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Chapter 1

Introduction

1.1 Past, present, and future of electric vehicle

In recent years, more and more people have been hearing about hybrid and electric
vehicles, always seen as an innovative and clean technology. Let’s start by saying that
it is not an invention of recent years, far from it. Actually, the idea of the electric
car was born even before that of the internal combustion engine (ice). In 1821, the
British scientist, Michael Faraday concluded an experiment with which he proved one
of the fundamental laws of electromagnetism that is how a magnetic field interacts
with an electric circuit to produce an electromotive force (emf), a phenomenon called
electromagnetic induction. It is the fundamental operating principle of transformers,
electrical motors, generators, inductors and solenoids. It seem that the first electric
vehicle (ev) was built by a Hungarian engineer in 1828, such Ányos Jedlik, but it was
little more than a prototype. In the same period the first electric locomotives were being
studied but they had the same problem of the electric vehicles: the low autonomy. If in
the railways the question was resolved brilliantly with the idea of the overhead contact
lines, for the car there were no appreciable solutions, with the consequent spread of the
ice.

During the XIXth century many attempts were made and many car manufacturers
devoted themselves to the development of an electric car, especially in the United
States. However, the idea was soon abandoned, first of all because of the reduction
of the fuel cost, since in those years large oil fields were discovered in Texas; second
of all significant improvements were introduced for the ice such as electric starter,
water-cooling, clutch, and gear-shift system.

Nowadays the situation is changed and the world outlook is catastrophic to say the least,
both with regard to the enormous demand for primary fuel that will exhaust the reserves
which are already widely used with the technological progress since the industrial
revolution, both for the alarming and worrying increase in polluting emissions and
carbon dioxide which causes global warming. Some people think that global warming
causes only phenomena such as heat waves, droughts, wildfires, but in general it causes
more frequent extreme weather events that depend from region to region, so we also
find hurricane, heavy rainfall with floods, and heavy snowfall. All this will change the
earth’s climate irreparably and there will be a massive extinction of plant and animal
species. The largest source of greenhouse gas emissions from human activities in the
world is from burning fossil fuels mainly for electricity, heat, and transportation as
shown in Figure 1.1. When allocating emissions from electricity to consuming sectors,
industry was the largest emitter followed by buildings, whose share increased from 8%
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1.1. PAST, PRESENT, AND FUTURE OF ELECTRIC VEHICLE

to 27% due to its strong reliance on electricity, and then transport with almost the
25%.

Figure 1.1: Carbon dioxide emissions by sector in 2016 [1].

Emissions from transportation primarily come from burning fossil fuel for our cars,
trucks, ships, trains, and planes, Figure 1.2. Over 90 percent of the fuel used for
transportation is petroleum based, which includes gasoline and diesel.

Figure 1.2: Distribution of carbon dioxide emissions produced by transport sector [1].

From these two figures we understand why it so important to gradually replace
traditional vehicles with the electric ones, to reduce the(CO2) emission. Obviously with
the introduction of ev the emission of CO2 won’t become zero because the electricity
must still be produced but will move the problem of pollution from densely populated
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CHAPTER 1. INTRODUCTION

areas like cities to uninhabited ones. Moreover, we have to consider that electric motors
have a higher efficiency compared to the ice and that part of energy can be produced by
renewable sources. In addiction to carbon dioxide, an ice produces carbon monoxide
(CO), nitrous oxides (NOx), sulphur dioxide (SO2), particulate matter (PM), and
volatile organic compounds (VOC) [2]. CO inhibits the ability of the blood to carry
oxygen, for this reason it is particular dangerous for people with heart disease. Moreover
if it is inhaled in large quantities it causes permanent damage to the nervous system.
NOx reacts with ammonia, moisture, and other compounds to form nitric acid vapor
that can penetrate deeply into the lung and damage it. Inhalation of NOx increases
the risk of lung cancer and can worsen respiratory diseases such as asthma, emphysema
and bronchitis. In the presence of VOCs and sunlight NOx reacts to produce ground
level ozone and finally SO2 emissions are a precursor to acid rain and atmospheric
particulates that can influence the habitat suitability for plant communities, as well as
animal life.

This issue has been addressed by world powers as a topic for the protection of our
planet (November 2015, Paris), pushing car manufacturers to an exponential production
of hybrid and electric cars, whose sales of its products is exptected to increase from
now until 2030 as shown in Figure 1.3. Regulations will force and incentive producers
to build and consumers to switch toward electrification over time, at least in China
and Europe. In Europe, various countries are determined to phase out traditional
combustion engines (diesel and gasoline), the UK and France from 2040, Norway
potentially from 2025, and Germany from 2030-2040 [1], US will seek to meet regulatory
requirements reducing from the current 95% to 66% by 2025.

Figure 1.3: Sales forecast of ev by 2030 [3].

As can be seen from the figure, traditional vehicles are not going to disappear (or even
decline in importance) anytime soon as the majority of the road vehicles will also have
an ice. The outlooks indicate that pure ice vehicles to decline in share from their
current 95 percent of the global market to less than 50 percent by 2030. The trend for
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1.2. ELECTRIC AND HYBRID VEHICLES

each national and regional market (the US, Japan, Europe, and China, for instance)
will be in the same direction, but the evolving mix of the traditional, hybrid, and
electric vehicles will vary according to the relative cost of gasoline and electric energy,
the number of kilometers that consumers drive in each region, and local regulations and
incentives. Currently ev’s cost isn’t comparable to the cost of a traditional car mainly
due to batteries’ cost, so there is only a niche market based on supercars and high
efficiency city cars, consequently it is very important to have government incentives.
In fact, in 2016 after that Denmark and Netherlands cut them off there was a drastic
decrease in sales.

There are several factors that must be developed for the electric car to succeed in
the market, but the aspect that needs to be better defined is that of standardization
of the charging and the interfaces, so as to allow the driver to be able to connect
his/her car at any charge point. An e-boom could also pose a tough challenge
for the existing electricity infrastructure and grids to handle, especially in countries
using more electricity from renewable sources. Most national grids are currently ill
equipped to handle a wider use of battery-powered vehicles and many countries lack
the proper infrastructure to support recharging. Most countries in Europe have only
a few thousand public charging point and they are mostly only slow-charging sources,
which allow vehicle charging using common household lower voltage alternating current
(ac) sockets and cables. Fast charging sources, on the other hand, deliver higher
voltage direct current (dc), allowing for much quicker charging. However, this is more
costly and more electricity is lost during charging [4]. A network of 120 kW charging
poles, capable of recharging 50% of the model S battery in 20 minutes, is currently
being installed by tesla motors in Asia, North America, and Europe [5]. With the
introduction of millions of evs in the market it will be possible to use batteries as
storage elements to provide services to the network, the national grid will be able to
draw power from car batteries at peak times as a way of balancing supply and demand,
and at the same time, ensuring that the cars are fully recharged by the morning [4],
bidirectional interaction between vehicle and network is called: vehicle to grid (v2g)

1.2 Electric and hybrid vehicles

evs use one or more electric motors for propulsion, and an onboard electricity storage
system as a source of energy.
The three main components of an electric car are: electric motor, controller and battery
as shown in Figure 1.4. Nowadays three different types of electric motor are used in
the market: dc brushless with top speed, ac induction with the best acceleration and
permanent magnet (pm) motor . The controller takes power from the battery and
passes it on the electric motor. The current is converted from the dc of the battery to
ac, which is necessary to feed the motor. Battery aren’t used only to power vehicles
but also used for the functioning of wipers, light, ventilation, etc...

Electric cars look precisely like other normal vehicles outward, but for the lack of an
exhaust system. However inward they are very different from each other [7]. They have
apparently zero emission of pollutants, but they have been criticized as limited in range
and of less environmental benefit than claimed. evs are more efficient than traditional
vehicle for several reasons:

1. the electric motor is directly connected to the wheels, so it consumes no energy
while the car is at rest or coasting;
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CHAPTER 1. INTRODUCTION

Figure 1.4: Main components of an electric vehicle [6].

2. part of the energy can be recovered by a regenerative braking system1, a number
of Tesla drivers have reported data using different data tracking apps. Model S
drivers have reported recapturing as much as 32% of their total energy use while
driving up and down downhill [8];

3. electric motors convert approximately 90% of the energy from the battery to
mechanical energy while ices convert at most 33% of the chemical energy into
mechanical energy;

4. significantly increased reliability of the electrical components compared to the
mechanical ones, reduction of maintenance;

5. electric motors can be accurately controlled and provide high torque from rest,
unlike internal combustion engines, and don’t need multiple gears to match power
curves, this means that gearboxes and torque converters are removed.

Nowadays the world is not ready yet for a diffusion of pure electric vehicles but we
are witnessing the transition to hybrid electric vehicle (hev). In general a hybrid
vehicle is a vehicle that uses two different energy sources, we focus on hevs that
combine a conventional ice system with one or more electrical machines. The main
difference between hevs and evs is that the first can work also without an external
battery recharge system, so it can be independent of charging infrastructure. Currently
hevs are a good alternative because they allow not to give up the comforts normally
attributed to normal cars (first of all autonomy) with an increase in cost not too high
but with advantages from the point of view of emissions that can be significant. To
give some value, we get an improvement in consumption of about 40% compared to a
traditional vehicle with an increase in costs of about 15%. Hybrid power system were
conceived as a way to compensate for the shortfall in battery technology. Because
batteries could supply only enough energy for short trips, an onboard generator,

1With regenerative braking the motors act as generators, which recharge the batteries. With normal
friction brakes, energy is lost in the form of heat created by friction from braking. In addition to
improving the overall efficiency of the car, regeneration extends the life of the braking system as its
parts don’t wear out as quickly.
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1.2. ELECTRIC AND HYBRID VEHICLES

powered by an ice, could be installed and used for longer trips. Hybrids carry a
much smaller battery load than ev and are therefore lighter and cheaper [9].

There are different types of hevs on the market, which differ in their structure and
the impact that the electric motor, installed as assist to the ice, has on functioning.
They can be classified according to the degree of hybridization (doh) or according to
the type of architecture used.
doh is define like:

h =
Pem

Pem + Pice

Where Pem is the power of the electric motor and Pice is the power of the internal
combustion engine. Depending on doh, we can find two different types of hev:

� Mild hybrid is a vehicle that cannot be driven solely on its electric motor,
because the electric motor does not have enough power to proper vehicle on its
own. A mild hybrid is essentially a conventional vehicle with oversize starter
motor, allowing the engine to be turned off whenever the car is coasting, braking,
or stopped, yet restart quickly and cleanly. Accessories can continue to run on
electrical power while the gasoline engine is off, and as in other hybrid design,
the motor is used for regenerative braking [10]. As compared to full hybrids, mild
hybrids have smaller batteries and a smaller, weaker motor/generator, which
allows manufacturers to reduce cost and weight.

� Full hybrid is a vehicle in which there is a small power ice, compared to the
overall power of the car, which is used to increase the autonomy of the vehicle.
In addition there is an electrical system that allows, regardless of the autonomy
of the batteries, to cover the entire route. These vehicles have a split power path
allowing greater flexibility in the drive train by interconnecting mechanical and
electrical power, at some cost in complexity [11].

There are no existing rules that identify precisely this subdivision, so this type
of classification is currently discussed, we prefer to classify hevs based on their
architecture: series, parallel, or series-parallel (power split). This subdivision is made
according to the way in which power is supplied to the drivetrain: there are two macro
blocks that constitute the hev: gen-set and trac-set. If the two macro blocks are in
the same shaft (single shaft) we have the series configuration while if they are in two
different shafts (double shaft) we have the parallel configuration. Gen-set is made up by
ice, generator and charger while the trac-set is made up by converter, electric motor,
and transmission. It is possible that some components are not present for instance the
electric motor can also work as a generator and if we use a bidirectional converter this
can also play the role of the charger.

