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Sommario

Per la risoluzione di problemi di ottimizzazione singolo e multi obiettivo sono stati implementati con
successo algoritmi di tipo stocastico, per i quali però le proprietà di convergenza sono dimostrate solo
empiricamente. In questo lavoro di tesi viene quindi presentato un algoritmo deterministico di tipo
Pattern Search, per il quale viene illustrata la dimostrazione di convergenza globale.

Inoltre vengono sviluppati degli algoritmi ibridi innovativi, costituiti da una componente determini-
stica di tipo Pattern Search, e da una componente stocastica, per migliorare le performance, in particolar
modo per le applicazioni ingegneristiche che richiedono algoritmi particolarmente aggressivi, senza
perdere le proprietà di convergenza.

Le performance vengono analizzate utilizzando delle funzioni test, che mostrano l’efficacia degli
approcci utilizzati mediante un confronto con gli algoritmi tradizionali puramente stocastici.

Infine viene considerato un problema per l’ottimizzazione di un dispositivo elettromagnetico per il
rilevamento di posizione, che ha applicazioni in campo medico.
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Abstract

In recent years stochastic methods have been successfully developed and applied in order to solve sin-
gle objective and multiobjective optimization problems, but despite their success they still lack strong
mathematical justification.

In this work we present a Pattern Search optimizer, which being a deterministic method enjoys
provable convergence properties.

Furthermore, we develop alternatives and extensions of the standard deterministic method, and in-
novative hybrid algorithms merging the Pattern Search with some stochastic approaches, in order to
improve the performance without sacrificing the theoretical properties.

The effectiveness of this approach is shown through numerical examples.
Finally, we apply this method to a real case problem for the pose detection for magnetic-assisted

medical applications in order to optimize the performance of the device.

vii



viii



Chapter 1

Introduction

Automatic optimization of electromagnetic devices became crucial in the last two decades, in order to
comply to specific needs and requirements.

Inverse problems in electricity and magnetism require methods of solution where the aim is to ensure
that the shape and the performance of devices are optimal by specific criteria.

Especially stochastic methods have been successfully implemented and applied, but despite their
achievement in solving both single and multiobjective optimization problems, they lack a solid mathe-
matical base, and their properties are mostly demonstrated only empirically [1] [2].

Therefore, we want to introduce a deterministic optimizer, a Pattern search method, uncommon in
the area of electromagnetic devices, highlighting its main features and its convergence properties.

Thus, innovative hybrid algorithms obtained merging the deterministic optimizer with some meta-
heuristics such as Particle Swarm Optimization and Differential Evolution are developed, in order to
improve the performance without sacrificing the theoretical properties.

From the performance analysis, this hybridization results into an efficient algorithm for the solution
of electromagnetic design problems, and can be effectively implemented in a practical application, for
the pose detection for magnetic-assisted medical devices.

1.1 Direct and inverse problems
In engineering science the direct problems are the ones where given the input or the cause of a phe-
nomenon the aim is to find the output or the effect. Conversely in the inverse problems given an expected
output or effect we want to compute the input or the cause, trying to understand their relation.

The design problems of electromagnetic devices belong to the category of the inverse problems. We
can now describe the main features of inverse problems and some methods for their resolution [3].

While in the direct problems we have enough information to carry out an unique solution, there is
no guarantee of having an unique solution in inverse problems. In fact given the input, the output and
the operator modelling the input-output transformation respectively as x,y and A, the goal in the direct
problem is to find the output y at point in the domain.

Assuming that the operator A is invertible the inverse problem for A is the direct problem for A−1,
while if A is not invertible the solution to the inverse problem does not exist. Furthermore, for the same
given output y1 we may have x1 = A−1(y1) and x2 = A−1(y1), with x1 6= x2.

We can make a distinction from a mathematical point of view between well-posed and ill-posed
problem.

The well-posed have the following features

• A solution always exists

• There is only one solution

• A small change of data leads to a small change in the solution

The ill-posed problems are those for which
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• The solution may not exist

• There may be more than one solution

• A small change of data may lead to a big change in the solution

The inverse problems belong to the latter category, and show an high degree of insidiousness, be-
cause a solution may not exist for optimal design problems, and, on the other hand, if multiple solutions
exist to a given problem they might be similar.

In engineering applications the aim is to design the geometry of a device in order to obtain a pre-
scribed performance, which depends on the field.

1.2 Methods for solving inverse problems

1.2.1 Functional minimization
The solution to the inverse problem is performed using a suitable function f (x) called objective function
or cost function. Given x0 ∈Ω⊆ Rn, where Ω is the feasible region and x the unknown variables.

f ind inf
x

f (x) x ∈Ω⊆ Rn (1.1)

Where x0 is the initial guess. The objective function may represent a performance depending on the
field, or a residual between a computed and a known field value in order to find the design variables
which deliver to the prescribed magnetic configuration.

Usually the objective function f is not known in analytical way, but is only known numerically as
a set of values at sample points. Then, the solution can be obtained numerically, and requires a routine
for calculating the field together with a routine for the minimization of the objective function.

The system is represented through a finite element model in two or three dimensions, and the mini-
mization routine may be described as a step by step procedure as it is explained below.

Starting from the point x0, the iteration k updates the current design point xk as

xk+1 = xk +αsk (1.2)

Where α is a scalar displacement and sk is the search direction in the feasible region. Given the new
point xk+1 the finite element model is restarted and the evaluation of f (x) is updated.

The computation ends when the stopping criterion is achieved, that criterion is defined by the pa-
rameter ε > 0.

‖xk+1−xk‖ ≤ ε‖xk‖ (1.3)

1.2.2 Rectangular systems of Algebraic equations
The numerical solution of field problems generally leads to a system of algebraic equations.

Ax = b (1.4)

Where A is a rectangular m×n matrix, x is the unknown n-vector and b the known m-vector. Usually,
for the inverse problems the system is over-determined, m > n, because the number of condition to fulfil
is greater than the degrees of freedom available, while for the direct problems, m = n, the matrix A is
square and if det(A) 6= 0, A is non singular, therefore A−1 exists and the system of equations has an
unique solution for any b.

In case m > n and the rank of A is equal to n, we can look for a pseudo-inverse of A, using numerical
methods like Least-Squares or Singular Value Decomposition.

Least squares. A solution to the problem defined by equation 1.4 can be found minimizing the
Euclidean norm of the residual Ax−b. This is defined as

r(x) = ‖Ax−b‖= xT AT Ax−2xT AT b+bT b (1.5)
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The gradient of the residual is

∇r(x) = 2AT Ax−2AT b (1.6)

We want to find the minimum point for the residual, that is the vector for which the gradient is equal
to zero. This condition gives

AT Ax = AT b (1.7)

The matrix AT A is a square n× n matrix, and we can prove that the minimum vector xmin =
(AT A)−1AT b suits the following condition for each n-dimensional vector x

‖Axmin−b‖ ≤ ‖Ax−b‖ (1.8)

Therefore, xmin is the least square solution, and the matrix (AT A)−1AT is called the pseudo inverse
of matrix A.

From the numerical point of view the solving process using this method may not succeed for the
magnification of ill condition when we pass from A to AT A, and the round-off errors after calculating
the entries of AT A.

These issues may lead to instability and inaccuracy.

Singular-Value Decomposition. This method consists in the decomposition of matrix A, assumed
to be full column rank, into the product of three matrices, an orthogonal matrix m×m U, a block
diagonal matrix m× n S, and an orthogonal n× n matrix V. The result of the product is A = USVT ,
where

S =

[
Σ 0
0 0

]
(1.9)

The diagonal entries of Σ are the singular values of A, with Σ = diag(σ1, ....,σn).
In this case the solution to the least-square problem is given by xmin = VS−1UT b, with

S−1 =

[
Σ−1 0

0 0

]
(1.10)

Being Σ−1 = diag(σ−1
1 , .....,σ−1

n ). The matrix VS−1UT represents another pseudo-inverse of A.

1.3 The need for multiobjective optimization
Most problems in engineering have several conflicting objectives to be satisfied, therefore the single-
objective approach appears very limited for the nature of design problems, and usually consists in the
transformation of all the objectives but one into constraints.

Therefore, multiple objective functions must be taken into account, and must be optimized simulta-
neously. In the formulation of the problem, a vector F(x) holds the n f objective functions, and consid-
ering n variables

given x0 ∈ Rn, f ind inf
x
(F(x)), x ∈ Rn (1.11)

The problem is subject to nc inequality, ne equality constraints, and 2n side bounds.

gi(x)≤ 0, i = 1,nc (1.12)
h j(x) = 0, j = 1,ne (1.13)

lk ≤ xk ≤ uk, k = 1,nv (1.14)

The vector F defines a transformation from the design space Rn to the corresponding objective space
R

n f .
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The classical approach for the conversion from a multi to a single objective problem is done through
a preference function ψ(x), that is the weighted sum of the objectives

ψ(x) =
n f

∑
i=i

fi(x) (1.15)

With 0 < ci < 1, and ∑
n f
i=i ci = 1.

The weights allocation define the hierarchy attributed to the objectives, and influences the solution
that will be computed, and will be unique.

The drawbacks of this method are mainly two, in fact the n f objectives are often non-commensurable,
having different physical dimensions, for these reasons the weighting procedure has no meaning from
the physical point of view, and needs an appropriate and crucial scaling process for the choice of weights.
Furthermore, this method has an a-priori bias, because the solution obtained can vary according the user
decisions taken before the solving process.

On the contrary the Pareto optimization approach delivers a set of non dominated solutions, the
Pareto front, those for which a decrease of a function is not possible without the simultaneous increase
of at least one of the other functions. An example of Pareto front is shown in figure 1.1 [4]. Therefore,
a family of equally good solutions is computed, without having any a-priori bias and without the need
to mix functions with different unity measures.

Figure 1.1: Pareto front

Finally, the decision maker will be able to decide, a-posteriori and having an higher level of infor-
mation, which solution to pick from the front.

We want now to define the concepts of domination and the Pareto optimality [5].

1.3.1 Concept of domination
Assume that there are n f objective functions. We use the operator / between two solutions i and j, i/ j,
to point that solution i is better than j for a particular objective. On the other hand, when i is worse than
j for a particular objective we write that i. j.

The definition of the problem through this operator covers also mixed optimization problem, with
minimization for some objective functions, and maximization for others.

Definition 1. A solution x(1) dominates the other solution x(2) if the two following conditions are
verified:

1) The solution x(1) is no worse than x2 in all objectives, or f j(x(1))7 f j(x(2)) for all j = 1,2, ...,n f .
2) The solution x(1) is strictly better than x2 in at least one objective, or f j(x(1))/ f j(x(2)) for at least

one j ∈ {1,2, ....,n f }.

In figure 1.2 [4] the difference between non dominated and dominated solutions is illustrated.
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Figure 1.2: Non dominated vs dominated solutions

If any of the above condition is violated, the solution x(1) does not dominate the solution x2, while if
x(1) dominates x2, the mathematical expression used is x(1)� x(2). Since the domination concept enables
the comparison of multiple objectives solutions, the domination concepts is used by the multiobjective
optimization methods to search for the non dominated solutions.

Furthermore, the definition 1 can be modified in order to introduce the notion of strong dominance
relation as is illustrated below.

Definition 2. A solution x(1) strongly dominates a solution x(2), or x(1) ≺ x(2), if solution x(1) is strictly
better than solution x(2) in all the n f objectives.

If a solution x(1) strongly dominates a solution x(2), x(1) also weakly dominates x(2) but not vice
versa.

The domination relation owns the following properties

• Reflexive. The relation is not reflexive because any solution x does not dominate itself

• Symmetric. The relation is not symmetric, because x � y does not imply y � x. The opposite is
true, if x� y then y� x

• Antisymmetric. Since the relation is not symmetric it cannot be antisymmetric as well

• Transitive. The relation is transitive, because if x� y and y� z, then x� z

1.3.2 Pareto-Optimality
Given a set of solutions, we can execute all possible pair-wise comparisons in order to find which
solutions are non-dominated with respect to each other.

At the end, we will have a set of solutions, any two of which do not dominate each other. Obviously,
for each solution outside this set, we can always find a solution in the set which dominates the former.

This set is called non-dominated set, and is defined below.

Definition 3. Among a set of solutions P, the non dominated set of solutions P′ are those that are not
dominated by any member of the set P.

