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Abstract

Amyotrophic lateral sclerosis is a neurodegenerative disorder that involves both upper

motor neurons and lower motor neurons, progressively bringing patients to a state of

complete paralysis. There is evidence of physiological changes happening at a neural

level but, nowadays, the diagnosis and the progression of the disease are still based on

clinical symptoms. Electroencephalography (EEG) is currently used to extract features

that differentiate patients from control groups, but examining how the brain signals

change during the evolution of the disease is still challenging due to the different diag-

nosis types and disease courses.

In this thesis a longitudinal analysis of EEG resting state data is performed for three

patients, setting a signal processing pipeline to detect which features of the signal are

significantly changing over the observation period, and which of them are possibly chang-

ing with a monotonous trend. What has been found is a substantial difference in the

spectral content of EEG signal between late-stage patients and the patient observed

during his transition from locked-in to completely locked-in state (CLIS), demonstrat-

ing that EEG can to represent the neurodegeneration in its different stages. The patient

during the transition still exhibits a clear peak in alpha frequency band, that is missing

in the other patients. Those, on the other hand, present a shift of alpha rhythm to lower

frequencies. These findings suggest a probable gradual decreasing of alpha activity after

the transition to CLIS, which could be investigated in a larger dataset covering a wider

observation period.
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Chapter 1

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that progressively

brings patients to a state of complete paralysis and impossibility to interact with the

external environment. Many studies investigated whether brain signals can be useful to

discriminate between patients and control groups, but monitoring the progression of the

disease is still challenging.

In this thesis EEG signals have been analysed to answer some questions: is EEG signal

changing in some of its features during the evolution of the disease? If yes, is it evolving

in the same features that differentiate patients from healthy subjects?

According to those questions, this work aims to perform a longitudinal analysis of EEG

resting states recorded for three different ALS patients, to investigate whether it is

possible to find some features in EEG signal that change during the evolution and de-

generation of the disease.

The final objective of this study is to propose a solid method to approach this kind of

analysis, focusing on data preprocessing and on the statistic validation of the results

obtained after data processing and features extraction.

Since considering the nature of the data and its biological correlation with patients’

condition is of crucial importance, the analysis is approached with a brief overview of

ALS disease in Section 1.1, giving a quick analysis of the physiological factors assumed

to have a role in the onset of this syndrome and discussing the implications for patients

at a late stage of the disease. One of the aspects that is covered is the transition from

locked-in state (LIS) to complete locked-in state (CLIS).

Next to that, in Section 1.2, the choice of EEG as source of information is explained

and in Section 1.3 the current state of the art in the analysis of brain signals for ALS
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patients is presented, resuming the results obtained in the literature in the research of

markers able to differentiate ALS from healthy patients. Successively Brain-Computer

Interfaces (BCI) application to communication is reviewed, being the only way that is

left to those patients to continue interacting with the external environment even in the

locked-in state stage. Finally are presented the current results for longitudinal studies,

that are still few in the literature but that would have an important role for a better

understanding of ALS disease and for improving patients’ living conditions.

This thesis project is part of this last type of studies, considering and facing the limits

of available patients’ data.

In Chapter 2 is going to be provided a detailed explanation of data and the preprocessing

and processing methods used in the analysis.

Finally, in Chapters 3 and 4 all the results are presented and discussed, giving the final

conclusions in Chapter 5.

Data were provided by Professor Niels Birbaumer’s BCI research group, from the Insti-

tute of Neural Psychology of the University of Tuebingen.

1.1 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ASL) is a syndrome referring to a specific form of motor

neuron disease that involves both upper motor neurons (UMN) and lower motor neurons

(LMN) [1].

UMNs are found in the cerebral cortex and brainstem and are responsible for carrying

information down to activate interneurons and LMNs, which innervate skeletal muscle

fibers and turn directly the signal to muscles, to contract or relax. While UMNs in the

cerebral cortex are the main source of voluntary movement, LMNs are the actuators.

”Amyotrophic” relates to muscle atrophy, weakness and fasciculation (involuntary mus-

cle contraction and relaxation), characteristic of a LMN disease. ”Lateral sclerosis”

refers to the hardness to palpation of the lateral columns of the spinal cord found in

autopsy specimens, due to gliosis following degeneration of cortical spinal tract; this is

related to signs of UMN disease [1].

UMN disease signs are the main elements to differentiate ALS from other types of motor

neuropathies.

The disease consists in a progressive degeneration of the corticospinal tract, brainstem

and spinal anterior horn neurons, with a heterogeneous clinical presentation and course.
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This syndrome affects people worldwide and establishing an exact incidence rate is prob-

lematic in epidemiologic studies for ALS, due to difficulties in the determination of a

specific date for disease onset and the variable latency for symptoms to manifest. Some

studies have established that the incidence of ALS in Europe is almost uniformly around

2.16 per 100000 person-years [2].

According to these studies men have a slightly higher incidence of disease with respect to

women (3.0 versus 2.4 per 100000 person-years), and the peak age at onset is 58-63 years

for sporadic disease and 47-52 years for familial disease, with the incidence increasing

rapidly after 80 years [3].

1.1.1 Clinical phenotypes and progression

A first distinction between ALS patients is related to the underlying causes of the disease:

about 5-10% of the cases are familial, with a Mendelian pattern of inheritance, while

90% of cases are classified as sporadic [3] [1]. For the familial ALS some genes have been

identified as possible causes for the presentation of typical clinical phenotypes, while for

the sporadic ALS the pathological path of the disease is still mostly unclear.

Some studies proposed also environmental factors competing in the incidence of the

disease, as the exposure to heavy metals, persistent viral infection [1], a prolonged and

intensive physical exertion or active service in the armed force [3] .

The main presentations of the syndrome consist of:

• limb-onset ALS, with UMN and LMN signs in the limbs (about 70% of patients);

• bulbar-onset ALS, starting with speech and swallowing difficulties and limb fea-

tures developing later (25%);

• ALS with pure UMN involvement;

• progressive muscular atrophy, with pure LMN involvement [4].

Generally, the disease signs involving the limbs are spasticity, weakness and brisk deep

tendon reflexes concerning UMN disturbance, while common LMNs’ limb symptoms are

fasciculation, wasting and weakness.

Regarding bulbar features the most spread is spastic dysarthria for UMN dysfunction,

while bulbar LMN disorder can be identified by tongue wasting, weakness, fascicula-

tions, flaccid dysarthria and later dysphagia [3]. The disease and the presentation of its

symptoms are progressive, and the rate of the progression depends both on the age at
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symptoms onset and on onset symptoms themselves.

Reduced survival rates are related with older age at symptoms onset, early respiratory

muscle dysfunction and bulbar onset disease, while on the other hand limb-onset disease

and younger age at presentation can be some predictors for prolonged survival [3].

The transition from LIS to CLIS

The advanced stage of ALS is identified as locked-in state (LIS), a term denoting a

neurological condition consisting of tetraplegia and paralysis of all cranial nerves except

vertical eye movements [5]. A further progression of the disease leads to a total incapa-

bility of moving all muscles, including the residual eye movement, bringing the patients

to a complete locked-in state (CLIS).

This step in the advancement of the disease is of particular interest and importance for

the quality of life of patients, since it excludes them from the possibility to communicate

through eye movement. Communication using eye movement is demonstrated to be ef-

fective for LIS patients through neuroprosthethic devices as Brain-Computer Interfaces

(BCIs), explained in Section 1.3.2. BCIs usage for CLIS patients implies the analysis of

other brain signals as electroencephalogram (EEG) and functional near-infra-red spec-

troscopy (fNIRS), but currently there are no proves for stable and lasting communication

using those signals, probably due to the lack of knowledge of this particular brain state

and its implication to brain’s electrophysiological activity.

Understanding a possible correlation between the progression of the disease and related

brain activity would help in improving communication techniques and consequently the

quality of life for this late stage of the disease. Deeper considerations on the topic are

postponed to Section 1.2.

1.1.2 Pathophysiology of the disease

The pathophysiological mechanisms underlying ALS development have to be investi-

gated in a complex interaction between genetic and molecular pathways.

In particular, the mutation of SOD1 seems one of the elements more involved in the

concurrent and auto-reinforcing process that leads to the the death of motor neurons,

and it represents also a possible connection in the pathogenesis of both familial and

sporadic ALS.

SOD1 is an enzyme that catalyzes the convertion of toxic superoxid radicals to hy-

drogen peroxide and oxygen [1]; its mutation is currently thought to lead to a toxic

gain-of-function. Moreover, SOD1’s mutation induces instability and misfolding of the

SOD1 peptide, leading to the formation of intracellular aggregates that disrupts axonal
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Figure 1.1: Cellular and molecular processes involved in ALS neurodegeneration [3].

transport systems and vital cellular functions [3].

Another factor that seems to be connected to ALS pathogenesis is glutamate-induced

excitotoxicity, consisting in an excessive entry of extracellular calcium through the in-

appropriate activation of glutamate receptors. This theory is supported by findings

of increased glutamate levels in cerebrospynal fluid of patients with sporadic ALS [1].

Another effect of this excitotoxicity is the generation of free radicals, and both these el-

ements are shown to lead to neurodegeneration and cellular death. In addition to these

two processes other anomalous neural conditions are implicated in the generation of the

disease (as structural abnormalities of mitochondria, dysfunction of sodium/potassium

pump, autophagy and disrupted axonal transport systems) together with non-regular

behaviour neural cells, as astrocytes and microglia, that could generate an insufficient

release of neurotrophic factors, secretion of neurotoxic mediators and modulation of

glutamate receptor expression. Figure 1.1 offers a schematic view of these processes.

1.1.3 Diagnosis and treatments

Currently there is no diagnostic test for ALS, and diagnosis are made relying on the

indentification of UMN and LMN signs, and their combination in the limb or bulbar

territories. These features are usually examinated through El Escorial criteria [6].

Generally diagnostic certainty entails a delay of one year from the onset of symptoms

to diagnosis [7], due to the need of observing the possible progression and the spread

of the symptoms to other regions, and for the possible overlap with other neuropathies
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and disorders of motor neurons that present similar features. Anyway, this delay implies

a late start for the treatments that could slow the progression of early symptoms, and

that is the reason why an early diagnostic biomarker would be clinically useful.

Electromyography can be used to count the number of surviving neurons, becoming an

help for diagnosis and for assessing the efficacy of treatments.

A great contribution to the diagnostic process comes from neuroimaging techniques,

specially for their ability to exclude other pathological causes. In particular magnetic

resonance voxel-based morphometry allows to quantify grey and white matter volumes.

Those are important features in diagnosis, since an extensive decrease in frontotemporal

white matter volume has been documented for ALS patients [7].

Functional magnetic resonance (fMRI) is used to measure regional changes in the blood-

oxygenation-level-dependent response to stimuli, given that it has been proved that there

is a decrease in regional pattern activation during motor tasks in ALS patients, and a

parallel activation of other regions that is correlated with UMNs disturbances.

Moreover there are other methods that helps in documenting the involment of the UMNs,

as magnetic resonance spectroscopy and magnetic stimulation of the motor cortex [1].

The first is used to measure the number of surviving neurons in the motor cortex, and

the second is used to assess the conduction of the corticospinal tract.

The only one drug approved by the Food and Drug Administration (FDA) for treating

ALS is riluozole, considered a neuroprotective therapy as it is a glutamate antagonist.

Some studies and retrospective analysis proved that patients who received riluozole had

a slower degeneration with respect to a control group [8] and extendend survival of pa-

tient of 3-6 months [9], supporting the theory of the excitotoxicity of glutamate in the

pathogenesis of ALS.

A key role in the maintainance of patients’ good quality of life is played by the symp-

tomatic treatment, provided by the cooperation of physioterapists, speech therapists,

respiratory physicians, gastroenterologists and care takers. The biggest issues in the

treatment of the symptoms are related to respiratory insufficiency, that is the main

cause of death [3]. Respiratory failure indicates the degeneration of both central respi-

ratory centres and motor neurons involved in the activity of the phrenic nerve.

Patients and their families have to face the need of artificial ventilation as soon as respi-

ratory symptoms appear, and most of the patients improve their quality of life with the

use of non-invasive ventilation; patients that are intolerant to this form of ventilation,

or when this help is no more sufficient, can choose the option of invasive ventilation via

tracheostomy, keeping them alive but implying a profound decrease in their quality of life.
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1.2 EEG in ALS

Electroencephalography (EEG) refers to the recording of the oscillations of brain electric

potentials, and it is acquired through electrodes placed on the scalp with high time

resolution. On the other hand, each scalp electrode records electrical activity at very

large scales, recording electric potentials generated in the underlying tissue from a very

large neural population in the cortical layer. For this reason the spatial resolution is

not optimal but EEG signals can still detect synaptic actions that are related to specific

brain states.

