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Summary

This paper is the result of six month thesis work performed in the robotic team inside 
the  PRISME laboratory.  This  last  one  is  a  research  laboratory,  situated  in  Bourges 
(France), one of the four campuses of University of Orleans. In this thesis the candidate 
has done a study centred on the autonomous robot mobile navigation and robot's control 
architecture. The candidate works on some points to performing simulations, validate 
and implement algorithm for autonomous robot navigation, based on direct kinematic 
model and predictive control approach. This navigation method was conceived by the 
team of PRISME laboratory established on the occasion of a national french project: 
PROTEUS Project, that will be described in the next chapter. This document is divided 
in following points:

• After a brief introduction of laboratory research fields and  robots model that 
have been performed, the first chapter will show the Proteus overview work and 
the main proposed scope of this project: it provides a complete toolset including 
simulation  environment  and  middleware.  Will  be  presented  a  robotic 
prototyping platform and sensors that were used for practical demonstration of 
navigation.

• In  the  second  chapter  a  robot's  control  architecture  conceived  by  Prisme 
laboratory will be presented. It consists in a hierarchical, modular and multi-
layer architecture of function modules that allows a mobile robot to plan its 
tasks and to react to events.

• In the third part the pilot functional block of robot's control architecture will be 
presented.  The  chapter  explains  a  reactive  method,  based  on  a  deformable 
virtual zone “placed” around the robot to recognize and avoid obstacles.

• The  fourth  chapter  treats  the  problem  of  robot  localization  into  a  known 
environment.  The  robot  absolute  position  into  a  map  will  be  used  from 
navigation algorithm presented in  this  thesis.  The localization algorithm has 
been  implemented  and  tested  in  the  robot  platform,  using  a  deterministic 
optimization algorithm.

• In  the  fifth  chapter  there will  be  an  introduction  about  navigation  tasks for 
autonomous mobile robots and a classification of  navigation methods.

• The sixth chapter will describe a navigation method by direct kinematic model 
conceived  by the  team of  Prisme  laboratory  that  the  candidate  has  had  the 
pleasure of working with.  The chapter will show step-by-step the navigation 
method principle and lastly will  explain the use of a stochastic optimization 
algorithm (simulated annealing).

• In the seventh chapter there will be robot navigation results, obtained thanks 
c/c++ language implementation using RTMaps middleware. Will be presented a 
scenario that shows the robot navigation tasks such as reach way-points and 
avoiding  obstacles.  Will  be  presented  robot  performance  into  environment, 
useful to carry out settings of simulated annealing giving high probability to 
find suitable solutions.

• The last chapter gives the conclusions of the work and future proposals to be 
developed for the Proteus project.
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1 Introduction

The purpose of the thesis activity has contributed to achieve the implementation of an 
autonomous robot mobile. The robot must be able to perceive correctly the environment 
and react,  depending on the level of autonomy, in order to planning trajectories and 
determine what movements will need to achieve its goal. The goals for an autonomous 
robot mobile could be dedicated for people's transport, surveillance, clearing explosive 
and more other. These performing tasks could be achieved with less human presence 
and moving in the environment without any external assistance.
This thesis is centred on implementation, test and validation of robot localization and 
navigation  algorithms.  Some  algorithms  have  been  tested  under  simulation  with 
MatLab,  and  on  the  real  robot  mobile:  WifiBot  off-road  prototyping  robot.  Data 
communication  with  the  robot  platform  have  been  ensured  thanks  a  middleware 
(RTMaps) that offers a modular platform where data samples flow between functional 
blocks. In addition meetings were held for interacting with software developer company.  
Has been used the RTMaps Software Development Kit (DSK), allowing the possibility 
to  develop  and  compile  own  components  useful  for  realize  the  mobile  robotic 
architecture: in particular functional blocks like navigator, localization, pilot and many 
other functions. Algorithm results were displayed using a computer station, with only 
functions of  monitoring parameters and trajectories,  by the fact  that  robot  decisions 
must be taken autonomously.
Robot  navigation  and  localization  imply  also  the  uses  of  optimization  algorithms 
(deterministic  and  stochastic)  to  achieve  its  tasks  considering  the  robot  kinematic 
constraints and perceiving the environment necessary for the total autonomy of robot 
mobile.  Were  perceived  advantage  from simulated  annealing  optimization  algorithm 
referring to its robustness and high probability to achieve an optimal solution previous 
suitable values parametrization. Demo's results of navigation and localization algorithm 
will be displayed into last chapters thanks RTMaps and Gnuplot graphic interface. Will 
be demonstrated the ability of the robot to perform planned trajectories, moving safely 
and  bypassing  obstacles  thanks  the  implemented  algorithms.  This  thesis  work, 
performed under the national ANR research program Proteus, will be integrated into the 
robotic development team of Prisme laboratory. Allowing this last one results of the new  
theory  of  navigation.  During  the  internship  the  candidate  has  attended  to  projects 
Proteus and Protech (a tele-ecography laboratory project) meetings. He has participated 
also to a national conference: “Control Architectures of Robots” ( CAR Nancy,2012) 
and  a  meeting  at  Dassault  premises  for  the  Proteus  project  for  the  WifiBot 
demonnstration. 

1.1  PRISME laboratory

The thesis activity was held to PRISME laboratory (Pluridisciplinaire de Recherche en 
Ingénierie  des  Systèmes,  Mécanique,  Energétique  –  Multidisciplinary  Research  in 
Systems, Mechanics and Energy) situated in Bourges (France). The PRISME laboratory 
(formerly known as the Laboratory of Vision and Robotics funded in 1988), is part of 
Orleans research laboratories. Currently gather about 80 research fellows. The vocation 
of the PRISME Institute is multidisciplinary in the Engineering Sciences, and spans a 
broad  spectrum  of  disciplinary  fields  including  engine  combustion,  energy, 
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aerodynamics,  equipment  mechanics,  signal  and  image  processing,  automation  and 
robotics. 

1.1.a  Research fields

One of the project-team (i.e. Robotic Interactive System – SRI) of the PRISME institute 
leads  research  in  autonomous  and tele-operated  and medical  robotics.  The PROSIT 
project is a light body-mounted robot (Fig.  1.a) to perform tele-ecography: the robot 
placed on the patient is able to position and orient the probe faithfully reproducing the 
actions of remote doctor which manage a false reproducing probe.

Mobile robotic is a major topic in SRI team PRISME Institute. This last years of work 
lead to provide a multi-level robot control architecture which merged various degrees of 
tele-operation and autonomy. Nowadays, it works on a model based predictive control 
for  mobile  robots  navigation,  mainly  dedicated  to  CyCab  (Fig.  1.b)  and  WifiBot 
platform (Cap. 1.2.c  ).
Other robot models have been performed at the beginning by applied research in robotic 
field, mainly with BA System Company in 1996 to design a wireless guided indoor 
industrial mobile robot. Afterwords addressed the problem of unknown but structured 
environment,  without absolute sensors.  These works lead to  validation on an indoor 
mobile  robot  (RAOUL)  using  rotating  laser  range  telemeters,  able  to  evolve 
autonomously in unknown environment. In 2001, has been designed and implemented a 
mechanical  motion  system  allowing  a  ground  vehicle  to  perform  omnidirectional 
movements (ROMNI). Until today to apply research as stated above to evolve a multi-
level robot control architecture.

1.2  PROTEUS Project overview

PROTEUS (“Plateforme pour la Robotique Organisant les Transferts Entre Utilisateurs 
et  Scientifiques”)  goal  is  to  establish  and organizing interactions  between academic 
world and industrial partners of the robotic community in order providing suitable tools 
and models. To help a more easily transfer of knowledge act also to identify potential 
problem in the industry. Many actors are included in this project such as:
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The PROTEUS project is funded by the french national research agency ANR (Agence 
Nationale  de  la  Recherche)  in  the  framework  of  the  2009  ARPEGE  (Systèmes 
Embarqués  et  Grandes  Infrastructures)  call  for  proposal.  This  is  a  four  year project 
started in november 2009.
One  of  main  proposed  scope  of  PROTEUS  project  is  provide  a  complete  Toolset 
including simulation environment and a middleware. Where simulator and middleware 
compatibility is ensured by the use of a ROS bus for communications allowing a total 
reversibility. The Proteus overview work is schematized in Fig. 3:
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1.2.a  PROTEUS Robot Youth Challenge (RYC)

The  Robot  Youth  Challenge  is  proposed  by  the  PROTEUS  project  consortium 
(http://anr-proteus.fr/). It is organized by the PRISME laboratory, and over this last one, 
regrouping other four  research  institutes (Blaise-Pascal,  GREYC, INRIA, LIP6) and 
eight  industrial  partners  (Dassault,  ECA,  Gostai,  Intempora,  Thales,  CEA,  ONERA, 
Effidence).
The RYC considers the problem of autonomous motion (outdoor) exploration and object 
searching in unknown environment. The main mobile robotics topics (Fig. 4) are:

• Autonomous navigation
• Obstacle avoidance
• Mapping
• Visual recognition

which they must be met to carry out the trials of the challenge. The challenge is divided 
in three event each one with different goals. They consist in operation of exploration, 
finding,  sharing/organizing  with  other  robots,  and  come back  in  an  initial  position; 
computed in a certain prefixed time. In order to minimize the time, in the last event, is 
permitted promoting data sharing between the robots that they will cooperate during the 
challenge.

1.2.b  Introduction to ToolKit PROTEUS 

PROTEUS combined several tools (Fig. 3) in order to provide a complete uniform tool-
chain for robotic development: the project has developed a toolset for the design of a 
complete robotics application, from its architecture modeling (with PAPYRUS), to the 
deployment on real robotics system (WifiBot, Pahlavi, Air Trooper, Res sac, Camel eon) 
or software simulation. All this through several middleware (RTMaps, Ur bi, Carrot, 
Siroccos). Most of them are open-source software.
The  toolkit  is  structured  in  three  part:  meta-modeling  & code  generation,  robotics 
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middleware, and simulation engines.

Meta-modeling & Code generation:
This part  aim using software development  environment  like Papyrus,  TOM, ALF to 
modeling and organize the structure of the robotics platform. 
Papyrus provides diagram editors: with the use of connections is possible create a link 
between main functional  blocks  (e.g.  navigator,  actuators,  database)  and device  like 
sensors (e.g. telemeter laser, IMU). The final structure appears in the form of a skeleton. 
TOM  is  a  language  extension  designed  to  manipulate  tree  structures  and  XML 
documents. It provides pattern matching facilities to inspect objects and retrieve values. 
In the PROTEUS toolkit, Papyrus is used to design control architectures which are then 
generated on the different middleware supporting the project.

The middleware

This part aim to introduce the middleware. It was used consistently for implementing 
the robot platform because offer an important tools supports.  On PROTEUS project 
RYC three middleware are available:

• Carrot (from the Effidence company)
• RTMaps (from the Intempora company)
• URBI (from the Gostai company)

In computing system, middleware is a set of programs which mediate between several 
applications  and  software  components.  Can  be  described  as  “software  glue”,  his 
function  is  to  mediate  interaction  between  the  parts  of  an  application,  or  between 
applications. 
Picture  6 shows  how  RTMaps  middleware  (Real  Time,  Multistory,  Advanced 
Prototyping  Software),  prove  to  be  a  modular  platform  where  data  samples  flow 
between functional blocks (called components, details more over). Data flowing can be 
of any type as video, audio, bytes stream, CAN frames, matrices, vectors of integers or 
floats,  text,  and so on.  More,  for example,  RTMaps is  a  multi-threaded architecture 
which allows the use of multiple asynchronous sensors within the same application i.e. 
“on  the  flow”,  each  data  sample  being retrieved at  its  own frequency.  Data  fusion 
algorithms can be developed thanks to the real time capabilities of the software, which 
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permit supports “any” type and quantity of sensors and actuators. RTMaps has also a 
Software Development Kit (SDK) which is a set of C++ libraries, header files, wizards, 
which allow the possibility to develop and compile own components useful for realize 
the  mobile  robotic  architecture.  It  provides  also  a  graphic  interface  for  monitoring, 
display and recording data:

Middleware covers an important task simplify view of a system which a high set of 
interfaces  and it  cover also a  wide  range of  software systems,  including distributed 
objects  and  components,  message-oriented  communication,  and  mobile  application 
support  [1]. A system is organized as a set of parts, or components. Each of this one 
fulfill a function that should be consist in a service. The specification of the service is 
often associated to system functional property. It included the following aspects:

• Availability. The availability of a service quantifies the ratio of services ready to 
use. Is a statistical measure penalized by failures.

