
UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI INGEGNERIA
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCATRONICA

TESI DI LAUREA MAGISTRALE

CONTRIBUTION IN DESIGN AND
IMPLEMENTATION OF AN AUTONOMOUS

MOBILE ROBOT.

Relatore: Ch.mo Prof. Roberto Oboe

Correlatore: Ch.mo Prof. Cyril Novales

Correlatore: Ing. Nicolas Morette

Laureando: Nicola Carretta
620030-IMC

ANNO ACCADEMICO: 2012-13

2

Summary

This paper is the result of six month thesis work performed in the robotic team inside
the PRISME laboratory. This last one is a research laboratory, situated in Bourges
(France), one of the four campuses of University of Orleans. In this thesis the candidate
has done a study centred on the autonomous robot mobile navigation and robot's control
architecture. The candidate works on some points to performing simulations, validate
and implement algorithm for autonomous robot navigation, based on direct kinematic
model and predictive control approach. This navigation method was conceived by the
team of PRISME laboratory established on the occasion of a national french project:
PROTEUS Project, that will be described in the next chapter. This document is divided
in following points:

• After a brief introduction of laboratory research fields and robots model that
have been performed, the first chapter will show the Proteus overview work and
the main proposed scope of this project: it provides a complete toolset including
simulation environment and middleware. Will be presented a robotic
prototyping platform and sensors that were used for practical demonstration of
navigation.

• In the second chapter a robot's control architecture conceived by Prisme
laboratory will be presented. It consists in a hierarchical, modular and multi-
layer architecture of function modules that allows a mobile robot to plan its
tasks and to react to events.

• In the third part the pilot functional block of robot's control architecture will be
presented. The chapter explains a reactive method, based on a deformable
virtual zone “placed” around the robot to recognize and avoid obstacles.

• The fourth chapter treats the problem of robot localization into a known
environment. The robot absolute position into a map will be used from
navigation algorithm presented in this thesis. The localization algorithm has
been implemented and tested in the robot platform, using a deterministic
optimization algorithm.

• In the fifth chapter there will be an introduction about navigation tasks for
autonomous mobile robots and a classification of navigation methods.

• The sixth chapter will describe a navigation method by direct kinematic model
conceived by the team of Prisme laboratory that the candidate has had the
pleasure of working with. The chapter will show step-by-step the navigation
method principle and lastly will explain the use of a stochastic optimization
algorithm (simulated annealing).

• In the seventh chapter there will be robot navigation results, obtained thanks
c/c++ language implementation using RTMaps middleware. Will be presented a
scenario that shows the robot navigation tasks such as reach way-points and
avoiding obstacles. Will be presented robot performance into environment,
useful to carry out settings of simulated annealing giving high probability to
find suitable solutions.

• The last chapter gives the conclusions of the work and future proposals to be
developed for the Proteus project.

3

4

Contents:

1 Introduction.. 8
1.1 PRISME laboratory..8

1.1.a Research fields..9
1.2 PROTEUS Project overview..9

1.2.a PROTEUS Robot Youth Challenge (RYC).. 10
1.2.b Introduction to ToolKit PROTEUS ... 11
1.2.c WifiBot mobile robot equipment..19

2 Robot control architecture..23
2.1 Introduction to architectures of control..23

2.1.a Hierarchical architecture...24
2.1.b Reactive architecture.. 24
2.1.c Hybrid architecture... 25

2.2 PRISME hierarchical control architecture... 25

3 The Pilot..33
3.1 Introduction.. 33
3.2 The DVZ (Deformable Virtual Zone).. 33
3.3 Intrusion algorithm evaluating... 33

4 WifiBot mobile localization... 37
4.1 Localization objective.. 37
4.2 Algorithm description.. 37

4.2.a Gradient optimization algorithm.. 38
4.2.b Algorithm results.. 40

5 Classification of navigation methods..........................45
5.1 Introduction to navigation.. 45
5.2 Classical methods by force filed-based..46

5.2.a APFs (Artificial Potential Fields)... 46
5.2.b ANN (Artificial Neural Network).. 47
5.2.c Fuzzy Logic.. 47

5.3 Method by IKM... 48
5.3.a Non-holonomic systems... 49
5.3.b Function plat...49
5.3.c Transverse functions .. 50
5.3.d Visual method...51

5.4 Method by DKM (Direct Kinematic Model)... 51

5

6 Navigation by DKM.. 53
6.1 Navigation by DKM (Direct Kinematic Model)..53
6.2 A classical “Model Generation”.. 53
6.3 Escape line method... 54
6.4 Predictive navigation based on DKM.. 56

6.4.a DKM trajectories.. 57
6.4.b Local Map...60
6.4.c Robot Commands .. 61
6.4.d Cost function structure.. 62
6.4.e Optimization algorithms comparison.. 63
6.4.f Simulated annealing optimization algorithm ... 64

7 Navigation results..69
7.1 Introduction ... 69
7.2 Navigator performances... 69

7.2.a RTMaps drawing.. 74
7.2.b Navigation conclusions.. 75

8 Conclusions and further work......................................77

Appendix A .. 79

References .. 82

List of figures ... 85

Acknowledgments ... 88

6

7

1 Introduction

The purpose of the thesis activity has contributed to achieve the implementation of an
autonomous robot mobile. The robot must be able to perceive correctly the environment
and react, depending on the level of autonomy, in order to planning trajectories and
determine what movements will need to achieve its goal. The goals for an autonomous
robot mobile could be dedicated for people's transport, surveillance, clearing explosive
and more other. These performing tasks could be achieved with less human presence
and moving in the environment without any external assistance.
This thesis is centred on implementation, test and validation of robot localization and
navigation algorithms. Some algorithms have been tested under simulation with
MatLab, and on the real robot mobile: WifiBot off-road prototyping robot. Data
communication with the robot platform have been ensured thanks a middleware
(RTMaps) that offers a modular platform where data samples flow between functional
blocks. In addition meetings were held for interacting with software developer company.
Has been used the RTMaps Software Development Kit (DSK), allowing the possibility
to develop and compile own components useful for realize the mobile robotic
architecture: in particular functional blocks like navigator, localization, pilot and many
other functions. Algorithm results were displayed using a computer station, with only
functions of monitoring parameters and trajectories, by the fact that robot decisions
must be taken autonomously.
Robot navigation and localization imply also the uses of optimization algorithms
(deterministic and stochastic) to achieve its tasks considering the robot kinematic
constraints and perceiving the environment necessary for the total autonomy of robot
mobile. Were perceived advantage from simulated annealing optimization algorithm
referring to its robustness and high probability to achieve an optimal solution previous
suitable values parametrization. Demo's results of navigation and localization algorithm
will be displayed into last chapters thanks RTMaps and Gnuplot graphic interface. Will
be demonstrated the ability of the robot to perform planned trajectories, moving safely
and bypassing obstacles thanks the implemented algorithms. This thesis work,
performed under the national ANR research program Proteus, will be integrated into the
robotic development team of Prisme laboratory. Allowing this last one results of the new
theory of navigation. During the internship the candidate has attended to projects
Proteus and Protech (a tele-ecography laboratory project) meetings. He has participated
also to a national conference: “Control Architectures of Robots” (CAR Nancy,2012)
and a meeting at Dassault premises for the Proteus project for the WifiBot
demonnstration.

1.1 PRISME laboratory

The thesis activity was held to PRISME laboratory (Pluridisciplinaire de Recherche en
Ingénierie des Systèmes, Mécanique, Energétique – Multidisciplinary Research in
Systems, Mechanics and Energy) situated in Bourges (France). The PRISME laboratory
(formerly known as the Laboratory of Vision and Robotics funded in 1988), is part of
Orleans research laboratories. Currently gather about 80 research fellows. The vocation
of the PRISME Institute is multidisciplinary in the Engineering Sciences, and spans a
broad spectrum of disciplinary fields including engine combustion, energy,

8

aerodynamics, equipment mechanics, signal and image processing, automation and
robotics.

1.1.a Research fields

One of the project-team (i.e. Robotic Interactive System – SRI) of the PRISME institute
leads research in autonomous and tele-operated and medical robotics. The PROSIT
project is a light body-mounted robot (Fig. 1.a) to perform tele-ecography: the robot
placed on the patient is able to position and orient the probe faithfully reproducing the
actions of remote doctor which manage a false reproducing probe.

Mobile robotic is a major topic in SRI team PRISME Institute. This last years of work
lead to provide a multi-level robot control architecture which merged various degrees of
tele-operation and autonomy. Nowadays, it works on a model based predictive control
for mobile robots navigation, mainly dedicated to CyCab (Fig. 1.b) and WifiBot
platform (Cap. 1.2.c).
Other robot models have been performed at the beginning by applied research in robotic
field, mainly with BA System Company in 1996 to design a wireless guided indoor
industrial mobile robot. Afterwords addressed the problem of unknown but structured
environment, without absolute sensors. These works lead to validation on an indoor
mobile robot (RAOUL) using rotating laser range telemeters, able to evolve
autonomously in unknown environment. In 2001, has been designed and implemented a
mechanical motion system allowing a ground vehicle to perform omnidirectional
movements (ROMNI). Until today to apply research as stated above to evolve a multi-
level robot control architecture.

1.2 PROTEUS Project overview

PROTEUS (“Plateforme pour la Robotique Organisant les Transferts Entre Utilisateurs
et Scientifiques”) goal is to establish and organizing interactions between academic
world and industrial partners of the robotic community in order providing suitable tools
and models. To help a more easily transfer of knowledge act also to identify potential
problem in the industry. Many actors are included in this project such as:

9

Fig. 1: a) Tele-operated and b,c) mobiles robots.

The PROTEUS project is funded by the french national research agency ANR (Agence
Nationale de la Recherche) in the framework of the 2009 ARPEGE (Systèmes
Embarqués et Grandes Infrastructures) call for proposal. This is a four year project
started in november 2009.
One of main proposed scope of PROTEUS project is provide a complete Toolset
including simulation environment and a middleware. Where simulator and middleware
compatibility is ensured by the use of a ROS bus for communications allowing a total
reversibility. The Proteus overview work is schematized in Fig. 3:

10

Fig. 2: Proteus project partners.

Fig. 3: Proteus overview work.

1.2.a PROTEUS Robot Youth Challenge (RYC)

The Robot Youth Challenge is proposed by the PROTEUS project consortium
(http://anr-proteus.fr/). It is organized by the PRISME laboratory, and over this last one,
regrouping other four research institutes (Blaise-Pascal, GREYC, INRIA, LIP6) and
eight industrial partners (Dassault, ECA, Gostai, Intempora, Thales, CEA, ONERA,
Effidence).
The RYC considers the problem of autonomous motion (outdoor) exploration and object
searching in unknown environment. The main mobile robotics topics (Fig. 4) are:

• Autonomous navigation
• Obstacle avoidance
• Mapping
• Visual recognition

which they must be met to carry out the trials of the challenge. The challenge is divided
in three event each one with different goals. They consist in operation of exploration,
finding, sharing/organizing with other robots, and come back in an initial position;
computed in a certain prefixed time. In order to minimize the time, in the last event, is
permitted promoting data sharing between the robots that they will cooperate during the
challenge.

1.2.b Introduction to ToolKit PROTEUS

PROTEUS combined several tools (Fig. 3) in order to provide a complete uniform tool-
chain for robotic development: the project has developed a toolset for the design of a
complete robotics application, from its architecture modeling (with PAPYRUS), to the
deployment on real robotics system (WifiBot, Pahlavi, Air Trooper, Res sac, Camel eon)
or software simulation. All this through several middleware (RTMaps, Ur bi, Carrot,
Siroccos). Most of them are open-source software.
The toolkit is structured in three part: meta-modeling & code generation, robotics

11

Fig. 4: Robot Youth Challenge scenario.

http://anr-proteus.fr/

middleware, and simulation engines.

Meta-modeling & Code generation:
This part aim using software development environment like Papyrus, TOM, ALF to
modeling and organize the structure of the robotics platform.
Papyrus provides diagram editors: with the use of connections is possible create a link
between main functional blocks (e.g. navigator, actuators, database) and device like
sensors (e.g. telemeter laser, IMU). The final structure appears in the form of a skeleton.
TOM is a language extension designed to manipulate tree structures and XML
documents. It provides pattern matching facilities to inspect objects and retrieve values.
In the PROTEUS toolkit, Papyrus is used to design control architectures which are then
generated on the different middleware supporting the project.

