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Abstract

The ECG signal, which represents the electrical activity of the heart, is an essential tool to
monitor the status of the heart and evaluate its condition. Several algorithms have been pro-
posed for the automatic detection of the ECG characteristic waves, namely P wave, T wave
and QRS complex, with particular focus on the localization of the R peaks. In fact, the R
peak conveys very important and diagnostic valuable information, such as the heart rate, the
heart rate variability, and it is the main feature used for arrhythmia detection. This Thesis
aims to leverage the standardConvolutionalNeuralNetwork (CNN) to propose a newDeep
Learning-based ECG delineator for the individuation of the P, R and T peaks.

Theprocessing pipeline ofmyworkwill be investigated,madeupof a pre-processing stage,
a learning framework and a post-processing phase. My algorithm will be compared with
other state-of-the-art techniques on standard databases. In order to assess the resilience to
noise of the algorithms, more and more noisy scenarios will be taken into consideration.
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1
Introduction

ECG signals are reflective of electric activities of the heart muscle. They
are related to a variety of intertwined and complex chemical, electrical, and mechanical pro-
cesses present in the heart. They convey a great deal of valuable diagnostic information, not
only describing functioning of the heart, but also other systems such as circulation or ner-
vous systems [1]. A characteristic feature of ECG signal comes with a cyclic occurrence of its
components, consisting of the P-QRS-T complex. The ECG signal in this region is reflec-
tive of the performance of the conduction system of the heart that pertains to a single heart
evolution, involving contraction of atria and ventricles. This part of the ECG signal forms
a region of interest (ROI) as it contains the most essential diagnostic information. During
ECG signal processing and analysis, an important task is to detect the onset, peak and offset
locations of the P wave, QRS complex and T wave. In particular, an accurate R peak detec-
tion is essential in signal processing equipment for heart rate measurement and it is themain
feature used for arrhythmia detection.

ECG signal are one of the best-known biomedical signals. Given their nature, they bring
forward a number of challenges during their registration, processing and analysis. Character-
istic properties of biomedical signals include their non-stationarity, noise susceptibility, and
variability among individuals. In particular, a very undesirable aspect of these signals is their
high susceptibility to various types of noise. The main sources of noise include:

• Changes of the body-electrode impedance (baseline wandering);
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• Changes of a mutual position of the heart and electrodes caused by respiratory move-
ments of a patient;

• Contraction of skeletal muscles;

• Interference of electromagnetic nature;

• Interferences caused by high power devices.

The ECG signal is one of the best-recognized biomedical signals. Its high diagnostic capa-
bilities have been demonstrated. In the last decades there has been a significant growth of
interest in the development of efficient methods of processing and analysis of ECG signals
with the intent to create useful diagnostic information. The first proposed algorithms were
derivative-based and filtering-based approaches [4], [5]. Later on, several different other ap-
proaches have been investigated, based on Hilbert trasnform [6], Hidden Markov Models
[8], mathematical morphology [11], Phasor transform [12]. Anyways, the most adopted ap-
proach is that based on the Wavelet Transform [14], [15]. The effectiveness of the Wavelet
Transform relies on its intrinsic property of describing the ECG signal at different scales.

In this thesis, a newDeep Learning-based delineator has been implemented and discussed.
The processing pipeline of my algorithm is divided into three parts. The first one is the so-
called pre-processing stage. Through it, the raw ECG signal is processed. In particular, the
signal is filtered with a specific band-pass filter in order to remove the baseline wandering, as
well as scaled.
The second step is the core of the work: the learning framework. It is constituted by a Con-
volutional Neural Network (CNN) with 6 convolutional layers for the P and T peaks’ delin-
eation and with 4 convolutional layers for the R one, respectively. The CNN proposed in
my work is different from the standard one since it does not perform classification or regres-
sion, hence only the feature learning block is present. In fact, the output ofmyCNNhas the
same size of the input. This entails that the network does not depend on the input’s length
and so I can give in input to the CNN signals with different sizes. The third and last step is
the post-processing stage. Here, a sigmoid operation is applied to the output of the CNN and,
then, a peak detector is used so as to find out the locations of the peaks.

My algorithmwill be comparedwithother classical approaches in termsof theF1 score and
the statistics of the error (i.e., the difference between the real locations of the peaks and the
ones obtained by one specific algorithm) on standard databases. Moreover, the algorithms
will be tested in more and more noisy scenarios so that we will be able to evaluate their ro-
bustness against noise.
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The thesis is organized as follows:

1. Chapter 2 gives a brief description of the electrical conduction system of the heart, as
well as of the goals of the ECG delineation;

2. Chapter 3 is devoted to giving an outline of the most common algorithms for ECG
delineation;

3. Chapter4describes indetails each stepofmyproposedprocessingpipeline: pre-processing
stage, learning framework and post-processing step;

4. Chapter 5 describes the algorithms for the comparison, the metrics used for the com-
parison, the simulation scenarios; the final results are showed by means of tables, box-
plots and figures;

5. Finally, Chapter 6 draws the conclusions and proposes some guidelines for future
works based on my work.
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2
Preliminaries: the Electrical Conduction

System of the Heart and ECG
Interpretation/Delineation

2.1 Introduction

Electrocardiography istheprocessofproducing an electrocardiogram (ECGorEKG),
a recording of the electrical activity of the heart by means of electrodes placed on the skin.
The ECGs are usually printed on a grid where the horizontal axis represents time and the
vertical axis represents voltage. The electrodes detect the changes in electrical potential dif-
ference (voltage) during depolarization and repolarization 1 of the myocardial fibers during
each cardiac cycle. The sources of the electrical potentials are contractile cardiac muscle cells
(cardiomyocytes).
The ECG is used to investigate some types of abnormal heart function including arrhythmias
and inadequate coronary artery blood flow (e.g., myocardial ischemia andmyocardial infarc-
tion), as well as hearth morphology (such as the orientation of the heart in the chest cavity

1In biology, depolarization is a change within a cell, duringwhich the cell undergoes a shift in electric charge
distribution, resulting in less negative charge inside the cell. On the contrary, the repolarization refers to the
change in membrane potential that returns it to a negative value just after the depolarization phase.
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and the hypertrophy). Furthermore, it is useful for gauging the performance of pacemakers.

2.2 The Electrical Conduction System of theHeart

The electrical conduction system of the heart transmits signals usually generated by the sinoa-
trial node to cause contraction of the heart muscle. The pacemaking signal generated in the
sinoatrial node travels through the right atrium to the atrioventricular node, along the bun-
dle ofHis and throughbundle branches to bring about contraction of the heartmuscle. This
signal firstly stimulates the contraction of the right and left atrium, and then the right and
left ventricles. This process permits blood to be pumped all over.
Cardiac muscle consists of two main cell types: cardiomyocytes, which generate electrical po-
tentials during contraction and make up the atria and the ventricles, and cardiac pacemaker
cells, specialized in the generation and conduction of the electrical impulses and distributed
throughout the heart. These specialized electrical cells depolarize spontaneously. At rest, car-
diomyocytes are polarized with an electrical membrane potential of around−90mV. Excita-
tion by an external stimulus can trigger a rapid reversal of the electrical potential of working
myocardial cells (depolarization). The depolarization is usually due to a sudden increase in
permeability of the membrane to sodium. The downward swing of the action potential, or
repolarization phase, is mainly due to the movement of potassium ions out of the cell. After
depolarization, the muscle returns to its original electrical state. During the repolarization,
the cardiac muscle is incapable of being stimulated (e.g., it is refractory), which protects it
against premature activation.

The conduction system of the heart is depicted in Fig. 2.1. The sinoatrial node (S-A) has
the highest rate of spontaneous depolarization and acts as the primary pacemaker. Its activ-
ity is regulated by the autonomic nervous system (ANS). At normal condition, the S-A node
generates impulses that stimulate the atria to contract. This node is located in the superior
wall of the right atrium, close to the opening of the superior vena cava. Other elements of
the conduction system include the atrioventricular node (A-V), located between the atria and
the ventricles, in the lower atrial septum adjacent to the annulus of the mitral valve, and the
bundle of His. The bundle of His divides into a right and left branch at the level of membra-
nous part of the interventricular septum. The left branch is further branched into an anterior
and posterior bundle. ThePurkinje fibers are the final component of the conduction system,
which are intertwined with muscle fibers and papillary muscles. Their task is to conduct the
wavefronts directly to the two ventricles so that they contract simultaneously. The Purkinje
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Figure 2.1: The electrical conduction system of the heart, from [36].

fibers have intrinsic automaticity (ventricular escape rhythm) generating approximately 30
bpm (beats per minute). The cells of the A-V node also depolarize spontaneously but at a
higher rate (about 40− 50 bpm).
Using the terminology associated with electrical devices, the conduction system of the heart
can be described as a pacemaker (S-A node), a resistor that simultaneously acts like a fuse (the
A-V node) and two insulated electrical wires (branches of the bundle of His). The term “re-
sistor” for the property of theA-Vnode is appropriate since it slows down the depolarization
(conduction velocity through the A-V node is slower than in other parts of the conducting
system, 0.05m/s vs. 4m/s, respectively). This delay enables the transfer of blood from the
atria to the ventricles and is responsible for ensuring that the sequence of ventricular contrac-
tion follows atrial contraction.
The comparison between the A-V node and a “fuse” is appropriate because the A-V node
possesses Wenckebach’s point, which is thought to maintain the ratio of maximum conduc-
tion of the supraventricular impulses to ventricles at 1 : 1.
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Figure 2.2: ECG of a heart in normal sinus rhythm, from [2].

