to evaluate the model.

Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) curve is a graphic illustration
of the performance of a binary classifier based on TPR and FPR. The ROC
curve is plotted with TPR against the FPR at different classification thresh-
olds, where TPR is on y-axis and FPR is on the x-axis.
An ideal ROC curve goes through TPR = 1, FPR = 0, which means that under
some threshold, we can achieve 100% accuracy classification. On the other
hand, a classifier based purely on a random guess is expected to give points
lying along the diagonal such that FPR = TPR. A practical classifier is some-
where in between. As seen in Figure the more the curve is closer to the ideal
case, the more accurate is our classifier.

The area under the ROC curve (AUC) is a useful performance measure-
ment for classification problem at various thresholds settings. Although it
could be seen from the ROC plot, it is useful to also have a numerical value

36 Chapter 3. Methodological background

FIGURE 3.8: ROC curves [23]

that summarizes the entire ROC curve. In fact, for the ideal classifier, AUC =

1, for the random guess, AUC = 0.5, and for a practical classifier, 0.5 <

AUC < 1. In fact, an AUC near 1 means the model has good measure of
separability whereas AUC near 0 means it has worst measure of separability.
In order to visualize the separation of the two classes, it is recommended to
plot the distribution of predicted probabilities (explained in Section 3.4.2). In
Figures 3.9, 3.10 and 3.11, the red curve presents the positive class (i.e Fail
chips), the green curve presents negative class (i.e Pass chips), and the x-axis
indicate the predicted probability to be among the positive class (i.e. proba-
bility to fail). In an ideal situation, such as Figure 3.9, the two curves do not
overlap at all, which means the model has an ideal measure of separability,
failing chips have high predicted probabilities to fail (i.e. above 0.5) thus it is
perfectly possible to distinguish between positive class and negative class.

FIGURE 3.9: distribution of predicted probabilities to fail in
ideal case [25]

3.5. Performance Metrics 37

On the other hand, a model is not ideal, and it may missclassify some
instances, i.e certain fail instances could have a predicted probability to fail
less than the threshold and therefore classified as pass, these instances are
the FN in Figure 3.10. The model could also predict a high probability to fail
for the pass instances (higher than threshold 0.5), these instances will thus be
classified among the fail class, and are the FP presented in the same figure.
The number of miss-classifications, FP and FN could be maximized or mini-
mized by changing the threshold. The threshold could be tuned according to
our requirements, further details are provided in Chapter 5.

FIGURE 3.10: distribution of predicted probabilities to fail in
practical case [25]

FIGURE 3.11: distribution of predicted probabilities to fail in
worst case [25]

In the worst situation, the AUC is approximately 0.5, which mean the
model has no discrimination capacity to distinguish between positive class
and negative class, as seen in Figure 3.11.

38 Chapter 3. Methodological background

3.6 Data Split

In some real cases, it is not always possible to get new data to test the ML
model, thus it is always easier to split the entire available dataset into two
datasets:

• Training set: to train the model, tune the hyperparameters, and any
other activity concerning the development of the model.

• Test set: to test the model, and estimate an unbiased assessment of the
model’s performance. It is crucial not to use these data when training
and selecting the model but only to evaluate it.

As obvious as it may look, splitting an imbalanced data is not an easy task.
It should rather be handled very carefully in order to guarantee a trustful
good performance of the model. In the following,we shed the light on three
important data partitioning tips :

• Balancing techniques when splitting data

• Stratification

• Cross validation

Balancing Techniques when Splitting Data:

Since we are using balancing techniques to overcome the imbalance issue,
it is necessary to note that the data splitting should always be done before
balancing, thus only the training set should be balanced, because in real life
cases, new data will be imbalanced, and the model should be able to predict
correctly the classes of these data. On the other hand, balancing the data us-
ing oversampling technique before splitting may lead to overfitting problem.
In fact, if we oversample the data by replicating the instances of minority
class, then randomly split the data to train and test, we may have in our test
data replications that are also in the train data. Take for example that we start
with the original dataset where we have a minority class with two samples.
We duplicate those samples, and then split the data, at this point there might
be a split , such as the one showed in Figure 3.12, where the training and test
set contain the same sample, resulting in overfitting and misleading results.

Although this case may not occur when undersampling the data, it is al-
ways advisable to split the data before sampling.

3.6. Data Split 39

FIGURE 3.12: overfitting explained in case of oversampling [11]

Stratification

Stratification is the process of rearranging the data as to ensure each fold is a
good representative of the whole [26]. In fact, when splitting data, we usu-
ally pick randomly samples from the original data to be in the training or
the test set. However in case of imbalanced data, this technique may lead to
have a test set with no instances from minority class, or as well with excessive
instances from it, whereas the test data should represent the same distribu-
tion of instances of whole real data. In other words, it should have approx-
imately the same percentage of samples of each target class as the complete
set. Therefore when we sample from the original set to create the training set
and the test set, we have to make sure that it is a stratified sampling and not
random.

Cross Validation

Although, it makes sense to train the model, evaluate it on new test data,
and assume the work is done and the model is good, it might be that the
model is only performing well on that particular split. In these cases, it is

40 Chapter 3. Methodological background

always recommended to consider cross-validation to evaluate the model. In
this thesis, we consider a K-Fold Cross-validation, after splitting the data
to train and test sets, we keep the test set for a final evaluation, and we use
the train data with cross-validation where the dataset D is randomly split
into k mutually exclusive subsets (the folds) D1, D2, ..., Dk of approximately
equal size. The model is trained and tested k times, each time t ∈ 1, 2, ..., k
,it is trained on D \ Dt and tested on Dt. Now, when evaluating the different
metrics, with k different split of data, we can drive conclusions regarding
our model that’s not based on only one particular split. Note that also these
k splits are stratified as explained previously.

41

Chapter 4

Data preparation

4.1 Introduction

The base of any machine learning problem is the data on which the model
will be build, incorrect or inconsistent data leads to false conclusions. And so,
how well we clean and understand the data has a high impact on the quality
of the results. Indeed the quality of data beats the fanciness of algorithms.
For that, in this thesis, a huge importance was given to the data. This chapter
is dedicated to explain how the dataset used was extracted, cleaned, and
processed to be ready to feed to a ML model.

4.2 Data Extraction

4.2.1 Esquare Tool

As mentioned in Chapter 2, during the testing process, all measurements are
stored within Infineon’s databases (DB). Many extraction tools are available
to access these data, the main tool considered in this thesis is Esquare [40]

Esquare is a tool that can interface Infineon DB and can be instructed on
which data to extract by specifying some criteria on column and row of DB,
this task is done via the so-called Jobs.

Job Definition

A job is an executor of the script that will extract the specified data, thus some
information must be set at the definition of the job and that will be used to
select the data such as:

• lot/wafer definition: The purpose of the lot/wafer definition is to tell
to the job which lots or lot/wafers to use for the extraction of the final

42 Chapter 4. Data preparation

data. The lot/wafer definition determines the rows of the extraction
result. Such definition consists of a series of conditions which have to
be met by the lots in order to be used for the data extraction. The final
outcome is a lot/wafer list that meet the criteria set, and will constitute
the rows of our data. Example: Use all the lots for which an "S1" mea-
surement has been performed, or use all wafers that belong to a certain
lot ID.