The middleware

This part aim to introduce the middleware. It was used consistently for implementing
the robot platform because offer an important tools supports. On PROTEUS project
RYC three middleware are available:

• Carrot (from the Effidence company)
• RTMaps (from the Intempora company)
• URBI (from the Gostai company)

In computing system, middleware is a set of programs which mediate between several
applications and software components. Can be described as “software glue”, his
function is to mediate interaction between the parts of an application, or between
applications.
Picture 6 shows how RTMaps middleware (Real Time, Multistory, Advanced
Prototyping Software), prove to be a modular platform where data samples flow
between functional blocks (called components, details more over). Data flowing can be
of any type as video, audio, bytes stream, CAN frames, matrices, vectors of integers or
floats, text, and so on. More, for example, RTMaps is a multi-threaded architecture
which allows the use of multiple asynchronous sensors within the same application i.e.
“on the flow”, each data sample being retrieved at its own frequency. Data fusion
algorithms can be developed thanks to the real time capabilities of the software, which

12

Fig. 5: Urban OARPS (Open-Access Robotic Platform.) robots types.

permit supports “any” type and quantity of sensors and actuators. RTMaps has also a
Software Development Kit (SDK) which is a set of C++ libraries, header files, wizards,
which allow the possibility to develop and compile own components useful for realize
the mobile robotic architecture. It provides also a graphic interface for monitoring,
display and recording data:

Middleware covers an important task simplify view of a system which a high set of
interfaces and it cover also a wide range of software systems, including distributed
objects and components, message-oriented communication, and mobile application
support [1]. A system is organized as a set of parts, or components. Each of this one
fulfill a function that should be consist in a service. The specification of the service is
often associated to system functional property. It included the following aspects:

• Availability. The availability of a service quantifies the ratio of services ready to
use. Is a statistical measure penalized by failures.

• Performance. This quality covers several aspects. Essential for real-time
applications where attention is give e.g. to processing speed.

• Security. Security cover an important role to guarantee the respect of the rule
from users, and access right control.

Multilevel architecture:
Middleware makes easier for software developers to perform communication and
input/output. A layered architecture consists to decomposing a complex system into
layers which includes libraries that provide services (i.e. data storage, screen display,
multimedia, web browsing and much more). This layer organization provides guidelines
for decomposing a complex system into parts allowing a high level of service to users
and a high level of abstraction to developers by masking the heterogeneity and the
distribution of the underlying hardware and operating systems, and by hiding low-level
programming details [1]. The interface provided by each level may be viewed as set of
functions defining a library, called Application Programming Interface (API).
Frameworks:
Software frameworks allow to software developers to reuse working code [2]. A
software framework is a program skeleton aim to solve a family of related problems.
According to well-defined rules the skeleton should be adapted or directly reused.
Patterns, frameworks and middleware play a complementary role for improving the
process of design, building and documenting applications increasingly complex of

13

Fig. 6: RTMaps structure.

today.

Objects:
Object in programming, mean of structuring computing system, is a software
representation of a real-world entity like a person, a robot , a bank account, etc. that
should be viewed as an association of a state and a set of procedures (or methods). The
object model has the following properties:

• Encapsulation. The only way of accessing to object's state is through its
interface, no part of the state is visible from outside the object. An interface
comprises a set of methods (procedures) and attributes (values that may be read
and written).

• Classes and instances. A class is a generic description common to a set of object
(the instances of the class). The instances of a class have the same interfaces, and
their state has the same structure; they differ from their value only.

• Inheritance. A class that derive from another one class preview specialization
defining additional methods, attributes, or by redefining existing methods. Is
said to inherit (or extend) from a class.

• Polymorphism. Polymorphism is the ability for a method to accept parameters of
different types, and to have different behavior for each of these types.

Components:
A compositional architecture define the organization of a software system as an
assembly of components, connectors, and composition rules.

• A component perform a specific function, can be assembled with other
components, and provided interfaces: the only way to use a component.

• A connector is a device for assembling several components together in order to
create a configuration.

• Composition rules specify the allowed ways of assembling a configuration out of
components and connectors.

The Simulator:

Motivations: Autonomous robotic mobile often operate in a open and dynamic
environments (which should be totally or in partially unknown), time and dynamics play
a major role, and last but not least establish interactions with humans. It's easy to
understand the importance function of a simulator platform where field trials are
associated with high risk to the survivability of the system (e.g. aerial vehicles, and
maritime) and should leads damage and risk to people. The use of a simulator as a
previous step may be useful to evaluate algorithms, techniques, and verify their
robustness; also positive side effects about time and cost savings, that simulator
typically provides in research and robotic industry. On the other hand, it's difficult to
replace the experiences of working on real robots in real environments with real-world
sensors errors and unpredictable dynamics. But simulators certainly provide a
convenient means for all the advantages mentioned above and by the fact it play an
important role in risk reduction; and also should be useful to development of
contingency management plans.
Below in picture 7 display the simulator software structure. Blender, MORSE, ROS,
and RTMaps are mainly softwares used un PROTEUS Project.

14

Blender [3] is a free and open-source modeling and rendering application that enables
the creation of a diverse range of 2D and 3D contents. The source code is available
under the GNU GPL license. Blender provides a board spectrum of modeling, texturing,
lighting, animation and video post-processing functionality to satisfy the main purpose:
the creation of computer generation images and animations.
The most advantage of Blender is the high level of graphical detail that can be achieved
in real time, thanks to the advanced modeling of meshes, and effects such as texturing,
lighting and shaders. For example when simulating robotic vision, visual aspect is
important , since the images captured in the virtual world can be realistic enough to be
processed with the same algorithms as real images.
Blender permits also an interactive simulation thanks the Game Engine (GE) mode [4].
It permits with a flexible graphical interface (called the Logic Bricks) to script behavior
to objects in the scene, and define variables (called Logic properties) associated with the
same objects. Thought dedicated API permits the iteration between Blender world and
Python scripts (i.e. a Logic Bricks, over mentioned) or by additional modules that can
be programmed in C/C++. Fig. 8 shows a Blender window performing a WifiBot robot
model included by their equipment sensors.

15

Fig. 7: Blender-Morse
structure simulator.

Fig. 8: Blender WifiBot robot model.

MORSE is a open source robotics simulator; projected by LAAS [5] Robotics Research
Group in Toulouse, France. MORSE is based on the Blender 3D graphics program and it
relies on a component-based architecture to simulate sensors, actuators and robots. It is
constructed as a library of modular components that can be used to build any kind of
robot and test its behavior under various conditions. MORSE can simulate complex
robots in real time; has also been designed to be able to handle more robots in joint
simulation scenario. MORSE can be run as a distributed network of simulation nodes;
each one automatically synchronizes with the others.
The simulator aims to comply with the following requirements:

• General purpose robotics simulator
• Modular reusable components
• Multi-robots
• Variable levels of realism
• Direct interface with robot software
• Middleware independent
• Distributed architecture

MORSE provides a set of standard sensors (e.g. cameras, laser scanner, GPS,
odometry), actuators (e.g. speed,controllers), and robotic bases (e.g. generic 4 wheel
vehicle), but new ones can be easily be added.

ROS (Robot Operating System) [6] is a software framework which provides a set of
functionalities in the development of robotic controllers. To specify that is not an
operating system in the traditional sense of process management and scheduling like the
abbreviation suggest; it provides a structured communications layer above the host
operating system.
ROS provides standards operating system services such as hardware abstraction, low-
level device control, implementation of commonly-used functionality, package
management, and it takes care of various low-level functions such as message-passing
between the different sub-system. ROS provides libraries and tools to help software
developers. It is based on a graph architecture where processing takes place in nodes
that may receive, post and multiplex sensor, control, state, planning, actuator and other
messages.
At this time, ROS is mainly used for research applications in fields such as autonomous
robot, but is intended also to ease the integration into industrial applications.

Overall Architecture:
MORSE is built on top of the Blender software: relies in a composition of Blender files
to build simulated scenes. Each MORSE component consists into two files: a Python
and a Blender file [4].The first one define an object class for the component type, with
its state variables, data, and logical behavior (methods). The Blender file specifies
physical properties of the object in the simulated world like material, color, surface.
There are different kind of components in MORSE. Mainly used in robotics simulations
are: sensors, actuators, robots, scenes, and modifiers.

• Sensors recover data from the simulated world, emulating the functionality of
the real sensors.

• Actuators aims to execute actions to the associated components. In particular

16

actuators move robots in function by given parameters type, in function at
various levels of abstraction of the simulation. For example in path following, a
low abstraction giving the robot commands like angular velocities for each
wheel, higher abstraction simulation, using a direct destination coordinate (Fig. 9
).

• Robots are the platforms where sensors and actuators are mounted.
• Scenes are the modeled environments where the robots interacts during the

simulation. Can represent for example a indoor, outdoor scenes with all
necessary to simulate a realistic ambient.

• Modifiers are function that alter data (e.g. noise functions), their function is to
make realistic acquisitions from simulated sensors by the fact that these last one
produce very accurate measures taken from the virtual world.

17

Fig. 10: Screenshots of MORSE simulator.

Fig. 9: Simulation of a trajectory following process at two
different abstraction levels. On the left: low abstraction
simulation giving directly actuators commands. On the right:
higher abstraction simulation.

Important considerations are necessary about the integration of Morse components with
middleware by the fact that this last one enable communication and data sharing
between components. A highly coupled of an element with a given middleware make
difficult to reuse it in a different environment. For this reason components should be
designed to be middleware-independent [4] thanks a software package used at LAAS:
GenoM 3 [7], a tool generating software modules that can be compiled with any
middleware. All this permit to use various middleware such as YARP [8], ROS [6],
Pocolibs [9] and other offering an high level of integration with middleware.
An other important aspect of MORSE is designed to interact directly with the software
under test, without the need of software modifications. This philosophy takes after
“Hardware-in-the-Loop” simulations. The evaluated components (the same in the target
hardware) interact with the simulator with the same protocols than the ones interacts
with real sensors and actuators of the robot [10].
Fig. 12 display how data flow between components (sensor and actuator) of the
simulator using hooks to share data with external applications. Hook is a mechanism
implemented in Python which consist adding at runtime (thanks the dynamic nature of
Python) methods to the component instances. These methods use the data of MORSE
components to elaborate it and then sent in the format required by the corresponding
middleware.

18

Fig. 11: Simulation of a 3D perception scene at different
abstraction levels.

1.2.c WifiBot mobile robot equipment

The WifiBot is a off-road robot model [11] which lends as a multi-purpose platform
running in Linux or Windows embedded. Some reasons why this kind of robot leads this
choice is for to make simple yet useful and affordable robotics. This platform should
suit fulfill for flexibility and open modular architecture, fully programmable, low cost,
small size, low weight, integration within Wi-Fi network, great for multi-robot
applications. The base system is composed by four wheel drive chassis controllable
using RS232, four infrared sensors, a Intel Atom D510 duo core running in Linux
Ubuntu, installed on a 4 Gigabyte compact flash, a free Wi-fi access point, a IP-Camera,
GPS, IMU, and a telemeter laser. Picture 13 shows the robot model before mentioned,
well equipped with inertial measurement units and telemeter-laser on the top of the
platform. From telemeter laser and IMU, are based the navigation and localization
method presented in this thesis. The follow part of this chapter treat only a brief

19

Fig. 12: Simulator structure.

introduction of telemeter and IMU sensors and how data are treated and displayed from
middleware.

Telemeter-laser. A telemeter laser is a two-dimensional (2-D) range finders scanner for
measuring distances around the sensor. The WifiBot is equipped with a Hokuyo model
UTM-30LX. This system is adapted for high moving speed robots thanks his longer
range (30m and 270° scanner range) and fast response (25ms/scan).

This kind of sensor lends itself to become a suitable sensor for detect free space ahead
of the vehicle, localization and map building due to their accuracy (0.1 to 10m:
±30mm, 10 to 30m: ±50mm). The angular resolution is 0,25°.

IMU package. An inertial measurement unit (IMU) is a device that estimate the relative
position, velocity and acceleration of a vehicle in motion, utilizing measurement
systems such as gyroscopes and accelerometers [12]. The IMU device equipped into the
robot is the model VN-100 (Vectornav), see Fig. 16, six degree-of-freedom system
estimate of the pose of the vehicle: position (x,y,z) and orientation (yow, pitch, roll).

20

Fig. 13: WifiBot model.

Fig. 14: Hokuyo
telemeter-laser UTM-
30LX model. Fig. 15: Telemeter-laser acquisition.

This IMU uses three orthogonal gyroscopes and three orthogonal accelerometers. The
gyroscope data ω is integrated to obtain an estimate of vehicle orientation θ. At the same
time, three accelerometers are used to estimate the instantaneous vehicle acceleration α.
This data is then transformed by the current orientation of the vehicle relative to the
gravity, this last one should be extracted from the measure. As shown in Fig. 17, the
resulting acceleration is then integrated to obtain the vehicle velocity and then
integrated again to obtain the position.

21

Fig. 17: IMU block diagram [12].

Fig. 16: IMU
(Vectornav VN-100).