2.3 ECGDelineation

A normal rhythm of the heart produces an ECGwaveform that is akin to the one showed in
Fig. 2.2. The goal of ECG delineation is that of evaluating the onset and ending points of
all the P-waves, T-waves and QRS complexes in a specific ECG trace, as well as the position
of the peaks of the above-mentioned waves. A normal ECG waveform shows some typical
morphologies:

• The isoelectric line: a horizontal line when there is no electrical activity on the ECG;

• Segments: the time duration of the isoelectric line between waves;

• Intervals: the time duration between the beginning of a wave and the beginning of
a subsequent wave (e.g., PR interval) or the duration between two consecutive equal
peaks (e.g., RR interval).

2.3.1 Specification ofWaves, Intervals and Segments of an ECGWaveform

In this section, the description of the waves and the intervals between them on an ECG trac-
ing will be given. It is possible to visualize them in Fig. 2.3.
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Figure 2.3: Standard fiducial points in the ECG (P, Q, R, S, T and U) together with clinical features, from [2].

• Pwave is the first deflection of the ECGand it represents the depolarization of the atria.
Atrial depolarization spreads from the SA node towards the AV node, and from the
right atrium to the left atrium. The normal duration of the P wave is no longer than
120ms. An abnormality of this wave can be due to atria enlargement, hypertrophy or
ectopic atrial pacemaker;

• PR interval is measured from the beginning of the Pwave to the beginning of theQRS
complex. This interval reflects the time the electrical impulse takes to travel from the
SA node through the AV node.The standard span of time is 120 − 200 ms. A PR
interval shorter than 120 ms suggests that the electrical impulse is bypassing the AV
node, as in Wolf-Parkinson-White syndrome. A PR interval consistently longer than
200ms diagnoses first degree atrioventricular block;

• QRS complex is the largest group of waves on the ECG and represents the depolariza-
tion of the right and left ventricles via the bundle of His and Purkinje fibers. The ven-
tricles have a largemusclemass compared to the atria, hence theQRS complex usually
has a much larger amplitude than the P wave. The normal duration of this wave is
80 − 100 ms. If the QRS complex is longer than 120 ms, it suggests disruption of
the heart’s conduction system or ventricular rhythms such as ventricular tachycardia.
An unusually tall QRS complex may represent left ventricular hypertrophy, while a
very low-amplitude QRS complex may represent a pericardial effusion or infiltrative
myocardial disease;
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• ST segment connects theQRS complex and the Twave. It represents the period when
the ventricles are depolarized. It is usually isoelectric, butmay be depressed or elevated
with myocardial infarction (MI) or ischemia;

• Twave represents the repolarization of the ventricles. It is generally upright in all leads
except aVR and V1. Inverted T waves can be a sign of myocardial ischemia, left ven-
tricular hypertrophy, high intracranial pressure, or metabolic abnormalities. Peaked
T waves can be a sign of hyperkalemia or very early myocardial infarction;

• QT interval is measured from the onset of the QRS complex to the end of the T wave.
The length of theQT interval is directly affected by the heart rate (the slower the heart
rate, the longer the interval). To eliminate this influence, a correctedQT(QTc) should
be worked out using either Bazett’s formula (QTc = QT√

RR
) or Fridericia’s formula

(QTc = QT
RR0.33 ), where QT is the length of the QT interval in seconds and RR is

the cardiac cycle in seconds. The disadvantage is that these formulas overestimate the
QT interval when the heart rate is fast and underestimate it when the heart rate is
slow. Normally the duration of theQT interval is less than 440ms. A prolongedQTc
interval is a risk factor for ventricular tachyarrhythmias and sudden death. Long QT
can arise as a genetic syndrome, or as a side effect of certainmedications. An unusually
short QTc can be seen in severe hypercalcemia;

• Uwave is hypothesized to be caused by the repolarization of the interventricular sep-
tum. It normally has a low amplitude, and even more often is completely absent.

In Table 2.1 it is possibile to see some typical values of the intervals and amplitudes of the
waves under specific characteristics.
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Table 2.1: Typical Lead II ECG Features and Their Normal Values in Sinus

Rhythm at a Heart Rate of 60 bpm for a HealthyMale Adult.

Feature Normal V alue Normal Limit

P width 110ms ±20ms
PQ/PR interval 160ms ±40ms
QRS width 100ms ±20ms
QTc interval 400ms ±40ms
P amplitude 0.15mV ±0.05mV
QRS height 1.5mV ±0.5mV
ST level 0mV ±0.1mV
T amplitude 0.3mV ±0.2mV

Note: There is some variation between lead configurations.
Heart rate, respiration patterns, drugs, gender, diseases, and
ANS activity also change the values. QTc = αQT, where α =

(RR)−
1
2 . About 95% of (normal healthy adult) people have a

QTc between 360 ms and 440 ms. Female durations tend to be
approximately 1% to 5% shorter except for the QT/QTc, which
tends to be approximately 3% to 6% longer than formales. Inter-
vals tend to elongate with age, at a rate of approximately 10% per
decade for healthy adults.
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3
State of the Art: a Survey of the Most

Common Algorithms for ECGDelineation

3.1 Introduction

This chapter is devoted to giving an outline of the most-adopted techniques for the
ECG-delineation problem. As the time went by, new approaches have been proposed in or-
der to outperform the existing algorithms. It worths noticing that, albeit somemethods have
been contrived quite a long time ago, their performances are very competitive and wrangle
with themost recent one. Themost-usedmethods rely on thewavelet transform (sometimes
in combination with other techniques) due to its intrinsic property of describing the signal
at different scales. Truly, I will tarry mainly on some works related to it. Nevertheless, other
disparate techniques will be addressed so as to grant a thorough insight and show howmuch
this task has been dissected. Note that some of the following algorithms aim at only individ-
uating the QRS complex, which is the most important wave of an ECG signal and provides
much information about the current state of the heart.

3.2 Derivative-Based Algorithms

The derivative-based algorithms are the oldest andmost intuitive approaches. They are often
used in real-time analysis or for large datasets since they do not require extensive computa-
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tions. These methods also have the advantage of not necessitating manual segmentation of
data, training of the algorithms, or patient-specific modifications that are usually required
for other detection methods. Among these algorithms, one of the most famous is surely
that proposed by Pan and Tomkins in the 1985 [4]. It is a real-time QRS detector, thus it
provides an incomplete delineation. This algorithms is composed of three processing steps:

1. Linear digital filtering, which includes a bandpass filter (used for attenuating noise),
a derivative (which provides information about the slope of the QRS), and a mov-
ing window integrator (it produces a signal that includes information about both the
slope and the width of the QRS complex);

2. Non-linear transformation, in particular signal amplitude squaring, which intensifies
the slope of the frequency response curve of the derivative and helps restrict false pos-
itives caused by T waves with higher than usual spectral energies;

3. Decision rule algorithm, performedby adaptive thresholds andT-wave discrimination
techniques.

Once the processing procedure is completed, the algorithm is divided into three processes:
learning phase 1, learning phase 2, and detection. Learning phase 1 requires about 2s to
initialize detection thresholds based upon signal and noise peaks detected during the learn-
ing process. Learning phase 2 requires two heartbeats to initialize RR-interval average and
RR-interval limit values. The subsequent detection phase does the recognition process and
produces a pulse for each QRS complex. The thresholds and other parameters of the algo-
rithm are adjusted periodically to adapt to changing characteristics of the signal.

The crucial part of this algorithm is the choice and adaptation of the thresholds. They use
two sets of thresholds: one set thresholds the filtered ECG, and the other thresholds the sig-
nal produced by moving window integration. The usage of two sets of thresholds improves
the reliability of the detection. Moreover, thanks to the initial bandpass filtering, the signal-
to-noise ratio (SNR) is increased, thereby letting the use of lower thresholds. The algorithm
uses a dual-threshold technique to findmissed beats. There are two separate threshold levels
in each of the two sets of thresholds. One level is half of the other. The thresholds contin-
uously adapt to the characteristics of the signal since they are based upon the most-recent
signal and noise peaks that are detected in the ongoing processed signals.

This algorithm has been evaluated on theMIT/BIH arrhythmia database [38] (it was the
best database available in themiddle of 80s), consisting of 48 half-hour recordings for a total
of 24 h of ECG data. The total detection error rate achieved by the algorithm is 0.675%, the
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sensitivitySe is equal to 99.75 and the positive predictivity is equal to 99.54. This algorithm
fails in specific records that display unusually tall, peaked P waves, or non-QRS waves with
highly unusual morphologies.
As a final remark, in general the derivative-based methods achieve very good results in terms
of accuracy; yet, they show quite high time errors.

3.2.1 Low-Complexity Algorithm for Real-Time Embedded Systems

More recently, Bote et al. [13] have presented a new modular and low-complexity algorithm
that provides a complete ECG delineation. Involving a reduced number of operations per
second and having a small memory footprint, the algorithm is intended for real-time delin-
eationon resource-constrained embedded systems. Themodular design allows the algorithm
to automatically adjust the delineation quality in runtime to a wide range of modes and sam-
pling rates, from a ultralow-powermodewhen no arrhythmia is detected, to a complete high-
accuracy delineation mode.

The standard approaches based on Wavelet Transform (e.g., [14], [15]) involve high com-
putational cost due to its complexity. If the delineation is executed off-line or without any
restriction of time, they can be good approximations to medical annotations. However, the
increasing use of miniaturized embedded wearable devices for real-time health monitoring
and diagnosis, is driving the need for more efficient algorithms. Currently, the wearables
market is steadily growing up, developing new devices that are able to monitor heart rate
(HR) 24/7, using GPS for running or monitoring sleep patterns and quality. Fitness track-
ers or smartwatches can be used to record and/or analyze real time signals without anything
but a sensor mounted on the device or a chest strap. The proposed algorithm for real-time
ECG delineation helps to enable the next-generation of wearable monitoring systems, that
can rely on the delineation results to perform online on-board arrhythmia detection.