• Data column definition: The data column definition specifies the columns
for the lot/wafer definition in the output data. It is possible first to se-
lect the data sources, say data from FE insertions, then further filters are
applied according to the data requirements. Example: Columns could
be tests names from FE insertions, SBIN, HBIN.

• Extraction level: It is where the aggregation level of the extracted data
is specified. In other words, after specifying what devices should be
considered, based on lot/wafer list, and which data is extracted based
on selected columns, we indicate whether this data should be extracted
for each lot, for each wafer or for each chip.

These information are mandatory to execute a job, once they are indi-
cated the job can be launched. As soon as it retrieves the required data, the
job generates an EFF file with the output data, more details on EFF files are
presented in a following section.

4.2.2 Extraction Specifications

In this thesis, we are interested in extracting the tests results of the FE inser-
tions, and the final state of the chip after going through the BE testing. There-
fore, two different jobs are launched, with the same lot/wafer definition and
extraction level but different data columns. The lots are chosen such as they
all went through both FE and BE testing. The requirements are summed up
in Table 4.1.

4.2.3 EFF File Structure

The output data obtained from esquare are EFF (EDA Flat table Format) files,
that are simply files with extension " .eff" and containing semicolon separated
values.

4.2. Data Extraction 43

Lot/wafer Definition The lot/wafer definition list is filtered
based on certain lots ID. Lots chosen are:
19841006
19848003
19848005
19848006
19848007
19848009
19848010

Data column defini-
tion • Job1 for FE data: Select FE testing, S1

and S2 insertions, values and names
of each test.

• Job2 for BE data Select BE testing,
BA insertion, IsPass label, HBIN and
SBIN.

Extraction level lot, wafer, XY CHIP

TABLE 4.1: Extraction criteria

These values when visualised via Excel usually have the following struc-
ture:

• Messages : include general information, such as the number of columns
and rows of the file, starting time of extraction, and some information
about the EBS from which the data where extracted.

• EFF header : includes the specifications we requested when extracting
the data from esquare, such as Lot/wafer/X/Y indicating the extrac-
tion level, the parameter name, which indicate the names of the test
parameters, i.e our data columns names, etc.

• DATA: contains the exact values of the corresponding data column, i.e
test or label, for all the observations, i.e chips.

From EFF to Pandas Dataframe:

Since in this thesis, we are using python programming language for data anal-
ysis and ML, it is necessary to convert the EFF files into Pandas dataframes
1. In the dataframe we only take into consideration the columns names and

1a dataframe is a two-dimensional size-mutable, potentially heterogeneous tabular data
structure with labeled axes (rows and columns), provided by Pandas open-source python
library

44 Chapter 4. Data preparation

FIGURE 4.1: EFF file structure

the data values, dropping the non useful parts of the EFF file. In fact, these
information can be found in EFF Header and DATA. Figure 4.2 is a detailed
snapshot of the header, where the useful information for our case are high-
lighted.

• ParameterName: Refers to the columns names, i.e the names of the test
parameters.
Example:
FLASH_T_B_FP_V0S_M3_RBLNEWUSEDFAIL_RWLNEWUSEDFAIL
Where the first part refers to the test FLASH_T_B_FP_V0S_M3 , a verify
command (Verify ALL 0s), second part refers to the parameter:
RBLNEWUSEDFAIL_RWLNEWUSEDFAIL , i.e. Number of New RED
BL used + failed, Number of New RED WL/SEC used + failed.
ParameterName also refer to the IsPass, SBIN, and HBIN labels.

• MeasStep: the measurement step, indicating whether it is S1 or S2 in-
sertion.

4.3. Data Cleaning and Pre-processing 45

• ParameterNumber: refers to test number, which is a unique number
for each single test.

FIGURE 4.2: EFF header

For our final data, we need the chip coordinates, the results of the tests,
and the final label, these values are available in DATA. However, test results
could be referred to either by their test name or their test number. Since we
are considering all repetitive single tests done in both S1 and S2, it was rather
better to keep these information for the column name, therefore each vari-
able in our dataset will be named as following: TestName_TestNumber_S1
or TestName_TestNumber_S2. Figure 4.3 explain the overall representation
of data, a snapshot of our final data is presented in appendix.

FIGURE 4.3: Dataframe with values of FE tests for each ex-
tracted chip. In columns we have chip position, FE tests and

label.

4.3 Data Cleaning and Pre-processing

As explained in Chapter 2, a chip goes through hundreds of tests, for each
test, we have multiple parameters, therefore taking into consideration all
these tests when extracting the data, we end up with large number of fea-
tures, from which we don’t know the ones that are the most affecting the
final status of our chip, and the ones that are rather useless. Indeed the di-
mensions of the extracted raw data are:

• Features: 3400 test parameter results.

• Observations: 38259 chips belonging to 7 different lots

46 Chapter 4. Data preparation

In order to be able to make decisions regarding the features, and the feasibil-
ity of building a model based on these features, we went through studying
the features one by one. In fact, since each feature is a test that is executed by
an FSIST command (see Section 2.2.1), we split our data to several dataframe
based on FSIST commands, i.e. dataframe with columns of Erase command
tests, dataframe with columns of Verify command tests, etc. This make it eas-
ier to understand the features as the dataframes sizes was more reasonable,
therefore instead of having to deal with a dataframe with thousands of fea-
tures, we have multiple dataframes with couple of hundred features that’s
rather simpler to go through.
Different statistics were done on features, in order to take filtering decision,
and determine which features are rather inuseful for the predicition and
which are bringing us some information. The following sections are dedi-
cated to go through the details of these statistics, the results we obtained,
and the corresponding interpretations, organized as following:

• Data Description

• Data correlation analysis

• Density distribution

• Filtering decisions

4.3.1 Data Description

Going through the different parametric results we obtain in each test com-
mand, we can see that we are dealing with an heterogeneous dataset, i.e. the
features of the dataset does not have the same units, nor the same types, as
some data are continuous and others are discrete values. In fact, Figure 4.4
is a summary of the possible data types in our dataset, e.g current measures,
number of SBER, etc. These features are more likely to have different range
of values, which actually influence the choice of the machine learning model,
as explained in Chapter 3. In order to get a flavor of the possible values a fea-
ture can have, we computed for each feature the following measurements,
described in Chapter 3:

• Mean and Standard deviation

• First quantile, median and third quantile

• Max and Min

4.3. Data Cleaning and Pre-processing 47

In case of data normalization, these measures were used as explained in
Chapter 3. However, some of these statistics are reported in appendix.