From the notion of weak dominance we can also define the weakly non dominated set as follows

Definition 4. Among a set of solution P, the weakly non-dominated set of solutions P′ are those that
are not strongly dominated by any other member of the set P.

The cardinality of the weakly non-dominated set is greater than or equal to the cardinality of the
non-dominated set as it is defined in 3.

Thus, the aim of a multiobjective optimization algorithm is to find a computationally efficient pro-
cedure to identify the non-dominated set from a population of solutions.
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1.3.3 A practical example
Consider the electric circuit in figure 1.3. Given the values of the voltage source Es and the impedance
Z1 = R1 + jX1, we want to find the values of the load impedance Z2 = R2 + jX2 in order to maximize
two objectives, the efficiency of the circuit η which is defined as the ratio between the power delivered
to the load P2 and the power source Ps, and the effective power delivered to the load P2.

Z1

Z2Es

Figure 1.3: Electric circuit benchmark

The mathematical expressions of the two objective functions is given in the next equation.
η =

R2

R2 +R1

P2 = E2
s

R2

(R1 +R2)2 +(X1 +X2)2

(1.16)

We want now to show that the efficiency and the load power are two conflicting objectives.
Considering that in order to reduce the denominator the imaginary part of Z2 must be equal to the

opposite of the one Z1, X2 =−X1, and that R2 = R1
η

1−η
, we can express the power load as a function

of the efficiency.

P2 =
E2

s

R1
η(1−η) (1.17)

This relation is also represented in figure 1.4, setting for simplicity all the known values equal to
one: Es = 1V , R1 = 1Ω.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

η

P2

Figure 1.4: Power load as a function of the efficiency

As we can notice, an increase of η from 0 to 0.5, produces an improvement in the power load, which
reaches its maximum value Pmax = 0.25 for η = 0.5. After this point, an improvement in the efficiency
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causes a deterioration in P2. Therefore, we have two conflicting objectives, and we need to find a trade
off between the two.

The Pareto front and the Pareto set are represented, respectively, In figure 1.5 and 1.6. We have
considered unitary value also for the imaginary parts of the two impedance X1 = 1Ω, X2 =−X1 =−1Ω.

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

η

P2

Figure 1.5: Pareto front for the benchmark problem

1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

R2

X2

Figure 1.6: Pareto set for the benchmark problem

After all we have found a set of non dominated solutions, among which the decision maker will have
to choose, deciding whether to privilege the efficiency of the system, the effective power transmitted to
the load, or to find a balance between the two.

1.4 Methods for solving multiobjective optimization problems

1.4.1 Weighted sum method
Through this method a composite objective function F(x) is created, summing all the normalized ob-
jective functions. This converts the problem into a single objective problem.
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minF(x) =
n f

∑
m=1

wm fm(x) (1.18)

With ∑
n f
m=1 wm = 1.

We can now consider the bi-objective case, supposing that both two the objectives need to be mini-
mized. Thus, we have to find the minimum of the function F(x) = w1 f1(x)+w2 f2(x).

Once the weights w1 and w2 are fixed, the search process is defined as a search for the point of the
straight line defined by the equation f2 =−

w1

w2
f1 which is externally tangent to the Pareto front.

Therefore, only in the case of a convex Pareto front, all the non dominated solutions can be computed
varying the weights, while if the front is non-convex some solutions are missed. Moreover, in the convex
case it is difficult to identify the selection of weights which produce an uniform distribution of solutions
on the Pareto front.

The next method illustrated, is able to deal also with non convex Pareto front.

1.4.2 ε-Constraint Method
This method keeps just one objective, and restricts the remaining ones within values defined by the user.{

min fµ(x)
fm(x)≤ εm m = 1,2, ...,n f and m 6= µ

(1.19)

A suitable value for εm must be chosen for the m-th objective, requiring an a priori knowledge of
appropriate range for the ε , and an unique solution is computed along the front.

Furthermore, the optimization procedure can be iterated with different values of εm in order to find
several non dominated solutions.

This method works also with non convex Pareto front.

1.4.3 Goal-Attainment Method
This method minimizes the scalar quantity γ ∈ R with respect to the design vector x, subject to

fi(x)−wiγ ≤ f ∗i , i = 1, ...,n f (1.20)

Where fi(x)∗, with i = 1, ...,n f , are the objectives wanted by the user, which define the goal point
A = { f ∗i } that might be unfeasible.

Usually, the implementation of this method is done through the use of the following preference
function.

ψ(x) = sup
i

fi(x)− f ∗i
wi

, wi 6= 0, i = 1, ...,n f (1.21)

Also this method works for both convex and non-convex fronts.

1.5 Deterministic and stochastic methods
The methods illustrated in the previous section require a certain degree of problem knowledge, and
essentially convert a multiobjective problem into a single objective one. For this reason we need to
apply them several times to find the approximation of the Pareto front for a given problem, and this
represents the main practical drawback.

We need therefore to keep the conflicting objectives separate, discarding the use of preference func-
tion, and using the knowledge we have about the problem necessary to pick a single solution a posteriori,
that is after the optimization process, instead of a priori, before the process starts.

Furthermore, we need to use derivative-free methods, which are very appropriate when computing
the derivatives is expensive, unreliable, or even impossible.

Two great families of algorithms are used for this purpose, the deterministic and stochastic methods.

8



Deterministic methods does not have stochastic elements, meaning that they do not use random
variables, and the entire input and output relation of the model is conclusively determined, which means
that given a certain input, it will always produce the same output.

Stochastic methods uses one or more stochastic elements, having random variables, meaning that
the state is randomly determined, and each execution gives different results.

The deterministic method considered in this work is the Pattern search method, described in Chapter
2, while some of the most effective and popular stochastic algorithms, which belong to the family of
evolutionary optimization, are illustrated in Chapter 3.

The two families of algorithms usually display different features and merits, in term of convergence
speed, accuracy, robustness, and parallelization possibility.

Generally, the deterministic methods show

• High speed

• High accuracy, given to the strong local search or refinement component

• Poor robustness, because of the lack of a strong global search component

• Difficult to parallelize, given to the sequential behaviour

While the evolutionary methods

• Low speed

• Low accuracy, given to the lack of a strong local search or refinement component

• High robustness, because of a strong global search component

• Easy to parallelize, being population based algorithms

Given the diversity in the features and the qualities of the two kinds of algorithm, our aim is to find
a right mix between the methods able to ensure a good performance for the speed, the accuracy, the
robustness, and easy to parallelize.

The formulations of two new hybrid algorithms is carried out in Chapter 4, where also some alterna-
tives for the Pattern Search method are described, and the assessment of their performance is illustrated
in Chapter 5.

Lastly, in Chapter 6, a practical application is considered, regarding the pose detection for magnetic-
assisted medical devices. The use of optimization algorithm is required, and the effectiveness of the
multiobjective approach is pointed out.
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Chapter 2

Pattern search methods

The Pattern search methods use the paradigm of direct-search methods of directional type, extending this
approach to the multiobjective case through the concept of Pareto dominance. The polling procedure
should generate as many points as possible in the Pareto front, thus representing an interesting alternative
to the stochastic methods, being a deterministic derivative-free methodology.

In this chapter we describe this method both for the single and multiobjective case, demonstrating
the global convergence in both two cases. The provable convergence properties is an advantage with
respect to the stochastic methods, which lack a solid mathematical foundation.

2.1 Pattern search for Single-Objective optimization
Consider the following problem of minimizing a continuously differential function without computing
or approximating the derivatives of f

minx∈X f (x) X ⊆ Rn f : Rn→ R

The pattern search methods (PS) solve the minimization problem computing and comparing the val-
ues of the function on the points lying on a grid or a lattice generated by a matrix Dk, which holds on
the vectors column the search directions responsible for the shape, and a step size parameter ∆k which
defines the distance between two consecutive points on the grid. This grid will be explored starting from
an arbitrary point x0 ∈ Rn according to the steps of the following algorithm [6] [7].

for k = 0,1,2...
1) compute sk = ∆kdk, where dk is a vector column of the matrix Dk
2) Search step, generate the mesh Mk = {xk +∆kDkz,z ∈ N0} and compute the function in some

points x ∈ MK . If f (x) < f (xk) declare the iteration successful → xk+1 = x, skip the poll step and
update the step size, else go to the poll step.

3) Poll step, compute the function just in the points around the poll center (current iteration) Pk =
{xk +∆kd,d ∈Dk}, if f (xk +∆kd)< f (x) declare the iteration successful→ xk+1 = xk +∆kd, and go to
the search step, else xk+1 = xk and go to the search step. In both cases update the step size.

The step size must be updated according to the following rule

∆k+1 =

{
θ∆k, if the iteration was not successful
λ∆k, if the iteration was successful

(2.1)

With 0 < θ < 1 , and λ ≥ 1.

We can develop several versions of the algorithm adapting the step size with different values of θ

and λ , or imposing a greater decrease of the function instead of a simple one to declare the iteration
successful, but the crucial point is the strategy adopted for the poll step. In fact we can adopt the
complete strategy, in which the function is assessed in all the points around the poll step and the best
one is chosen, or the dynamic strategy which computes and compares with the poll center one at a time
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Figure 2.1: Pattern search flowchart
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Figure 2.2: Example of polling with different step sizes

the points around, and as soon as a better point is found that becomes the new poll center. The search
step does not have the aim to find a stationary point, but is used to explore the domain in all its parts.

2.2 Pattern search for Multi-Objective optimization
Consider the following Multi-Objective optimization problem

minx∈ΩF(x) = ( f1(x), f2(x), ..., fm(x))T f j : Rn→ R

Ω = {x ∈ Rn : l≤ x≤ u} l,u ∈ Rn

Having several contrasting objectives we try to capture the whole Pareto front, computing all the
non-dominated points. For that reason is crucial to define the concept of Pareto dominance.

x≺ y ⇐⇒ F(x)≺F F(y)

Given two points x,y ∈ Rn, x dominates y (x ≺ y) when all the objective functions for x are not
strictly greater than for y but at least one which is strictly lower (F(x)≺F F(y)).

The next algorithm [8] tries to get the Pareto set excluding the dominated points with the function
f ilter, which builds a set of disequations to discover the dominated points. For that purpose an iterative
list Lk holding several items is initialized, every item consists in a point and a step size associated to the
point. As in the single objective case a search step and a poll step are implemented, defining a directions
matrix Dk and a step size ∆k.

for k = 0,1,2...
1) Selection, order the list Lk and select the first item
(x,∆) ∈ Lk→ (xk,∆k) = (x,∆)
2) Search step, assess the function in a finite set of points x ∈ Mk where Mk is the lattice Mk =

{xk +∆kDkz,z∈N0}. Build the list Ladd = (x,∆k), and call the function f ilter to exclude the dominated
points from the set Lk ∪Ladd , L f ilter = f ilter(Lk,Ladd). Define a trial list Ltrial putting Ltrial = L f ilter or
Ltrial ⊆ L f ilter. If Ltrial 6= Lk the iteration is successful because has found new non dominated points,
put Lk+1 = Ltrial update the step size and skip the poll step, else with Ltrial = Lk the iteration is not
successful, therefore go to the poll step.

13



3) Poll step, search around the point of the selected item Pk = {xk +∆kd : d ∈ Dk}, define Ladd =
{(xk + ∆kd,∆k),d ∈ Dk}, call the function f ilter L f ilter = f ilter(Lk,Ladd) and put Ltrial = L f ilter or
Ltrial ⊆ L f ilter. If Ltrial 6= Lk put Lk+1 = Ltrial , else Lk+1 = Lk. In both cases update the step size, and go
to the search step.

The step size is updated following the same rule of the single objective case (equation 2.1).

Figure 2.3: Procedure to filter the dominated points from the set L1∪L2
assuming that L1 is already formed by nondominated points.

An additional issue in this algorithm is the ordering strategy of the list Lk, from which depends the
first item that will be selected. A strategy could be adding the new points on the bottom of the list, and
the poll center in the last position in order to start the polling from a completely new point. Furthermore,
to disseminate in a better way the points on the Pareto front and to reduce the size of the storage, we can
choose Ltrial ⊆ L f ilter in a way to exclude the points for which the objective functions assume values too
close to the ones already found.