� Series: the main advantage of this configuration lies in the fact that the ice is
not mechanically connected to the driving wheels, this isolates the engine from
demand, allowing it to operate at the point of maximum efficiency or at the
curve of high efficiency. The entire mechanical transmission between the ice and
the wheels is removed, (they have no clutch and gearbox) and replaced by an
electric generator, some cable and controls, and electric traction motors as shown
in Figure 1.5. The ice and also the generator can be sized to deliver the average
value of the traction power, for the net energy balance of the battery to be null,
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CHAPTER 1. INTRODUCTION

a lower size of the ice means lower losses in the engine. The motor, instead, is
sized for the peak value of the traction power that may be appreciably higher
than the average value.

Figure 1.5: Structure of a series-hybrid vehicle [12].

Typically mechanical transmissions impose many penalties, including weight,
bulk, noise, cost, complexity and a drain on engine power with every gear-change,
on the other hand the energy produced by the engine undergoes many
transformations: it starts as chemistry, mechanical, electrical (ac), electrical
(dc), electrical (ac), and finally it arrives at the wheels. So even if the engine
works at maximum efficiency, it is not so obvious that the overall yield is high.

There are two different power management strategies (pms) which can be adopted
for this configuration: the first consists in switching the ice to charge the battery
when it is depleted; otherwise it is off. When on, part of the ice power goes to
charge the battery, part to propel the vehicle. The ice is operated at the point
of maximum efficiency as shown in Figure 1.6.

Figure 1.6: First power management strategies [13].

In the second pms, the ice is kept always on and delivers a constant power equal
to the average traction power demand while the deficit/surplus power is provided
by the battery. In this way it can be possible to reduce the size of the battery
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1.2. ELECTRIC AND HYBRID VEHICLES

and also costs. The ice is operated at constant torque to get high efficiency, this
process is also used for the parallel architecture.

In conclusion this configuration is not much used due to the costs, its needs of
two electric machines (motor and generator) and a normal engine, in addition
there is a somewhat large battery. It is suited for mid-heavy vehicles mainly
travelling in urban areas, where the benefits of the full decoupling of the ice from
the wheels overcome the inconvenience of the multiple losses the various energy
due to conversions. The series configuration has been applied to buses dedicated
to the urban service within wide areas.

� Parallel: this configuration is obviously more used than the series one because
it has only one electric machine sized to the average power and not to the peak
power as in the previous case, and also the battery is smaller. However here,
there is a mechanical connection between the engine and the wheels as shown
in Figure 1.7, so the ice can run only on a curve of high efficiency and not
always at the maximum efficiency. Parallel hybrids can be categorized by the
balance between the different motors which are providing motive power: the ice
may be dominant (engaging the electric motor only in specific circumstances) or
vice versa, anyway current parallel hybrids are unable to provide electric-only or
internal combustion-only modes. The ice is sized to the averaged power and it
has a smaller size compared to the engine of a normal vehicle that is sized for the
peak power, but it is bigger than the ice of a series configuration.

The parallel architecture is suited for mid-light size vehicles travelling, they
rely more on regenerative braking and the ice can also act as a generator
for supplemental recharging. They are used mainly on city roads where the
powertrain is subjected to many acceleration and braking events and also along
extra-urban routes, where the traction power varies in moderate ranges so that
the engine can be run within or nearby its operating region.

Figure 1.7: Structure of a parallel-hybrid vehicle [12].

� Series-parallel: This architecture, also called power split, has the benefits of a
combination of series and parallel characteristics: overcomes both the limitations
of the series configuration (no direct propelling of the vehicle from ice), thus
improving the efficiency; and the limitations of the parallel configuration (no
fixed speed operation of ice), which can be run at the optimal values of both
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torque and speed in any driving condition. As a result, it is more efficient overall,
because series hybrid tend to be more efficient at lower speeds and parallel tend to
be more efficient at high speeds [11]. This vehicle is similar to a parallel hybrid but
it incorporates two coupling devices: one is a power splitter that allows for power
paths from the engine to the wheels that can be either electrical or mechanical;
and one is a torque adder. In addition it has two electric machines like a series
hybrid (one operates as a generator and the other one as a motor) as shown in
Figure 1.8.

Figure 1.8: Structure of a series-parallel hybrid vehicle [12].

1.3 Longitudinal vehicle acceleration

The fundamentals of vehicle design involve the basic principles of physics, in particular
Newton’s second law, which describes what happens to a massive body when it is
acted upon by an external force.

F = m
dv

dt
= ma (1.1)

In a car several forces act on it and the resultant force governs the motion according to
(1.1), the engine of the vehicle delivers the force necessary to move the vehicle forward.
So it is important to understand which forces act on our car. When the car moves, it
encounters resistive forces that try to retard its motion as shown in Figure 1.9.
The vehicle motion can be completely determined by analysing the forces acting on it
in the direction of motion. The tractive force Ft in the contact area between the tires
of the driven wheels and the road surface propels the vehicle forward. The tractive
force is produced by the engine and transferred to the wheels by the transmission [15].

Traction force: =
1

rw
Tw =

1

rw
ηgbrgbTm (1.2)
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1.3. LONGITUDINAL VEHICLE ACCELERATION

Figure 1.9: Different forces that act on a vehicle [14].

where Tw is the mechanical torque produced by the electrical machine, ηgb is the gearbox
efficiency, rgb is the gearbox ratio from the electrical machine to the wheel.

There are three types of traction resistance:

� Rolling resistance Fr

� Aerodynamic drag Fa

� Grading resistance Fg

The rolling resistance, sometimes called rolling friction or rolling drag, is the force
resisting the motion when the wheel rolls on a surface. It is primary caused by the
hysteretic deformation in the tire rubber. Factors that contribute to rolling resistance
are the deformation of the wheels, the deformation of the roadbed surface, and
movement below the surface. Additional contributing factors include wheel diameter,
speed, load on wheel, surface adhesion, sliding, and relative micro-sliding between the
surfaces of contact [16]. When the vehicle is stationary a force P is acting on the center
of the wheel:

P =
1

4
gM (1.3)

Where g is the gravity acceleration and M is the total mass of the vehicle pertinent to
the wheel. The pressure in the contact patch between tire and ground is distributed
symmetrically to the central line and the result ground reaction Pz is aligned to P,
equal in magnitude and opposite in the direction as shown in Figure 1.10a. When the
wheel is rolling, the leading half of the contact patch is loaded and the trailing half
is unloaded. The presence of the hysteresis causes an asymmetric distribution of the
ground reaction force as shown in Figure 1.10b. The pressure in the leading half of the
contact area is larger than in the trailing half [17]. The two forces are not opposite like
before, they have yet equal magnitude but they are applied on different points, as a
result they create a torque called rolling resistance torque expressed as:

Tr = aP (1.4)

where a is the distance between the forces and P is the normal load acting on the center
of the wheel. The rolling resistance torque can be represented by a horizontal force
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(a) Weight distribution on a standstill
tire

(b) Weight distribution on a
rolling tire

Figure 1.10: Difference in weight distribution on a vehicle [13].

acting on the wheel center and opposing the wheel motion. The equivalent longitudinal
force is called rolling resistance and has a magnitude of:

Fr =
Tr
rw

=
aP

rw
= frP (1.5)

where fr is called the rolling resistance coefficient. It depends on many variables:
tread geometry, inflation pressure and material of the tire, roughness and material of
the road, presence of liquids on the road and so on. For fuel saving, in recent years
low-resistance tires for passenger cars have been developed with fr less than 0.01,
typical values on various roads are given in Table 1.1: The fr varies with speed, the

Road condition fro

Concrete or asphalt road 0.013
Rolled gravel road 0.02
Tar macadam road 0.025

Earth road 0.1-0.35

Table 1.1: Rolling coefficient on various road [13].

values in the table are valid for low speed. By experimental results, this coefficient is,
with good approximation, a linear function of the speed. The following equation can
be used for a passenger car on a concrete road, with acceptable accuracy for speeds up
to 130 km/h:

fr = fro

(
1 +

V

160

)
V in km/h (1.6)

Aerodynamic drag, or more simply air drag, is a force acting opposite to the relative
motion of any object moving with respect to a surrounding fluid. This can exist between
two fluid surfaces or a fluid and a solid surface as in our case. This force is formed by
two components: skin friction and shape drag.
Air molecules close to the surface of the vehicle move almost at the same speed as the
vehicle while air molecules away from the vehicle remain still. In between air molecules
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move at intermediate values of speed. The difference in speed between two air molecules
produces viscous friction and it is know as skin effect [13].
The second component is due to the shape of the vehicle. The forward motion of the
car pushes the air in front of it resulting in a zone of high air pressure in front of the
car. Correspondingly, the air behind the vehicle cannot immediately fill the space left
by the forward motion of the vehicle, resulting in a zone of low air pressure at the back
of the car. The resulting force is always directed from the region of higher pressure to
the region of lower pressure, so it is in direction opposite to the movement. The name
”shape” drag comes from the fact that this drag is completely determined by the shape
of the vehicle body.
The aerodynamic drag is a function of the square of the speed:

Fw =
1

2
ρAdCd (V − Vw)2 (1.7)

where ρ is the air density, Af is the frontal area of the vehicle, Cd is the aerodynamic
drag coefficient that characterizes the shape of the vehicle body, and Vw is the
component of the wind speed along the vehicle moving direction. It has a positive
sign when it is in the same direction as the moving vehicle and a negative sign when it
is opposite to the vehicle speed.

Grading resistance is produced by the car’s weight and it is always directed in the
motion direction. This force either opposes to the forward motion (grade climbing) or
helps the forward motion (grade descending). It is expressed as:

Fg = gM sinα (1.8)

where α is the road angle.
The tractive efforts Ft are produced by the torque developed by the traction plant
onboard the vehicle and are transferred through the transmission to the driven wheels.
For the vehicle to move, the traction efforts must overcome the total traction resistance
opposing the vehicle motion, given by the sum of three traction resistances:

Fres = Fr + Fw + Fg (1.9)

According to (1.1), the vehicle acceleration can be written as:

dv

dt
=
Ft − Fres

Mt
(1.10)

where Fres is the total traction resistance and Mt is the total translational mass of
the vehicle, which includes passengers, tank status and contribution of the translation
equivalent mass of the inertias of the rotating elements (wheels):

Ek =
1

2
Meqv

2 =
1

2
Jω2

Meq =
J

r2w
(1.11)

1.4 Battery

We have seen previously that the battery is one of the key components of electric and
hybrid vehicles and it is the component with the highest cost, weight and volume.
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Below will be given only a brief explanation about the batteries, more information can
be found in [2]: battery consists of two or more electric cells joined together that convert
chemical energy to electrical energy. The cells consist of positive and negative electrodes
joined by an electrolyte. When connecting a load, the battery acts as an energy source
and an electric current flows in the load connected to the battery terminals with the
corresponding delivery of the stored chemical energy and the discharge of the battery.
Delivery of chemical energy is due to a redox reaction that occurs spontaneously when
a load is connected.
When connecting an electric energy source, the battery acts as a load and the current
that is produced by the external source flows into the battery with a corresponding
storage of chemical energy and the charging of the battery.

