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Chapter 1

Introduction

1.1 History

In various scientific fields, it is often required to solve the following problem: find a point in

the intersection of closed subspaces (or sets) that minimizes the distance from a given point

of the whole space. Von Neumann, in 1933 [18], found an iterative approach to solve this

problem: he found that the projection onto the intersection of two subspaces can be found

alternating projections onto the single subspaces. Starting from this discovery, Halperin [14]

extended Von Neumann’s theorem for the case of N subspaces with non empty intersection.

Using this alternating projections approach, different algorithms where invented. Among

these, we recall Kaczmarz method in 1937 [16], in order to find the solution of a linear

system, MAMS in 1954 [1][17], useful to find a feasible solution for system inequalities, and

Dykstra’s alternating projections algorithm for general convex sets in 1986 [11] (etc...). This

algorithms are used in order to solve different problems like constrained least-squares matrix

minimization problems, matrix model updating problem in order to adapt a given model to

measured data , control design, etc...

In 1967 Bregman [5] extended the concept of distance defining what now are called

Bregman divergencies. With this extended concept, he defined the corresponding gener-

alized projections and he gave an iterative Bregman projection theorem. Similar results

were developed by Csiszar [8] in the field of information theory, using relative entropy as a

pseudo-distance.

In this work some classical results of alternating projections and Bregman’s theory will

be presented (Chapters 2 and 4). In Chapter 3 we will propose an application of Von

Neumann-Halperin’s theory quantum maps.

1.2 Mathematical background

In this section we present some definitions that will be essentials to this work. Details can

be found in specific algebra books.

Definition 1.1 A vector space V is a set of elements (vectors) with two operations: ad-

dition (+) and scalar multiplication. They satisfy the following properties:
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• u+ v = v + u, ∀ u, v ∈ V ;

• u+ (v + w) = (u+ v) + w, ∀ u, v, w ∈ V ;

• it exists a null vector e such that e+ v = v, ∀ v ∈ V

• λ(µv) = (λµ)v, ∀ v ∈ V and λ, µ scalars;

• (λ+ µ)v = λv + µv, ∀ v ∈ V and λ, µ scalars;

• λ(u+ v) = λu+ λv, , ∀ v, u ∈ V and λ scalar;

• 0v = e, ∀ v ∈ V ;

• 1v = v, ∀ v ∈ V .

Definition 1.2 A set C in a vector space is said to be convex if

(1− α)x+ αy ∈ C

for all x, y ∈ C, and 0 ≤ α ≤ 1

Definition 1.3 A metric space X is a vector space where it is defined a distance function

d : X ×X → R+ with the following properties for all x, y, z ∈ X:

• d(x, y) = 0 ⇐⇒ x = y;

• d(x, y) = d(y, x);

• d(x, z) ≤ d(x, y) + d(y, z).

Definition 1.4 Let V be a vector space over F (R, C). The inner product is a map

〈·, ·〉 : V × V → F

that satisfies:

1. 〈x, x〉 ≥ 0 (= 0 ⇐⇒ x = 0);

2. 〈x, y〉 = 〈y, x〉∗;

3. 〈α1x+ α2y, z〉 = α1〈x, z〉+ α2〈y, z〉 where α1, α2 ∈ F

Examples:

• In the Euclidean space Rn the inner product is given by:

〈x, y〉 = x1y1 + ...+ xnyn;

• In Cn, the inner product is given by:

〈x, y〉 =

n∑
j=1

xjy
∗
j

• In L2, set of square integrable functions, the inner product is given by:

〈g, f〉 =

∫
g∗(x)f(x)dx
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• In l2 = {{xj} ∈ C s.t.
∑∞
j=1 |xj |2 <∞}, the inner product is given by:

〈x, y〉 =

∞∑
j=1

xjy
∗
j

Definition 1.5 An inner product space is a linear space in which there is defined an

inner product between pairs of elements of the space.

Definition 1.6 A sequence of points {xi} in a metric space with metric d is called a

Cauchy sequence if ∀ ε > 0 there exists an integer Nε such that d(xi, xj) < ε when

i > Nε and j > Nε.

Definition 1.7 A metric space is called complete in the norm induced by its inner product

if every Cauchy sequence of points in it converges to a point in the space.

Definition 1.8 An inner product space, which is also complete, is called Hilbert space.

Definition 1.9 A projection is a linear transformation P from a vector space to itself

such that P 2 = P .

Let V be an inner product space and consider a subspace W ⊂ V . Every vector v ∈ V can

be uniquely written as v = w1 + w2, w1 ∈ W and w2 ∈ W⊥. The orthogonal projection

of v onto W is defined as PW (v) = w1.

It satisfies the following properties:

1. It is linear: PW (v) = PW v;

2. It is idempotent; P 2 = P ;

3. It is self-adjoint: ∀v1, v2 ∈ V 〈PW (v1), v2〉 = 〈v1, PW (v2)〉

If ω1, ..., ωn is an orthonormal basis of W , the orthonormal projection can be written as:

PW (v) =

n∑
i=1

〈v, ωi〉ωi

Before presenting the algorithms that are built upon iterated methods, we recall an impor-

tant theorem for Hilbert spaces and projections. In the next sections H denotes a general

Hilbert space.

Theorem 1.1 (Kolmogorov’s criterion) Let x be a vector in H and C be a closed convex

subset of H. Then ∃! c0 ∈ C such that ‖x− c0‖ ≤ ‖x− c‖, ∀ c ∈ C.

Moreover, c0 is the unique minimizing vector if and only if 〈x− c0, c− c0〉 ≤ 0, ∀ ∈ C.

Note: Let X be a closed subset of H and let x be a generic point in H. We will denote with

PX (x) the orthogonal projection of x onto the subset X .
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Chapter 2

Basic Theory

2.1 Iterated Projection Theorem

In this Section we are going to see the original theorems that brought to the development

of more advanced algorithms, which will be discussed in Section 2.3. These algorithms are

used to solve linear systems (Ax = b), linear feasibility problems (i.e. find x ∈ Rn s.t.

Ax ≤ b), or, in general, convex feasibility problems (find x ∈
⋂
Ci where Ci is closed, convex

for 1 ≤ i ≤ m). In Section 2.4 we will show some application of these alternating projections

methods. As said in the history section, Von Neumann was interested to find the projection

of a given point inH onto the intersection of two closed subspaces. Before seeing his theorem

let us give the following definition:

Theorem 2.1 (Von Neumann’s alternating projections theorem ) Let N , M be

closed subspaces of H. Then for each x ∈ H:

lim
n→∞

(PNPM)nx = PM∩Nx

Proof. Let us consider the sequences Σ1 and Σ2 of operators PM, PNPM, PMPNPM,...,

and PN , PMPN , PNPMPN ,..., respectively. We have to show that both sequences have

same limit T and that it is T = PM∩N .

Let Tn be the n-th operator of Σ1. It holds:

〈Tmx, Tny〉 = 〈Tm+n−δx, y〉,

where δ = 1 if m and n have the same parity, it is 0 otherwise.

We need to show that if x ∈ H, then limn→∞ Tnx exists. It holds:

‖Tmx− Tnx‖2 = 〈Tmx− Tnx, Tmx− Tnx〉
= 〈Tmx, Tmx〉 − 〈Tmx, Tnx〉 − 〈Tnx, Tmx〉+ 〈Tnx, Tnx〉
= 〈T2m−1x, x〉+ 〈T2n−1x, x〉 − 2〈Tm+n−δx, x〉
= 〈T2m−1x, x〉+ 〈T2n−1x, x〉 − 2〈T2k−1x, x〉.

m+n−k is always odd, so the last term has been rewritten with k an integer number. Now

〈T2i−1x, x〉 = 〈Tix, Tix〉 = ‖Tix‖2,
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we have that

‖Ti+1x‖2 = 〈T2i+1x, x〉.

Ti+1x is either PMTix or PNTix. So, it holds that

‖Ti+1x‖2 ≤ ‖Tix‖2.

So, for all i, it holds:

〈T2i−1x, x〉 ≥ 〈T2i+1x, x〉,

therefore limi→∞〈T2i−1x, x〉 exists and it implies

lim
m,n→∞

‖Tmx− Tnx‖ = 0.

Let us denote by x∗ the limit for Tnx. If T is defined by the condition Tx = x∗, then

dom(T ) = H and T is singular valued, T is linear and by

lim
m,n→∞

〈Tmx, Tny〉 = lim
m,n→∞

〈Tm+n−δx, y〉,

it follows:

〈Tx, Ty〉 = 〈Tx, y〉.

So, T is a projection PL. Now, if x ∈M∩N , then PMx = PNx = x, Tnx = x and Tx = x.

So, x ∈ L and, by that, M∩N ⊆ L. Now, it holds that PMT = PNT = T , let y ∈ H and

Ty = x ∈ L. Then PMx = PMTy = Ty = x ∈ M, and PNx = PNTy = Ty = x ∈ N ,

which implies L ⊆M∩N .

Now, making the same for Σ2 it is clear that its limit T ′ = PM∩N , so T = T ′ and the proof

is complete. �

The generalization to the intersection of multiple subspaces was given by Halperin:

Theorem 2.2 (Halperin) If M1,...,Mr are closed subspaces in H, then ∀x ∈ H

lim
n→∞

(PM1
...PMr

)nx = P⋂r
i=1Mi

x

A proof for this theorem can be found in Halperin’s original work [14].

2.1.1 Rate of Convergence

These two theorems gave the basis to the development of different algorithms. For this

reason we are interested in the convergence of alternating projections. The rate is linked to

the angle between the subspaces. We recall their definitions and properties.

Define the function arccos : [−1, 1] → [−π2 ,
π
2 ]. We will use only the elements in interval

[0, 1]. Then the angle θ(M,N ) between the closed subspacesM and N of H is the element

of [0, π2 ].