2.2.1 A worked example
To illustrate how the algorithm works for the multiobjective case we present its application to the ZDT2
test problem.

ZDT 2 :


f1(x) = x1

g(x) = 1+
9

n−1
∑

n
i=2 xi

h( f1,g(x)) = 1− ( f1/g(x))2

f2(x) = g(x)h( f1(x),g(x))

(2.2)

With n = 2 variables.

minF(x) = ( f1(x), f2(x)))T

xi ∈ [0,1]

In the following solving process no search step will be performed, and no ordering strategy is con-
sidered. The initial step size is ∆0 = 0, while the contraction and expansion factor are respectively
θ = 0.5 and λ = 1.

Initialization. We set the initial point x0 = (0.5,0.5), which corresponds to ( f1(x0), f2(x0)) =
(0.5,5.455). The poll step matrix is D = [I2− I2], where I2 stands for the identity matrix of dimension
2. Thus, the starting iterate list of nondominated points is L0 = {(x0;1)} where the step size associated
to each point is also contained.
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Iteration 0. The poll poll set is P0 = {(0.5,0.5)+(1,0),(0.5,0.5)+(0,1),(0.5,0.5)+(−1,0),(0.5,0.5)+
(0,−1)}. All these points are not feasible and the function is not evaluated for the P0 set. Therefore the
iteration is declared unsuccessful and the step size is contracted with the factor θ , ∆1 = θ∆0 = 0.5

Iteration 1. The iterate list is now L1 = {(0.5,0.5;0.5)}. The poll set becomes P1 = {(0.5,0.5)+
(0.5,0),(0.5,0.5)+(0,0.5),(0.5,0.5)+(−0.5,0),(0.5,0.5)+(0,−0.5)}= {(1,0.5),(0.5,1),(0,0.5),(0.5,0)}.
In this case all the points are feasible, thus

Ladd = {((1,0.5);0.5),((0.5,1);0.5),((0,0.5);0.5),((0.5,0);0.5)}

The nondominated points are filtered from L1∪Ladd using the function filter, giving as result

L f ilter = {((0,0.5);0.5),((0.5,0);0.5)}

Therefore Ltrial will coincide with L f ilter. Since there were changes in the list the iteration is declared
successful and the step size is maintained L2 = Ltrial = L f ilter.

Iteration 2. At the beginning of the new iteration the algorithm selects a point from the two stored
in L2. Assume the point (0,0.5) is selected, the poll set is P2 = {(0,1),(0.5,0.5),(−0.5,0.5),(0,0)}. In
this case not all the points are feasible, and the adding list becomes

Ladd = {((0,1);0.5),((0.5,0.5);0.5),((0,0);0.5)}

The non dominated points are once again filtered from L2 ∪ Ladd , just one of the poll points was
nondominated, thus the iteration is successful, the step size is maintained, and the new list is

L3 = Ltrial = L f ilter{((0,0);0.5),((0.5,0);0.5)}

As we have seen the iteration list may change its size at each iteration, showing a variable number of
points in the temporary Pareto front in function of the iteration unlikely the population based stochastic
algorithms where this number is fixed.

Usually the number of points steadily grows increasing the number of function evaluation, as we
can see in the next figures where we represent both the Pareto set and the Pareto front of ZDT2 with 20
and 100 function evaluations.
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Figure 2.4: ZDT2 Pareto front with 20 function evaluations
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Figure 2.5: ZDT2 Pareto set with 20 function evaluations
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Figure 2.6: ZDT2 Pareto front with 100 function evaluations
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Figure 2.7: ZDT2 Pareto set with 100 function evaluations

2.3 Convergence analysis for the Single-Objective case
The purpose of this section is to prove that the Pattern Search method converges to a stationary point
[6] [7] . The main requirements for this purpose regard the exploratory moves, that is the poll step
procedure, the rule for the step size ∆ update, and the set of directions included in the matrix D.

The matrix Dk is defined in the following way

Dk = BCk (2.3)

Where B ∈ Rn×n is the basis matrix, and Ck ∈ Zn×p, p > 2n, is the generatrix matrix, which can
be partitioned into two components Ck = [Γk Ak], where Ak contains at least one column made by all
zeros.

The exploratory moves must follow the two conditions

1) s ∈ ∆k[BΓk BAk] (2.4)
2) i f min{ f (xk + y),y ∈ ∆k BΓk}< f (x)→ f (xk + sk)< f (xk)

While the step size must be updated according to the equation 2.1.

The set of directions used for the PS method has to be able to give an information comparable to the
one we could have computing the gradient of the function, that is a proper idea of the local trend around
the point. This condition is formalized below.

Condition 1
Given a points sequence {xk}, the sequences of directions {pi

k}, i = 1, ...,r are limited and such that

lim
k→∞
‖∇ f (xk)‖= 0⇐⇒ lim

k→∞

r

∑
i=1

min{0,∇ f (xk)
T pi

k} (2.5)

That simply means the directions set must be such that all the directional derivatives along the search
directions can assume non negative values if and just if the algorithm is close to a stationary point. If
this condition was not satisfied it would not be possible to ensure the existence of at least one descent
direction, and then to ensure the convergence of the method.
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There are several classes of directions that satisfy the last condition, an example of particular rele-
vance is the set of directions spanning positively Rn, which must be used in the algorithm, and is defined
below.

Definition 5. The directions {p1, ...,pr} span positively Rn if given a point y ∈ Rn, it can be expressed
as a linear combination with non negative coefficients of {p1, ...,pr}

n

∑
i=1

βipi
βi ≥ 0, i = 1, ...,r (2.6)

The cardinality of these sets of directions is at least n+ 1 in Rn, that is also the minimum size of
matrix Γ.

The figure 2.8 [6] is an example of poll steps generated with the same step size and a matrix
Γ = [I− I] with four search directions in R2, while the figure 2.9 an example [9] of search step (blue
circles) in a lattice.

Figure 2.8: Possible poll steps in R2

To prove the global convergence of the PS method, that is the convergence from an arbitrary starting
point, the general theorem of the global convergence will be illustrated (theorem 1), but first we define
the two assumptions required.

Assumption 1. The function f : Rn→ R is a continuously differentiable function.

Assumption 2. Given the point x0 ∈ Rn, the level set l0 = {x ∈ Rn : f (x)≤ f (x0)} is compact.

Theorem 1. Let {xk} be a sequence of points and {pi
k} with i = 1, ...,r some sequences of directions,

and the assumptions 1 and 2 be verified. If the following conditions are verified:
1) f (xk+1)≤ f (xk)
2) the sequences {pi

k} satisfy the condition 1 on the search directions.
3) some sequences of points {yi

k} and of positive scalars {ε i
k} exist, and are such that:

f (yi
k + ε

i
kpk)≥ f (yi

k)−o(ε i
k)

lim
k→∞

ε
i
k = 0

lim
k→∞
‖xk− yi

k‖= 0
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Figure 2.9: Search step and lattice

19



Then

lim
k→∞
‖∇ f (xk)‖= 0 (2.7)

To prove this theorem for the PS method the first step is to show, as we do in the next theorem, the
existence of a sequence of scalar tending to zero for k→ ∞, that is in our case the sequence of the step
size ∆k.

Theorem 2. Let the assumption 2 be verified. Then, if the exploratory moves follow the procedure
described in the equation 2.4, and the step size is updated according to the equation 2.1, we can find an
infinite set of index K such that

lim
k→∞,k∈K

∆k = 0 (2.8)

The algorithm generates a sequence of points {xk} such that f (xk+1) ≤ f (xk), therefore {xk} ∈ l0
which is a compact set for the assumption 2. Furthermore, for every k the current iteration belongs to an
entire lattice Mk = {x0 +∆kDkz,z ∈ N}, with x0 ∈ Rn. The intersection of this lattice with the compact
set l0 is made by a finite set of points. That means there must be at least one point x∗ such that xk = x∗
for an infinite number of times. In the PS method is impossible to come back to a point that was already
assessed in the previous iterations, but what can happened is that xk+1 = xk when the iteration is not
successful. Therefore, a subsequence {xk}K exists, such that for every k ∈ K, xk+1 = xk, xk = x∗ and
sk = 0. For the updating rule of the step size described in the equation 2.1 we have that

lim
k→∞,k∈K

∆k = 0

This result is crucial for the global convergence of the PS method which is proved in the next
theorem.

Theorem 3. Let {xk} be the sequence generated by the algorithm Pattern search, and the directions
{pi

k} that correspond to the vectors column of the matrix BΓk satisfy the condition A for i = 1, ....,2n.
Then, if the exploratory moves procedure is done as in the equation 2.4 and the step size is updated
according to the equation 2.1, an infinite set of index K exists, such that

lim
k→∞,k∈K

‖∇ f (xk)‖= 0

We need to prove the three requirements of theorem 1.
The second condition is verified for the hypothesis on the directions search, while the fact that

f (xk+1)≤ f (xk) is always true because the algorithm does not accept iterations that do not improve the
objective function. Furthermore, in the theorem 2 was shown that exists an infinite set of index K such
that

lim
k→∞,k∈K

∆k = 0

That implies the existence of a subsequence {∆k}K1 with K1 ⊆ K such that for every k ∈ K1,
∆k+1 < ∆k. For the machinery of the algorithm for every k ∈ K1 the previous iteration was unsuccessful,
therefore we have

f (xk +
∆kpi

k
θ

)≥ f (xk) with ∆k−1 =
∆k

θ

Finally if we put for every k ∈ K 
ε i

k =
∆k
θ

o(ε i
k) = 0

yi
k = xk

Also the third condition is verified, that means the PS method converges to a stationary point

lim
k→∞,k∈K

‖∇ f (xk)‖= 0
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Under some more restrictive hypothesis described below on the exploratory moves procedure and
the step size update is possible to prove the previous theorem in its stronger version.

1) s ∈ ∆k[BΓk BAk] (2.9)
2) i f min{ f (xk + y),y ∈ ∆kBΓk}< f (x)→ f (xk + sk)≤min{ f (xk + y),y ∈ ∆kBΓk}

∆k+1 =

{
θ∆k, if the iteration was not successful
∆k, if the iteration was successful

With 0 < θ < 1 , and λ = 1 we ensure that the step size ∆k is decreasing. Therefore, is possible to
prove the previous theorem without the need to identify an infinite set of index K. In fact for the step
size we get

lim
k→∞

∆k = 0 (2.10)

From which descends

lim
k→∞
‖∇ f (xk)‖= 0 (2.11)

As far we have proved the convergence to a stationary point using just the poll step, but that does not
imply the global convergence to a global minimum because the poll step by itself is not able to define
an ergodic process. For that purpose the use of the search step is necessary, being it able to cross all
the points of the domain. Higher will be the number of points considered in the search step higher will
be the probability of convergence to a global minimum of the method which uses both the poll and the
search step.

2.4 Convergence analysis for the Multi-Objective case
Many of the results achieved in the previous section are still valid and have great importance in the
convergence analysis for the multi-objective case, but further definitions and concepts are required. In
fact the concept of critical point has to be formalized according to the definition of Pareto dominance,
because the simple condition on the gradient functions is no more sufficient.

While some definitions do not need change or generalization, like the description of the exploratory
moves or the rule for the step size update, we need to generalize some elements already seen previously,
like the compactness of the set l0, and the step size ∆k convergence to zero.

Assumption 3. Given the point x0 ∈ Rn, the level set L(x0) =
⋃m

j=1 l j(x0) is compact, where l j(x0) =
{x ∈ Rn : f j(x) ≤ f j(x0)}, j = 1, ...,m. All the objective functions f j are bounded above and below in
L(x0).

We need to extend the compactness assumption to the union of the level sets, so that we can show
that the step size converges to zero as in the previous case. The intersection of a compact set L(x0) with
an integer lattice is finite, as well as the number of points we can add to the iterate list. Therefore, the
number of successful iterations is limited, and being the cycle among these points impossible, the step
size must go to zero.

For the convergence analysis [8] we need to analyze the behavior of the algorithm at limit points of
sequences of unsuccessful iterates, for that purpose the concepts of refining subsequences and directions
are defined, and will be used in the proof of the convergence theorem.

Definition 6. A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps is said to be
a refining subsequence if the iterates of step size {∆k}k∈K go to zero.