There are different types of batteries that are used in vehicles, at present these include
lead acid, nickel iron, nickel cadmium, nickel metal hydride, lithium polymer and
lithium iron, sodium sulphur and sodium metal chloride. There are also more recent
developments of batteries that can be mechanically refuelled, the main ones being
aluminium-air and zinc-air. Despite all the different possibilities tried, and about 150
years of development, a suitable battery which allows widespread use of electric vehicles
(has still not yet been developed) [2]. However, there is an increased interest and
activity, in the development of new electrochemical mechanisms, that may enhance the
performance of future batteries, particularly among university research laboratories.
From the electric vehicle designer’s point of view the battery can be treated as a
”black box”, which is defined by some parameters to specify the performances and
describe the operating condition, the most important are: efficiency, voltage (maximum,
nominal, cut off), energy and power (specific and density), capacity, cost, self-discharge,
commercial availability, life time and number of cycles, operating temperature and last
but not least safety. Safety is one of the most important criterions for electric-car
batteries especially for the health of the driver but not only, if there were a single
battery fire, this could turn public opinion against electric mobility and slow down
industry development for months or years. An increase of temperature could be caused
by an overcharged battery, too high discharge rates or a short circuit. Therefore the
vehicle needs a robust battery box with a very efficient cooling system to prevent the
early stages of thermal runaway, precise state of charge (soc) monitoring and cell
discharge balancing. During normal use, overcharging is usually small and generates
little hydrogen, which is very explosive, and it is dissipated very quickly trough a built
in vent. When a battery is overcharged or when there is a short circuit, an explosive
gas mixture of oxygen and hydrogen might be produced faster than it can escape from
within the battery, leading to pressure build up and eventual to the explosion of the
battery. Battery safety is indisputably a valid concern, it is useful to put this concern in
context by recalling the significant safety challenges originally associated with ice and
with gasoline storage, which were largely overcome through improvements in design
and engineering [18]. This basic knowledge is necessary both to understand the battery
works and to understand the potential risks arising from a possible accident and the
global impact of the use of battery chemicals on the environment. In fact, if electric
cars will take hold in the next few years, we will have to face also the problem of
battery disposal and recycling of used batteries will become increasingly important. In
Europe the regulations, in addition to prohibiting2 batteries containing a certain level

2Particular types of battery such as for military use of for space applications are excluded from the
prohibition.
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of mercury or cadmium, require precise methods of disposal. Recycling is just the last
of the seven steps which made up the value chain of electric-car batteries:

� Component production: manufacture of anode and cathode active materials,
binder, electrolyte, and separator.

� Cell production: production and assembly of single cells.

� Module production: configuration of cells into larger modules that include
some electronic management.

� Pack assembly: installation of modules together with systems that manage
power charging, and temperature.

� Vehicle integration: integration of the battery pack into the vehicle structure,
including the battery car interface (plugs, connectors, mounts).

� Use: use during specified in vehicle battery lifetime.

� Refuse and recycling: battery reuse; deconstruction and cleaning preparatory
recycling of material and component [18].

The first four steps are necessary because a single cell has low performance so many
of them are connected in series to produce a reasonable voltage because when cells are
connected in series, the battery voltage is the sum of the individual cell voltage while
the capacity remains the same. Other ones are wired in parallel to reach the desired
capacity because when they are connected in parallel the battery voltage is equal
to the cell’s voltage while the capacity is the sum of the cell’s capacities. Traction
batteries for electric or hybrid vehicles are usually specified as 6 V or 12 V but this
voltage changes during operation. When the battery feeds a load, the voltage will
drop while when the battery is being charged, the voltage will increase. The simplified
equivalent circuit of a battery is showed Figure 1.11:

Figure 1.11: Simplified equivalent circuit of battery composed of six cells [2].

V = E −RI (1.12)

where V is the terminal voltage, E is the emf, R is the internal resistance and I the
current delivered by the battery. In practice, E and R are not constant quantities
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but depend on some parameters such as the SoC, the temperature and operating life.
Generally (1.12) gives a fairly good prediction of the voltage. The E value can easily
be determined by measuring the open circuit voltage while the measurement of the
internal resistance requires an additional measure with a load connected to the battery.
It is immediate to understand that the model of Figure 1.11 has little use for several
reasons, including the fact that voltage E and internal resistance are constant. If a load
is connected to the battery the voltage will immediately decrease to a lower value and
this is not true because this variation takes time. Moreover, with this representation
the battery has an infinite capacity and there is no way to obtain the SoC (problem
common to many models). There are several ways to model a battery and these are
done for several reasons for example many models are constructed to predict the effect of
changing the thickness of the lead oxide layer of the negative electrodes of a sealed lead
acid battery, other models make extensive use of fundamental physics and chemistry,
other types are constructed to accurately predict the behaviour of a particular make
and model of battery in different circumstances. However, all modelling of batteries is
notoriously difficult and unreliable because they depend on parameters far harder to
specify precisely, such as age and the way the battery has been used in the past [2]. In
Figure 1.12 a possible battery model is proposed.

Figure 1.12: Battery model

Now in this model the battery’s voltage (voc) is a function of SoC, it has been inserted
the resistance Rsd to take account of self-discharge, moreover RC networks have been
added to simulate the response to transients.

To choose the right battery for a vehicle one must first choose the correct size according
to the type of vehicle: vehicles that can charge their battery from the electricity grid
are plug-in electric vehicles (pev)s, a category that includes both plug-in hybrid electric
vehicles (phev)s, of which we have already previously spoken, and all electric vehicles
(aev)s, also called battery electric vehicles (bev)s. Then the designer will also need
to decide on the specification and essential requirements of the vehicle. Is he/she, for
example, designing the vehicle for speed, range, capital cost, running costs, overall
costs, style, good handing, good aerodynamics, environmentally friendliness etc [2].
Of the batteries aforementioned, lithium ion (Li-ion) are too expensive, unless of course
one is designing an electric racing car, with no expense spared, in which case this may be
your first choice. For all other cases the choice narrows to lead acid, nickel metal hydride
(NiMH) and sodium metal chloride. The lead acid battery is the most used battery in
anything because it is not expensive, it performs reliably and it has a comparatively
high voltage of about 2 V per cell. A factor to keep in mind is that this type of batteries
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has an extremely low internal resistance, this mean that the drop in voltage is small.
Lead acid batteries are the cheapest rechargeable batteries per kilowatt-hour of charge
but they have a low specific energy so it is hard to see an aev to use a lead acid battery,
on the other hand they could be used in hev which need only a limited amount of energy
stored because they have an ice. Currently, evs are predominantly powered by either
NiMH or Li-ion chemistry. A main advantage of NiMH batteries is that they can be
recharged very quickly until 60% of the capacity in 20 mins but a cooling system is
necessary making them more expensive than lead acid batteries. Of all the new battery
systems NiMH is considered to be one of the most advanced and has been used in a
range of vehicles including the Toyota Prius. The market volume of NiMH batteries is
still small, but with quantity production the price will drop. The battery is considered
to be one of the most promising for the future [2]. The alternative to NiMN are Li-ion
batteries, they are very light and have a specific energy about three times greater than
of lead acid batteries, this makes them an excellent choice for vehicles that require a
high autonomy. NiMH is cheaper on a per-kWh basis than Li-ion, but Li-ion has higher
energy density. Thus, NiMH is often used in hev, while Li-ion is preferred in pevs,
where the battery capacity needs to be higher. Li-ion cells can be made with a variety
of materials for the anode and cathode, with varying advantages in capacity, cycle life,
safety, and cost [19], see Figure 1.13.

Figure 1.13: Different types of Lithium ion batteries [18].

In conclusion, for hevs there are different types of batteries available and in recent
years there have been massive improvements and several new developments are showing
considerable promise. Nevertheless the specific energy of batteries, with the possible
exception of zinc-air, is still extremely low see Table 3.1. There are no batteries that
currently show signs of enabling pure electric vehicle to compete in both versatility
and long range use with ice vehicles [2]. However battery costs will decline steeply
as production volumes increase. Individual parts will become less expensive thanks
to experience and scale effects. Higher level of automation will further trim costs by
increasing quality, reducing scrap levels, and cutting labor costs [18]. The production
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related cost (excluding raw materials) could be reduced by 20% to 35% of each to the
major steps in battery cell production. Currently about 25% of the battery costs are
due to the cost of raw material and standard, which are independent of production
volumes and expected to change modestly over time. aevs will use Li-ion batteries,
as will some 70% of the hevs, the smaller and lower cost cars, will still have NiMN
batteries popularized by first generation hybrid vehicle, such as Toyota Prius. On the
basis of current estimates, the price of a battery pack for a midsize car will range from
$7,600 to $10,700 in 2021. In this scenario, the price differential between BEVs and ICE
vehicles in this category will decline to less than $5,000. BEVs would thus become cost
competitive with ICE vehicles, especially considering tax incentives for the purchase of
BEVs [20].

Table 1.2: Example of distance travelled/battery weight for a typical car [2].
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Chapter 2

PMSM control

2.1 Split phase winding PMSM

When designing an ev the main objective of the designer is to maximize the autonomy
of the vehicle according to a given battery size. This objective can be divided into two
main points:

1. Minimize the energy required by the vehicle for a given driving cycle. An estimate
of this energy can be given using the ECE15 cycle, which is used in Europe for the
certification of the emissions of the light-duty vehicles in an urban environment.
The speed along the cycle has been limited to 45km/h which is the maximum
speed allowed by the rules for a city car [21]. The calculation of electric power
demand along the ECE15 cycle, but it is valid in general for a given driven cycle,
goes through the calculation of mechanical power that it can easy compute using
(1.10) and the speed:

Pm = Fv

The profile of the electrical power demand Pe is compute by the following
equation:

Pe =


Pm
ηt

+ Paux if Pm > 0

Pmηb + Paux if Pm < 0

(2.1)

where ηt is the traction system efficiency, ηb is the regenerative braking efficiency
and Paux is the consumption of the electric auxiliaries of the vehicle such as lights,
fan and so on. To get the electric energy, we need only to integrate the electric
power:

We =

∫
Pedt (2.2)

Once the energy is known, it is also possible to estimate the car’s autonomy, just
discharge the battery using the profile just obtained.

2. Maximize the efficiency with which chemical energy(battery) is converted into
mechanical (vehicle motion). The general issue in drive design for vehicle
propulsion is the contradiction between the necessary low speed and high torque at
the wheels and the arising high machine currents and resulting drive losses. This
problem can be solved by means of a high gear ratio transmission to reduce the
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torque requirement, but it additionally incorporates mechanical losses reducing
the solution effectiveness [14].

In this thesis, an innovative approach is presented, an electric drive system which
combines multiple torque versus angular velocity characteristics, in this way an
electrical gearbox is obtained without having the disadvantages of the mechanical one:
the weight of the machine is reduced, improve the reliability and the redundancy of
the system, and there is an increase of efficiency. In order to do this a multi phase
electrical machine is used which is fed by two full bridge inverter. During operation the
configuration of the two inverters is varied as a function of the motor angular speed.

The electrical machine used is a permanent magnet synchronous motor (pmsm). Let’s
start with explaining what a PMSM is and how it works and then go into the details
of our machine. The operating principle on which they are based is the same that we
find in other electrical machines that is, the electromechanical conversion of energy. It
is evident from the name itself, it has constructive and operating characteristics very
similar to the normal synchronous motors with excitation winding. The characteristic
that distinguishes them from ordinary machines is the fact that they have permanent
magnet (PM) of hard ferromagnetic material that have a large hysteresis cycle and high
residual magnetization, this property remains only below a certain temperature, called
Curie temperature, above which the material behaves like a paramagnetic material.
The electromechanical conversion occurs through to the interaction of the magnetic
fields produced respectively by the pm and by the current flowing in the conductors,
they are inside the stator slots and create a torque that bring into rotation the rotor, as
in normal induction motors. This type of machine has a synchronous type of operation:
their rotation speed depends on the electric frequency, in this thesis we will always refer
to the motor operation, so there will be an electric input power and a mechanical output
power. pm motors are increasingly used in the industrial field and are mainly intended
for high performance drives, in which the particular design specifications justify their
cost, high due to the presence of rare earth-based magnets, the most widespread are the
Neodymium-Iron-Boron and the Samarium-Cobalt. There are two main types of pm
motor as shown in Figure 2.1: surface permanent magnet synchronous motor (spmsm)
has the pm placed on the outer surface of the rotor, like the one used in the thesis, and
interior permanent magnet synchronous motor (ipmsm), which has pm placed inside the
rotor. We will not go into detail about the differences between these two configurations,
but from the quick description just given you can immediately understand that spmsm
will be subject to more centrifugal forces that will tend to tear off the magnets from the
rotor surface; while ipmsm, in addition to greater constructive complexity, it presents
the problem of heat dissipation, therefore cooling channels are required. We will focus
only on spmsm motor and for the explanation it is supposed to have a model with linear
behavior so saturation, temperature, and rotor position related parameter dependency
are not taken into account. Generally, spmsm motor have stator windings without a
neutral wire, in this way the hypothesis of having at any moment the sum of the phase
currents equal to zero verified:

ia(t) + ib(t) + ic(t) = 0 ∀t (2.3)
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Figure 2.1: Arrangement of magnets in radial flux machines [22].