Definition 2.1 (Friedrichs) Define the cosine c(M,N ) between the closed subspaces M
and N of H as:

c(M,N ) = sup{|〈x, y〉| : x ∈M∩ (M∩N )⊥, ‖x‖ ≤ 1, y ∈ N ∩ (M∩N )⊥, ‖y‖ ≤ 1}.

Then the angle is given by:

θ(M,N ) = arccos(c(M,N )).
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Definition 2.2 (Dixmier) Define the cosine c0(M,N ) as:

c0(M,N ) = sup{|〈x, y〉| : x ∈M, ‖x‖ ≤ 1, y ∈ N , ‖y‖ ≤ 1}.

Then the minimal angle is given by:

θ0(M,N ) = arccos(c0(M,N )).

Properties:

1. if M∩N = {0} then c0(M,N ) = c(M,N );

2. Some consequences of definitions are:

i) 0 ≤ c(M,N ) ≤ c0(M,N ) ≤ 1;

ii) c(M,N ) = c(N ,M) and c0(M,N ) = c0(N ,M);

iii) c0(M,N ) = c0(M∩ (M∩N )⊥,N ∩ (M∩N )⊥);

iv) |〈x, y〉| ≤ c0(M,N )‖x‖‖y‖ for all x ∈M, y ∈ N .

Lemma 2.1 The following relations hold:

1. c(M,N ) = c0(M,N ∩ (M∩N )⊥) = c0(M∩ (M∩N )⊥,N );

2. c0(N ,M) = ‖PMPN ‖ = ‖PMPNPM‖
1
2 ;

3. c(M,N ) = ‖PMPN − PM∩N ‖ = ‖PMPNP(M∩N )⊥‖.

Having the definition of the angle, we next state the theorem that gives the exact rate

in case of projection onto two subspaces.

Theorem 2.3

‖(PM2PM1)n − PM1∩M2‖ = c(M1,M2)2n−1

(n = 1, 2, ...).

In case of projecting onto more subspaces we cannot give an exact expression but we give

an upper bound:

Theorem 2.4 For each i = 1, 2, ..., r, let Mi be a closed subspace of H. Then, for each

x ∈ H, and for any integer n ≥ 1 it holds:

‖(PMr
...PM1

)nx− P⋂r
i=1Mi

x‖ ≤ cn2 ‖x− P⋂r
i=1Mi

x‖,

where

c = 1−
r−1∏
i=1

sin2 θi,

and θi is the angle between Mi and
⋂r
j=i+1Mj.

Remark: By Theorem 2.4 we can see that a condition to finite time convergence of

iterated projection is given by c = 0 which is satisfied if c(Mi,Mj) = 0 for all 1 ≤ i, j ≤ r,
in other words:

[
Mi ∩

(⋂r
t=1Mt

)⊥] ⊥ [Mj ∩
(⋂r

t=1Mt

)⊥]
for every i, j = i+ 1, ..., r.

The proofs of theorems and of the lemma can be found in [12].
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2.2 Extensions

2.2.1 Row-Action Methods

The followings are iterative methods developed to solve large and sparse systems, linear and

non-linear, equalities (i.e Ax = b ) and inequalities (i.e. find x ∈ Rn s.t. Ax ≤ b) in a finite

dimensional space as said in Section 2.1.

Typically, row action methods involve alternating projections in hyperplanes, linear varieties

or closed and convex sets and have these properties:

1. No changes or operations are made on the original matrix A;

2. They only use one row per iteration;

3. At every iteration, the computation of xk+1 requires only the value of xk;

4. For finite dimensional problems, they only require vector arithmetic such as inner

products and vector sums.

Definition 2.3 A sequence of indices {ik} is called a control sequence of a row-action

method if at the k-th iteration the convex set Cik is used.

Here are some type of control:

• Cyclic Control: ik = k mod n+ 1, where m is the number of convex sets involved

in the problem;

• Almost Cyclic Control: ik ∈ M = {1, 2, ...,m} ∀ k ≥ 0 and ∃M̄ integer s.t. ∀k
M ⊂ {ik+1, ..., ik+M̄}

• Remotest Set Control: ik is chosen s.t. d(xk, Cik) = maxi∈M d(xk, Ci), xk is the

k-th iteration of the row-action method, d(xk, Ci) is the distance from xk to set Ci;

• Random Set Control: ik is chosen from set {1, 2, ...,m} randomly with a probability

function that guarantees that every set is chosen, with non zero probability, in every

sweep of projection.

The followings are some most used row-action methods.

The relaxation method of Agmon, Motzkin, and Schönberg (MAMS) The prob-

lem to solve is the following:

Ax ≤ b
A ∈ Rm×n
x ∈ Rn
b ∈ Rm

The problem can be generalized to any Hilbert space H to find x in the intersection of m

closed half spaces given by Si = {x ∈ H : 〈ai, x〉 ≤ bi} ∀i ∈ M. This is called linear

feasibility problem.

Given an arbitrary x0 ∈ H, a typical step of this method can be described by:

xk+1 = xk + δkaik ;
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where:

δk = min(0, ωk
bik− < aik , xk
< aik , < aik >

);

where 0 < ε ≤ ωk ≤ 2− ε < 2 for all k, a small given ε and ik is chosen by one of the control

seen before.

This method does not guarantee the convergence to the nearest vector, in the feasible set,

to x0.

Hildreth’s Method Let us consider the following problem:

minimize ‖x2‖
s. t. 〈ai, x〉 ≤ bi ∀i ∈M

Let Si indicate the subspace given by 〈ai, x〉 ≤ bi. Starting from x0 6∈ Si ∀i a typical step

is given by:

xk+1 = xk + δkaik ;

zk+1 = zk − δkeik ;

where:

δk = min
(
zkik , ωk

bik − 〈aik , xk〉
〈aik , aik〉

)
,

and eik have all component zeros except the ik-th component, which is one; any of the

controls described in the beginning can be imposed and it holds 0 < ε ≤ ωk ≤ 2− ε < 2 for

all k and a given small positive ε. Again, ik follows one of the control introduced before.

This algorithm converges to minimal norm. Other examples can be found in [12].

Now we are going to show an important algorithm to find the closest vector into an in-

tersection of closed convex sets (convex feasibility problem).

2.2.2 Dykstra’s Algorithm

Let H be a Hilbert space. For a given non empty, closed, convex set C of H, and x ∈ H, it

exists a unique x∗ that solves:

min
x∈C
‖x0 − x‖, (2.2.1)

which satisfies the Kolmogorov criterion:

x∗ ∈ C, 〈x0 − x∗, x− x∗〉 ≤ 0, ∀x ∈ C.

Let us consider the case C =
⋂r

1 Ci, where Ci is a closed, convex set in H. Moreover, we will

assume that ∀y ∈ H, PC(y) is not trivial, while PCi(y) is easy to calculate.

In order to solve the problem (2.2.1), this algorithm generates two sequences: the iterates

{xni } and the increments {Ini }, with n ∈ N and i = 1, ..., r.

xn0 = xn−1
r

xni = PCi(x
n
i−1 − In−1

i )

Ini = xni − (xni−1 − In−1
i )

8



Where the initial values are x0
r = x0, I0

i = 0.

Note:

• The increment In−1
i associated with Ci in the previous cycle is always subtracted

before projecting into Ci;

• If Ci is a subspace, then PCi is linear and it is not required , in the n-th cycle, to

subtract the increment In−1
i before projectiong onto Ci. So, in this case, Dykstra’s

algorithm reduces to MAP procedure.

• The following relations hold:

xn−1
r − xn1 = In−1

1 − In1 ;

xni−1 − xni = In−1
i − Ini ;

and

xni = x0 + In1 + ...+ Ini + In−1
i+1 + ...+ In−1

r .

The next lemma proves the convergence of Dykstra’s algorithm.

Lemma 2.2 Let C1, ..., Cr be closed, convex subsets of a H and C =
⋂r
i=1 Ci 6= ∅. The

sequence {xni } generated by the algorithm 2.2.2 converges strongly to x∗ = PC(x0), for every

xo ∈ H.

More details on Dykstra’s and other alternating projections algorithms can be found in [12].

2.3 Typical applications

2.3.1 Solving Constrained L-S Matrix Problems

The task is to solve using Dykstra algorithm the following problem:

min ‖X −A‖2F
s.t. XT = X

L ≤ X ≤ U
λmin ≥ ε > 0

X ∈ P

where ‖M‖F =
√

tr(MM†) is the Frobenius norm, A,L,U ∈ Rn×n; A ≤ B means Aij ≤ Bij
with 1 ≤ i, j ≤ n.

The constraints define sets whose intersection identifies a feasibility problem. Those sets

are:

B = {X ∈ Rn×n : L ≤ X ≤ U};

εpd = {X ∈ Rn×n : XT = X, λmin(X) ≥ ε > 0};

P = {X ∈ Rn×n : X =
∑m
i=1 αiGi for some αi ∈ R, 1 ≤ i ≤ m} ;

9



with 1 ≤ m ≤ n(n+1)
2 .

Property: In the definition of P, G1, ..., Gm are given n × n non-zero symmetric ma-

trices whose entries are either 0 or 1 and have the following property: for all st-entry 1 ≤ s,
t ≤ n, it exists one and only one k (1 ≤ k ≤ m) s.t. (Gk)st = 1.

Now the problem can be stated as:

min{‖X −A‖2F : X ∈ B ∩ εpd ∩ P}

Let us see how the projections onto the singular sets can be found.

Theorem 2.5 If A ∈ Rn×n, then the unique solution to minX∈B ‖X − A‖F is given by

PB(A) defined as:

[PB(A)]ij =


Aij ifLij ≤ Aij ≤ Uij ,
Uij ifAij > Uij ,

Lij ifAij < Lij .