The existence of at least a convergent refining subsequence is ensured under our assumptions.
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Definition 7. Let x∗ be the limit point of a convergent refining subsequence. If the limit exists limk∈K′
dk

‖dk‖
,

where K′ ⊆ K and dk ∈ Dk, and if xk +∆kdk ∈ Ω, for sufficiently large k ∈ K′, then this limit is said to
be a refining direction for x∗.

Furthermore, the notion of critical point has to be changed. While in the single objective case it has
the property that moving away from it in any feasible directions the objective function is not improved,
in the multi-objective case moving away from it a dominating point is reached, that means at least one
of the objective functions gets worse. This idea is formalized through the concepts of Clarke tangent
vector for the feasible directions, and of Pareto-Clarke critical point for the points on the Pareto front.

Definition 8. A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ω ⊆ Rn at the point x in
the closure of Ω if for every sequence {yk} of elements of Ω that converges to x and for every sequence
of positive real numbers {tk} converging to zero, there exists a sequence of vectors {wk} converging to
d such that yk + tkwk ∈Ω.

The concept of tangent cone is generalized above with the concept of Clarke tangent cone, which is
the set TCl

Ω
(x) of all Clarke tangent vectors to Ω at x. The hypertangent cone T H

Ω
(x) is the interior of the

Clarke tangent cone, when the interior is not empty, obviously the Clarke tangent cone is the closure of
the hypertangent cone.

The next one is the last definition required, the Clarke-Jahn generalized derivatives of a function
represent the upper bound value of the directional derivatives on the directions d of the hypertangent
cone in a point x.

Definition 9. If we assume that F(x) is Lipschitz continuous near x, that is each fi(x), for i = 1, ...,m,
is continuous near x, we can define the Clarke-Jahn generalized derivatives of the individual functions
along the directions d in the hypertangent cone to Ω at x

f ◦i (x;d) = limsup
x′→x,t→0+

fi(x′+ td)− fi(x′)
t

with x′ ∈Ω,x′+ td ∈Ω (2.12)

With this definition is possible now to introduce the concept of Pareto-Clarke critical point, that is
the crucial point to prove the theorem for the global convergence analysis.

Definition 10. Let F be Lipschitz continuous near a point x∗ ∈ Ω. Then x∗ is a Pareto-Clarke critical
point of F in Ω if, for all directions d∈ TCl

Ω
(x∗), there exists a j = j(d)∈ {1, ...,m} such that f ◦j (x∗,d)≥

0.

Therefore, the concept of Pareto-Clarke point coincides with the concept of Pareto minimizer, be-
cause there is no direction in the tangent cone which is descent for all the objective functions.

Finally we can show the convergence of the PS method for multi-objective optimization, first we
prove the method produces a limit point for which there is no direction in the hypertangent cone descent
for all the objective functions, eventually this result will be extended also to the directions of the tangent
cone.

Theorem 4. Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω and a refining direction
d for x∗ in the hypertangent cone T H

Ω
(x∗), then, if F is a Lipschitz continuous near x∗, there exists a

j = j(d) ∈ {1, ...,m} such that f ◦j (x∗,d)≥ 0.

If we consider the refining direction d= limk∈K′′
dk

‖dk‖
∈ T H

Ω
(x∗) for x∗, with dk ∈Dk and xk+∆kdk ∈

Ω for all k ∈ K′′ ⊆ K.
Given the following disequation, for j ∈ {1, ...,m}

f ◦j (x∗;d) = limsup
x′→x,t→0+

f j(x′+ td)− f j(x′)
t

≥ limsup
k∈K′′

f j(xk +∆kdk)− f j(xk)

∆k‖dk‖

Being {xk}k∈K a refining subsequence, for every k ∈K′′ xk+∆kdk, corresponding to an unsuccess-
ful iteration, is a dominated point for the list Lk. Therefore, for each k ∈ K′′ an index j = j(k) function
of the iteration k exists, such that
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f j(k)(xk +∆kdk)− f j(xk)≥ 0

The number of indexes j, corresponding to the number of objective functions, is a finite number,
while there are infinite indexes k ∈ K′′. Therefore, there is an index j = j(d), function of the direction,
for which exists an infinite set of indexes k ∈ K′′′ ⊆ K′′ such that

f ◦j(d)(x∗;d)≥ limsup
k∈K′′′

f j(d)(xk +∆kdk)− f j(d)(xk)

∆k‖dk‖
≥ 0

In order to extend this result to the directions of the Clarke tangent cone, and therefore to prove that
x∗ is a Pareto minimizer, we need to impose the density of the set of refining directions. The ultimate
theorem is illustrated below.

Theorem 5. Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω, assuming that F is Lips-
chitz continuous near x∗, if the set of refining directions for x∗ is dense in TCl

Ω
(x∗) and the hypertangent

cone T H
Ω
(x∗) is non empty, then x∗ is a Pareto-Clarke critical point.

In the multiobjective case, unlike the single objective, the poll step by itself ensures the convergence
to a Pareto minimizer, therefore the search step is not necessary, but can be implemented in order to
disseminate the search within the domain.

2.5 Pattern search with random generated polling
As it was explained in Chapter 2.3 the polling matrix must have at least n+1 vectors in Rn to ensure the
convergence, because at least for one direction the function is decreasing. In order to cut the computa-
tional cost is possible to reduce the number of vectors randomly generating the polling directions and
without imposing the positive spanning property. This alternative mechanism increases the number of
unsuccessful iteration, therefore is necessary to introduce the notion of probabilistically descent set of
directions because at least one of them is needed to make an acute angle with the negative gradient with
a sufficient probability value uniformly across the iterations. We can prove that this probabilistic set of
directions ensures the convergence with an high probability, but the expansion parameter must be λ > 1
[10].

In particular for the practical implementations will be used a polling matrix of random vectors uni-
formly distributed in the unit sphere, with the parameters θ = 0.5 and λ = 2. In this way the algorithm
loses its deterministic features, but still have solid theoretical backgrounds unlike the traditional stochas-
tic methods.
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Chapter 3

Stochastic methods for multiobjective
optimization

3.1 Overview
Stochastic optimization algorithms have been increasingly more popular in the last two decades, play-
ing a major role in solving optimization problems in industrial engineering. These algorithms generate
random variables, may have random objectives, problems and constraints, therefore, unlike the deter-
ministic algorithms, each run is different from the other being the solving process defined random.

Furthermore, they do not need information on the gradient, solve the problems without the need
to explore the search space thoroughly, and incorporate naturally noisy functions while standard deter-
ministic methods require perfect information about the objective function, that is why they are often
preferred to solve high dimension problems despite the lack of guarantees about the convergence to the
global optimum.

The simplest methods for stochastic optimization are the Direct Random Search methods, they are
easy to code, only need information about the objective function, and may be an interesting example
to explain the main feature of the working principle of these random processes given their simplicity,
that is why we decide to examine in detail the Blind Random Search [11]. This algorithm defines a
sampling process for the variable x of the objective function f which does not take into account and is
not influenced by the previous samples, thus the information gathered in the search process are not used
to adapt the search strategy. This method is the only one in stochastic optimization where there is no
adjustable coefficients that need to be tuned by the user, that is why the recursive implementation is very
simple, and is presented below.

minx∈X f (x) X ⊆ Rn f : Rn→ R

0) Initialization: choose an initial value of x, say x0 ∈ X , either randomly or deterministically. If
random, usually a uniform distribution on X is used. Calculate f (x0). Set k = 0.

1) Generate a new independent value xnew(k+1) ∈ X , according to the chosen probability distribu-
tion. If f (xnew(k+1))< f (xk), set xk+1 = xnew(k+1). Else, take xk+1 = xk.

2) Stop if the maximum number of evaluations has been reached or the user is otherwise satisfied
with the current estimate for x via appropriate stopping criteria; else, return to 1) with the new k set to
the former k+1.

The convergence of the algorithm is almost sure under general conditions, but the convergence rate
is very low also for domains of size not very large, given the curse of dimensionality. A more sophis-
ticated algorithm which takes into account in the sampling the position of the current best estimate is
the Localized Random Search, which is able to exploit the information obtained about the shape of the

25



function. The machinery of this algorithm is described below.

0) Initialization: pick an initial guess x0 ∈ X either randomly or with prior information. Set k = 0.
1) Generate an independent random vector dk ∈ Rn and add it to the current x value. Check if

xk +dk ∈ X . If xk +dk /∈ X , generate a new dk and repeat or, alternatively, move xk +dk to the nearest
valid point within X . Let xk+1 = xnew(k+1) equal xk +dk ∈ X or the aforementioned nearest valid point
in X .

2) If f (xnew(k+1))< L(xk), set xk+1 = xnew(k+1), else set xk+1 = xk.
3) Stop if the maximum number of evaluations has been reached or the user is otherwise satisfied

with the current estimate for x via appropriate stopping criteria; else, return to Step 1 with the new set
to the former k+1.

In this case we can tune the method setting the distribution of the deviation vector, possibly reducing
the variability of dk as k increases.

Given the adaptation of the search process due to the exploitation component the Localized Random
Search has an higher convergence rate than the Blind Random Search.

Generally a stochastic algorithm is made of a random or an opportunistic initialization if some
data are available a priori, a search with a probabilistic component which may or not be adjusted,
a comparison in order to see if an improvement in the solution was found, and finally the check of
the stopping condition. The crucial component is the search and the way it is done, because higher
is the exploitation of the previous samplings done, higher is the rate of convergence, that is why the
metaheuristic procedures have gained a lot of importance.

Meta means beyond or of an higher level, while heuristic means to solve by trial and error, thus by
experience, therefore we refer to metaheuristic as a master strategy that produces solutions beyond the
ones usually found in the search for optimality using and driving other heuristics.

The two fundamental components of metaheuristic algorithms are exploitation and exploration, the
first has the duty to localize the quest in the regions where a good solution was found, the latter gen-
erates some random and sparse trial solutions in order to explore the search space, a good balance of
this components improves the convergence rate. Also for them there is no guarantee that an optimal
solution can be reached, but a good combination of the major components usually ensures the global
convergence.

Often these methods are naturally inspired, for instance the Particle Swarm Optimization (PSO),
which belongs to the Swarm Intelligence field, simulates the movements in a bird flock, and the Dif-
ferential Evolution, which belongs to the field of evolutionary computation, is inspired by biological
evolution simulating the natural selection mechanism in order to improve the solutions computed.

These two algorithms are already very popular and often used for engineering optimization, that
is why they are taken as references for the performance comparison with the Pattern Search and the
innovative algorithms developed in Chapter 4.

In this chapter these two methods are described in details.

3.2 Particle Swarm Optimization
Particle Swarm Optimization is a swarm-based evolutionary algorithm introduced by Eberhart and
Kennedy [12], it is a population based evolutionary algorithm and is inspired by natural concepts like
bird flocking or fish schooling, where each particles or candidate solutions explore the environment for
food or the search space for a good solution, exchange information by acoustical means or exchange in-
formation by sharing position of promising location. Therefore, each particle moves in the search space
with a dynamic adjustment of the velocity which depends on the experience of the particle and the ex-
periences of the other particles exploring the search space. This machinery was inspired by the flocking
behavior, given the possibility to communicate and exchanging information, this model is controlled by
the following three basic rules.

• Separation, avoid crowding neighbors (short range repulsion)

• Alignment, steer towards average heading of neighbors
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• Cohesion, steer towards average position of neighbors (long range attraction)

The mathematical formulation which defines the motion of the N particles is described by the fol-
lowing equations, updating the velocity vi and the position xi of each particle i.

vi(t +1) = wvi(t)+ c1ud[pi(t)−xi(t)]+ c2Ud[pg(t)−xi(t)] (3.1)

xi(t +1) = xi(t)+∆tvi(t +1) (3.2)

The positive constants c1 and c2 are called acceleration coefficients, ud and Ud are random functions
in the range [0,1], and w is the inertia coefficient, while pi represents the personal best of the particle i
and pg the global best position ever.

In the equation 3.1 we can identify the sum of three components, the inertial component wvi(t)
proportional to the weight coefficient w, the cognitive element c1ud[pi(t)−xi(t)] which depends on the
information gathered by the single particle i, and the social element c2Ud[pg(t)−xi(t)] which uses the
best value found by all the particles.