• Performance.  This  quality  covers  several  aspects.  Essential  for  real-time 
applications where attention is give e.g. to processing speed.

• Security. Security cover an important role to guarantee the respect of the rule 
from users, and access right control.  

Multilevel architecture:
Middleware  makes  easier  for  software  developers  to  perform  communication  and 
input/output.  A  layered architecture consists  to  decomposing a  complex system into 
layers which includes libraries that provide services (i.e. data storage, screen display, 
multimedia, web browsing and much more). This layer organization provides guidelines 
for decomposing a complex system into parts allowing a high level of service to users 
and a  high level of  abstraction to  developers  by masking the heterogeneity and the 
distribution of the underlying hardware and operating systems, and by hiding low-level 
programming details [1]. The interface provided by each level may be viewed as set of 
functions defining a library, called Application Programming Interface (API).
Frameworks:
Software  frameworks  allow  to  software  developers  to  reuse  working  code  [2].  A 
software framework is a program skeleton aim to solve a family of related problems. 
According  to  well-defined  rules  the  skeleton  should  be  adapted  or  directly  reused. 
Patterns,  frameworks and middleware play a  complementary  role  for  improving the 
process  of  design,  building  and  documenting  applications  increasingly  complex  of 
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today.

Objects:
Object  in  programming,  mean  of  structuring  computing  system,  is  a  software 
representation of a real-world entity like a person, a robot , a bank account, etc. that 
should be viewed as an association of a state and a set of procedures (or methods). The 
object model has the following properties:

• Encapsulation.  The  only  way  of  accessing  to  object's  state  is  through  its 
interface, no part  of the state is  visible from outside the object.  An interface 
comprises a set of methods (procedures) and attributes (values that may be read 
and written).

• Classes and instances. A class is a generic description common to a set of object 
(the instances of the class). The instances of a class have the same interfaces, and 
their state has the same structure; they differ from their value only.

• Inheritance. A class that derive from another one class preview specialization 
defining additional  methods,  attributes,  or  by redefining existing methods.  Is 
said to inherit (or extend) from a class.

• Polymorphism. Polymorphism is the ability for a method to accept parameters of 
different types, and to have different behavior for each of these types.

Components:
A compositional  architecture  define  the  organization  of  a  software  system  as  an 
assembly of components, connectors, and composition rules.

• A  component perform  a  specific  function,  can  be  assembled  with  other 
components, and provided interfaces: the only way to use a component.

• A connector is a device for assembling several components together in order to 
create a configuration.

• Composition rules specify the allowed ways of assembling a configuration out of 
components and connectors. 

The Simulator:

Motivations:  Autonomous  robotic  mobile  often  operate  in  a  open  and  dynamic 
environments (which should be totally or in partially unknown), time and dynamics play 
a  major  role,  and last  but  not  least  establish  interactions  with  humans.  It's  easy  to 
understand  the  importance  function  of  a  simulator  platform  where  field  trials  are 
associated with high risk to the survivability of the system (e.g. aerial  vehicles, and 
maritime) and should leads damage and risk to people. The use of a simulator as a 
previous  step  may  be  useful  to  evaluate  algorithms,  techniques,  and  verify  their 
robustness;  also  positive  side  effects  about  time  and  cost  savings,  that  simulator 
typically provides in research and robotic industry. On the other hand, it's difficult to 
replace the experiences of working on real robots in real environments with real-world 
sensors  errors  and  unpredictable  dynamics.  But  simulators  certainly  provide  a 
convenient means for all  the advantages mentioned above and by the fact it play an 
important  role  in  risk  reduction;  and  also  should  be  useful  to  development  of 
contingency management plans.
Below in picture  7  display the simulator software structure. Blender, MORSE, ROS, 
and RTMaps are mainly softwares used un PROTEUS Project.
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Blender [3] is a free and open-source modeling and rendering  application that enables 
the creation of a diverse range of 2D and 3D contents. The source code is available 
under the GNU GPL license. Blender provides a board spectrum of modeling, texturing, 
lighting, animation and video post-processing functionality to satisfy the main purpose: 
the creation of computer generation images and animations.
The most advantage of Blender is the high level of graphical detail that can be achieved 
in real time, thanks to the advanced modeling of meshes, and effects such as texturing, 
lighting  and  shaders.  For  example  when  simulating  robotic  vision,  visual  aspect  is 
important , since the images captured in the virtual world can be realistic enough to be 
processed with the same algorithms as real images. 
Blender permits also an interactive simulation thanks the Game Engine (GE) mode [4]. 
It permits with a flexible graphical interface (called the Logic Bricks) to script behavior 
to objects in the scene, and define variables (called Logic properties) associated with the 
same objects. Thought dedicated API permits the iteration between Blender world and 
Python scripts (i.e. a Logic Bricks, over mentioned) or by additional modules that can 
be programmed in C/C++. Fig. 8 shows a Blender window performing a WifiBot robot 
model included by their equipment sensors.

15

Fig. 7: Blender-Morse 
structure simulator.

Fig. 8: Blender WifiBot robot model.



MORSE is a open source robotics simulator; projected by LAAS [5] Robotics Research 
Group in Toulouse, France. MORSE is based on the Blender 3D graphics program and it 
relies on a component-based architecture to simulate sensors, actuators and robots. It is 
constructed as a library of modular components that can be used to build any kind of 
robot  and test  its  behavior  under  various conditions.  MORSE can simulate  complex 
robots in real time; has also been designed to be able to handle more robots in joint  
simulation scenario. MORSE can be run as a distributed network of simulation nodes; 
each one automatically synchronizes with the others.
The simulator aims to comply with the following requirements:

• General purpose robotics simulator
• Modular reusable components
• Multi-robots
• Variable levels of realism
• Direct interface with robot software
• Middleware independent
• Distributed architecture

MORSE  provides  a  set  of  standard  sensors  (e.g.  cameras,  laser  scanner,  GPS, 
odometry), actuators (e.g.  speed,controllers), and robotic bases (e.g.  generic 4 wheel 
vehicle), but new ones can be easily be added.

ROS  (Robot Operating System)  [6] is a software framework which provides a set of 
functionalities  in  the  development  of  robotic  controllers.  To  specify  that  is  not  an 
operating system in the traditional sense of process management and scheduling like the 
abbreviation  suggest;  it  provides  a  structured  communications  layer  above  the  host 
operating system.
ROS provides standards operating system services such as hardware abstraction, low-
level  device  control,  implementation  of  commonly-used  functionality,  package 
management, and it takes care of various low-level functions such as message-passing 
between the different sub-system. ROS provides libraries and tools to help software 
developers. It is based on a graph architecture where processing takes place in nodes 
that may receive, post and multiplex sensor, control, state, planning, actuator and other 
messages. 
At this time, ROS is mainly used for research applications in fields such as autonomous 
robot, but is intended also to ease the integration into industrial applications.

Overall Architecture:
MORSE is built on top of the Blender software: relies in a composition of Blender files 
to build simulated scenes. Each MORSE component consists into two files: a Python 
and a Blender file [4].The first one define an object class for the component type, with 
its  state  variables,  data,  and  logical  behavior  (methods).  The  Blender  file  specifies 
physical properties of the object in the simulated world like material, color, surface. 
There are different kind of components in MORSE. Mainly used in robotics simulations 
are: sensors, actuators, robots, scenes, and modifiers.

• Sensors recover data from the simulated world, emulating the functionality of 
the real sensors.

• Actuators aims to execute actions to the associated components. In particular 
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actuators  move  robots  in  function  by  given  parameters  type,  in  function  at 
various levels of abstraction of the simulation. For example in path following, a 
low  abstraction  giving  the  robot  commands  like  angular  velocities  for  each 
wheel, higher abstraction simulation, using a direct destination coordinate (Fig. 9 
).

• Robots are the platforms where sensors and actuators are mounted. 
• Scenes  are  the  modeled  environments  where  the  robots  interacts  during  the 

simulation.  Can  represent  for  example  a  indoor,  outdoor  scenes  with  all 
necessary to simulate a realistic ambient.

• Modifiers are function that alter data (e.g. noise functions), their function is to 
make realistic acquisitions from simulated sensors by the fact that these last one 
produce very accurate measures taken from the virtual world.
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Fig.  9: Simulation of a trajectory following process at two  
different  abstraction  levels.  On  the  left:  low  abstraction  
simulation giving directly actuators commands. On the right:  
higher abstraction simulation.



Important considerations are necessary about the integration of Morse components with 
middleware  by  the  fact  that  this  last  one  enable  communication  and  data  sharing 
between components. A highly coupled of an element with a given middleware make 
difficult to reuse it in a different environment. For this reason components should be 
designed to be middleware-independent  [4] thanks a software package used at LAAS: 
GenoM  3  [7],  a  tool  generating  software  modules  that  can  be  compiled  with  any 
middleware.  All  this permit  to use various middleware such as YARP  [8], ROS  [6], 
Pocolibs [9] and other offering an high level of integration with middleware.
An other important aspect of MORSE is designed to interact directly with the software 
under  test,  without  the  need of  software  modifications.  This  philosophy  takes  after 
“Hardware-in-the-Loop” simulations. The evaluated components (the same in the target 
hardware) interact with the simulator with the same protocols than the ones interacts 
with real sensors and actuators of the robot [10].
Fig.  12 display  how  data  flow  between  components  (sensor  and  actuator)  of  the 
simulator using  hooks to share data with external applications.  Hook  is a mechanism 
implemented in Python which consist adding at runtime (thanks the dynamic nature of 
Python) methods to the component instances. These methods use the data of MORSE 
components to elaborate it and then sent in the format required by the corresponding 
middleware.
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1.2.c  WifiBot mobile robot equipment

The WifiBot is a off-road robot model  [11] which lends as a multi-purpose platform 
running in Linux or Windows embedded. Some reasons why this kind of robot leads this 
choice is for to make simple yet useful and affordable robotics. This platform should 
suit fulfill for flexibility and  open modular architecture,  fully programmable, low cost, 
small  size,  low  weight,  integration  within  Wi-Fi  network,  great  for  multi-robot 
applications. The base system is composed by  four wheel drive chassis controllable 
using  RS232,  four  infrared  sensors,  a  Intel  Atom D510 duo core  running in  Linux 
Ubuntu, installed on a 4 Gigabyte compact flash, a free Wi-fi access point, a IP-Camera, 
GPS, IMU, and a telemeter laser. Picture 13 shows the robot model before mentioned, 
well  equipped with inertial  measurement  units  and telemeter-laser on the top of the 
platform.  From telemeter  laser  and  IMU,  are  based  the  navigation  and  localization 
method  presented  in  this  thesis.  The  follow  part  of  this  chapter  treat  only  a  brief 
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Fig. 12: Simulator structure.



introduction of telemeter and IMU sensors and how data are treated and displayed from 
middleware.

Telemeter-laser. A telemeter laser is a two-dimensional (2-D) range finders scanner for 
measuring distances around the sensor. The WifiBot is equipped with a Hokuyo model 
UTM-30LX. This system is adapted for high moving speed robots thanks his longer 
range ( 30m and 270° scanner range) and  fast response (25ms/scan). 

This kind of sensor lends itself to become a suitable sensor for detect free space ahead 
of  the  vehicle,  localization  and  map  building  due  to  their  accuracy  (  0.1  to  10m: 
±30mm, 10 to 30m: ±50mm). The angular resolution is 0,25°.

IMU package. An inertial measurement unit (IMU) is a device that estimate the relative 
position,  velocity  and  acceleration  of  a  vehicle  in  motion,  utilizing  measurement 
systems such as gyroscopes and accelerometers [12]. The IMU device equipped into the 
robot  is  the  model  VN-100 (Vectornav),  see  Fig.  16,  six  degree-of-freedom system 
estimate of the pose of the vehicle: position (x,y,z) and orientation (yow, pitch, roll).
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Fig. 13: WifiBot model.

Fig. 14: Hokuyo 
telemeter-laser UTM-
30LX model. Fig. 15: Telemeter-laser acquisition.