With the assumption made, the problem to be studied becomes linear and it is possible
to apply the superposition principle, separating the contributions of the flux linkage,
one due to the magnets (2.4) and the other due to the currents (2.5).

λa,pm = Λpmcos(θme)

λb,pm = Λpmcos(θme −
2π

3
)

λc,pm = Λpmcos(θme −
4π

3
)

(2.4)

where Λpm is the maximum flux linkage with each phase and Θme is the electrical angle1

between the a-phase axis and the rotor position.

λa,i = Lia(t)

λb,i = Lib(t)

λc,i = Lic(t)

(2.5)

where L is defined as synchronous inductances: L = Lss + |LM |, Lss is the self
inductance of each phase and LM is the mutual inductance between two phases.

1The electrical angle Θme is related to the mechanical position Θm from the relationship
Θme = pΘm, where p is the number of pole pairs of the machine
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Adding (2.4) and (2.5) we obtain:

λa = Lia(t) + Λpmcos(θme)

λb = Lib(t) + Λpmcos(θme −
2π

3
)

λc = Lic(t) + Λpmcos(θme −
4π

3
)

(2.6)

Now using the voltage equation:

u = Ri(t) + L
dλ(t)

dt
(2.7)



ua = Ria(t) + L
dia(t)

dt
+ ea

ub = Rib(t) + L
dib(t)

dt
+ eb

uc = Ric(t) + L
dic(t)

dt
+ ec

(2.8)

These formulae can also be written using both a stationary reference, using Clarke’s
transformation (2.9), and using a rotor reference, using Park’s transformation (2.10).

uα = Riα(t) + L
diα(t)

dt
− ωmeλβ,pm

uβ = Riβ(t) + L
diβ(t)

dt
+ ωmeλα,pm

(2.9)


ud = Rid(t) + L

did(t)

dt
− ωmeLiq

uq = Riq(t) + L
diq(t)

dt
+ ωmeLid + ωmeΛpm

(2.10)

Multiplying both members of (2.10) respectively by iddt and iqdt and summing the two
equations we obtain an energy balance in the rotor reference frame:

(udid + uqiq)dt = (Ri2d +Ri2q)dt+ Liddid + Liqdiq + ωmeΛpmiqdt (2.11)

For the sake of clarity some time dependencies have been omitted. The first member
represents the electrical energy supplied to the motor during the time dt, the second
member is composed by the energy transformed into heat in the winding’s resistances,
of energy stored in the magnetic field, and the last term represents the available
mechanical energy. Remembering that the mechanical power can also be expressed
as a product of the torque m for the mechanical velocity wm. We must consider that
to have a power conservation in the rotor reference we need a factor 3

2 .

m =
3

2
pΛpmiq (2.12)

The operation of the motor, considering the voltage and current limits, is easily
described in a plane id iq, as shown in Figure 2.2.
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Figure 2.2: Operating limits of a SPMSM [23].

The dashed circles represent the voltage limit described by (2.13), while the circle in
continuous line represents the current limit (2.14). The motor can only work in the
intersection of two circles.

(ΩmeLIq)
2 + (ΩmeLId + ΩmeΛpm)2 ≤ U2

N (2.13)

I2d + I2q ≤ I2N (2.14)

For low operating speeds, the voltage limit is very wide (the radius of the circumferences
tends to infinity when the speed tends to zero) and therefore the current limit is more
restrictive. Under these conditions it is convenient to operate the motor at a point in
the BB′ segment, depending on the required torque, in this way the torque is obtained
with the minimum current absorbed and minimal losses for a given torque (max torque
per amper (mtpa)). Above the speed ΩB called base angular velocity, the available
torque starts to decrease because there is less Iq component while the losses do not
decrease because the Id component increase. The value of ΩB can be easy computed
substituting Id = 0 and Iq = IN into (2.13):

ΩB =
UN√

Λ2
pm + (LIN )2

(2.15)

After these considerations we can define the operating region of the motor as shown in
Figure 2.3.
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Figure 2.3: Idealized electromagnetic output torque and power of a SPMSM versus the angular
velocity [23].

Nowadays, multiphase drives are used for high-power applications and can be employed
in systems in which a high degree of reliability is required, which is necessary is some
particular applications, such as in the naval propulsion, traction, and development of
the concept of More Electric Aircraft in the aeronautic field. Multi-phase motor drives
have many advantages with respect to their tree-phase counterparts. In particular,
the load power can be split into multiple phases, leading to voltage source inverters
having switching devices with limited power and current rating [24]. The fact of having
several phases causes that the stator produces a field with lower harmonic content
in multi-phase machines compared to three phases machines, which result in greater
efficiency, moreover multiphase machines are less susceptible than their three-phase
counterparts to time-harmonic components in the excitation waveform. Such excitation
components produce pulsating torques at even multiples of the fundamental excitation
frequency. In addition to the reasons just described, a multi-phase motor can be
successfully exploited in different ways, such as increasing the electrical machine torque
density, developing multi-motor drives, and improving the fault tolerant capability
[25, 24], this combined with replacing the mechanical gearbox makes it an excellent
choice for electric vehicles.

In the case of symmetric machines, it is possible to supply the individual phases
through a single inverter with the same number of phase as shown in Figure 2.4a;
or using an inverter for each phase as shown in Figure 2.4b, between the two
configurations proposed only the second satisfies the criteria of fault tolerance which
makes the use advantages of multi-phase machines in case of failure of the power supply
system, and this is the configuration that is used to supply the machine in the EPE
laboratory. Asymmetric multi-phase machines, on the other hand, allow the use of
several independent multi-phase inverters of the same type because the stator consists of
several configurations with isolated neutral as shown in Figure 2.4c. Although compared
to the single-phase inverter configuration, there is a lower level of reliability but this
structure allows the use of a well established technology [26].

The 6-phase motor available in the TU/e laboratory, is a custom designed SPMSM.
It features a single layer concentrated winding layout, where every phase is comprised
out of two coils that are wound around opposite stator teeth as shown in Figure 2.5.
The two coil sets are identical, but physically shifted in space 180° from each other.
Figure 2.6a shows the phasor representation of the magnetomotive force (mmf) for a
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(a) (b)

(c)

Figure 2.4: Multi-phase drives: possible configurations [27].

Figure 2.5: The concentrated winding layout of multi-phases machine.Note that the rotor is
omitted from the figure for readability [28].

typical three phase system is shown, where the electrical angle between the phasors is
120°. In Figure 2.6b shows the representation of a general six-phase machine, with an
electrical angle between the phasors of 30°, is shown. Figure 2.6c the representation of a
double three-phase setup, as applied in this work, where the electrical angle between the
phasors is again 120°, similar to the three-phase setup, [28]. The SPSM features no star
point, meaning each phase has separate leads and is independent of the other phases.
Disconnecting the neutral point enables additional control options, as the winding can
be individually powered and common mode currents are possible alongside the usual
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(a) (b) (c)

Figure 2.6: Balanced phasor representation of the magnetomotive force of: (a) three-phase
machine; (b) six-phase machine; and (c) double three-phase setup [28].

balanced mode currents. Furthermore, the permanent magnets are fixed on top of the
rotor, which results in negligible cogging torque and saliency [14, 28]. The work on this
thesis consists in proposing a solution which extends the speed range of the machine,
increasing the angular velocity ratio xs defined as the ratio between the top angular
velocity and the base angular velocity, considering rotation in equal direction.

xs =
wmax
wb

(2.16)

As shown in Figure 2.3, an increasing xs improves the time available to accelerate
with nominal power. In other terms, for a given P and vehicle parameters, the fastest
acceleration is achieved with the highest xs [14]. In this work will be done referring
to a single phase of the machine (RLE circuit), which can be divided according on the
configuration used, a work similar to the one proposed below has been carried out in
[14] where instead the complete circuit of the machine was used, furthermore in the
appendix C, D, E, F there are measurements and parameters of the SPMSM present
in the electromechanics and power electronics (epe) laboratory.

2.2 Flux weakening

Flux weakening is the first method that is explained to increase the speed range, is
the most used and the easiest to implement. As shown in Figure 2.2 and described by
(2.13), (2.14) the operation region of the motor is the intersection of two circles. There
is a particular case in which the speed range can be enhanced. For this to happen the
circle’s center of the voltage limit must be within the circumference that describes the
current limit such as show in Figure 2.7. The circle’s center in the Id and Iq plane, has
coordinate: 

ICd = −Λpm
L

ICq = 0
(2.17)

which are the two components of the current, when the motor has the terminal in short
circuit and the rotor is rotating. These equations are derived from (2.10), where: it
has been imposed that the voltages were zero (short circuit condition) and the resistive
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Figure 2.7: Operating limits of a SPMSM with small short-circuit current [23].

voltage drop has been neglected. In order for the voltage limit to be within the current
limit it will sufficient that:

IN >
Λpm
L

(2.18)

The operation of the engine in this particular condition is the same as that previously
described up to speed ΩP , above which it is convenient to work in the PP ′ segment,
that analogously to the BB′ defines the region that ensures the maximum torque per
volts (mtpv). In this case there is no speed limit and the operation of point C is
ideally has at infinite speed, the operation of the machine is shown Figure 2.8: The top

Figure 2.8: Flux weakening operating region [23].

angular velocity ωt, is defined as the maximum speed that can be obtained with a drive
system when applying flux weakening, could be theoretically infinite, as previously
mentioned. Additionally, in [29], an extensive analysis of the underestimated influence
of the winding resistance, Rst on ωb and wt is expounded [14]. The angular speed ΩP
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can be computed by substituting Id = ICd and Iq =
√

(I2N − I2Cd) into (2.13):

ΩP =
UN√

(LIN )2 − Λ2
pm

(2.19)

In [14] an angular velocity ratio xs = 5 using the pmsm present in the EPE laboratory is
achieved increasing considerably the speed range. The main disadvantage of a high xs is
the reactive power produced by Id. If during field weakening or regenerative breaking,
for example, a voltage source inverter switching instance is missed, the drive is turned
off to protect the semiconductor. As such, the excess energy generated in the electrical
machine air-gap starts to increase the phase voltages [14]. When the line-to-line voltage
exceeds the inverter voltage ell > Vinv, the anti-parallel diodes start to conduct current
which generates a braking torque. To avoid this problem and protect both the people
in the vehicle and the drive system, we must ensure that the peak emf voltage êq, never
exceeds the supply voltage of the applied configuration and remembering that usually
the electrical machines have a wye connection ell =

√
3eq.

2.3 Voltage range enhancement

The second method proposed is named voltage range enhancement and like the flux
weakening it increases the speed range of the spmsm. To do this two inverters are used,
the first feeds the machine normally while the second adds a common mode current
at the third harmonic to the fundamental to supply voltage of one inverter. Usually
common mode currents are avoided because they increase the system losses and they
decrease the overall efficiency. The result obtained is the same as flux weakening, that
is to improve the torque versus angular velocity profile. The motivation for combining
a fundamental frequency current with the third harmonic originates from the svm
principle, by adding a third armonic, the amplitude of the fundamental modulation
signal is allowed to be increased above unity [14].