Theorem 2.6 If A ∈ Rn×n, then the unique solution to minX∈P ‖X − A‖F is given by

PP(A) =
∑
ᾱkGk where

ᾱk =

∑n
i,j=1Aij [Gk]ij∑n
i,j=1[Gk]ij

for 1 ≤ k ≤ m.

Theorem 2.7 Define B = A+AT

2 , then the unique solution to minX∈εpd ‖X −A‖F is given

by Pεpd(A) = Zdiag(di)Z
T where

di =

{
λi(B) ifλi(B) ≥ ε
ε ifλ < ε

and Z is s.t. B = Z∆ZT is a spectral decomposition.

We can now apply Dykstra’s algorithm, which, in this particular case, becomes:

Set: A0 = A; I0
εpd

= I0
B = 0.

For i = 0, 1, ..: Ai = PP (Ai)− Iiεpd
Ii+1
εpd

= Pεpd(Ai)−Ai
Ai = Pεpd(Ai)− IiB
Ii+1
B = PB(Ai)−Ai
Ai+1 = PB(Ai)

Theorem 2.8 If the closed convex set B∩ εpd ∩P is not empty, then for any A ∈ Rn×n the

sequences {PP(Ai)}, {Pεpd(Ai)} and {PB(Ai)} generated by the previous algorithm converge

in the Frobenius norm to the unique solution of the problem of minimum.

The proofs of the previous theorems can be found in [12].
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2.3.2 MMUP: Matrix Model Updating Problem

Consider the following finite element model of a vibrating structure:

Mẍ(t) +Dẋ(t) +Kx(t) = 0

M,D,K are n× n matrices that denote mass, damping and stiffness of the structure. M is

symmetric and positive definite; D,K are symmetric.

For several reasons (modeling errors, etc...) the finite elements data do not agree with

measured data and the required structure of the matrices is lost.

It is required to update an analytic finite element model such that the updated model

reproduces the measured data while preserving the structure of the matrices. This problem

is called MMUP(Matrix Model Updating Problem).

By FEM modal analysis, the solutions are of the form x(t) = veλt, λ and v solve the

quadratic eigenvalue problem (QEP):

(λ2M + λD +K)v = 0

P (λ) = λ2M + λD+K is called quadratic pencil and the eigenvalues are given by the roots

of det(P (λ)) = 0. Eigenvalues and eigenvectors describe the dynamic of the system linking

natural frequencies and mode shapes of the structure.

The solutions lead to the following inverse eigenvalue problem for P (λ):

Given:

• real n × n matrices M,K,D (M = MT > 0, D = DT , K = KT ) with Λ(P ) =

{λ1, ..., λ2n} and eigenvectors {x1, ..., x2n};

• a set of p self-conjugate numbers {µ1, ..., µp}, p vectors {y1, ..., yp}, with p < 2n.

Find: K̃,D̃ ∈ Rn×n (both symmetric) s.t. Λ(P̃ (λ) = λ2M+λD̃+K̃) = {µ1, ..., µp, λp+1, ..., λ2n}
and the eigenvectors are {y1, ..., yp, xp+1, ..., x2n)}.

The problem can be reformulated as follows:

find min‖K − K̃‖2F + ‖D − D̃‖2F
such that:

K̃ = K̃T ;

D̃ = D̃T ;

M(Λ∗1)2Y1 + D̃(Λ∗1)Y1 + K̃Y1 = 0

where Λ∗1 = diag(µ1, ..., µp), Y1 = [y1, ..., yp] are the desired matrices.

In order to simplify the problem, let us define the following matrices:

A = M(Λ∗1)2Y1; B = (Λ∗1)Y1; C = Y1;

X =

[
K 0

0 D

]
; X̃ =

[
K̃ 0

0 D̃

]
.

The problem can be rewritten as:
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min‖X − X̃‖2F
s.t. X̃ = X̃T ;

A+ X̃22B + X̃11C = 0

Now, defining Î =

[
In×n
In×m

]
and W =

[
C

B

]
it holds:

A+ ÎT X̃W = A+ K̃C + D̃B = A+ X̃22B + X̃11C

So the constraints become:

X̃ = X̃T (2.3.1)

A+ ÎT X̃W = 0 (2.3.2)

We will project onto the subspace S of symmetric matrices, defined by constraint 2.3.1,

whose projection is given by

PS(X) =
X +XT

2
;

and onto the linear variety V = {x ∈ R2n×2n : A+ ZTXW = 0} whose projection is given

by the following result.

Theorem 2.9 If X ∈ R2n×2n is any given matrix, the the projection onto the linear variety

V is given by PV(X) = X + ZΣWT , where Σ satisfies:

WTWΣT = −1

2
(AT +WTXTZ)

The solution can now be found using MAP on S and V.

2.3.3 Projection Methods on Quantum Information Science

A natural problem in quantum information science is to construct, if it exists, a quantum

operation sending a given set of quantum states {ρ1, .., ρk} to another set of quantum states

{ρ̄1, ..., ρ̄k}. Quantum states are mathematically represented as density matrices (positive

semi-definite, Hermitian matrices with unitary trace) while quantum operations are rep-

resented by trace preserving, completely positive maps (CPTP maps) T that maps n × n
density matrices to m×m density matrices, having the form:

T(X) =

r∑
j=1

FjXF
†
j

where it holds
∑r
j=1 F

∗
j Fj = In. More details on quantum formalism will be given in

Chapter 3.

Given some density matrices A1, ..., Ak and B1, ..., Bk our task is to find a CPTP map which

satisfies T(Ai) = Bi. If we denote with E11, E12, ..., Enn standard orthonormal basis, T is a

CPTP map if and only if the Choi matrix C(T)

C(T) =

P11 ... P1n

... Pij ...

Pn1 ... Pnn

 :=

T(E11) = ... T(E1n)

... T(Eij) ...

T(En1) ... T(Enn)



12



is positive semi-definite and tr(Pij) = δij .

Our problem is equivalent to the positive semi-definite feasibility problem for P = (Pij):
∑
ij(Al)ijPij = Bl l = 1, ..., k

tr(Pij) = δij 1 ≤ i ≤ j ≤ n
P ∈ Hnm

+

It is easy to see that the first condition is true: we can write Al =
∑
i,j(Al)i,iEi,j . Then, by

linearity of T, we have T(Al) = Bl that is equivalent to Bl = T(Al) = T(
∑
i,j(Al)i,iEi,j) =∑

i,j(Al)i,jT(Ei,j) =
∑
i,j(Al)i,jPi,j . Let us define:

LA(P ) = (
∑
ij(Al)ijPij)l;

LT (P ) = (tr(Pij))i,j
L(P ) = (LA(P ),LT (P ));

B = [B1...Bk];

∆ = (δij)i,j

We want to find a matrix P in the intersection of Hnm+ with the affine subspace A = {P :

L(P ) = (B,∆)}.
If P = U†diag(λ1, ..., λmn)U , then the projection onto Hnm+ is given by: PHnm+

(P ) =

U†diag(λ+
1 , ..., λ

+
mn)U , where r+ = max{0, r}.

The projection onto A is given by PA(P ) = P +L†R where L† is the Moore-Penrose general

inverse while R = (B,∆) − L(P ) is the residual. Using MAP we can find the solution to

our problem. More details can be found in [7].

2.3.4 Fixed-Order Control Design for LMI Control problems using

MAP

Consider a linear, TI, continuous dynamic system with the follow state-space representation:

ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w

Where x(t) ∈ Rnp is the state, u(t) ∈ Rnu is the control. w(t) ∈ Rnw is an external input

(i.e. noise), z(t) ∈ Rnz is the regulated output and y(t) ∈ Rny is the measured output.

We seek a linear, TI, continuous time controller of order nc with state-space representation:

ẋc = Acxc +Bcy

u = Ccxc +Dcy

We will consider w(t) = 0: noise free stabilization problem.

Theorem 2.10 The following statements are equivalent:

a) it exists a stabilizing dynamic output-feedback controller of order nc;

13



b) there exist matrices X > 0, Y > 0 s.t.

(B2)⊥[AX +XAT ](B2)⊥T < 0;

(C2)T⊥[Y A+ATY ](C2)T⊥T < 0;[
X I

I Y

]
≥ 0;

rank

[
X I

I Y

]
≤ np + nc.

Theorem 2.11 The following statements are equivalent:

a) it exists an H∞ sub-optimal controller of order nc;

b) there exist matrices X > 0, Y > 0 s.t.[
B2

D12

]⊥ [
AX +XAT +B1B

T
1 XCT1 +B1D

T
11

C1X +D11B
T
1 D11D

T
11 − I

] [
B2

D12

]⊥T
< 0;

[
CT2
DT

21

]⊥ [
Y A+ATY + CT1 C1 Y B1 + CT1 D11

BT1 Y +DT
11C1 DT

11D11 − I

] [
CT2
DT

21

]
< 0;[

X I

I Y

]
≥ 0;

rank

[
X I

I Y

]
≤ np + nc.

For nc = np the relations of Theorems 2.10 and 2.11 are convex: it becomes a convex

feasibility problem.

Now we need to find a projection formulation for the problem.

Let Sn be the set of real, symmetric n× n matrices equipped with the Frobenius norm and

the inner product: 〈x, y〉 = tr(xy).

Consider the set L = {X ∈ Sn : EXF + FTXET + Q < 0} where E,F,Q ∈ Sn are of

compatible dimensions. L is a convex set of Sn. Every LMI constraint seen in the previous

two theorems can be written as in L(an example can be seen in [13]).