This IMU uses three orthogonal gyroscopes and three orthogonal accelerometers. The 
gyroscope data ω is integrated to obtain an estimate of vehicle orientation θ. At the same 
time, three accelerometers are used to estimate the instantaneous vehicle acceleration α. 
This data is then transformed by the current orientation of the vehicle relative to the 
gravity, this last one should be extracted from the measure. As shown in Fig.  17, the 
resulting  acceleration  is  then  integrated  to  obtain  the  vehicle  velocity  and  then 
integrated again to obtain the position. 
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Fig. 17: IMU block diagram [12].

Fig. 16: IMU 
(Vectornav VN-100). 
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2 Robot control architecture

2.1  Introduction to architectures of control

In  an  autonomous  robot  mobile,  behaviors  are  closely  depending  by  the  robot's 
effectiveness  and robustness  ability  to  carry  out  tasks  in  different  conditions  of  ill-
known  environments.  This  leads  to  adopt  a  well-structured  architecture  of  control. 
Ronald Arkin in [13] define a robotic architecture in the following way:

“Robotic architecture is the discipline devoted to the design of highly specific and  
individual robots from a collection of common software building blocks.”

The architecture consists of functional modules every one with a specific function, for 
example a function should covers robot localization, it represents environment based on 
sensor information, analyze the representation using knowledge thanks databases, plan 
actions  and  execute  planned  actions  etc.  An  integrated  architecture  allows  a  robot 
mobile to plan its tasks, taking into account of temporal and domain constraints. The 
objectives are to perform actions and controlling  their execution in real-time, in order to  
make reactive the programmed machine from possible  events.  Capacities to achieve 
tasks and to react to events are determined from robotic system organization. A robot's 
control structure should have the following properties: programmability, autonomy and  
adaptability, reactivity, consistent behavior, robustness,  extensibility [14].

• Programmability is a property that describes the ability of a robot to achieve 
multiple tasks at an abstract level. 

• Autonomy and adaptability intended as the ability to carry out robot actions and 
to refine or modify the task and its own behaviors according to the current goal.

• Reactivity because  the  robot  taking  into  account  of  non  planned  events  to 
execute its goals and takes care own safety.

• Consistent behavior by the fact that robot has to react to events consistently to 
objectives of it task.

• Robustness: the control architecture should be able to exploit the redundancy of 
the processing function.

• Extensibility in order for integration of new functions and definition of new tasks 
in easily way.

The control architectures should be classified in three categories in function by the way 
sensory data is processed and distributed through the system: hierarchical, reactive, and 
hybrid controls [15]. Each one control architecture consists by the relationship between 
robotics primitives (functions): sense, plan, and act. 
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2.1.a  Hierarchical architecture

In  a  hierarchical  control,  communication  and  control  occurs  in  a  predictable  and 
determined manner, flowing up and down. The typical hierarchical structure is shown in 
Fig  18 (  [13] ).  This  type  of  architecture  is  characterized  by  a  clearly  identifiable 
subdivision of functionality where the robot senses the world, plans the next action, and 
then acts. In the hierarchical control  the ACT input is always the result  of a PLAN 
function, and the input of this last one is always the direct output from SENSE function. 
When the action is chosen by PLAN, it will be execute. If during an action's execution, 
a new event occurs (like an mobile obstacle or dangerous situation), a new different 
action should be immediately elaborated. A new SENSE/PLAN/ACT cycle introduce a 
delay that should be generate a collision. 

2.1.b  Reactive architecture

The reactive control was a reaction from hierarchical control where the key aspects were 
design by Brooks [16].  In [13] R. Arkin define a reactive system: 

“A reactive robotic system tightly couples perception to action without the use of  
intervening abstract representations or time history.”

If in the first case the input to an ACT is an result of PLAN output, here the input to an 
ACT is always the direct result of a SENSE function. Coexist a direct link between 
sensors and effectors, in this direct way, a fast execution time is obtained. An reactive 
system react directly to the world as it is sensed. This architecture is presented as a 
whole  of  reactive  behaviors,  which  operate  simultaneously  and  controls  the  robot 
without  the  internal  model.  Generally  these  architectures  are  dedicated  for  multiple 
actions like displacement towards a goal,  obstacle avoidance,  aleatory displacement, 
following a wall etc. The priorities given to actions to be performed are fixed, this do 
not allow a good flexibility.  But in the other hand it  has the both advantages to be 
simply and easy to implement.  
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Fig. 18: Hierarchical architecture.



2.1.c  Hybrid architecture

A control that adopt an intermediate solution between hierarchic and reactive control 
assume the characteristic of Hybrid control. The goal of this structure is to maintain the 
property of responsiveness, robustness, and flexibility of purely reactive system. But in 
the  same  time  to  provide  a  decision  phase  that  permit  a  dynamic  control  system 
reconfiguration:  providing  a  reactive  control  system  based  on  available  world 
knowledge.

2.2  PRISME hierarchical control architecture

Often,  the  control  architectures  are  specific  and designed for  dedicated  robot.  They 
represent a closed architecture, and modifies by the user are not permitted. The need to 
modify and guaranty a level of reconfiguration of the robot system has led in last years 
the  formalization  of  new  robot's  control  architectures.  A generic  control  has  been 
conceive and then developed by PRISME laboratory  [17] to aim formalize a modular 
robot  control  architecture.  In  particular  for  autonomous  and  tele-operated  area.  The 
objective  is  propose  a  framework  architecture  with  property  of  integration  with 
middleware and hardwares, assuming characteristic of adaptability in a opening areas of 
robotic.  Without  neglecting  important  aspect  such  as  keep  up  to  supply  autonomy, 
reliable,  and  robustness.  This  architecture  proposed  by  Mourioux,  Novales,  and 
Josserand resides a hierarchical controller and modularity concept at the basis. It's was 
used  the  concept  originally  developed  by  R.  Brooks  [16] and  which  appears  in 
architectures  such  as  “LAAS  Architecture  for  Autonomous  System”  [14].  The 
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Fig. 20: Hybrid control [13].

Fig. 19: Reactive control [13].



architecture is organized similarly to the Open System Interconnection communication 
system. Well knows like ISO/OSI model (defined by ISO: International Organization for 
Standardization) shown in figure 21.

For transpose the ISO/OSI model into a robot architecture, the operative part  of the 
robot (A.M.S. Articulated Mechanical Structure) are taken into account. The structure  is 
mainly composed by two part. One part where a upward flow conveys information of 
perception. The second one consist by a downward flow toward operative part will be 
used  to  the  control  features.  At  each  level,  two  entities  interact  by  means  of  a 
transmission protocol. In the communication architectures protocols enabled an entity in 
one host to interact with a corresponding entity at the same layer in another host. Data 
must  necessarily  pass  through  all  layer  surrounding.  Because  each  entity  interact 
directly only with the layer immediately beneath it.
However, unlike the communication model, in the presented robot's control architecture, 
data can either pass directly through entities that implement their functionality in the 
same architecture layer. Much more, data can either go through the different levels for 
processing.  In  this  way,  instead  to  have  a  single  path  of  information,  a  multiple 
pathways is obtained [17]. So a multi feedback loop, each one associated with one of the 
architectural  level,  converging  towards  the  robot  machine.  The  lower-level  loops 
associated  to  “reactive”  part  (nearly  with  the  articulated  mechanical  structure,  and 
associated to a low abstraction), are faster than loop of higher levels corresponding to 
“deliberative” part of the architecture.
The formalization of this robot architecture dedicated to autonomous or tele-operated 
scopes is presented in [17], trough a graphical representation. 
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Fig. 21: ISO/OSI model.



The control is focused by a transposition of a conventional control loop (Fig. 22), made-
up by three elements: the articulated mechanical structure (A.M.S.), the perception part 
(sensors and their management), and the decision part which should be a PID controller 
for a low level.

While data flows organization, remains the same such as in a conventional control, the 
control loop is disposed in two levels (Fig. 23). In the Level 0 is located the system to 
control or rather the A.M.S. . The controls and actuators, and the sensors are located at 
the Level 1 respectively in decision and perception part.
To complete the architecture in order to give a more articulated structure (adapt in robot 
autonomous field), more levels are added for both perception and decision part. In this 
way a  ordered  control  loops are  obtained for  each level,  every  one  with  a  specific 
application field (i.e servoings, path planning, navigation etc.). 
In  the  specific  robotic  autonomous mobile  application,  has  been used a  proposed 5 
levels architecture how is shown in Fig.  24 . The levels are surmounted by the two 
complementary parts appointed first: the  perception and  decision,  one ascending and 
one descending.
Each part is also cut transversely into the levels such as specified previously. In Fig.  24 
extension  for  robot  tele-operation  appear  also.  In  robot  autonomous  mobile  only 
function of supervisor are permitted, so parallel loops are not considered.
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Fig. 22: Classical control loop drawing.

Fig. 23: Control loop transposition to architecture robot structure (Level 0 and 1). 



In  Fig.  25 is  presented  a  particular  of  the  architecture.  In  this  way the  “cluster”  is 
defined  as  the  whole  of  all  modules  of  the  same level.  In  the  specific  the  Cluster 
“Sensors” in the perception part,  aggregate all  the sensor, conditioning modules and 
their management; and the Cluster “Servoing” of the decision part, includes the joint 
servo modules. 

A set of rules are defined in order to obtain all the potentiality from the architecture; to 
quote contents from [17]:

• Data rules 
R1 –  In perception  part:  data  mount  from level  1  to  5 in  the  sense  of  the  
complexity treatment. Any data of a level is available to all higher levels. 
R2 – In decision part: the data come down from level 5 to 1: all data of a level 
is available at all lower levels. 
R3 – In tele-operation part: the data does not flow between the levels of this  
part. 
R4 – Data can pass transversely from one level of the perception part to the  
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Fig. 24: 5 levels architecture design, including tele-operation 
extension.

Fig. 25: Architecture particular level.



same level of the decision part. 
R5 – Data can pass transversely from one level of perception part to the same 
level in the tele-operation part. 
R6 – Data can pass transversely from one level of tele-operation part to the  
lower part of the decision part. 

• Rules for “clusters” 
Clusters  can  contain  multiple  modules,  each  corresponding  to  a  specific  
feature. Modules can discuss them and can use all available data at this level  
(in this cluster). 

  
Architecture Levels:

This part  aim allowing more detailed description of single parts of the architecture, 
performed for autonomous robot mobile like the CyCab or WifiBot models (Fig. 26).

How mentioned above the architecture is composed in five levels and in more functional 
blocks (by de fact the architecture assume a modular structure), each one with a specific 
task.
The Perception part  is  composed by several  blocks such as  sensors,  proximity map, 
local map, global map, and global model (Fig. 26).
The perception blocks (Fig.  27) receive information from sensors. All or part of datas 
received, are transmitted to the related decision part, which placed at the same level. As 
well as the same datas could sent to the upper levels of the same perception part. Thus, 
level  after  level,  raw data  are  enriched  thanks  successive  treatments  in  function  of 
confrontation with new and old information stored in memory. It improve the robustness 
of information, and to produce maps. 
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Fig. 26: PROTEUS project architecture structure. 



The  action/decision part incorporates the  mission generator, path planner, navigator, 
pilot, and servoings.
The decision block (Fig. 28) allow in output decisions relative an order received in input 
and in function of information received by the relative  perception block at  the same 
level. 

Level 0. This level is the physical part of the robot: mechanical articulated structure, 
actuators to move the robot, and all that is part of the robot.

Level  1.  Is  the lower control loop of  the architecture and is  both short  and fast.  Is 
dedicated  for  example  to  treatment  of  joint  PID  feedback  control  loop.  The  part 
perception contains the sensors, and informations they deliver are used by the block of 
the decision part for the control of each servo motor.  

Level 2. The second level is the driver. The decision part receive a path to be followed 
in according to the obstacles, from the upper block: the navigator. Or better, in addition, 
the  pilot can also have the capacity to make some decisions as obstacle avoidance in 
case  of  a  sudden  obstacle  and  emergency.  This  module  uses  a  method  based  on 
deformable virtual zones [18].
The  elaborated  informations  are  sent  to  the  servos  motors,  for  example  in  form of 
angular speed reference for each wheel (depending by the robot structure).
The  perception part provide  to  the  pilot raw data  from sensor  useful  for  obstacle 
detection and determining in this way free spaces.
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Fig. 27: Perception block.