The algorithm in [13] proposes a new delineation algorithm that is not only less computa-
tionally complex and more energy efficient than state-of-the-art techniques, but also much
more flexible andmodular, being able to always achieve an optimal trade-off between energy
consumptions and delineation accuracy, depending on the available energy budget and the
required performance, to carry out a precise arrhythmia detection.

The simple yet accurate delineation algorithm is based on the first and second derivative of
a low-pass FIR filtered ECG signal whose cut-off frequency is 14Hz. Noise reduction, using
another low-pass FIR filter with frequency of 40Hz, and baseline wander removal, applying
different morphological filters, are also considered.
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Figure 3.1: Conceptual flowchart of the ECG delineation, from [13].

Figure 3.2: Flowchart of the proposedmodular ECG signal processing, from [13].

The conceptual flowchart of the ECG delineation can be viewed on Fig. 3.1 and schema-
tized as follows:

1. The delineation algorithm begins with a QRS peak detection;

2. Once a QRS peak has been detected, its boundaries (onset and end) can be found, if
needed, before and after that QRS peak (this defines the QRS complex);

3. Also P and T peaks may be searched before and after that QRS complex, with their
onset and end.

In Fig. 3.2 it is possible to see the Peaks and On-end modules. The purpose of the Peaks
module is to detect the QRS peank and, also, the P and T peaks if needed. In order to do
this, a low-pass FIR filter with a cut-off frequency of 14Hz is applied to theECGraw signal.
With this aggressive filter, any type of high-frequency signal is eliminated, while P, QRS and
T wave peak positions are preserved. To detect the peak of the QRS complex, the first and
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Table 3.1: Delineation performance of the algorithm in [13].

Mode High-accuracy Standard Low-power Ultra-low-power
Features High frequency High frequency Low frequency Low frequency

High-order FIR filters Low-order FIR filters Continuous sampling Discontinuous sampling

Detectable waves QRS, P, T peaks, QRS, P, T peaks, QRS peak QRS peak
onsets, ends onsets, ends

Sampling rate (Hz) 250 250 50 50
Filter order 40 10 10 10
Computational cost Medium-high Medium Low Ultra-low
Accuracy Ultra-high High Medium-high Medium
QRS peak delineation
Se - PPV (%) 100− 99.51 99.50− 99.78 97.27− 98.27 95.38− 98.78
m ± σ(ms) −6.0± 4.6 −5.5± 6.6 20.47± 24.46 22.15± 26.45

second derivatives are computed. The details of the method can be consulted by the reader
in [13].
In parallel to the Peaks module, theOn-end module can be enabled for detecting onsets and
ends of the previously detected ECGwaves. A less aggressive low-pass FIR filter is applied to
ECGraw with a cut-off frequency of 40Hz.

The algorithm has been tested on the QT database [37]. The main advantage of the pro-
posed technique with respect to previous works is its ability to operate in different modes,
that can be selected dynamically at run time, depending on which ECG fiducial points have
to be detected and how accurate the detection must be, and therefore drastically reducing
the CPU usage. There are four possible modes:

• High-accuracy;

• Standard;

• Low-power;

• Ultra-low-power.

The results obtained by the algorithm on a specific mode and its specifications can be
found on Table 3.1.
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3.3 Hilbert Transform-Based Algorithms

In [6], a new approach to QRS detection using the properties of the Hilbert transform is
presented. In a nutshell, the algorithm exploits the first differential of the ECG signal and its
Hilbert transformed data to locate the R peaks in the ECG waveform. The combinational
use of both signals has a number of advantages, such as theminimization of unwanted effects
of large peaked T and P waves and the excellent performance of the algorithm under signif-
icant noise contamination. Now, some definitions and properties of the Hilbert transform
at the base of the algorithm are presented.

Given a real time function x(t), its Hilbert transform is defined as:

x̂(t) = H[x(t)] =
1

π

∫ +∞

−∞
x(τ)

1

t− τ
dτ (3.1)

It is known that x̂(t) is also a time dependent function and a linear function ofx(t). It holds
that:

x̂(t) =
1

πt
∗ x(t) (3.2)

Furthermore, the Fourier transform of the Hilbert transform of x(t)may be re-expressed as:

F{(x̂)} = −j sgn f · F{x(t)} (3.3)

Therefore, the Hilbert transform of the original function x(t) represents its harmonic
conjugate.

A very useful property of theHilbert transform is that it is an odd function. This is equiv-
alent to say that it will cross zero on the x-axis every time that there is an inflexion point in
the original waveform. Similarly, a crossing of the zero between consecutive positive and
negative inflexion points in the original waveformwill be represented as a peak in its Hilbert
transformed conjugate.This interesting property is used by [6] to develop an elegant and
much easier way to find the peak of the QRS complex in the ECGwaveform corresponding
to a zero crossing in its first differential waveform d/dt (ECG). The proposed approach is
depicted in Fig. 3.3. It is worthwhile to underline that the implementation of the last block
(i.e., the threshold peak detector) is quite simple because the P and T waves are minimized
in relation to the relative peak corresponding to the peak of theQRS complex in theHilbert
sequence. The threshold must be adaptive in order to guarantee accurate detection of the R
peaks.

Thedetector hasbeen testedusing entire records fromtheMIT-BIHArrhythmiadatabase
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Figure 3.3: Block diagram of theQRS detector, based on [6].

[38]. The performances achieved by the detector are very good. In particular, it works well
as the signals are corrupted by pronouncedmuscular and baseline artifacts (MIT-BIHNoise
Stress Test Database). A QRS detection error rate of 0.36%, a sensitivity (Se) of 99.81%
and a positive prediction (P+) of 99.83%were achieved against the MIT-BIH database.

3.4 Phasor Transform-Based Algorithms

The algorithm proposed by Rodrigo et al. in [12] is based on the Phasor Transform (PT)
and it provides a overall delineation of the ECG signal (P and T waves, QRS complex), op-
erating in single lead recordings. The most important feature of this algorithm is that it is a
fast algorithm rather than the Wavelet Transform-based ones, as well as very accurate. The
most important steps of this method follow, referring the reader to [12] for a more detailed
description.

The Phasor Transform (PT) is a tool able to represent a sinusoidal function in the com-
plex domain. The result is a complex number, called the phasor, which preserves the signal
information regarding root mean square and phase values. For a generic discrete sinusoid
such as x[n] = A cos(ωn+φ) = ℜ{Aej(ωn+φ), beingA the amplitude andφ the phase of
the sinusoid, its PT would provide a rotating phasor in the complex plane with magnitude
A, rotation speed ω and initial phase φ, i.e., PT{x[n]} = Aejφ = A cos(φ) + jA sin(φ).

To enhance the ECGwaves, PT is used to convert each instantaneous ECG sample into a
phasor. A constant valueRv is considered as the real part, whereas the original value of the
ECG is used as the imaginary component of the phasor. Thus, ifx[n]denotes anECGrecord-
ing ofN samples, being n the discrete time, the phasor y[n] can be defined for each sample
as y[n] = Rv + jx[n], for n = 1, . . . , N . LetM [n] and φ[n] be the magnitude and the
phase of the phasor, respectively. In this way, by considering the instantaneous phase varia-
tion in consecutive samples of the phasor transformed ECG, the slight variations provoked
by P and T waves in the original recording are maximized, regardless of their eventually low
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Figure 3.4: (a) Representation of a normal beat from a typical ECG (top) together with its phase variation obtained

from the phasor transform (bottom). (b) Detailed representation of the phasor transformed signalφ[n] to illustrate
the process for R peak identification. Image taken from [12].

amplitude. The value ofRv determines the degree withwhich ECGwaves are enhanced into
the phasorial signal and this value is calculated experimentally for eachwave by using theQT
database as learning set.

QRS complexes are detected by applying directly the PT to the absolute value of the pre-
processed ECG, with Rv = 0.001. As can be seen in the lower part of Fig. 3.4 (a), P and
T waves are notably enlarged by the PT operation. By establishing a threshold of 0.003 rad
below the maximum phase variation of π/2 rad (see Fig. 3.4 (b)), the QRS complexes can
be detected as the segments that exceed the threshold.

Once the R peak is detected, it is used as a reference for the identification of Q and S
waves. For both waves, a window of 35ms is considered, and the PT is newly applied to the
absolute value of the ECG, subtracting the median of the segment. Rv is set to 0.005. The
local minimumofφ is searched inside the window: if any point presents a phase higher than
75% of themaximum variation of π/2 rad, that is theQ or S peak. The delineation of T and
P waves proceeds in a similar way with some additional gimmicks.

The method has been tested on the QT database [37]. In Table 3.2 the results obtained
from the proposed method are showed. The performances are very similar to the most sig-
nificant single-lead delineators, keeping in mind that this algorithm presents a low computa-
tional cost and a mathematical simplicity. Note that the standard deviation (s in the table)
for P wave is quite high.
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Table 3.2: Delineation performance of the algorithm in [12].