We will consider the closed ε-approximation of L: Lε = {X ∈ Sn : EXF+FTXET+Q ≤ εI}
with ε > 0

Proposition 2.1 Let us define the following sets in S2n:

Jε
.
= {W ∈ S2n :

[
E FT

]
W

[
ET

F

]
≤ −Qε}

T .
= {W ∈ S2n : W =

[
W11 W12

WT
12 W22

]
, W11 = W22 = 0, W12 ∈ Sn}

where Qε = Q+ εI. Then the following statements are equivalent:

a) X ∈ Lε;

b) X = W12

where W ∈ Jε ∩ T

14



Proposition 2.2 Let W ∈ S2n. Consider the SVD:[
E FT

]
= U

[
Σ 0

]
V T

and define

W̄
.
= V TWV =

[
W̄11 W̄12

W̄T
12 W̄22

]
with W̄11 ∈ Sn.

Consider the eigenvalue-eigenvector decomposition:

W̄11 + Σ−1UTQεUΣ−1 = LΛLT

The projection W ∗ = PJε(W ) of W onto Jε is

W ∗ = V

[
W̄ ∗11 W̄12

W̄T
12 W̄22

]
V T

where W̄ ∗11 = LΛ−L
T − Σ−1UTQεUΣ−1, Λ− is the diagonal matrix obtained by replacing

the positive eigenvalues of Λ by 0.

Proposition 2.3 Let W ∈ S2n. The orthogonal projection W ∗ = PT (W ) of W in T is

W ∗ =

[
0 X∗

X∗ 0

]
where X∗ = 1

2 (W12 +WT
12)

In addiction to the previous constraints, we need to derive the expression of the orthogonal

projection onto the positivity and rank constraints sets. In order to achieve that, we define

the following sets:

Definition 2.4 Let us define:

D .
= {Z ∈ S2n : Z =

[
X 0

0 Y

]
, X, Y ∈ Sn}

P .
= {Z ∈ S2n : Z ≥ −J}

R .
= {Z ∈ S2n : rank(Z + J) ≤ k};n ≤ k ≤ 2n

J
.
=

[
0 In
In 0

]
∈ S2n

We next provide the expression of the orthogonal projection onto the previous sets.

Proposition 2.4 Let Z =

[
Z11 Z12

ZT12 Z22

]
∈ S2n. The projection Z∗ = PD(Z) of Z onto D is

Z∗ =

[
Z11 0

0 Z22

]

Proposition 2.5 Let Z ∈ Sn and Z + J = LΛLT . Z∗ = PP(Z), the projection of Z onto

P, is given by

Z∗ = LΛ+L
T − J

where Λ+ is the diagonal matrix obtained by replacing the negative eigenvalues of Λ by zero.
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Proposition 2.6 Z ∈ S2n and Z + J = UΣV T . The projection Z∗ = PR(Z) of Z onto R
is given by:

Z∗ = UΣkV
T − J

where Σk is the diagonal matrix obtained by replacing the 2n− k smallest singular values of

Z + J by zero.

Summarizing, we have decomposed the constraints onto simpler sets in order to reduce

our problem into a feasibility problem and we have found the explicit expressions of the

orthogonal projections onto each set. Now, applying alternating projection methods, we

can find the desired solution. The original article with additional details can be found in

[13].
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Chapter 3

Iterated Quantum Maps

3.1 Statistical Description of Finite-Dimensional Quan-

tum Systems

To every quantum physical system Q is associated a complex Hilbert space H whose di-

mension depends on the observable quantities we want to describe. If the system is finite-

dimensional, namely the quantities of interest admit a finite set of outcomes, the Hilbert

space is isomorphic to CN . H is associated to the inner product:

〈x, y〉 =
∑
j

x∗jyj = x†y.

where the xj represent the components of x ∈ CN .

Postulate 3.1 A physical quantity relative to the system of interest that can (in principle)

be measured is called observable.

In quantum mechanics any observable is associated to an Hermitian operator A ∈ h(H)

(h(H) indicates the set of all hermitian operators in H). The operator A can be written,

by the spectral theorem, as A =
∑
j ajΠj where aj are the eigenvalues of A and Πj the

respective orthogonal projectors (ΠjΠk = δjkΠj ,
∑
j Πj = I). The eigenvalues represent

the possible outcomes of A and the projectors the quantum events.

Postulate 3.2 A state of maximal information for the system is associated to a state vector

|ψ〉, which is a norm-1 vector in H.

It is very difficult to know exactly the state of the system, more often there is some uncer-

tainty. Let us suppose that H is composed of states {|ψj〉} and let pj be the corresponding

probability of being in that state.

Definition 3.1 The density operator for the system is defined by

ρ =
∑
j

pj |ψj〉 〈ψj | ;

where pj ≥ 0 and
∑
j pj = 1. They have, in quantum mechanics, the role of probability

densities. The density operator is often called density matrix or, simply, state.
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Hereafter we will consider only density operators that correspond to complex N×N matrices

such that

ρ = ρ†; tr(ρ) = 1; tr(ρ2) ≤ 1.

If p1 = 1, ρ = |ψ1〉 〈ψ1|. In this case ρ is called pure state and it has the same meaning of

the state vector |ψ〉 provided before. In case of two or more pj > 0, ρ is called mixed state

and it cannot be described by a single state vector.

In case we want to calculate the probability Paj of observing the value aj as an outcome

of the observable A, we can calculate it as:

Paj = tr(ρΠj)

while the conditional density operator after the measurement of aj is:

ρA=aj =
ΠjρΠj

tr(ΠjρΠj)

If we want to compute the expectation of A assuming that the state is ρ:

Eρ(A) = tr(Aρ) = 〈A, ρ〉H.S.

where 〈·, ·〉H.S. is an inner product for the space of operators in H, the called Hilbert-Schmidt

inner product.

Systems composed by different subsystems are described as tensor products of different

subsystems, i.e. H = HA ⊗HB .

Tensor product is a way to assemble vector space.

Definition 3.2 Let V and W be Hilbert spaces of dimensions n and m respectively. Then

the tensor product V ⊗W is an Hilbert space of dimension nm which elements are linear

combination of |v〉 ⊗ |w〉 where |v〉 ∈ V and |w〉 ∈W .

A state ρ ∈ HA ⊗ HB that can be decomposed as ρ = ρA ⊗ ρB where ρA ∈ HA and

ρB ∈ HB is called uncorrelated.

A state ρ that can be decomposed as ρ =
∑
k λkρ

k
A ⊗ ρkB is called classically correlated.

A state that cannot be decomposed as before is called entangled.

Proposition 3.1 (Schmidt decomposition) For every |ψ〉 ∈ H = HA ⊗HB there exists

orthonormal bases {ej ∈ HA} and {fj ∈ HB} such that

|ψ〉 =
∑d
j=1

√
λj |ej〉 ⊗ |fj〉;

with λj ≥ 0,
∑
j λj = ‖ |ψ〉 ‖2 and d = min{dim(HA), dim(HB)}. �

Proposition 3.2 Operator Schmidt decomposition For every operator ρ ∈ H = HA ⊗
HB there exist orthonormal bases {Aj ∈ HA} and {Bj ∈ HB} such that

ρ =

d∑
j=1

√
λjAj ⊗Bj

with λj ≥ 0,
∑
j λj = ‖ |ψ〉 ‖2 and d = min{dim(HA), dim(HB)}. �
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If there are a composite system described by the density operator ρ ∈ HA ⊗ HB , the

reduced density operator for the subsystem A can be computed as:

ρA = trB(ρ);

where trB is the partial trace over the system B.

Definition 3.3 Let ρAB = ρ⊗σ ∈ H = HA⊗HB, then the partial trace over B is defined

as:

trB(ρAB) = trB(ρ⊗ σ) = ρtr(σ);

By linearity, for general ρ =
∑
ij cijXi ⊗ Yj we define:

trB(ρ) =
∑
ij

cijtr(Yj)Xi;

More details about tensor product and partial trace can be found in Appendix A. More

details about statistical description in quantum systems can be found in [2],[19],[23].

3.2 Open System Dynamics

Quantum dynamics are typically studied in two different scenarios: Closed systems and

Open systems.

A system is called open if it has non trivial interaction with the environment to which it

belongs, while closed systems are isolated.

Postulate 3.3 The state vector |ψ〉 of a closed quantum system obeys to the Schrödinger

equation: {
~ ˙|ψ〉 = −iH0 |ψ〉
|ψ(0)〉 = |ψ0〉

;

where H0 is the Hamiltonian of the system which, like classical mechanic, depends by the

energy of the system, and ~ is the Planck constant (we will consider ~ = 1).

Quantum states belong to complex sphere S2N−1 which can be lifted to the Lie group

SU(N) = {U ∈ CN×N : U†U = UU† = I , det(U) = 1}.
So the Schrödinger equations for the unitary propagator can be obtained:{

U̇ = −iH0U

U(0) = I
;

where U ∈ SU(N). The solution for the state is given by:

|ψ(t)〉 = U(t) |ψ0〉 ;

where

U(t) = e−iH0t;

Therefore for any pure state we obtain:

|ψj(t)〉 〈ψj(t)| = U(t) |ψj(0)〉 〈ψj(0)|U†(t).
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This implies, by linearity, that for a general state ρ(t) we have, in terms of unitary propa-

gator:

ρ(t) = U(t)ρ(0)U†(t);

A real physical quantum system, in general, have interaction with the environment in which

it belongs. Le us consider a finite-dimensional quantum system S coupled to the environment

E , chosen so that S and E together can be considered isolated, and let HS and HE be the

system and environment Hilbert spaces, with dim(HS) = N < ∞. The total Hamiltonian

for the composite system is given by:

Htot = HS ⊗ IE + IS ⊗HE +HSE ; (3.2.1)

where HS ,HE ,HSE are the system, environment and interaction Hamiltonian, respectively.