The movement of particles [13] is illustrated in figure 3.1

Figure 3.1: Particle motion in the swarm

The tuning of the parameters can influence the search process, an high value of the inertia weight w
facilitates global exploration, while a low one local exploitation. The factor c1 multiplies the cognitive
component, that is the exploitation of its own experience, therefore is named individual factor, c2 the
societal factor influences the social component that is the information sharing and cooperation among
particles.

Many efforts have been made to find the parameters values which optimize the performance of the
algorithm, the numerical experiments [14] show that the inertia should be linearly decreasing with the
iterations between 1 and 0.3, the populations size in the range between 20 and 30, and the individual
and social factor linked by the following equation.

c2 = c1 +α (3.3)

With α between 1 and 1.5.
At last, we can discuss the convergence of PSO [15], knowing that we can only ensure the conver-

gence to the best position visited by all the particles of the swarm. In order to assure convergence to the
local or global optimum we need the two following conditions.

• The global best solution found at the time t + 1 can be no worse than the global best found at t.
This is the monotonic condition

• The algorithm must be able to generate with a nonzero probability a solution in the neighborhood
of the optimum from any solution of the search space
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Despite the fact that PSO satisfies the monotonic condition, once the algorithm reaches the state
where x is equal to the personal best which in turn is equal to the global best for all the particles, no
further improvement will be made. Since this state may be reached before the global best achieves a
minimum, whether be local or global.

Therefore, the algorithm is said to converge prematurely, this means it is not a local nor a global
search algorithm since there is no guarantee of convergence to a local or a global minimum from an
arbitrary initial state.

3.3 Differential Evolution
The Differential Evolution is a stochastic population based algorithm introduced by Storn and Price
[16]. It is an evolutionary algorithm which tries to improve a candidate solution operating the procedure
of figure 3.2 [17]. Consider an optimization problem with a function of D real parameters, a population
size equal to N. The parameters vector is xi,G, where G is the generation number.

xi,G = [x1,i,G,x2,i,G, ......,xD,i,G] (3.4)

with i = 1,2, ....,N

Figure 3.2: DE procedure

During the initialisation, given the lower and upper bounds for each parameter xL
j and xU

j , we select
randomly and uniformly in the domain the initial parameter.

xL
j ≤ x j,i,1 ≤ xU

j (3.5)

The mutation expands the search space on each of the N parameter vectors, adding a difference
vector. We can select randomly three vectors xr1,G xr2,G and xr3,G, with different values for the three
indexes r1 r2 and r3, and defining the donor vector as the weighted difference of two of the vectors to
the third through the mutation factor MF .

vi,G+1 = xr1,G +MF(xr2,G−xr3,G) (3.6)

Where the mutation factor F is a constant in the range [0,2]. Many alternative options are possible
for this step, like choosing the best vector of parameters instead of xr1,G, or using more vectors for the
weighted sum.

The recombination mix successful solutions from the previous generation with current donors, the
trial vector ui,G+1 is developed from elements of the target and donor vectors. We define a crossover
ratio CR, that is the probability the elements of the donor vector enter the trial vector.

u j,i,G+1 =

{
v j,i,G+1, if rand j,i ≤CR or j = Irand

x j,i,G, else
(3.7)

Where Irand is a random integer from [1,2,...,D].
Finally we compare the target vector and the trial vector, the best, the one for which the target

function assumes the lowest value, passes to the next generation.
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Figure 3.3: Generation of the donor vector v in a two dimensional example with the objective function
showing its contour lines

xi,G+1 =

{
ui,G+1, if f (ui,G+1)≤ f (xi,G)

xi,G, otherwise
(3.8)

Afterwards, the three steps, mutation, recombination and selection, continue until the condition on
the stopping criterion is satisfied.

The DE method has been shown to be effective on a large range of optimization problems, and more
accurate than many other methods.

However there is no proof of convergence.

3.4 PSO and DE for multiobjective optimization

3.4.1 Non dominated sorting
In solving a multiobjective problem the aim is to find a set of Pareto-optimal points instead of a single
point, therefore since PSO and DE are population based methods it seems natural to use them in order
to capture a number of solutions in the set simultaneously.

For the search effectiveness the nondominated sorting procedure is introduced, this is a ranking
selection used to emphasize good points classifying the entire population into several fronts [18].

Furthermore, given that the population of points should capture multiple Pareto optimal solutions is
important to sort each front in decreasing crowding order, in order to avoid points clustering computing
all the Pareto front and enabling a better points distribution along the front.

A possibility to assess the sparseness given an individual B, and being A and C the individuals before
and after B, is the definition of the crowding distance Dc(B) as follows [19].

Dc(B) =
Nob j

∑
i=1
| fi(A)− fi(C)| (3.9)

Where fi(A) and fi(C) are the objective function values for the ith objective. For the individuals on
border Dc is not defined, but is set equal to infinite to ensure their unconditional selection to the next
generation to keep the wideness of the front.

The above approach just takes into account the size of the neighborhood without considering the
distribution of individual B sparseness in neighborhood. Therefore, in order to avoid the elimination
of some well distributed individuals and the retention of some with a poor distribution, equation 3.9 is
modified, introducing the term O that is the center point between A and C.
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Figure 3.4: Non-dominated sorting procedure

Dc(B) =
Nob j

∑
i=1

(| fi(A)− fi(C)|− | fi(B)− fi(O)|) = (3.10)

Nob j

∑
i=1

(0.5| fi(A)− fi(C)|+min[| fi(A)− fi(B)|, | fi(B)− fi(C)|])

Where fi(O) and fi(B) are the values of center point O and the individual B for the ith objective
function.

In equation 3.10 the term | fi(A)− fi(C)| reflects the neighborhood size, while the term | fi(B)−
fi(O)| represents the distance between the individual an the center of neighborhood, thus taking into
account the distribution.

3.4.2 MOPSO
There are many different proposals for the extension of the PSO method to the multiobjective optimiza-
tion, given its relative simplicity and its effectiveness in a wide variety of applications. We need to
change the original scheme in order to apply the PSO strategy to the multiobjective case, where we want
to achieve three main goals.

• Maximize the number of elements computed in the Pareto front

• Minimize the distance between the Pareto front computed and the real one

• Maximize the spread of the solutions computed in order to improve the distribution uniformity of
the solutions found

The Multiobjective Particle Swarm Optimization [15], MOPSO, needs to find an efficient way to
select the leader particles in order to give preference to nondominated solutions over the dominated ones,
maintain the nondominated solutions found during the search to report solutions that are non dominated
with respect to all the past populations preferably with a good distribution along the front, maintain
diversity in the front to avoid clustering or convergence to a single solution. Furthermore, each particle
needs a set of different leaders among which just one can be selected to update its position. This set of
leaders is stored in an external archive, which can be defined, updated and bounded according to many
different strategies.
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The basic sequence of the MOPSO consists in the initialization of the swarm, the following set
of leaders initialization with the nondominated particles from the swarm. Eventually one leader is
selected for each swarm particle according to a quality measure, the particle position is evaluated and its
corresponding personal best is updated, the replacement occurs when this particle is dominated or if they
are both nondominated with respect to each other. Then the particles as well as the set of leaders have
been updated, and finally the quality measure of the set of leaders is recalculated. The above process is
repeated for a fixed number of iterations.

Figure 3.5: MOPSO algorithm pseudocode

Given the process above the crucial issues we must address consist in selecting and updating the
leaders, whether we should do it in a random way or introducing a further criterion to promote diversity
given the fact that the nondominated solutions are equally good, and in selecting the particles which
should stay in the external archive from one iteration to another. The most linear approach is to introduce
a quality measure which states how good is a leader, in this way we can select just one leader from the
analysis of every nondominated solutions. Such feature can be implemented relating the quality to a
density measure, which is referred to the closeness of the particles within the swarm.

Furthermore, we have to consider the use of an external archive in order to retain solutions, this
archive enables the entrance of a solution if it is not dominated by the other points in the archive or if it
dominates any of the solutions within the archive which will be eventually deleted.

The obvious outcome of this process is the size increase of the archive, which must be updated at
every iteration. Therefore, this update may become very expensive from the computational point of
view, and we must find a way to limit this computational cost. That is why the archive is bounded, and
an additional criterion is introduced to decide which nondominated solutions should remain once the
archive becomes full.

Another reason why the diversity is a fundamental feature for MOPSO is that without it the algorithm
may lose its fast convergence, and have a premature convergence, that is the convergence to a local
optimum. In order to avoid it we have to preserve the diversity which enables the algorithm to keep its
fast convergence.
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One way for the preservation is an appropriate use of the inertia weight, which controls the impact
the influence of the previous history of velocities has on the current velocity, hence it also represents
a trade-off between global and local exploration. A big coefficient boosts global exploration searching
in new areas, while a small value facilitates local exploration in the current search area. For all these
motivations the inertia weight varies during the optimization process through a linear reduction.

Furthermore, in order to avoid the stagnation of the swarm that occurs when the velocities of the
particles are almost zero and lead the whole swarm to be trapped in a local optimum, the mutation of a
single particle if the mutated particle becomes the new global best may be necessary, because the global
best individual attracts all the members of the swarm leading it away from the current location.

For all the aims presented above the non-dominated sorting procedure is implemented in the MOPSO,
in this approach once a particle has updated its position it is not compared just with the personal best of
the particle, but all the personal best of the swarm and all the new positions recently obtained are stored
in one set, then the procedure selects among them to conform the next swarm. Furthermore, there is a
selection of the leaders from the set using a density estimation of neighborhood.

Another important issue to address in this algorithm is how avoid the out of bounds particles in order
to reduce the function evaluations wasting through the clamping and reseeding processes. In figure 3.6
are represented three cases, one with the rebound on the same side of the bound, one with the passage
on the other side, and the last one with a random positioning in the domain.

3.4.3 MODE

The combination of an external Pareto archive and the Differential Evolution algorithm is another possi-
ble approach to deal with multiple objectives problems. This evolutionary mechanism for multiobjective
optimization [20], namely MODE (Multiobjective Differential Evolution) keeps the simplicity of DE
for the single objective case, and needs to introduce only one more parameter besides the mutation fac-
tor (MF), the crossover rate (CR) and the population size (NP), that is the maximum size of the Pareto
Front.

First the DE is called and the next population is determined. At each iteration the current Pareto set
is compared with another already stored in an external file. Eventually a ranking operation is executed
between the previous population elements and the current Pareto set, according to their strength which
is defined as we have already seen with a non dominated sorting procedure.

Then, given the first NP ranked elements, two solutions are randomly chosen from the previous
population, whose difference is added to the element from the rank in order to perform the mutation
as defined in equation 3.6. Afterwards the mutated vector suffers a crossover (equation 3.7) in order to
increase diversity.

During the initialization the first population is randomly generated and the unfeasible solutions are
deleted. Then the other solutions are ranked, creating the first Pareto set. The new vectors in the current
generation are compared with the external Pareto set, a ranking and selection process for the solutions
is performed, and only the non dominated ones survive in the external archive.

If the number of elements is greater than the maximum size for the Pareto front defined at the
beginning, a cluster reduction is performed.

The whole optimization process is described in figure 3.7.
This process runs until it fulfils one stop criterion.
Also in the multiobjective case the Differential Evolution method retains its relative simplicity due

to the low number of control parameters, low computational requirements and an essential code easy to
modify and update.

3.5 No Free-Lunch theorem

We can finally try to ask whether there is a best evolutionary algorithm which would always give bet-
ter results for all the possible optimization problems. That would also mean that some variation and
selection operators would always perform better than the others despite the given problem.

The answer to this question is that there is no best evolutionary algorithms, the result is known as
"No Free-Lunch" theorem [21].
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Figure 3.6: Clamping and reseeding
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Figure 3.7: MODE algorithm

Consider an algorithm a, represented as a mapping from previously unvisited sets of points to a sin-
gle previously unvisited point ξk in the search space composed of all the feasible points. Let P(ξk| f ,k,a)
be the conditional probability of visiting point ξk when the algorithm a iterates for k time the objective
function f . Thus, for any pair of algorithms a1 and a2

∑
f

P(ξk| f ,k,a1) = ∑
f

P(ξk| f ,k,a2) (3.11)

From the equation 3.11 follows that all optimization algorithms have the same mean performance
across all the possible objective functions, being the sum of conditional probabilities of visiting point ξk
the same over all the possible objective functions, regardless the algorithm chosen.