22

2 Robot control architecture

2.1 Introduction to architectures of control

In an autonomous robot mobile, behaviors are closely depending by the robot's
effectiveness and robustness ability to carry out tasks in different conditions of ill-
known environments. This leads to adopt a well-structured architecture of control.
Ronald Arkin in [13] define a robotic architecture in the following way:

“Robotic architecture is the discipline devoted to the design of highly specific and
individual robots from a collection of common software building blocks.”

The architecture consists of functional modules every one with a specific function, for
example a function should covers robot localization, it represents environment based on
sensor information, analyze the representation using knowledge thanks databases, plan
actions and execute planned actions etc. An integrated architecture allows a robot
mobile to plan its tasks, taking into account of temporal and domain constraints. The
objectives are to perform actions and controlling their execution in real-time, in order to
make reactive the programmed machine from possible events. Capacities to achieve
tasks and to react to events are determined from robotic system organization. A robot's
control structure should have the following properties: programmability, autonomy and
adaptability, reactivity, consistent behavior, robustness, extensibility [14].

• Programmability is a property that describes the ability of a robot to achieve
multiple tasks at an abstract level.

• Autonomy and adaptability intended as the ability to carry out robot actions and
to refine or modify the task and its own behaviors according to the current goal.

• Reactivity because the robot taking into account of non planned events to
execute its goals and takes care own safety.

• Consistent behavior by the fact that robot has to react to events consistently to
objectives of it task.

• Robustness: the control architecture should be able to exploit the redundancy of
the processing function.

• Extensibility in order for integration of new functions and definition of new tasks
in easily way.

The control architectures should be classified in three categories in function by the way
sensory data is processed and distributed through the system: hierarchical, reactive, and
hybrid controls [15]. Each one control architecture consists by the relationship between
robotics primitives (functions): sense, plan, and act.

23

2.1.a Hierarchical architecture

In a hierarchical control, communication and control occurs in a predictable and
determined manner, flowing up and down. The typical hierarchical structure is shown in
Fig 18 ([13]). This type of architecture is characterized by a clearly identifiable
subdivision of functionality where the robot senses the world, plans the next action, and
then acts. In the hierarchical control the ACT input is always the result of a PLAN
function, and the input of this last one is always the direct output from SENSE function.
When the action is chosen by PLAN, it will be execute. If during an action's execution,
a new event occurs (like an mobile obstacle or dangerous situation), a new different
action should be immediately elaborated. A new SENSE/PLAN/ACT cycle introduce a
delay that should be generate a collision.

2.1.b Reactive architecture

The reactive control was a reaction from hierarchical control where the key aspects were
design by Brooks [16]. In [13] R. Arkin define a reactive system:

“A reactive robotic system tightly couples perception to action without the use of
intervening abstract representations or time history.”

If in the first case the input to an ACT is an result of PLAN output, here the input to an
ACT is always the direct result of a SENSE function. Coexist a direct link between
sensors and effectors, in this direct way, a fast execution time is obtained. An reactive
system react directly to the world as it is sensed. This architecture is presented as a
whole of reactive behaviors, which operate simultaneously and controls the robot
without the internal model. Generally these architectures are dedicated for multiple
actions like displacement towards a goal, obstacle avoidance, aleatory displacement,
following a wall etc. The priorities given to actions to be performed are fixed, this do
not allow a good flexibility. But in the other hand it has the both advantages to be
simply and easy to implement.

24

Fig. 18: Hierarchical architecture.

2.1.c Hybrid architecture

A control that adopt an intermediate solution between hierarchic and reactive control
assume the characteristic of Hybrid control. The goal of this structure is to maintain the
property of responsiveness, robustness, and flexibility of purely reactive system. But in
the same time to provide a decision phase that permit a dynamic control system
reconfiguration: providing a reactive control system based on available world
knowledge.

2.2 PRISME hierarchical control architecture

Often, the control architectures are specific and designed for dedicated robot. They
represent a closed architecture, and modifies by the user are not permitted. The need to
modify and guaranty a level of reconfiguration of the robot system has led in last years
the formalization of new robot's control architectures. A generic control has been
conceive and then developed by PRISME laboratory [17] to aim formalize a modular
robot control architecture. In particular for autonomous and tele-operated area. The
objective is propose a framework architecture with property of integration with
middleware and hardwares, assuming characteristic of adaptability in a opening areas of
robotic. Without neglecting important aspect such as keep up to supply autonomy,
reliable, and robustness. This architecture proposed by Mourioux, Novales, and
Josserand resides a hierarchical controller and modularity concept at the basis. It's was
used the concept originally developed by R. Brooks [16] and which appears in
architectures such as “LAAS Architecture for Autonomous System” [14]. The

25

Fig. 20: Hybrid control [13].

Fig. 19: Reactive control [13].

architecture is organized similarly to the Open System Interconnection communication
system. Well knows like ISO/OSI model (defined by ISO: International Organization for
Standardization) shown in figure 21.

For transpose the ISO/OSI model into a robot architecture, the operative part of the
robot (A.M.S. Articulated Mechanical Structure) are taken into account. The structure is
mainly composed by two part. One part where a upward flow conveys information of
perception. The second one consist by a downward flow toward operative part will be
used to the control features. At each level, two entities interact by means of a
transmission protocol. In the communication architectures protocols enabled an entity in
one host to interact with a corresponding entity at the same layer in another host. Data
must necessarily pass through all layer surrounding. Because each entity interact
directly only with the layer immediately beneath it.
However, unlike the communication model, in the presented robot's control architecture,
data can either pass directly through entities that implement their functionality in the
same architecture layer. Much more, data can either go through the different levels for
processing. In this way, instead to have a single path of information, a multiple
pathways is obtained [17]. So a multi feedback loop, each one associated with one of the
architectural level, converging towards the robot machine. The lower-level loops
associated to “reactive” part (nearly with the articulated mechanical structure, and
associated to a low abstraction), are faster than loop of higher levels corresponding to
“deliberative” part of the architecture.
The formalization of this robot architecture dedicated to autonomous or tele-operated
scopes is presented in [17], trough a graphical representation.

26

Fig. 21: ISO/OSI model.

The control is focused by a transposition of a conventional control loop (Fig. 22), made-
up by three elements: the articulated mechanical structure (A.M.S.), the perception part
(sensors and their management), and the decision part which should be a PID controller
for a low level.

While data flows organization, remains the same such as in a conventional control, the
control loop is disposed in two levels (Fig. 23). In the Level 0 is located the system to
control or rather the A.M.S. . The controls and actuators, and the sensors are located at
the Level 1 respectively in decision and perception part.
To complete the architecture in order to give a more articulated structure (adapt in robot
autonomous field), more levels are added for both perception and decision part. In this
way a ordered control loops are obtained for each level, every one with a specific
application field (i.e servoings, path planning, navigation etc.).
In the specific robotic autonomous mobile application, has been used a proposed 5
levels architecture how is shown in Fig. 24 . The levels are surmounted by the two
complementary parts appointed first: the perception and decision, one ascending and
one descending.
Each part is also cut transversely into the levels such as specified previously. In Fig. 24
extension for robot tele-operation appear also. In robot autonomous mobile only
function of supervisor are permitted, so parallel loops are not considered.

27

Fig. 22: Classical control loop drawing.

Fig. 23: Control loop transposition to architecture robot structure (Level 0 and 1).

In Fig. 25 is presented a particular of the architecture. In this way the “cluster” is
defined as the whole of all modules of the same level. In the specific the Cluster
“Sensors” in the perception part, aggregate all the sensor, conditioning modules and
their management; and the Cluster “Servoing” of the decision part, includes the joint
servo modules.

A set of rules are defined in order to obtain all the potentiality from the architecture; to
quote contents from [17]:

• Data rules
R1 – In perception part: data mount from level 1 to 5 in the sense of the
complexity treatment. Any data of a level is available to all higher levels.
R2 – In decision part: the data come down from level 5 to 1: all data of a level
is available at all lower levels.
R3 – In tele-operation part: the data does not flow between the levels of this
part.
R4 – Data can pass transversely from one level of the perception part to the

28

Fig. 24: 5 levels architecture design, including tele-operation
extension.

Fig. 25: Architecture particular level.

same level of the decision part.
R5 – Data can pass transversely from one level of perception part to the same
level in the tele-operation part.
R6 – Data can pass transversely from one level of tele-operation part to the
lower part of the decision part.

• Rules for “clusters”
Clusters can contain multiple modules, each corresponding to a specific
feature. Modules can discuss them and can use all available data at this level
(in this cluster).

Architecture Levels:

This part aim allowing more detailed description of single parts of the architecture,
performed for autonomous robot mobile like the CyCab or WifiBot models (Fig. 26).

How mentioned above the architecture is composed in five levels and in more functional
blocks (by de fact the architecture assume a modular structure), each one with a specific
task.
The Perception part is composed by several blocks such as sensors, proximity map,
local map, global map, and global model (Fig. 26).
The perception blocks (Fig. 27) receive information from sensors. All or part of datas
received, are transmitted to the related decision part, which placed at the same level. As
well as the same datas could sent to the upper levels of the same perception part. Thus,
level after level, raw data are enriched thanks successive treatments in function of
confrontation with new and old information stored in memory. It improve the robustness
of information, and to produce maps.

29

Fig. 26: PROTEUS project architecture structure.

The action/decision part incorporates the mission generator, path planner, navigator,
pilot, and servoings.
The decision block (Fig. 28) allow in output decisions relative an order received in input
and in function of information received by the relative perception block at the same
level.

Level 0. This level is the physical part of the robot: mechanical articulated structure,
actuators to move the robot, and all that is part of the robot.

Level 1. Is the lower control loop of the architecture and is both short and fast. Is
dedicated for example to treatment of joint PID feedback control loop. The part
perception contains the sensors, and informations they deliver are used by the block of
the decision part for the control of each servo motor.

Level 2. The second level is the driver. The decision part receive a path to be followed
in according to the obstacles, from the upper block: the navigator. Or better, in addition,
the pilot can also have the capacity to make some decisions as obstacle avoidance in
case of a sudden obstacle and emergency. This module uses a method based on
deformable virtual zones [18].
The elaborated informations are sent to the servos motors, for example in form of
angular speed reference for each wheel (depending by the robot structure).
The perception part provide to the pilot raw data from sensor useful for obstacle
detection and determining in this way free spaces.

30

Fig. 27: Perception block.

Fig. 28: Decision block.

Level 3. The Level three is the navigator. Is the mainly part treated in this thesis work.
The perception part provide a model of the environment , generally in the form of map,
named local map. This map is constantly updated with new informations from external
sensors which are processed by the lower perception blocks. The perception part use the
local map to generate a path for the robot, allowing it to move between obstacles in the
best way as possible. And passing trough points of interest provided by the upper, the
planner. The path generated takes also into account of the kinematic constrains of the
robot.
The navigator symbolize the layer of the autonomous robot's architecture where the
reactive levels mentioned so far, stand out from the deliberative levels. Or rather the
reactive part by their nature handle information that need an immediate processing
(continuous way). Differently, the proposed navigator consist in a predictive control,
where the best path to follow is provided by the navigator relating a determined journey
time of the robot. So the upper levels, including the navigator precisely, manage
information with a certain deadline (discrete way).

Level 4. The level 4 is the path planner block (scheduler). Part of this decisional block
is provide to navigator a series of preferred waypoints. It mission consist also to placing
in the optimal way the waypoints to achieve the goal of the mission elaborated by the
upper level. The perception part consist in a global map, but generally use maps present
in the database, it will merge with the current information as local map in order to
update the model of the environment.

Level 5. The 5th and last level is the mission generator. Its mission is provide to the
scheduler the goal of the robot mission, such as a final destination, objectives to be
carried out during the course, identify anything harmful, make field surveys, and so on.

Finally, this architecture can also integrates with teleoperation via a third part such as
displayed if Fig. 24 . This part is divided into layers as the same way as the other blocks,
which can involve tele-operated mode at any level. But in robot autonomous only in
supervisory function mode.

31

32

3 The Pilot

3.1 Introduction

In autonomous robotic mobile, abilities to recognize and avoid obstacles are inevitably
important tasks. The obstacle avoidance method proposed aims to recognize and avoid
obstacles. The pilot is located into lower level of the action/decision part of robot's
control architecture. It receives in input datas from navigation block such as commands
related to a optimal trajectory, it receives also from perception part, info related to
proximity map like infrared sensors and telemeter-laser. It delivers commands to
servoings block to drive the robot into environment.
It covers problems of reactive behaviours of mobile manipulators evolving in dynamic
and unknown environments [18]. The scope of pilot formulation is allow fast control
laws. The pilot can be seen as a efficient low level algorithm for controlling motions to
avoid unscheduled obstacles collisions. The mainly object of pilot is have the ability to
react when unscheduled events occur, allowing property of artificial reflex actions to
mobile robots. The DVZ (Deformable Virtual Zone) method is proposed to resolve the
problem through the reflex action theory conceived by R. Zapata. This method is only
reported from theoretical point of view and the environment acquisition method is
explained in chapter 3.3 .