EEG is analysed both in time and frequency domain. Frequency domain and spectral

analysis are of particular interest since the frequency component of EEG, considering

separated frequency bands, is correlated to different brain conditions. Usually frequency

ranges are categorized as [10]:

• delta (1 to 4 Hz), the highest in amplitude and slowest in wave, represents the grey

matter of the brain, it is found in all sleeping stages. It is normal and dominant

rhythm in infants and it is abnormal for adults that are awake.

• theta (4 to 8 Hz), related to subconscious activity, observed in deep relaxation and

meditation. It is normal for children under 13 years and abnormal for adults in

awake state.

• alpha (8 to 13 Hz), found on relaxation state in both sides of the head. It represents

the white matter of the brain.

• beta (13 to 30 Hz), concerned with behaviour and actions, related to sensorial

perceptions. These waves are typically related to conscious states like talking,

problem solving and decision making.

• gamma (higher than 30 Hz), associated with perception and consciousness and

occurring during hyper-alertness and integration of sensory inputs.

EEG is applied both to resting state and task-related studies, due to its correlation with

vigilance and thinking activities. EEG experiments are also suitable for neurological

disorders as Alzheimer, seizure disorders, attention deficit, autism, Parkinson, ALS and

many others due to the correlation of these disorders to brain signals with a specific

frequency. Moreover, the correlation of EEG with brain physiological changes can be

investigated.

In particular, the literature some EEG studies are focusing on ALS disorders, both

for resting state analysis [11] [12] [13] and for task related application as BCI [14] [15].
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Their aim is mainly to compare EEG signal for ALS patients and controls, to find some

features of the signal that can be used as biomarkers for the disease, possibly to improve

diagnosis and to assess treatment efficacy.

Their analysis is made through quantitative electroencephalography (QEEG), and the

state of the art concerning these studies is reported in Section 1.3.1.

Generally, it has been found an overall power decrease for power spectral densities and

an apparent shift of power to low frequencies.

1.2.1 Motivation: why EEG

EEG is particularly elected for resting state analysis because it closely reflects real-time

neural activity with high temporal resolution, being at the same time widely accessible

and portable.

Besides the possibility of extracting time domain and spectral features from EEG, a

multichannel acquisition allows retrieving synchrony and connectivity measures between

brain regions, which are strongly correlated with magnetic resonance imaging (MRI)

features and are demonstrated to have similar discriminating power [16]. The great

advantage of EEG with respect to MRI is in terms of cost and accessibility.

Moreover, quantitative EEG has the potential to capture upper motor system changes

in ALS [17], a determinant aspect in the disease’s diagnosis.

For this reason EEG application to diagnosis or communication through EEG-BCI would

be applicable to patients easily and at their home. EEG-BCI approaches are still unable

to maintain a stable rate of communication with those patients [14], so it would be useful

to understand better the characteristics of this signal and how it modifies during the

progression of the disease, to improve communication performances and consequently

quality of life for these people. In particular EEG-BCIs could possibly focus on different

bands that are more significant or more stable during the progression of the disease,

allowing to keep communicating also for CLIS patients [18].

Furthermore, there are a lot of studies investigating the relation of EEG signal with

different states of consciousness in disorders of consciousness (DOC), vegetative state

and coma[19] [20] [21]. The same features can be applied to ALS patients to help in

understanding better their condition at late-stages of the disease, as they differentiate

from DOC patients. Indeed, for both LIS and CLIS patients consciousness is thought

to be fully preserved, but in LIS patients it can be demonstrated through voluntary

blinking while for CLIS patients the total loss of muscular control prevents from having

an objective assessment of their state of consciousness.
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1.3 State of the art

Currently the literature offers several studies and reviews analysing EEG signals to

investigate ALS disease. In this section different aspects in the state of the art of the

research are reported.

1.3.1 Control vs patients studies and biomarkers

The majority of the studies focus on the comparison between ALS patients and controls,

to use EEG features measured in these subjects as a tool to help in diagnosis and in the

assessment of treatments’ effectiveness.

R. Mai et al. in a qEEG study [12] found a significant difference between ALS group

and controls in relative alpha power in central regions, while the other frequency bands

could not separate the groups, result that is in agreement with the site of the pathologi-

cal changes (primary motor cortex). The separation occurred for the ”mu rhythm”, that

is a frequency component with the same range of classical alpha band but, contrarily, is

not located in the posterior regions and is independent from those oscillations. More-

over, the absence of separation for theta and delta power, which are the ones thought

to be the most reliable electrophysiological correlate of cognitive decline, indicates that

EEG signs characteristics of dementia were not present in their results.

Hohmann et al. documented a shift in alpha peak frequency comparing ALS late-stage

patients and controls [18], and in addition to that they found a significant difference

in the location of alpha peak with respect to other neurodegenerative syndromes as

Alzheimer’s disease and schizophrenia. That aspect can be of help in specifying the

diagnosis.

Jayaram et al. investigated the spectral features of cortical processes after applying

independent component analysis to EEG signals from patients and healthy subjects,

founding a global bandpower enhancement in the high-γ range [14]. Moreover, as in

previously mentioned studies, they found a peak in the lower-α range in the central area

for ALS patients.

Nasseroleslami et al. conducted a complex study that combines EEG characteristics

of ALS and control subjects with MRI [16], to correlate electrophysiological changes to

physiological and functional evidence from brain imaging techniques. In particular, they

considered both spectral power and connectivity measures, finding a decrease in θ-band

power spreading to adjacent frequency bands in ALS patients, together with a general

increase in average connectivity, particularly significant over bilateral motor-regions of

the scalp for θ-band and over parietal and frontal scalp regions for γ-band. The location

of their results is in accordance with the one that is specific for the degeneration of
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ALS disease. Since the syndrome is known to cause a degeneration of white matter, the

expected electrophysiological evidence would be an attenuation of communication and

connectivity across the brain; the increase in connectivity could therefore be interpreted

as a reflection of extra compensatory activity within and outside areas associated with

white matter degeneration [16].

Another useful result from their study is the absence of difference in the EEG indices

between patients treated with Riluozole and those not on Riluozole ALS therapy [16],

implying the possibility to assume that this pharmacological treatment is not affecting

EEG signal and consequently is not interfering with qEEG results.

Duckick et al. in their study [17] documented a widespread spectral power decrease from

δ to β bands, with a parallel increase in amplitude envelope correlation (a connectivity

measure) and decrease in synchrony (through the analysis of imaginary coherence) over

the same frequency ranges, comparing ALS patients with controls. The recognized dis-

criminant measures are correlated with structural degeneration as reported from MRI

results. In particular, they found a strong correlation between imaginary coherence and

the average cortical volume, while the decrease in spectral power can be attributed to

structural degeneration of pyramidal cells.

EEG in disorders of consciousness

Other studies focus on EEG signatures correlated to the state of consciousness of pa-

tients, differentiating patients in a vegetative state (VS) from those in a minimally

conscious state (MCS). The research of biomarkers related to this topic has several im-

plications, from diagnosis to prognosis and evaluation of brain intervention [20].

Many studies are resumed in reviews that found out spectrum power, coherence and

entropy as the most frequently used features in differentiating consciousness levels. In

particular the increase in low band power (δ and θ) and the decrease in mid-high band

power (α) resulted being a common characteristics of patients with DOC, while compar-

ing MCS with VS patients the second ones resulted having increased δ and decreased

α power with respect to the first ones [20]. Additionally, according to the hypothesis

that a brain in a lower consciousness level would present a decrease in brain activity,

EEG complexity measures (both in time domain and in frequency domain) showed a

congruent decrease.

These results are confirmed by the study of Sitt et al. [19], that identifies also a greater

fluctuation over spectral features values across MCS patients, in agreement to the defi-

nition of that state as a fluctuating one. On the other hand, they found a stable state

of increased δ and reduced θ-α power as a solid sign of unconsciousness. Looking at
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complexity metrics, they noticed a increase in spectral entropy in MCS with respect to

VS patients.

An interesting aspect of their study is the evaluation of fluctuations and stability of the

indexes.

Considering ALS syndrome as a disorder of consciousness is incorrect since late-stage

ALS patients, which state is recognized as LIS or CLIS, are still completely conscious,

as by definition these forms are characterized by preserved consciousness with the only

difference that CLIS patients are almost or completely unable to interact with the ex-

ternal environment [11].

Comparing EEG signatures for ALS disease and progression to the ones usually assessing

a state of decreased/lack of consciousness could be additional evidence of the preserved

consciousness in those patients.

1.3.2 BCI: communication

Brain-computer-interfaces (BCIs) allows LIS patients to efficiently communicate through

eye-movement, while for CLIS patients, who completely lost eye-movement as last mus-

cle under volitional control, other sources to use as controllable neural signals are needed.

Kubler et al. in their study [22] investigated whether there is a relationship between

physical impairment and BCI performance, trying to answer to what prevents CLIS pa-

tients from learning BCI-control paradigm. They demonstrated that CLIS patients still

have intact cognitive processing analysing their response to an event-related brain po-

tential test [22], hypothesizing that, differently from other states of physical impairment,

people with longer time period in CLIS may have lost their voluntary cognitive activity,

goal-directed thinking and imagery. Since BCI paradigms require the user to learn how

to regulate the target EEG response by means of online feedback (e.g. auditory, visual),

the failure of BCI with CLIS patients can be attributed to the loss of the perception of

contingency between the required physiological behaviour and its consequences (repre-

sented by some kind of reward in this case).

They concluded leaving an open question about the possibility of transferring the pre

learned BCI-control from LIS to CLIS.

Other peripheral autonomic psycohphysiological measures could be used for communica-

tion, like skin conductance response (SCR), heart rate (HR) and respiration [18]; anyway

this is not possible in advanced ALS patients that are possibly artificially ventilated, may

not have sufficient residual muscle activity to learn and control these physiopathological

mechanisms, and could have had a degeneration of sympathetic nerve fibers too.
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Jaymaran et al., after finding a global increase in γ-power range in ALS and a paral-

lel decrease in lower frequency oscillation [14], suggested that a possible reason for the

decrease in BCI performance was related to the increasing inefficiency of low-frequency

bands for these patients. Indeed, generally BCI paradigms focus on low-frequency ranges

of EEG signals, while the power increase in other oscillations can make them good can-

didates for BCIs usage.

For this reason understanding the electrophysiological implication of neurodegeneration

in the transition from LIS to CLIS could open new possibilities for BCI communication,

exploring new features and exploiting different characteristics of the signal.

1.3.3 Longitudinal studies

Currently in the literature there is a lack of longitudinal studies focusing on the analysis

of the progression of the disease, and a parallel failure in the adoption of the same EEG

biomarkers used to separate patients from controls in the separation of different ALS

phenotypes. Anyway, this aspect is of crucial importance to monitor patients’ state

through the disease development, possibly assessing some changes or improvements re-

lated to pharmaceutical treatments or environmental conditions.

Murguialday et al. investigated the transition from LIS to CLIS from the physiological

point of view [18] demonstrating that eye muscle is the very last muscle group under

volitional control in the transition.

Moreover, an EEG biomarker able to quantify the degree of locked-in state, and thus to

differentiate general LIS from CLIS, would help in monitoring also other neuropathies

with the same implications for late-stage patients [18].

Hohmann et al., after finding evidence of a slowing down of alpha peak frequency in

CLIS patients with respect to controls and LIS patients, suggested that this shift might

arise gradually in the transition from LIS to CLIS [13], and so it could be therefore

investigated in longitudinal studies monitoring the transition.

The same hypothesis is supported comparing two studies, the first investigating abnor-

mal EEG patterns in LIS [11] and the second focused on CLIS patients, specifically

related to ALS disease [23]. The LIS study documented a significant difference between

α and θ in controls and patients, with a slight shift from 9.8 Hz for the individual α

frequency (IAF) peak to 9.4 Hz, in controls and patients respectively, while the second

study found a greater shift to lower frequency ranges in peaks for CLIS patients. This

result in [23] was interpreted as a general EEG slowing, with the hypothesis that this

slowing of neural activity could be progressive during the advancement of the disease.
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Moreover the CLIS study added other considerations on the hypothesis of cognitive im-

pairment for these patients on the base of γ reduction, that is usually associated with

a reduction in cognitive performances, but being those results are not univocal among

studies it is premature to make a conclusion on their base. The progressive loss of mus-

cular activity and volitional control on movements could also be the cause, since usually

high frequency oscillations are affected by muscular activity.