Feature Pon Ppeak Pend QRSon QRSend Tpeak Tend

Se (%) 98.65 98.65 98.65 99.85 99.85 99.20 99.20
m± s(ms) 2.6± 14.5 32± 25.7 0.7± 14.7 −0.2± 7.2 2.5± 8.9 5.3± 12.9 5.8± 22.7

3.5 MathematicalMorphology-Based Algorithms

A mathematical morphology-based QRS detector has been introduced for the first time in
1993 from [10]. The work proposed by [11] describes an algorithm that carry out a complete
ECG-delineation, thus it is more interesting to be investigated.

The algorithm in [11] is a multiscale morphological derivative (MMD) transform-based
technique which operates on a single lead (in particular the ECG lead II). As a nonlinear
filtering, it has been proven that morphological dilation and erosion satisfy the causality and
the additive semigroup property required by multiscale analysis for signal of any dimension
with local maxima and minima as singular points (peak, onset and offset of P, T and QRS
waves for ECG signal). By applying amorphological derivative transformdefined at different
scales, noise sensitivity inherent in single scale operation can be reduced in MMD method.
Moreover, the problem of position deviation existed in wavelet transform-based techniques
can be avoided due to the nonlinearity of morphological transform.

In [11], the signal to be processed is limited to continuous function f : R2 → R with
only finite oscillations on a closed interval which is differentiable everywhere except at some
singular points. A singular point in the one-dimensional signal is defined as a point whose
derivatives on the right and the left exist with different signs. The derivative on the right can
be represented by morphological sup-derivativeM+

f , which is defined as:

M+
f (x) = lim

s→0

(f ⊕ gs)(x)− f(x)

s
. (3.4)

Analogously, the derivative on the left is established as:

M−
f (x) = lim

s→0

f(x)− (f ⊖ gs)(x)

s
. (3.5)

Denoting the functions, f : D ⊂ Rn → R and gs : Gs ⊂ Rn → R (s > 0), the two
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fundamental operations of multiscale morphology are:

Dilation : (f ⊕ gs)(x) = sup
t∈(Gs∩Dx)

{f(x− t) + gs(t)} (3.6)

Erosion : (f ⊖ gs)(x) = inf
t∈(Gs∩Dx)

{f(x+ t)− gs(t)}, (3.7)

where Dx is the translation of D, Dx = x + t : t ∈ D, sup(f) and inf(f) refer to the
supremum (least upper bound) and infimum (greatest lower bound) of f , s is scale, and gs
is the scaled structuring function.
The authors propose a multiscale morphological derivative differenceMd

f , defined as:

Md
f (x) =M+

f (x)−M
−
f (x) = lim

s→0

(f ⊕ gs)(x)− f(x)

s
− lim

s→0

f(x)− (f ⊖ gs)(x)

s
=

lim
s→0

(f ⊕ gs)(x) + (f ⊖ gs)(x)− 2f(x)

s
. (3.8)

By choosing a flat structuring function, where gs(x) = 0, x ∈ G, whereG = {x : ||x|| ≤
s}, the above multiscale morphological derivative transform described by Equation (6) is
simplified to the following process: choose a moving window with a length of (2s + 1)

samples and find the maximum and minimum values in the window, as well as the value of
the signal at the central point f(x). Then, the MMD transform at the central point can be
specified as:

Mds
f (x) =

maxt∈[x−s,x+s]{f(t)}+mint∈[x−s,x+s]{f(t)} − 2f(x)

s
. (3.9)

At a positive peak in the ECG signal, its left derivative is positive and its right derivative is
negative, therefore, positive peaks in the ECG signal correspond to the local minima inMds

f .
At the onset or offset of a positive peak, there is an abrupt increase in its derivative value from
left to right. So, the onsets and offsets correspond to the local minima inMds

f . As applied
to ECG lead II signal, the R peak, Q wave and S wave correspond to the local minima of
theMds

f , while the onsets and offsets of the P and T waves correspond to the local maxima
of theMds

f . Hence, the characteristic QRS complex, P and T waves, can be detected using
the just-described MMD detector by detecting the local extrema in the MMD transformed
signal, setting specific thresholds as well. In addition to this, in order to reduce the noise and
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Figure 3.5: Result of characteristic wave detection for single ECG beat. From top to bottom: original ECG signal; the

MMD transformed signal at scale 20with the detected characteristic points marked; detected characteristic waves in
solid line. Image taken from [11].

Table 3.3: Delineation performance of the algorithm in [11].

Parameter Pon Poff QRSon QRSoff Ton Toff

Se (%) 97.2 94.8 1004 100 99.8 99.6
m± s(ms) 9.0± 9.4 12.8± 13.2 3.5± 6.1 2.4± 10.3 7.9± 15.8 8.3± 12.4

correct the baseline, as first step, the ECG is preprocessed by morphological filtering.
The algorithm has been tested using the first ECG leads from the MIT-BIH arrhythmia

database and the QT database. In Fig. 3.5 it is possible to see the original signal and the
MMD transformed signal at scale 20 with the detected characteristic points marked. The
results obtained by the MMD detector are showed in Table 3.3. The performance on QRS
andTwaves are extremely good, whereas the algorithm struggles with the Pwave (in general
P wave is the most demanding one since it has a low peak and the noise can be even stronger
than the P wave).

3.6 Wavelet-Based Algorithms

TheWavelet Transform-based algorithms are themost adopted ones for the ECGdelineation
[14], [15], [16], [16]. The use of WT is due to some reasons, among others:

• The drawbacks of filtering-based approach: frequency variations in the characteris-
tic waves often adversely affect its performance. The frequency distribution of QRS
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complexes generally overlapswith that of the noise, resulting in both false positive and
false negative detections. Plus, this approach has a low efficiency when dealing with
odd morphologies;

• WT is attractive as amathematical tool because of twomain properties: first, when the
WT is applied, the ECG can be described at different scales of temporal and frequency
resolution, thushigh frequencywaves (such as theQRScomplex) canbedistinguished
from low frequency waves (such as P and T waves); second, the WT can be easily
implemented with a cascade of Finite-Impulse Response (FIR) filters.

• The noise and artifacts affecting the ECG signal also appear at different frequency
bands, thus having different contribution at the various scales.

The algorithm in [14] is probably the most famous and benchmark WT-based approach.
It is worthwhile to describe how it works because almost all other approaches proceed in
a similar way, with some obvious slight variations (e.g., the values of the thresholds or the
prototype wavelet).

The wavelet transform is a decomposition of the signal as a combination of a set of basis
functions, obtained bymeans of dilation (a) and translation (b) of a single prototypewavelet
ψ(t). Thus, the WT of a signal x(t) is defined as

Wax(b) =
1√
a

∫ +∞

−∞
x(t)ψ

(
t− b

a

)
dt, a > 0. (3.10)

The greater the scale factor a is, the wider is the basis function and consequently, the cor-
responding coefficient gives information about lower frequency components of the signal,
and viceversa. In this way, the temporal resolution is higher at high frequencies than at low
frequencies.

If the prototype waveletψ(t) is the derivative of a smoothing function θ, it can be shown
that the wavelet transform of a signal x(t) at scale a is

Wax(b) = −a
(
d

db

)∫ +∞

−∞
x(t)θa(t− b)dt, (3.11)

where θa(t) = (1/
√
a)θ(t/a) is the scaled version of the smoothing function. The wavelet

transform at scale a is proportional to the derivative of the filtered version of the signal with a
smoothing impulse response at scale a. Therefore, the zero-crossings of theWT correspond
to the local maxima or minima of the smoothed signal at different scales, and the maximum

24



Figure 3.6: Two filter-bank implementation of DWT. (a)Mallat's algorithm. (b) Implementation without decimation

(algorithme à trous). Image taken from [14].

absolute values of the wavelet transform are associated with maximum slopes in the filtered
signal.

The scale factor a and/or the translation parameter b can be discretized. The usual choice
is to follow a dyadic grid on the time-scale plane: a = 2k and b = 2kl. The transform is then
called dyadic wavelet transform, with basis functions:

ψk,l(t) = 2−k/2ψ(2−kt− l); k, l ∈ Z+. (3.12)

For discrete-time signals, the dyadic discrete wavelet transform (DWT) is equivalent, ac-
cording to Mallat’s algorithm, to an octave filter bank [39], and can be implemented as a
cascade of identical cells [low-pass and high-pass finite impulse response (FIR) filters], as
illustrated in Fig. 3.6(a).

The downsamplers after each filter in Fig. 3.6 remove the redundancy of the signal rep-
resentation. As side effects, they make the signal representation time-variant, and reduce
the temporal resolution of the wavelet coefficients for increasing scales. To keep the time-
invariance and the temporal resolution ad different scales, the same sampling rate in all scales
is used, what is achieved by removing the decimation stages and interpolating the filter im-
pulse responses of the previous scale. This algorithm, called algorithme à trous [40], is shown
in Fig. 3.6(b).
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Figure 3.7: Prototypewaveletψ(t) and smoothing function θ(t), from [14].

Using this algorithm, the equivalent frequency response for the k-th scale is

Qk(e
jω) =

G(ejω), k = 1

G(ej2
k−1ω)

∏k−2
l=0 H(ej2

lω), k ≥ 2
(3.13)

In [14], a quadratic spline is used as prototype waveletψ(t). The quadratic spline Fourier
transform is

Ψ(Ω) = jΩ

(
sin(Ω

4
)

Ω
4

)4

(3.14)

The wavelet can be easily identified as the derivative of the convolution of four rectangular
pulses, i.e., the derivative of a low-pass function. Fig. 3.7 represents the wavelet and smooth-
ing function used in [14].