The voltage range enhancement principle is defined as a dual inverter machine drive
concept with unequal inverter supply voltages to enlarge the fundamental frequency
control operating range of the system [30]. To this end, the secondary side dc
voltage is boosted to a higher level than the (battery) source powered primary side
dc voltage. This is achieved by using the electrical machine magnetizing inductance
as boost inductors. The intention is to power the electrical machine with the
fundamental frequency balanced mode current, while transferring the power required
at the secondary side using a third harmonic common mode current [14], the circuit
used is shown in Figure 2.9. The same circuit as shown in Figure 2.9 is also used for
the reactive compensation, the only difference is that in this case there is a connection
between the primary supply midpoint p0 and the secondary supply side midpoint s0.
In this way there is a clear separation between the two currents of the inverters in
fact: the balanced mode current of the left inverter, can not flow through the ground
connection because by definition the sum of per phase component is zero; on the other
hand the common mode current of the right inverter has no return path. The only
current that can flow between the two inverters is the common mode ground current
icmg as shown in Figure 2.9. Now, controlling icmg it is possible to achieve the secondary
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Figure 2.9: Single winding per-phase voltage range enhancement, dual inverter topology with
balanced primary side ”p”, and secondary side ”s” [14].

supply voltage Vs of a higher value than Vp, as such:

Vs = Vs+ + Vs− (2.20)

Vp = Vp+ + Vp− (2.21)

The magnetizing inductances of the electrical machine are used to carry out the boosting
effect. Since this is applied to a common mode instead of a balanced mode, a net
flow of energy from one inverter to the other is achieved. The two inverters compose
a bidirectional full bridge dc-dc converter per phase to charge the secondary side
capacitors Cs+ and Cs−. Simultaneously with charging, the capacitors Cs+ and Cs−
are discharged by delivering active power to the electrical machine at the fundamental
frequency [14]. As mentioned previously the aim of this solution is to extend the angular
velocity range of spmsm with a maximized system efficiency ηsys. The assumption made
to achieve this are:

1. Regulate the fundamental frequency balanced mode spatial current vector
magnitude to the torque producing q1 axis current, for instance:

|ibm1 | = ibmq1 (2.22)

thereby assuring fundamental frequency mtpa control [31].

2. Ensure that the primary and secondary side fundamental frequency spacial
voltage vectors,vbmp1 and vbms1 respectively, oppose each other in each working point

to maximize the different voltage vbm1 , where

vbm1 = vbmp1 − vbms1 (2.23)

With the maximized voltage vbm1 , the maximum allowed emf, and thus the
maximum angular velocity is obtained.
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3. Minimize the required third harmonic common mode current, ibm3 , for a demanded
electromagnetic power, Pem, by ensuring that ibm3 is in phase with the third
harmonic secondary side inverter is avoided as illustrated with the unity power
factor (pf) line, PF cms3 , in Figure 2.10. The combined power electronics and
electrical machine losses are minimized as a result.

4. Regulate supply voltage Vs to a fixed level in order to achieve a power balance
on the secondary side.

5. Maximize the combined spatial voltage vectors per side to minimize the required
root mean square (rms) current for a demanded Pem [14].

Figure 2.10: Transformed relations in the (d,q) axis; (a) exemplifying balanced mode
fundamental frequency quantity relations; (b) exemplifying common mode third harmonic
quantity relations; (c) (dis)charge relation between the secondary side applied third harmonic
spacial voltage vector, vbm

s3 , and the third harmonic common mode spacial current vector ibm3 .
The optimal situation complying with assumption n.3 and (b) is depicted. [14].

In [14], the two different methods to extend the angular velocity range were applied
to the machine in the TU/e laboratory and the results obtained were compared with
each other. In general, the voltage range enhancement is a good alternative to field
weakening above all for electrical machines that are unsuitable for field weakening.
In particular, by applying the two methods to the machine in laboratory, the voltage
range enhancement concept is not as effective as field weakening, from the optimization
and experimental verification it is concluded that an angular velocity ratio improvement
of a factor 1.6 is obtained compared with a factor of 3.57 obtained by field weakening,
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Figure 2.11: Equal rms current based comparison of the achievable electromagnetic torque,
Tem, per indicated angular velocity range enhancement strategy [14].

as shown in Figure 2.11. The nominal machine current level is not reached when
applying voltage range enhancement due to the stringent assumption describe above.
The assumption by which the concept operation can be relaxed to extend the current
usage and improve the torque and angular velocity range according [14]. On the other
hand, if the conditions are not observed, one of the advantage of this method, the
minimization of the current strategy is lost with a consequent increase in losses and a
decrease in the efficiency of the machine. Another advantage to consider in this method
is that emf voltage is not elevated to a level higher than the combined semiconductor
breakdown voltage. This potentially avoids a system failure or shutdown in case of
irregularities [14], a key feature in the automotive sector.

2.4 Dynamic drive configurations

This is the last method proposed to extend the angular velocity range and it is also the
one that will be discussed later. At the base of this method is the variation of the power
electronics circuit as a function of the machine angular velocity. The concept is very
similar to the wye-to-delta transformation that it is applied in numerous applications to
provide two fixed angular velocities from a grid connected induction machine, or to star
an electrical machine [32], in this way in addition to an extension in the angular velocity
range, an electrical variant to the mechanical gearbox is created because every winding
configuration has a different base angular velocity. The presented ideas improve the
angular velocity ratio xs but at high angular speed the output power is limited due to
the parallel configuration of the winding supplied by one half bridge. The total phase
current is limited to the series connected level by the power electronics, halving the per
winding current in parallel connected mode [14]. A possible solution to make better use

35



2.4. DYNAMIC DRIVE CONFIGURATIONS

of the system would be to double the current of the inverters so that is was possible to
feed the machine with the nominal current even during the series configuration, in this
way the power electronics would be oversized and this leads to significantly switching
losses in the series connected mode.

This method is applied to the machine shown in Figure 2.5, where each winding
represents one phase half of the motor, the current can be distributed over the windings
in any ratio. If the different windings of each phase are fed by the same current,
magnitude and phase, the (produced torque T u) per three phase winding set u which
is closely related to the overall torque Tem according to:

Tem = N setT u (2.24)

where N set is the number of windings per-phase, in general it can be N set > 1 but in our
case N set = 2. By increasing the number of windings per phase, different torque versus
angular velocity combinations are obtained, just like when in a traditional vehicle the
gear ratio is changed. In this way an increased machine power is obtained without
resorting to a greater machine size or seen from another point of view it is possible to
have the same machine power with a smaller motor, this means less space occupied by
the machine, less weight, lower costs and an increase in the vehicle’s autonomy. The
price to pay for this increased angular speed range is a reduced efficiency when the
motor works to high speeds because in a normal three phase machine the inverter uses
only two switching legs while with this method four legs are used.

The per phase circuit of the N set windings per phase topology is shown in Figure 2.12:
This per phase circuit is therefore required three times to compose the complete power

Figure 2.12: Generalized Nset windings reconfigurable per phase topology to drive an electrical
machine with the dynamic drive operation [14].

electronics converter. The dc source voltage and current are indicated with Vinv
and iinv, respectively. Each full bridge converter is defined as a left half bridge leg
(stroke triangle), and a right half bridge leg (filled triangle), each consisting of an
upper switch (triangle points up), and a lower switch (triangle points down) [14]. The
main disadvantage of the presented solution, as shown in Figure 2.12, is the number
of switches (anti parallel connection between transistor and diode) compared with
a conventional inverter. As previously mentioned, the circuit used has two winding
per phase, so the circuit becomes the one shown Figure 2.13, which has far fewer
components. The tendency to increase the number of semiconductor used in a power
electronics converter is motivated with multiple arguments [33]:

� The system flexibility is improved, for example by multilevel [34], by interleaving
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[35], or by altering between series or parallel connected outputs in a multiple
modules dc-dc converter [36].

� With a dual inverter drive structure is possible reactive compensation, battery
charging or voltage range enhancement .

� The system reliability is improved without adding redundancy.

� At lower output voltage levels, the switching losses are further reduced by scaling
the number of switching elements with the angular velocity applying a series
switch [14].

Figure 2.13: Schematic view of the two phase halves in the dynamic configuration, with two
series switches [28].

As shown in the circuit of Figure 2.13, another pair of switches has been added, called
S2, in this way it is possible to use both S1 and S2 during the series configuration so
the thermal load is spread out more evenly and it is possible to increase the current.
Another thing that can be observed from the circuit is that one mosfet of each series
switch has been drawn adjacent to a phase leg. This is a deliberate choice to allow
constructing the power hardware as modularly as possible, and facilitates easy driving
of the series switches by means of a bootstrapped power supply for their gate drivers
[28]. The biggest advantage of winding reconfiguration is that by increasing the angular
velocity and at the same time by maintaining a constant electromagnetic torque as
shown in Figure 2.14b, the output power increases in contrast with what happens
using a conventional gearbox. In [14] this method is applied to the spmsm shown in
Figure 2.5 and the absolute angular velocity range is improved by a factor 3.49. The
dynamic drive configuration to allow to increase the speed range without using flux
weakening that is very useful for evs, avoiding problems for the safety of people in
the vehicle and for the drive system, if there is a fault. Obviously, a method does not
exclude the other, it is possible to go to exploit the advantages of both, the winding
reconfiguration is used to stay in a region of constant torque for longer while increasing
the speed and then field weakening can still be used to extend the angular velocity even
further, as shown in Figure 2.14a.
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Figure 2.14: (a) Torque vs speed and, (b) power vs speed characteristics, for the winding
reconfiguration technique [28].
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Chapter 3

Voltage control using
pre-calculated timing

3.1 Space Vector Modulation

To control the switches of the circuit shown in Figure 2.13, the svm technique is used,
not only for the series switches but also for the phase leg switches. Let’s start by
explaining what the svm consists of and how it applies to a conventional 3-phase
2-level inverter. A tree-phase inverter as shown in Figure 3.1, to avoid short circuits
of dc supply at no time must the switches in the same leg be turned on, this leads
to eight possible inverter states that they can be represented by eight vectors of three
components one for each phase, where it is indicated with 1 when the switch is closed
and with 0 when the switch is opened.

Table 3.1: Input table of switch positions with the corresponding vector [37].

In three-phase systems, the output voltages define an orthogonal three-dimensional
space, which results in a cube that contains the boundaries of all possible combinations
of voltages that could be created. The simplified Clarke transformation is an isometric
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Figure 3.1: Schematic representation of a three-phase inverter [23].

projection of this cube on the αβ plane [38].

Xαβ =

(
Xα

Xβ

)
=

1

3

[
2 −1 −1

0
√

3 −
√

3

]Xa

Xb

Xc

 (with X = current or voltage) (3.1)

Applying the definition of space vector (appendix), 6 of the 8 states are represented by
six vectors of amplitude 2

3Udc with 60 degrees between them, occupying the vertices of
a hexagon centred in the origin of the axes in a αβγ plane, as shown in Figure 3.2. The
two states 000 and 111, which correspond respectively to the configurations with all
the lower and upper switches closed, are called zero vectors, and therefore occupy the
origin of the axes of the complex plane. The reference vector Vref is then synthesized
using a combination of the two adjacent active switching vectors and one or both of
the zero vectors. Various strategies of selecting the order of the vectors and which zero
vector(s) to use exist. The selections trategy will affect the harmonic content and the
switching losses [37]. The expression of the generic active vector is given by:

um =
2

3
Udce

j(m−1)π
3 m ∈ [1..6] (3.2)

In our case there are not only 2 switches per phase, but 10, even in here there are
rules to prevent short circuits so the actual switches to be controlled are far fewer. The
problem to be studied is very similar to svm control of a matrix converter studied in [39].
Assume we want to generate an average voltage Vref across the motor windings during
a time interval with length Ts. This voltage can be generated by timed application of
two active vectors and one or two zero vectors:

TsVαβ = T0V0,αβ + T1V1,αβ + T2V2,αβ (3.3)

The sum of the time intervals has to be equal to the cycle time Ts:

Ts = T0 + T1 + T2 (3.4)

Combine: (
TsVαβ
Ts

)
=

[
T0V0,αβ T1V1,αβ T2V2,αβ
T0 T1 T2

]
(3.5)
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Figure 3.2: All eight possible switching vectors for a three-leg two-level inverter using space
vector modulation. An example Vref is shown in the first sector. Vref−MAX is the maximum
amplitude of Vref before non-linear overmodulation is reached [37].