In support of this, Jayaram et al. hypothesized a non linear relationship between γ

power and disease progression [14].

Nasseroleslami et al. examined longitudinal changes in EEG’s spectral content, noticing

significant progressive changes in connectivity measures [16]. The connectivity increase

in their analysis was particularly evident in θ and γ-band coherences.





Chapter 2

Materials and Methods

2.1 Patients and visits

The following longitudinal analysis considers data acquired from three patients, further

referred to as Patient 4, Patient 6 and Patient 11.

Patient 4: Female, 29 years old, CLIS, was diagnosed with juvenile ALS in December

2012. She was completely paralyzed within half a year after diagnosis and has been

artificially ventilated since March 2013, fed through a percutaneous endoscopic gastros-

tomy tube since April 2013, and is in home care. She was able to communicate with

the eye-tracking device from early 2013 to August 2014 but was unable to use the eye-

tracking device after the loss of eye control in August 2014. After August 2014 family

members were able to communicate with her by training her to move her eyes to the

right to answer “yes” and to the left to answer “no” questions until December 2014. In

January 2015 eye control was completely lost and she tried to answer “yes” by twitching

the right corner of her mouth and that too varied considerably and parents lost reliable

communication contact. From 2015 she is using EEG- and fNIRS-based BCI for commu-

nication. In mid-2017 the patient had a collapsed lung that damaged her condition more.

Patient 6: Male, 40 years old, CLIS, was diagnosed with bulbar ALS in 2009. He has

been artificially ventilated and fed through a percutaneous endoscopic gastrostomy tube

since September 2010 and is in home care. He lost speech and capability to move by

2010. After that, he was trained to move his chin for ”yes”. No communication with eye

movements, other muscles, or assistive communication devices was possible since 2012.

15
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Patient 11: Male, 34 years old, CLIS, was diagnosed with not-bulbar ALS in August

2015. He lost speech and capability to walk by the end of 2015. He has been fed through

a percutaneous endoscopic gastrostomy tube and artificially ventilated since July 2016

and is in home care. He started used an eye-tracking-based communication system

(ECTS) from August 2016 to August 2017, when he was not able to fixate his gaze

anymore. After that, the family could find a way to communicate observing patient’s

eye movement until he lost definitively the capability to control his eyes in March 2019.

Tables 2.1 2.2 and 2.3 provide the details related to the acquisition of EEG resting state

recordings for each patient.

EEG recordings were acquired during visits to patients, with a variable duration going

from one to six days. In the Tables the field Visit refers to different visits, reported with

their date in Dates, while Sessions refers to the number of EEG resting state record-

ings that were acquired on different days in the correspondent visit. In the following is

sometimes referred to ”sessions” as ”days”.

EEG resting state recordings for Patient 4 have been extracted from the first 10 minutes

of three EEG sleep recordings, acquired in 2016, 2017 and 2019. Details on recordings

and visits dates are reported in Table 2.1.

EEG resting state recordings for Patient 6 cover the period going from May 2017 to

January 2019, details are reported in Table 2.2.

Available EEG resting state recordings for Patient 11 cover the period going from May

2018 to March 2019, details of the visits and acquisition setup are reported in Table 2.3.

Considering patients’ information related to the onset of symptoms and the evolution of

the disease is important since EEG resting state recordings and their frequency profiles

are not consistent from patient to patient, and taking into account where the data ana-

lyzed are temporally located within the anamnesis of each patient can provide a further

comprehension of the results.

What is going to be analysed is the evolution of EEG resting states through the progres-

sion of the disease, with the objective of investigating the existence of a biomarker that

correlates EEG signal with the neural degeneration that occurs during the advancement

of ALS syndrome.
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Visit number Date Sessions Acquisition channels

1 January 2016 1 CF3,CF4,C3,C4,CP3,CP4

EOGV,EOGH

2 March 2017 1 F1,F2,C1,C2,O1,O2

EOGL,EOGR

3 March 2019 1 Cz,C3,C4,FZ,F3,F4,AF3,AF4

EOGU,EOGD,EOGR,EOGL

Table 2.1: Details of visits for Patient 4. ”Sessions” refers to the number of EEG
resting state recordings for each visit.

Visit number Date Sessions Acquisition channels

1 May 2017 6 FC5,FC6,C5,C6,Cz

EOGU,EOGD,EOGR,EOGL

2 September 2017 5 FC2,FC4,FC1,FC3,Cz

EOGU,EOGD,EOGR,EOGL (session 1)

P7,P4,Cz,PZ,P3,P8

O1,O2,T8,C4,F4 (other sessions)

3 April 2018 3 F3,FC3,F4,FC4,Cz

EOGU,EOGD,EOGR,EOGL

4 May 2018 4 F4,FC4,C2,Cz,C1,FZ,F3,FC3,P4,PZ,P3

EOGU,EOGR,EOGL

5 January 2019 3 AF3,F3,F5,FC3,FC5,C5,C3,T7,CP5,CP3,CP1

C1,Fz,FCz,F4,Cz,FC4,C4,C2,CP2,CP4,CPz

EOGU,EOGR,EOGL

Table 2.2: Details of visits for Patient 6. ”Sessions” refers to the number of EEG
resting state recordings for each visit.

2.2 EEG acquisition

Resting states recordings are acquired from patients while they are lying in bed, with

the instruction of staying relaxed trying not to think anything and refrain from sleeping.

EEG electrodes were attached according to the 10-5 system (setup is shown in Figure

2.1) with reference and ground channels placed respectively to their right mastoid and

to the forehead. EOG electrodes were placed as it is shown in Figure 2.2.

EEG and EOG signals were recorded using V-Amp amplifier and active electrodes (Brain
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Visit number Date Sessions Acquisition channels

1 May 2018 1 F4,FC4,F3,FC3,Cz,C1,C2

EOGU,EOGD,EOGR,EOGL

2 August 2018 1 AF3,AF4,F3,F1,FZ,F2,F4,FC3,FC1,FC2,FC4,Cz

EOGU,EOGD,EOGR,EOGL

3 September 2018 4 AF3,AF4,F3,F1,FZ,F2,F4,FC3,FC1,FC2,FC4,Cz

EOGU,EOGD,EOGR,,EOGL

4 November 2018 3 F3,F1,F2,F4,FC3,FC1,FC2,FC4,Cz,C1,C2,C4

EOGU,EOGD,EOGR,EOGL

5 December 2018 3 F3,F1,F2,F4,FC3,FC1,FC2,FC4,Cz,C1,C2

EOGU,EOGD,EOGR,EOGL

6 January 2019 4 F3,F1,FZ,F2,F4,FC1,FC2,FC4,Cz,C1,C2,C4

EOGU,EOGD,EOGR,EOGL

7 February 2019 2 F3,F4,FC3,FC4,Cz,C1,C2

EOGU,EOGD,EOGR,EOGL

8 March 2019 1 F3,F4,FC3,FC1,FC2,FC4,Cz,C1,C2

EOGU,EOGD,EOGR,EOGL

Table 2.3: Details of visits for Patient 11. ”Sessions” refers to the number of EEG
resting state recordings for each visit.

Products, Germany) with a sampling frequency rate of 500 Hz.

The length of the acquisitions is variable, almost 5 minutes for Patient 6 and 10 minutes

for Patient 11. Patient 4’s recordings have a duration of exactly 10 minutes since they

are manually extracted from the first minutes of sleeping recordings.

The number and position of electrodes varies between visits due to different conditions

and patients’ clinical needs.

2.3 Data preprocessing

All data analysis was performed using Matlab 2018b, [24] and in particular EEG record-

ings were stored and processed with EEGLAB Matlab toolbox [25].

The preprocessing pipeline for EEG signals consisted in:

• Filtering

• Resampling
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Figure 2.1: EEG electrodes’ configuration in 10-5 system.

Figure 2.2: EOG electrodes’ placement. Simbols R, L, U, D indicate positions of
EOG electrodes EOGR, EOGL, EOGU, EOGD respectively.

• Independent component analysis

• Component removal

• Channel(s) interpolation

First of all data were filtered through a windowed sinc passband filter, with bandpass set

to [0.5 45] Hz, through the function pop firws provided by EEGLAB. That function

realizes a symmetric FIR filter with Hamming window type, and the order can be au-

tomatically set by defining the transition band. For this particular application to EEG

data sampled at 500 Hz, specifying a transition band of 1 Hz, the order used was 1650.

After that, the signals were downsampled to 128 Hz using EEGLAB function pop

resample, to save computational cost on the next preprocessing steps.
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Moreover, information about channel localization on the scalp are added to EEGLAB

dataset through the functions pop chanedit and readlocs, taking the information

about electrode localization in the standard 10-5, corresponding to the one adopted

for the acquisition. The file containing channels’ spatial coordinates is provided by

EEGLAB toolbox [26].

2.3.1 Independent Component Analysis

Independent component analysis (ICA) is a powerful mathematical tool for separating

a signal into its independent sources.

EEG multichannel recording allows to obtain a set of highly correlated signals, due to

the distance between the scalp (where electrodes are applied) and the sources of neural

activities, and the different resistivities of tissues that brain’s electric potentials crosses

before they are acquired; moreover EEG signal does not have a high spatial resolution,

and is easily corrupted by artifacts (as muscular activity, eye movements).

The ICA algorithm is able to identify independent sources from EEG signal employing

statistical tools, without using information about the physical location or configuration

of source generators. In its mathematical formulation, the aim of ICA is to find a matrix

W and a vector w so that the elements u = [u1...uN ]T of the linear transform u = Wx+w

of the random vector x = [x1...xN ]T are statistically independent.

Applied to EEG analysis, the rows of the input matrix x are the EEG signals recorded

at different electrodes, the rows of the output data matrix u are the time courses of

activation of the ICA components, and the columns of the inverse matrix W give the

projection strengths of the respective components onto the scalp sensors [27]. The scalp

topographies of the components provide information about the location of the sources.

ICA technique is particularly suited for domains where sources are independent, the

propagation delays are negligible, the sources are analog and with a probability density

function similar to the gradient of a logistic sigmoid (plausible for EEG signals) and the

number of independent signals sources is equal to the number of sensors [28]. These

requirements are satisfied by the characteristics of EEG signals, indeed:

1. EEG dynamics can be modeled as a collection of statistically independent brain

processes

2. Volume conduction in the brain is instantaneous, ensuring no delays in propagation

The assumption regarding the equality between the number of sources and the number

of sensors is more uncertain, since the exact number of independent sources of brain
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activity is unknown; however, with the objective of artifact rejection, it is possible to

consider just the first components as the most independent signals, that can be easily re-

lated to sources that are external with respect to brain activity, which is more correlated.

In this particular application, ICA is used to isolate and remove eye movement’s com-

ponents from EEG channels, since it is admissible to neglect other sources of muscular

activity because of CLIS condition. To this purpose, ICA algorithm is applied on all

EEG and EOG channels.

Removing the eye movement’s components from EEG data is of crucial importance for

the analysis of those patients’ recordings, since they can be characterized by a different

level in the ability to control eye muscles over the progression of the disease. Without

removing this ”noisy” component there is the risk of interpreting a decrease in low-

frequency range power as a signature of the progression, while it could be caused simply

by a decrease in eye movements, that affect the same frequency range.

The application of this preprocessing technique, as was documented in multiple studies

[16], allows ensuring that results are not due to artifact components.

The ICA algorithm is applied using runica function provided by EEGLAB. After that,

the components are selected through the analysis of components’ power spectral densi-

ties, selecting the ones with the highest and most deviating power at low frequencies,

together with the ones corresponding to unexpected high power peaks in high frequen-

cies. Both of these spectral features can be related to slow and fast eye movements.

Selecting components to remove from data is still done manually, but is less demanding

than selecting and rejecting continuous data by eye.

2.3.2 Channels interpolation

It is clear from Tables 2.1 2.2 and 2.3 the EEG electrodes placed on the scalp for resting

state recordings acquisition are different between patients and within different visits to

the same patient.