FIGURE 4.4: Possible types of test results

Data Correlation Analysis

Since the test-flow is composed of multiple repeated single tests, it is more
likely that some of these tests are bringing the same information. Therefore, a
correlation analysis is performed to omit variables bringing little information
to the dataset. For every couple of features a Pearson correlation is computed
as explained in section Chapter 3, yet the best way to visualize it is to plot
a heatmap of the confusion matrix. However, since we have a large number
of features, the correlations were computed subset by subset. The following
matrix, Figure 4.5, is a correlation matrix of a subset of features. We can see
that the feature:
Flash_T_B_FP_GD_VDDC_55131161_S1, which is a Gate Disturb test done
on Program Flash (FP) using VDDC a power supply of 1.25V during S1 in-
sertion, is highly correlated with the feature:
Flash_T_B_FX_GD_VDDC_55131881_S1, which is also a Gate Disturb test,

48 Chapter 4. Data preparation

using VDDC, during S1 insertion, but on Data Flash (FX), indeed the corre-
lation is almost equal to 1 in this case.
The feature Flash_T_B_FP_GD_VDDC_55131161_S1 is also correlated with
correlation equal to 0.91 with the feature:
Flash_T_B_FP_DDS_ACC_VDDC_55131321_S1 which is another kind of dis-
turb test (Drain Disturb Selected) done also on Program Flash with the same
power supply. These correlations shows that the same test with the same
conditions when done on different part of the flash will behave more or less
the same. In addition, different tests although must be from the same FSIST
command (e.g. in this case disturb and stress command), with the same con-
ditions and during the same insertions, when done on the same part of flash
(i.e in the aforementioned feature Program Flash) tend to be highly related.
However, other features are shown very weak correlation, taking the same
feature:
Flash_T_B_FP_GD_VDDC_55131161_S1 it is weakly correlated with:
Flash_T_B_FP_GD_VDD33_55131882_S1 which is the same test also done
during S1 insertion but with different power supply , i.e 3.3V. It also have a
weak correlation with the feature:
Flash_T_B_FP_GD_VDDC_55130561_S2 which is the same test done with the
same conditions but during S2 insertion. To conclude, tests are mostly related
when done with the same conditions and during the same insertion.

Density Distribution

Another way to properly visualize and analyze the data was density plots,
i.e. a representation of the density distribution of all possible values of a
certain feature. The density was estimated using KDE (Kernel Density Es-
timation) technique explained in Chapter 3. In fact, to better interpret the
features, we considered separately the values of the failing chips and the val-
ues of the passing chips, the density was estimated for both and plotted on
the same graph. Figures 4.6 and 4.7 are two examples among the features we
have, where the blue curve is the distribution of values of the feature for the
chips that failed BE, and the orange curve is the distribution of values of that
feature for the chips that passed BE. Looking into these two features, we can
already conclude that some FE test parameters does indeed influence the BE
final label, such as Feature1 in Figure 4.6, whereas some others are not cor-
related in any way to the final label, such as Feature2 in Figure 4.7. Similar
plots were done for all the features in the dataset, these plots were analysed

4.3. Data Cleaning and Pre-processing 49

FIGURE 4.5: correlation matrix of subset of features

together by test engineers who rather confirmed certain features behaviour.
In other words, from a domain knowledge, it is expected for a feature like
Feature1 that higher values may lead to the failure of the chip. Given this
information, it is rather worthwhile considering some of the FE tests as fea-
tures to predict the final BE label of a chip. However, in case of features with
discrete values, we used barplots, as described in Chapter 3, to visualize the
possible values of a feature and its probability of occurrence. Figure 4.8 is
an example of discrete values feature, where a blue bar indicate the probabil-
ity of occurrence of a certain value for Fail instances, whereas an orange bar
indicate the probability of occurrence of a certain value for Pass instances,
some values occur in both failing and passing instances and therefore the
overlapped bars, the overlapped part is in purple.

50 Chapter 4. Data preparation

FIGURE 4.6: Density distribution of feature1 values

FIGURE 4.7: Density distribution of feature2 values

FIGURE 4.8: probability distribution of discrete values feature

4.3.2 Filtering decisions

According the the aforementioned statistics, FE test results do bring some
information regarding the final label, yet many of them:

• are highly correlated

• have the same distribution of values for failing and passing chips

• have a standard deviation σ = 0

Such features are meaningless to keep. In fact, regarding the features that
are highly correlated, these features may or may not bring information to the

4.4. Final dataset 51

model, however the fact that they are related, so whether we keep all of them
or only one, the performance of the model will remain the same. On the other
hand, the features that have the same distribution of values for failing and
passing chips are actually not bringing any information on how to detect a
class from another, because both classes are behaving the same way for that
feature and therefore it is not possible to separate them based on it. Finally,
the features with σ = 0 means that these features have the same value for all
instances, so it is rather invariant to the model, indeed if instances have all
the same value, there is no way to differentiate them.

Since there is no point in including features that does not contribute to
predictions, it is better for storage and speed concerns to remove it. For that,
we filtered our features based on the following decisions:

• Drop features that have some missing values for certain chips.

• Drop features with σ = 0

• Drop features where the distribution of Fail and pass have a KS statistic
value below a certain threshold. See section, Chapter 3

• Drop features that have a correlation above 0.99, keeping only one.

4.4 Final dataset

After going through filtering, many useless features were dropped, and from
thousands of features, we ended up with 275 feature that are actually bring-
ing information to the model. The final dimensions of the dataset are:

• Features: 275 test parameter results.

• Observations: 38259 chips from 7 lots, where 134 are failing instances.

53

Chapter 5

Tool Development and Results

5.1 Introduction

This chapter is dedicated to present and analyze the results of the ML models,
focusing on the performance of the selected model. The chapter is structured
as follows:

• Comparing Models

• Metrics results of the selected model

• Final Feature set

• Quality Gate results

5.2 Model Selection

The metrics computed in this chapter in order to compare models and eval-
uate the selected one are obtained by using the following datasets explained
in Chapter 3, Section 3.6

• Trainset: 26081 instances with 100 Fail and 25981 Pass

• Testset: 8694 instances with 34 Fail and 8660 Pass

In the following section, we analyze the results obtained by using differ-
ent balancing techniques mentioned in Chapter 3, in terms of TPR and FPR.
We first start with Random forest models, where Fig 5.1 presents blue and red
boxplots which reports respectively the TPR, and FPR of the different balanc-
ing techniques used with RF over a a 10-fold stratified cross-validation (see
Section 3.6) on the train set.
As explained in Chapter 3, the higher is the TPR the better is the model in
detecting the Fail class, on the other hand the lower is the FPR the better is

54 Chapter 5. Tool Development and Results

the model in correctly classifying the Pass instances, a good model should
have both a high TPR and low FPR.

First, we observe the performance in terms of TPR. In fact, looking into
the TPR results in Fig 5.1, we can see that both BRF and RF with under-
sampling techniques are giving higher TPR compared to RF model with the
SMOTE sampling technique. Indeed, when analyzing the three boxplots, we
can see that BRF has values of TPR above 0.95, the RF model with under-
sampling techniques has TPR values around 0.9, whereas the RF model with
oversampling technique is giving very poor TPR, where most TPR values are
less than 0.15.
On the other hand, in terms of FPR, looking to the red boxplots in Fig 5.1,BRF
has FPR values below 0.14, RF with undersampling has values of FPR below
0.17, and RF with SMOTE sampling technique has all values equal to zero,
presented by the red line in the Fig 5.1.
Based on these measures, BRF and RF with undersampling techniques have
both high TPR and low FPR, which makes them good models whereas the
RF with SMOTE sampling technique has a very low TPR, and FPR around
zero because it is actually just assuming all instances are Pass, thus no false
positives which explains the FPR measure, yet a lot of false negatives with
explains the low TPR.