This outcome is valid both for evolutionary and deterministic algorithms.
Another consequence of this result is that if an algorithm gains something in term of performance

on one class of problem, that gain is necessarily lost by the same algorithm in the performance for the
remaining problems.

However, engineers are only interest in a subset of problems, then is possible to select or create an
algorithm which outperforms the others for a particular class of problem.
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Chapter 4

Alternatives and hybrid algorithms

The key aim of this chapter is to develop some innovative algorithms modifying and improving the
standard PS method, and to create two hybrid algorithms mixing the PS with the two stochastic methods
Particle Swarm Optimization (PSO) and Differential Evolution (DE)

4.1 Poll step strategy

Consider the poll step of the PS method described below.

Poll step: search around the point of the selected item Pk = {xk + ∆kd,d ∈ Dk}, define Ladd =
{(xk +∆kd,∆k), d ∈ Dk}, call the function f ilter L f ilter = f ilter(Lk,Ladd) and put Ltrial = L f ilter or
Ltrial ⊆ L f ilter. If Ltrial 6= Lk put Lk+1 = Ltrial , else Lk+1 = Lk. In both cases update the step size, and go
to the search step.

Two strategies can be used and implemented for the poll step, the fixed order strategy which com-
putes the function in all the points around the poll center and if a non dominated point is found declares
the iteration successful, or the dynamic strategy which considers one by one the points and as soon as a
non dominated point is found the iteration is declared successful.

In figure 4.1 and 4.2 [22] are shown the calculations performed respectively with the dynamic and
fixed strategy. While in the dynamic case when the first feasible point and non dominated point is found
the polling around x1 is interrupted, in the second case all points around x1 are computed, performing a
complete polling, and only at the end the non dominated points are filtered.

4.2 Search directions

In order to span positively Rn the number of search directions must be at least equal to n+ 1. An
alternative to reduce the number of search directions, still ensuring the convergence, is a random matrix
set directions generation. Therefore, the set of directions changes at each iterations, and can be shown
that to maximize the convergence rate the random directions should be uniformly distributed on the unit
sphere, but being the number of unsuccessful iterations higher the step size expansion must be greater
than 1.

In the algorithm developed the random matrix has on the columns an orthonormal basis of the space
R

n, we indicate this set of vectors with the letter σ .
An orthonormal set of vectors d1,d2, ....,dk ∈ Rn is normalized, having ‖di‖ = 1 for i = 1, ...,k,

orthogonal with di ⊥ d j for i 6= j, meaning that the vectors are mutually perpendicular. This set must
be linearly independent, and if it is a vector space basis for the space it spans, such a basis is called an
orthonormal basis. The n vectors column of matrix σ represent an orthonormal basis for Rn.

In the first option matrices with n search directions are used, created with a random orthonormal
matrix generator, where θ is the step size contraction coefficient and λ the expansion coefficient.
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Figure 4.1: Dynamic strategy

Figure 4.2: Fixed order strategy
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Dk = [σ ] (4.1)

θ =
1
2

λ = 2

In the second option the number of search directions is equal to 2n, therefore no advantages is
achieved in term of function evaluations, but it may be useful when the shape of the Pareto set is much
variable. In this case the step size expansion coefficient does not have necessarily to be higher than 1.

Dk = [σ −σ ] (4.2)

θ =
1
2

λ = 1

A generic form of orthonormal matrix in R2 is illustrated below

Dk =

[
cos(αk) sin(αk)
sin(αk) −cos(αk)

]
(4.3)

Where the angle αk is generated randomly at each generation, and in this simple way the random
polling matrix is defined.

xkxk

Figure 4.3: Random Dk generations

Another alternative for the directions matrix which takes into account the winning directions was
developed, memorizing the last two for which the iteration is declared successful. Below the functioning
of the algorithm is described.

1) Iteration k : store the winning direction vk
2) Iteration k+1: store the winning direction vk+1
3) Iteration k+2: dk+2 = vk +vk+1. Define with the vector dk+2 an orthonormal basis γ of the space

R
n. Use as directions matrix Dk+2 = [γ− γ].

We can now consider an example in R2 in order to show how the new polling matrix is defined.
If at the beginning the matrix D0 is defined through the identity matrix I

D0 =

[
1 0 −1 0
0 1 0 −1

]
(4.4)
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And we obtain for the winning directions in 0 and 1 respectively

v0 =

[
1
0

]
and v1 =

[
0
1

]
Therefore, the vector which defines the orthonormal basis is

d2 =

[
1
1

]
Through the normalization of this vector, and the definition of the orthonormal basis we obtain the

new directions matrix

D2 =

[
0.707 −0.707 −0.707 0.707
0.707 0.707 −0.707 −0.707

]
(4.5)

If at the iteration k the vector column obtained dk is a zero vector, the new polling matrix is defined
as the one at the beginning.

xk xk+1

xk+2

Figure 4.4: Store winning directions

xk+2

Figure 4.5: New search directions

Such method seems to be effective for problems with an irregular Pareto set, but does not show an
improvement for a wide class of problems.

4.3 Adaptive step size strategy
In the standard Pattern Search method to each point in the temporary Pareto set is associated a step
size. In order to increase the accuracy of the poll step an alternative is proposed in which a step size
is associated to each search directions of each point in the temporary Pareto set, therefore to each
point is associated a vector with 2n elements, if 2n is the number of search directions. Obviously the
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matrix directions Dk containing on its vectors column the search directions di must be the same for each
iterations. Therefore, the actual polling matrix is D∗k .

D∗k =
[
∆k,1d1 ∆k,2d2 · · · ∆k,2nd2n

]
(4.6)

With this alternative strategy the convergence is ensured both in the single and the multiobjective
case, below is presented the convergence analysis in the single objective case.

Indicating with ∆i the step size associated to the direction i, with m the number of unsuccessful
poll steps, with n the number of successful poll steps in the standard case, and finally with n− si the
number of successful iterations for the direction i (s≥ 0 and s ∈N), given that the number of successful
iterations for each directions is equal or lower than in the standard case, being the step size associated
to each directions, we have for every i

∆i = ∆0θ
m

λ
(n−si) ≤ ∆0θ

m
λ

n = ∆ (4.7)

Where ∆0 is the initial step size. As it was proved in the theory with 0 < θ < 1 , and λ ≥ 1 we get
limm→∞ ∆ = 0. Finally for the comparison theorem

lim
m→∞

∆i = lim
m→∞

∆ = 0 (4.8)

Therefore, the convergence is ensured, because all the elements ∆i of the step size vector tend to
zero increasing the number of iterations.

An example of adaptive polling with the matrix D∗k is illustrated in figure 4.6.

xk
d1∆k,1

d2∆k,2

d3∆k,3

d4∆k,4

Figure 4.6: Adaptive poll step

4.4 Hybrid algorithm: PSO-PS
An hybrid algorithm which combines the Particle Swarm Optimization with Pattern Search was devel-
oped, the two components work in series, therefore after the execution of the PSO the output, consisting
in the archive of the PSO, is used as list of initial points for the PS. That optimizer should keep the
robustness of the PSO increasing the speed with the PS component, exploiting the strong global search
component of PSO with the local search and refinement af a deterministic method like PS.

Furthermore, it is possible to modify in the settings the number of function evaluations for the PSO
and the PS components, in order to adapt the optimizer to different classes of problems.

The convergence is ensured by the PS component, being PSO just used in order to provide the input
for PS.
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4.5 Hybrid algorithm: DE-PS
An hybrid algorithm consisting in a Differential Evolution and a Pattern Search component intertwined
was developed, the machinery is described below.

Differential Evolution component

0) Initialization according to the population size N
1) Mutation
2) Recombination
3) Selection
4) Store in a non dominated sorting archive

if iteration > m (where m is set by the user)

Pattern Search component

5) Poll step around the first M points of the archive, with M ≤ N
6) Store in a non dominated sorting archive
7) Reinitialize the population for the DE component with the first N points of the non dominated

sorting archive

end if

8) go to step 1

For the convergence analysis we have to analyze the step 5, where the polling is performed.
If the polling around all the N points does not find any non dominated points the step size is reduced

according to the parameter θ , while in case the procedure is successful the expansion parameter is λ = 1.
Therefore, given that the Differential Evolution scheme works improving the Pareto set at each iteration,
without adding new dominated points, also in this case the convergence is ensured by the PS component.

In practice, given its fast decrease a minimum value for the step size, which can be modified in
settings, is imposed, and the execution continues until it meets the stop criterion based on a maximum
value of function evaluations.

The combination of these two algorithms is done in order to obtain a greedy algorithm, suitable for
engineering applications.
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Figure 4.7: DE-PS flowchart
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Chapter 5

Comparison of multiobjective
algorithms: metrics and performance

5.1 Overview
In chapters 2 and 3 we have presented a pure deterministic Pattern search algorithms (PS), and two
stochastic algorithms Particle Swarm Optimization (PSO) and Differential Evolution (DE) applicable to
multiobjective problems, while in chapter 4 we have introduced several innovative algorithms changing
the strategy for the step size update and for the polling (PS(adaptive)) like in sections 4.1 and 4.3, or
creating hybrids between PSO and PS (PSO-PS) section 4.4, and among DE and PS (DE-PS) as in
section 4.5.

The aim of this chapter is to compare all these algorithms measuring the performance for a set of
test functions, in order to show what is the best option for multiobjective optimization, and assess the
pure deterministic and new hybrid algorithms reliability.

Comparing the performance of multi-objective optimization algorithms is not trivial and is still a
subject of considerable research, but there are two tasks that a multiobjective optimization algorithms
must do well [5]

• Convergence as close to the true Pareto-optimal region as possible

• Maintain as many widely spread non-dominated solutions as possible

Therefore, we should consider benchmark problems where each of the above tasks is difficult to
achieve.

The features are

• Convexity or nonconvexity in the Pareto-optimal front

• Discontinuity in the Pareto-optimal front

• Non-uniform distribution of solutions in the search space and in the Pareto-optimal front

A set of problems with these different features is presented in the next section, while the metrics to
assess the closeness of the front computed to the real one and its uniform distribution are illustrated in
section 5.3.

5.2 Test problems
Overall six test functions are considered, of which four belongs to the Zitzler-Deb-Thiele’s (ZDT) test
problems [5] [23].

These problems have two objectives which have to be minimized.
Minimize f1(x)
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Minimize f2(x) = g(x)h( f1(x),g(x))

In the four problems all the variables lie in the range [0,1], they differ according to the way the
functions f1(x), g(x) and h(x) are defined.

ZDT1. This is a problem with 30 variables (n=30) having a convex Pareto-optimal front.

ZDT 1 :


f1(x) = x1

g(x) = 1+
9

n−1
∑

n
i=2 xi

h( f1,g(x)) = 1−
√

f1/g(x)

(5.1)

This is the easiest of the problems considered, having a continuous Pareto-optimal front and a uni-
form distribution across the front.
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Figure 5.1: ZDT1 Pareto front

ZDT2. This is a problem with 30 variables (n=30) having a nonconvex Pareto-optimal front.

ZDT 2 :


f1(x) = x1

g(x) = 1+
9

n−1
∑

n
i=2 xi

h( f1,g(x)) = 1− ( f1/g(x))2

(5.2)

The main difficulty with this problem is that the Pareto-optimal region is non convex, but it has an
uniform distribution of solutions.

ZDT3. This is a problem with 30 variables (n=30) having a number of disconnected Pareto-optimal
fronts.

ZDT 3 :


f1(x) = x1

g(x) = 1+
9

n−1
∑

n
i=2 xi

h( f1,g(x)) = 1−
√

f1/g(x)− ( f1/g(x))sin(10π f1)

(5.3)

The main difficulty with this problem is that the Pareto-optimal region is discontinuous.
ZDT6. This is a problem with 10 variables (n=10) having a nonconvex Pareto-optimal front. Fur-

thermore, the density of solutions across the Pareto optimal region is non-uniform.
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Figure 5.2: ZDT2 Pareto front
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Figure 5.3: ZDT3 Pareto front
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ZDT 6 :


f1(x) = 1− exp(−4x1)sin6(6πx1)

g(x) = 1+9[(∑n
i=2 xi)/9]0.25

h( f1,g(x)) = 1− ( f1/g)2

(5.4)

The adverse density of solutions across the front, together with the nonconvex nature of the front
may cause troubles for many algorithms to converge to the true Pareto-optimal front.
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Figure 5.4: ZDT6 Pareto front

The remaining two test problems (CEC1 and CEC2) are taken from the CEC09 algorithm contest
[24], and are both unconstrained problems with n=30 variables having as search space [0,1]× [−1,1]n−1.