Fig. 28: Decision block.



Level 3. The Level three is the navigator. Is the mainly part treated in this thesis work. 
The perception part provide a model of the environment , generally in the form of map, 
named local map. This map is constantly updated with new informations from external 
sensors which are processed by the lower perception blocks. The perception part use the 
local map to generate a path for the robot, allowing it to move between obstacles in the 
best way as possible. And passing trough points of interest provided by the upper, the 
planner. The path generated takes also into account of the kinematic constrains of the 
robot. 
The  navigator symbolize the layer of the autonomous robot's architecture where the 
reactive levels mentioned so far, stand out from the deliberative levels. Or rather the 
reactive  part  by  their  nature  handle  information  that  need an  immediate  processing 
(continuous way). Differently, the proposed navigator consist in a predictive control, 
where the best path to follow is provided by the navigator relating a determined journey 
time  of  the  robot.  So  the  upper  levels,  including  the  navigator  precisely,  manage 
information with a certain deadline (discrete way).

Level 4. The level 4 is the path planner block (scheduler). Part of this decisional block 
is provide to navigator a series of preferred waypoints. It mission consist also to placing 
in the optimal way the waypoints to achieve the goal of the mission elaborated by the 
upper level. The perception part consist in a global map, but generally use maps present 
in the database,  it  will  merge with the current  information as  local map in order to 
update the model of the environment.

Level 5. The 5th and last level is the  mission generator. Its mission is provide to the 
scheduler the goal of the robot mission, such as a final destination, objectives to be 
carried out during the course, identify anything harmful, make field surveys, and so on.

Finally, this architecture can also integrates with teleoperation via a third part such as 
displayed if Fig. 24 . This part is divided into layers as the same way as the other blocks, 
which can involve tele-operated mode at any level. But in robot autonomous only in 
supervisory function mode. 
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3 The Pilot

3.1  Introduction

In autonomous robotic mobile, abilities to recognize and avoid obstacles are inevitably 
important tasks. The obstacle avoidance method proposed aims to recognize and avoid 
obstacles.  The  pilot  is located into lower level  of the  action/decision  part  of robot's 
control architecture. It receives in input datas from navigation block such as commands 
related  to  a  optimal  trajectory,  it  receives  also from perception part,  info related  to 
proximity  map  like  infrared  sensors  and  telemeter-laser.  It  delivers  commands  to 
servoings block to drive the robot into environment. 
It covers problems of reactive behaviours of mobile manipulators evolving in dynamic 
and unknown environments  [18]. The scope of pilot formulation is allow fast control 
laws. The pilot can be seen as a efficient low level algorithm for controlling motions to 
avoid unscheduled obstacles collisions. The mainly object of pilot is have the ability to 
react when unscheduled events occur, allowing property of artificial reflex actions to 
mobile robots. The DVZ (Deformable Virtual Zone) method is proposed to resolve the 
problem through the reflex action theory conceived by R. Zapata. This method is only 
reported  from theoretical  point  of  view and  the  environment  acquisition  method  is 
explained in chapter 3.3  .

3.2  The DVZ (Deformable Virtual Zone)

The  PROTEUS  robot  architecture  uses  a  Deformable  Virtual  Zone  principle  as 
mentioned before for obstacle avoiding. It defines a safety zone around the vehicle, in 
which the presence of an obstacle induces an “intrusion of information”. The overall 
algorithm is combined with a guidance solution which path following control design 
relies on Lyapunov theory. The method embeds the path following requirements in a 
desired intrusion information function, which steers the vehicle to the desired path while 
the DVZ is virtually keeping a minimal contact with the obstacle, implicitly bypassing it 
[19]. 

3.3  Intrusion algorithm evaluating

The  DVZ  principle,  where  a  rigid  body  (the  robot)  evolving  in  an  unknown 
environment, is supposed to be surrounded by a shape. It's geometry depends by the 
state of the robot. The main issue is to define a risk zone surrounding the robot as a 
DVZ depending on the robot/environment interaction, see Fig. 29. The system reaction 
drive the robot velocities, angular and linear, in function of deformation calculated. The 
risk zone considered is an elliptic shape in order to obtain a polar DVZ. The risk zone is 
expressed in function of linear velocities;  in particular the geometry depends on the 
square of this one in according with the kinetic energy of the robot in movement. 
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Fig. 30 shows a local map acquisition by telemeter-laser. Subsequent picture shows the 
elliptic deformable virtual zone in function on different robot speed: respectively 6 rad/s 
and 9 rad/s. 
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Fig. 29: Obstacle pose problem.

Fig. 30: Local map acquisition from telemeter-laser.
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Fig. 31: DVZ @ 6 rad/s.

Fig. 32: DVZ @ 9 rad/s.
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4 WifiBot mobile localization

4.1  Localization objective

In order to autonomously navigate and perform useful tasks, a mobile robot needs to 
know its exact position and orientation.  Robot localization is thus a key problem in 
providing autonomous capabilities to a mobile robot.
Localization is a technique used by robots and autonomous vehicle for keeping track of 
their current location, necessary to the navigator for evaluating trajectories projected 
into environment from actual robot position. The goal of localization is to define the 
current  absolute  position  (x,y)  into  cartesian  space  displacement.  The  relative 
orientation is taken into account by the gyroscope into IMU module. 

4.2  Algorithm description

For determine the position of the robot on the map using the rangefinder, the goal is a 
minimization of difference between two types of values mentioned before: real values 
from actual robot position (xreal,yreal), and the identified virtual values calculated from 
rangefinder given from a certain position of test (xtest,ytest). To achieve this the 
localization algorithm is composed mainly in two part, the first will calculate values, 
rangefinder virtual position and the second is to minimize the difference between the 
values of rangefinders.

The principle of Localization algorithm is based on following steeps:

• Acquisition  of  a  prefixed  measures  number  displaced  into  telemeter-laser 
range. 

Ξmeasured={d 1, d2,… , d n}  (1)

Where di is the distance measured by telemeter-laser related to i-th position into 
telemeter range [-135°:135°] where 0° is signed by front direction of the robot. 
The  i-th  position  should  be  chosen  dynamically  by  an  algorithm evaluating
best condition of measure (for example in direction of fixes obstacle or laser  
forming an angle with the surface to measure nearest to a perpendicular angle).  

• Virtual  distances  calculation  of  a  virtual  robot  position  from  a  internal 
environment model (e.g. from global map data base).

Ξvirtual={v1, v2,… , v n}  (2)

Where vi   is the virtual distance measured from an algorithm respect a position 
given in input by the optimization algorithm explained in chapter X. The i-th 
index related to position respect robot orientation are the same angle of real  
distance measured from telemeter. 

• Define a cost function Z in relation with Ξmeasured and Ξvirtual . 
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Z=∑
i=0

n

∣d i−vi∣  (3)

• Minimize the const function thanks the optimization algorithm. The minimum 
cost function correspond to robot position into environment. 

4.2.a  Gradient optimization algorithm

The method uses the negative of the gradient vector as a direction for minimization. The 
algorithm start from an initial trial point X1 (for example a fixed initial position or the 
last computed position from step before) and iteratively move along the steepest descent 
directions until the optimum point is found.

The gradient of a function is a n-dimension vector defined as:

∇ f
nx1
={ f / x 1

⋮
 f / x n

}  (4)

The evaluation of the gradient (4) required the computation of partial derivatives. The 
function is differentiable at all the points, but the calculation of the components of the 
gradient, is either impractical. So has been used the forward finite-difference formula:

 f
 xi
∣

X m

≃
f (X m+ΔX i

ui)− f (X m)
ΔX i

i=1,2 ,… , n  (5)

Where ui is a n-dimensional vector whose i-th component has a value of 1, and all other 
components have a value of zero. ∆Xi is a scalar quantity chosen with some care which 
represent the increment.

For  better  results  has  been  used  the  central  finite  difference  formula  to  find  the 
approximate partial derivative:

 f
 xi
∣

X m

≃
f (X m+ΔX i

ui)− f (X m−ΔX i
ui)

2⋅ΔX i

i=1,2 ,… , n  (6)

The steepest descent method can be summarized by the following steps [20]: 

1. Start  with  an  arbitrary  initial  point  X1 (e.g.  prefixed  initial  position  if  first 
iteration  or  detected  position  from  last  algorithm  iteration).  Set  to  i=1  the 
iteration number.

2. Find the search direction Si defined as:

S i=−∇ f i=−∇ f (X i)  (7)
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3. Determine the next point Xi+1 from point Xi and step length λ :

X i+1=X i+λi⋅S i=X i−λi⋅∇ f i  (8)

4. Test  the new point  Xi+1  for optimality.  If  this  last  one is  optimum, stop the 
process. Otherwise go to step 5.

5. Set the new iteration number i=i+1 and go to step 2. 

For  better  results  was  used  the  displacements  given  by  odometry  between  two 
localizations to enhance the accuracy of the initialization of the algorithm: initialization 
position  =  previous  computed  position  +  displacements  computed  from  odometry 
between two execution of localization process. 
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Fig. 33: Localization algorithm procedure.



4.2.b  Algorithm results

Pictures 34,35,36 show from different point of view the representation of cost function 
into local map robot environment. The darkness blue color mash identify the minimum 
function value (local minimum) or better the robot coordinate displacement. 
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Fig. 34: Cost function plotting 1.

Fig. 35: Cost function plotting 2.



Pictures before shows that  local minima problems can occur, potentially leading the 
localization algorithm to make errors. In order to prevent this to occur, it is important to 
initialize the localization algorithm as close as possible from the real robot position, and 
this leaded us to make the robot always begin its navigation at a known position (in 
order to initialize correctly the localization algorithm and keep it efficient iteratively 
once the robot begin to move). Practically, was measured localization accuracy inferior 
to 3%, which was judged sufficient enough for the navigation.
For to validate the accuracy between results from localization algorithm  (red lines) and 
real robot position into the environment (blu lines) were made measures:  

Fig.  38 shows  a  simple  representation  of  internal  model  map  alias  of  the  real 
environment  of  robot.  For  localization  and  navigation  has  been  assumed  a  known 
environment.  The  architecture  part  which  build  up  a  map  within  a  unknown 
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Fig. 36: Cost function plotting 3.

Fig. 37: Results measured from localization algorithm (red lines) between real robot 
positioning (blu lines).



environment is not thesis argument. External rectangular shape (defined by continuous 
line) represent the border of arena. A rectangular obstacle is located inside. A function 
compute the distances from a trial position and orientation (x,y,θIMU) and defined angular 
given as arguments.

Expression (9) report the algorithm virtual measures from a set of defined angles in 
degree  (10) related to  the detection range of  the telemeter-laser  [-135°:135°].  These 
results was compared with real measures and considering an accuracy of 0.6% from 
telemeter-laser  measures,  has  been  obtained  3.6%  accuracy  results  for  final  robot 
position. 

Ξvirtual=(57,83,221 ,225,295 ,246,233 ,279 ,247,217 ,239) [cm]  (9)

Ξangle=(−135 ,−108 ,−81 ,−54 ,−27 ,0 ,27,54,81,108,135) [deg ]  (10)

Picture  (39)  shows  a  MatLab  execution  of  localization  algorithm.  The  green  point 
identify  the  initial  point  of  the  robot.  A second random point  (red color) is  chosen 
closeness and the minimum local direction is designed from segments connecting the 
two points. Picture (40) shows the cost function value at each optimization algorithm 
computation. A convergent solution has been reached.  
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Fig. 38: Virtual distances computation. 
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Fig. 39: MatLab localization algorithm evaluating

Fig. 40: MatLab cost function assumption.
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5 Classification of navigation methods

5.1  Introduction to navigation

The ability of navigation for an autonomous robot mobile is one of the most important  
aspects. The navigation task is drive the robot in the environment doing evolution in the 
best possible way. This is possible determining it own position in the environment, and 
follow the best possible trajectory to achieve own tasks depending from the application 
field. Typical behaviors is for example planning a path towards some goal location (or 
rather,  what  called path planning),  adapting own velocity  to  different  circumstances 
such as the traffic road or more in general integrate the constrains in order to ensure that 
the robot is able to perform physically the trajectories requested.  The robot must be free 
also to takes decisions in real-time on the basis of its current perceptions to carry out 
displacing in the environment. The  navigator is a key point for an autonomous robot 
mobile, it mades the connection between the movement capabilities of the robot and the 
environment.