EEG channels do not have a high spatial resolution and reflect the electrical activity of

a huge and spread population of neurons, and thus doesn’t reveal exactly the activity

corresponding to the brain region where the electrode is located. In addition to that,

volume conduction effects are predominant. Anyway, to compare different patients is

necessary to use a common channel to have a more systematic analysis. Since the elec-

trode Cz is present in all recordings for patients 6 and 11 it was chosen for spectral

analysis. For patient 4 Cz electrode is missing in the first two visits (see Table 2.1) and

so it was obtained through the interpolation of neighbor channels.
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Channel interpolation was performed through eeg interp function of EEGLAB toolbox

[25], that recalls Matlab interp function. This tool exploits the spread nature of EEG

and the known standard electrode location to obtain the activity of a channel when is

missing or badly recorded. Channel interpolation needs a high density of electrodes over

the scalp, but in this specific case Cz interpolation is admitted since the signals from

neighbors channels are acquired.

In Appendix A a comparison between real Cz activity and the one reconstructed by

interpolation is shown for one record as an example.

For Patient 11, since he is the one with the more stable set of electrodes within visits, a

fixed set of channels was obtained by interpolation. The final set of channels obtained

for all recordings is:

channels = [F2, F4, FC2, FC4, C4, C2, Cz, C1, FC1, F3, F1, F z]

which is equal to the available channels for visit 6 (see Table 2.3).

2.3.3 Visit wise data management

Since the aim of this longitudinal-single patient analysis is to observe the evolution of

EEG characteristics through time, the objective is to compare data visit wise, referring

to the visits mentioned in Table 2.3. As reported in the column sessions of the same

table, the number of EEG resting state recordings acquired in different visits is not the

same for all the visits. To consider and measure all the visits equally it was decided to

combine day wise resting state recordings belonging to the same visit, also to reduce the

influence of outlier data and to improve the overall significance of the features extracted.

Single sessions combination for days of the same visit is done differently for time and

frequency domains.

Visit wise - time domain features are obtained averaging the values of the features ob-

tained from day wise analysis in time domain.

Before frequency domain processing, EEG data is normalized channel by channel across

sessions related to the same visit. The normalization is performed through the zscore

function provided by Matlab in this way:

datanorm = zscore(data, 0, 3)
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where data is the samples × channels × sessions referring to resting states recordings

of the same visit and the third parameter indicates the dimension on which to apply

the normalization, which is the one corresponding to the sessions. The output matrix

datanorm has the same dimensions of data but, for each sample, values were z-scored

across sessions of the same visit (subtracted by mean across trials for each channel and

divided by the standard deviation across sessions for each channel). This procedure

was applied to remove the offset deviation and noise in EEG samples related to setting

conditions at the acquisition time, assuming that EEG recordings are approximatively

homogeneous between days of the same visit.

After that, visit wise features are extracted from visit wise power spectral density (PSD),

obtained by averaging the PSDs computed on correspondent electrodes from resting state

recordings acquired in sessions of the same visit, obtaining a single PSD representative

of frequency domain behavior for each visit. The resulting power spectral densities are

dimensionless due to the normalization applied.

Z scoring EEG data across sessions of the same visit is applied before power spectral

density computation, to reduce the standard deviation of day wise PSDs grouped by

visits, details on the validation of this choice are reported in Section 3.1.3.

2.4 Time domain analysis

Time domain analysis and feature extraction were performed from day wise EEG record-

ings, preprocessed as described in Section 2.3.

The features ectracted from EEG signal in time domain are two complexity metrics,

since it is known from the literature [29] that brain complexity is able to distinguish

healthy subjects from patients in many neuropathies and disorders of consciousness [19].

2.4.1 Features

• Kolmogorov complexity index

• Permutation entropy

These two features are described in the successive paragraphs.

Kolmogorov complexity index

Measuring EEG’s compressibility has been found to be an effective way to assess its

complexity and redundancy, and for this reason has been related to consciousness state
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in many studies [19].

Kolmogorov index gives a measure of the complexity of a given binary string, computed

as the number of bits of the shortest computer program that can generate this string

[30]. The choice of the program language to compress the string is not unique and here

the adopted compression algorithm corresponds to Lempel-Ziv compression technique

[31], where they employ the concept of encoding future segments of the source-output

via maximum-length copying from a dictionary containing the recent past output. The

idea of this compression algorithm is the following: as the input data is being processed,

a dictionary keeps a correspondence between the longest encountered words and a list

of code values. The words are replaced by their corresponding codes and so the input

file is compressed. Therefore, the efficiency of the algorithm increases as the number of

long, repetitive words in the input data increases.

In this study Kolmogorov complexity is computed through Matlab function kolmogorov

following the algorithm described in [30]. It receives as input a sequence of binary simbols

S = (S1, S2, ..., Sn) obtained from the original EEG sequence X = (X1, X2, ..., Xn) as:

Si = 1 if Xi > A

Si = 0 if Xi < A

where A = (X1 +X2 + ...+Xn)/n. The conversion of data into a digital stream is taken

from [32], where this complexity index is applied to EEG for assessment of mental fatigue.

Permutation entropy

Permutation entropy (PE) is an effective method to compare time series and distinguish

different types of behaviors (e.g. periodic, chaotic or random); for an EEG epoch it’s a

measure of its distance from white noise [33]. One of its advantages is the one of being

robust to low signal to noise ratios and of not requiring strong stationary assumptions.

[29].

Its definition starts from the one of an ordinal pattern of an m-tuple of real numbers

(x1, x2, ..., xm), that describes how its elements relate to one another in terms of position

and value. The parameter m is called the order of the pattern, and for each tuple of

length m exists a set of m! ordinal patterns. Figure 2.3 shows an example of the 6

ordinal patterns for a tuple of length 3 [33].

The EEG signal is transformed into a sequence of symbols before estimating entropy,

considering consecutive sub-vectors of the signal of size m. These sub-vectors can be
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Figure 2.3: Example of an ordinal pattern of length 3

made of either consecutive elements or of elements separated by τ samples (where τ

is an integer). Each sub-vector of length m is associated with a unique symbol, based

solely on the ordering of its m signal amplitudes. After the symbolic transform, the

probability of each symbol is estimated, and PE is computed by applying Shannon’s

classical formula to the probability distribution of the symbols:

PE = − 1

log(m!)

m!∑
i=1

pilog(pi)

where pi is the probability of one of the m! symbols, and log(m!) is a normalization

factor.

In this analysis PE is applied through Matlab function pec from [34] where m is set equal

to 3 and τ equal to 1, as it is one of the most common adoption for these parameters [19]

to avoid aliasing and an excessive computation complexity (resulting from increasing m

and τ).

2.5 Frequency domain analysis

Frequency domain analysis implies the extraction of features from EEG’s power spectral

density (PSD).The power spectrum is computed separately for each electrode of each

EEG record using Matlab’s pwelch function, which returns the power spectral density

estimate of the input signal using Welch’s overlapped segment averaging estimator. Win-

dow length has been set to 5 seconds while the number of overlapping points corresponds

to 2 seconds.

The classic PSD computation through periodogram requires the spectral content of the

signal to be stationary over the time period considered. Because it is not the case for

EEG signal, averaging the periodograms obtained over short segments of the windows,

Welch’s method allows to drastically reduce this variance.

A comparison of different choices for pwelch parameters is shown in Appendix A.1.

Since EEG signal is not stationary is important to choose a window length that is long

enough, otherwise important components of the spectral activity would be neglected.
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After power spectral density is computed separately for each channel, each PSD is nor-

malized by its median to reduce the effect of different offsets between the recordings,

related to subject condition during the specific acquisition (for example a change in

impedance due to skin humidity) or to the equipment [35]. Normalization can lead to

the loss of amplitude information of the signal, but is acceptable considering relative

features.

Power spectral densities are visualized in logarithmic scale to overcome power law scal-

ing, for which power amplitude of frequency bins generally decreases with increasing

frequency [35]. Logarithmic scaling allows to obtain a more interpretable power spec-

trum and simplifies quantitative comparisons of power across frequency bands.

2.5.1 Features

After single-channel PSD (Px ) computation the following features are extracted:

• Absolute band power : integral of the power spectral density (Px ) within each

frequency band, summing for each band the frequency bins corresponding to the

defined bands.

• Relative band power : percentage of the total power of the signal represented by

specified frequency band. It is computed dividing the power in each frequency

band by the total power (sum of Px over all the considered frequencies).

• Spectral range: represents the difference between the maximum and the minimum

values of Px, considering Px over a specific frequency range.

• Spectral entropy : as entropy measures in time domain, spectral entropy (SE) is a

measure of the uncertainty and organization of the signal in the frequency domain

[36]. The SE treats the signal’s normalized power distribution in the frequency

domain (Pxnorm) as a probability distribution, and calculates the Shannon entropy

of it. It is computed as:

SE = − 1

logN

∑
f

Pxnorm[f ]log(Pxnorm[f ])

where f varies over the frequencies in the specified bands, and N is the length of

the considered segment of Px.

• Spectral flatness (Wiener Entropy): is a measure of the width and uniformity of

the power spectrum. It is expressed on a scale of 0-1, where white noise has an
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entropy value of 1. It is computed as:

WE =
exp(1/N

∑
f logPx[f ])

1
N

∑
f logPx[f ]

2.6 Statistical analysis

The objectives of statistical tests for a longitudinal analysis of features’ values are to:

• assess if features are significantly different between different visits

• investigate the possible presence of a trending behavior (monotonously increasing

or decreasing) for features that are significantly changing during time

Having a small number of visits and sessions, statistically assess the presence of a trend

in the change of features’ values is difficult and not completely reliable. Specially for

Patient 4 (see 2.1), for which data are available for just three visits, the analysis can

only be limited to a visual comparison of power spectral densities.

Anyway, since the objective of this work is to propose a pipeline to use for longitudinal

comparison of features, a statistical approach to verify the previous points is tested.

One way analysis of variance

First of all, to check if a significant change over features’ values is revealed by the

processing of EEG signal, one way analysis of variance (ANOVA) is applied to all features

obtained from day wise analysis. Using metrics obtained from day wise analysis allows

to consider also the variability of the considered indexes whithin the same visit.

This test is performed through Matlab function anova1 as anova1(y,group) to test the

equality of group means, specified in group, for the data in vector or matrix y, using the

grouping of days in visits as groups. The aim is to check if features were significantly

different when grouped visit wise from day wise analysis.

ANOVA tests the hypothesis that all group means are equal versus the alternative

hypothesis that at least one group is different from the others. A low p-value resulting

from this test means a rejection of the null hypothesis.

Mann Kendall trend test

Then, Mann Kendall trend test is applied to investigate the existence of trends over time

for feature values. This test can be used for as few as four samples, but with only a few
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data points the test has a high probability of not finding a trend. The more data points

you have the more likely the test is going to find a true trend. The minimum number

of recommended measurements is therefore at least 8 to 10.

For this reason trend analysis is applied to Patient 6 and Patient 11, considering however

the low reliability of its results given by the limited number of samples.

Mann Kendall test [37] is a non-parametric form of monotonic trend regression analysis,

that analyzes the sign of the difference between subsequent values. Each later-measured

value is compared to all previous values, resulting in a total of n(n− 1)/2 possible pairs

where n is the number observations. This test admits missing values and doesn’t require

data to fit any particular distribution.

The test statistic S is computed as:

S =
n−1∑
i=1

n∑
j=i+1

sign(yj − yi)

where yi and yj are subsequent measures [38].

The key assumption is that, uder the null hypotesis (absence of trend), S is approximately

normally distributed with expectation n(n−1)/4 and variance (2n3 + 3n2−5n)/72 [39].

The test statistic τ is computed as:

τ =
S

n(n− 1)/2

assuming values in the range [−1 + 1] and is analogous to the correlation coefficient in

regression analysis, meaning that for τ > 0 the trend is increasing and for τ < 0 the

trend is decreasing.

The null hypotesis is rejected for values of S and τ significantly different from zero.

When a significant tren is found (p-value < 0.05), the rate of change is computed using

the Sen slope estimator as [38]:

β = median(
yj − yi
xj − xi

)

for all i < j, i = 1, 2, ..., n− 1 and j = 2, 3..., n, where xi and xj refers to the time labels

of data. In this way the overall trend slope is computed as the median of all pairs of

data used for S computation.

In this specific case time labels are obtained scaling the intervals between EEG record-

ings. The obtained slope is used to plot features’ values’ regression in Section 3.

Simple linear regression was applied to Patient 4’s features values, since the number

of sessions and visits was too low to perform a statistical test.