FIGURE 5.1: TPR and FPR of RF models evaluated over cross-
validation

5.2. Model Selection 55

The same experiments were done using SVM model with undersampling
technique and with oversampling technique, and are presented in Fig 5.2. In
case of SVM as well, the oversampling technique isn’t performing well, but
it is rather biased to the Pass class, indeed FPR values are low yet TPR values
are also very low. Regardless of the algorithm, RF or SVM, the oversampling
techniques have mediocre performance. This could be explained by the fact
that when oversampling, we are appending the original dataset, with either
replications or interpolations of the fail instances, which risk to add noise to
the data. Indeed, even in literature, recent research showed that undersam-
pling seems to have an edge over over-sampling [5].

FIGURE 5.2: TPR and FPR of SVM models evaluated over cross-
validation

Excluding the models with oversampling technique, the other models
seem to have a good performance. In fact, combining the interesting results
in Fig.5.1 and Fig 5.2 into one Figure presented in Fig.5.3, we observe that
the BRF seems to perform slightly better than the others. In addition, BRF
uses the entire dataset and does not reduce the number of instances as done
in under-sampling techniques. Furthermore, the computational complexity
of SVM is much higher than for RF [42], which make BRF the selected model
for building our quality gate tool.

56 Chapter 5. Tool Development and Results

FIGURE 5.3: TPR and FPR of ML models evaluated over cross-
validation

5.3 Balanced Random Forest Results

Based on previous comparison, and for computational time reasons [42], BRF
was selected, and further evaluated to show that the prediction of BE failing
chips based on FE tests using machine learning techniques is feasible. The
following performance metrics will therefore focus only on the BRF (see Sec-
tion 3.4.2 and Section 3.4.1), although they were also computed for the other
models and are provided in Appendix A.

5.3.1 Performance metrics

Figure 5.4 displays the ROC curves obtained over 10-fold stratified cross val-
idation (see Section 3.6), we can see that the curve increases quickly from 0
to 1, i.e we can reach a high TPR, around 0.8, while keeping the FPR very
close to 0. The curve shows that, the model is able to well detect the fail class
without the need to sacrifice too much Pass instances. On the other hand, the
AUC is very high (i.e 0.95) indicating that the BRF is indeed a good model to
detect the state of a chip.

In order to better visualize the separability of the predicted classes, we
plot the distributions of their predicted probabilities to fail as explained in
Chapter 3. In Fig 5.5, we can see that some real pass chips have a probability

5.3. Balanced Random Forest Results 57

FIGURE 5.4: BRF with cross-validated ROC curve

to fail above 0.5, if the decision threshold is set to 0.5 these instances will
be missclassified as failing chips, and are noted in the figure as FP. On the
other hand, some fail instances have a predicted probability to fail below
0.5 and therefore in this case are classified as Pass, and noted in the figure
as FN. However, the two distributions aren’t too much overlapped, and the
missclassified instances are actually few, indeed the exact number of FP and
FN could be seen in the confusion matrix in Table 5.1. Given the new test set
of 8694 instances, BRF was able to identify 32 out of 34 fail instances, i.e the
model can detect 94% of the fail chips. The results of the confusion matrix
are determined based on a decision threshold equal to 0.5.

Predicted as
Fail

Predicted as
Pass

True Fail 32 (TP) 2 (FN) TPR=0.94
True Pass 1101 (FP) 7559 (TN) FPR=0.127

TABLE 5.1: Confusion matrix using BRF with threshold 0.5

5.3.2 Decision Threshold Adjustment

When a BRF returns 0.9 probability to fail for a particular chip, it means that
chip is very likely to fail. Conversely, another chip with a predicted probabil-
ity to fail of 0.001 is very likely to pass. However, some chips has probabilities

58 Chapter 5. Tool Development and Results

FIGURE 5.5: distribution of predicted probabilities to fail with
BRF

around 0.6, those chips will be classified as "Fail" if the decision threshold is
set to 0.5, yet they do not have a very high probability to fail compared to the
ones around 0.8 and 0.9. Nevertheless, this threshold could be adjusted to
meet our needs, i.e we can adjust the threshold to decide when a chip should
or should not be considered as fail depending on its predicted probability to
fail. In fact, part of choosing a threshold is assessing how much we’ll suffer
for making a mistake, for example there might be a chip that is a true Fail and
has a predicted probability to fail equal to 0.6, it will be correctly classified if
the threshold is set to 0.5 however if we vary the threshold to 0.7 it will be
missclassified as Pass, thus when choosing the threshold we have to choose
which is worse, mistakenly labeling a fail chip as pass or labeling a pass chip
as fail.

In Fig. 5.5, we see that most fail instances has a probability to fail above
0.7, as well as most pass chips has a low probability to fail, except for some
pass instances that was predicted to have a higher than 0.5 probability to fail.
Hence can adjust the threshold to higher than 0.5 to reduce the number of FP
while only slightly sacrificing the TP. In the following tables, 5.2,5.3 ,5.4, 5.5
,the confusion matrices obtained by varying the threshold are presented.

According to these results, and as also seen in the ROC curve in 5.4, we

5.4. Feature Selection 59

Predicted as
Fail

Predicted as
Pass

True Fail 30 4 TPR=0.88
True Pass 773 7887 FPR=0.09

TABLE 5.2: Confusion matrix using BRF with threshold 0.6

Predicted as
Fail

Predicted as
Pass

True Fail 28 6 TPR=0.82
True Pass 608 8052 FPR=0.07

TABLE 5.3: Confusion matrix using BRF with threshold 0.65

Predicted as
Fail

Predicted as
Pass

True Fail 25 9 TPR=0.74
True Pass 435 8225 FPR=0.05

TABLE 5.4: Confusion matrix using BRF with threshold 0.7

Predicted as
Fail

Predicted as
Pass

True Fail 18 16 TPR=0.53
True Pass 210 8450 FPR=0.02

TABLE 5.5: Confusion matrix using BRF with threshold 0.8

can reach very low values of FPR without degrading too much the TPR. In-
deed, with a 0.65 threshold we can reduce the number of missclassified pass
chips from 1101 to 608 while the model can still identify around 82% of the
fails. The threshold decided depends on the requirements of the QG tool,
and will be discussed in Section 5.5.