A brief description of the algorithm follows, the complete steps and details can be found
in the related paper. The algorithm applies directly over the digitized ECG signal without
any prefiltering. According to the spectrum of the ECG signal waves, most of the energy of
the ECG signal lies within the scale 21 to 25. Fig. 3.8 shows several simulated waves similar
to those in the ECG, together with the first five scales of their DWT. As exemplified by (a),
monophasic waves produce a positive maximum-negative minimum pair along the scales,
with a zero crossing between them. Each sharp change in the signal is associated to a line of
maxima or minima across the scales. In wave (b), small Q and S wave peaks have zero cross-
ings associated in the WT, mainly at scales 21 and 22. P or T-like waves (c) have their major
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Figure 3.8:WTat the first five scales of ECG-like simulated waves, from [14].

component at scales 24 to 25, whereas artifacts like (d) produce isolated maximum or mini-
mum lines which can be easily discarded. If the signal is contaminated with high-frequency
noise (e), themost affected scales are 21 and 22, being higher scales essentially immune to this
sort of noise. Baseline wander (f) affects only at scales higher than 24.

Using the information of local maxima, minima and zero crossings at different scales, the
algorithm identifies the significant points in the following four steps: 1) detection of QRS
complexes; 2) detection and identification of the QRS individual waves (Q, R, S, R’), and
determination of the QRS complex boundaries; 3) T wave detection and delineation; and
4) P wave detection and delineation.

1. QRS Detection: QRS complexes are detected using an algorithm based on the mul-
tiscale approach. This algorithm searches across the scales for “maximum modulus
lines” exceeding some thresholds at scales from21 to 24. After rejecting all isolated and
redundant maximum lines, the zero crossing of theWT at scale 21 between a positive
maximum-negative minimum pair is marked as a QRS.

2. QRS Delineation (Onset, End and Individual Waves) : the algorithmdeparts from the
position given by the detector, which must be flanked by a pair of maximummoduli
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with opposite signs at scale 22, namely at npre and npost. The delineator looks before
npre and afternpost for significantmaxima of |W22x[n]| accounting for other adjacent
slopes within theQRS complex. To consider a localmaximummodulus as significant,
it must exceed the threshold. The zero crossings between these significant slopes at
scale21 are assigned towavepeaks, and labeleddependingon the sign and the sequence
of the maximum moduli. The onset (end) of the QRS is before (after) the first (last)
significant slope of the QRS, which is associated with a maximum of |W2kx[n]|. So,
firstly the samples of the first and last peaks associated with the QRS inW2kx[n], say
nfirst and nlast, are identified. Then, candidates to onset and end are determined by
applying two criteria: i) searching for the samplewhere |W22x[n]| is below a threshold
relative to the amplitude of themaximummodulus; ii) searching for a local minimum
of |W22x[n]| before nfirst or after nlast. Finally the QRS onset and end are selected
as the candidates that supply the nearest sample to the QRS.

3. T Wave Detection and Delineation: a search window for each beat is defined, relative
to the QRS position and depending on a recursively computed RR interval. Within
this window, we look for a local maxima of |W24x[n]|. If at least two of them exceed
the threshold ϵT , a T wave is considered to be present. In this case, the local maxima
ofWTwith amplitude greater than γT are considered as significant slopes of the wave,
and the zero crossings between them as thewave peaks. Depending of the number and
polarity of the foundmaxima, we assign one out of six possible T wavemorphologies:
positive (+), negative (-), biphasic (+/- or -/+), only upwards, and only downwards.
If the T wave is not found in scale 24, the above process is repeated over |W25x[n]|.
Attending to the loss of time resolution in the growing scales, the peak(s) of the T
wave correspond to the zero crossing(s) at scale 23, if they exist, or at the scale 2k in
which T wave was found. To identify the wave limits, the same criteria as for QRS
onset and end is used.

4. P Wave Detection and Delineation: The P wave algorithm is similar to the T wave
algorithm, using an appropriate RR-dependent search window and adequate thresh-
olds. For Pwave only four differentmorphologies are admitted: positive (+), negative
(-), and biphasic (+/-, -/+).

As a last thing, I want to show Table 3.4 that summarizes the performances of four WT-
based algorithms. The algorithms have been tested on the QT database.

3.7 Other approaches

In addition to the already described approaches, in the literature it is possible to find other
algorithms for the ECG delineation. Among them, I want to remember those based on
the Low Pass Differentiation (LPD) [9], on the Hidden Markov Model (HMM) [8] and
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Table 3.4: Delineation performance of theWT-based algorithms.

Method Parameters Pon Ppeak Poff QRSon Rpeak QRSoff Tpeak Toff

Martínez et al. [14] Se(%) 98.87 98.87 98.75 99.97 99.92 99.97 99.77 99.77

P+
min(%) 91.03 91.03 91.03 - - - 97.79 97.79

m ± s(ms) 2.0 ± 14.8 3.6 ± 13.2 1.9 ± 12.8 4.6 ± 7.7 - 0.8 ± 8.7 0.2 ± 13.9 −1.6 ± 18.1

Cesari et al. [15] Se(%) - - - 100.00 - 100.00 99.50 98.73

P+(%) - - - - - - - -
m ± s(ms) - - - 2.8 ± 7.7 - 2.7 ± 9.7 −2.6 ± 12.2 −2.7 ± 20.7

Di Marco et al. [16] Se(%) 98.15 98.15 98.15 100.00 - 100.00 99.72 99.77

P+
min(%) 91.00 91.00 91.00 - - - 97.76 97.76

m ± s(ms) −4.5 ± 13.4 −4.7 ± 9.7 −2.5 ± 13.0 −5.1 ± 7.2 - 0.9 ± 8.7 −0.3 ± 12.8 1.3 ± 18.6

Rincón et al. [17] Se(%) 99.87 99.87 99.91 99.97 - 99.97 99.97 99.97

P+
min(%) 91.98 92.46 91.70 98.61 - 98.72 98.91 98.50

m ± s(ms) 48.6 ± 11.2 10.1 ± 8.9 0.9 ± 10.1 3.4 ± 7.0 - 3.5 ± 8.3 3.7 ± 13.0 −2.4 ± 16.9

2σcse Tolerance 10.2 - 12.7 6.5 - 11.6 - 30.6

on a combination of HMM and Wavelet transform [7]. In particular, the HMM-based ap-
proaches provide classification of the typology of the beats, too.

29



30



4
Processing Pipeline

4.1 Introduction

The processing pipeline of my proposed work is constituted by three stages: 1) Pre-
Processing 2) Learning Framework (Deep Learning Network) and 3) Post-Processing. The
processing pipeline can be visualized in Fig. 4.1. Note that the steps with an asterisk are
applied only to the records of the QT database.

The Pre-Processing phase consists of all those elaboration steps that are applied to the
ECG signals of the databases and that at last bring about the final dataset, whose elements

Fix of 
annotations

Input record *
Pattern 

identification

*
Best lead 
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wander 
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Figure 4.1: Processing pipeline of my proposedwork. The steps with an asterisk are employed on the qtdb only.
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Table 4.1: Distribution of the 105 records in theQT database.

MIT-BIH MIT-BIH MIT-BIH MIT-BIH ESC MIT-BIH Sudden
Arrhyt. ST DB Sup. Vent. Long Term STT NSRDB Death

15 6 13 4 33 10 24

will be the input to the Deep Learning network. The elaborations have been applied to
the QT database [37], the MIT-BIH Supraventricular Arrhythmia (abbreviated in SVDB)
database [18] and MIT-BIH Arrhythmia (abbreviated in MITDB) database [38]. The QT
database has required more steps since it provides annotations for all the waves (onset, peak
and offset). Besides, quite a lot of records in the QT database have required direct tweaks of
the annotations.
Afterwards, the description of theDeep Learning framework used for the training phase will
be characterized.
Eventually, during the post-processing stage, from the output of the DL framework, the
locations of the peaks will be individuated.

4.2 Pre-Processing Stage

The pre-processing phase is the most elaborated one and is made up of four building blocks,
plus three more blocks applied only to the QT database. Before delving into the details of
these steps, a description of the three databases is provided.

TheQT database (QTDB) [37] includes ECGswhichwere chosen to represent awide vari-
ety ofQRSandST-Tmorphologies, in order to challengeQTdetection algorithmswith real-
world variability. The records were chosen primarily from among existing ECG databases,
including the MIT-BIH Arrhythmia Database, the European Society of Cardiology ST-T
Database, and several other ECG databases collected at Boston’s Beth Israel Deaconess Med-
ical Center. Table 4.1 shows the sources of the data.
The QT database contains a total of 105 fifteen-minute excerpts of two channel ECGs, se-
lected to avoid significant baseline wander or other artifacts. Within each record, between
30 and 100 representative beats were manually annotated by cardiologists, who identified
the beginning, peak and end of the P-wave, the beginning and end of the QRS-complex,
the peak and end of the T-wave, and (if present) the peak and end of the U-wave. In order
to permit the study of beat-to-beat variations such as alternans, 30 consecutive beats of the
dominant morphology were annotated in each case if possible.
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All records were sampled at 250Hz. Each record includes a signal file (with extension .dat),
a header file describing the format of the signal file (extension .hea) and several annotation
files (among them, the .art contains the original annotations from the source database, .man
contains the annotations of the R peak made automatically, .q1c and .q2c contain the anno-
tations added by two experts (1 and 2, respectively) of the waveform boundaries, as well as
the peaks of P, T and U waves).
The regular annotation symbols are: ‘(’, ‘)’, ‘t’, ‘p’ and ‘u’. Note that an opening round
bracket can point out the onset of any of the four waves in an ECG signal. This feature is
important for the second step of the pre-processing.