The goodness of the regression is assessed through the coefficient of determination, or
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R2. This coefficients corresponds to

R2 = 1− SSresid
SStotal

where SSresid is the sum of the squared residuals of the regression and SStotal is the

sum of the squared differences from the mean of the dependent variable (total sum

of squares). This statistic indicates how closely values you obtain from fitting a model

match the dependent variable the model is intended to predict, and thus gives a measure

of the percentage of variance of the data that the model is able to predict. For Patient

4’s features analysis most significant features were identified as the ones resulting in a

R2 value higher than 0.9. The correspondent regression is shown in Section 3.





Chapter 3

Results

Since the objectives of this work include to propose and validate a possible method to

perform efficiently a single patient-longitudinal data analysis, in the following sections

the results are presented step by step, following the principal stages of the pipeline

executed.

3.1 Preprocessing

3.1.1 Independent Component Analysis and component rejection

After the application of ICA to EEG data, the signal has an equivalent representation

in a number of independent sources that is equal to the number of channels. ICA

is performed on all channels including EOG channels, to capture artifacts due to eye

movements from their activity. In this preprocessing step the objective is to remove eye

movements’ influence from EEG channels as much as possible.

In the following are shown the successive steps towards component rejection:

• visualization of components’ spectrum and localization

• identification of the components mostly affected by eye moments

• reprojection of the signal into EEG channels’ space to check the effect of those

components’ removal

• definitive removal of the components from the EEG record

All these steps are performed through EEGLAB toolbox and, in particular , with the

pop-up tools for components visualization and removal. This toolbox offers the possi-

bility of selecting which is the frequency of highest interest for component analysis, to

31
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visualize in the plot of the components spectrum which components are affecting the

most that particular frequency. Then, once the components to be removed have been

selected, the software gives the option of reprojecting the data into the original chan-

nels space to visualize the effect of component removal on EEG channels. In this way

is possible to check not to remove low frequency components that are related to brain

activity and not to EOG artifacts. This issue is of particular importance in the analysis

of those patients’ EEG since, as shown by many studies mentioned in Section 1.3.1, they

present a general slowing in the EEG frequency activity implying that the components

related to their brain activity and the ones related to eye movements possibly overlap.

Two examples of this procedure applied to two recordings are presented:

1. Patient 6, visit 1 day 2; it shows the rejection of EOG channels.

2. Patient 11, visit 3 day 2; it shows how ICA can be used to remove a component

related to a specific noisy channel through source localization.

In Figures 3.1 and 3.2 ICA processing is shown in its different steps. With the objective

of eye movement’s artifacts rejection from EEG data, the frequency range of interest for

components’ spectral analysis is mainly the one corresponding to δ range, (low frequen-

cies); indeed, EOG artifacts usually manifest their influence in EEG channels through

the spread of low oscillations over the scalp, especially in the frontal electrodes, closer to

eyes position. Artifacts due to eye movements, together with other unspecified sources

of artifacts, can affect also high frequencies. For this reason in the spectral analysis

of independent components is necessary to pay attention to both these features to effi-

ciently apply artifact rejection.

An example showing the effect of EOG’s component removal is shown in Figure 3.1.

In the upper part of Figure 3.1a are displayed the 5 components affecting more the

frequency of interest, with their location on the scalp. It is clear how with a first obser-

vation no components show an anomalous behavior at high frequencies. The components

are shown from the most to the least independent source. Based on a visual analysis

the components elected for the removal could be 1 2 3 7 and 8. Figure 3.1b shows the

original EEG data scroll and Figure 3.1c shows a projection of the remaining compo-

nents after rejection on original data’s space (in red) over the original data (in blue),

useful to check if the removal of the chosen components is admissible. In this particular

example is clear how the rejection of the previously mentioned components is effective

to reduce EOG artifacts. Indeed, from Figure 3.1c, is evident how the channels most

affected by the rejection are EOG channels, while the EEG channels are intact excluding

the attenuation due to artifact rejection.
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Figure 3.2 is another example of ICA for general artifact rejection. As in the previous

example, in 3.2a are shown the five components related to 1 Hz activity reported with

their location on the scalp. In this example component 5 is highly related to a precise

location, correspondent to channel F1 (see Figure 2.1), which is suspicious considering

that EEG activity is highly correlated between neighbors electrodes. This is one of the

methods to spot noisy channels. From Figure 3.2b, showing EEG data scroll, emerges

how channel F1 is actually a noisy channel.

Finally Figure 3.2c, that consists in a preview of the results of component rejection

through the reprojection of the ”new” EEG data (in red) over the original data (in

blue), shows how the rejection of component 5 is effective in the correction of channel

F1, eliminating the noise component from its activity.
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(a) ”component spectra and maps” plot obtained from EEGLAB popup windows.

(b) EEG data before EOG’s components rejection.

(c) EEG data after EOG’s components rejection.

Figure 3.1: Example of ICA processing applied to Patient’s 6 data from visit 1 day
2.
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(a) ”component spectra and maps” plot obtained from EEGLAB
popup windows.

(b) EEG data before component 5 rejection.

(c) EEG data after component 5 rejection.

Figure 3.2: Example of ICA processing applied to Patient’s 11 data from visit 3 day
2.
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3.1.2 Channel Interpolation

In this section the results of channels interpolation are presented. As mentioned in Sec-

tion 2.3.2 for Patients 4 and 11 channel interpolation technique was adopted to obtain

a homogeneous set of EEG channels available for the processing.

For Patient 4 the analysis was performed just on channel Cz, which was obtained by

interpolation for both visit 1 and 2 (see Table 3.5). In this case interpolation of Cz was

admissible because in both sessions the other central electrodes were acquired, repre-

senting reliable neighbors sources for interpolation.

For Patient 6 too, just Cz channel was used for the analysis due to the relevant difference

between channels sets between the visits. In this case Cz was already available for all

the sessions, so interpolation was not carried on.

For Patient 11, since channels set were more uniform within different sessions, it was

decided to interpolate the electrodes missing to each recording to obtain a fixed set of

channels : [ F2 F4 FC2 FC4 Fz F1 F3 FC1 C4 C2 C1 Cz ].

To check the reliability of this method, a comparison between the ”original” Cz chan-

nel and the reconstructed version through interpolation was made, using Patient’s 11

data from visit 7 day 1. The results of the comparison are shown in Figure 3.3, giving

the evidence of how interpolation is able to reproduce the activity of missing channels

exploiting the activity of the neighbors, generating a signal with comparable amplitude

and time course.

Figures 3.4a 3.4b and 3.4c present the final channel set obtained for Patient 11, showing

the results of two, four and six channels interpolation respectively.

Figure 3.3: Comparison between original Cz channel and interpolated Cz channel.
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(a) EEG channel set after channels interpolation - data from Patient 11 Visit
5 day 2.

(b) EEG channel set after channels interpolation - data from Patient 11 Visit
3 day 3.

(c) EEG channel set after channels interpolation - data from Patient 11 Visit
1 day 1.
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3.1.3 Visit wise power spectral densities

Concerning the time domain analysis, the obtainment of a single description for data of

the same visit is done after data processing at the features level, taking the median of

the obtained features values in days of the same session.

For the analysis in frequency domain, after data preprocessing applied singularly to

channels and recordings, the longitudinal analysis implies to group data of different ses-

sions of the same visit into a singular representation, to allow a comparison across visits.

The first step towards this objective is the application of zscore function to EEG data

grouped by visits, that standardize data belonging to the same visit by the subtraction

of the overall mean and division for their standard deviation (applied to correspondent-

single channels across sessions of the same visit).

After that normalization, a representation of the spectral activity of each visit is obtained

taking the mean of single sessions’ power spectral densities, previously normalized for

their respective median over the frequency range of interest ([0.5 45] Hz). To have a

measure of how much this derived PSD is reliable in the representation of the single

sessions, and to check whether those PSDs referring to EEG acquisition of subsequent

days are similar, ANOVA test was applied to day-wise PSDs grouped by visits, having

as null hypothesis the belonging of all the PSDs to the same distribution.

Figures 3.5, 3.6 and 3.7 show day-wise PSDs and visit-wise PSD superposed. In each

subfigure is added the p-value resulting from the ANOVA statistics; a p-value higher

than the threshold (0.05) state for the acceptance of the null hypothesis and so indi-

cates a more reliable representation of day-wise EEG frequency behavior through the

comprehensive visit-wise PSD.
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Figure 3.5: Visits’ PSDs for Patient 4.
Concerning Patient 4’s, since the available number of EEG recordings is equal to the

number of visits, no sessions’ grouping within visits is necessary.

Figure 3.6: Visits’ PSDs for Patient 6, in comparison with single session PSD after
visit normalization.

Patient 6’s results of ANOVA test reveals a positive outcome for the acceptance of
the null hypothesis for visits 1 4 and 5(p-values higher than 0.05), while for visits 2
and 3 day-wise PSDs results having a less uniform spectral behavior across within the

respective visit.
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Figure 3.7: Visits’ PSDs for Patient 11, in comparison with single session PSD after
visit normalization.

Patient 11’s has a better response to the visit grouping of day-wise PSDs, showing
ANOVA’s p-values lower than 0.05 just for the sixth visit. However, it has to be
considered that for three visits a single EEG acquisition is available (see Table 2.3),
while an optimal condition for the analysis would be the one of having a number of

sessions equal for all the visits.
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Figure 3.8: Comparison of EEG time course in Patients 4, 6 and 11. The figure shows
three samples of 5 seconds EEG epochs in Patients 4, 6 and 11 respectively, giving the

evidence of the slowing of alpha rhythm occurring in CLIS patients.

3.2 EEG overview in time domain

A starting point in the evaluation of the results is the observation of EEG time course in

the three patients under analysis. In Figure 3.8 the comparison of samples of 5 seconds

epochs for each patient is presented, to add evidence to the results obtained for power

spectral densities analysis in frequency domain.

It is clear from Figure 3.8 that stable CLIS patients (Patient 4 and Patient 6) present

an EEG time course with slower oscillations and higher amplitude with respect to the

patient analysed during the transition (Patient 11), which EEG is comparable to the one

of a healthy patient. The waveforms in the first two subfigures in Figure 3.8 are different

from ones of the usual low frequency oscillations, showing a regular sinusoidal behavior

resembling alpha activity rather than theta activity. This result is in accordance with

the slowing of the alpha rhythm occurring in CLIS patients found in many studies in

the literature [13] [12].
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3.3 EEG’s power spectral density evolution

In this section an overview of the evolution of EEG’s power spectral densities is pre-

sented.

Data can be qualitative and quantitative compared just within the same patient.

Figure 3.9: PSDs plots over subsequent visits for Patient 4.

Patient 4’s data are the most spread in time, since they cover a period of three years

(from 2016 to 2019, see Table 2.1). However, it has to be considered that just a single

EEG resting state recording is available for each visit, and these recordings are extracted

from the first 10 minutes of EEG sleeping recordings. It is though admissible to consider

these data as ”resting states”, but their acquisition is different from the standard rest-

ing state one, since EEG electrodes used for sleep recordings have a different impedance

with respect to the usual experimental ones. That’s the main reason why comparing

directly data with the ones of other patients, acquired with different settings, would be

imprecise.

From Figure 3.9 is evident how the frequency components of EEG signal change between

recordings belonging to different years, showing in particular a decrease in spectral power

in the range [12 22] Hz (β frequency band) and an opposite increase for frequencies higher

than 22 Hz(γ frequency band).

The quantitative analysis through the extraction of features in time and frequency do-

main is discussed in Section 3.4.1.
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Figure 3.10: PSDs plots over subsequent visits for Patient 6.

Patient 6’s PSD evolution across the visits is shown in Figure 3.10.

For this patient the analysis has been performed on data covering a period of almost 2

years (20 months), and their EEG’s frequency content exhibit a lower variability with

respect to the one of Patient 4. From a qualitative analysis it is clear how the frequency

peaks in PSDs are almost stable with respect to their frequency localization, and also

spectral power’s amplitude doesn’t show evident variations in subsequent visits. These

observations, together with Patient 6’s condition (CLIS, see 2.1), lead us to assume that

there will be no significant difference from the quantitative analysis on features extracted.
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Figure 3.11: PSDs plots over subsequent visits for Patient 11.

Patient 11’s PSD evolution is displayed in Figure 3.11.

EEG longitudinal analysis for this patient is of particular interest since the patient is

supposed to have a major transition from LIS to CLIS during the year period in which

data was acquired.

A qualitative analysis of EEG through the overview of PSD evolution is difficult in this

case, since from Figure 3.11 can be just hypothesized that EEG’s spectral content is

significantly changing across visits. The results for features’ quantitative and statistical

analysis are reported in Section 3.4.3.