Wanting to compute the times:T0T1
T2

 = Ts

[
T0V0,αβ T1V1,αβ T2V2,αβ

1 1 1

]−1(
Vαβ
1

)
(3.6)

In this way the times T1, T2 and T0 are obtained, they are necessary to apply the
respective vectors V1, V2 and V0 (see Figure 3.2), in order to obtain the voltage Vref .

A different solution was studied in [38], where it was implemented a various balancing
control method for flying-capacitor, the circuit is shown in Figure 3.3

Figure 3.3: Schematic of a full-bridge two-cell flying-capacitor amplifer [38].

The flying-capacitor topology can be categorized in the family of multilevel converters
in which some of the voltage levels are created by floating capacitors. The switch
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devices are configured in such a way that the capacitors can be charged or discharged
for a given voltage level [38]. For this circuit the pwm and control algorithm applied to
the converter have two tasks. The first task is to create the output voltage by means
of the volt-second principle, using a pwm cycle the average applied voltage is equal
to the desired voltage. The second task is the balancing of the capacitor voltages by
means amp-second principle, using a pwm cycle the average capacitor current should be
zero [38]. The compensation of the capacitors can be implemented with two methods:
the first consists of changing the duty cycle or the phase-shift; the second consists in
computing the switching times and implementing a svm.
Using the input voltage the output current to create a two dimensional space is possible
to use also the zero vectors. In the new plane there are 4 state vectors:

v0 = [−1

2
Vs, 0]T

v1 = [−vd, Iout]T

v2 = [vd,−Iout]T

v3 = [
1

2
Vs, 0]T (3.7)

where Vs is the dc supply voltage while the vd is the output voltage. With these 4
vectors it is possible to define a vector diagram like the one in Figure 3.4

Figure 3.4: Vector diagram in I-V plane [38].

Once the plan is divided, proceed as in the normal svm, each vector vT defined as

vT = [Vref , Iref ]T

can be created using three of the four vectors of (3.7), the three vectors to use, will
depend on which of the two sector lying vT , for example if it lies on sector 1:

T0v0 + T1v1 + T2v2 = TsvT (3.8)

The maximum possible vector which can be created is bounded, because the sum of
the switching times cannot exceed the switching period. This result in [38]

T0 + T1 + T4 = Ts (3.9)

42



CHAPTER 3. VOLTAGE CONTROL USING PRE-CALCULATED TIMING

As an example the equations for sector 1 will be derived,[
v0 v1 v2
1 1 1

]T0T1
T2

 =

[
vT
Ts

]
(3.10)

This can be rewritten into T0T1
T2

 =

[
v0 v1 v2
1 1 1

]−1 [
vT
Ts

]
(3.11)

Using a different approach compared to conventional 3-phase 2-level inverter, the times
to be used for the different configurations have been calculated in order to obtain the
desired output voltage.

The last method presented to compute the times for the svm configurations is explained
in [39]. The basic idea is to construct switching sequences consisting of a number of
different time intervals and switching vector which start and end at a zero vector. If
5 intervals are used per sequence, the fixed cycle time will be denoted by Tx can be
written by [39]:

Tx = T1 + T2 + T3 + T4 + T5 (3.12)

Next step is to write the output voltage as a function of input voltage:

Vrst =

VrVs
Vt

 = S

VRVS
VT

 = SVRST (3.13)

and the same for the current

Irst =

IrIs
It

 = St

IRIS
IT

 = StIRST (3.14)

where in the matrix S there are the entries expressing the switch state (1=closed, 0
open) corresponding to the positions as shown in figure Figure 3.5. The two equation
systems of equations just written are very similar to those that were obtained for the
normal svm, the only thing that changes is the matrix S. Considering the average values
of the output variables we obtain:

Vrst,av =
1

Tx
(T1S1 + T2S2 + T3S3 + T4S4 + T5S5)VRST (3.15)

Irst,av =
1

Tx
(T1S

t
1 + T2S

t
2 + T3S

t
3 + T4S

t
4 + T5S

t
5)IRST (3.16)

which can be rewritten as:
Vα,av
Vβ,av

RW IA,av
RW IB,av

 =
1

Tx

[
TS2VRST TS3VRST TS4VRST
TSt2RW Irst TSt3RW Irst TSt4RW Irst

]T2T3
T4

 (3.17)

where the contribution related to the zero vector is zero and is been added an impedance
weighting RW to obtain numerical values in the same range. There are 4 equations with
3 unknowns so an optimal solution can be found:
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Figure 3.5: Schematic of 3x3 direct matrix converter [39].

T2T3
T4

 = Tx

[
TS2VRST TS3VRST TS4VRST
TSt2RW Irst TSt3RW Irst TSt4RW Irst

]+
Vα,av
Vβ,av

RW IA,av
RW IB,av

 (3.18)

where the ()+ indicates the Moore-Penrose pseudo-inverse of the matrix that is a
generalization of the inverse matrix and it satisfies some but not necessarily all the
properties of a standard inverse matrix. This inverse is found as follows:

A+ = (AtA)−1At (3.19)

In our case, due to symmetry, in a period there are only two unknown timing T1 and
T2 respectively for the series configuration and for the parallel configuration. The main
difference with the svm applied to matrix converter is that with the method used, zero
vectors cannot be used. In (3.11) does not appear the Moore-Penrose pseudo-inverse
but the normal inverse matrix this is due to being able to use zero vectors, in this way
there aren’t incompatible set points (corresponding to a difference between input and
output power) for the average voltages at the output and currents at the input of the
converter [28], as was the case with the previous method.

3.2 Overview of the project

In the previous chapter several methods for extending the speed range were presented,
each with its own peculiarities, with its own advantages and disadvantages. Now the
method of reconfiguration that was previously analyzed from the general point of view,
will be explained in detail. The simplified circuit used is the one shown in Figure 2.13,
where the dc-link capacitors are omitted from the schematic for readability. The legs
are switched using silicon igbt’s while mosfet’s are used, as shown in Figure 3.6a,
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to switch between series and independent configuration. The mosfet’s are used since
the switching is not frequent in this setup and therefore the conduction losses are
minimized [40]. This is not the only solution, the other option is to create a bidirectional
switch using an anti-parallel connection of two reverse blocking igbt’s, as depicted in
Figure 3.6b. The favoured solution depends on the application, the main advantage
of using mosfets is that they have a low on-state resistance, they therefore have low
losses at low rms current. The two series switches are used to change the configuration

Figure 3.6: (a) anti-series connected dual leg mosfet based, (b) anti-parallel connected
reverse blocking igbt based [14].

of the system from the series operation to independent (also called parallel, even though
strictly speaking the windings are not in parallel) operation. The reconfiguration of
windings can theoretically be done at arbitrary moments, actually to follow specific
voltage or current waveform, the exact moments of the passage from one configuration
to another must be calculated. For every operating cycle the circuit passes through four
stages: ”parallel”, ”series1”, ”parallel”, and ”series2”, shown respectively in Figure 3.7,
Figure 3.8 and Figure 3.9; where the difference between ”series1” and ”series2” is which
of the two switches S1 or S2 is used. In practice, due to symmetry, in some cases only
half of these stages need to be addressed, so for example only ”parallel”, ”series1”.

In the series1 configuration the switch S1 must be closed while the switch S2 must
be open, vice versa for the series2 configuration. In the circuit the supply voltage is
represented by a dc voltage source so with constant value, it does not take into account
that the supply characteristic changes for example because of battery soc.

From the circuit shown in Figure 3.8 it can be seen that during the independent
configuration two switches are used for each half winding for a total of four therefore
during the period of time that this configuration is used the losses switching will be
double. The aim of this work will be to calculate the optimal times within an operating
cycle for which the different configurations will have to be maintained in this way, there
will also be the opening times of the S1 and S2 switches, finally for each configuration
the optimal choice of opening/closing of the other switches must be found in order to
obtain the desired output characteristics. To command the switches the space vector
modulation (svm) technique will be used but this is not the only option that can be
used, at TU/e some students are implementing different approaches and in the following
paragraph some will be presented.

Once obtained the time of each configuration and the optimal combination of switches
will need to design a feedback control system so that the whole system is stable, the
quantity to be controlled can be both the voltage applied to the spmsm and the current.
In our case it was decided to control the current because it is closely linked with
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Figure 3.7: Schematic view of the two phase halves of a single winding connected in series1.

Figure 3.8: Schematic view of the two phase halves of a single winding connected in parallel.

the torque of the machine and also to avoid problems related to current unbalance
in the two half winding during the passage from series to independent configuration.
The calculation of the time and the best combination of the switches will be made
using matlab and a second part made in simulink consisting of the inverter, the
current control, and the simplified functionality of the motor, it has been used a series
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Figure 3.9: Schematic view of the two phase halves of a single winding connected in series2.

connection of an inductor, resistance, and voltage source. Initially the part of the
inverter and the motor was made in simulink but then it was preferred to use plecs,
a software tool for system level simulation of electrical circuits, commercial software
100% compatible with simulink and matlab which has several advantages, the most
important being: firstly, it yields systems that are piecewise-linear between switching
instants, (thus resolving the otherwise difficult problem of simulating the non-linear
discontinuity that occurs in the equivalent-circuit at the switching instant). Secondly, to
handle discontinuities at the switching instants, only two integration steps are required
(one for before the instant, and one after). Both of these advantages speed up the
simulation considerably [41]. The last step is to use an interface between the physical
components and create a controller in matlab, a dspace microlabbox is necessary.
The scheme made in simulink refers to the equivalent one-phase scheme so it is not
possible to test directly on the six-phase motor, to simulate the back-emf a one-phase
transformer will be used while an inductor can be used separately to emulate the
winding inductances.

3.3 Different types of reconfiguration

The most straightforward method to use the dynamic reconfiguration is to use the
actual motor speed to switch over from series to parallel operation or vice-versa. With
increasing motor speed, the back-emf of a pmsm rises accordingly. Above a certain
(pre calculated) speed, it is assumed that series operation is no longer possible and,
hence the parallel mode is activated. A very simplified representation (for one phase
only) of the operation is shown in Figure 3.10 [28]:

As it can be seen from the figure, when the modulation index, related to the speed of
the machine, exceeds 1 the configuration is changed from series to parallel, the index
decreases which makes it possible to continue increasing the speed. Although very
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Figure 3.10: Simplified representation of velocity-based winding reconfiguration [28].

simple to implement this method has several disadvantages:

� The voltage produced by the inverter is the sum of the back-emf and the voltage
drop over the winding. The dc supply can vary considerably because depending
on battery characteristics.

� The condition that allows to change configuration from series to parallel, actually
does not just depend on the speed of the motor but also on the load or torque
that is produced.

� Above the switch-over speed, the windings are continuously driven in the
“parallel” configuration, although this is only really necessary during the peaks
of the inverter voltage. Hence the losses in the inverter circuit increase more than
absolutely necessary [28].

A method that allows to reduce the losses introduced by the long times of the parallel
configuration and at the same time increase the velocity range consists of switch over
from one series to parallel configuration only when the modulation index exceeds one.
The difference from the previous method is that when the modulation index drops
below one, the windings can be connected again in series. The process is illustrated by
Figure 3.11.