The MIT-BIH Arrhyhmia database (MITDB) [38] contains 48 half-hour exceprts of
two-channel ambulatory ECG recordings, obtained from 47 subjects studied by the BIH
Arrhythmia Laboratory between 1975 and 1979. Twenty-three recordings were chosen at
random from a set of 4000 24-hour ambulatory ECG recordings collected from amixed pop-
ulation of inpatients (about 60%) and outpatients (about 40%) at Boston’s Beth Israel Hos-
pital; the remaining 25 recordings were selected from the same set to include less common
but clinically significant arrhythmias that would not be well-represented in a small random
sample.
The recordings were digitized at 360 samples per second per channel with 11-bit resolution
over a 10 mv range. Two or more cardiologists independently annotated each record; dis-
agreements were solved to obtain the computer-readable reference annotations for each beat
(approximately 110000 annotations in all) included with the database.

TheMIT-BIH SupraventricularArrhythmiadatabase (SVDB) [18] includes78half-hour
ECG recordings chosen to supplement the examples of supraventricular arrhythmias in the
MITDB database. The sampling frequency of the database is 128Hz.

Since some records of the QTDB have been selected among the ones in the MITDB (15
records) and the ones in the SVDB (13 records), these 29 records have been discarded in or-
der not to have duplicates. In addition to this, three records fromQTDB (“sel233”, “sel44”
and “sele0104”) have been discarded because they present issues for the developed algo-
rithm. Therefore, if we count all the records from the three databases, the total size of the
overall starting database is equal to 201.

Obviously, in order for all records to have the same sampling frequency, the records from
MITDBandSVDBhavebeen resampled to the250Hzfrequency (i.e., theoneof theQTDB).

As a last remark, the term record consists of a signal, an header file and one or more anno-
tations files. From now on, however, I will use the terms record and (physical) signal inter-
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changeably for indicating the same object.

4.2.1 Fix of Annotations & Pattern Identification

These two steps are applied only to theQTdatabase. In [37] it is possible to see thewaveform
pattern of each record; namely, the events that have been annotated. There are 9 different
patterns, such as: (p)(N)(t) and (p)(N)t)u). The non-uniformity of the records’ pattern com-
plicates the algorithm and it is necessary to get the pattern of each record with a dedicated
function. Even worse, several records don’t comply with the established pattern, thereby
bringing about the algorithm to fail. In order tomend these glitches, all the inappropriate an-
notations have been manually discarded. Note that this issue does not exist for the MITDB
and SVDB since only the R-peak is annotated, so the only possible problem is the wrong
position of a peak and obviously this cannot be fixed (this was in charge of the cardiologists).

4.2.2 Best Lead Selection

Each record has two channels or leads. As the algorithm proposed in this dissertation works
on a single channel, it is imperative to choose the best channel; namely, the one providing
the highest Signal to Noise Ratio (SNR). In order to accomplish this, for each R-peak of the
record, its SNR is computed. The power of the peak is calculated as the sum of the squares
of the amplitudes of the samples inside a window of length 12 centered in the position of
the R-peak. Remember that each sample corresponds to 4ms. As for the power of the noise,
the same window is shifted at the left of the R peak for a certain number of samples. In
fact, between the P wave and the Q location, there is the P-R segment that usually is an
horizontal line without electrical activity. Hence, this segment is constituted only by “noise”.
The windowwith the lowest value is selected as the noise power. Given this, themean of the
SNRs for the two channel is computed. Finally, the channel with the highest average SNR
is kept.

4.2.3 Sub-Records Extraction

This step affects only the QTDB. In fact, there is still another issue with this database. For
several records, the annotations of the beats are not consecutive. This means that, for in-
stance, a certain number of beats are annotated, then there is an interruption, and, after a
certain number of beats, other beats are annotated. Thus, it is crucial to extract these series
of consecutive beats from the annotation file and from the record, and discard the “holes”.
If not, when these signals will be inputted to the learning framework, these peaks will be
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detected, providing false positives. In order to do this, I have to check the R-R distance be-
tween consecutive annotated labels: if this distance is greater than a fixed one (kR in the
python function), then the two R peaks are not consecutive; otherwise, they are adjacent.
The value of kR depends on the specific record. I set it by default equal to 350 samples (1.4
s). Nevertheless, for some records, kR has been adjusted ad hoc.
Eventually, among the extracted sub-records, only the ones with a length greater than 750

samples are stored, so that on average at least three R peaks are present. Thus, it is possible
that, from one specific record, some sub-records are extracted. During the learning phase, it
is important to keep all the sub-records belonging to the same record/patient into the test or
train set.

4.2.4 BaselineWander Removal & Scaling&Random Crop (Optional)

ECG records acquired on an ambulatory way or in stress tests are heavily contaminated with
noise. One of themain sources of noise in these acquisition conditions is the baselinewander
(BLW). It is a low-frequency noise (0.05 − 3 Hz in stress tests). BLW is mainly due to
movement during breathing, patientmovements, poor contact between electrode cables and
ECG recording equipment, inadequate skin preparation where the electrode is placed and
dirty electrodes. In order to remove the baseline, theNeurokit, a Python module, has been
used [41]. In particular, the ecg_preprocess function implements a FIR band-pass filter, with
order 0.3 and cutoff frequencies [3, 45]Hz. Plus, a scaling operation is performed.

The last stepof thepre-processingphase is anoptional randomcrop. The randomcropop-
eration consists in extracting randomly aportionof the signalwith adesired length (crop_span).
In this way, I can create a dataset of recordswith the same size or onewhose records have their
original size. Indeed, during the training phase, I created a dataset with a crop_span equal
to 750 samples; whereas, for the testing phase, I considered the full-length records.

4.3 Learning Framework

Hitherto the pre-processing steps have been proposed. The resulting signals will be input
to a Convolutional Neural Network (CNN for brevity), which is in the charge of the learn-
ing/training and testing phase. Two different CNNs for the individuation of the R peaks
and the P-T peaks have been devised, respectively. They have been implemented in Pytorch
and they will be investigated and showed in the next sections.

35



Figure 4.2: Structure of the CNN4 for the R-peaks' delineation.

Table 4.2: Parameters' tuning for each layer of the CNN4.

Layer # Kernel Size in_channels out_channels Stride Dilation Input Size Output Size Receptive Field

1 7 1 8 1 1 L L 7
2 7 8 16 1 1 L L 13
3 7 16 32 1 1 L L 19
4 7 32 1 1 1 L L 25

4.3.1 CNN for the R-peak Identification

For the locationof theRpeaks, a4-layersCNNhasbeen implemented (henceforwarddubbed
CNN4). It is depicted in Fig. 4.2. The details of each stacked layer can be consulted in Ta-
ble 4.2 (note that all the parameters are expressed in samples, and one sample corresponds
to 4ms).

The pre-processed signal, xin, which is input to the network, has dimensions equal to
1xL. Throughout the whole network, the dimensions of the input and output signals are
the same (i.e., Li

in = Lj
out = L, ∀ i, j ∈ {1, 2, 3, 4}, where i, j represents the i-th and j-th

layer, respectively). This is accomplished by zero-padding both sides of the input signal with
pad zeros, where pad can be computed with the following formula:

pad =

⌊
(Lout − 1)stride− Lin + 1 + dilation(kernel − 1)

2

⌋
. (4.1)

The number of channels increases layer by layer, till at the output of the network it be-
comes again equal to 1. Except for the last layer, after each convolution operation, a ReLu
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Figure 4.3: Structure of the CNN6 for the P/T-peaks' delineation.

activation function is applied. Dropout has not been included since it did not bring about
any upturn (L2 regularization penalty is already included in the Adam optimizer). For the
R peak, the dilation factors have been all set to 1 (i.e., a standard convolution operation).
Indeed, since the R peak is very prominent with respect to the P-T peaks, there is no use
expanding the receptive field. The simulations have confirmed this argument. As for the
choice of the kernel size, the best tradeoff between complexity and performance was given
by 7. Furthermore, I have added batch normalization and residuals; however, they have not
brought any betterment, hence I dropped them.
The output of CNN4, xout, is a signal that should show a spike in the proximity of each R
peak.
One final fundamental remark: the length of the input signal L can be of any size. This
decision makes all the system dynamic and free of length’s constraints (in contrast with the
typical decision of giving in input to a CNN signals/images with fixed dimensions). In par-
ticular, for the training phase, L has been set to 750 samples, thereby involving a random
crop of the regarded signal; whereas, for the testing phase, each signal has been considered
with its original length.

4.3.2 CNN for the PT-peaks Identification

For both P and T peaks, a 6-layers CNNhas been designed (dubbed CNN6). Its structure is
schematized in Fig. 4.3, whereas the specifics of each layer can be consulted in Table 4.3.
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Table 4.3: Parameters' tuning for each layer of the CNN6.

Layer # Kernel Size in_channels out_channels Stride Dilation Input Size Output Size Receptive Field

1 7 1 8 1 1 L L 7
2 7 8 16 1 1 L L 13
3 7 16 32 1 2 L L 25
4 7 32 64 1 4 L L 49
5 7 64 128 1 8 L L 97
6 7 128 1 1 16 L L 193

The network is made up of 6 layers. It is deeper than CNN4 because the identification of
the P and T peaks’ position is by far more challenging than the R ones. This is due to the
fact that the P andT peaks have a lower intensity and, consequently, now the presence of the
noise becomes an important hassle, which leads to a deterioration of the global performances.
For this reason, two additional layers have been added and the receptive field has been step-
by-step extended bymeans of dilation convolutions (also known as atrous convolutions). In
fact, systematic dilation supports exponential expansion of the receptive field without loss
of resolution or coverage.
Apart from these two modifications, the reasonings made for the CNN4 still apply.