In agreement with what can be noticed from the observation of EEG’s time course in

Section 3.2, both Patients 4 and 6 exhibit frequency peaks in δ − θ range instead of the

normal peak in α band that can be found in the PSD of a healthy subject. On the other

hand Patient 11’s, which EEG shown in Figure 3.8 is similar to the one usually found

in controls, present a clear peak in α frequency band in all the observations.
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3.4 Features and statistics

Data processing and statistical analysis have been performed to each patient’s data as

described in Section 2.4, 2.5 and 2.6.

The following sections present the results obtained and an explanation on how statistic

analysis was performed considering the data available for each patient.

3.4.1 Patient 4

For Patient 4 features have been extracted separately for each EEG recording resembling

a visit. The analysis has been performed on channel Cz.

Statistical analysis through one way ANOVA test and Mann Kendall test cannot be

applied to this patient’s data since the number of observations to consider is too low.

Anyway, there are visible changes in the power spectral densities within different visits

(see Figure 3.9), even though is difficult to quantify them in a reliable way.

The major changes visible comparing visit 2 and visit 3 in Figure 3.9 are probably due

to the collapsed lung occurred in the patient in mid-2017, after visit 2. The oxygen

shortage happened at the brain level is most probably the cause of the further slowing

in the EEG, visible through the shift of the spectral power towards slower frequencies

in visit 3’s PSD.

Since the changes are clearly relevant it has been decided to apply a linear regression

to features’ values obtained after data processing, to select those features showing the

highest consistency with respect to a linear regression through the three observations

(R2 > 0.9). The purpose of this analysis was just to select in an objective way what

emerges from a qualitative visual analysis of power spectral densities.

Referring to Figures 3.12 3.13 3.14 3.15 and 3.16, after quantitative feature analysis the

results can be resumed for each frequency band as:

• δ: decrease in spectral range and increase in flatness;

• θ: increase in spectral range and decrease in flatness;

• α: decrease in relative power, spectral entropy and flatness;

• β: increase in absolute power and decrease in spectral range;

• γ: increase in absolute power.
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(a) (b)

Figure 3.12: Features selected - delta band - Patient 4

(a) (b)

Figure 3.13: Features selected - theta band - Patient 4

Figure 3.14: Features selected - gamma band - Patient 4
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(a) (b)

(c)

Figure 3.15: Features selected - alpha band - Patient 4

(a) (b)

Figure 3.16: Features selected - beta band - Patient 4
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3.4.2 Patient 6

Features analysis on Patient 6’s data has been performed on channel Cz.

No features show a significant evolution over the period corresponding to the EEG ac-

quisition, having all of them a p-value higher than 0.05 resulting from Mann Kendall

trend test. One way ANOVA test confirms there is not even a statistically significant

difference between features’ values of different visits, excluding just two features. The

results are shown in the following Table 3.1.

This result means that the variations registered on features values are not caused by

a change within visits, and possibly the oscillations on values have the same variance

within days.

ANOVA results are further clarified in Appendix A.2 Figure A.2, through the boxplots

presenting the distribution of features values within days of the same visit.

Feature band p-value adjusted p-value accepted

Permutation entropy 0.8882 0.9135 false

Kolmogorov index 0.9802 0.9802 false

Absolute power delta 0.4438 0.7099 false

theta 0.8049 0.8522 false

alpha 0.4754 0.7441 false

low beta 0.3830 0.6566 false

high beta 0.6036 0.8 false

gamma 0.2067 0.4962 false

Relative power delta 0.0034 0.0155 false

theta 0.0012 0.0106 false

alpha 0.0004 0.0094 true

low beta 0.2649 0.5298 false

high beta 0.7792 0.85 false

gamma 0.7239 0.8406 false

Spectral entropy delta 0.0013 0.0106 false
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theta 0.0015 0.0106 false

alpha 0.0005 0.0094 true

low beta 0.2632 0.5298 false

high beta 0.7727 0.85 false

gamma 0.7222 0.8406 false

Flatness delta 0.0768 0.2303 false

theta 0.0022 0.0132 false

alpha 0.0749 0.2303 false

low beta 0.3754 0.6566 false

high beta 0.6061 0.8 false

gamma 0.0713 0.2303 false

Range delta 0.0326 0.1302 false

theta 0.2232 0.5021 false

alpha 0.0749 0.2303 false

low beta 0.5088 0.7633 false

high beta 0.6567 0.8152 false

gamma 0.0028 0.0146 false

Total power 0.6222 0.8 false

Spectral entropy broadband 0.1422 0.3656 false

Flatness broadband 0.5897 0.8 false

Table 3.1: ANOVA results for Patient 6’s features on Channel Cz. Both p-values
and FDR corrected p-values are reported, and the last column indicates whether the
correspondent feature had a positive outcome concerning changing significantly over

the observation period (having a p-value lower than 0.01).
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3.4.3 Patient 11

Applying the proposed pipeline to Patient 11’s data, some features resulted in having a

trending behavior over the period of observation.

While for the previous patients the analysis has been performed just on Cz channel,

for Patient 11 EEG channels were interpolated to obtain a fixed set of twelve electrodes

common to all visits (see Section 2.3.2). Having more channels available the analysis was

performed channel wise, both to see if the eventually extracted features were consistent

to all channels locations and to investigate if EEG signal presents different characteristics

in different scalp regions.

In the following are reported:

• the results obtained from ANOVA test on features values related channel Cz,

comparable to the results obtained for Patient 6 (Table 3.2)

• the results obtained from Mann Kendall trend test, reporting only the features cor-

respondent to a p-value lower than 0.05 (chosen as significance threshold) together

with the respective p-value obtained from the ANOVA test (Table 3.3)

• the plots of the features resulted in having a monotonous trending behavior across

visits according to Mann-Kendall statistics (Figures 3.17 3.18 3.19 and 3.19)

ANOVA results are further clarified in Appendix A.2 Figure A.3, through the boxplots

presenting the distribution of features values within days of the same visit.
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Feature band p-value adjusted p-value accepted

Permutation entropy 0.1045 0.1107 false

Kolmogorov index 0.0591 0.0545 false

Absolute power delta 6.15e-09 2.215e-07 true

theta 1.148e-07 2.066e-06 true

alpha 0.0186 0.0223 false

low beta 8.187e-06 4.272e-05 true

high beta 0.0009 0.0016 true

gamma 5.208e-05 0.0001 true

Relative power delta 0.0001 0.0004 true

theta 0.6484 0.6669 false

alpha 0.0029 0.0043 true

low beta 0.0002 0.0004 true

high beta 9.378e-06 4.272e-05 true

gamma 5.061e-06 4.272e-05 true

Spectral entropy delta 0.0002 0.0005 true

theta 0.7075 0.7075 false

alpha 0.0009 0.0016 true

low beta 0.0001 0.0004 true

high beta 9.493e-06 4.272e-05 true

gamma 6.481e-06 4.272e-05 true

Flatness delta 0.0166 0.0207 false

theta 0.0007 0.0014 true

alpha 0.0036 0.0052 true

low beta 0.0001 0.0004 true
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high beta 0.0007 0.0014 true

gamma 0.0006 0.0014 true

Range delta 0.0317 0.0369 false

theta 0.0394 0.0443 false

alpha 0.0051 0.0070 true

low beta 0.0056 0.0074 true

high beta 0.0058 0.0075 true

gamma 0.0011 0.0017 true

Total power 5.1556e-07 6.1867e-06 true

Spectral entropy broadband 0.0006 0.0013 true

Flatness broadband 5.1390e-05 0.0001 true

Table 3.2: ANOVA results for Patient 11’s features on Channel Cz. Both p-value
and FDR corrected p-values are reported, and the last column indicates whether the
correspondent feature resulted in changing significantly over the observation period

(p-value lower than 0.01).
Here are reported the results for channel Cz, to be consistent with the analysis made
for Patient 6. ANOVA test was applied to features computed on all the EEG channels

used in the processing for Patient 11.
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Channel Feature Band ANOVA Mann Kendall sign accepted

p-value p-value

Cz relative power theta 0.66689 0.0094 ↓ false

Cz spectral entropy theta 0.7075 0.0187 ↓ false

Cz spectral range low beta 0.0074 0.0354 ↓ true

C1 relative power low beta 0.0003 0.0187 ↑ true

C1 spectral entropy low beta 0.0002 0.0354 ↑ true

F2 flatness gamma 0.0005 0.0187 ↓ true

F3 relative power theta 0.0001 0.0354 ↑ true

F3 relative power low beta 0.0001 0.0354 ↑ true

F3 spectral entropy theta 7.80e-05 0.0354 ↑ true

F3 spectral entropy low beta 7.05e-05 0.0187 ↑ true

Table 3.3: Results obtained after Mann Kendal trend test. The reported features
are the ones having a p-value < 0.05 (adopted threshold to define significative fea-
tures). For each selected feature, the p-value (FDR corrected) obtained from ANOVA
test are reported too, to discard Mann Kendall trend test’s false positives. Indeed,
ANOVA should robustly reveal which features are significantly different between the

visits, analysing their variance within the multiple sessions of the same visit.
It has to be considered the relative significance of the statistical results for this particular

study due to the reduced number of observations.

Table 3.2 gives the evidence of how almost all features are significantly changing within

visits, keeping a lower variability within days. This aspect is important since features

values can change within days without being related to an overall change within visits,

that is what resulted in Patient 6.

Figures 3.17 3.18 3.19 and 3.19 show the regression plots obtained from Mann Kendall

slope (see 2.6) in the trend analysis of each feature in separated channels (on the left

in each subfigure). Mann Kendall trend test is performed on features values extracted

from the processing of visit wise PSDs (mean of day wise PSDs). In parallel to that,

each feature is evaluated from day wise PSDs, and their variability within days of the

same visit is shown in a boxplot (on the right in each subfigure).

The aim to that is the comparison of features values obtained from visit-wise PSDs and

the ones obtained by the processing of day-wise PSDs to:

• validate the adoption of visit-wise PSD for extracting features, with respect to

day-wise features values and their variance
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• a better understanding of the importance of validation of Mann Kendall statistic

results through ANOVA p-value

Indeed, from Table 3.3 we can see that two of the features selected by Mann Kendall test

for trend analysis are not accepted; ANOVA test, analysing the variability of features

values within days of the same visit, rejected them not recognizing a significative change

within subsequent visits in day-wise features values grouped by visits.

The reason to that is clearly visible in Figure 3.17 (A) and (B), related to those ”re-

jected” features; their values have a high variance within days of the same visit that

is comparable to the overall variance within all the visits. Hence, even if their average

value is possibly exhibiting a trending behavior across the observation period, they are

both not reliably associable to their median value and they are not showing a significa-

tive change taking into account their variability.

On the other hand, the other features mentioned in Table 3.3 and represented in the

successive figures, show a lower variance within sessions of the same visit (from the box-

plots) and a statistically significant trending behavior, reflected in the regression plots.

Another observation that can be made from the figures reported below is the capacity

of the regression through Mann Kendall’s slope to avoid the influence of outliers. It is

clear that, also looking at the PSDs evolution reported in Figure 3.7, visit 2 can prob-

ably be considered as an outlier from all the representations made, since it has higher

spectral power and features values completely different from the ones obtained for the

other visits. It is noticeable how the slope used for the regression, being the median

of the slopes computed on all pairs of subsequent values, is not taking it into account;

a common regression applied on features values would otherwise have shifted the slope

towards visit 2’s values, since their absolute value is most of the times higher than the

ones related to the other visits.

Grouping the obtained results for frequency bands they can be resumed as:

• θ: increase relative power and spectral entropy (F3);

• β: decrease in spectral range in registered in Cz, while in C1 and F3 increase in

relative power and spectral entropy;

• γ: increase in flatness (F2).
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(a) (b)

(c)

Figure 3.17: Features selected - channel Cz - Patient 11

(a) (b)

Figure 3.18: Features selected - channel C1 - Patient 11
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Figure 3.19: Features selected - channel F2 - Patient 11

(a) (b)

(c) (d)

Figure 3.19: Features selected - channel F3 - Patient 11



Chapter 4

Discussion

The discussion will focus on the evidence obtained from the analysis, related to the first

questions mentioned in Chapter 1:

is EEG changing in its features during the evolution of the disease? If yes, is it evolving

in the same features that differentiate patients from healthy subjects?