In  the  robot's  control  architecture,  the  navigator receive  multi  inputs.  From  path 
planner block receives a path, which can be in different forms more or less complete: a 
series  of  waypoints  coordinates,  may be  contain  additional  information  such as  the 
orientation angle, speed of the robot or also auxiliary information such as a waiting time 
to stop in that point. 
Several methods of navigation have been presented in the literature, where has been 
introduced many different choices in the design process. As part of the navigation of 
robot  autonomous  mobile,  three  main  approach  can  be  defined.  Methods  without 
explicit path (such as Artificial Potential Fields (APFs), Neural Networks, and Fuzzy 
logic); and methods of “trajectory tracking”. This last one allows to the robot “the best  
possible” commands to follow a given reference path knowing kinematic constrains. In 
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Fig. 41: Navigation block into robot's 
control architecture. 



this method a further division leads to consider methods of navigation based on the 
robot invert kinematic model (IKM) and method using direct kinematic model (DKM), 
described in chapter 5.4  .  
 

5.2  Classical methods by force filed-based

The first  methods consists  in force field-based models.  Obstacles can be considered 
such as repellents barriers and the robot attractive for itself so that it seeks to get closer.  
Planning or anticipate the trajectory of the robot is not necessary within these methods 
because  robot's  displacement  is  conditioned  instant  by  instant  from  collected 
information on it local environment.  

5.2.a  APFs (Artificial Potential Fields)

Artificial Potential Fields. APFs is a first type of approach to solve the problem of robot 
navigation. The obstacles generate a repulsive potential field for robot and intensity is 
inversely proportional to the distance to the obstacles. The field is minimal to the point  
that the robot must reach, the idea is to move the robot in the gradient direction of the 
strongest negative potential. 
APFs often represented a good solution to achieve a fast  and reactive response to a 
dynamically changing environment, it has also the advantage to be simple to implement 
and  not  required  high  computational  capacity.  However,  it  has  been  widely 
demonstrated that they suffer from unavoidable drawbacks [21]. In particular, since the 
law of motion of the robot is basically determined by descending the gradient of the 
potential field, it is very likely for the robot to get trapped into a local minimum. And 
only invoking for example a planner, the problem can be solved. Yet more harmful, the 
presence of movings obstacles and sensor noise, significant deviations from the original 
path can lead to a deadlock configuration from which it is harder to escape [22].
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Fig. 42: Potential Field method.



5.2.b  ANN (Artificial Neural Network)

Artificial  Neural Network (ANN). This method is a biologically inspired techniques, 
based on nonlinear mapping functions of several variables. A neuron is an electrically 
excitable cell that processes and transmits information through electrical and chemical 
signals.  A chemical signal occurs via a synapse,  a specialized connection with other 
cells  [23].  In  Artificial  Neural  Networks  the  design  principle  is  the  many-to-one 
mapping between inputs of the system (where each input is assigned a different weight 
called synapse weight); if the amount of weighted signals of the different inputs exceeds 
a  threshold,  the  output  takes  a  positive  value  (neuron  fires).  Such  relation  can  be 
represented as: 

y= f (ω0 u0+ω1 u1+…+ωn un)= f (∑
i=0

n

ωi ui)  (11)

where:
ω0 ui : array of weighted input values.
y : desired output of the system.

Fig.  43 shows the schematic diagram of a simple neural network. Depending on the 
structure of the network, a neural network may comprise one or more input an only one 
output,  it  consists  of  different  layer  of  neurons.  The  first  layers  is  associated  to 
detection, related in robotic to the information supplied by the sensors of the robot. The 
upper  layers  correspond  to  layers  of  interpretation,  which  allow to  the  network  an 
interesting property, so called learning procedure. Is essentially an algorithm that makes 
it possible to find parameters (adjust the various synaptic weights in Fig. 43 ) such that 
to minimize the error; which means that the function matches given input-output values. 
The parameter are typically obtained recursively by giving both an input value and the 
desired output value to the function. 

5.2.c  Fuzzy Logic

Fuzzy Logic. Fuzzy Logic should be defined as a method for logical reasoning, (based 
on probabilistic logic) that is approximate rather than fixed and precise. The advantage 
is their simplicity, but differ from the human way reasoning. Objective is achieved by 
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Fig. 43: Neural network schematic diagram.



introducing linguistic variables and associating them with membership functions. So, in 
contrast with traditional logic where a binary sets may have only two values: true or 
false; Fuzzy Logic may have a truth value which ranges between 0 and 1. In this way 
this method extend the concept of partial truth: the truth values varying between a range 
of completely true and completely false; managed by specific functions when linguistic 
variables  are  used.  Quantify  the  concept  of  proximity  of  an  obstacle,  Fuzzy  Logic 
involve concept of “close enough” or “too far” instead of binary definitions such as 
“obstacle” or “non obstacle”. A block diagram of a fuzzy PD controller is shown in Fig. 
44. The principle of a controller based on fuzzy logic is divided in three phases. The 
first  is  a  process  called  fuzzification  where  the  measured  values  of  the  linguistic 
variables, the control error 'e' and the time derivative of the error 'ce', are converted into 
linguistic  values. In essence,  fuzzification process converts  continuous values of the 
linguistic variables into a discrete collection of linguistic values such as Negative Big 
(NB), Positive Zero (PZ), etc.. The second one use a control strategy expressed in terms 
of a function, defined in terms of “if-then” rules,  that maps linguistic variables to a 
linguistic values. A final phase is called “defuzzification”, the inferred output of each 
function, representing the linguistic value, is aggregated. The linguistic set representing 
the control that is then mapped into a real number in order to send command 'u' to the  
actuators.

Fuzzy Logic such as APFs are subject to local minimum problems, in robot navigation 
the robot can remain trapped in dead ends and other technique are needed to overcome 
this problem. An other problem in autonomous navigation is the need to cope with the 
large amount of uncertainty that is inherent of natural environments [24].

5.3  Method by IKM

A second type  of  approach to  solve  problems of  navigation consist  to  consider  the 
kinematic robot model. In particular generally require to determine an inverse kinematic 
model (IKM) or its invert dynamic model in such a way to calculate the commands to 
be sent to the robot (joint space), knowing the path that the robot has to follow (in the 
Cartesian space). While for most industrial and mobile robots the determination of the 
direct  kinematic  model  is  relatively  simple  and always leads  to  equations  in  closed 
form; inverse kinematic problem is more complex solution of the previous. Not always 
the equations can be written in closed form, and sometimes the problem is reduced to 
solve non-linear equations in several unknowns that many possible solutions.
The determination of this model is often the focal points of navigation method, in fact 
the goal is to get the best possible convergences of the robot to the reference trajectory. 
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Fig. 44: Block diagram of the fuzzy PD controller [24].



5.3.a  Non-holonomic systems

A method  that  ensures  the  robot  to  follow an  accurate  path  is  through  his  inverse 
kinematic model. Or rather this model allows to calculate directly the commands to be 
sent  to  the  robot  (joint  space)  knowing  the  path  reference  (in  Cartesian  space). 
Determination of such model is often the focal point of some type of method which goal 
is to get the best possible convergence of the robot to the reference trajectory.

The problem occurs in mobile robots by the fact that almost are non-holonomic. This 
mean that an analytic model cannot be defined and in some situations is impossible to 
generate a trajectory following a desired path.
Non-holonomic  vehicles  are  systems for  which  the  number of  controllable  states  is 
larger than the number of d.o.f. (degree of freedom). A non-holonomic system mean that 
some  states  cannot  be  instantaneously  controlled,  but  could  be  controlled  via  the 
execution of maneuvers. A typical example should be illustrated by the classical car 
parking problem. This type of vehicle cannot move instantaneously sideways, force the 
conductor  to  do  a  series  of  maneuvers  in  function  by  the  circumstances  and  their 
capacity.
Generally,  all  wheeled  mechanical  systems  or  provided  by  rolling  parts,  are  non-
holonomic systems if associated with the wheels property of “rolling without slipping”. 
Some approaches resolve this problem by using flat outputs [25] or transverse functions 
[26].

5.3.b  Function plat

Flat  outputs.  The  flatness  property  is  useful  for  both  the  analysis  of  the  controller 
synthesis and for non-linear dynamical system. It  is particularly advantageous in the 
context of tele-operation where the path is provided by the user, or for solving trajectory 
planning problems and asymptotical setpoints following control of a robots fleet where 
trajectory is determined by the leader. The system theory of flatness was introduced in 
1995 by M. Fliess [25] that extends the notion of Controllability from linear system to 
non-linear dynamical systems introducing a special type of feedback called endogenous. 
A non linear system:
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Fig. 45: IKM commands generation.



ẋ( t)= f (x (t) , u( t)) x∈ℝn , u∈ℝm  (12)

where: 

 has the property of differential flatness if there is a set of measurable variables y (the 
outputs flat),  such that the state x and the input u can be expressed as real-analytic 
functions of the components of y=(y1, … ,ym) and of a finite number of their derivates:

x=A( y , ẏ ,… , y(α))
u=B( y , ẏ ,… , y(β))

 (13)

The variables state of the robot (linear and angular speed) are expressed in terms of flat 
outputs (  x and y position and their  derivates parameterized by time).  The problem 
became to reaches the desired state respecting the time of flat output and according with 
the constraints set. 
The fact that the system is flat can prove the convergence of trajectories to the desired 
trajectory.
Advantage of writing the system in this form, is that it allows to prove the convergence 
of the system to desired path. The downside is that there is no systematic method for 
determining the flatness of a system.

5.3.c  Transverse functions

The Transverse Function approach [26] is a method developed for treating the problem 
of  control  laws  stabilization  of  reference  trajectories.  This  method  found  particular 
applications  in  holonomic  systems.  For  non-holonomic  systems,  several  difficulties 
occur: from a well known result in nonlinear control theory, Brockett's theorem, shows 
that for non-holonomic vehicles, asymptotic stabilization of fixed points is not possible 
with smooth feedback laws. The linearized system is not controllable in proximity of 
this points. The objective of the transverse function approach provide feedback laws that  
achieve practical stabilization of any reference trajectory, in particular asymptotically 
converges to an arbitrary small  neighborhood of reference trajectory.  The transverse 
functions  approach  offer  a  practice  solution  to  asymptotic  problem  of  a  trajectory 
reference  [27] [28] based  on additional  frequency  variables  to  control  input.  These 
variables  relies  on  the  existence  of  a  function f  satisfying transversality  conditions. 
These functions allows a set of benchmark parter to the vehicle in a close vicinity that 
are slave to the reference path [27].
These two approaches that can solve problems arising from using IKM are penalized by

• high computation cost.
• determination  of  a  specific  robot's  model,  which  is  not  trivial  and  non-

systematic.
• limitation is the formalization of inequality constraints (joint limits, obstacles, 

etc.) inside IK.
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5.3.d  Visual method

Visual method for autonomous navigation. Other methods for monitoring trajectories 
are based on the recognition images along the way taken by a camera or a telemeter 
laser. The idea is to drive the robot during a manual recording phase along the desired 
trajectory.  Once  the  database  is  created,  the  next  phase  of  autonomous  trajectory 
tracking can be achieved comparing at each sampling instant the image taking by the 
robot  with  the  correspondent  on  the  database.  By the  correlations  between the  two 
images the robot commands are calculated to lead it following the trajectory reference 
[29]. This method has large application in transportation systems in indoor and urban 
areas. For this last one an efficient visual memory management and small computational 
cost are required to ensure real-time navigation specially in large-scale outdoor situation 
[30]. 