On the joint space HS⊗HE the dynamics is unitary by Postulate 3.3, since S⊗E is isolated

by construction. Let us assume that the initial state is ρSE,0 = ρ0 ⊗ ρE . By previous

considerations we have:

ρSE,t = USE,t(ρ0 ⊗ ρE)U†SE,t;

where USE,t = e−iHtott. In order to obtain the state of the system we need the partial trace

which gives:

ρS,t = T (ρ0) = trE(USE,t(ρ0 ⊗ ρE)U†SE,t). (3.2.2)

Definition 3.4 A map E(·) is a Completely Positive(CP) map if for every R being an

auxiliary system of arbitrary, finite dimension, (I ⊗ E)(A) ≥ 0 for every operator A ≥ 0 on

the combined system R⊗H, where I denotes the identity map on h(R).

Clearly CP implies positivity when dim(R) = 0.

Definition 3.5 A map E(·) is said Trace Preserving(TP) if tr(E(A)) = tr(A).

The map (3.2.2) is a CPTP map [2],[19],[21].

Note. CPTP maps are also called quantum channels or Kraus maps.

Properties:

• CPTP map can be written as

E(ρ) =
∑
k

MkρM
†
k

where Mk is such that
∑
kMkM

†
k = I;

• Any CPTP map is non-expansive: let ρ and σ be two states, then

‖E(ρ)− E(σ) ≤ ‖ρ− σ‖

where ‖A‖ = tr(
√
A†A) is the trace norm;

• Since a CPTP maps the state of density operators in itself and is a contraction, by

(Brouwer’s) fixed point theorem it admits at least a fixed state ρ0 such that E(ρ0) = ρ0.
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3.3 CPTP Projections

Let us consider a CPTP map E such that E2 = E , which we shall call a CPTP projection.

Then it maps any operator X onto the set of fixed points Fix(E) = {X ∈ H : E(X) = X}.
It has been proved [4] that the fixed points of a CPTP map form an algebra with respect

to a weighed product what has been called a distorted algebra [10]. More precisely, for any

CPTP map there exists a decomposition of the Hilbert space H such that:

H = (
⊕
i

HSi ⊗HFi)⊕HR;

By that it results that:

Fix(E) = (
⊕
i

B(HSi)⊗ τi)⊕ ∅R;

where ∅R is the null operator on HR.

We will consider, for sake of simplicity, only maps that admit at least one full rank state,

so the decomposition is given by:

H =
⊕
i

HSi ⊗HFi; (3.3.1)

and

Fix(E) =
⊕
i

B(HSi)⊗ τi; (3.3.2)

A CPTP projection is then a CPTP map E that projects a state ρ into the set Fix(E). We

next provide its structure with respect to Fix(E as in 3.3.2.

In general:

Proposition 3.3 If Ê2 = Ê and there exists a full rank ρ̄ such that E(ρ̄) = ρ̄, then

Ê(ρ) =
⊕
i

trFi(ΠSFiρΠSFi)⊗ τi; (3.3.3)

where ΠSFi is the projection onto HSi ⊗HFi as in 3.3.1.

It easy to see that Ê(ρ) ∈ Fix(Ê).

Let us call A =
⊕

iAi =
⊕

i B(HSi) ⊗ τi. The orthogonal projection of ρ ∈ H onto A is

given, by definition (1.9):

ρA =
∑
l,j

〈σl ⊗ τj , ρ〉HSσl ⊗ τj ;

where σl ⊗ τj is an orthonormal basis for Ai. Decomposing ρ =
∑
k Ak ⊗Bk we have:

ρA =
⊕
i

∑
l,j

(
∑
k

tr[(σl ⊗ τj)(Ak ⊗Bk)]σl ⊗ τj)

=
⊕
i

∑
l,j

(
∑
k

tr(σlAk)tr(τjBk)σl ⊗ τj)

=
⊕
i

∑
l,j

(tr[σl
∑
k

(Aktr(τjBk))]σl ⊗ τj))
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Note:
∑
k(Aktr(τjBk)) = trFi(ρ) ⇐⇒ τj = I so, in general, Ê(ρ) of 3.3.3 is not an

orthogonal projection with respect to Hilbert Schmidt inner product.

In order to obtain an orthogonal projection we can define a new inner product.

Definition 3.6 Let ξ be a positive definite operator. We define the modified ξ-inner

product as:

〈X,Y 〉ξ = tr(XξY ); (3.3.4)

We define the modified symmetric ξ-inner product as:

〈X,Y 〉ξ,s = tr(Xξ
1
2Y ξ

1
2 ). (3.3.5)

Proposition 3.4 (3.3.4) is a valid inner product.

Proof. We have to show that 〈·, ·〉ξ satisfies the properties of definition (1.4):

1. 〈X,X〉ξ = tr(XξX) = tr(ξX2) ≥ 0 clearly = 0 ⇐⇒ X = 0;

2. 〈X,Y 〉ξ = tr(XξY ) = tr(Y †ξ†X†)† = tr(Y ξX)∗ = 〈Y,X〉∗ξ ;

3. 〈α1X + α2Y, Z〉ξ = tr((α1X + α2Y )ξZ) = α1tr(XξZ) + α2tr(Y ξZ) = α1〈X,Z〉ξ +

α2〈Y,Z〉ξ.

Similarly for (3.3.5). �

Note. Changing the inner product for the Hilbert space (〈·, ·〉HS → 〈·, ·〉ξ,s) is equivalent

to a change of measure in a classical probability space.

In fact it holds:

Eρ(X) = 〈ρ,X〉HS

Eρ̃(X) = 〈ρ,X〉ξ,s

where ρ̃ = ξ−
1
2 ρξ−

1
2 is the ”new” unnormalized state.

In order to show that E is an orthogonal projection with reference to (3.3.4), we will need

the following lemma. With W =
⊕
Wi we will denote an operator that acts as Wi on Hi

for a decomposition of H =
⊕

iHi.

Lemma 3.1 Let W =
⊕
Wi and let Y be an operator. Then tr(WY ) =

∑
i tr(WiYi), where

Yi = ΠiYΠi

Proof. Let Πi be the projector ontoHi. Remembering that
⊕

i Πi = I and Πi = Π2
i , it holds:

tr(X) = tr(
∑
i

ΠiX)

=
∑
i

tr(ΠiX)

=
∑
i

tr(Π2
iX)

=
∑
i

tr(ΠiXΠi)
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Therefore we obtain:

tr(WY ) = tr(
⊕
j

WjY )

= tr((
∑
i

Πi)(
⊕
j

Wj)Y )

=
∑
i

tr(Πi

⊕
j

WjY )

=
∑
i

tr(ΠiWiY )

=
∑
i

tr(ΠiWiΠiY )

=
∑
i

tr(WiΠiYΠi)

=
∑
i

tr(WiYi)

�

Proposition 3.5 Let ξ = ρ−1, where ρ is a full-rank fixed state in H =
⊕

iHSi ⊗ HFi.
Then (3.3.3) is an orthogonal projection with the reference to the modified inner product

(3.3.4).

Proof. We already know that E is linear and idempotent. In order to show that E is an

orthogonal projection we need to show that it is self-adjoint (Definition 1.9).

Let us decompose X, Y and ρ as:

X =
⊕

iXi;

Y =
⊕

i YI ;

ρ =
⊕
ρi ⊗ τi

where

ΠiXΠi = Xi =
∑
k Ak,i ⊗Bk,i

ΠiYΠi = Yi =
∑
l Cl,i ⊗Dl,i

We can consider

W = E(X)ρ−1 =
⊕
i

([trFi(Xi)⊗ τi](ρ−1
i ⊗ τ

−1
i )) =

⊕
i

Wi
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and by Lemma (3.1):

< E(X), Y >ξ = tr(E(X)ρ−1Y )

= tr(
⊕
i

trFi(Xi)⊗ τi(ρ−1
i ⊗ τ

−1
i )Yi)

=
∑
i,k

tr(Ak,itr(Bk,i)⊗ τi(ρ−1
i ⊗ τ

−1
i )Yi)

=
∑
i,k

tr((Ak,itr(Bk,i)ρ
−1
i ⊗ I)Yi)

=
∑
i,k,l

tr([Ak,itr(Bk,i)ρ
−1
i ⊗ I][Cl,i ⊗Dl,i])

=
∑
i,k,l

tr(Ak,itr(Bk,i)ρ
−1
i Cl,i ⊗Dl,i)

=
∑
i,k,l

tr(Bk,i)tr(Ak,iρ
−1
i Cl,i)tr(Dl,i)

By similar calculation:

< X, E(Y ) >ξ = tr(Xρ−1E(Y ))

= tr(Xi(ρ
−1
i ⊗ τ

−1
i )trFi(Yi)⊗ τi)

=
∑
i,l

tr(Xiρ
−1
i Cl,itr(Dl,i)⊗ I)

=
∑
i,k,l

tr([Ak,i ⊗Bk,i][ρ−1
i Cl,itr(Dl,i)⊗ I])

=
∑
i,k,l

tr(Bk,i)tr(Ak,iρ
−1
i Cl,i)tr(Dl,i)

So, < E(X), Y >ξ=< X, E(Y ) >ξ wich proves self-adjointness. �

The same properties still hold if we define the modified symmetric ξ-inner product (3.3.5).

3.4 Iterated CPTP Map Theorem

Thanks to the previous results we can now apply alternating projections theorem to iterated

CPTP maps.

Theorem 3.1 Let H be an Hilbert space and Ê1,...,Êr maps that project onto Fix(Êi) ⊂ H,

i = 1, ..., r and let Fix(Ê) =
⋂r
i=1 Fix(Êi) 6= ∅. If there exists a full-rank state ρ0 ∈ Fix(E),

then ∀x ∈ H:

lim
n→∞

(Êr...Ê1)nx = Êx

where Ê is the projection onto Fix(Ê) =
⋂r
i=1 Fix(Êi)

Proof. Let us consider ξ = ρ−1
0 , then ρ0 ∈ Fix(Ê) implies that the maps Êi are all orthogonal

projection with respect to the modified inner product (Propositions 3.3, 3.5).