All the stages of the pipeline used are going to be discussed in the following sections,

focusing on their usefulness and their limits and reliability.

4.1 Data preprocessing

EEG preprocessing is the first and most delicate step to face in data analysis. It is of

crucial importance because the interpretation of EEG is not unique and neither exist a

standard procedure to approach raw data. Most of the time the way of preprocessing

data is application specific, but it has to be paid attention not to manipulate data to

the specific purpose of the analysis, since in this way the analysis would be balanced

and not reliable.

In this study, excluding the basic steps of filtering and downsampling, three preprocess-

ing stages need to be discussed: indipendent components removal, channel interpolation

and power spectral density normalization.

The application of independent component analysis to EEG signals is widely used in the

literature and, as explained in Section 2.3.1, EEG signal is particularly suitable to this

decomposition into independent sources.

Rejecting artifacts by manual removal of EEG epochs can be problematic since it needs
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the capacity to visually evaluate the quality and ”cleanness” of EEG signal, which usually

requires extensive experience in EEG evaluation and interpretation. Furthermore, ALS

patients’ brain signals, as happens with other neurological disorders, are different from

the ones that can be observed in healthy patients, so evaluating them in the same way

is probably imprecise.

In this study the choice of this procedure to reject artifacts was adopted to avoid making

subjective evaluations on EEG epochs, with the overall objective of approaching data

analysis in a blind and unbalanced way.

The main heuristics used in component removal for EEG artifacts rejection are [27]:

• Eye movements should project mainly to frontal sites with a lowpass time course.

• Eye blinks should project to frontal sites and have large punctate activations.

• Temporal muscle activity should project to temporal sites with a spectral peak

above 20 Hz.

With these premises components removal can be used as an artifact rejection tool with-

out an excessive subjective intervention on data manipulation. It has been shown in

Section 3.1.1 to be effective for removing both eyes and general noise artifacts.

Channel interpolation is another tool applied to EEG data analysis, usually used to

reconstruct one or more channels have to be rejected for their noise content, overcoming

their absence.

In this study channel interpolation was applied in a different context; here the available

channel sets were not always the same between different recordings, and to perform a

uniform longitudinal comparison it was needed to operate always with the same elec-

trode. Channel Cz was the one present in almost all the recordings, and when it was not

available the neighbor electrodes were acquired. For this reason, it has been considered

admissible to derive it through interpolation when it was missing.

In addition to that, being Cz channel located on the central region of the scalp, it is

expected to reflect mainly the activity of the sensorimotor area (the correspondent un-

derlying region), which is actually the one thought to be highly involved by the neuronal

degeneration occurring with ALS disease. That is another reason why the principal anal-

ysis was carried on this channel.

For Patient 11 a larger set of electrodes was interpolated, and the results of this interpo-

lation have been shown in Section 3.1.2. In this case it has to be paid more attention on

data processing, considering that the signals are obtained from mathematical operations

on the neighbor channels, and therefore completely dependent on them.
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EEG signals, as mentioned in Section 1.2, has not a high spatial resolution and so single

channels’ activity cannot be considered independent within electrodes; anyway there ex-

ist synchronization measures that analyse delay and correlation between channels relying

on their phase difference, and this aspect cannot be recreated through interpolation.

That is the reason why the features analysed here are single channel features in time and

frequency domains, and the usage of interpolated channels to extract them is admissible.

The need of normalizing EEG signals comes from the inner difference that can be ob-

served in single patient recordings acquired in different circumstances, since they are

affected from condition-specific offsets that are possibly due to patient state or acquisi-

tion equipment. Applying normalization implies the deletion of the absolute amplitude

features of the signals, so after EEG normalization only relative amplitudes in their

spatial configuration are retained.

Also in this case the choice of the normalization is highly application specific. In this

study normalization was applied first zscoring signal in time domain across sessions of

the same visit, and secondly to single-channel power spectral densities dividing them

by their median. The choice of using the median as normalization factor for PSDs was

made since it was observed that its adoption allowed to compare PSDs within days and

visits; furthermore, the usage of median instead of mean is genrally more robust against

outliers.

4.2 Motivation for features

In this study the EEG features that have been analyzed are taken from both the state of

the art of the comparison between ALS patients and controls and the one of the analysis

and detection of disorders of consciousness.

The goal of this choice of features is to investigate whether the markers able to discrim-

inate patient groups from healthy subjects increase their discrimination power with the

progression of the disease. Furthermore, analysing the DOC’s EEG biomarkers is a way

to assess whether ALS patients go progressively into a state similar to one of limited

consciousness in the transition from LIS to CLIS. Comparing the EEG features that

usually mark unconsciousness states is possible to confirm that those patients’ brain

activity is more similar to the one that is usually registered for healthy patients.

In the literature this topic is addressed in several reviews, and Figure 4.1 shows the

primary features in EEG resting state analysis for DOC.
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The features investigated in this study covers approximatively all the single-channel fea-

tures mentioned there (see 2.4 and 2.5). Other features were evaluated but not reported

since they have been found to be not significant or redundant with the ones already

selected for the analysis.

Figure 4.1: Primary EEG resting state features in DOC [20].

Common characteristics found in DOC patients are [20] [19]:

• increase of low spectral power (δ and θ)

• decrease of high spectral power (α)

• disconnection between frontal and other regions (decreased coherence)

• low complexity both in time domain (Kolmogorov complexity) and in frequency

domain (spectral and permutation entropy)

Much attention is paied to α frequency band since it is usually the dominant frequency

band in healthy patients, directly connected to attention and vigilance.

Referring to the state of the art in EEG resting state analysis for ALS syndrome, the

primary features are the same as the ones reported in Figure 4.1, but with different

results. EEG features resulted as the most effective in the separation of patients and

controls are mainly:

• decrease in spectral power in medium-high frequency bands (α,β,γ)

• shift of α peak towards lower frequencies
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• increased co-modulation parallel to a decreased synchrony

In Figure 4.2 are shown the results obtained by Maruyama et al. in their study [23] com-

paring EEG resting state recordings of CLIS patients vs controls. Notably, in this study

performed in collaboration with the Institute of Medical Psychology and Behavioral

Neurobiology of the University of Tübingen, one of the patients corresponds to Patient

6 and the acquisition protocol and analysis are comparable with the ones adopted for

this work. PSD’s absolute value is not comparable with the analysis performed here due

to the normalization applied.

From subfigure C of Figure 4.2 is clear how they found a separation between patients

and controls, occurring at several frequency bands.

Figure 4.2: PSD comparison between CLIS patients’ group and healthy participants,
taken from [23]. The frequency bands reported in the third subfigure refers to: delta
(1 to 3 Hz), theta (4 to 7 Hz), low alpha (8 to 10 Hz), high alpha (11 to 13 Hz), low

beta (14 to 20 Hz), high beta (21 to 30 Hz), gamma (31 to 40 Hz)

Are these features able to trace the degeneration occurring in ALS syndrome in the same

way?

Drawing this conclusion from the results obtained in this study, reported in Section 3.4

for the three patients analysed, is not entirely possible.

It has not been found consistency between the features selected for Patient 4, as the ones

changing over the period of observation, and the ones found for Patient 11 (Patient 6 is

not considered here since the features extracted from his dataset resulted not changing
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within the observed period).

For Patient 4 it has been encountered a general power decrease in alpha and low beta

frequency bands with a parallel increase in gamma band, while for lower frequencies as

the ones in delta and theta band it has been stated an increase and a decrease in flatness

respectively.

For Patient 11 the outcoming features are different between the observed channels and

can be generalized as an increase of relative power in theta (F3) and beta bands (C1

and F3), while an increase in flatness has been found in gamma band (F2).

In this case of multichannel analysis it has to be considered that some of the electrodes

positions have been interpolated for some sessions and that frontal channels, even though

eye movements’ artifacts should have been removed through independent component re-

moval, can possibly be affected by some residual artifacts.

Commonly to all the three patients, none of the complexity indexes used as features in

time domain emerged from this feature analysis.

These results bring to different observations and reflections.

First of all, as we can see from Figure 4.2, where CLIS patients group and healthy partic-

ipants group are compared, PSDs vary widely within groups where subjects should have

similar features. Due to that, comparing single-patients results with the ones obtained

in group studies can easily take to misleading conclusions if we don’t consider this issue.

Averaging PSDs within groups is the usual practice for this kind of studies, but that

aspect make single-patient PSDs not directly comparable with the ones obtained by a

group average.

This inter-group diversity is particularly noticeable also in the control group, and this

should prevent us to compare patients’ PSDs to those related to healthy subjects.

Observing this, is difficult to expect that the features resulting from group analysis can

be expressed in the same way at a single patient level.

What is more interesting after this evaluation is thus to focus on each patient singularly,

considering the results on the basis of their pathophysiological condition characterizing

the time range were EEG data has been acquired.

Table 4.1 gives an overview of each patient’s general clinical information, reporting the

ALS form diagnosed with the respective date, to be related to the time range of the

available data.

Referring to Patient 4, she was diagnosed with juvenile ALS between 2012 and 2013

and, relying on the available clinical information, she had control on her eye movement
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Patient Diagnosis Diagnosis date Transition date Data’s time range

Patient 4 juvenile 2012 2015 2016-2017-2019

Patient 6 bulbar 2009 2012 2017-2019

Patient 11 non bulbar 2015 2019 2018-2019

Table 4.1: The table reports the diagnosis made for each patient, with the respective
date (year), the time when the LIS to CLIS transition occurred and the time range

relative to the datasets analysed.

until January 2015. Hence, we can assume that the transition to CLIS occurred 2 years

after the arise of the first symptoms. The available dataset correspond to 2016, 2017

and 2019, so they cannot be related to the transition from LIS to CLIS but cover a wide

period when that patient is in a completely locked-in state.

From this analysis, power spectral density computed from EEG recordings in these three

different years seems to go through significant changes, but these cannot be generalised

as a characterization of the neurodegeneration occurring during CLIS state, since they

are obtained from single EEG recordings (one for each year). The only conclusion that

can be hypothesised is that during the CLIS state, with an observation window of sev-

eral years, some changes in EEG are possibly encountered, especially in case of severe

complications of patient’s health condition as happened in this case with a collapsed

lung.

In this specific case what seems more interesting is the increase in gamma band power,

that is generally found reduced in patients vs controls studies, but other researches [40]

found out a possible non linear relationship between high frequencies power and the

neurodegeneration occurring in ALS.

Another aspect that has to be discussed is the particular clinical phenotype related to

Patient 4, that is juvenile ALS. The symptoms started when the patient was 23 years

old, placing her clearly in this specific form of the syndrome. Juvenile ALS is different

from the other forms in which this disease can manifest, and is thought to be one with

longest life expectation and slower symptoms degeneration.

That aspect, together with the information about the current utilization of BCI for

communication, could reinforce the hypothesis of a CLIS state that is still evolving with

totally preserved consciousness.

Patient 6 is in a condition totally different from the one associable to Patient 4.

Patient 6 was diagnosed with bulbar ALS in 2009 (when he was 30 years old), and he can

be considered in CLIS since 2012. Also in this case the observation period (2017-2019)

is completely included in the CLIS stage of the disease, with a time gap of around five

years from the presumed occurrence of the transition.



Discussion 64

Knowing this information, what can be observed is that data refers to a period in time

when the patient is completely stable in its CLIS condition, while for Patient 4 the first

EEG recording was acquired just one year after the definitive transition. This point,

together with the shorter observation period (less than two years for Patient 6 vs 3

years for Patient 4), is probably connected and coherent with the absence of significant

changes in EEG time and frequency contents.

Furthermore, bulbar ALS is one of the most aggressive phenotypes and it is usually

associated with a faster degeneration.

Examining all these evidence together, the final hypothesis that can be drawn is that,

in case of faster degeneration, the brain activity represented by EEG recordings ends up

into a stable state after CLIS stage is reached. Alternatively, it can be at least assumed

that period of observation is too short to find some significant changes in EEG.

Patient 11’s clinical situation is again different from the two conditions previously ex-

amined. He was diagnosed with non-bulbar ALS in 2015 and he started using BCI for

communication using his eyes just one year after, until 2019 when he completely lost

his capability to fixate his gaze going into CLIS. In this case, the transition from LIS

to CLIS was slower and data analysed in this study are acquired within a period of one

year, coincident with the transition (last visit’s date is March 2019).

Differently from the case of Patient 6, even if the duration of the observation period was

similar to the one of Patient 11’s data, the analysis performed found out a significant

difference in almost all the features examined. Moreover, it has been identified the pres-

ence of some EEG features changing monotonously within the transition period.