5.4 Feature Selection

Although ∼ 200 informative features seems to be a reasonable number to
train a ML model, it will be simpler to have a reduced number of features
because it is easier and faster for the test engineers to interpret this set of
killer features . While all these features are somehow contributing in the
final state of the chip, some of them are more important than other and can
be enough to predict the Fail or Pass of the chip. In fact, when exploiting the
random forest feature_importances attribute (see Section 3.3, [27]), we can rank

60 Chapter 5. Tool Development and Results

our features based on their importance score.
In order to see the influence of these features, we tested our model, using:

• The 5 worst ranked features

• The 20 worst ranked features

• all features

• The 20 best ranked features

• The 10 best ranked features

• The 5 best ranked features

The boxplots of the TPR and FPR respectively blue and red boxplots ob-
tained by BRF over 10-fold cross-validation (see Section 3.6), are presented
in Fig. 5.6. Looking to the boxplots, we can see that the performance of the
model using only the 5 worst features decreases significantly as most TPR
values over the 10 splits are above 0.6 and most FPR values are above 0.25.
The same goes for using the model with the 20 worst features, although it
is better than using only the 5 worst since we are adding 15 other more in-
formative features, the performance is still mediocre compared to using all
features.

On the other hand, looking into the boxplots in case of using the model
with the top best features, it seems that the performance is more or less the
same. In fact, over 75% of TPR values over 10 splits are between 0.8 and
1 for the three models, i.e with all features, with top 20 best features, with
top 10 best features and with top 5 best features. Moreover, analyzing the
red boxplots of the FPR values, we see that from using all features to only
using the top 20, the FPR values are quite close, i.e values around 0.14, yet
the FPR values are higher using only top 10 or 5 features, i.e around 0.2 .
These results can lead us to think that using only the top important features,
the model is still able to identify the fail chips the same way, but the less
features, the more the model can miss-classify the pass instances as fails too,
thus the model is slightly less precise. In addition, the fact that results are
hardly changing whether the model is with all features or only top 20 features
could be explained by the high correlation between the features, as seen in
Section 4.3.1 in Fig. 4.5, many features have a correlation around 0.8, whereas
we only dropped the ones with correlation above 0.99, these features could
be as well bringing more or less the same information, which could explains
why performance is insignificantly changing when reducing the number of

5.5. Quality gate tool 61

FIGURE 5.6: TPR & FPR with different number of features by
BRF over 10-fold cross validation

features to 20. In this thesis, we build our Quality Gate tool using BRF with
only the top 20 best features, since it is performing as well as the model with
all features, and much faster to train and predict, however we believe that
further studies regarding this topic are needed.

5.5 Quality gate tool

The goal of this thesis, is to build a quality gate tool for Infineon’s test pro-
gram. Indeed, as explained in Chapter 2, dies go through FE testing then BE
testing which completes NVM test coverage. Thus the QG tool will predict
the final state of the chip based on FE testing and compare these predictions
to final state assigned by BE testing. When the final label given by the pro-
duction data and the one predicted by the QG tool are different, this rises a
doubt regarding the test coverage of the test program, i.e the ability of the
test to detect a given set of faults that may occur on the DUT. The more con-
formity we get between predictions and real labels, the more we trust our
testing.
The QG tool should take in input new chips, predict their final state and

62 Chapter 5. Tool Development and Results

compare it to the real label given to it after BE testing, and assign it a tag
accordingly.

• If a chip is actually Pass but the QG tool predict it as Fail, it will mark
it as Suspicious.

• If a chip is actually Pass and the QG tool predict it as Pass, it will mark
it as Certainly Pass

• If a chip is actually Fail and the QG tool predict it as Fail, it will mark
it as Certainly Fail

• If a chip is actually Fail and the QG tool predict it as Pass, it will mark
it as Undetected Fail

A way to display the results of the quality gate tool is to consider a wafer
level. The tool can take as input the test results of chips belonging to certain
wafer, their corresponding real labels, a threshold to decide whether a chip is
considered as fail or pass as explained in Section 5.3.2. The tool will therefore
compute a graphical representation of the wafer with the state of each chip
as seen in Fig. 5.7. In this example we use the wafer 6 from the lot 19841006
with a threshold equal to 0.6. The green chips corresponds to the ones that
are Certainly Pass, the red chips correspond to the ones that are Certainly Fail,
the blues are the ones that are Suspicious, the black are the Undetected Fail and
the ones in grey are the chips that failed during the FE testing and therefore
thrown away and did not undergo BE testing.

Looking into Fig. 5.7 we notice that failing chips tend to cluster on the
wafer, indeed they are more concentrated in the center and the boarders of
the wafer. In fact, chips that are in the boarder are already failing during
the FE testing. On the other hand, chips close to the center are either failing
during FE, or failing during BE, such as the red chips in the figure. Passing
chips are more concentrated in the middle, nor in the boarders nor close to
the center, this lead us to think that the final state of the chip is affected by
its position in the wafer. For that, in the following section we discuss the
possibility and necessity of adding the distance from the center of the chip as
an additional feature to predict the final state.

5.6. Distance of Chip from The Center of Wafer 63

FIGURE 5.7: Quality gate tool on a certain wafer

5.6 Distance of Chip from The Center of Wafer

In this section, we briefly study the contribution of distance from the center
as feature to the overall predictions. FE failing chips are usually the ones
in the boarders of the wafer as previously seen in Fig 5.7 and confirmed by
the test engineers in Infineon. However, the following analysis will focus on
the influence of the position of chip on failure of the chip in BE testing, thus
passing chips and FE failing ones are not considered.

Fig 5.8 is a representation of the number of BE failing chips in each XY
position. Among 134 failing chips in our dataset, we computed the number
of total failing chips in a specific XY position. Chips that passed or failed in
FE are not considered. We can see that most dies that failed the BE are closer
to the center.

In fact, the same could be seen by plotting the density distribution of dis-
tances of BE failing chips and BE passing chips as in Fig 5.9. The blue curve
of the chip Failing BE indicates that the closer the chip is from the center the
likelier it is to fail the BE test.

These results motivated us enough to add to our set of features the dis-
tance from the center of the wafer, and analyze the performance of the BRF
model in predicting the state of chips. The following Fig 5.10 shows the re-
sults in terms of TPR and FPR of the model with and without adding the

64 Chapter 5. Tool Development and Results

FIGURE 5.8: Number of total failing chips in a specific XY posi-
tion among 134 failing chips

FIGURE 5.9: Density distribution of distances of FE passing
chips from center

Distance as feature. The performance of the BRF is hardly changing whether
we add or not the Distance feature, indeed TPR values are the same for both
cases, however FPR values are slightly lower in case of adding the Distance
feature. Although Distance seemed to influence the failure of the chip accord-
ing to the previous analysis, adding it to the other features does not enhance
the performance of the model.

This could be explained by the fact that Distance feature could be corre-
lated with the rest of the features, and thus the same results are obtained with

5.6. Distance of Chip from The Center of Wafer 65

FIGURE 5.10: TPR & FPR with BRF with and without using the
feature Distance over 10-fold cross-validation

or without it. In fact, looking into Fig 5.7, these results here are obtained with-
out considering the Distance among features, however chips tend to have a
certain pattern on the wafer, i.e concentrated in the center, in other words our
model is predicting that chips in the center are going to fail without actually
having any information regarding their position but only based on the FE
tests as features, which explains the metrics values in Fig 5.10. Nevertheless,
this is encouraging to further study a possible combination of this spatial fea-
ture with the tests results. As a matter of fact, other works [18] considered
only chip position related features to predict its state, conversely in our work
we only considered test results, however it is interesting for future work to
study a combination of both as features.