By Halperin classical theorem (Theorem 2.2) the limit of the cyclic orthogonal projections

onto subsets converges to the projection onto the intersection of the subsets; by that, because

Êi is the orthogonal projection onto Fix(Êi), the cyclic projections converge to the projection

of x onto the intersection of the subsets, that is Fix(Ê), which proves the theorem. �
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3.5 Quantum Application

In this Section we will focus on open quantum systems composed by a finite number n of

distinguishable systems, defined on

H =

n⊗
a=1

Ha, dim(Ha) = da, dim(H) = D

We are interested in studying dynamics in the case of quasi-locality constraints which specify

a list of neighborhood: groups of subsystems on which operators can act simultaneously.

Our goal is to understand if a given full rank state ρ ∈ D(H) can be prepared or, equally, it

exists a dynamic for which ρ is global asymptotically stable(GAS).

We will next indicate with Nj the list of subsystems’ indicies that compose th j−th

neighborhood. By definition, a neighborhood induce a bipartite structure of H:

H = HNj ⊗HN j
By this structure we can define the reduced neighborhood state ρj :

ρj = trN j (ρ).

Definition 3.7 An operator Mj is a neighborhood operator if its action is non trivial only

on Nj. It can be decomposed as:

Mj = MNj ⊗ IN j ;

where I is the identity operator for the complement of Nj.

Definition 3.8 A CPTP map E(·) is said Quasi local(QL) if it can be written as:

E(ρ) =
∑
k

MkρM
†
k ;

where Mk is a neighborhood operator for the same Nj. These maps are called neighborhood

maps.

By this definition E(·) can be decomposed as:

E(·) = ENk(·)⊗ IdNk(·).

Now we can describe our dynamics of interest:

i) It must exist a sequence of p CPTP maps, p → ∞, such that Ep ◦ ...E1(ρ) = ρd where

ρd is the state to be prepared and ρ is any state in H.

ii) For every t = 1, ..., p it must hold: Et(ρd) = ρd;

iii) For every t = 1, ..., p it exists a neighborhood Nj(t) such that Et(·) = ENj(t) ⊗ IdN j(t)
A dynamics that satisfies conditions i), ii), iii) is a Quasi-local stabilizing dynamics.

Let us recall that given an X ∈ B(HA ⊗ HB), we can write its operator Schmidt de-

composition (Proposition 3.2) as:

X =
∑
j

Aj ⊗Bj

By this notion we state the following definition:
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Definition 3.9 Given an X ∈ B(HA ⊗HB), we define the Schmidt span as:

ΣA(X) = span({Aj})

The Schmidt span is important because, if we want to leave an operator invariant with a

neighborhood map, it also imposes the invariance of its Schmidt span.

Lemma 3.2 Given a ρ ∈ D(H = HN| ⊗HN |) and E = ENj ⊗ IN j ∈ B(H), it holds:

span(ρ) ⊆ Fix(ENj ⊗ IN j )⇒ ΣNj ⊗ B(HN j ) ⊆ Fix(ENj ⊗ IN j )

Given a ρ > 0 ∈ Fix(E) the following properties hold:

I. Fix(E) is a ∗-algebra w.r.t. the modified product A×ρ−1 B = Aρ−1B;

II. Fix(E) is invariant for the modular product ∆ρ(X) = ρ
1
2Xρ−

1
2 .

In general ΣNk ⊆ Fix(ENk); we need to enlarge ΣNk in order to satisfy properties I.,II.

Definition 3.10 Let ρ ∈ D(H) and W ∈ B(H). The minimal modular-invariant distorted

algebra generated by W is the smallest ρ-distorted algebra generated by W which is invariant

w.r.t ∆ρ(·). In our case W = ΣNk(ρ) and we will call FρNk the minimal ∆ρNk
invariant,

distorted algebra w.r.t. ρNk modified product.

Note: FρNk can be constructed iteratively starting from F0 = algρNk (ΣNk(ρ)) with k-

th step given by:

Fk+1 = algρNk (∆ρNk
(ΣNk(ρ)))

It runs until Fk+1 = Fk = FρNk .

We next present a key result by Takesaki (in a finite-dimensional version given by Petz

[21]).

Theorem 3.2 Let A be a †-closed subalgebra of B(H), and ρ a full rank state. Then the

following are equivalent:

(i) There exists a unital CP map E† such that Fix(E†) = A, (E†)2 = E† and E(ρ) = ρ;

(ii) A is invariant w.r.t. ∆ρ(·).

The previous theorem allows to provide a characterization of distorted algebras that

contain a given full-rank fixed state and are fixed point of some CPTP map.

Theorem 3.3 Let ρ be a full-rank state. A distorted algebra Aρ admits a CPTP map E(·)
such that Fix(E) = Aρ if and only if it is invariant for ∆ρ.

In our case, by the two previous theorems, it exists a CPTP map ENk such that

Fix(ENk) = FρNk and E2
Nk = ENk . For Ek = ENk ⊗ IdNk it holds that:

Fix(Ek) = FρNk ⊗ B(HNk) = Fk

By Takesaki’s theorem and its extension to CPTP maps (theorems 3.2,3.3), it is clear what

we have done: we need to find a QL stabilizing map; by Takesaki’s theorem we know it exists

always a CPTP map whose fixed point set is a modular invariant distorted algebra. Thanks

to this information, we constructed those algebras, for neighborhood maps, by finding the

minimal modular-invariant algebras. Thanks to these steps, we can state the main result of

the section:
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Proposition 3.6 Let ρd be a full-rank state. There exists a Quasi-local stabilizing dynamics

satisfying i), ii), iii) if and only if

span(ρd) =
⋂
k

Fk

Proof. (⇒) By contradiction, let us suppose it exists ρ2 ∈
⋂
k Fk such that ρ2 6= ρd. It

clearly implies that ρ cannot be GAS because there exist an other state invariant for some

maps, which implies that not all the maps ”guide” to ρd.

(⇐) By Theorems 3.2, 3.3 and what we have seen in Section 3.3, we can see that Ek is a

CPTP projection. By Theorem 3.1, we already know that for every ρ, (Eq...E1)k(ρ)→
⋂
k Fk

for k →∞. Now, by hypothesis,
⋂
k Fk = span(ρd) and, being ρd the only state in his span,

we can conclude that ρd is GAS. �

3.5.1 Example

A Gibbs state is defined as:

ρβ =
eβH

tr(eβH)
, H =

∑
j

Hj , β ∈ R+,

where each Hj is a neighborhood operator relative to Nj . ρ is called commuting Gibbs state

if it holds [Hj , Hk] for all j, k.

Every 1D lattice can be associated to indexed subsystems (i.e. i = 1, 2, 3, ...). On those

systems, we define the neighborhood structure nearest neighborhood (NN) as the one where

Ni = {i, i+1}, and the next nearest neighbor (NNN) as the one given by Ni = {i, i+1, i+2}.
We will solve our examples thanks the following proposition [15].

Proposition 3.7 Gibbs states of 1D NN commuting Hamiltonians can be prepared with

Quasi-local stabilizing dynamics acting on the NNN neighborhood structure (see Figure

3.5.1).

We will solve our example following the proof of the previous proposition, which can be

found in [15].

Let see our first example in the commuting case.

Let us consider the following Hamiltonian:

H =
∑
i

σ(i)
z ⊗ σ(i+1)

z ,

where σz is the Pauli matrix

[
1 0

0 −1

]
. The Gibbs state is given by:

ρ = eβH =
∑
i

σi,i+1,

where σi,i+1 = eβi,i+1σ
(i)
z ⊗σ

(i+1)
z . For sake of simplicity, we will consider only the case of 4

subsystems. We need to find the minimal modular-invariant algebras for the subsystems

{1, 2, 3} and {2, 3, 4}. First, we need to find Σ123(ρ) which is given by:

Σ123(ρ) = σ12σ23[I12 ⊗ Σ3(σ34)];
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Figure 3.1: A visual example of a 1D lattice system with NN and NNN neighborhood

structure .

Now, by definition, it holds:

Σ3(σ34) = span{tr4([I3 ⊗B]σ34), ∀B ∈ B(H4)}

= span{tr4

(
eβ 0 0 0

0 1
eβ

0 0

0 0 1
eβ

0

0 0 0 eβ

[ B 02×2

02×2 B

] )
}

= span{tr4

( [Beβσz 02×2

02×2 Be−βσz

] )
}

= span{
[
tr(Beβσz ) 02×2

02×2 tr(Be−βσz )

]
}

= span{I, σz}

By that, we obtain Σ123(ρ) = σ12σ23[I12 ⊗ span{I, σz}]. By symmetry, the same result can

be obtained for Σ234(ρ) = σ23σ34[span{I, σz} ⊗ I34]. Now, it is evident that Σ123 and Σ234

are invariant for the distorted and the modular product, so we can immediately write:

F123 = σ12σ23[I12 ⊗ span{I, σz}]⊗ B(H4)

F234 = σ23σ34[span{I, σz} ⊗ I34]⊗ B(H1)
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We need to find F123 ∩ F234. First of all, notice that σ12 = σ̂12 ⊗ I34 (analogously for

σ34). Consider τ123 and τ234 operators in F123, F234 respectively. They can be expressed as

following:

τ123 = σ23

∑
i

σ̂12 ⊗D3i ⊗W4i

τ234 = σ23

∑
j

Vj ⊗ C2j ⊗ σ̂34

To find the intersection we need to impose τ123 = τ234 and it is possible if and only if{∑
iD3i ⊗W4i = σ̂34∑
j Vj ⊗ C2j = σ̂12

So, finally, we get that F123 ∩ F234 = σ12σ23σ34 .

As second example, we are considering a non-commuting Gibbs state. In this case, the

Hamiltonian is given by:

H = σx ⊗ σx ⊗ I34 + I ⊗ σz ⊗ σz ⊗ I + I12 ⊗ σx ⊗ σx

where σx =

[
0 1

1 0

]
and σz =

[
1 0

0 −1

]
are Pauli matrices.