As previously marked in Chapters 2 and 3, the reliability of the findings on the features

is not completely trustable for many reasons, from the different numbers of visits and

the different numbers of sessions to which each visit refers to, to the actual significance

of the statistical tests on a low number of observations. However, even if any conclu-

sion can be drawn from the results on features values, it can be assumed that in this

case EEG is changing in some of the analyzed features and those changes are possibly

reflecting the neural degeneration happening during the transition period.

Patient 11’s particular course of disease and his rapid adoption of BCI for communica-

tion, can exemplify and prove what is theorized by Kubler and Birbaumer in their study

about the extinction of goal-directed thinking [22]. There they hypothesize that a brain

that is trained to BCI usage before the transition to a CLIS can preserve its capability

to associate his behaviour with the external feedback received, and thus keep the possi-

bility to use BCI even in a completely locked-in state. In addition, for this patient it can

be observed a slower degeneration in terms of time delay between the onset date and

the transition to CLIS, and even if his recent definitive transition to CLIS prevent us to
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conclude it, is possible that keeping the brain ”trained” and used to imagery thinking

with reward has contributed to a delay in this late stage presentation.

Putting together all the findings it is hypothesized that:

• the period including the transition from LIS to CLIS is characterized by a modifi-

cation in the EEG signal, visible from the changes in its features. Those changes

are possibly connected to specific features’ monotonous evolution.

• CLIS condition can be considered stable regarding changes in EEG signal after

the transition. The period that occurs between the transition and the reaching of

a stable condition is probably related to the diagnosis and to the velocity of the

degeneration.

4.3 Pipeline validation

In this work a great importance has been given to the construction of a solid pipeline

to preprocess and process single patients data, with the purpose of performing a longi-

tudinal analysis on the acquired EEG resting state recordings.

The importance of this kind of studies is given by their wide field of application in

medicine, since they can represent support to medical decisions and help in diagnosis

and in monitoring diseases within their evolution.

This work specifically focuses on ALS syndrome, but the proposed pipeline could be

used to study the implications to brain signals due to other neuropathies going through

a neuro-degenerative process as well, as Alzheimer or Parkinson’s diseases.

Indeed, excluding the choice of features that is partially referring to ALS studies’ state

of the art, the preprocessing and processing stages where designed in an unbalanced way

that is not specifically suited to this syndrome.

Moreover, having few observations to analyse, the biggest effort was made with the ob-

jective of operating in a blind way to the processing of data, since drawing a precise

conclusion from the results would have been premature.

For this reason, even if applying statistical tests to a low number of observations possibly

brings to misleading results, it was tried to build a statistical procedure to assess the

significance of the obtained results, through ANOVA and Mann Kendall trend test in

parallel.

Their aim is to answer the questions: are the changes registered in EEG features related
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to different observations isignificant? If yes, does these changes occur as monotonous

trends (are increasing or decreasing in a monotonous way)?

It is possible to answer to these questions with ANOVA and Mann Kendall test respec-

tively, and the extent to which their answer is significant can be assessed through their

respective p-values, giving a measure of how far is the specific condition under exami-

nation from a random occurrence.

Another aspect that justifies the parallel use of two statistical tests is the possibility to

use them to check the coherence and reliability of their results; as an example, a positive

result related to a trending behavior is meaningless without a concomitant positive result

for a significant change in features values through different visits. Even if in this specific

case obtaining coherent results between statistical tests was not to be taken for granted,

the ones reported in Sections 3.4.2 and 3.4.3 show how this procedure can possibly be

applied even to a small set of samples.

All the considerations that rely on statistical results in this study have to be considered

together with the limits of the dataset, but anyway it is assumable that the statistical

pipeline for assessing the results would be reliable in presence of a higher number of

samples.

4.4 Limits and future improvements

In the previous chapters, it has been marked several times that the composition of the

available dataset for the single-patient analysis was limiting the reliability of the results,

considering both the overall number of EEG resting state recordings and the different

numbers of sessions that were unified into visits. An ideal situation would have been to

have an equal number of EEG acquisitions for each visit, with visits equally spaced and

covering a wide period in time. Anyway, dealing with patients, similar conditions are

rarely reproducible due to their real-time needs and the limited possibility of acquiring

a large dataset from the same patient during a wide time span.

The different electrode placement between different recordings is also limiting the re-

liability of the results and the possibilities of computing more complex features, but

even in this case having a large and uniform set of EEG channels among single patient

recordings and within different patients is an ideal condition, reproducible just in large

population experiments where data are acquired exactly to the study purpose. This was

not the case for this work, since the available data were acquired in the previous years

without this specific purpose but concomitantly to other BCI experiments and analysis

on patients.

The condition of these patients itself is already limiting data acquisition, since they are

lying in bed and need frequent interventions of caretakers to fulfill their basic needs.
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Quantitative comparison of features values within patients is impracticable not because

of limits in the dataset, but due to physiological inconsistency of this kind of comparison.

Quantitative evaluations are performed in group studies where a features’ group average

is applied, but EEG is so different within patients that this comparison would have no

meaning at a single patient level.

A possible improvement for this study would be the enlargement of the dataset available

for each patient with further acquisitions, together with the increase of the number of

patients under analysis, acquiring EEG resting states systematically for all of them. The

usage of a uniform protocol for these studies could allow also to compare data registered

from patients in different countries and institutions, enlarging the dataset for the anal-

ysis.

Having the possibility to compare single-patient data evolution with other patients pre-

sumably in a similar clinical condition could possibly reinforce the hypothesis made

here, concerning the correlation of EEG evolution with phenotypes and overall course

of disease.

In addition to that, in the literature many connectivity metrics are found effective in the

analysis of ALS patients’ EEG, resulting in being able to discriminate control groups

from patients [17] [16]. Probably connectivity metrics would be effective in monitoring

the progression of the disease too, and the use of EEG/MEG acquisition systems to-

gether with TMS studies are found to be a promising way of assessing neurodegeneration

in longitudinal studies [41].

The principal motivation for that is that there is clear evidence that neural degeneration

is related to progressive changes in brain networking, and those changes can be iden-

tified in functional terms through altered patterns of brain connectivity and neuronal

transmission.

This kind of analysis needs a high-density electrode placement on the scalp, but these

methods are still more accessible than other imaging techniques as fMRI, with the same

potential of localising precisely sources of information in the brain.

In the future would be interesting to have the possibility to investigate those metrics

longitudinally for ALS patients, acquiring data with a fixed set of electrodes that cover

a wider area on the scalp.
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Conclusion

This research aimed to perform a longitudinal analysis on EEG resting state recordings,

acquired from three ALS patients with different backgrounds and clinical conditions.

This choice was made since it is known that, in particular in the case of neurodegenera-

tive disorders, a great inter-patients difference is met over many aspects. The progression

of the disease occurs with different timings and implications between different patients,

depending on the specific disease phenotype that characterizes them but also on other

subjective factors, as the current health conditions of the patient, the environment in

which he is inserted and its motivation despite the critical and difficult situation.

Assuming that EEG can reflect the degeneration happening in patients’ brains, is thus

reasonable to conclude that an investigation on a single patient or few patients cannot

allow to characterize a general condition or the implications due to the evolution of ALS

disease.

Analysing three patients data allowed to compare EEG evolution over different courses

of ALS syndrome: Patient 4 is a case of juvenile ALS, analysed in three different years

of CLIS; Patient 6 is a case of bulbar ALS, analysed over a period of almost two years

in which he is in CLIS; Patient 11 is a case of non-bulbar ALS, analysed over one year

period when the transition from LIS to CLIS occurred.

The use of EEG for its capability to reflect brain states is well known, but being acquired

externally from the brain is at the same time a good point for its wide applicability and

a drawback for its limited spatial precision. Showing that it is still able to reveal a

change happening at a neural level is useful for many medical applications, since in

many cases using more invasive ways of investigating brain activity is not possible for

patients affected from constrictive diseases.
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The objective has been, first of all, to evaluate if a change in EEG signal related to neu-

ral degeneration can be observed; the answer to this point is positive since the results,

even if data was limited in the number of observations for all the patients, demonstrated

that the degeneration occurring at a neuronal level seems to be expressed through a

significant change in the spectral content of the signal. Assessing which features are

specifically tracking the evolution of the disease is more challenging and to draw reliable

conclusions more EEG samples would be necessary.

The potential of using EEG for analysing the completely locked-in state, as late stage

of ALS disease or other neuropathies, could have important implications for its com-

prehension and to assess its inner difference from those classes of states characterized

by a reduced consciousness. The transition occurring between LIS and CLIS is another

interesting aspect to investigate since, to the actual state of the art, the analysis made

focus just on some physiological markers, and the transition is defined basing mailnly

on the loss of control on eye movements. In this direction, what has been found of

particular interest are the encountered changes in EEG recordings of Patient 11, since

they correspond to the transition from LIS to CLIS occurred in the patient in the period

in which they were acquired, parallel to an absence of significant changes found over a

period of comparable length of stable CLIS condition for Patient 6, further in time from

the transition.

These findings lead to hypothesize that the transition between LIS and CLIS is charac-

terized by a dynamic evolution in the EEG signal, while CLIS state, as the last stage

encountered in the degeneration of ALS, seems to be more stable. This stability, anyway,

is possibly relative to the short time range of observation and related to the distance in

time from the moment when the transition occurred in the patient. Indeed, from the

analysis done for Patient 4 in CLIS during the whole period of observation of four years

but closer in time to the transition, came out that major changes in EEG’s frequency

content are still happening.

After these observations other questions conceivably come out.

Does EEG evolve in the direction of those states of limited consciousness?

This point is very complex in its implications, and answering that would be premature.

Performing some group analysis comparing late-CLIS patients to MCS patients and VS

patients, as done in the literature for discriminating those last two from controls, could

be useful to identify major differences between those groups, that for the moment can

just be hypothesised by the knowledge of preserved consciousness for late stage ALS

patients. From the analysis made in this study no changes related to those features

characterizing DOC have been registered.

Are CLIS patients all similar from the consciousness point of view?
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Probably not, and we can see that in a preliminary way from Patient 6 stability com-

pared to the potentially more dynamic state of EEG for Patient 4. Patients have all

different backgrounds and are surrounded by different environmental conditions that are

likely to influence the overall progression in their own course of disease.

In addition to that, the application of the proposed pipeline for a longitudinal analysis

of single patient data on three patients demonstrated its solidity within totally different

datasets. The overall preprocessing and processing procedure was build with the aim

of possibly applying it in the future to a larger and more consistent dataset, with good

chances of being reliable and able to assess changes in specific EEG features also from

a statistical point of view.

This study could answer some preparatory questions that prepared the ground for other

future investigations. After stating EEG’s capability to reflect the neural degeneration

occurring in neurodegenerative disorders, which features can really act as markers for

those changes occuring in patients’ brains? Are there some features common to many

patients and ALS phenotypes?

These questions could not be evaluated here due to the limited number of observations,

but the results obtained here are suggesting that it would be worth to go deeper into

this analysis acquiring a larger EEG dataset to explore those aspects.





Appendix A

Appendix

A.1 Welch’s PSD parameters

Figure A.1 shows the effects of different choices of parameters in PSD computation with

Welch’s method. This method implies the computation of power spectral densities over

windows of fixed length and then the average of the resulting PSDs to obtain the final

spectrum.

It is particularly useful and commonly adopted with nonstationary signals as EEG.

As we can see from the figure, choosing a too short window length (2 s) brings to a smooth

PSD, due to the higher number of segments that are averaged. On the other hand, a

too long window returns a signal that is noisy and with larger confidence bounds.

For these reasons, applying a trade off between PSD’s complexity and the precision

needed, the choice of parameters applied to this analysis is of a window of length 5 s

with an overlapping period of 2 s.

A.2 Features values variability

Figures A.2 and A.3 represent the variability of features values computed on channel Cz

for Patient 6 and Patient 11respectively.

X axis refers to visits’ indexes, y axis refers to features values. Each box corresponds

to a visit and shows in red the median value of features computed day wise, while the

upper and lower bound of each box represent the 25th and 75th percentiles respectively.
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Figure A.1: In the figure is shown a comparison between different choices of window
length and overlap period used for the computation of PSD through Welch’s method.

Data used for this example are taken from Patient 4, visit 2.
In blue is represented the final PSD correspondent to the specified choice of parameters,
and in dashed-black are displayed the confidences bounds, with coverage probability to

0.99
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