3.2 The DVZ (Deformable Virtual Zone)

The PROTEUS robot architecture uses a Deformable Virtual Zone principle as
mentioned before for obstacle avoiding. It defines a safety zone around the vehicle, in
which the presence of an obstacle induces an “intrusion of information”. The overall
algorithm is combined with a guidance solution which path following control design
relies on Lyapunov theory. The method embeds the path following requirements in a
desired intrusion information function, which steers the vehicle to the desired path while
the DVZ is virtually keeping a minimal contact with the obstacle, implicitly bypassing it
[19].

3.3 Intrusion algorithm evaluating

The DVZ principle, where a rigid body (the robot) evolving in an unknown
environment, is supposed to be surrounded by a shape. It's geometry depends by the
state of the robot. The main issue is to define a risk zone surrounding the robot as a
DVZ depending on the robot/environment interaction, see Fig. 29. The system reaction
drive the robot velocities, angular and linear, in function of deformation calculated. The
risk zone considered is an elliptic shape in order to obtain a polar DVZ. The risk zone is
expressed in function of linear velocities; in particular the geometry depends on the
square of this one in according with the kinetic energy of the robot in movement.

33

Fig. 30 shows a local map acquisition by telemeter-laser. Subsequent picture shows the
elliptic deformable virtual zone in function on different robot speed: respectively 6 rad/s
and 9 rad/s.

34

Fig. 29: Obstacle pose problem.

Fig. 30: Local map acquisition from telemeter-laser.

35

Fig. 31: DVZ @ 6 rad/s.

Fig. 32: DVZ @ 9 rad/s.

36

4 WifiBot mobile localization

4.1 Localization objective

In order to autonomously navigate and perform useful tasks, a mobile robot needs to
know its exact position and orientation. Robot localization is thus a key problem in
providing autonomous capabilities to a mobile robot.
Localization is a technique used by robots and autonomous vehicle for keeping track of
their current location, necessary to the navigator for evaluating trajectories projected
into environment from actual robot position. The goal of localization is to define the
current absolute position (x,y) into cartesian space displacement. The relative
orientation is taken into account by the gyroscope into IMU module.

4.2 Algorithm description

For determine the position of the robot on the map using the rangefinder, the goal is a
minimization of difference between two types of values mentioned before: real values
from actual robot position (xreal,yreal), and the identified virtual values calculated from
rangefinder given from a certain position of test (xtest,ytest). To achieve this the
localization algorithm is composed mainly in two part, the first will calculate values,
rangefinder virtual position and the second is to minimize the difference between the
values of rangefinders.

The principle of Localization algorithm is based on following steeps:

• Acquisition of a prefixed measures number displaced into telemeter-laser
range.

Ξmeasured={d 1, d2,… , d n} (1)

Where di is the distance measured by telemeter-laser related to i-th position into
telemeter range [-135°:135°] where 0° is signed by front direction of the robot.
The i-th position should be chosen dynamically by an algorithm evaluating
best condition of measure (for example in direction of fixes obstacle or laser
forming an angle with the surface to measure nearest to a perpendicular angle).

• Virtual distances calculation of a virtual robot position from a internal
environment model (e.g. from global map data base).

Ξvirtual={v1, v2,… , v n} (2)

Where vi is the virtual distance measured from an algorithm respect a position
given in input by the optimization algorithm explained in chapter X. The i-th
index related to position respect robot orientation are the same angle of real
distance measured from telemeter.

• Define a cost function Z in relation with Ξmeasured and Ξvirtual .

37

Z=∑
i=0

n

∣d i−vi∣ (3)

• Minimize the const function thanks the optimization algorithm. The minimum
cost function correspond to robot position into environment.

4.2.a Gradient optimization algorithm

The method uses the negative of the gradient vector as a direction for minimization. The
algorithm start from an initial trial point X1 (for example a fixed initial position or the
last computed position from step before) and iteratively move along the steepest descent
directions until the optimum point is found.

The gradient of a function is a n-dimension vector defined as:

∇ f
nx1
={ f / x 1

⋮
 f / x n

} (4)

The evaluation of the gradient (4) required the computation of partial derivatives. The
function is differentiable at all the points, but the calculation of the components of the
gradient, is either impractical. So has been used the forward finite-difference formula:

 f
 xi
∣

X m

≃
f (X m+ΔX i

ui)− f (X m)
ΔX i

i=1,2 ,… , n (5)

Where ui is a n-dimensional vector whose i-th component has a value of 1, and all other
components have a value of zero. ∆Xi is a scalar quantity chosen with some care which
represent the increment.

For better results has been used the central finite difference formula to find the
approximate partial derivative:

 f
 xi
∣

X m

≃
f (X m+ΔX i

ui)− f (X m−ΔX i
ui)

2⋅ΔX i

i=1,2 ,… , n (6)

The steepest descent method can be summarized by the following steps [20]:

1. Start with an arbitrary initial point X1 (e.g. prefixed initial position if first
iteration or detected position from last algorithm iteration). Set to i=1 the
iteration number.

2. Find the search direction Si defined as:

S i=−∇ f i=−∇ f (X i) (7)

38

3. Determine the next point Xi+1 from point Xi and step length λ :

X i+1=X i+λi⋅S i=X i−λi⋅∇ f i (8)

4. Test the new point Xi+1 for optimality. If this last one is optimum, stop the
process. Otherwise go to step 5.

5. Set the new iteration number i=i+1 and go to step 2.

For better results was used the displacements given by odometry between two
localizations to enhance the accuracy of the initialization of the algorithm: initialization
position = previous computed position + displacements computed from odometry
between two execution of localization process.

39

Fig. 33: Localization algorithm procedure.

4.2.b Algorithm results

Pictures 34,35,36 show from different point of view the representation of cost function
into local map robot environment. The darkness blue color mash identify the minimum
function value (local minimum) or better the robot coordinate displacement.

40

Fig. 34: Cost function plotting 1.

Fig. 35: Cost function plotting 2.

Pictures before shows that local minima problems can occur, potentially leading the
localization algorithm to make errors. In order to prevent this to occur, it is important to
initialize the localization algorithm as close as possible from the real robot position, and
this leaded us to make the robot always begin its navigation at a known position (in
order to initialize correctly the localization algorithm and keep it efficient iteratively
once the robot begin to move). Practically, was measured localization accuracy inferior
to 3%, which was judged sufficient enough for the navigation.
For to validate the accuracy between results from localization algorithm (red lines) and
real robot position into the environment (blu lines) were made measures:

Fig. 38 shows a simple representation of internal model map alias of the real
environment of robot. For localization and navigation has been assumed a known
environment. The architecture part which build up a map within a unknown

41

Fig. 36: Cost function plotting 3.

Fig. 37: Results measured from localization algorithm (red lines) between real robot
positioning (blu lines).

environment is not thesis argument. External rectangular shape (defined by continuous
line) represent the border of arena. A rectangular obstacle is located inside. A function
compute the distances from a trial position and orientation (x,y,θIMU) and defined angular
given as arguments.

Expression (9) report the algorithm virtual measures from a set of defined angles in
degree (10) related to the detection range of the telemeter-laser [-135°:135°]. These
results was compared with real measures and considering an accuracy of 0.6% from
telemeter-laser measures, has been obtained 3.6% accuracy results for final robot
position.

Ξvirtual=(57,83,221 ,225,295 ,246,233 ,279 ,247,217 ,239) [cm] (9)

Ξangle=(−135 ,−108 ,−81 ,−54 ,−27 ,0 ,27,54,81,108,135) [deg] (10)

Picture (39) shows a MatLab execution of localization algorithm. The green point
identify the initial point of the robot. A second random point (red color) is chosen
closeness and the minimum local direction is designed from segments connecting the
two points. Picture (40) shows the cost function value at each optimization algorithm
computation. A convergent solution has been reached.

42

Fig. 38: Virtual distances computation.

43

Fig. 39: MatLab localization algorithm evaluating

Fig. 40: MatLab cost function assumption.

44

5 Classification of navigation methods

5.1 Introduction to navigation

The ability of navigation for an autonomous robot mobile is one of the most important
aspects. The navigation task is drive the robot in the environment doing evolution in the
best possible way. This is possible determining it own position in the environment, and
follow the best possible trajectory to achieve own tasks depending from the application
field. Typical behaviors is for example planning a path towards some goal location (or
rather, what called path planning), adapting own velocity to different circumstances
such as the traffic road or more in general integrate the constrains in order to ensure that
the robot is able to perform physically the trajectories requested. The robot must be free
also to takes decisions in real-time on the basis of its current perceptions to carry out
displacing in the environment. The navigator is a key point for an autonomous robot
mobile, it mades the connection between the movement capabilities of the robot and the
environment.

In the robot's control architecture, the navigator receive multi inputs. From path
planner block receives a path, which can be in different forms more or less complete: a
series of waypoints coordinates, may be contain additional information such as the
orientation angle, speed of the robot or also auxiliary information such as a waiting time
to stop in that point.
Several methods of navigation have been presented in the literature, where has been
introduced many different choices in the design process. As part of the navigation of
robot autonomous mobile, three main approach can be defined. Methods without
explicit path (such as Artificial Potential Fields (APFs), Neural Networks, and Fuzzy
logic); and methods of “trajectory tracking”. This last one allows to the robot “the best
possible” commands to follow a given reference path knowing kinematic constrains. In

45

Fig. 41: Navigation block into robot's
control architecture.

this method a further division leads to consider methods of navigation based on the
robot invert kinematic model (IKM) and method using direct kinematic model (DKM),
described in chapter 5.4 .

5.2 Classical methods by force filed-based

The first methods consists in force field-based models. Obstacles can be considered
such as repellents barriers and the robot attractive for itself so that it seeks to get closer.
Planning or anticipate the trajectory of the robot is not necessary within these methods
because robot's displacement is conditioned instant by instant from collected
information on it local environment.

5.2.a APFs (Artificial Potential Fields)

Artificial Potential Fields. APFs is a first type of approach to solve the problem of robot
navigation. The obstacles generate a repulsive potential field for robot and intensity is
inversely proportional to the distance to the obstacles. The field is minimal to the point
that the robot must reach, the idea is to move the robot in the gradient direction of the
strongest negative potential.
APFs often represented a good solution to achieve a fast and reactive response to a
dynamically changing environment, it has also the advantage to be simple to implement
and not required high computational capacity. However, it has been widely
demonstrated that they suffer from unavoidable drawbacks [21]. In particular, since the
law of motion of the robot is basically determined by descending the gradient of the
potential field, it is very likely for the robot to get trapped into a local minimum. And
only invoking for example a planner, the problem can be solved. Yet more harmful, the
presence of movings obstacles and sensor noise, significant deviations from the original
path can lead to a deadlock configuration from which it is harder to escape [22].

46

Fig. 42: Potential Field method.

5.2.b ANN (Artificial Neural Network)

Artificial Neural Network (ANN). This method is a biologically inspired techniques,
based on nonlinear mapping functions of several variables. A neuron is an electrically
excitable cell that processes and transmits information through electrical and chemical
signals. A chemical signal occurs via a synapse, a specialized connection with other
cells [23]. In Artificial Neural Networks the design principle is the many-to-one
mapping between inputs of the system (where each input is assigned a different weight
called synapse weight); if the amount of weighted signals of the different inputs exceeds
a threshold, the output takes a positive value (neuron fires). Such relation can be
represented as:

y= f (ω0 u0+ω1 u1+…+ωn un)= f (∑
i=0

n

ωi ui) (11)

where:
ω0 ui : array of weighted input values.
y : desired output of the system.

Fig. 43 shows the schematic diagram of a simple neural network. Depending on the
structure of the network, a neural network may comprise one or more input an only one
output, it consists of different layer of neurons. The first layers is associated to
detection, related in robotic to the information supplied by the sensors of the robot. The
upper layers correspond to layers of interpretation, which allow to the network an
interesting property, so called learning procedure. Is essentially an algorithm that makes
it possible to find parameters (adjust the various synaptic weights in Fig. 43) such that
to minimize the error; which means that the function matches given input-output values.
The parameter are typically obtained recursively by giving both an input value and the
desired output value to the function.