In this case manual calculations are not easy, so we have used a mathematical software

(MATLAB) in order to find if the Gibbs state can be prepared with NNN operators. We

implemented the following algorithm:

Algorithm 1 Pseudo-code for the non commuting case:

1: find Σ123(ρ);

2: F123 ⇐ Σ123;

3: while rank(F123) is not stable do

4: find alg(Σ123) closing Σ123 w.r.t. the distorted product;

5: find ∆(alg(Σ123)) closing alg(Σ123) w.r.t. modular product;

6: F123 ⇐ ∆(alg(Σ123));

7: end while

8: F123 ⇐ F123 ⊗ B(H4)

9: Repeat for neighborhood {2, 3, 4};
10: Calculate a basis for F = F123 ∩ F234;

11: if rank(
[
F ρ

]
)==1 then

12: ρ can be prepared;

13: else

14: ρ cannot be prepared;

15: end if

Also in this case, thanks to the software, we found that the state can be prepared. The

code used can be found in Appendix

29



Chapter 4

Bregman’s Theory

4.1 Bregman’s Divergences and their Properties

In this chapter it will be shown an extension of Halperin (Von Neumann) theorem using

Bregman divergences and projections.

Definition 4.1 Let Ai ∈ X a family of closed convex sets; R =
⋂
i∈I Ai 6= ∅ and S ⊂ X a

convex set such that S ∩R 6= ∅.
The function D(x, y) defined over S×S is a Bregman divergence if satisfies the following

conditions:

I. D(x, y) ≥ 0 and D(x, y) = 0 ⇐⇒ x = y;

II. For every y ∈ S, i ∈ I it exists x ∈ Ai ∩ S such that:

D(x, y) = arg min
z∈Ai∩S

D(z, y)

x is called Bregman projection of y onto Ai and it will be indicated by Pi(y);

III. For every index i ∈ I and y ∈ S the function G(z) = D(z, y) −D(z, Pi(y)) is convex

over Ai
⋂
S;

IV. A derivative D′x(x, y) of D(x, y) exists when x = y and D′x(y, y) = 0

(i.e. limt→0
D(y+tz,y)

t = 0 for all z ∈ X );

V. For every z ∈ R ∩ S and for every real number L, the set T = {x ∈ S : D(z, x) ≤ L}
is compact;

VI. If D(xn, yn)→ 0, yn → y∗ ∈ S̄ and the set of elements of {xn} is compact, xn → y∗.

The following proposition gives a useful tool to verify if a function is a Bregman diver-

gence.

Proposition 4.1 If f(x) is a strictly convex and differentiable function, then

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 (4.1.1)

satisfies conditions I-IV.

Proof.
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I. It derives from the property of the convex functions:

f(x) ≥ f(y) + 〈∇f(y), x− y〉

From which we obtain that Df (x, y) ≥ 0. And, for the strictly convexity, it is clear

that Df (x, y) = 0 ⇔ x = y.

II. This condition is satisfied because arg min
x∈S

D(x, y) = 0 exists, ergo arg min
x∈Ai∩S

D(x, y)

exists for every closed convex set Ai.

III. It results

G(z) = −f(y) + f(Pi(y))− 〈∇f(y), y〉+ 〈∇f(Pi(y)), Pi(y)〉 − 〈∇f(y)−∇f(Pi(y)), z〉
= cost.− 〈∇f(y)−∇f(Pi(y)), z〉

which is convex.

IV. D′x(y, y) = ∇f(y)−∇f(y) = 0

�

Note. A ”Bregman Distance” as (4.1.1) does not guarantee conditions V,VI. More

assumptions are needed.

Here are two classical examples used by Bregman himself in his work.

Proposition 4.2 Let X be an Hilbert space, S = X and

D(x, y) = 〈x− y, x− y〉

Then it is a Bregman Divergence.

Proof. Let us see that D(x, y) satisfies the condition in Definition 4.1.

I. It is obvious by Definition 1.4;

II. In this case Bregman Projection is the classical orthogonal projection, so it is satisfied;

III. It holds:

G(z) = D(z, y)−D(z, Pi(y))

= 〈z − y, z − y〉 − 〈z − Pi(y), z − Pi(y)〉
= 2〈z, Pi(y)− y〉+ 〈y, y〉 − 〈Pi(y), Pi(y)〉

which is linear in z, so the condition is satisfied;

IV. D′x(y, y) = limt→0
〈y+tz−y,y+tz−y〉

t = limt→0 t〈z, z〉 = 0;

V. T = {y ∈ S : 〈x− y, x− y〉 ≤ L} is not generally compact but it is bounded. A weak

topology can be introduced in order to achieve compactness (i.e. Rn, Cn have a strong

topology, so this property is often satisfied);

VI. Let 〈xn − yn, xn − yn〉 → 0, yn → y∗ and let {xn} be compact. Let xnk → x∗. Then

for every u ∈ X :

|〈u, xnk − ynk〉| ≤ ‖u‖‖xnk − ynk‖ → 0

That implies x∗ = y∗.
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Proposition 4.3 Let f(x) =
∑n
i=1 xi lnxi be the entropy function, where xi is a probability

measure.

Then

Df (x, y) =

n∑
i=1

xi ln
xi
yi

is a Bregman divergence.

A proof can be found in [5].

4.2 Generalized Pythagorean Theorem

In this paragraph we will give a generalization of Pythagorean theorem for Bregman diver-

gence.

Figure 4.1: A visual representation of generalized Pythagorean theorem.

Lemma 4.1 Let z ∈ Ai ∩ S. Then for any y ∈ S

D(Pi(y), y) ≤ D(z, y)−D(z, Pi(y))
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is valid.

Proof. By condition III, λ ∈ [0, 1]

D(λz + (1− λ)Piy, y)−D(λz + (1− λ)Pi(y), Pi(y)) ≤ λ(D(z, y)−D(z, Pi(y))) +

+(1− λ)D(Pi(y), y)

When λ > 0:

D(z, y)−D(z, Pi(y))−D(Pi(y), y) ≥ D(λz + (1− λ)Pi(y), y)−D(Pi(y), y)

λ
−

−D(λz + (1− λ)Pi(y), y)

λ

Now λz + (1 − λ)Pi(y) ∈ Ai ∩ S, the first term in the right side of the previous inequality

is non-negative (condition II) and the second term tend to 0 when λ → 0 (condition IV).

From which

D(z, y)−D(z, Pi(y))−D(Pi(y), y) ≥ 0

�

In Figure 4.2 an intuitive vision of Lemma is given. It can be seen that Bregman Projec-

tions behave ”like” classical projections giving a property similar to classical Pythagorean

Theorem, essential property in order to prove the convergence of the iterated method that

will be given in the next paragraph.

4.3 Iterated Convergence Results

Let us consider the following iterative process:

• choose x0 ∈ S

• if xn ∈ S is known, select an index (in some way) in(xn) ∈ I and find the point xn+1

wich is the Bregman projection of xn onto Ain(xn).

The series {xn} is called relaxation sequence.

Lemma 4.2 For any relaxation sequence it holds:

1. The set of elements {xn} is compact;

2. It exists limn→∞D(z, xn), ∀z ∈ R;

3. D(xn+1, xn)→ 0 when n→∞.

Proof. Let z ∈ R ∩ S. By Lemma 4.1

D(xn+1, xn) ≤ D(z, xn)−D(z, xn+1)

Because D(xn+1, xn) ≥ 0, we have D(z, xn) ≥ D(z, xn+1), so it exists the limit for D(z, xn)

which, with Lemma 4.1, gives D(xn+1, xn)→ 0. That proves properties 2-3.
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Now the set of element of {xn} is contained in T = {x ∈ S : D(z, x) ≤ D(z, x0)}, compact

for condition V, so 1. is proven. �

Lemma 4.2 assures the convergence of the relaxation sequence and it gives the basis to

prove the main Bregman result.

Theorem 4.1 (Bregman’s iterative method) Let I = {1, 2, ...,m} and let the indices

be chosen in cyclic order. Then any limiting point x∗ of the relaxation sequence {xn} is a

common point of the sets Ai.
Proof. Let x∗ be the limiting point of {xn} and xnk → x∗.

Let us separate from {xnk} a sequence fully contained in one Ai (i.e. {xnk} ∈ A1) and

separate out from {xnk+i−1} the sequences which are convergent (we assume {xnk+i−1}
themselves convergent). We have:

xnk → x∗ = x∗1
xnk+1 → x∗2

...

xnk+m−1 → x∗m

{xnk+i−1} ∈ Ai ⇒ x∗i ∈ Ai.
From Lemma 4.2 (D(xnk+1, xnk)→ 0) and condition VI ⇒ limxnk+1 = limxnk = x∗1 = x∗2
which implies x∗ ∈ A2. In the same way it holds x∗ ∈ A3,...

Concluding we have:

x∗ ∈
⋂
i∈I
Ai

�

Theorem 4.2 If ∀y ∈ S it exists maxi∈I minx∈Ai D(x, y), let in(xn) be the index which

realizes

max
i∈I

min
x∈Ai

D(x, xn);

Then any limiting point of the relaxation sequence is a common point of the sets Ai.

In other words Bregman gives a sort of generalization of Von Neumann and Halperin’s

methods using Bregman projections to extend iterative methods.

Bregman divergences have been studied in various cases, for istance, one of the most im-

portant is the case of Bregman divergences generated by particular functions: Legendre

functions. Details can be found in [6].

4.4 Quantum Bregman’s Divergences

In this paragraph we will show how some quantum functions can be seen as Bregman

divergences.

Proposition 4.4 Let x and y be quantum states. The quadratic distance ‖x− y‖2ξ induced

by the modified ξ-inner product is a Bregman divergence.