5.4  Method by DKM (Direct Kinematic Model)

An other alternative family of navigation is introduced in this part and with more details 
will be treated in the next chapter. This method takes advantages of the fact that it is 
based on an element always defined in the robot mobile: the Direct Kinematic Model 
(DKM). This last one for almost all robot mobile assumes a simple form and also is easy 
to determine analytically. These methods consist to generate a trajectory based on the 
direct kinematic model. Afterwards a criterion will be applied to choose the one that 
results in the expected behavior. 
Appendix A refers to DKM formalization of a differential wheeled robot such as the 
WifiBot model. Considering a control function u [ t0, t 0+T p] , where the time Tp is a 
prediction horizon time, injecting this function into the kinematic model, the evolutions 
of the robot in the cartesian space Ẋ=( ẋ , ẏ ,θ̇)T is obtained. 
By integration of this evolution in  the prediction time,  the trajectory Γ[ t 0, t 0+T p]
corresponding  the  control  function u [ t0, t 0+T p] is  generated  from  robot's  initial 
position X (t 0)=( x(t 0) , y (t 0) ,θ( t 0)) . See Fig. 46.
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Fig. 46: Trajectory generation based on DKM.
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6 Navigation by DKM

6.1  Navigation by DKM (Direct Kinematic Model)

This chapter presents methods of navigation based on direct kinematic model of the 
robot.  Technique  particularly  suitable  for  robot  mobile  with  strong  conceptual 
constraints such as non-holonomic and low degree of mobility. All trajectories from the 
direct model assure a feasible path of the robot by the fact that cinematic constrains are 
taken into account and also these trajectories can be projected into a representation of 
the  environment  of  the  robot.  In  this  way  it  is  possible  to  select  the  optimal  path 
according  to  defined  criteria,  which  allows  the  robot  to  a  given  position  avoiding 
obstacles. The idea is looking which movements the robot is able to perform choosing 
the most suitable at the present situation knowing the current configuration (position 
and orientation), current kinematic state, and environment. So several parameters must 
be integrated to make sure that navigator allowing the ability to predict  a trajectory 
achieved by the robot in a given horizon time.

6.2   A classical “Model Generation”

A method “Motion Generation” has been developed by Bonnafous [31] that determines 
safe motions for an articulated rover on rough terrains. Uses the principle of projection 
trajectory achievable by the robot  in  a  pattern of the local environment,  and finally 
thanks  a  risk  criterion  (e.g.  related  to  obstacles  collision),   associated  to  each  path 
generated.  The  path  performing  the  best  result  according  with  assigned  mission,  is 
chosen. This method for streamline the computational work by the fact it use a large set 
of trajectories; these are predefined and stored in a database. So this method does not 
use the kinematic model directly bringing a limitation to this method: adaptability to all 
type of robots is not straightforward. 
A robot LAMA (LAAS) application of this methods is showed in Fig. 47, where the set 
of trajectories in the form of arcs and circle are projected into the middle space. 
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Fig. 47: Motion Generation method apply to LAMA robot (LAAS).



6.3   Escape line method

The “escape lines” method, developed by C. Novales  [32], is a improvement of the 
precedent method. This one differs because use directly at run time the robot kinematic 
model to generate a set of trajectories considering the kinematic robot constrains and 
also the time horizon. The final trajectory selected is one that is more in the reference. 

This method is composed by different stages (see also Fig. 48):
Step 1: Trajectory generating. The first part of the method generates trajectories from 
commands  eligible  by  the  kinematic  model  of  the  robot  (i.e.  its  possibilities  of 
movement), respecting the kinematic constrains,  actuators saturation constraints (e.g. 
maximum speed),  dynamics  constrains  (e.g.  acceleration  and  deceleration),  and  the 
temp horizon.

Step 2: Elimination of non-free “escape lines”. Compare all trajectory in the out space 
with the map of the obstacles known the relative distance from that and the current 
position of the robot. So the objective is to delete trajectories which projection into local 
map intersect or pass too close obstacles. 

Step 3:  Best trajectory selection. The last part choose a free trajectory that achieve a 
minimal cost by the proposed trajectory of reference. The related trajectory commands 
are then sent to the robot to achieve the desired movements.  

Advantage of this method derive by the use of direct kinematic model which always 
exist and is simple to determine. This method is easily adaptable to most type of robots 
mobile and navigation methods.
Disadvantage of this method reside by the fact that hardware limitations implies a limit 
of trajectory projection into the environment (Fig. 49). So the set of trajectories eligible 
by the robot is obtained by discretization of commands acceptable by the robot. A  trade 
off is needed between the number of trajectories generated and the accuracy reference 
path. Although it tests different trajectories over a prediction horizon, it is still subject to 
local minima problems which may occur for example when the robot is in front of a U-
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Fig. 48: Escape Lines principle.



shaped obstacle. Avoiding minima local is possible providing to navigator well-posed 
way-points from the planner.

This  method  has  been  applied  to  a  CyCab  robot  mobile:  a  vehicle  type  with  four 
steering  wheels.  Simulation  of  navigation  results  are  shown  in  Fig.  50 where  the 
trajectory  in  continuous  line  and  the  perpendicular  segments  indicate  the  sampling 
frequency of the method in a 40x40 m2 area. The reds crosses are the waypoints. 
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Fig. 50: "Escape lines" navigation method for a vehicle robot 
mobile (CyCab). 

Fig. 49: Map free-trajectory projection.



6.4  Predictive navigation based on DKM

A new navigation method for mobile robots navigation is proposed in this chapter. It 
aim  to  improve  the  precedent  “escape  lines”  method  providing  a  more  degree  of 
robustness to local minima problems, which is the strong point of this method. Proposed 
by Nicolas Morette (Lab. Prisme) is a direct kinematic model based, using a predictive 
control approach, see thesis: [33]. To allow a better exploitation of the robot kinematics 
performances, the problem to research the optimal trajectory is shifted in a continuous 
parameters space. An algorithm of optimization is used to achieve this scope bypassing 
obstacles and in particular avoid incurring in unwanted local minima. The model of the 
system is used to predict its evolutions over a time horizon after a trajectory criteria 
evaluating explained in the next paragraphs.

In the Chapter 6.2   and 6.3   have been presented navigation methods (by DKM) which 
characteristic is to perform in a discrete space: the number of trajectories generated is 
limited due to limitations previously described, thus the choice of the best trajectory 
cannot be optimal [34] and this hit in a uncertainty in the controlled system. In order to 
overcome the limitation previously mentioned, this new method of navigation contribute 
to propose a continuous formalism based on the successfully tested model predictive 
control  (MPC).  Predictive  control  is  an advanced control  method that  uses a  model 
control system to predict  its behavior in the future. Then at each sampling time, the 
optimal sequence of commands calculated, is applied to the system. So the problem 
system to perform a optimal  trajectory has to predict  its changes over  a given time 
period [TP], and during the interval [t0 , t0 + TP] the commands sent to the robot. The 
problem is set as an optimization problem under constraints where the error to minimize 
is  between the reference path and the expected path of the system. The problem of 
navigation mobile can be addressed as a constrained optimization problem, considering 
the  obstacles  and  the  robot  kinematic  constraints  to  perform  the  minimization 
commands to give at the robot.
This method requires a reference trajectory, by the fact that only way-points list  are 
provided by Path-Planner block (a way-points is a data set containing coordinate in the 
map, speed, and preferably direction that the robot has to achieve in that point).
The proposed method of Navigation is composed by several steps. Firstly a geometric 
curve from his position (given by the localization block) and intersecting way-points is 
generated. Without consider environment informations (e.g. obstacles), or other robot 
constraints which are considered in next steps.
At this point,  the Navigator has all the tools to generate by commands input  to the 
kinematic model a trajectory which is closer to the reference. The reference trajectory is 
obtained  adapting  the  geometrical  path  to  some  robot  constraints.  For  example  is 
necessary to assure a reference trajectory distance according to the capable robot speed 
and  prediction  time.  An optimization  algorithm (Simulated  Annealing  Cap.  6.4.e  ) 
evaluating  a  minimization  cost  function  trajectory;  according  with  a  number  of 
constraints  such  as  minimum/maximum  speed  (commands  u),  obstacles  (by  an 
integration of a local map of the environment) , prediction time (TP), and the state of the 
robot by the fact permitting a real time problem solution. The optimization problem 
solution (commands  u: left and right speed for example, related to a prediction time 
trajectory design) is computed periodically according to the sampling time (TS).  
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6.4.a  DKM trajectories

A trajectory is achievable from the robot if it respects the possible movements of the 
robot by the fact that always robots mobile are non-holonomic systems. Despite this, 
using the direct kinematic model and a possible robot speed value, is possible to predict 
a trajectory that the robot can perform in a given prediction time horizon.

The Reference curve ξref . Computing the reference curve is one of firstly action carry 
out from the navigator. The objective is connecting the current state (absolute position 
into the  map,  orientation and velocity)  of  the  robot  X 0=( x0, y0,θ0, v0)

T between a 

desired state X d=(x d , yd ,θd , vd )
T corresponding to the next waypoint to reach; then 

respecting position  ( xd , y d) , orientation  θd , and linear speed  v d provided by 
the  path planner block. The reference curve is a purely geometric curve, which is not 
related to the time, but may take into account certain geometric constraints related to the 
mechanical structure of the robot such as size and turning radius. To obtain a continuous 
ξref curve  is  necessary  maintain  continuity  with  their  derivatives.  Typically 

polynomial curves are used as Bézier or Beta-splines. In the implementation has been 
used  Bezier  curve  reference  (from  the  French  engineer  Pierre  Bézier)  given  by 
following form:

{ x(t )=(1−t)3 x 1+3t (1−t)2 x2+3t2(1−t) x3+t3 x 4

y( t)=(1−t)3 y1+3t (1−t)2 y 2+3t2(1−t) y3+t3 y 4

t∈[0,1]  (14)

This type of curve is defined by a set of control points, in this case only four are needed: 
P1( x1, y1) , P2(x 2, y 2) , P3( x3, y3) , P 4(x 4, y4) . 

P1:{ x1=x0

y 1=y d

P4 :{x4=x d

y4=y d

P2: {x2=x1+
1
3

v0 cos(θ0)

y 2=y 1+
1
3

v0sin (θ0)
P3: {x3=x4−

1
3

v0 cos (θd)

y3= y 4−
1
3

v0sin (θd)

 (15)

Fig 51 shows a general bezier curve using cubic equations (14). The vectors P1 P2 and
P3 P4 are tangent to the curve. The thus far found reference curve is fully geometric 

and independent from robot's kinematics. 

57



The reference trajectory. The curve thus far obtained, can not catch directly the role of 
reference trajectory because is not related to time. To determine a reference trajectory 
for the robot, is necessary to associate the reference robot speed to the reference curve
ξref . Multiplying the speed reference by the prediction horizon time T P , the real 

distance reasonably by the robot  that  go along the reference curve is  obtained.  The 
choice of reference speed value (corresponding to a realistic moving speed of the robot) 
has to be based on the type of terrain, motor speed limitation and so on.
Knowing the distance from Bezier curve ξref and the walkable real distance from the 
robot,  introducing  a  temporal  parameterization  on  the  reference  curve ξref is  now 
possible to obtain a reference trajectory. 
Denoted D∈ℝ the total length of ξref , the robot is able to cover a real distance: 

d real=vmax∗T P during  T P . Is now possible to perform a time parametrization of
ξref .  So two cases are considered: d real⩽D and d real>D .  In this chapter only 

formulation principle is presented, Cap. 7  treat practical implementation solution.
 

• d real⩽D This condition is verified when during T P the robot cannot cover 
the  totality  of  the  proposed  curve.  In  this  case,  the  reference  trajectory 
corresponds to a reduced part of the geometric curve. This situation is shown in 
Fig. 52. So the equation of the reference trajectory is computed with the respect 
to  the  initial  and  final  constraints.  The  time  parametrization  is  obtained 
considering the new coefficient into the Bezier equations :

{x r(t
')=(1−t ')3 x1+3t ' (1−t ')2 x2+3 t ' 2(1−t ') x3+t '3 x4

y r(t
')=(1−t ')3 y1+3t(1−t ' )2 y2+3 t ' 2(1−t ') y3+t ' 3 y4

 (16)
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t '=
d real

D
∗t , t∈[0,T P ]

Fig. 51: Bezier curve and control points.



• d real>D In this case the robot is able to reach the next waypoint during the 
time prediction horizon. So the next waypoint provided by the path planner list 
has to be considered and the next one Bezier calculated. The amount of new 
Bezier  will  be  integrated  to  first  one  by  distance  difference.  Fig.  53 shows 
clearly this procedure:

A note about, the trajectory reference which does not takes into account of the local 
environment and robot's physics constraints. Adapt the reference speed could be made 
through  information  provided  by  the  mission  planner,  from  ground  state,  and 
dependency on congestion of the route [33].  
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Fig. 53: Trajectory reference by Bezier curves 
composition.