5.2.c Fuzzy Logic

Fuzzy Logic. Fuzzy Logic should be defined as a method for logical reasoning, (based
on probabilistic logic) that is approximate rather than fixed and precise. The advantage
is their simplicity, but differ from the human way reasoning. Objective is achieved by

47

Fig. 43: Neural network schematic diagram.

introducing linguistic variables and associating them with membership functions. So, in
contrast with traditional logic where a binary sets may have only two values: true or
false; Fuzzy Logic may have a truth value which ranges between 0 and 1. In this way
this method extend the concept of partial truth: the truth values varying between a range
of completely true and completely false; managed by specific functions when linguistic
variables are used. Quantify the concept of proximity of an obstacle, Fuzzy Logic
involve concept of “close enough” or “too far” instead of binary definitions such as
“obstacle” or “non obstacle”. A block diagram of a fuzzy PD controller is shown in Fig.
44. The principle of a controller based on fuzzy logic is divided in three phases. The
first is a process called fuzzification where the measured values of the linguistic
variables, the control error 'e' and the time derivative of the error 'ce', are converted into
linguistic values. In essence, fuzzification process converts continuous values of the
linguistic variables into a discrete collection of linguistic values such as Negative Big
(NB), Positive Zero (PZ), etc.. The second one use a control strategy expressed in terms
of a function, defined in terms of “if-then” rules, that maps linguistic variables to a
linguistic values. A final phase is called “defuzzification”, the inferred output of each
function, representing the linguistic value, is aggregated. The linguistic set representing
the control that is then mapped into a real number in order to send command 'u' to the
actuators.

Fuzzy Logic such as APFs are subject to local minimum problems, in robot navigation
the robot can remain trapped in dead ends and other technique are needed to overcome
this problem. An other problem in autonomous navigation is the need to cope with the
large amount of uncertainty that is inherent of natural environments [24].

5.3 Method by IKM

A second type of approach to solve problems of navigation consist to consider the
kinematic robot model. In particular generally require to determine an inverse kinematic
model (IKM) or its invert dynamic model in such a way to calculate the commands to
be sent to the robot (joint space), knowing the path that the robot has to follow (in the
Cartesian space). While for most industrial and mobile robots the determination of the
direct kinematic model is relatively simple and always leads to equations in closed
form; inverse kinematic problem is more complex solution of the previous. Not always
the equations can be written in closed form, and sometimes the problem is reduced to
solve non-linear equations in several unknowns that many possible solutions.
The determination of this model is often the focal points of navigation method, in fact
the goal is to get the best possible convergences of the robot to the reference trajectory.

48

Fig. 44: Block diagram of the fuzzy PD controller [24].

5.3.a Non-holonomic systems

A method that ensures the robot to follow an accurate path is through his inverse
kinematic model. Or rather this model allows to calculate directly the commands to be
sent to the robot (joint space) knowing the path reference (in Cartesian space).
Determination of such model is often the focal point of some type of method which goal
is to get the best possible convergence of the robot to the reference trajectory.

The problem occurs in mobile robots by the fact that almost are non-holonomic. This
mean that an analytic model cannot be defined and in some situations is impossible to
generate a trajectory following a desired path.
Non-holonomic vehicles are systems for which the number of controllable states is
larger than the number of d.o.f. (degree of freedom). A non-holonomic system mean that
some states cannot be instantaneously controlled, but could be controlled via the
execution of maneuvers. A typical example should be illustrated by the classical car
parking problem. This type of vehicle cannot move instantaneously sideways, force the
conductor to do a series of maneuvers in function by the circumstances and their
capacity.
Generally, all wheeled mechanical systems or provided by rolling parts, are non-
holonomic systems if associated with the wheels property of “rolling without slipping”.
Some approaches resolve this problem by using flat outputs [25] or transverse functions
[26].

5.3.b Function plat

Flat outputs. The flatness property is useful for both the analysis of the controller
synthesis and for non-linear dynamical system. It is particularly advantageous in the
context of tele-operation where the path is provided by the user, or for solving trajectory
planning problems and asymptotical setpoints following control of a robots fleet where
trajectory is determined by the leader. The system theory of flatness was introduced in
1995 by M. Fliess [25] that extends the notion of Controllability from linear system to
non-linear dynamical systems introducing a special type of feedback called endogenous.
A non linear system:

49

Fig. 45: IKM commands generation.

ẋ(t)= f (x (t) , u(t)) x∈ℝn , u∈ℝm (12)

where:

 has the property of differential flatness if there is a set of measurable variables y (the
outputs flat), such that the state x and the input u can be expressed as real-analytic
functions of the components of y=(y1, … ,ym) and of a finite number of their derivates:

x=A(y , ẏ ,… , y(α))
u=B(y , ẏ ,… , y(β))

 (13)

The variables state of the robot (linear and angular speed) are expressed in terms of flat
outputs (x and y position and their derivates parameterized by time). The problem
became to reaches the desired state respecting the time of flat output and according with
the constraints set.
The fact that the system is flat can prove the convergence of trajectories to the desired
trajectory.
Advantage of writing the system in this form, is that it allows to prove the convergence
of the system to desired path. The downside is that there is no systematic method for
determining the flatness of a system.

5.3.c Transverse functions

The Transverse Function approach [26] is a method developed for treating the problem
of control laws stabilization of reference trajectories. This method found particular
applications in holonomic systems. For non-holonomic systems, several difficulties
occur: from a well known result in nonlinear control theory, Brockett's theorem, shows
that for non-holonomic vehicles, asymptotic stabilization of fixed points is not possible
with smooth feedback laws. The linearized system is not controllable in proximity of
this points. The objective of the transverse function approach provide feedback laws that
achieve practical stabilization of any reference trajectory, in particular asymptotically
converges to an arbitrary small neighborhood of reference trajectory. The transverse
functions approach offer a practice solution to asymptotic problem of a trajectory
reference [27] [28] based on additional frequency variables to control input. These
variables relies on the existence of a function f satisfying transversality conditions.
These functions allows a set of benchmark parter to the vehicle in a close vicinity that
are slave to the reference path [27].
These two approaches that can solve problems arising from using IKM are penalized by

• high computation cost.
• determination of a specific robot's model, which is not trivial and non-

systematic.
• limitation is the formalization of inequality constraints (joint limits, obstacles,

etc.) inside IK.

50

f (0,0)=0

rank (f (0,0)
u)=m

5.3.d Visual method

Visual method for autonomous navigation. Other methods for monitoring trajectories
are based on the recognition images along the way taken by a camera or a telemeter
laser. The idea is to drive the robot during a manual recording phase along the desired
trajectory. Once the database is created, the next phase of autonomous trajectory
tracking can be achieved comparing at each sampling instant the image taking by the
robot with the correspondent on the database. By the correlations between the two
images the robot commands are calculated to lead it following the trajectory reference
[29]. This method has large application in transportation systems in indoor and urban
areas. For this last one an efficient visual memory management and small computational
cost are required to ensure real-time navigation specially in large-scale outdoor situation
[30].

5.4 Method by DKM (Direct Kinematic Model)

An other alternative family of navigation is introduced in this part and with more details
will be treated in the next chapter. This method takes advantages of the fact that it is
based on an element always defined in the robot mobile: the Direct Kinematic Model
(DKM). This last one for almost all robot mobile assumes a simple form and also is easy
to determine analytically. These methods consist to generate a trajectory based on the
direct kinematic model. Afterwards a criterion will be applied to choose the one that
results in the expected behavior.
Appendix A refers to DKM formalization of a differential wheeled robot such as the
WifiBot model. Considering a control function u [t0, t 0+T p] , where the time Tp is a
prediction horizon time, injecting this function into the kinematic model, the evolutions
of the robot in the cartesian space Ẋ=(ẋ , ẏ ,θ̇)T is obtained.
By integration of this evolution in the prediction time, the trajectory Γ[t 0, t 0+T p]
corresponding the control function u [t0, t 0+T p] is generated from robot's initial
position X (t 0)=(x(t 0) , y (t 0) ,θ(t 0)) . See Fig. 46.

51

Fig. 46: Trajectory generation based on DKM.

52

6 Navigation by DKM

6.1 Navigation by DKM (Direct Kinematic Model)

This chapter presents methods of navigation based on direct kinematic model of the
robot. Technique particularly suitable for robot mobile with strong conceptual
constraints such as non-holonomic and low degree of mobility. All trajectories from the
direct model assure a feasible path of the robot by the fact that cinematic constrains are
taken into account and also these trajectories can be projected into a representation of
the environment of the robot. In this way it is possible to select the optimal path
according to defined criteria, which allows the robot to a given position avoiding
obstacles. The idea is looking which movements the robot is able to perform choosing
the most suitable at the present situation knowing the current configuration (position
and orientation), current kinematic state, and environment. So several parameters must
be integrated to make sure that navigator allowing the ability to predict a trajectory
achieved by the robot in a given horizon time.

6.2 A classical “Model Generation”

A method “Motion Generation” has been developed by Bonnafous [31] that determines
safe motions for an articulated rover on rough terrains. Uses the principle of projection
trajectory achievable by the robot in a pattern of the local environment, and finally
thanks a risk criterion (e.g. related to obstacles collision), associated to each path
generated. The path performing the best result according with assigned mission, is
chosen. This method for streamline the computational work by the fact it use a large set
of trajectories; these are predefined and stored in a database. So this method does not
use the kinematic model directly bringing a limitation to this method: adaptability to all
type of robots is not straightforward.
A robot LAMA (LAAS) application of this methods is showed in Fig. 47, where the set
of trajectories in the form of arcs and circle are projected into the middle space.

53

Fig. 47: Motion Generation method apply to LAMA robot (LAAS).

6.3 Escape line method

The “escape lines” method, developed by C. Novales [32], is a improvement of the
precedent method. This one differs because use directly at run time the robot kinematic
model to generate a set of trajectories considering the kinematic robot constrains and
also the time horizon. The final trajectory selected is one that is more in the reference.

This method is composed by different stages (see also Fig. 48):
Step 1: Trajectory generating. The first part of the method generates trajectories from
commands eligible by the kinematic model of the robot (i.e. its possibilities of
movement), respecting the kinematic constrains, actuators saturation constraints (e.g.
maximum speed), dynamics constrains (e.g. acceleration and deceleration), and the
temp horizon.

Step 2: Elimination of non-free “escape lines”. Compare all trajectory in the out space
with the map of the obstacles known the relative distance from that and the current
position of the robot. So the objective is to delete trajectories which projection into local
map intersect or pass too close obstacles.

Step 3: Best trajectory selection. The last part choose a free trajectory that achieve a
minimal cost by the proposed trajectory of reference. The related trajectory commands
are then sent to the robot to achieve the desired movements.

Advantage of this method derive by the use of direct kinematic model which always
exist and is simple to determine. This method is easily adaptable to most type of robots
mobile and navigation methods.
Disadvantage of this method reside by the fact that hardware limitations implies a limit
of trajectory projection into the environment (Fig. 49). So the set of trajectories eligible
by the robot is obtained by discretization of commands acceptable by the robot. A trade
off is needed between the number of trajectories generated and the accuracy reference
path. Although it tests different trajectories over a prediction horizon, it is still subject to
local minima problems which may occur for example when the robot is in front of a U-

54

Fig. 48: Escape Lines principle.

shaped obstacle. Avoiding minima local is possible providing to navigator well-posed
way-points from the planner.

This method has been applied to a CyCab robot mobile: a vehicle type with four
steering wheels. Simulation of navigation results are shown in Fig. 50 where the
trajectory in continuous line and the perpendicular segments indicate the sampling
frequency of the method in a 40x40 m2 area. The reds crosses are the waypoints.

55

Fig. 50: "Escape lines" navigation method for a vehicle robot
mobile (CyCab).

Fig. 49: Map free-trajectory projection.

6.4 Predictive navigation based on DKM

A new navigation method for mobile robots navigation is proposed in this chapter. It
aim to improve the precedent “escape lines” method providing a more degree of
robustness to local minima problems, which is the strong point of this method. Proposed
by Nicolas Morette (Lab. Prisme) is a direct kinematic model based, using a predictive
control approach, see thesis: [33]. To allow a better exploitation of the robot kinematics
performances, the problem to research the optimal trajectory is shifted in a continuous
parameters space. An algorithm of optimization is used to achieve this scope bypassing
obstacles and in particular avoid incurring in unwanted local minima. The model of the
system is used to predict its evolutions over a time horizon after a trajectory criteria
evaluating explained in the next paragraphs.