Figure 3.11: Reconfiguration of windings by modulation index [28].
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Unlike Figure 3.10 where once the index equal to 1 has been reached, the parallel
configuration was maintained, here is maintained until the modulation index drops
below the hysteresis threshold, in our case fixed at 0.5. In this way it is not necessary
to use the parallel configuration beyond the necessary, the series connection is used
for about 1

3 of the time, leading to a considerable reduction in switching losses. On
the other hand, the series switches are more used than in the other method but they
toggle only few times per cycle so the switching losses will be low compared to the
other switches. The shape of the modulation index signal is depicted in Figure 3.12:

Figure 3.12: Simplified representation of modulation index-based winding reconfiguration, the
red parts indicate the time spent in independent mode and blue the time spent in series mode
[42].

The last method presented before going to the one used in this work consists in
using pulse width modulation (pwm) for the series switches, this essentially brings
two benefits:

1. A more equal distribution of losses between the phase leg switches so it is possible
to increase the current rating.

2. A more equal distribution between the phase leg switches and series switches,
problem of the previous method, also this as the previous point allows to increase
the current rating.

This method uses a current controller with a modulation index as output and gate
control based on the switching of the winding. The difference compared with a
conventional current control is that the first half winding and the second one have
the same current during series operation because one of two switches S1 or S2 is closed,
while the current could be different in the two half winding, due to differences in
inductances, during the parallel configuration so it is necessary to balance the load
current between both windings. For this reason the controllers that are being used in
this system are sum and difference controllers, since the sum controller can always be
used to control the current through the windings, in series or independent mode, and
the difference controller can regulate the difference in current between the windings
when in independent mode [42].

3.4 Project execution

The approach used for the calculation of the times of the different configurations is that
used for the matrix converter then using the the Moore-Penrose pseudo-inverse of the
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matrix but nothing makes it necessary to use this method also the other explained above
are valid. As mentioned previously, the problem to be studied is symmetrical, therefore
it is possible to study only the transition from the series1 to parallel configuration
because the transition from parallel to series2 is similar. Given a certain input variable
to follow which may be a voltage or a current, it is necessary to search among all the
possible configurations of the two inverters, the optimal one. There will be an optimal
configuration for the phase leg switches for the series configuration that will have to
remain for a time Ts and an optimal configuration of the phase leg switches for the
parallel configuration that will have to remain for a time Tp where:

Tk = Ts + Tp (3.20)

where Tk is half of total period because only half of the total problem is being studied.
The first step will therefore be to compute all the possible configurations of the phase
leg switches of the two inverters and then decide on a criterion according to which to
choose the best one. In the following study all the possible configurations will be taken
into consideration, it could also be continued with a reduced number, for an effective
exploitation of the two inverters in this way it is also possible to balance the losses of
the inverters. Referring to the circuit of Figure 3.12, for the series1 configuration there
are 4 possible configurations, simultaneous closing of the switches: S1 and S8; S4 and
S5; S1 and S4 and finally S5 and S8 (where with SX mean the switch constitute by
the antiparallel of the IGBTx and of the Dx diode), other configurations have been
neglected because they lead to the dc-bus short circuit. Now referring to the parallel
circuit of Figure 3.1 there are 16 possible configurations, for the sake of clarity all 16
possible combinations will not be explained, the procedure to be followed is analogous
to the one done for the series1 circuit only that now there are two inverters. To consider
all the possible combinations during the time Tk it is necessary to put together both
those of the series configuration and those of the parallel configuration, obtaining a
total number of configurations equal to 64. The next step is to create a matrix that
takes into account the closing/opening of all the switches, so that it was possible to
relate the dc-bus voltage to the output one, as done for the matrix converter.

When considering the possible combinations of the voltages of the two configurations,
there are two substantial differences:

1. The voltage value: in the series configuration there are voltage values equal to

±1

2
Udc or zero voltage, the latter case is represented in Figure 3.13; while for the

parallel configuration it still has the zero voltage value but the other values are
double ±Udc.

2. Windings’ connection: in the series configuration the two half windings are
closely related, the voltage in a winding is identically equal to the other, pair of

equal values are obtained, for example (
Udc
2

;
Udc
2

); (−Udc
2

;−Udc
2

) and finally (0,0).

For the parallel configuration the voltage present in a winding is independent of
that present in the other, in fact there are 16 combinations.

Taking into consideration the above clarification just made it is possible to write the
voltage of the two half windings, as follows:
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Figure 3.13: Configuration in which the two windings have zero voltage, as can be seen the
switches T1, T4 and the switch to allow the series configuration are closed .

U1

U2

 = ±1/0


Udc
2
Udc
2

 T1
Tk

+

(
±1/0 Udc

±1/0 Udc

)
T2
Tk
± 1/0


Udc
2
Udc
2

 T3
Tk

+

(
±1/0 Udc

±1/0 Udc

)
T4
Tk

(3.21)

Where the time for the series configurations Ts is divided into two, T1 for the series1
configuration and T3 for the series2 configuration; the same is done for the parallel one
Tp that is divided into T2 and T4. Obviously the (3.20) it is still valid so:

Tk = T1 + T2 + T3 + T4 (3.22)

Using (3.21) is possible to obtain the voltage of the two half windings in a period, this
value is given by the contribution of all 4 different configurations, directly proportional
to the time that this configuration is maintained in a period. The symbol ±1/0 is a
compact way, to indicate that the value considered could be ±Udc or 0 depending on
how the switches are closed, note that during the series configuration the symbol is
inside the brackets while during the parallel configuration it is outside, this is due to
the fact that during the parallel times U1 is independent from U2 while during series
times the values must be equal so it is possible to take the symbol out of the brackets.
As mentioned several times, only half of the period will be consider so (3.21) it becomes:

(
U1

U2

)
= ±1/0


Udc
2
Udc
2

 T1
Tk

+

(
±1/0 Udc

±1/0 Udc

)
T2
Tk

(3.23)

In this equation the unknowns are not the two voltages but rather the two times T1
and T2 for which the two configurations must be applied, so (3.23) must be rewritten.
The first approach used is to add a new equation for the times Tm = T1 +T2. So (3.23)
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becomes: 
U1

U2

1

 = Udc


±1/0 ±0.5/0

±1/0 ±0.5/0

1 1



T1
Tm
T2
Tm

 (3.24)

(
T1
T2

)
=
Tm
Udc

±1/0 ±0.5/0
±1/0 ±0.5/0

1 1

+U1

U2

1

 (3.25)

where the two times were obtained using the Moore-Penrose pseudo-inverse of the
matrix. This method does not lead to an effective solution because zero vectors have
not been excluded and as seen the method of Moore-Penrose pseudo-inverse of the
matrix cannot be used with zero vectors. This procedure is valid if the I-V plane
method is used. For the solution of the equation system a very similar procedure is
used with some small changes. Starting from (3.23):

(
U1

U2

)
= Udc

[
±1/0 ±0.5/0

±1/0 ±0.5/0

]
T1
Tm
T2
Tm

 (3.26)

Where it is possible replace T2 = Tm − T1 and obtain:

(
U1

U2

)
= Udc

[
±1/0 ±0.5/0

±1/0 ±0.5/0

]
T1
Tm

Tm − T1
Tm

 (3.27)

In this way the problem to be studied is passed from a system of two unknowns or
from a single vector unknown to a single scalar equation, where the only unknown is
T1. With some simple mathematical passage from (3.27) it is possible to compute T1:

U1

Udc
U2

Udc

 =

[
±1/0 ±0.5/0

±1/0 ±0.5/0

](
1

−1

)
T1
Tm

+

[
±1/0 ±0.5/0

±1/0 ±0.5/0

](
0

1

)
(3.28)

T1 =

[[
±1/0 ±0.5/0

±1/0 ±0.5/0

](
1

−1

)]+
∗




U1

Udc
U2

Udc

− [±1/0 ±0.5/0

±1/0 ±0.5/0

](
0

1

)Tm (3.29)

The result of the first square bracket is a vector of dimension 1x2 while the second
square bracket gives a 2x1 vector, multiplying them the result is actually a scalar.
After calculating the time T1 using (3.29) is simple to compute T2, remembering that
T2 = Tm − T1 with Tm know. By this method it is possible to calculate the times to
be applied to the two different configurations based on the voltage required on the two
windings, therefore effectively a voltage controlled system is being implemented, it will
be explained later how to change the method to obtain a current controlled system. The
equation (3.29) must be resolved for each possible configuration of the two inverters,
64 times in total; this is done by changing the two matrices that take into account
which switches are closed. Not all the solutions obtained from this resolution are valid,
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in fact it is necessary to exclude all the solutions which have negative values of T1 or
T2. Actually, these solutions have not been neglected in the script in order not to lose
too many potentially useful solutions, it has been preferred to adapt the unacceptable
solution to the nearest limit case. For example, if one of the two times T1 or T2 was
negative the relation Tm = T1 + T2 means that one of the two times is greater than
Tm and this is not acceptable. To accept these solutions too, this value has been set
equal to Tm and the negative time equal to zero in to respect: Tm = T1 + T2. In the
script, a vector called t of size 64x2 was created that took into account the times of
each combination. This vector has been replaced in the following equations:

(
U1real

U2real

)
= Udc

[
±1/0 ±0.5/0

±1/0 ±0.5/0

]
T1
Tm
T2
Tm

 (3.30)

The formula (3.30) is the same as (3.24), the difference is that in the latter, the given
voltage values were used to compute the times while in (3.30) the calculated times
are entered to obtain the voltage values that are actually applied in the two motor
windings during each of the 64 combinations. Obviously the discrepancy between the
given value and the one actually applied must be as small as possible, ideally tending
to zero. A very simple scheme that clearly summarizes what has been done is presented
below: As shown in the diagram, is done for all 64 combinations and then among all

Figure 3.14: Simple scheme that summarizes the voltage control, in the scheme U , t and e
are vector of two components.

the possible configurations it was chosen the one that minimizes the error between the
given voltage and the voltage that actually applied in the two motor windings. As
shown in Figure 3.14, it is necessary to compare each time, two voltage values between
them, therefore the calculation of the error will not be a simple algebraic difference
but a vector difference. It is possible to find the minimum error among all possible
combinations minimizing the norm function of the error vector. The calculation of the
64 positions with the respective matrices, whose elements are 0; 0.5 and 1, were made
using a matlab script, as shown in Figure 3.15:
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Figure 3.15: Part of the entire script, used for calculating the 64 matrices linked to the switches’
position, which defines the voltage applied in the two half windings.