Fig. 52: Trajectory reference obtained by reducing 
reference curve.



6.4.b  Local Map

The  local  map should  be  defined  as  a  model  of  the  environment,  elaborated  from 
perception part  of robot's  control architecture.  It  consists  from all informations that 
sensors capture in a specific instant.  The  local  map is  constantly updated with new 
informations from external sensors which are processed by the lower perception blocks. 
The maximum range of the local map corresponding to the maximum measuring range 
of  the  sensor.  An  example  is  shown  in  Fig.  54 where  WifiBot  camera  imaging  is 
captured and overlying the related telemeter-laser measure in the environment. A local 
map should be also represented by a telemeter laser range where measures are described 
as vectors of distance and showed in a radial disposition l(see in Fig. 55).
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Fig. 54: Camera imaging capture and telemeter laser 
measures.

Fig. 55: Telemeter area scanning. 



6.4.c  Robot Commands 

How mentioned in the top of this  chapter,  the navigation problem can be set  as an 
optimization problem under constraints. The scope is to minimize a cost function Z. The 
variables on which plays to minimize this criterion are the commands. The  u control 
function is a vector of  m components,  each one corresponding to one of the robot's 
actuators:

u( t)=( q̇1, q̇2,…, q̇m)
T ; t∈[ t 0, t 0+T P ]  (17)

where q̇i is the articular velocity of the ith actuator.
In the case of a differential  wheeled robot such as WifiBot robot mobile, should be 
defined the angular left and right speed [rad/s] :

u( t)=(ωL(t ) ,ωR(t))
T ;u∈ℝ[2x1 ] , t∈[ t0, t0+T P]  (18)

and  for  a  CyCab  robot  vehicle  u(t) is  defined  as  linear  speed  [rad/s]  and  steering 
component:

u( t)=(v(t ) ,ξ( t))
T ; u∈ℝ[2x1] , t∈[t 0, t0+T P ]  (19)

Giving the commands into kinematic model input, the robot displacement vector in the 
Cartesian space is obtained. Or rather, the trajectory in the time horizon TP is defined as: 
Γ [ t0, t0+T P] . 

For  the  WifiBot  a  class  of  control  family  is  defined  by  four  parameters
P=( p1, p2, p3, p4) :

 

{ωL(t )=ωL( t0)+ p1

ωR(t )=ωR(t0)
+ p2

t∈[t 0, t0+
T P

2
]

{ωL(t )=ωL(t 0)+ p3

ωR(t )=ωR( t0)+ p4

t∈[ t0+
T P

2
, t0+T P ]

 (20)

Before giving commands into to the kinematic model, constraints of acceleration and 
deceleration  are  considered  into  news  commands,  allowing  by  ramps  generation  a 
gradual velocity variation in time (where cceleration values depends from robot level 
battery). The motion laws considered are trapezoidal motion profiles:
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The use of four parameters are necessary to provide a by-pass trajectory generation. 
Only two parameters they can only generates  a linear  trajectory or  arc  in  the same 
direction, as is showed in Fig. 49 . This implies a obstacle motion limitation during the 
horizon  time  prediction.  To  by-passing  obstacles  a  veer  is  needed,  translated  into 
commands mean the  use of  four  parameters.  In  this  way four  parameters  permit  to 
execute a robot change deviation during the time prediction, enabling the generation of 
by-pass trajectories.  
The space of admissible solution is infinite dimensional, in fact an infinite number of 
admissible parameterized control function  u  can be defined on the prediction horizon 
time. Hence, performing a continuous variation on the four parameters, thanks the use 
of  the  robot  kinematic  model  will  be  generated  an  infinite  number  of  admissible 
trajectories. This makes the search for optimal solution very complex.

6.4.d   Cost function structure

From  Cap.  6.4.a   follows  that  the  non-holonomy  constraints  are  implicit  in  the 
formulation  of  the  problem.  For  against,  kinematics  constraints  such  as  actuator 
saturations, must be clearly formulated by the way to achieve a realizable trajectory. So 
the cost function has also to take into account the environment: informations from local 
map  database.  So  the  optimal  trajectory  corresponds  to  a  trajectory Γ [ t0, t0+T P]
which is the nearest to the reference trajectory, where robot and environment constraints 
are included. The returned cost function value is the means to evaluate the trajectory 
into admissible space of solutions. The cost function Z is structured in three part how 
shown in Fig. 57:
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Fig. 56: CyCab motion law commands.



The cost function should be defined as follows equation:

Z=Zplanif+Zrobot+Zenv  (21)

where:
− Z planif quantifies  the  difference  between  the  reference  trajectory  and  the 

evaluated paths of the robot; the cost is composed by a first stage cost function 
and a terminal cost function. The two function are based on computation of the 
quadratic distances point by point of evaluated trajectories.

− Zrobot quantifies  the  constraints  inherent  to  the  robot  such  as  actuators 
saturations  and  dynamics  constraints.  In  a  wheeled  mobile  robots,  they  are 
usually  related  to  the  wheel's  maximum  rotation  speed,  the  maximum 
acceleration and deceleration. 

− Zenv quantifies  constraints  of  the  environment,  penalty  due  from  fixed  or 
mobile obstacles. It is assumed that the local map environment is known as a on-
line refreshed occupancy grid [35] where to each square of the grid is assigned a 
boolean value indicating the occupancy.
The cost is calculated projecting the trajectory to evaluate into the grid, and a 
zero  cost  identify  a  free  trajectory  from  obstacles.  One  can  note  that  the 
proposed  DKM  predictive  control  method  is  independent  from  the  map 
representation type, for example Bayesian occupancy grid or a potential  field 
map can be integrated.  
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Fig. 57: Cost function structure.



6.4.e   Optimization algorithms comparison

This chapter aims to illustrate motivations that leads to adopt the navigator's algorithm 
optimization. A critical obstacle situation is illustrated in Fig.  58, or rather the robot 
encounters an U-trap shape obstacle. The first simulation, performed by Nicolas Morette  
[34], a deterministic algorithm has been implemented. 

• The deterministic algorithm is trapped in this local minimum in the parameters 
space (Fig.  58 - top left and bottom left) and cannot find the four parameters

P=( p1, p2, p3, p4) corresponding to  the global minimum of cost function Z 
(expression 21).

• The stochastic algorithm manages to find the parameters regardless the initial 
settings (see Fig.  58 - top right and bottom right) and is not subjected by local 
minimums. 

The success of the deterministic algorithm, to find the global minimum, highly depends 
from parameter initialization. The simulated annealing algorithm provides less accurate 
results but they are constantly near to the global minimum. 

How  display  Fig.  58,  the  complete  bypass  trajectory  is  obtained  from  stochastic 
algorithm, in particular simulated annealing algorithm [20].
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Fig. 58: Comparison between a deterministic and stochastic algorithms in 
presence of minimum local.



6.4.f  Simulated annealing optimization algorithm 

Cit. [36]: The evolution of nature led to the introduction of highly effective and power  
efficient biological mechanisms; result of billions of years of evolution. Failed solutions  

often led to the extinction of the specific species that became a fossil.

Imitating  the  mechanisms  of  nature,  offers  enormous  potentials  for  the  life 
improvement.  It  becomes  significant  to  mimic  biological  methods,  processes  and 
systems.
In robot mobile,  every change of environment  (e.g.  an mobile obstacle) involves  to 
consider a new configuration of the robot and this require a new complete computation 
of the trajectory. It should be necessary to adopt algorithms to satisfy optimization of the  
motion.
Simulated annealing (SA) optimization algorithm has been used to find the optimum 
trajectory. The idea of SA comes from N. Metropolis in 1953 [37], which is motivated 
by the physic annealing process. This method can find the global minimum with a high 
probability and is also applicable for the solution of discrete optimization problems. The 
term of this optimization method derives from the process of material (metal) cooling at 
a slow rate, known as annealing.  The method is  based on the simulation of thermal 
annealing of critically heated solids [20]. For example, when a metal is brought into a 
molten state by heating it to a high temperature, the atoms move freely. The metal state 
attain  a  high  energy  state.  As  the  temperature  reduces,  the  atoms  movements  get 
restricted.  The atoms tend to  get  ordered and forming crystals  having the minimum 
possible internal energy. This process of crystals formation depends essentially on the 
cooling rate. 
If the temperature of the molten metal is reduced at a very fast rate, it may not be able to 
achieve a crystalline state. So a polycrystalline state may be obtained having a higher 
state of energy than that crystalline state. Rapid cooling may introduce defect inside the 
material.
Thus the temperature of the heated solid (molten metal) needs to be reduced at a slow 
and controlled rate to ensure proper solidification with a highly ordered crystalline state 
that corresponds to the lowest energy state (internal energy). 

The  simulated  annealing  method  aim to  achieve  the  minimum function  value  in  a 
minimization problem, simulating the process of slow cooling of molten material. The 
cooling  phenomenon  is  simulated  introducing  a  temperature-like  parameter  and 
controlling it using the concept of Boltzmann’s probability distribution. This last one 
implies  that  the  energy (E)  of  a  system in  thermal  equilibrium at  temperature  T is 
distributed probabilistically according to the relation (22):

P [E]=e−Δ E /kT  (22)

where  P(E) denotes  the  probability  of  achieve  the  energy  level  E,  and  k is  the 
Boltzmann's constant. At a high temperature levels, equation (22) shows that the system 
has nearly a uniform probability of being at any energy state. In fact the term P(E) tends 
to a unit value. However, at low temperatures, the system has a small probability of 
being at a high-energy state. These observations indicates that when the search process 
is assumed to follow Boltzmann's probability distribution, the convergence of the SA 
algorithm can be controlled by controlling the temperature  T. The temperature at k-th 
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iteration Tk is given by the following cooling function:

T k=(1−
k

k max

)⋅T 0+T min  (23)

Considering the function minimization problem, let the current design point (state) be Xi 

, the corresponding energy state Ei of a thermodynamic system is given by function cost 
fi=f(Xi). So the energy Ei at state Xi  is given by 

E i= f i= f ( X i )  (24)

According  to  the  Metropolis  criterion,  the  probability  of  the  next  design  point  Xi+1 

depends on the difference of energy state ( or cost function value) at the two design 
points (states) given by

Δ E=Ei+1−E i= f i+1− f i= f (X i+1)− f (X i)  (25)

The new state Xi+1 can be found using the Boltzmann's probability distribution:

P [Ei+1]=min (1,e−Δ E /k T )  (26)

Equation  (26)  return  the  minimum value  between  1,  chosen  for  simplicity  and  the 
exponential function. If the function value at  Xi+1  is smaller than at  Xi  , according with 
(25),  ∆E<0, and (26) give P[Ei+1]=1 ; and the point  Xi+1 is always accepted.  This is a 
logical choice in the context of minimization of a function, reaching the smaller energy 
state of the system. On the other hand, when ∆E>0, the function value fi+1 at Xi+1  state is 
worse  than the  one  at Xi state,  the  probability  of  accepting the  point  Xi+1   is  finite 
according to the Metropolis criterion. 
Note that the probability of accepting the point Xi+1 is not the same in all situations, but 
depends  on  the  values  of  energy  and  temperature.  If  the  temperature  is  large,  the 
probability for design points Xi+1  will be high. Thus at high temperatures, even worse 
design points Xi+1 are likely to be accepted, thanks a high probability of equation (22). 
However, if the temperature is small, the probability of accepting worse state points Xi+1 

will be small. Fig. 59 illustrate a flow chart related the simulated annealing procedure.
From literature [20] this method benefits meanly by follows features: 

1. the  quality  of  final  solution is  not  affected by the  initial  guesses,  but  worse 
starting designs may increase computational effort.

2.  the convergence or transition characteristics are not affected by the continuity or 
differentiability of the functions, thanks the discrete nature of the function and 
constraint evaluations.