67

Chapter 6

Conclusion and Future Work

In this chapter we first summarize results and contributions of this thesis. We
then propose the next steps to finalize the Quality Gate tool.

6.1 Summary and Contributions

In this thesis, we have applied machine learning techniques to Infineon test-
ing production data in order to predict the final state of a packaged chip, i.e
Fail/Pass after BE testing based on tests results obtained in the FE testing,
and we want to use these predictions to build a Quality Gate tool for the Test
Program.

The main challenges faced in this work were class imbalance, feature anal-
ysis and selection, and model selection. In Chapter 3, we proposed different
techniques to deal with the issue of imbalanced data as well as the suitable
performance metrics for this case. In Chapter 4, we explained how data was
extracted from Infineon’s database, processed and analyzed. The different
analysis done on features were a crucial part of this thesis work, as it showed
the valuable information provided by FE testing to BE testing, in other words
the influence of FE tests on BE, thus the feasibility of the QG tool. Chapter
5 included the results of the different ML models discussed in Chapter 3,
where the BRF showed the best performance. The implementation and the
output of the QG tool were also presented in chapter 5.

In conclusion, the main contributions of this thesis can be summed up as
following:

• Preparing a complete script for data extraction.

• Set-up an entire data analysis framework for the FE tests, to examine
the density distribution of test results for failing and passing chips, also
to observe and understand the correlations between the different tests.
(Chapter 4)

68 Chapter 6. Conclusion and Future Work

• Studying and isolating a set of FE tests that influence the Fail/Pass state
of the chip in BE, which we refer to as killer parameters.

• Proposing and building a ML trained model that is able to predict the
Fail/Pass state of a chip, with specificity and sensitivity around 0.9

• Enabling a QG tool realization and feasibility that can take in input the
data of a new wafer and output a graphical representation of it with the
state of each chip. (Section 5.5)

6.2 Future Work

The next step of the QG tool is to integrate it within YETI website (Yield
Extractor and Test program Identifier), where data should be extracted in
real time, and the output of the QG tool should be updated based on the data
available. In this thesis, the set of killer features among all FE tests results
are identified, therefore it will be easier for next step to directly take into
consideration these features. Next step will mainly focus on:

• Improving the ML model performance by combining FE test results and
spatial features as mentioned in Section 5.6.

• Continue with further investigations regarding the neural networks al-
ready initiated, as described in Section 3.4.2.

• studying the feasibility of considering unsupervised learning.

• Set the data extraction script to extract periodically and automatically
the dataset required..

• Integrate the results of the QG tool in YETI website

69

Appendix A

Appendix

A.1 SBIN analysis

Depends on the root of failure, a chip may be assigned different SBIN. In Fig
A.2, the blue curve presents the distribution of values of the feature for the
chips that failed with SBIN555, the orange curve presents the distribution
of values of the feature for the chips that passed, the green, purple and red
curves indicate respectively the distribution of values of the feature for chips
that failed with SBIN588, SBIN521 ,SBIN566. In fact chips with SBIN555
seems to have more different behaviour from the pass chips than the other
SBINs. This could be confirmed by the boxplots presented in Fig A.2, where
the TPR is higher when applying the BRF to detect SBIN555 failures from
Pass.

FIGURE A.1: Density distribution of two features with different
SBINs

70 Appendix A. Appendix

FIGURE A.2: TPR of BRF when detecting different SBINS from
Pass

A.2 Data Statistics

Different statistics were computed for all features, such as standard devia-
tion, Max, Min and Median (aka 50% quantile) the following Fig A.3 presents
the different measures for a subset of features.

FIGURE A.3: Table of different statistics for a subset of features

A.3. Performance metrics of SVM with under-sampled balanced data 71

A.3 Performance metrics of SVM with under-sampled

balanced data

SVM with under-sampled data showed more or less good results, yet not as
good as BRF. In following, we present the different performance metrics we
computed for this model.

ROC curve

FIGURE A.4: ROC curves over 5-fold cross validation with
SVM using under-sampling technique

Confusion Matrix

Predicted as
Fail

Predicted as
Pass

True Fail 32 2 TPR=0.94
True Pass 3672 4988 FPR=0.42

TABLE A.1: Confusion matrix using SVM with threshold 0.5

We can see in Table A.1, that tested on new data, SVM is able to identify
Fail instances as good as BRF but it is much less precise, as it missclassifies

72 Appendix A. Appendix

many pass instances as Fail too, e.g 3672 from 8660 Pass instances are miss-
classified, thus a high FPR.

Predicted Probabilities Plot

FIGURE A.5: Distribution of predicted probabilities to fail with
SVM

A.4 List of Features

The following is the list of the 20 worse ranked features:

• FLASH_T_B_FP_PRGCHK_5_0V_TM_VPPMAX_VDPMAX_VPNMAX_NU_55131525_S1

• FLASH_T_B_FP_V0P_M2_VM_RBLUSEDFAIL_RWLUSEDFAIL_56400127_S1

• FLASH_T_B_FU_E_PSEUDO_UM_VPPMAX_VPNMAX_NU_NU_55133964_S1

• FLASH_T_B_FC_GD_VPPMAX_VDPMAX_VPNMAX_NU_55133123_S1

• FLASH_R_D_CTCT_DEBUG_DUMP_EXECUTION_TIME_52230281_S1

• FLASH_T_B_FX_DDS_ACC_VPPAVG_VDPAVG_VPNAVG_NU_55132007_S1

• FLASH_T_B_FP_DDS_ACC_VPPAVG_VDPAVG_VPNAVG_NU_55131367_S1

• FLASH_R_D_CNT_MSCAN_8_32_ST2_MSCAN_20UA_55131127_S1

A.4. List of Features 73

• FLASH_R_D_CNT_DISCTP_DEBUG_PF_DISCHT_COMM1_52033841_S1

• FLASH_R_D_CNT_DISCTD_DEBUG_DF_DISCHT_COMM1_52034521_S1

• FLASH_T_B_FP_E_TM_VPPMAX_VPNMAX_NU_NU_55130804_S1

• FLASH_T_B_FX_PRG1_5_0V_TM_VPPMAX_VDPMAX_VPNMAX_NU_55130684_S1

• FLASH_T_B_FP_E_TM_VPPAVG_VPNAVG_NU_NU_55130128_S1

• FLASH_T_B_REDMAP_LD_MAP_REDDBLUSEDFAIL_REDDWLUSEDFAIL_52532729_S1

• FLASH_T_B_REDMAP_LD_MAP_RBLUSEDFAIL_RWLUSEDFAIL_52531764_S1

• FLASH_R_D_CTCT_DEBUG_DUMP_CTCT_RETURN_CODE_52230362_S1

• FLASH_T_B_FX_V0S_M3_SBER_57730123_S1

• FLASH_A_I_IREF_M_MDACFP1_P02_1_52031080_S2

• FLASH_T_B_FX_CTCT_VPP_SG_CTCT_VPPSG_LUTIDX_52230243_S1

• FLASH_T_B_FC_E_PSEUDO_UM_VPPMAX_VPNMAX_NU_NU_55131564_S2

The following is the list of 20 best ranked features:

• FLASH-T-B-FX-GD-VDDC-55131041-S2

• FLASH-T-B-FH-GD-VDDC-55131361-S2

• FLASH-T-B-FC-E-PSEUDO-UM-VDDC-55131521-S2

• FLASH-T-B-FH-E-TM-VDDC-55131281-S2

• FLASH-R-D-CNT-SGVT-1-32-ST200-VT-SG-V0-1-20V-55131042-S1

• FLASH-T-B-FP-GD-VDDC-55130561-S2

• FLASH-T-B-FU-E-PSEUDO-UM-VDDC-55131961-S2

• FLASH-T-B-FX-E-TM-VDDC-55130801-S2

• FLASH-R-D-CNT-SGVT-1-32-ST200-VT-SG-V0-1-60V-55130444-S2

• FLASH-T-B-RSLA-REDMAP-LOG-RBLUSEDFAIL-RWLUSEDFAIL-49148284-

S1

• FLASH-T-B-REDMAP-LD-MAP-RBLUSEDFAIL-RWLUSEDFAIL-52531763-S1

• FLASH-R-D-CNT-SGVT-1-32-ST200-VT-SG-V0-1-40V-55130443-S2

74 Appendix A. Appendix

• DEVCFG-T-B-DUMP-FPC-BINGRADE-APGC-55135003-S1

• FLASH-T-B-RSLA-REDMAP-LOG-RBLUSEDFAIL-RWLUSEDFAIL-49148243-

S1

• FLASH-R-D-CNT-SGVT-1-32-ST200-VT-SG-V0-1-20V-55130442-S2

• FLASH-T-B-FPPS00-SGVT-SCAN-SBER-55131003-S1

• FLASH-R-D-CTCT-DEBUG-DUMP-EXECUTION-TIME-52230441-S1

• FLASH-T-B-FP-PRGCHK-5-0V-TM-VDDC-55130641-S2

• FLASH-R-D-CNT-SGVT-1-32-ST200-VT-SG-V0-1-00V-55130921-S2

• FLASH-T-B-FP-E-TM-VDDC-55130321-S2

A.5 Snapshot of Real Data

FIGURE A.6: Snapshot of the Dataset used in the thesis

75

Bibliography

[1] Ramy Baly and Hazem Hajj. “Wafer classification using support vector
machines”. In: IEEE Transactions on Semiconductor Manufacturing 25.3
(2012), pp. 373–383.

[2] Bscan. Kolmogorov–Smirnov test Wikipedia, The Free Encyclopedia. 2013.
URL: https://en.wikipedia.org/wiki/Kolmogorovâ��Smirnov_test.

[3] Yaw-Jen Chang et al. “Virtual metrology technique for semiconductor
manufacturing”. In: The 2006 IEEE International Joint Conference on Neu-
ral Network Proceedings. IEEE. 2006, pp. 5289–5293.

[4] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling tech-
nique”. In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[5] Chao Chen, Andy Liaw, Leo Breiman, et al. “Using random forest to
learn imbalanced data”. In: University of California, Berkeley 110.1-12
(2004), p. 24.

[6] Hongge Chen. “Novel Machine Learning Approaches for Modeling
Variations in Semiconductor Manufacturing”. Master’s Thesis. Tsinghua
University, 2015.

[7] Fan-Tien Cheng et al. “Evaluating reliance level of a virtual metrol-
ogy system”. In: IEEE Transactions on Semiconductor Manufacturing 21.1
(2008), pp. 92–103.

[8] Chen-Fu Chien, Wen-Chih Wang, and Jen-Chieh Cheng. “Data mining
for yield enhancement in semiconductor manufacturing and an empir-
ical study”. In: Expert Systems with Applications 33.1 (2007), pp. 192–198.

[9] François Chollet. Deep Learning with Python. 2017.

[10] Matteo Coppetta. AURIX TC3xx eFlash TestWare, restricted. 2019. URL:
https://envm.sin.infineon.com/envm/FTOS/g3/125761-td.html.

[11] Dealing with imbalanced data: undersampling, oversampling and proper cross-
validation. URL: https : / / www . marcoaltini . com / blog / dealing -
with-imbalanced-data-undersampling-oversampling-and-proper-
cross-validation.

[12] Manuel Fernández-Delgado et al. “Do we need hundreds of classifiers
to solve real world classification problems?” In: The Journal of Machine
Learning Research 15.1 (2014), pp. 3133–3181.

[13] Vaishali Ganganwar. “An overview of classification algorithms for im-
balanced datasets”. In: International Journal of Emerging Technology and
Advanced Engineering 2.4 (2012), pp. 42–47.

https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test
https://envm.sin.infineon.com/envm/FTOS/g3/125761-td.html
https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-undersampling-oversampling-and-proper-cross-validation
https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-undersampling-oversampling-and-proper-cross-validation
https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-undersampling-oversampling-and-proper-cross-validation

76

[14] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

[15] Haibo He and Edwardo A Garcia. “Learning from imbalanced data”.
In: IEEE Transactions on knowledge and data engineering 21.9 (2009), pp. 1263–
1284.

[16] Q Peter He and Jin Wang. “Fault detection using the k-nearest neighbor
rule for semiconductor manufacturing processes”. In: IEEE transactions
on semiconductor manufacturing 20.4 (2007), pp. 345–354.

[17] Qinghua Peter He and Jin Wang. “Large-scale semiconductor process
fault detection using a fast pattern recognition-based method”. In: IEEE
Transactions on Semiconductor Manufacturing 23.2 (2010), pp. 194–200.

[18] Seokho Kang et al. “Using wafer map features to better predict die-
level failures in final test”. In: IEEE Transactions on Semiconductor Man-
ufacturing 28.3 (2015), pp. 431–437.

[19] Aftab A Khan, James R Moyne, and Dawn M Tilbury. “An approach for
factory-wide control utilizing virtual metrology”. In: IEEE Transactions
on semiconductor Manufacturing 20.4 (2007), pp. 364–375.

[20] Aftab A Khan, James R Moyne, and Dawn M Tilbury. “Virtual metrol-
ogy and feedback control for semiconductor manufacturing processes
using recursive partial least squares”. In: Journal of Process Control 18.10
(2008), pp. 961–974.

[21] “Kolmogorov–Smirnov Test”. In: The Concise Encyclopedia of Statistics.
New York, NY: Springer New York, 2008, pp. 283–287. ISBN: 978-0-387-
32833-1. DOI: 10.1007/978-0-387-32833-1_214. URL: https://doi.
org/10.1007/978-0-387-32833-1_214.

[22] Sergios Theodoridis Konstantinos Koutroumbas. Pattern Recognition.
2008.

[23] Machine Learning: Measuring Performance: AUC (AUROC). URL: https:
//glassboxmedicine.com/2019/02/23/measuring-performance-auc-
auroc/.

[24] Manzini. “Optimization of CPU-based Software In-Self Test (SIST) for
automotive eFLASH modules applying machine learning techniques
on bitmap data for suspect fails identification”. Master’s Thesis. Uni-
versita di Roma, 2018.