In the Chapter 6.2 and 6.3 have been presented navigation methods (by DKM) which
characteristic is to perform in a discrete space: the number of trajectories generated is
limited due to limitations previously described, thus the choice of the best trajectory
cannot be optimal [34] and this hit in a uncertainty in the controlled system. In order to
overcome the limitation previously mentioned, this new method of navigation contribute
to propose a continuous formalism based on the successfully tested model predictive
control (MPC). Predictive control is an advanced control method that uses a model
control system to predict its behavior in the future. Then at each sampling time, the
optimal sequence of commands calculated, is applied to the system. So the problem
system to perform a optimal trajectory has to predict its changes over a given time
period [TP], and during the interval [t0 , t0 + TP] the commands sent to the robot. The
problem is set as an optimization problem under constraints where the error to minimize
is between the reference path and the expected path of the system. The problem of
navigation mobile can be addressed as a constrained optimization problem, considering
the obstacles and the robot kinematic constraints to perform the minimization
commands to give at the robot.
This method requires a reference trajectory, by the fact that only way-points list are
provided by Path-Planner block (a way-points is a data set containing coordinate in the
map, speed, and preferably direction that the robot has to achieve in that point).
The proposed method of Navigation is composed by several steps. Firstly a geometric
curve from his position (given by the localization block) and intersecting way-points is
generated. Without consider environment informations (e.g. obstacles), or other robot
constraints which are considered in next steps.
At this point, the Navigator has all the tools to generate by commands input to the
kinematic model a trajectory which is closer to the reference. The reference trajectory is
obtained adapting the geometrical path to some robot constraints. For example is
necessary to assure a reference trajectory distance according to the capable robot speed
and prediction time. An optimization algorithm (Simulated Annealing Cap. 6.4.e)
evaluating a minimization cost function trajectory; according with a number of
constraints such as minimum/maximum speed (commands u), obstacles (by an
integration of a local map of the environment) , prediction time (TP), and the state of the
robot by the fact permitting a real time problem solution. The optimization problem
solution (commands u: left and right speed for example, related to a prediction time
trajectory design) is computed periodically according to the sampling time (TS).

56

6.4.a DKM trajectories

A trajectory is achievable from the robot if it respects the possible movements of the
robot by the fact that always robots mobile are non-holonomic systems. Despite this,
using the direct kinematic model and a possible robot speed value, is possible to predict
a trajectory that the robot can perform in a given prediction time horizon.

The Reference curve ξref . Computing the reference curve is one of firstly action carry
out from the navigator. The objective is connecting the current state (absolute position
into the map, orientation and velocity) of the robot X 0=(x0, y0,θ0, v0)

T between a

desired state X d=(x d , yd ,θd , vd)
T corresponding to the next waypoint to reach; then

respecting position (xd , y d) , orientation θd , and linear speed v d provided by
the path planner block. The reference curve is a purely geometric curve, which is not
related to the time, but may take into account certain geometric constraints related to the
mechanical structure of the robot such as size and turning radius. To obtain a continuous
ξref curve is necessary maintain continuity with their derivatives. Typically

polynomial curves are used as Bézier or Beta-splines. In the implementation has been
used Bezier curve reference (from the French engineer Pierre Bézier) given by
following form:

{ x(t)=(1−t)3 x 1+3t (1−t)2 x2+3t2(1−t) x3+t3 x 4

y(t)=(1−t)3 y1+3t (1−t)2 y 2+3t2(1−t) y3+t3 y 4

t∈[0,1] (14)

This type of curve is defined by a set of control points, in this case only four are needed:
P1(x1, y1) , P2(x 2, y 2) , P3(x3, y3) , P 4(x 4, y4) .

P1:{ x1=x0

y 1=y d

P4 :{x4=x d

y4=y d

P2: {x2=x1+
1
3

v0 cos(θ0)

y 2=y 1+
1
3

v0sin (θ0)
P3: {x3=x4−

1
3

v0 cos (θd)

y3= y 4−
1
3

v0sin (θd)

 (15)

Fig 51 shows a general bezier curve using cubic equations (14). The vectors P1 P2 and
P3 P4 are tangent to the curve. The thus far found reference curve is fully geometric

and independent from robot's kinematics.

57

The reference trajectory. The curve thus far obtained, can not catch directly the role of
reference trajectory because is not related to time. To determine a reference trajectory
for the robot, is necessary to associate the reference robot speed to the reference curve
ξref . Multiplying the speed reference by the prediction horizon time T P , the real

distance reasonably by the robot that go along the reference curve is obtained. The
choice of reference speed value (corresponding to a realistic moving speed of the robot)
has to be based on the type of terrain, motor speed limitation and so on.
Knowing the distance from Bezier curve ξref and the walkable real distance from the
robot, introducing a temporal parameterization on the reference curve ξref is now
possible to obtain a reference trajectory.
Denoted D∈ℝ the total length of ξref , the robot is able to cover a real distance:

d real=vmax∗T P during T P . Is now possible to perform a time parametrization of
ξref . So two cases are considered: d real⩽D and d real>D . In this chapter only

formulation principle is presented, Cap. 7 treat practical implementation solution.

• d real⩽D This condition is verified when during T P the robot cannot cover
the totality of the proposed curve. In this case, the reference trajectory
corresponds to a reduced part of the geometric curve. This situation is shown in
Fig. 52. So the equation of the reference trajectory is computed with the respect
to the initial and final constraints. The time parametrization is obtained
considering the new coefficient into the Bezier equations :

{x r(t
')=(1−t ')3 x1+3t ' (1−t ')2 x2+3 t ' 2(1−t ') x3+t '3 x4

y r(t
')=(1−t ')3 y1+3t(1−t ')2 y2+3 t ' 2(1−t ') y3+t ' 3 y4

 (16)

58

t '=
d real

D
∗t , t∈[0,T P]

Fig. 51: Bezier curve and control points.

• d real>D In this case the robot is able to reach the next waypoint during the
time prediction horizon. So the next waypoint provided by the path planner list
has to be considered and the next one Bezier calculated. The amount of new
Bezier will be integrated to first one by distance difference. Fig. 53 shows
clearly this procedure:

A note about, the trajectory reference which does not takes into account of the local
environment and robot's physics constraints. Adapt the reference speed could be made
through information provided by the mission planner, from ground state, and
dependency on congestion of the route [33].

59

Fig. 53: Trajectory reference by Bezier curves
composition.

Fig. 52: Trajectory reference obtained by reducing
reference curve.

6.4.b Local Map

The local map should be defined as a model of the environment, elaborated from
perception part of robot's control architecture. It consists from all informations that
sensors capture in a specific instant. The local map is constantly updated with new
informations from external sensors which are processed by the lower perception blocks.
The maximum range of the local map corresponding to the maximum measuring range
of the sensor. An example is shown in Fig. 54 where WifiBot camera imaging is
captured and overlying the related telemeter-laser measure in the environment. A local
map should be also represented by a telemeter laser range where measures are described
as vectors of distance and showed in a radial disposition l(see in Fig. 55).

60

Fig. 54: Camera imaging capture and telemeter laser
measures.

Fig. 55: Telemeter area scanning.

6.4.c Robot Commands

How mentioned in the top of this chapter, the navigation problem can be set as an
optimization problem under constraints. The scope is to minimize a cost function Z. The
variables on which plays to minimize this criterion are the commands. The u control
function is a vector of m components, each one corresponding to one of the robot's
actuators:

u(t)=(q̇1, q̇2,…, q̇m)
T ; t∈[t 0, t 0+T P] (17)

where q̇i is the articular velocity of the ith actuator.
In the case of a differential wheeled robot such as WifiBot robot mobile, should be
defined the angular left and right speed [rad/s] :

u(t)=(ωL(t) ,ωR(t))
T ;u∈ℝ[2x1] , t∈[t0, t0+T P] (18)

and for a CyCab robot vehicle u(t) is defined as linear speed [rad/s] and steering
component:

u(t)=(v(t) ,ξ(t))
T ; u∈ℝ[2x1] , t∈[t 0, t0+T P] (19)

Giving the commands into kinematic model input, the robot displacement vector in the
Cartesian space is obtained. Or rather, the trajectory in the time horizon TP is defined as:
Γ [t0, t0+T P] .

For the WifiBot a class of control family is defined by four parameters
P=(p1, p2, p3, p4) :

{ωL(t)=ωL(t0)+ p1

ωR(t)=ωR(t0)
+ p2

t∈[t 0, t0+
T P

2
]

{ωL(t)=ωL(t 0)+ p3

ωR(t)=ωR(t0)+ p4

t∈[t0+
T P

2
, t0+T P]

 (20)

Before giving commands into to the kinematic model, constraints of acceleration and
deceleration are considered into news commands, allowing by ramps generation a
gradual velocity variation in time (where cceleration values depends from robot level
battery). The motion laws considered are trapezoidal motion profiles:

61

The use of four parameters are necessary to provide a by-pass trajectory generation.
Only two parameters they can only generates a linear trajectory or arc in the same
direction, as is showed in Fig. 49 . This implies a obstacle motion limitation during the
horizon time prediction. To by-passing obstacles a veer is needed, translated into
commands mean the use of four parameters. In this way four parameters permit to
execute a robot change deviation during the time prediction, enabling the generation of
by-pass trajectories.
The space of admissible solution is infinite dimensional, in fact an infinite number of
admissible parameterized control function u can be defined on the prediction horizon
time. Hence, performing a continuous variation on the four parameters, thanks the use
of the robot kinematic model will be generated an infinite number of admissible
trajectories. This makes the search for optimal solution very complex.

6.4.d Cost function structure

From Cap. 6.4.a follows that the non-holonomy constraints are implicit in the
formulation of the problem. For against, kinematics constraints such as actuator
saturations, must be clearly formulated by the way to achieve a realizable trajectory. So
the cost function has also to take into account the environment: informations from local
map database. So the optimal trajectory corresponds to a trajectory Γ [t0, t0+T P]
which is the nearest to the reference trajectory, where robot and environment constraints
are included. The returned cost function value is the means to evaluate the trajectory
into admissible space of solutions. The cost function Z is structured in three part how
shown in Fig. 57:

62

Fig. 56: CyCab motion law commands.

The cost function should be defined as follows equation:

Z=Zplanif+Zrobot+Zenv (21)

where:
− Z planif quantifies the difference between the reference trajectory and the

evaluated paths of the robot; the cost is composed by a first stage cost function
and a terminal cost function. The two function are based on computation of the
quadratic distances point by point of evaluated trajectories.

− Zrobot quantifies the constraints inherent to the robot such as actuators
saturations and dynamics constraints. In a wheeled mobile robots, they are
usually related to the wheel's maximum rotation speed, the maximum
acceleration and deceleration.

− Zenv quantifies constraints of the environment, penalty due from fixed or
mobile obstacles. It is assumed that the local map environment is known as a on-
line refreshed occupancy grid [35] where to each square of the grid is assigned a
boolean value indicating the occupancy.
The cost is calculated projecting the trajectory to evaluate into the grid, and a
zero cost identify a free trajectory from obstacles. One can note that the
proposed DKM predictive control method is independent from the map
representation type, for example Bayesian occupancy grid or a potential field
map can be integrated.

63

Fig. 57: Cost function structure.

6.4.e Optimization algorithms comparison

This chapter aims to illustrate motivations that leads to adopt the navigator's algorithm
optimization. A critical obstacle situation is illustrated in Fig. 58, or rather the robot
encounters an U-trap shape obstacle. The first simulation, performed by Nicolas Morette
[34], a deterministic algorithm has been implemented.

• The deterministic algorithm is trapped in this local minimum in the parameters
space (Fig. 58 - top left and bottom left) and cannot find the four parameters

P=(p1, p2, p3, p4) corresponding to the global minimum of cost function Z
(expression 21).

• The stochastic algorithm manages to find the parameters regardless the initial
settings (see Fig. 58 - top right and bottom right) and is not subjected by local
minimums.

The success of the deterministic algorithm, to find the global minimum, highly depends
from parameter initialization. The simulated annealing algorithm provides less accurate
results but they are constantly near to the global minimum.

How display Fig. 58, the complete bypass trajectory is obtained from stochastic
algorithm, in particular simulated annealing algorithm [20].

64

Fig. 58: Comparison between a deterministic and stochastic algorithms in
presence of minimum local.

6.4.f Simulated annealing optimization algorithm

Cit. [36]: The evolution of nature led to the introduction of highly effective and power
efficient biological mechanisms; result of billions of years of evolution. Failed solutions

often led to the extinction of the specific species that became a fossil.

Imitating the mechanisms of nature, offers enormous potentials for the life
improvement. It becomes significant to mimic biological methods, processes and
systems.
In robot mobile, every change of environment (e.g. an mobile obstacle) involves to
consider a new configuration of the robot and this require a new complete computation
of the trajectory. It should be necessary to adopt algorithms to satisfy optimization of the
motion.
Simulated annealing (SA) optimization algorithm has been used to find the optimum
trajectory. The idea of SA comes from N. Metropolis in 1953 [37], which is motivated
by the physic annealing process. This method can find the global minimum with a high
probability and is also applicable for the solution of discrete optimization problems. The
term of this optimization method derives from the process of material (metal) cooling at
a slow rate, known as annealing. The method is based on the simulation of thermal
annealing of critically heated solids [20]. For example, when a metal is brought into a
molten state by heating it to a high temperature, the atoms move freely. The metal state
attain a high energy state. As the temperature reduces, the atoms movements get
restricted. The atoms tend to get ordered and forming crystals having the minimum
possible internal energy. This process of crystals formation depends essentially on the
cooling rate.
If the temperature of the molten metal is reduced at a very fast rate, it may not be able to
achieve a crystalline state. So a polycrystalline state may be obtained having a higher
state of energy than that crystalline state. Rapid cooling may introduce defect inside the
material.
Thus the temperature of the heated solid (molten metal) needs to be reduced at a slow
and controlled rate to ensure proper solidification with a highly ordered crystalline state
that corresponds to the lowest energy state (internal energy).