3.  The convergence is also not influenced by the convexity status of the feasible 
space.

On the other hand this method require a detailed parametrization (e.g. the choice of the 
initial temperature, the temperature reduction factor called cooling rate) because they 
play  important  roles  in  the  successful  of  convergences  SA  algorithm.  All  these 
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parameters still  remain an art  and generally  require  a  trial-and-error process to  find 
suitable  values.  Chapter  7   propose  navigator  results  assuming  following 
parametrization:

• The  temperature  reduction  strategy  (also  termed  the  cooling  schedule)  is 
function of iteration algorithm number how shows linear equation (23).

• A random steps of 2-4% are performed in the parameter space because the new 
design point from actual state must be taken in the vicinity of the feasible space 
research.  The  random  step  unit  is  in  rad/s  according  to  the  robot  speed 
commands unit.

• The choice of the initial temperature has been chosen as the average value of the 
objective function (cost function) computed at a number of randomly selected 
points in the design space. 
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Fig. 59: Simulated annealing procedure.
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7 Navigation results

7.1  Introduction 

This  chapter  shows  the  predictive  navigation  results  by  direct  kinematic  model 
mentioned on chapter  6  . The navigator provides optimal trajectories according to the 
environment, robot constraints and the path planner block. This last block is located in 
the  higher  levels  of  the  architecture.  The  path  planner  send  to  navigator  a  list  of 
waypoints  processed  with  first-come  first-served  service.  The  navigator  commands 
continuously the robot into environment: from its actual position to the next waypoint. 
The trajectory,  based  on specific  direct  kinematic  model  of  the  robot  under  test,  is 
computed thanks to an optimization algorithm. The optimal commands, solution of the 
problem, corresponding to the optimal  trajectory,  are then given to the pilot.  So the 
navigator moves the robot autonomously continuously towards a destination point to 
point into the map. 

7.2  Navigator performances

In order to test the navigation method and its adaptability to various kinematics, this 
method  was  applied  to  WifiBot  robot  model.  The  path  planner  block gives  to  the 
navigator a list of waypoints placed into the map in vector notation (x,y,θ), where x,y is 
the  cartesian  displacement  into  the  map  and  θ  is  a  possible  orientation.  Then  the 
received waypoints are connected thought a Bezier curve forming a path (see Fig. 60). It 
is  possible  to  note that this curve does  not  take into account  the local  environment 
constraints and the robot's physic constraints. To obtain the reference trajectory, or better 
the robot's admissible trajectory from the Bezier curve, the prediction horizon time [t0 , 
t0+TP]  and  the  reasonable  reached  speed  must  be  taken  into  account.  A recursive 
algorithm permit to obtain the reference trajectory from Bezier curve and waypoints, 
based on effective distance covered by the robot during the fixed prediction time  TP. 
Fig. 60 display how the Bezier path connect a series of successive waypoints provided 
from path planner block. In this case the path planner block provides waypoints located 
around the obstacle, but this lucky condition, if not verified, do not compromise the 
optimal  solution from navigator  algorithm, which avoid obstacles anyway.  Thanks a 
recursive algorithm, Fig. 61 display how the trajectory reference curve is obtained from 
Bezier curve (continuous line) consistently the robot speed constraints. Fig. 62 shows an 
optimal  trajectory  result  from  optimization  algorithm,  considering  the  reference 
trajectory and robot constraints. 
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Fig. 61: Trajectory reference curve obtained from Bezier curve.

Fig. 60: Bezier curves connecting waypoints.



Following pictures show real results when the robot moves safely among the obstacles, 
and using specific trajectories according with its motions abilities. The AS optimization 
algorithm  provides  obstacle  avoidance  trajectories  (and  related  robot  commands) 
solutions. In first picture (Fig.  63), the virtual border margins security are takes into 
account by function constraints, lets to avoid robot impact.

Fig.  64 shows the navigation result for the WifiBot robot navigating around obstacles. 
Despite  the  fact  that  the  reference  path  intercepts  obstacles,  the  navigator  provides 
obstacle bypassing trajectory solution. Enabling the robot to reach its various waypoints 
while  avoiding  collision.  The  robustness  of  this  method  ensure  to  find  a  global 
minimum solution, enabling the robot to diverge from the reference path when needed. 
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Fig. 62: Reference trajectory and optimal solution. 

Fig. 63: Optimal trajectory considering border security margins.



Using an adapted temporal horizon enables the generation of trajectories that are long 
enough to bypass obstacles:
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Fig. 64: Obstacle trajectory avoidance

Fig. 65: Obstacle robot avoidance



Fig.  66 shows a demo where the Bezier reference trajectory (continuous track line) is 
computed from way-points list. Fig. 67 shows the real track reached from mobile robot 
during his evolution into the map. Is possible to note which the obstacle and borders are 
avoided thanks the optimization algorithm solutions.  Care was taken the robot  from 
impacts during the navigation thanks the safety area margins. 
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Fig. 67: Real robot reached trajectory.

Fig. 66: Demo robot reference trajectory.



7.2.a  RTMaps drawing

RTMaps  middleware  offers  a  modular  platform  where  data  samples  flow  between 
functional  blocks.  Fig.  68 shows  the  graphical  window  interface  dedicated  to  data 
acquisition  from  WifiBot  robot  sensors.  In  particular  from  the  top,  telemeter-laser 
rangefinder, IMU. From WifiBot driver board returns robot speed and odometer values: 
left and right side. All these datas are sent by a  SocketSender block to a supervision 
station, for monitoring the robot state during navigation.

Fig. 69 shows the drawing connecting different functional blocks of robot architecture. 
In sequence, the localization block uses the telemeter-laser data, IMU and odometers 
values to localize the robot into the map. It  gives to the navigation block the robot 
position (x,y,θ). Necessary from the navigation block for projecting the trajectory into 
the space, to find optimal commands. Then the optimal robot commands are elaborated 
by the pilot: the most reactive functional block of robot architecture.
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Fig. 69: Localization block, Navigator, and Pilot architecture blocks.

Fig. 68: RTMaps drawing, sensors data acquisition.



7.2.b  Navigation conclusions

The experimental results validate this navigation method based on predictive control 
and trajectory projection through the direct kinematics model.  Indeed, the robot was 
able to move safely around obstacles, with fluent trajectories between the successive 
waypoints, and with enough autonomy to diverge from the reference trajectory when 
needed. However, was noticed that the choice of the prediction horizon multiplied by 
the maximum velocity of the robot was a key factor to enable the navigator to find 
bypass trajectories. Moreover the settings of the simulated annealing algorithm are very 
important too, and these settings are complicated to do well (lots of parameters to set, 
and sometimes no systematic methods to do this).
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8 Conclusions and further work

In  this  thesis  has  been  implemented  and  tested  a  new  generation  of  mobile  robot 
navigator  thanks  to  the  predictive  control  approach.  The  contribution  aims  to  the 
development of an autonomous mobile robot architecture inside the PROTEUS Project. 
The work was  integrated  in  the  team development  of  Prof.  Cyril  Novales and Ing. 
Nicolas Morette, allowing to validate the new theory of navigation.
Into robot's  control  architecture the navigator  has  proved to be a  pivot  between the 
lower  reactive  piloting  and  servoings  levels  (the  continuous  levels)  and  the  upper 
deliberative  path  and  mission  planning  levels  (usually  the  discrete  levels).  From a 
deliberative  point  of  view,  practical  simulations  and demonstration  showed that  the 
robot is capable of avoiding obstacles, moving safely, thanks bypassing trajectories on it 
predictive horizon time TP. 
Almost all mobile robots are non-holonomic, and an analytic invert model cannot be 
defined: this means there are situations where it is impossible to generate a trajectory 
that  follows  a  desired  path.  Otherwise  considering  a  navigation  method  by  direct 
kinematics  model (DKM) leads to consider a  model  that can always be determined 
analytically, and is often simple to define for most robot's structures. Using a navigator 
by DKM means that any kinds of mobile robots can be easily adapted knowing the 
robot's motion ability precisely.
The  validation  of  this  method leads  to  replace  an  existing  discrete  DKM navigator 
(discrete because the solution is chose in a finite number of trajectories mapped into 
memory)  towards  the  presented  continuous  domain  DKM  navigator.  In  this  way, 
providing a continuous variation of parameters value is possible to generate an infinite 
number of trajectories: the robot motion abilities are more throughly exploited.
The use of stochastic optimization algorithm such as simulated annealing enables the 
robot to find optimal commands solution (related to obstacle bypassing trajectories) into 
continuous domain. This kind of algorithm provide a trajectory offering an escape from 
local minima; otherwise deterministic algorithm is not able to stay always nearly the 
global minimum. On the other hand SA algorithm require a detailed parametrization 
because they play important roles in the successful of convergences. Generally require a 
trial-and-error  process  to  find  suitable  values  (the  global  minimum) with  a  high 
probability. A choice and methodology was proposed in order to obtain an acceptable 
minimum solution.
The robot final tests showed how the navigation method enables the robot to correctly 
navigate in cluttered surroundings by avoiding static obstacles; allowing the integration 
of the continuous navigation by DKM into autonomous robot's control architecture. 

Further work

Thanks the use of a DKM navigation method, other kind of robot (like CyCab model) 
should be tested to proving the flexibility and adaptability of this method.
The use of Simulator should be useful to test also the robustness of algorithms and robot 
platform in general. 
With the  validation of  Navigator module,  in  order  to  implement  the  robot's  control 
architecture, other methodology for pilot and path-planning modules must be simulated 
and tested.
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APPENDIX A

DKM for a WifiBot differential drive mobile robot

The position of the robot in a plane surface is given by the vector  ( x , y) , which 
contains the Cartesian coordinates of its characteristic point P (geometrical center of the 
mechanical structure). Usually, this point is placed in the middle of the common axis of 
the driven wheels.  As is possible to see in Fig. X, the orientation of the differential 
mobile robot is given by the angle θ between the vector direction of the instant linear 
velocity of the robot v⃗ and the local vertical axis.
The  instant  linear  velocity  of  the  robot  v⃗ is  attached  and defined  relative  to  the 
characteristic point P.
As equation (27) denotes, the instant linear velocity is a result of the linear velocities of 
the left driven wheel v⃗L and respectively of the right driven wheel v⃗R , where two 
velocity  vectors  v⃗L and  v⃗R are  permanently  perpendicular  on  the  common 
mechanical axis of these two driven wheels.. The same equation should be expressed in 
terms of angular velocity known the radium wheel (28).

v=
vL+vR

2
 (27)

v=
(ω L+ωR)

2
⋅r  (28)

The next two equations regrouped in (29) gives the two Cartesian components of the 
linear velocity:

v x= ẋ=v∗cos(θ)
v y= ẏ=v∗sin (θ)

 (29)

The robot state should be defined as a four elements vector: {X }=(x , y ,θ , v)T where 
{X }∈ℝ[ 4x1]  

The two state equations for the linear velocity components are given using equation (27) 
into (29): 

ẋ=
vL+vR

2
∗cos(θ)

ẏ=
vL+vR

2
∗sin (θ)

 (30)

A third state equation representing the angular velocity of the robot, can be write as:

θ̇=ω=
v L−v R

L
 (31)
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where L represent the length of the wheel axis.
For the simulation the model is defined to following equations: 

xK=xK−1+T P∗
vLK
+vR K

2
∗cos (θK )

yK= yK−1+T P∗
vLK
+vR K

2
∗sin (θK )

θK=θK−1+T P∗
vLK
−vR K

L

 
(32)

where Tp is the sampling time and xk and yk  the Cartesian positions of the driven 
wheels in the global reference attached to the operational space.

The Kinematic model determines directly the displacement of the robot in the Cartesian 
reference based on derived joint coordinates. The matrix which permit to do this is the 
Jacobian matrix [ℑ ] .

{ Ẋ }=[ℑ ]∗{q̇ }  (33)

where: 
{Ẋ }=( ẋ , ẏ ,θ̇)T is the robot displacement vector in the Cartesian space.
{q̇}=(q̇1, q̇2,… , q̇n)

T is the displacement in the joint space.

However in robotic mobile wheeled this model is not always useful, should be more 
useful use a simplified kinematic model which linking the robot Cartesian speed with 
the command that may be apply directly to the robot:

{ Ẋ }=[C (q)]∗{ u̇ }  (34)

where in the case of a robot mobile with differential wheels the vector  u̇∈ℝ{2x1} is 
defined by the two angular speed right and left respectively: ( u̇)=(ωL ,ωR)

T .
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