The two objectives to be minimized are f1 and f2.

CEC1.

CEC1 :


f1(x) = x1 +

2
|J1|

∑ j∈J1
[x j− sin(6πx1 +

jπ
n )]2

f2(x) = 1−√x1 +
2
|J2|

∑ j∈J2
[x j− sin(6πx1 +

jπ
n )]2

(5.5)

Where j belongs to J1 if it is odd and 2≤ j ≤ n, while j belongs to J2 if it is even and 2≤ j ≤ n.

CEC2.

CEC2 :


f1(x) = x1 +

2
|J1|

∑ j∈J1
y2

j

f2(x) = 1−√x1 +
2
|J2|

∑ j∈J2
y2

j

(5.6)

Where j belongs to J1 if it is odd and 2≤ j ≤ n, while j belongs to J2 if it is even and 2≤ j ≤ n and

y j =

{
x j− [0.3x2

1cos(24πx1 +
4 jπ

n )+0.6x1]cos(6πx1 +
jπ
n ) j ∈ J1

x j− [0.3x2
1cos(24πx1 +

4 jπ
n )+0.6x1]sin(6πx1 +

jπ
n ) j ∈ J2

(5.7)

The functions CEC1 and CEC2 have the same Pareto front, and have been chosen for the variability
of the Pareto set.
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Figure 5.5: CEC1 and CEC2 Pareto front

5.3 Performance metrics

As we have already mentioned there are two distinct goals in multiobjective optimization, discovering
solutions as close to the Pareto front as possible, and finding solutions as diverse as possible in the front.
These two goals are orthogonal to each other, requiring the first a search towards the Pareto-optimal
region and the second a search along the Pareto front.

5.3.1 Error Ratio

Given two algorithms A and B in order to assess which is the best one in term of closeness to the real
Pareto front we introduce the Error Ratio (ER) metric. This metric counts the number of solution of A
which are strictly dominated by the solutions of B.

ERAB =
∑
|A|
i=1 ei

|A|
(5.8)

Where ei = 1 if the point i in A is strictly dominated by at least one of the point of B, and ei = 1
otherwise. The metric ERAB takes a value between zero and one, an ERAB = 0 means all solutions
found by A are nondominated by the ones from B, while an ERAB = 1 means that all the solutions are
dominated by the ones computed by B. Smaller is the value the better is the performance of A compared
to B.

5.3.2 Spacing

Furthermore, we introduce four parameters in order to assess the distribution of solutions across the
Pareto front. We assume that the n objective function values computed have been sorted by increasing
order, and we define the set D which contains the n−1 euclidean distances di with i ∈ 1{1,2, ...,n−1}
between consecutive points in the computed Pareto front. Being the test functions considered problems
with two objectives, the concept of consecutive points is defined without ambiguity.

di =
√
( fi,1− fi+1,1)2 +( fi,2− fi+1,2)2 (5.9)

We can now compute two measures derived from the set D, the mean µ which represents an indicator
of the density of the solutions across the front, and the standard deviation σ , an indicator of the spacing,
that is the uniformity of the distribution.
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Table 5.1: Points distribution along the front (2000 function evaluations).
Algorithm δ µ σ σ∗

DE-PS 0.2558 0.0801 0.0705 0.9064
PSO-PS 0.5219 0.3129 0.1551 0.6124
PS(adaptive) 0.4125 0.2682 0.1337 0.5278
PS 0.2635 0.1563 0.0815 0.5182
DE 0.2909 0.1409 0.0695 0.5431

µ =
∑

n−1
i=1 di

n
(5.10)

σ =

√
1

n−1

n−1

∑
i=1

(di−µ)2 (5.11)

The algorithms we will compare compute a different number of solutions, having a completely
distinct working principle. While the stochastic methods are population based, thus computing a fixed
and known number of points for each problems, the deterministic method has a steadily increasing
number of points at each iteration, and the final number will not be fixed nor predictable.

That is why we need to introduce a metric able to compare the quality of the distribution of Pareto
fronts computed with different number of points. The relative standard deviation σ∗ fulfils this scope,
being the ratio between the standard deviation and the mean.

σ
∗ =

σ

µ
(5.12)

A further aim of an optimizer is to avoid the making of "holes" in the computed front in order not to
lose important information, for this reason we introduce a metric to indicate the maximum distance in
the Pareto front, that is the maximum euclidean distance between consecutive solutions. The maximum
spread δ is the maximum value in the set D.

δ = max(D) (5.13)

5.4 Numerical results
The results presented here were obtained for two function evaluations cases, with 30000 and 2000 func-
tion evaluations. The first case represents a standard number of evaluations to deal with very large
dimension problems, but such a high number of function evaluations is not realistic for many elec-
tromagnetic device design problems. For this reason we also consider the case with 2000 function
evaluations, which employs a feasible amount of time to deliver a feasible solution and represents a
measure of the aggressiveness of the algorithm, which is crucial for engineering optimization.

All the values in the tables consists in the average obtained by the algorithms in all the benchmark
problems.

In Tables 5.1 and 5.2 the parameters regarding the spacing are illustrated, while Tables 5.3 and 5.4
show the error ratios resulted by the comparison of the algorithms. In particular the error ratio ERi j
in column i and row j, represents the number of points computed by the algorithm in column i which
are dominated by the algorithm in row j. For instance the value in column 3 and row 2 is the relative
value of solutions computed by the algorithm PS(adaptive) dominated by the solutions computed by
the algorithm PSO-PS. Where Ei j is lower than E ji it is marked in bold, meaning that the comparison
between the algorithm in column i and the one in row j has seen the algorithm in column i as the winner.

The hybrid algorithm DE-PS wins the comparison in term of closeness to the real Pareto front,
being the one with the lower Error Ratio when is compared with all the other algorithms. Also the
DE algorithm, which constitutes a reference for its convergence speed is defeated, especially in the
case with 2000 function evaluations, proving its aggressiveness which is crucial in solving real cases
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Table 5.2: Points distribution along the front (30000 function evaluations).
Algorithm δ µ σ σ∗

DE-PS 0.1273 0.0205 0.0237 1.1302
PSO-PS 0.1589 0.0495 0.0543 1.1661
PS(adaptive) 0.1601 0.0296 0.0342 1.1292
PS 0.2031 0.0351 0.0633 1.4568
DE 0.1425 0.0167 0.0233 1.1225

Table 5.3: Error ratio (2000 function evaluations).
Algorithm DE-PS PSO-PS PS(adaptive) PS DE
DE-PS 0.7222 0.5000 0.7095 0.9719
PSO-PS 0.2502 0.0786 0.1936 0.3236
PS(adaptive) 0.3212 0.5111 0.3506 0.4217
PS 0.2379 0.6361 0.5069 0.4223
DE 0.0058 0.5972 0.3000 0.4428

Table 5.4: Error ratio (30000 function evaluations).
Algorithm DE-PS PSO-PS PS(adaptive) PS DE
DE-PS 0.4626 0.5000 0.3730 0.5359
PSO-PS 0.2554 0.2732 0.3127 0.1340
PS(adaptive) 0.2495 0.4284 0.4185 0.1821
PS 0.2145 0.3477 0.2408 0.0536
DE 0.1948 0.6227 0.5325 0.5340

optimization problems. Furthermore, it proves to have the lowest value for the maximum distance
between consecutive points in the front.

Anyway the DE algorithm follows closely in term of performance, therefore, in the following figures
we show the fronts computed by these two algorithms with a budget cost of 2000 function evaluations.
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Figure 5.6: ZDT1 Pareto fronts computed.
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Figure 5.7: ZDT2 Pareto fronts computed.
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Figure 5.8: ZDT3 Pareto fronts computed.
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Figure 5.9: ZDT6 Pareto fronts computed.
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Figure 5.10: CEC1 Pareto fronts computed.
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Figure 5.11: CEC2 Pareto fronts computed.
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Chapter 6

Pose detection for magnetic-assisted
medical devices

6.1 Overview
The pose detection for magnetic-assisted medical devices has very important applications in some sur-
gical procedures. In fact, intra-medullary nails are used to stabilize and align some classes of fractures.
An example is shown in figure 6.1 [25]. Eventually, the identification of the position and the orientation
of the drill holes hidden by the tissue and the bone is done by X-Ray, creating several disadvantages.

An alternative for the pose detection method is represented by the use of a permanent magnet local-
ized inside the drill hole, together with a set of external Hall sensors able to measure the magnetic field
generated by the magnet.

From this set of measures, carried out in several positions, we can reconstruct the position and the
orientation of the drill hole, solving an inverse problem. This procedure would be by far cheaper both
in economic and time consumption term than the X-Ray one, furthermore it would nullify the health
problems caused by the X-Ray.

The reconstruction of the position and the orientation of the permanent magnet from a set of mag-
netic measures is an inverse problem, which can be solved with an optimization algorithm. The mathe-
matical model used to describe the magnetic field is explained in the next section.

Furthermore, the aim in this chapter is to find the best sensors configuration, between the planar
and the circular configuration, and the optimum number of sensors for the pose detection, introducing a
certain degree of noise in the Hall sensors measures.

6.2 Mathematical model
In this section we want to describe the model used for the computation of a magnetic field produced
by a permanent magnet, which is used to define the function to be minimized in the optimization pro-
cess. Therefore, we show the method for the calculation of the axial and transverse components of the
intensity of the magnetic field of current loops and thin-wall air coils (solenoids). [26].

The coil has parallel walls and is wound tightly in an axial direction, having the cross section of the
coil an arbitrary shape. Consider now a planar current loop of a general shape as in figure 6.4.

For the definition of the problem a scalar magnetic potential ϕm is used, so that we can compute the
components of the magnetic field.

H =−∇ϕm (6.1)

The expressions for the components of the magnetic field intensity Hx, Hy, Hz in Cartesian coordi-
nates can be written as

Hx =−
∂ϕm

∂x
Hy =−

∂ϕm

∂y
Hz =−

∂ϕm

∂ z
(6.2)
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Figure 6.1: Intra-medullary nail
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Figure 6.2: Device for the pose detection

Similar relations are also applied in the description of the radial and axial components in the cylin-
drical coordinate system. If the problem is cylindrically symmetric as it is our case, being the permanent
magnet a cylinder, the tangential component is equal to zero.

Hr =−
∂ϕm

∂ r
Hϕ = 0 Hz =−

∂ϕm

∂ z
(6.3)

The scalar potential of the magnetic field, excited by an elementary current loop in the location
specified by the radius vector is ρ

ϕmdip(ρ) =
mρ

4πρ3 + const (6.4)

Where m = IdS is the magnetic dipole moment.
Then the scalar potential of a dipole oriented in the z-direction is

ϕmdip =
1

4π

z

(r2 + z2)
3
2
(IdS)+ const (6.5)

Through a surface integration we can add the potentials of all the dipoles over the effective area of
the loop in order to compute the resultant scalar

ϕloop(x,y,z) =
1

4π

∫∫
S

z

(r2 + z2)
3
2
(IdS) (6.6)

Consider now the case of a circular current loop and a circular solenoid as in figure 6.5 and 6.6.
We want to compute the magnetic field using a method based on elliptic integrals for circular loop

and solenoid. It solves the equation for the vector potential within a cylindrical coordinate system,
which comprises in these cases only the tangential component.

The vector potential of the circular current loop is
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Figure 6.4: Planar current loop
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Figure 6.5: Circular current loop

Figure 6.6: Circular solenoid
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Aϕ(R, I,ρ,z) =
I

4π

∫ 2π

0

Rcos(ϕ)√
R2 +ρ2−2Rρcos(ϕ)+ z2

dϕ (6.7)

While the vector potential of the circular solenoid is

Aϕ(R,h, I,ρ,z) =
NI

4πh

∫ hx
2

−hx
2

∫ 2π

0

Rcos(ϕ)√
R2 +ρ2−2Rρcos(ϕ)+(z−ξ )2

dϕdξ (6.8)

The axial and the radial components of the magnetic field intensity is given by the respective deriva-
tives of the vector potential.