4.4 Post-Processing Stage

Thepost-processing step consists in identifying the peaks, given the output signal. The shape
of the output signal is similar to the input one, with the difference that the desired peaks’ in-
tensity approaches zero, whereas the other peaks have a negative magnitude which is quite
bigger. This behaviour can be better understood in Fig. 4.4, which refers to the P peak, but
obviously it holds for the R and T peaks, too. In order to emphasize the desired peaks, and
since whose absolute value is smaller than the undesirable peaks, a sigmoid operation is ap-
plied to the output signal. By doing this, the resulting signal will have a relevant spike only
in the exact location (bottom signal in the figure). From now on, xout will refer to the signal
after the sigmoid operation. The effectiveness of the sigmoid can be seen in Fig. 4.5, where
its shape is shown. Mathematically, the sigmoid function is defined as:
S(x) = 1

1+e−x = ex

ex+1
.

At this point, a peak detector is needed. I have chosen the one offered by the signal pro-
cessing packet of the Scipy library: find_peaks. The parameters of this method are the same
for the P, R andT peaks detection, but one: the prominence. The prominence of a peakmea-
sures howmuch a peak stands out from the surrounding baseline of the signal and is defined
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Figure 4.4: From top to bottom: input signal to the CNN; output signal; resulting signal after performing sigmoid

function.

Figure 4.5: Shape of the sigmoid function.
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as the vertical distance between the peak and its lowest contour line. This parameter has been
computed as the k-th percentile of xout: prominence = percentile(xout, k). The values
of k for the P, R and T peaks are 97, 92 and 90, respectively. The gauging of the parameter
k was merely deterministic.
Then, since some small peaks can be present and they do not represent a correct peak, only
the ones with a magnitude above a certain threshold are kept, the others are wiped out. The
criterion for keeping or rejecting a peak follows. Let p and pmax be the magnitude of a peak
and the magnitude of the peak with the highest magnitude, respectively; then, a peak is kept
if p > ϵ · pmax , where ϵ is equal to 0.3 for the P and T peaks, otherwise it is equal to 0.15
for the R peak.

At this point, a list with the positions of the candidates for being correct peaks is available.
The last thing to do is to compare the candidateswith the real peaks given by the annotations.
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5
Simulations and Performance Analysis

5.1 Introduction

In this final chapter, the results obtainedwithmy algorithmwill be exhibited and com-
pared with those of other algorithms. It will be shown how the addition of white gaussian
noise to the ECG signal will affect the performances. Plus, it will be shown the accuracy of
the algorithms by changing the length of the tolerance window.

5.2 Algorithms for the Comparison

It has been quite difficult to find out online some consistent and well-documented algo-
rithms for the comparison purpose. A brief description of them, along with the correspond-
ing references, follows.

• XQRS algorithm. It is aQRS detector algorithm provided by the PythonWFDBpack-
age, thus it does not perform P-T peaks detection. [42]. It belongs to the class of the
thresholding “algorithms”. First of all, it loads the signal and configuration param-
eters. It performs a bandpass filtering and a moving wave integration (mwi) with a
ricker wavelet. If specified, a learning is conducted in order to initiliaze running pa-
rameters of noise andQRS amplitudes, the QRS detection threshold, and recent RR
intervals. Then, the algorithm iterates through the local maxima of the mwi signal.
For each local maxima: 1) It checks whether it is a QRS complex. To be classified as a
QRS, itmust come after the refractory period, cross theQRSdetection threshold, and

41



not be classified as a T-wave if it comes close enough to the previous QRS. If success-
fully classified, it updates the running detection threshold and heart rate parameters.
2) If not a QRS, the algorithm classifies it as a noise peak and updates the running
parameters. 3) Before continuing to the next local maxima, if no QRS was detected
within 1.66 times the recent RR interval, it performs backsearch QRS detection: it
checks the previous peaks using a lower QRS detection threshold.

• Wavelet-based algorithm and Pan-Tomkins algorithm. I have already discussed them in
Chapter 3. The ECGKit is a toolbox that collectsMatlab tools for reading, processing
and presenting ECG signals [43]. Among the diversified applications, it implements
R-detection using a Wavelet approach based on [14] and an approach based on the
famous Pan-Tomkins algorithm [4]. The Wavelet algorithm performs P and T delin-
eation, too.

• Three algorithms provided by the NeuroKitmodule [41]. It provides different meth-
ods of segmentation, among them I have chosen the three ones with acceptable per-
formances and references. The first algorithm is documented in [44]. This algorithm
is based on [4] and [45]. The second algorithm is based on [46] and [47]: the for-
mer presents the main threshold-based algorithm, whereas the latter introduces some
features to increase the performances. The third and last algorithm is presented in
[48]. It is based on the comparison between absolute values of summed differentiated
electrocardiograms of one of more ECG leads and adaptive threshold. The threshold
combines three parameters: an adaptive slew-rate value, a second value which rises
when high-frequency noise occurs, and a third one intended to avoid missing of low
amplitudes beats. All the three algorithms provide P, R and T segmentation.

In order of presentation, hereafter the algorithmswill be dubbed as: XQRS,Wavelet, Pan-
Tom, Hamilton, Engzee and Christov. My own algorithm will be dubbed CNN4 for the R
peak and CNN6 for the P-T peaks.

5.3 Metrics for the Comparison

The performances of the algorithms are compared by means of appropriate metrics. Each al-
gorithmoutputs a vector that contains thepositionof the estimatedpeaks (estimated_events).
This vector is comparedwith theone containing thepositions of thepeaksmanually-annotated
by the cardiologists (true_events). In particular, I have calculated:

• Precision/Predictivity (P+)= TP/(TP + FP)

• Recall/Sensitivity (Se) = TP/(TP+ FN)
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• Detection Error (Fd) = (FN + FP)/ TB

• F1 score (F1) = 2/(1/P+ + 1/Se)

where TP denotes a true positive (when an automatic annotation matches a manual an-
notation), FP represents a false positive (when for an automatic annotation there is not a
correspondent manual annotation), FN stands for false negative (when for a manual anno-
tation there is not a correspondent automatic annotation), TB denotes the true beats. For
each TP, I have calculated the time difference (i.e., error) between automatic and manual
annotations. In order to compare the error distribution of the different algorithms, I have
computed itsmean,median, standard deviation (std) and interquartile range (IQR, it is the
difference between the 75-th and 25-th percentile of the data). Thesemetrics have been com-
puted on the absolute value of the errors since outliers with opposite signs can be averaged
out. Whereas, for the computation of the boxplots (see next sections), I have considered the
errors with their sign.
A final remark for a TP. An estimated peak is considered as a TP if the absolute value of its
error is below a specific threshold, which has been set to 12 samples (96ms). Thismeans that
the length of the tolerance window (win_len) is 22 samples.

5.4 Tuning of theHyperparameters for the Training of CNN4&CNN6

In this section, the choice of the tuning of the hyperparameters for CNN4 and CNN6 will
be exposed. If no network is mentioned during the description of a specific hyperparameter,
then that choice applies to both networks. First of all, in order to derive a more accurate
and truthfulness estimate of themodel performance, I have used a 5-fold cross validation. In
this way, the total dataset is split into 5 folds and, in turn, each fold will be used as test set.
The number of epochs that has led to the best results of the training phase for CNN4 and
CNN6 is 75 and 60, respectively. The choice of the batch size has been 16 for CNN4 and 8
for CNN6. This choice is due to the fact that the number of total signals for the R peak is
231; whereas, for the P and T peaks, the number of signals is 142 and 155, respectively. As
for the optimizer, I have opted for the Adam algorithm. The learning rate is equal to 0.001.
So as to prevent overfitting, the L2 penalty of the optimizer has been set to 0.0001. This
is the only regularization technique I have used (dropout for the networks have brought
no improvement). It worths noticing that I have also tried to implement a learning rate
scheduler in order to adjust the learning rate based on the number of epochs. Nevertheless,
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neither does it led to better results. As a last thing, a binary cross-entropy loss function has
been utilized. Plus, the weights for the positive examples have been set to 10.

5.5 Simulations’ Results

The simulations have been run in two different scenarios. A noiseless scenario and a nosy
one. In fact, the former consists in the original signalswithout the addition ofAWG(additive
white gaussian) noise; the former comprises the signals with the addition of AWGnoise with
ascending power. The noise has been created from Gaussian distributions with 0mean and
standard deviation equal to: 0.01, 0.03, 0.07, 0.1. Note that this is a noise created bymyself
to see how the algorithms react to amore andmore noisy “environment”. The physical noise
due to the movements of the patient and the baseline wander is still present in both cases.

The results obtained for the R peak and for the P-T peaks will be recapitulated in a table
for inspecting in details all themetrics. Furthermore, bymeans of boxplots, the statistical de-
scription of the time errorwill be displayed. Then, the plots of the F1 score in function of the
window’s length will be shown. Finally, having selected a specific win_len, I will investigate
the trend of the algorithms as the noise power increases.

5.5.1 Noiseless Scenario

In Table 5.1, the metrics for the R peak are summarized. We can observe that the XQRS
algorithm is the best one, both in terms of precision and recall. My own algorithm is slightly
behind. The PanTom algorithm performs quite well with respect to precision, yet it is more
prone to committing FNs. The Wavelet alg performs well for both metrics. The remaining
three algs have poorer performances than the others, and they behave in a very similar fashion
(this trend is maintained for all the following simulations).