[25] Sarang Narkhede. Understanding AUC - ROC Curve. URL: https : / /
towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

[26] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-Validation”. In:
Encyclopedia of Database Systems. Ed. by LING LIU and M. TAMER ÖZSU.
Boston, MA: Springer US, 2009, pp. 532–538. ISBN: 978-0-387-39940-9.
DOI: 10.1007/978-0-387-39940-9_565. URL: https://doi.org/10.
1007/978-0-387-39940-9_565.

https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565

77

[27] Yvan Saeys, Thomas Abeel, and Yves Van de Peer. “Robust Feature
Selection Using Ensemble Feature Selection Techniques”. In: Machine
Learning and Knowledge Discovery in Databases. Ed. by Walter Daele-
mans, Bart Goethals, and Katharina Morik. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 313–325. ISBN: 978-3-540-87481-2.

[28] Tomás Sarmiento, Sang J Hong, and Gary S May. “Fault detection in re-
active ion etching systems using one-class support vector machines”.
In: IEEE/SEMI Conference and Workshop on Advanced Semiconductor Man-
ufacturing 2005. IEEE. 2005, pp. 139–142.

[29] Scikit-learn, Decision Trees. URL: https://scikit-learn.org/stable/
modules/tree.html.

[30] David W Scott. “On optimal and data-based histograms”. In: Biometrika
66.3 (1979), pp. 605–610.

[31] seaborn- Pyhton library. URL: https://seaborn.pydata.org/generated/
seaborn.kdeplot.html.

[32] Ben Soltane. “Design and development of software application to mon-
itor and analyse the production yield of automotive micro-controllers”.
Master’s Thesis. Higher School Of Communications, Tunis, 2019.

[33] Yanmin Sun, Andrew KC Wong, and Mohamed S Kamel. “Classifica-
tion of imbalanced data: A review”. In: International Journal of Pattern
Recognition and Artificial Intelligence 23.04 (2009), pp. 687–719.

[34] Gian Antonio Susto, Alessandro Beghi, and Cristina De Luca. “A pre-
dictive maintenance system for silicon epitaxial deposition”. In: 2011
IEEE International Conference on Automation Science and Engineering. IEEE.
2011, pp. 262–267.

[35] Gian Antonio Susto, Alessandro Beghi, and Cristina De Luca. “A vir-
tual metrology system for predicting cvd thickness with equipment
variables and qualitative clustering”. In: ETFA2011. IEEE. 2011, pp. 1–
4.

[36] Gian Antonio Susto et al. “A predictive maintenance system for inte-
gral type faults based on support vector machines: An application to
ion implantation”. In: 2013 IEEE International Conference on Automation
Science and Engineering (CASE). IEEE. 2013, pp. 195–200.

[37] Gian Antonio Susto et al. “Automatic control and machine learning for
semiconductor manufacturing: Review and challenges”. In: Proceedings
of the 10th European Workshop on Advanced Control and Diagnosis (ACD
2012). 2012.

[38] Infineon Technologies. About Infineon. 2018. URL: https://www.infineon.
com/cms/en/about-infineon/company/.

[39] Infineon Technologies. AURIX System Architecture. 2019. URL: https:
//www.infineon.com/dgdl/Infineon-AURIX_System_Architecture-
TR-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599.

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://www.infineon.com/cms/en/about-infineon/company/
https://www.infineon.com/cms/en/about-infineon/company/
https://www.infineon.com/dgdl/Infineon-AURIX_System_Architecture-TR-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599
https://www.infineon.com/dgdl/Infineon-AURIX_System_Architecture-TR-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599
https://www.infineon.com/dgdl/Infineon-AURIX_System_Architecture-TR-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599

78

[40] Infineon Technologies. eSquare User Wiki Home, Restricted. URL: https:
//confluencewikiprod.intra.infineon.com/display/eSquareCU/
eSquare+User+Wiki+Home.

[41] The Kolmogorov-Smirnov TesT. URL: https://daithiocrualaoich.github.
io/kolmogorov_smirnov/.

[42] The Kernel Trip. Random forest vs SVM. 2018. URL: https : / / www .
thekerneltrip.com/statistics/random-forest-vs-svm/.

[43] Understand Data Normalization. URL: https://towardsdatascience.
com/understand-data-normalization-in-machine-learning-8ff3062101f0.

[44] K Keerthi Vasan and B Surendiran. “Dimensionality reduction using
principal component analysis for network intrusion detection”. In: Per-
spectives in Science 8 (2016), pp. 510–512.

[45] Sze-jung Wu et al. “A neural network integrated decision support sys-
tem for condition-based optimal predictive maintenance policy”. In:
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans 37.2 (2007), pp. 226–236.

[46] Jonathan Chang Yung-Cheng and Fan-Tien Cheng. “Application devel-
opment of virtual metrology in semiconductor industry”. In: 31st An-
nual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005.
IEEE. 2005, 6–pp.

https://confluencewikiprod.intra.infineon.com/display/eSquareCU/eSquare+User+Wiki+Home
https://confluencewikiprod.intra.infineon.com/display/eSquareCU/eSquare+User+Wiki+Home
https://confluencewikiprod.intra.infineon.com/display/eSquareCU/eSquare+User+Wiki+Home
https://daithiocrualaoich.github.io/kolmogorov_smirnov/
https://daithiocrualaoich.github.io/kolmogorov_smirnov/
https://www.thekerneltrip.com/statistics/random-forest-vs-svm/
https://www.thekerneltrip.com/statistics/random-forest-vs-svm/
https://towardsdatascience.com/understand-data-normalization-in-machine-learning-8ff3062101f0
https://towardsdatascience.com/understand-data-normalization-in-machine-learning-8ff3062101f0

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Infineon Technologies
	Automotive MC team in Padua

	Motivation and Related Work
	Problem Statement
	Thesis Overview

	Production Test Flows for Non-Volatile-Memory
	Introduction
	Device Under Test (DUT)
	Flash Memory

	Non-Volatile-Memory Production Test Flow
	Front End Insertions
	Assembly and Packaging
	Back End
	Test Binning

	Test Results
	Data Source For ML

	Methodological background
	Introduction
	Feature Engineering
	Density Estimation
	Kolmogorov–Smirnov Test
	Correlation Analysis
	Data Normalization

	Dimensionality Reduction
	Machine Learning Techniques
	Imbalanced Classification
	ML Classifiers

	Performance Metrics
	Data Split

	Data preparation
	Introduction
	Data Extraction
	Esquare Tool
	Job Definition

	Extraction Specifications
	EFF File Structure

	Data Cleaning and Pre-processing
	Data Description
	Data Correlation Analysis
	Density Distribution

	Filtering decisions

	Final dataset

	Tool Development and Results
	Introduction
	Model Selection
	Balanced Random Forest Results
	Performance metrics
	Decision Threshold Adjustment

	Feature Selection
	Quality gate tool
	Distance of Chip from The Center of Wafer

	Conclusion and Future Work
	Summary and Contributions
	Future Work

	Appendix
	SBIN analysis
	Data Statistics
	Performance metrics of SVM with under-sampled balanced data
	List of Features
	Snapshot of Real Data

	Bibliography