The simulated annealing method aim to achieve the minimum function value in a
minimization problem, simulating the process of slow cooling of molten material. The
cooling phenomenon is simulated introducing a temperature-like parameter and
controlling it using the concept of Boltzmann’s probability distribution. This last one
implies that the energy (E) of a system in thermal equilibrium at temperature T is
distributed probabilistically according to the relation (22):

P [E]=e−Δ E /kT (22)

where P(E) denotes the probability of achieve the energy level E, and k is the
Boltzmann's constant. At a high temperature levels, equation (22) shows that the system
has nearly a uniform probability of being at any energy state. In fact the term P(E) tends
to a unit value. However, at low temperatures, the system has a small probability of
being at a high-energy state. These observations indicates that when the search process
is assumed to follow Boltzmann's probability distribution, the convergence of the SA
algorithm can be controlled by controlling the temperature T. The temperature at k-th

65

iteration Tk is given by the following cooling function:

T k=(1−
k

k max

)⋅T 0+T min (23)

Considering the function minimization problem, let the current design point (state) be Xi

, the corresponding energy state Ei of a thermodynamic system is given by function cost
fi=f(Xi). So the energy Ei at state Xi is given by

E i= f i= f (X i) (24)

According to the Metropolis criterion, the probability of the next design point Xi+1

depends on the difference of energy state (or cost function value) at the two design
points (states) given by

Δ E=Ei+1−E i= f i+1− f i= f (X i+1)− f (X i) (25)

The new state Xi+1 can be found using the Boltzmann's probability distribution:

P [Ei+1]=min (1,e−Δ E /k T) (26)

Equation (26) return the minimum value between 1, chosen for simplicity and the
exponential function. If the function value at Xi+1 is smaller than at Xi , according with
(25), ∆E<0, and (26) give P[Ei+1]=1 ; and the point Xi+1 is always accepted. This is a
logical choice in the context of minimization of a function, reaching the smaller energy
state of the system. On the other hand, when ∆E>0, the function value fi+1 at Xi+1 state is
worse than the one at Xi state, the probability of accepting the point Xi+1 is finite
according to the Metropolis criterion.
Note that the probability of accepting the point Xi+1 is not the same in all situations, but
depends on the values of energy and temperature. If the temperature is large, the
probability for design points Xi+1 will be high. Thus at high temperatures, even worse
design points Xi+1 are likely to be accepted, thanks a high probability of equation (22).
However, if the temperature is small, the probability of accepting worse state points Xi+1

will be small. Fig. 59 illustrate a flow chart related the simulated annealing procedure.
From literature [20] this method benefits meanly by follows features:

1. the quality of final solution is not affected by the initial guesses, but worse
starting designs may increase computational effort.

2. the convergence or transition characteristics are not affected by the continuity or
differentiability of the functions, thanks the discrete nature of the function and
constraint evaluations.

3. The convergence is also not influenced by the convexity status of the feasible
space.

On the other hand this method require a detailed parametrization (e.g. the choice of the
initial temperature, the temperature reduction factor called cooling rate) because they
play important roles in the successful of convergences SA algorithm. All these

66

parameters still remain an art and generally require a trial-and-error process to find
suitable values. Chapter 7 propose navigator results assuming following
parametrization:

• The temperature reduction strategy (also termed the cooling schedule) is
function of iteration algorithm number how shows linear equation (23).

• A random steps of 2-4% are performed in the parameter space because the new
design point from actual state must be taken in the vicinity of the feasible space
research. The random step unit is in rad/s according to the robot speed
commands unit.

• The choice of the initial temperature has been chosen as the average value of the
objective function (cost function) computed at a number of randomly selected
points in the design space.

67

Fig. 59: Simulated annealing procedure.

68

7 Navigation results

7.1 Introduction

This chapter shows the predictive navigation results by direct kinematic model
mentioned on chapter 6 . The navigator provides optimal trajectories according to the
environment, robot constraints and the path planner block. This last block is located in
the higher levels of the architecture. The path planner send to navigator a list of
waypoints processed with first-come first-served service. The navigator commands
continuously the robot into environment: from its actual position to the next waypoint.
The trajectory, based on specific direct kinematic model of the robot under test, is
computed thanks to an optimization algorithm. The optimal commands, solution of the
problem, corresponding to the optimal trajectory, are then given to the pilot. So the
navigator moves the robot autonomously continuously towards a destination point to
point into the map.

7.2 Navigator performances

In order to test the navigation method and its adaptability to various kinematics, this
method was applied to WifiBot robot model. The path planner block gives to the
navigator a list of waypoints placed into the map in vector notation (x,y,θ), where x,y is
the cartesian displacement into the map and θ is a possible orientation. Then the
received waypoints are connected thought a Bezier curve forming a path (see Fig. 60). It
is possible to note that this curve does not take into account the local environment
constraints and the robot's physic constraints. To obtain the reference trajectory, or better
the robot's admissible trajectory from the Bezier curve, the prediction horizon time [t0 ,
t0+TP] and the reasonable reached speed must be taken into account. A recursive
algorithm permit to obtain the reference trajectory from Bezier curve and waypoints,
based on effective distance covered by the robot during the fixed prediction time TP.
Fig. 60 display how the Bezier path connect a series of successive waypoints provided
from path planner block. In this case the path planner block provides waypoints located
around the obstacle, but this lucky condition, if not verified, do not compromise the
optimal solution from navigator algorithm, which avoid obstacles anyway. Thanks a
recursive algorithm, Fig. 61 display how the trajectory reference curve is obtained from
Bezier curve (continuous line) consistently the robot speed constraints. Fig. 62 shows an
optimal trajectory result from optimization algorithm, considering the reference
trajectory and robot constraints.

69

70

Fig. 61: Trajectory reference curve obtained from Bezier curve.

Fig. 60: Bezier curves connecting waypoints.

Following pictures show real results when the robot moves safely among the obstacles,
and using specific trajectories according with its motions abilities. The AS optimization
algorithm provides obstacle avoidance trajectories (and related robot commands)
solutions. In first picture (Fig. 63), the virtual border margins security are takes into
account by function constraints, lets to avoid robot impact.

Fig. 64 shows the navigation result for the WifiBot robot navigating around obstacles.
Despite the fact that the reference path intercepts obstacles, the navigator provides
obstacle bypassing trajectory solution. Enabling the robot to reach its various waypoints
while avoiding collision. The robustness of this method ensure to find a global
minimum solution, enabling the robot to diverge from the reference path when needed.

71

Fig. 62: Reference trajectory and optimal solution.

Fig. 63: Optimal trajectory considering border security margins.

Using an adapted temporal horizon enables the generation of trajectories that are long
enough to bypass obstacles:

72

Fig. 64: Obstacle trajectory avoidance

Fig. 65: Obstacle robot avoidance

Fig. 66 shows a demo where the Bezier reference trajectory (continuous track line) is
computed from way-points list. Fig. 67 shows the real track reached from mobile robot
during his evolution into the map. Is possible to note which the obstacle and borders are
avoided thanks the optimization algorithm solutions. Care was taken the robot from
impacts during the navigation thanks the safety area margins.

73

Fig. 67: Real robot reached trajectory.

Fig. 66: Demo robot reference trajectory.

7.2.a RTMaps drawing

RTMaps middleware offers a modular platform where data samples flow between
functional blocks. Fig. 68 shows the graphical window interface dedicated to data
acquisition from WifiBot robot sensors. In particular from the top, telemeter-laser
rangefinder, IMU. From WifiBot driver board returns robot speed and odometer values:
left and right side. All these datas are sent by a SocketSender block to a supervision
station, for monitoring the robot state during navigation.

Fig. 69 shows the drawing connecting different functional blocks of robot architecture.
In sequence, the localization block uses the telemeter-laser data, IMU and odometers
values to localize the robot into the map. It gives to the navigation block the robot
position (x,y,θ). Necessary from the navigation block for projecting the trajectory into
the space, to find optimal commands. Then the optimal robot commands are elaborated
by the pilot: the most reactive functional block of robot architecture.

74

Fig. 69: Localization block, Navigator, and Pilot architecture blocks.

Fig. 68: RTMaps drawing, sensors data acquisition.

7.2.b Navigation conclusions

The experimental results validate this navigation method based on predictive control
and trajectory projection through the direct kinematics model. Indeed, the robot was
able to move safely around obstacles, with fluent trajectories between the successive
waypoints, and with enough autonomy to diverge from the reference trajectory when
needed. However, was noticed that the choice of the prediction horizon multiplied by
the maximum velocity of the robot was a key factor to enable the navigator to find
bypass trajectories. Moreover the settings of the simulated annealing algorithm are very
important too, and these settings are complicated to do well (lots of parameters to set,
and sometimes no systematic methods to do this).

75

76

8 Conclusions and further work

In this thesis has been implemented and tested a new generation of mobile robot
navigator thanks to the predictive control approach. The contribution aims to the
development of an autonomous mobile robot architecture inside the PROTEUS Project.
The work was integrated in the team development of Prof. Cyril Novales and Ing.
Nicolas Morette, allowing to validate the new theory of navigation.
Into robot's control architecture the navigator has proved to be a pivot between the
lower reactive piloting and servoings levels (the continuous levels) and the upper
deliberative path and mission planning levels (usually the discrete levels). From a
deliberative point of view, practical simulations and demonstration showed that the
robot is capable of avoiding obstacles, moving safely, thanks bypassing trajectories on it
predictive horizon time TP.
Almost all mobile robots are non-holonomic, and an analytic invert model cannot be
defined: this means there are situations where it is impossible to generate a trajectory
that follows a desired path. Otherwise considering a navigation method by direct
kinematics model (DKM) leads to consider a model that can always be determined
analytically, and is often simple to define for most robot's structures. Using a navigator
by DKM means that any kinds of mobile robots can be easily adapted knowing the
robot's motion ability precisely.
The validation of this method leads to replace an existing discrete DKM navigator
(discrete because the solution is chose in a finite number of trajectories mapped into
memory) towards the presented continuous domain DKM navigator. In this way,
providing a continuous variation of parameters value is possible to generate an infinite
number of trajectories: the robot motion abilities are more throughly exploited.
The use of stochastic optimization algorithm such as simulated annealing enables the
robot to find optimal commands solution (related to obstacle bypassing trajectories) into
continuous domain. This kind of algorithm provide a trajectory offering an escape from
local minima; otherwise deterministic algorithm is not able to stay always nearly the
global minimum. On the other hand SA algorithm require a detailed parametrization
because they play important roles in the successful of convergences. Generally require a
trial-and-error process to find suitable values (the global minimum) with a high
probability. A choice and methodology was proposed in order to obtain an acceptable
minimum solution.
The robot final tests showed how the navigation method enables the robot to correctly
navigate in cluttered surroundings by avoiding static obstacles; allowing the integration
of the continuous navigation by DKM into autonomous robot's control architecture.

Further work

Thanks the use of a DKM navigation method, other kind of robot (like CyCab model)
should be tested to proving the flexibility and adaptability of this method.
The use of Simulator should be useful to test also the robustness of algorithms and robot
platform in general.
With the validation of Navigator module, in order to implement the robot's control
architecture, other methodology for pilot and path-planning modules must be simulated
and tested.

77

78

APPENDIX A

DKM for a WifiBot differential drive mobile robot

The position of the robot in a plane surface is given by the vector (x , y) , which
contains the Cartesian coordinates of its characteristic point P (geometrical center of the
mechanical structure). Usually, this point is placed in the middle of the common axis of
the driven wheels. As is possible to see in Fig. X, the orientation of the differential
mobile robot is given by the angle θ between the vector direction of the instant linear
velocity of the robot v⃗ and the local vertical axis.
The instant linear velocity of the robot v⃗ is attached and defined relative to the
characteristic point P.
As equation (27) denotes, the instant linear velocity is a result of the linear velocities of
the left driven wheel v⃗L and respectively of the right driven wheel v⃗R , where two
velocity vectors v⃗L and v⃗R are permanently perpendicular on the common
mechanical axis of these two driven wheels.. The same equation should be expressed in
terms of angular velocity known the radium wheel (28).

v=
vL+vR

2
 (27)

v=
(ω L+ωR)

2
⋅r (28)

The next two equations regrouped in (29) gives the two Cartesian components of the
linear velocity:

v x= ẋ=v∗cos(θ)
v y= ẏ=v∗sin (θ)

 (29)

The robot state should be defined as a four elements vector: {X }=(x , y ,θ , v)T where
{X }∈ℝ[4x1]

The two state equations for the linear velocity components are given using equation (27)
into (29):

ẋ=
vL+vR

2
∗cos(θ)

ẏ=
vL+vR

2
∗sin (θ)

 (30)

A third state equation representing the angular velocity of the robot, can be write as:

θ̇=ω=
v L−v R

L
 (31)

79

where L represent the length of the wheel axis.
For the simulation the model is defined to following equations:

xK=xK−1+T P∗
vLK
+vR K

2
∗cos (θK)

yK= yK−1+T P∗
vLK
+vR K

2
∗sin (θK)

θK=θK−1+T P∗
vLK
−vR K

L

(32)

where Tp is the sampling time and xk and yk the Cartesian positions of the driven
wheels in the global reference attached to the operational space.