Proof. Immediate from Proposition 4.4 �
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In the next proposition we will show that the quantum relative entropy is a Bregman

divergence.

Proposition 4.5 Let x, y be strictly positive quantum states and let f(x) = tr(x log x).

Then

Df (x, y) = tr(x log x)− tr(x log y) (4.4.1)

is a Bregman distance which also satisfies conditions V-VI. In other words it is a Bregman

divergence.

Proof. First of all let us recall the following identity:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 = f(x)− f(y)− lim
x→0+

t−1[f(y + t(x− y))− f(y)]

Now f(x) = tr[x log x] from which:

Df (x, y) = tr[x log x]− tr[y log y]− lim
x→0+

t−1tr[(y + t(x− y)) log(y + t(x− y))− y log y]

lim
x→0+

t−1tr[(y + t(x− y)) log(y + t(x− y))− y log y] =

lim
x→0+

t−1tr[y log(y + t(x− y))− y log y] + tr[(x− y) log y] =

lim
x→0+

t−1tr[y log(y + t(x− y))− y log y] =

lim
x→0+

t−1tr[y(log(y) + t log′ y(x− y) + o(t2))− y log y] =

tr[x− y] =

0

Finally:

Df (x, y) = tr[x log x]− tr[y log y]− tr[x log y] + tr[y log y] = tr[x log x]− tr[x log y]

Conditions V-VI are clearly satisfied. �
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Appendix A

Tensor Product and Partial

Trace

As said in the relative chapter, tensor product is a way to assemble vector spaces in order to

obtain a larger vector space. Consider two Hilbert spaces H1 and H2 of dimensions n and m

respectively, then H1 ⊗H2 is an nm dimensional vector space. If we consider the elements

v ∈ H1 and w ∈ H2, then the elements in H1 ⊗ H2 are of the kind v ⊗ w, in addiction to

that if {i} and {j} are orthonormal bases forH1 andH2, then {i}⊗{j} is a basis forH1⊗H2.

By definition, tensor product satisfies the following properties:

• let t be a scalar element, and v ∈ H1, w ∈ H2, then

t(v ⊗ w) = tv ⊗ w = v ⊗ tw;

• let v1, v2 ∈ H1 and w ∈ H2, then

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w;

• let v ∈ H1 and w1, w2 ∈ H2, then

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

Now, let us suppose that A is a linear operator in H1 and B is a linear operator acting on

H2. We can produce an operator A ⊗ B acting on H1 ⊗ H2 and the following relation is

valid:

(A⊗B)(v ⊗ w) = Av ⊗Bw

In matrix representation, tensor product is known as the Kronecker product and the previous

relation derives from the distributive property of the multiplication.

Given two matrices A of dimensions m×n and B p× q, the Kronecker product is given by:

A⊗B =

A11B ... A1nB
...

. . .
...

Am1B ... AmnB
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which is a mp⊗ nq matrix.

Now, consider a composite system HAB = HA⊗HB . The partial trace over the subsys-

tem B is defined as:

trB(·) : HAB → HA

Consider, for example, the stateρ = ρa ⊗ ρB , we obtain trB(ρ) = ρAtr(ρB). The partial

trace can be thought as a way to obtain the information of a particular subsystem. For

example, let us consider a bipartite qubit system HA ⊗HB ; we have

ρAB =


a b c d

e f g h

l m n o

p q r s

⇒ ρA =

 tr

[
a b

e f

]
tr

[
c d

g h

]
tr

[
l m

p q

]
tr

[
n o

r s

]
 =

[
a+ f c+ h

l + q n+ s

]

while

ρB =

[
a+ n b+ o

e+ r f + s

]
For more information about partial trace and tensor products refer to specific texts.
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Appendix B

MATLAB Code

%%Thesis code for the thesis example.

%%Beware: not refined code!

close all;

clear all;

%def hamiltonian matrices

x=[0 1; 1 0]; %sigma_x

z=[1 0; 0 -1]; %sigma_z

e=[1 0; 0 1]; % id

%elementary matrices

%e_1=[1 0; 0 0];

%e_2=[0 1; 0 0];

%e_3=[0 0; 1 0];

%e_4=[0 0; 0 1];

%pauli matrices

e_1=[1 0; 0 1];

e_2=[0 1; 1 0];

e_3=[1 0; 0 -1];

e_4=[0 -1i; 1i 0];

%subsystem dimensions vector

dim=[2 2 2 2];

H=kron(kron(kron(x,x),e),e)+kron(kron(kron(e,z),z),e)+kron(kron(kron(e,e),x),x); %hamiltonian

rho=expm(-H)/trace(expm(-H)); %normalized state

rho_123=TrX(rho,[4], dim); %neighborhood{1,2,3} reduced state

rho_234=TrX(rho,[1], dim); %neighborhood{2,3,4} reduced state

%%Computing minimal modular invariant *algebra for 123

%Find Sigma_123, Sigma_123v is in vectorial form

Sigma1_123=TrX(kron(eye(8),e_1)*rho,[4], dim);

Sigma2_123=TrX(kron(eye(8),e_2)*rho,[4], dim);
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Sigma3_123=TrX(kron(eye(8),e_3)*rho,[4], dim);

Sigma4_123=TrX(kron(eye(8),e_4)*rho,[4], dim);

Sigma1_123v=reshape(Sigma1_123,[],1);

Sigma2_123v=reshape(Sigma2_123,[],1);

Sigma3_123v=reshape(Sigma3_123,[],1);

Sigma4_123v=reshape(Sigma4_123,[],1);

Sigma_123v=[Sigma1_123v Sigma2_123v Sigma3_123v Sigma4_123v];

Sigma_123=[Sigma1_123 Sigma2_123 Sigma3_123 Sigma4_123];

%iteration in order to find F_123

oldrank=0;

oldrank2=1;

while oldrank2>oldrank

%algebra cycle

while rank(Sigma_123v)>oldrank

oldrank=rank(Sigma_123v);

for i=1:8:length(Sigma_123)

for j=1:8:length(Sigma_123)

p_j=Sigma_123(:,i:i+7)*pinv(rho_123)*Sigma_123(:,j:j+7);

if rank([Sigma_123v reshape(p_j,[],1)])>rank(Sigma_123v)

Sigma_123v=[Sigma_123v reshape(p_j,[],1)];

Sigma_123=[Sigma_123 p_j];

end

end

end

end

%modular invariancy cycle

while rank(Sigma_123v)>oldrank2

oldrank2=rank(Sigma_123v);

for i=1:8:length(Sigma_123)

p_j=(rho_123)^(1/2)*Sigma_123(:,i:i+7)*pinv(rho_123)^2;

if rank([Sigma_123v reshape(p_j,[],1)])>rank(Sigma_123v)

Sigma_123v=[Sigma_123v reshape(p_j,[],1)];

Sigma_123=[Sigma_123 p_j];

end

end

end

end

%Extending with B(H4)

F1_123=kron(Sigma_123,e_1);

F2_123=kron(Sigma_123,e_2);

F3_123=kron(Sigma_123,e_3);

F4_123=kron(Sigma_123,e_4);

F_123=[F1_123 F2_123 F3_123 F4_123];

F_123v=[reshape(F1_123,256,[]) reshape(F2_123,256,[]) reshape(F3_123,256,[]) reshape(F4_123,256,[])];
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%%Same thing for Subsystem 234

Sigma1_234=TrX(kron(e_1,eye(8))*rho,[1], dim);

Sigma2_234=TrX(kron(e_2,eye(8))*rho,[1], dim);

Sigma3_234=TrX(kron(e_3,eye(8))*rho,[1], dim);

Sigma4_234=TrX(kron(e_4,eye(8))*rho,[1], dim);

Sigma1_234v=reshape(Sigma1_234,[],1);

Sigma2_234v=reshape(Sigma2_234,[],1);

Sigma3_234v=reshape(Sigma3_234,[],1);

Sigma4_234v=reshape(Sigma4_234,[],1);

Sigma_234v=[Sigma1_234v Sigma2_234v Sigma3_234v Sigma4_234v];

Sigma_234=[Sigma1_234 Sigma2_234 Sigma3_234 Sigma4_234];

oldrank_0=0;

oldrank_2=1;

while oldrank_2>oldrank_0

while rank(Sigma_234v)>oldrank_0

oldrank_0=rank(Sigma_234v);

for i=1:8:length(Sigma_234)

for j=1:8:length(Sigma_234)

p_j=Sigma_234(:,i:i+7)*pinv(rho_234)*Sigma_234(:,j:j+7);;

if rank([Sigma_234v reshape(p_j,[],1)])>rank(Sigma_234v)

Sigma_234v=[Sigma_234v reshape(p_j,[],1)];

Sigma_234=[Sigma_234 p_j];

end

end

end

end

while rank(Sigma_234v)>oldrank_2

oldrank_2=rank(Sigma_234v);

for i=1:8:length(Sigma_234)

p_j=(rho_234)^(1/2)*Sigma_234(:,i:i+7)*pinv(rho_234)^2;

if rank([Sigma_234v reshape(p_j,[],1)])>rank(Sigma_234v)

Sigma_234v=[Sigma_234v reshape(p_j,[],1)];

Sigma_234=[Sigma_234 p_j];

end

end

end

end

F1_234=kron(e_1, Sigma_234);

F2_234=kron(e_2, Sigma_234);

F3_234=kron(e_3, Sigma_234);

F4_234=kron(e_4, Sigma_234);

F_234=[F1_234 F2_234 F3_234 F4_234];

F_234v=[reshape(F1_234,256,[]) reshape(F2_234,256,[]) reshape(F3_234,256,[]) reshape(F4_234,256,[])];

%%finding intersection

%ints(): function of the Geometry Approach Toolbox
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rank([ints(F_123v, F_234v) reshape(rho,[],1)])

%checking if spans are the same

rank([I reshape(rho,[],1)])
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