Hr =−
∂Aϕ

∂ z
Hz =

1
ρ

∂ρAϕ

∂ρ
(6.9)

Being the equations 6.7, 6.8 and 6.9 not suitable for direct numerical quantification we need to
introduce the defined general elliptic integral which is valid also for the following steps.

cel(kc, p,a,b) =
∫ π

2

0

acos2(ϕ)+bsin2(ϕ)

cos2(ϕ)+ psin2(ϕ)

1√
cos2(ϕ)+ k2

csin2(ϕ)
dϕ (6.10)

The parameter kc denotes the complementarity modulus of the elliptic integral.
Finally, we can write the algorithm implemented for the calculation of the axial component Hz of

the magnetic field intensity of the circular solenoid, which suits for the numerical quantification.

Hz(R,N, I,h,ρ,z) =
NI
h

1
2π

[
Aux1

(
−h

2

)
−Aux1

(
h
2

)]

Aux1(ξ ) =


z−ξ

R+ρ

√
R
ρ

k · cel

(
kc,

(
R−ρ

R+ρ

)2

,1,
R−ρ

R+ρ

)
i f ρ 6= 0

π(z−ξ )√
R2 +(z−ξ )2

i f ρ = 0
(6.11)

For the computation of the radial component Hr the following algorithm is implemented.

Hr(R,N, I,h,ρ,z) =
NI
h

1
2π

[
Aux2

(
−h

2

)
−Aux2

(
h
2

)]

Aux2(ξ ) =


R
ρ

k · cel(kc,1,1,−1) i f ρ 6= 0

0 i f ρ = 0
(6.12)

For both two the components we have

k =

√
4Rρ

(R+ρ)2 +(z−ξ )2 kc =
√

1− k2 (6.13)

6.3 Geometrical configurations of the sensors
In this section we want to describe and analyze the sensor configurations, the possible alternatives, and
the main issues in pose detection.

Our aim is to detect the position and the inclination of a cylindrical permanent magnet through a set
of measurements of the magnetic field generated by the cylinder, carried out by the sensors.

Two kinds of configuration are considered, a planar one, where the sensors are placed on a plane
shaping a mesh, and the distance between the plane and the barycentre of the cylinder is equal to d as
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Figure 6.7: Cylinder and planar sensors

it is shown in figure 6.7. Therefore, in this case the sensors must be put just above or below the arm.
Furthermore, we consider a circular configuration, where the sensors are arranged on a circle defined by
the radius r as illustrated in figure 6.8, these sensors are placed all around the magnet like a bracelet for
the arm.

These two fixed configurations are considered, having as only variables the distance d or the radius
r and the number of sensors which shapes the mesh and the circle. We want to compare these two
geometries in order to deliver a significant indication to find the most efficient configuration for the pose
detection.

The main issue to consider is the robustness of the geometry, in fact each measure is affected by a
noise component, this noise causes an error in the localization of the magnet, the greater is the error the
lower is the robustness.

This question is crucial, because without the introduction of a noise the localization is carried out
perfectly with all the sensors configurations, therefore this allows us to identify the best solution.

Thus, for each sensor given the ideal measures for each component in Cartesian coordinate (Bx,id ,By,id ,Bz,id),
we introduce a random noise having as average the 5% of the ideal measure. Therefore, the real mea-
sures (Bx,By,Bz) are computed as it is described below.


Bx = Bx,id +2(rand−0.5)0.05Bx,id

By = By,id +2(rand−0.5)0.05By,id

Bz = Bz,id +2(rand−0.5)0.05Bz,id

(6.14)
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Where rand is a function which returns a single uniformly distributed random number between 0
and 1.

Given the random component introduced in the measures each run in the solving process delivers a
different error in the pose-detection, for this reason for each configuration the execution is repeated ten
times, and the average error is considered.

The position of the permanent magnet can be described in the Cartesian space through the coor-
dinates of its barycentre (xb,yb,zb) and its rotations around the axes x,y,z defined respectively by the
rotation angles α ,β and γ , as in figure 6.9. Being the magnet considered a cylinder, the rotation around
z is unnecessary for the definition of the position, therefore the angle γ can be neglected, and the magnet
location is defined just using five variables (xb,yb,zb,α,β ).

From now, we take the inclination of the cylinder in figure 6.9 as a reference, being described by the
rotation angles α = 0 and β = 0.

Finally, we want to define the error ε , that is the index used to assess the robustness of the configu-
ration, and the procedure used to obtain it.

We consider the position of the cylinder which is fully determined by the set of variables (xb,yb,zb,α,β ),
where in the real case the rotation angle around x assumes values in a certain range, α ∈ [−20◦,20◦],
while it can freely rotate around y, meaning that β ∈ [−180◦,180◦].

Then, using the mathematical model described in section 6.2 we can compute the magnetic field in
the n sensors, defining n ideal measures (Bi

x,id ,B
i
y,id ,B

i
z,id) for each sensor i. Afterwards, we transform

this ideal measures in the real ones considered to detect the position using the formulas of equation 6.14.
The real measures obtained in this way (Bi

x,B
i
y,B

i
z) are the ones taken as input by the optimization

algorithm, which search for the magnet position which produces the magnetic field required, having as
search space [x,y,z,α,β ]. Therefore, the final outcome will describe the computed localization of cylin-
der, defined by the values [xc,yc,zc,αc,βc] which define the barycentre and the inclination computed.

The first indicator of the shift of the computed magnet from the ideal one is the euclidean distance
ε1 between the two barycentres computed as shown below

ε1 =
√
(xb− xc)2 +(yb− yc)2 +(zb− zc)2 (6.15)

However, the distance ε1 does not take into account the inclination of the magnet, which is crucial,
being independent from the angles α and β . Thus, we consider also the distance between the centres of
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the two upper faces of the cylinder computed and the ideal one. This value, called ε2, is a function of
the two rotation angles.

The indicator considered in the next section to assess the accuracy of the localization, that is the
robustness of the configuration, is given by the average of the two distances

ε =
ε1 + ε2

2
(6.16)

Obviously the higher is the noise introduced in the measures, the greater is the error ε , for this reason
we compare the different configurations introducing a random noise with the same average value, equal
to 5%.

6.4 Numerical results
As we have already illustrated in the section regarding the mathematical model, the radial and the z
components of the magnetic field are

Bz =
J

2π

(
aux1

(
−h
2

,r1,r,z
)
−aux1

(
h
2
,r1,r,z

))
Br =

J
2π

(
aux2

(
−h
2

,r1,r,z
)
−aux2

(
h
2
,r1,r,z

)) (6.17)

Where the functions aux1 and aux2 are defined by the equations 6.11 and 6.12, J is the magnetization
of the magnet, r1 the radius, and h the height.

For our numerical simulations the average values for the random noise is always 5%, and the fol-
lowing values have been used for the permanent magnet

J = 1 T
r1 = 5 mm
h = 10 mm

(6.18)

In the planar configuration the sensors form a square with a side equal to 5 cm, therefore the position
on the edges does not change, while increasing the sensor numbers the density in the mesh becomes
higher.

The first numerical result obtained regards the average error as function of the distance in the planar
configuration, and as function of the radius in the circular one.

In this process we have fixed the position of the permanent magnet, as well as the number of sensors
that was put equal to four, and changed the values of the d and r, taking into account their physical lower
limits, respectively 4 and 5 centimetres. Furthermore, for each value of d and r the solving process is
repeated ten times, given the random nature of the noise introduced, and the average value for the error
in the ten executions is considered, and represented in figure 6.10 and 6.11.

As we could expect the accuracy decreases for greater distances and radiuses, imposing to reduce
them to their lower bounds in order to contain the error. Therefore, in the next analysis we will consider
the configurations with r = 5 cm and d = 4 cm.

We want now to vary the number of sensors, in order to see if this delivers a better robustness, and
until when is convenient to increase the number.

For this analysis we have considered six different inclinations for the permanent magnet, defined by
the following couples of angles

• α = 20◦ β = 90◦

• α = 20◦ β = 45◦

• α = 20◦ β = 0◦

• α = 10◦ β = 60◦

• α = 10◦ β = 30◦

62



5 10 15 20

2

4

6

d(cm)

ε(mm)

Figure 6.10: Error as function of distance in the planar configuration

4 6 8 10 12 14 16 18

0.5

1

1.5

2

r(cm)

ε(mm)

Figure 6.11: Error as a function of radius in circular configuration
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Figure 6.12: Circular configuration with 4 sensors in Matlab
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Figure 6.13: Planar configuration with 4 sensors in Matlab
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• α = 0◦ β = 90◦

Then, given one sensors configuration, for each inclination we execute ten times the optimization
algorithm, which has as stopping criterion a number of function evaluations equal to 3000, which proved
to be a value for which the objective function does not obtain further improvements.

We try to minimize the following function

min
∑

n
i=1 |Bm,i−Bc,i|

n
(6.19)

Where for each sensor i we compute the difference between the magnetic field measured Bm,i, ob-
tained introducing the noise component, and the magnetic field computed Bc,i by the algorithm which
explores the five variables space [x,y,z,α,β ]. Then, we divide the sum of these differences for the total
number of sensors n, in order to obtain an average value.

Empirically, the average value for which we obtain a decent localization for the cylinder, meaning
that the magnetic configuration is physically possible, must respect the next condition

∑
n
i=1 |Bm,i−Bc,i|

n
< 4 ·10−5 T (6.20)

Given a magnetization J = 1 T for the magnet.
Therefore, we have excluded these unfeasible results from the data used for the assessment of the

error.
The error ε was computed considering the average value of the ten executions for each of the six

different positions of the cylinder, and in turn computing the mean value of the six averages.
The final results are illustrated both for the planar and circular configuration in figure 6.14.
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Figure 6.14: Error as a function of the number of sensors in the planar and circular configurations

As we can see the circular configuration always performs better than the planar one, an increase in
the number of sensors improves the robustness, but from a number greater than nine there is just a weak
amelioration.

Figure 6.15 shows the percentage of successful pose detection, that is the number of executions
where the condition described in the equation 6.20 is respected.

In this case for both two the configurations when the number of sensors is greater than nine the
percentage of success is above 90 %, and none of the two configurations seems to prevail on the other.

Finally, we want to study the performance for the worst case, that is the case where for each of the
different inclinations of the magnet the error ε assumes the maximum value and respects the condition
in 6.20. The figure 6.16 shows the average of the maximum for the six cylinder orientations.

Also here the circular configuration performs better, and it does not seem convenient to use more
than 9 sensors.
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Figure 6.15: Successful cases in percentage as a function of the number of sensors in the planar and
circular configurations
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Figure 6.16: Worst case in the planar and circular configurations
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Then, from these results, for a preliminary analysis we can deduce that a circular type configuration
is preferable in terms of robustness, with a reliability above 90%.

It may be interesting to evaluate even more complex geometries for the sensors, to find out whether
is possible or not to obtain a further improvement.
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Conclusions

The Pattern Search method both for the single and multiple objectives optimization was illustrated, as
well as its convergences analysis. Moreover, some innovative alternatives for the polling have been
introduced which can be used as suitable approaches for specific classes of problems.

The hybrid method developed in this work composed of a Pattern Search and a Differential Evo-
lution component has proven to outperform the traditional stochastic algorithms, being particularly ag-
gressive, and therefore suitable for engineering applications. Furthermore, unlike the purely stochastic
approaches, it keeps the convergence properties of the deterministic component, thus having strong
theoretical basis.

In fact, the numerical examples have shown the effectiveness of the innovative method developed,
that is a robust tool for multiobjective optimization.

A further improvement may be obtained analyzing the possibility to exploit some information of the
function gathered by the Differential Evolution mechanism during the selection step, in order to adapt
the following poll step in the Pattern Search component to create an even more greedy algorithm.

Finally, the algorithm was successfully implemented to an optimization problem for the design of
an electromagnetic device for pose detection, particularly suitable for medical applications.

From the results gathered, the best configuration for the measuring sensors is the circular one, being
the most robust and with an high percentage of successful pose detections, also indicating that beyond a
certain value an increase in the number of sensors does not produce a significant performance improve-
ment.

A possible development may be given by the study of configurations with more complex geometries,
exploring other topologies, to see whether a sensible improvement in the robustness can be achieved at
a relatively contained increase in the cost of the device.
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