The Kinematic model determines directly the displacement of the robot in the Cartesian
reference based on derived joint coordinates. The matrix which permit to do this is the
Jacobian matrix [ℑ] .

{ Ẋ }=[ℑ]∗{q̇ } (33)

where:
{Ẋ }=(ẋ , ẏ ,θ̇)T is the robot displacement vector in the Cartesian space.
{q̇}=(q̇1, q̇2,… , q̇n)

T is the displacement in the joint space.

However in robotic mobile wheeled this model is not always useful, should be more
useful use a simplified kinematic model which linking the robot Cartesian speed with
the command that may be apply directly to the robot:

{ Ẋ }=[C (q)]∗{ u̇ } (34)

where in the case of a robot mobile with differential wheels the vector u̇∈ℝ{2x1} is
defined by the two angular speed right and left respectively: (u̇)=(ωL ,ωR)

T .

80

81

References
[1] Krakowiak Sacha: "Middleware Architecture", .
[2] Johnson, R. E.: "Frameworks=(Components+Patterns): How frameworks compare to
other object-oriented reuse techniques", 1997.
[3] Blender: http://www.blender.org/.
[4] G. Echeverria, N. Lassabe, A. Degroote, S. Lemaignan: "Modular Open Robots
Simulation Engine: MORSE", .
[5] LAAS: http://www.laas.fr/.
[6] M. Quigley, B. Gerkeyy, K. Conleyy, J. Fausty, T. Footey, J. Leibsz, E. Bergery, R.
Wheelery, A. Ng: "ROS: an open-source Robot Operating System", .
[7] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, F. F. Ingrand: "Genom3: Building
middleware-independent robotic components", 2010.
[8] G. Metta, P. Fitzpatrick, L. Natale: "YARP: yet another robot platform", 2006.
[9] Pocolibs: https://www.openrobots.org/wiki/pocolibs/.
[10] A. Goktogan and S. Sukkarieh: "Simulation of multi-UAV missions in a real-time
distributed hardware-in-the-loop simulator", 2007.
[11] WifiBot: http://www.wifibot.com/.
[12] Bruno Siciliano, Oussama Khatib: "Handbook of Robotics", 2008
[13] R. Arkin: "Behavior-Based Robotics", 1998.
[14] Alami R., Chatila R., Fleury S., Ghallab M: "An architecture for autonomy", .
[15] D. Lyons : "Planning, reactive", .
[16] R. A. Brooks: "Intelligence without representation", 1991
[17] G. Mourioux, C. Novales, L. Josserand: "Framework for modular robot control
architecture", .
[18] R. Zapata: "Reactive Bahaviours of Mobile Manipulators Based on the DVZ
Approach", 2001.
[19] Lionel Lapierre, Rene Zapata and Pascal Lepinay: "Simultaneous Path Following
and Obstacle Avoidance Control of a Unicycle-type Robot", 2007.
[20] Singiresu S. Rao: "Engineering Optimization",
[21] Y. Koren, J. Borenstein: "Potential field methods and their inherent limitations for
mobile robot navigation", 1991
[22] A. Sgorbissa, R. Zaccaria: "Planning and obstacle avoidance in mobile robotics",
2012.
[23] IBRO: "International Brain Research Organization", .
[24] Soheil Keshmiri, Shahram Payandeh: "Mobile Robotic Agents’ Motion Planning in
Dynamic Environment: a Catalogue", 2009.
[25] Fliess, M., Lévine, J., Martin, P., and Rouchon: "Flatness and defect of non-linear
systems : introductory theory and examples", 1995
[26] INRIA: https://www-sop.inria.fr/arobas/.
[27] Fruchard, M.: "Méthodologies pour la commande de manipulateurs mobiles non-
holonomes" , 2005.
[28] Morin, P. et Samson, C.: "Trajectory tracking for non-holonomic vehicles :
overview and case study",
[29] J. Courbon, Y. Mezouar, L. Eck, P. Martinet: "A generic framework for topological
navigation of urban vehicle", 2009.
[30] Courbon, J., Mezouar, Y., Lequievre, L., Eck, L.: "Navigation of urban vehicle: An
efficient visual memory management for large scale environments", .
[31] Bonnafous, D. Lacroix, S. Simeon, T. : "Motion generation for a rover on rough
terrains", 2001.

82

[32] Novales, C.: "Pilotage par actions reflexes et navigation locale de robots mobiles
rapides" , 1994.
[33] Nicolas Morette: " Contribution à la Navigation de robots mobiles : approche par
modèle direct et commande prédictive" , 2010.
[34] N. Morette, C. Novales, L. Josserard, P. Vieyres: "Trajectory projections and direct
model predictive control approach for a mobile robot's navigator.", .
[35] Fruchard, M.: "Méthodologies pour la commande de manipulateurs mobiles non-
holonomes" , 2005.
[36] Yoseph Bar-Cohen : "Biomimetics: mimicking and inspired-by biology", .
[37] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller: "Equation of
state calculations by fast computing machines", 1953.

83

84

List of figures
Fig. 1: a) Tele-operated and b,c) mobiles robots... 9
Fig. 2: Proteus project partners.. 10
Fig. 3: Proteus overview work...10
Fig. 4: Robot Youth Challenge scenario.. 11
Fig. 5: Urban OARPS (Open-Access Robotic Platform.) robots types...........................12
Fig. 6: RTMaps structure... 13
Fig. 7: Blender-Morse structure simulator... 15
Fig. 8: Blender WifiBot robot model... 16
Fig. 9: Simulation of a trajectory following process at two different abstraction levels.
On the left: low abstraction simulation giving directly actuators commands. On the
right: higher abstraction simulation... 17
Fig. 10: Screenshots of MORSE simulator..17
Fig. 11: Simulation of a 3D perception scene at different abstraction levels..................18
Fig. 12: Simulator structure... 19
Fig. 13: WifiBot model.. 20
Fig. 14: Hokuyo telemeter-laser UTM-30LX model...20
Fig. 15: Telemeter-laser acquisition...20
Fig. 16: IMU (Vectornav VN-100). .. 21
Fig. 17: IMU block diagram [12]...21
Fig. 18: Hierarchical architecture.. 24
Fig. 19: Reactive control [13].. 25
Fig. 20: Hybrid control [13]...25
Fig. 21: ISO/OSI model... 26
Fig. 22: Classical control loop drawing... 27
Fig. 23: Control loop transposition to architecture robot structure (Level 0 and 1).27
Fig. 24: 5 levels architecture design, including tele-operation extension........................28
Fig. 25: Architecture particular level... 28
Fig. 26: PROTEUS project architecture structure. ... 29
Fig. 27: Perception block... 30
Fig. 28: Decision block..30
Fig. 29: Obstacle pose problem... 34
Fig. 30: Local map acquisition from telemeter-laser... 34
Fig. 31: DVZ @ 6 rad/s... 35
Fig. 32: DVZ @ 9 rad/s... 35
Fig. 33: Localization algorithm procedure.. 39
Fig. 34: Cost function plotting 1..40
Fig. 35: Cost function plotting 2..40
Fig. 36: Cost function plotting 3..41
Fig. 37: Results measured from localization algorithm (red lines) between real robot
positioning (blu lines).. 41
Fig. 38: Virtual distances computation. .. 42
Fig. 39: MatLab localization algorithm evaluating...43
Fig. 40: MatLab cost function assumption.. 43
Fig. 41: Navigation block into robot's control architecture. ... 45
Fig. 42: Potential Field method..46
Fig. 43: Neural network schematic diagram..47
Fig. 44: Block diagram of the fuzzy PD controller [24]..48
Fig. 45: IKM commands generation.. 49
Fig. 46: Trajectory generation based on DKM.. 51

85

Fig. 47: Motion Generation method apply to LAMA robot (LAAS)..............................53
Fig. 48: Escape Lines principle..54
Fig. 49: Map free-trajectory projection..55
Fig. 50: "Escape lines" navigation method for a vehicle robot mobile (CyCab).55
Fig. 51: Bezier curve and control points..58
Fig. 52: Trajectory reference obtained by reducing reference curve...............................59
Fig. 53: Trajectory reference by Bezier curves composition... 59
Fig. 54: Camera imaging capture and telemeter laser measures......................................60
Fig. 55: Telemeter area scanning. ... 60
Fig. 56: CyCab motion law commands... 62
Fig. 57: Cost function structure... 63
Fig. 58: Comparison between a deterministic and stochastic algorithms in presence of
minimum local... 64
Fig. 59: Simulated annealing procedure.. 67
Fig. 60: Bezier curves connecting waypoints.. 70
Fig. 61: Trajectory reference curve obtained from Bezier curve.....................................70
Fig. 62: Reference trajectory and optimal solution. ..71
Fig. 63: Optimal trajectory considering border security margins.................................... 71
Fig. 64: Obstacle trajectory avoidance.. 72
Fig. 65: Obstacle robot avoidance... 72
Fig. 66: Demo robot reference trajectory...73
Fig. 67: Real robot reached trajectory..73
Fig. 68: RTMaps drawing, sensors data acquisition.. 74
Fig. 69: Localization block, Navigator, and Pilot architecture blocks.............................74

86

87

Acknowledgments

Firstly I would like to express my gratitude to Prof. Roberto Oboe for giving me the
opportunity to make this very important life and work experience. And also for his
helpfulness for my graduation.
I express my gratitude to all PRISME Laboratory, in particular Prof. Cyril Novales,
Prof. Pierre Vieyres, Ing. Nicolas Morette, and trainees Noura Ayadi and Athmane
Ayouni for their leadership, support, attention to detail, hard work that led me to
advance the work with enthusiasm and interest, leading to results, bring off the target
and helped enrich my experience. Thanks also for life-long education and continuing
education during my permanence. I thank also Nicolas Du Lac from Intempora for his
valuable suggestions.
I would also like to thank the many fellow students and friends that lead me during this
important university experience.
For last but not least I thank all my family for the valuable support that they provided
me through my entire life and giving me the opportunity to conclude my university
studies.

88

	1 Introduction
	1.1 PRISME laboratory
	1.1.a Research fields

	1.2 PROTEUS Project overview
	1.2.a PROTEUS Robot Youth Challenge (RYC)
	1.2.b Introduction to ToolKit PROTEUS
	1.2.c WifiBot mobile robot equipment

	2 Robot control architecture
	2.1 Introduction to architectures of control
	2.1.a Hierarchical architecture
	2.1.b Reactive architecture
	2.1.c Hybrid architecture

	2.2 PRISME hierarchical control architecture

	3 The Pilot
	3.1 Introduction
	3.2 The DVZ (Deformable Virtual Zone)
	3.3 Intrusion algorithm evaluating

	4 WifiBot mobile localization
	4.1 Localization objective
	4.2 Algorithm description
	4.2.a Gradient optimization algorithm
	4.2.b Algorithm results

	5 Classification of navigation methods
	5.1 Introduction to navigation
	5.2 Classical methods by force filed-based
	5.2.a APFs (Artificial Potential Fields)
	5.2.b ANN (Artificial Neural Network)
	5.2.c Fuzzy Logic

	5.3 Method by IKM
	5.3.a Non-holonomic systems
	5.3.b Function plat
	5.3.c Transverse functions
	5.3.d Visual method

	5.4 Method by DKM (Direct Kinematic Model)

	6 Navigation by DKM
	6.1 Navigation by DKM (Direct Kinematic Model)
	6.2 A classical “Model Generation”
	6.3 Escape line method
	6.4 Predictive navigation based on DKM
	6.4.a DKM trajectories
	6.4.b Local Map
	6.4.c Robot Commands
	6.4.d Cost function structure
	6.4.e Optimization algorithms comparison
	6.4.f Simulated annealing optimization algorithm

	7 Navigation results
	7.1 Introduction
	7.2 Navigator performances
	7.2.a RTMaps drawing
	7.2.b Navigation conclusions

	8 Conclusions and further work