First, two vectors called ”P” and ”Q” have been defined and they will be used to create
all the matrices. Starting from these two vectors, two more have been obtained, to go
to differentiate the values equal to 1 for the parallel configuration and the values equal
to 0.5 for the series configuration. To cycle all the values within the matrix that in the
script is called ”B”, 3 for loop were used, each of 4 iterations for a total of 64. These
3 indices change the component of the vectors ”r” and ”s”, defined starting from ”Q”
and ”P”, so as to obtain the desired matrix. The ”B” matrix is made by 0,1,0.5 which
will be useful to compute the times of the two different configurations through the
use of the Moore-Penrose pseudo-inverse of the matrix which in matlab is calculated
using the ”pinv” command. For the project it is not important to have only the time
but also the position of the switches for each configuration so that it is then possible
to extract this information from the script and control the two inverters. To define
the position of the 8 switches for each of the 64 configurations the two vectors ”Q”
and ”P” previously defined were used. In the script, the name of the switches were
differentiated during the parallel configuration by calling them with a single ”s” from
the one during the series configuration, calling them with a double ”s” while the switch
number specifies which switch is working, number that can be found in Figure 3.8.
For the parallel configuration there are 16 different combinations, this means that they
can be studied using only 2 of the 3 indexes of the for loop, the last one will be used
for the 4 combinations of the series configuration. During the parallel configuration,
the eight switches have been divided and controlled in pairs so it is not necessary to
control every one of the eight switches. Actually, the switches of each leg must never
be closed at the same time, therefore they can be controlled using logical complement,
further simplifying the control of the eight switches. During the series configuration
having only 4 combinations, things are further simplified, in addition to controlling the
switches in the same inverter’s leg in logical complement, the four central switches of
the two inverters always open are not used, as shown in Figure 3.7, and for this reason
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they are set to zero. Inside the loop, the switching of the central switch allows the
configuration to be changed, this because the switch changes its state once the time
has elapsed. In the script, in addition to the concerning part the calculation of the
switching time and the definition of the states of the switches, there is the calculation
part of the error and the choice of the minimum. The input requires only 4 parameters,
as shown in Figure 3.16: the two voltages on the two half windings coming from the
control loop, the Tm time and the bus voltage Udc, these two known a priori. In

Figure 3.16: Input and output of the matlab script

Figure 3.16 there are 9 signals representing the states of the nine switches, including
the one for change from series to parallel. Each signal is a vector of two components,
the first returns the state of the switch during the parallel configuration and the second
component the status of the switch for the series configuration. The signals are then
sent to a selector, shown in Figure 3.17, which allows to choose all the first components
of the nine vectors or all the second components; the choiche will be based on a logic
built on time T1, shown in Figure 3.18. Using a clock’s frequency of 100µs, also used
to define the computation of the switch states, a constant value is integrated to obtain
a ramp. This ramp is then compared with the time T1, if the ramp is greater than
T1, a switch selects the first nine values of the switches vector state and maintains this
configuration during the time T1; if the ramp is smaller than the T1 value, the switch
select the second nine states of the vectors and this combinations is maintained for the
time T2 or better for the time T2 = Tm − T1 because the time T2 is never calculated
directly, this is shown in Figure 3.19 or more in detail in Figure 3.20. Figure 3.20
shows the change in configuration, moreover the values assumed by the functions have
been inserted, in this way it is possible to verify that the time for which the parallel
configuration is really T1 and it is equal to 70µs and that effectively the sum of the
time for which the series and the parallel configurations persist is equal to the imposed
value of 100µs.
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Figure 3.17: Selector that shows how to choose all the first components or all the second ones
of the 9 switches’ state.

Figure 3.18: Logic based on T1, with which the two inverters are controlled selecting the
appropriate signals to be given to the switches.
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Figure 3.19: T1 time is compared with a ramp signal to define the transition from parallel
configuration to series configuration.

Figure 3.20: The figure shows in greater detail the passage from the parallel configuration to
the series configuration as soon as the ramp exceeds the T1 value.
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At this point the switch states generated by the matlab script can be sent to the two
inverters designed with PLECS.

Figure 3.21: Signal command of the 9 switches.

Figure 3.21 shows the 9 signals of the switches, where the ninth is the one for the
configuration change. From the figure it is possible to find that the switches of the
same leg of the inverter vary with a logical complement as actually written in the
script, like for example S1 and S5 or S2 and S6. A verification that everything works
correctly is to verify that the ninth switch is open when the ramp is greater than T1,
as shown in Figure 3.22.

Figure 3.22: Verification of exact command to the switch dedicated to the configuration change.
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Another aspect that can be noticed in Figure 3.22 is that not all the switches are used
in the same way, some of them switch more than others. This is an aspect not to be
overlooked when designing a control system, especially in the automotive sector. The
fact that some switches work more than others, leads to an increase in temperature
in these devices and an early deterioration of the switches. It would be possible to
limit this discrepancy in the use of the switches, correcting the cost function. The cost
function is at the base of predictive control. It uses the fact that only a finite number
of possible switching state can be generated by a static power converter, as in our case,
and that models of the system can be used to predict the behavior of the variable for
each switching state. The cost function is the method that will be evaluated for the
predicted values of the variables to be controlled, some expamples are current control,
torque control, power control, etc [43]. In this project it was initially thought only for
a current control and then adjusted. The method of choosing the best configuration to
be used initially thought based only on the norm, worked correctly but for some specific
current value it gave more switching than necessary ones. Below are set out the images
of the simulations made initially only using the norm as the criterion of choice for the
best configuration.

Figure 3.23: T1 time is compared with a ramp signal using only the criterion of the norm.

Comparing Figure 3.23 with Figure 3.19, it is evident that in some moments the time
T1 assumes anomalous values. From the point of view of the average output current
value and the minimization between the imposed value and the assumed value of the
motor, this method is correct but the switches assume different positions from those
assumed in the previous instance with a consequent increase in switching frequency
and in the losses as shown in Figure 3.24. This problem occurs because when the
script computes the norm between the imposed current value and the one assumed
by the i-th combination, it can happen that several combinations have the same error
and the script randomly chooses which combination to use, not caring about which
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Figure 3.24: Signal command of the 9 switches using only the criterion of the norm.

combination is assumed in the previous instant. From Figure 3.24, it can be seen that
given a sinusoidal current value as input, the choice of combination chosen by the script
is not the same for every cycle and it is noted by the fact that the T1 waveform is not
periodic unlike what happened in Figure 3.21. This happens only when the result of
the norm of many combinations give the same value, the following case is taken as
example.

Table 3.2: Comparison of the choice of combinations between the criterion of the norm
(Case 1) and the criterion of the cost function (Case 2).
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The tables show that in the case in which the norm is used the calculated error is the
same for configurations 41,43 and 44. Having the same error at the end of the average
value which of these three is chosen it is irrelevant, and in the case in question, fell
on the combination 41. It must be considered that the error of the combination 42 is
greater than the other 3, but in practice it is equivalent. Using the cost function the
indeterminacy on which configuration to choose is solved and now the best solution
is the 43. The discrepancy on the error is due to the fact that now besides the norm
another term has been added to the formula and this term must be multiplied by an
appropriate weighting factor. Now, the cost function for calculation of the error is of
the type:

e = ||x∗ − xp||+ λ

[
||t1(U1 −U1inv)||+ ||t2(U2 −U2inv)||

]
(3.31)

Where the first terms is the norm, used also for the case 1; λ is the weighting factor;
the last one is a term that varies with the area under the function. Uxinv is the voltage
value that is applied by the inverter to the motor winding, so for example Udc = 10V
the Uxinv can be equal to 0;±10 and ±5 using the series configuration. The concept
will be better explained using the voltage output waveforms.

Figure 3.25: Output voltage using the norm criterion

The voltage waveforms both in Figure 3.25 and in Figure 3.26 follow the sine wave given
in input. Using only the norm, the script in some cases, to obtain a certain average
value, prefers to switch to the parallel configuration with higher voltage values than the
series ±10V and keep it for a shorter time compared to using the series configuration,
consequently there are unnecessary configuration changes. The second term that has
been added to the (3.31), consist in making the difference between the input value ( blue
line) and the inverter value ( red line) and then multiplying it by the time for which this
voltage is maintained. The subscript ”2” does not refer to the second half winding but
it refers to the voltage and to the time during the series configuration. It is important
to point out that the aim of the cost function is to minimize the difference between
input and output waveform. In fact it is also possible to modify the cost function so
that it minimizes the switching frequency or the losses in the switches, maybe at the
expense of other parameters. What has been done has served to optimize the choice of
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Figure 3.26: Output voltage using the cost function criterion.

the configuration and has resulted in a reduction in the switching frequency but this
cost function was not aimed at reducing the switching frequency.

The output waveforms of the two half windings are the same because the control system
is the same for both, for this reason it was decided not to show the second waveform.

Figure 3.27: SPMSM control system.

The control system consists in a simple pid feedback controller and it is identical for
both windings. The anti- windup has also been inserted so as to limit the output and
not supply the motor with current or voltage values that could damage it. Having set
the anti-windup at the same value as the dc bus, i.e 10V, if this value is exceeded the
waveform would be cut off, as shown in Figure 3.30:

After several attempts the pid controller parameters were found:

� Ki = 5500

� Kp = 0.1
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� Kb = 2000

With this values it is possible to obtain a control which is able to follow the input
waveform well with rapid response times.

The project can work both with a current control and with a voltage control,
initially it was started with a voltage control, which gave some problems during the
parallel-to-series configuration transition, because the current on the series o f the two
half windings was not perfectly equal. The motor was simulated with both a sinusoidal
waveform and its step response.

Figure 3.28: Response of the pid feedback controller to a sine wave.

Figure 3.29: Response of the pid feedback controller to step function.

The last step is to use an interface between the physical components and create a
controller in matlab, a dspace microlabbox is necessary. The occurrence of some
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Figure 3.30: Use of anti windup.

problems and the lack of time did not allow this last step, so it was not possible to verify
the results of the simulation on the motor present in the laboratory. The Simulink
scheme as it was designed could not be used directly by dspace. The matlab function
for the calculation of the best configuration took too long and it would not have been
possible to use it for the motor control. The block with the matlab function with the
three for loop had to be replaced by only simulink blocks that did the same operation.
First of all, the three for loop had to be converted from 4 iterations each into a single
for loop of 64 iterations. So the calculation of the configurations seen in Figure 3.15
becomes that of Figure 3.31.

Figure 3.31: Compute of the 64 matrices linked to the switches’ position, using a single index.

In Figure 3.32 there is only the part for the calculation of the combinations, then there
is also the part for the Moore-Penrose pseudo-inverse of the matrix and finally the part
for the cost function. The cyan and red signals are the known parameters, the green
and orange signals are the states of the switches respectively for the parallel and series
configuration, while the yellow signals are used for the calculation of the Moore-Penrose
pseudo-inverse of the matrix. To find the best solution with this method, the state of
the switches at all zeros and the relative error at 100 are initialized, a very large value
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that will be impossible to obtain. From time to time the states of the switches will be
calculated and the relative error compared with the previous one, the first is 100, if the
error is smaller than the previous one, the combination is overwritten otherwise the
previous value is maintained. At the end of the 64 iterations the best combination and
the smallest error are obtained, as shown in Figure 3.33. These data are then used in
the general scheme of Figure 3.34, which is the same used also for the matlab script.
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Chapter 4

Conclusion

In this thesis, an unconventional solution is presented to extend the angular velocity
range of a spmsm. The advantages and disadvantages of this technique were presented
and it compared with other techniques that allow to increase the velocity range such
as flux weakening and the voltage range enhancement. In this work it was necessary to
model the operation of the motor and its driving circuits in detail. Given the circuit
and the control technique to be used, it was necessary translate the problem into a
system of equations that could be easily implemented and solved by software such as
matlab and simulink. It has been realized a control method for a single winding
pair (intended to be implemented three times for a six-phase motor), allowing dynamic
switching between windings in series and windings in an independent configuration.
This method (which can be classified as infinite control set model predictive control)
is based on a model of the motor behavior, that is used for predicting the circuit
behavior one switching cycle ahead time. Doing so, the best of all 64 possible switching
configurations with the associated timing can be obtained. The waveforms have been
reported both of how the control system follows the given reference, and of how the
switches are controlled. In this way it was possible to demonstrate that it is possible to
increase the velocity range of the motor without losing the control features that present
the other conventional methods.
The initial target was to also implement the thus obtained solution in a rapid
prototyping system and to drive a test circuit to verify the operation in practice. Due to
the realization of the intended test hardware being substantially delayed, this part of the
assignment has unfortunately not been realized, as confirmed by Professor Huisman’s
letter. Possible future developments for this work could be to study the thermal
behavior of the two inverters and of the motor and adjust the cost function so that
it takes into account not only a given reference but also the thermal losses, switching
frequency etc. Finally, it might give a different weight to individual contributions,
based on economic aspects, thus choosing the best solution at lowest price.
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