With regard to the statistics of the time error, my own alg performs by a hair better than all
the others in terms ofmedian andmean; howbeit, it showsworse results for the std and IQR
than the XQRS, PanTom and Wavelet algs. Still, it behaves better than Hamilton, Engzee
and Christov. Remember that the metrics in the table have been computed for the absolute
value of the time errors. It is possible to visualize the statistical description of the time er-
ror by means of a boxplot, such as in Fig. 5.1. The boxes represent the inter-quartile range
(IQR), the green lines show themedian values, and the whiskers depict the 5th and the 95th
percentile (the outliers are not showed). From the boxplot we can infer that CNN4, XQRS,
Wavelet and PanTom have a very similar IQR. The median value for Hamilton (Engzee and
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Table 5.1: Performance results for the R-peak segmentation, noiseless scenario, win_len = 22.

R peak detector CNN4 XQRS PanTom Wavelet Hamilton Christov Engzee

TB 296158 296158 296158 296158 296128 296128 296128
TP 279406 281215 241648 287386 246366 233545 243176
FP 18218 13589 12953 24495 47022 43712 48452
FN 16752 14943 61070 15332 49762 62583 52952
Fd 12.01 9.63 24.99 13.45 32.53 35.75 34.27
P+ (%) 93.77 95.39 94.91 92.15 84.06 84.29 83.39
Se (%) 94.25 94.95 79.83 94.94 83.27 78.97 82.11
Mean err (samples) 3.18 3.41 3.59 3.35 5.21 5.36 5.30
Median err (samples) 2.09 3.23 3.47 3.25 3.67 3.69 3.68
Std err (samples) 3.01 1.39 1.48 1.27 4.42 4.72 4.56
IQR err (samples) 3.46 1.34 1.54 1.32 6.89 6.46 6.58

Christov’s performances are very similar to the Hamilton’s, hence they are not reported) is
very close to 0, but it is clear that, due to the high IQR and 5-95th percentile, several large
time errors average out. My own algorithm shows a slightly bigger 5-95 percentile rather
than XQRS, Wavelet and PanTom.

Another interesting analysis is to see how the change of the win_len bears on the per-
formance of the algorithms. For this purpose, the F1 score is computed since it takes into
account both precision and recall. Consider Fig. 5.2. Theoretically, we expect that, as the
win_len increases, the F1 score should increase as well and tend to 1 (i.e., 100 %). This be-
haviour is respected in practice. The slight downside of CNN4 with respect to XQRS is
completely nullified when the win_len is pushed to very high values. Also the Hamilton alg
benefits from a larger and larger window. The PanTom alg is the only one that does not
increase too much its performance. However, except for PanTom, all the algs show a com-
parable trend and values. The vertical grey dashed line corresponds to the reference window
length.

Now we move on to the P peak. It has been quite difficult to find out online some good
P-T peaks detectors. In fact, now the total algorithms are 5. In Table 5.2, it is possible to see
the results. First of all, we can see that the number of total beats is by far smaller than the
R peak ones. CNN6 outstrips all the other algs. The recall and sensitivity are a little worse
than the ones obtained for the R peak (in particular the recall), yet this is normal because the
detection of the P peak is more challenging. TheWavelet alg shows quite good results, even
though the recall is critical (77.39). Hamilton, Christov and Engzee perform good in terms
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Figure 5.1: Statistical description of the time error for R peak, noiseless scenario.

Figure 5.2: F1 score vs win_len, R peak, noiseless scenario.
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Table 5.2: Performance results for the P-peak segmentation, noiseless scenario, win_len = 22.

P peak detector CNN6 Wavelet Hamilton Christov Engzee

TB 2711 2741 2711 2707 2711
TP 2418 2098 1805 1809 1814
FP 141 323 225 222 234
FN 243 612 815 801 806
Fd 14.25 31.15 38.36 37.79 38.36
P+ (%) 92.97 86.66 88.92 89.07 88.57
Se (%) 89.39 77.39 68.89 69.31 69.24
Mean err (samples) 3.75 3.92 3.86 3.71 3.92
Median err (samples) 2.27 3.15 3.63 3.38 3.61
Std err (samples) 4.00 2.91 1.65 1.84 1.78
IQR err (samples) 2.57 2.79 1.90 2.10 2.11

of precision, while the recall is problematic (it falls below 70). It is clear that the recall is the
most challenging metrics and it entails that the algorithms are prone to missing the peaks.
With regards to the error statistics, all the algorithms behave in a similar way. The std of the
error is a bit worse for CNN6 andWavelet.

From the boxplot of Fig. 5.3 we can see that the statistics of the error among the algs are
quite similar. Note the median of the CNN6 approaching zero and the considerably high
upper whisker of Wavelet (i.e., it tends to posticipate the position of the peaks).

Eventually, in Fig. 5.4, it is showed the trend of the F1 score vs the win_len. It is evident
how the increment of the F1 score fromwin_len = 22 to 60 is small, thereby denoting a good
accuracy for all the algs in locating the P peaks.

It is important to note one thing. Since for the P and T peaks the number of total beats
is scant if compared with that of the R peak, the existence of problematic signals can heavily
affect the performances. Indeed, for the P peaks, I have noticed two signals with a strange
pattern of the P peaks. Consequently, my alg is not able to identify the P peaks, causing a
raise of the FNs (actually, the recall value is worse than the precision’s). In Fig. 5.5, these two
signals are showed. They both display a very imperceptible P peak. It is clear that my CNN
has issues in identifying it and around 60 out of the 243 FNs are due to these signals, thus
more than the 20 %. These strange patterns can be caused by the presence of a highly noisy
environment. Therefore some signals with pathological patterns bring about a slump in the
overall performance.

We conclude with the analysis of the T peak. From Table. 5.3 we can see that it is the
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Figure 5.3: Statistical description of the time error for P peak, noiseless scenario.

Figure 5.4: F1 score vs win_len, P peak, noiseless scenario.
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Figure 5.5: Signals with imperceptible P peaks. At the top, signal sele0116_0 is depicted. At the bottom, signal sel40_0.

most challenging one. CNN6 loses about 10 % with respect to the P peak. The Wavelet alg
loses around 3/4% to the P delineation, yet it is still belowmy algorithm in terms of F1 score
(81.38 vs 77.71). The remaining algs struggle a lot (F1 score abates under 50%). The trouble
of the P identification lies in the difficulty of locating exactly its position. From Table 5.6 it
is evident how the mean andmedian of the error is rather high. In fact, the position of the T
peak is not univocal because it does not have a simplemorphology like the P peak. In Fig. 5.7
we can see some examples. At the top it is possible to visualize two very clear and quite highT
peaks. Instead, in the middle and at the bottom, the peaks are very low and can be confused
with other adjacent spikes. Remember that some signals sometimes exhibit also the U peak,
and it could be confused with the T peak. Consequently, since the exact location of the T
peak is hard to find out, the algorithm is more prone to giving in output a position which is
outside the tolerance window length of 12 samples.

So, since there is this variability in the morphology of the T peak, we should expect that,
as the win_len is dilated more and more, the F1 score should increase as well. The trend is
sketched in Fig. 5.8. In contrast to the P peak, now the increase of the F1 score is very signifi-
cant. All the algorithms increase their performance ofmore than 10 points; in particular, my
algorithm goes from around 80% to more than 96%.
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Table 5.3: Performance results for the T-peak segmentation, noiseless scenario, win_len = 22.

T peak detector CNN6 Wavelet Hamilton Christov Engzee

TB 2921 2951 2921 2917 2921
TP 2358 2133 1232 1221 1233
FP 518 436 917 880 908
FN 563 788 1579 1586 1578
Fd 37.01 41.48 85.45 84.54 85.11
P+ (%) 82.04 83.03 57.33 58.12 57.59
Se (%) 80.73 73.02 43.83 43.50 43.86
Mean err (samples) 5.74 5.45 6.95 6.88 7.1
Median err (samples) 3.14 5.26 6.82 6.79 6.98
Std err (samples) 5.45 2.69 1.80 1.70 1.76
IQR err (samples) 6.04 3.25 2.20 2.08 2.13

Figure 5.6: Statistical description of the time error for T peak, noiseless scenario.
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Figure 5.7:Morphology of the T peak. At the top: regular andwell-visible T peaks. In themiddle and at the bottom:

two signals with hard-to-locate T peaks.

Figure 5.8: F1 score vs win_len, T peak, noiseless scenario.
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Figure 5.9: Impact of the noise in the input signal. From top to bottom: noiseless input signal; input signal with AWGN,

std = 0.03; input signal with AWGN, std = 0.1.

5.6 Noisy Scenario

Iwanted to test the robustness and resilience of the algorithms against the noise. I have added
to each signal an additive white gaussian noise (AWGN). I have tested the algorithms in four
different situations based on the standard deviation of the noise. The four increasing std
values I have considered are: 0.01, 0.03, 0.07 and 0.1. It is possible to understand how the
addition of a AWGNwith different standard deviations changes the input signal in Fig. 5.9.

Regarding my algorithm, I have implemented two different methods. The first one con-
sists in training a different network for each level of added noise and then test the network
on the signals with the same std (i.e., I train a network where all signals have a noise with std
= 0.01, another networkwhere all signals have a noise with std = 0.03, and the like). The sec-
ondmethod consists in training one single networkwhere the signals canbe noisy or not, and
then I test all the signalswith the same std, for each std. The stdof the addednoise ismodelled
like a discrete random variableX . The alphabet ofX isX = {0, 0.01, 0.03, 0.07, 0.1} and
its pdf is pX(0) = 0.35, pX(0.01) = 0.2, pX(0.03) = 0.2, pX(0.07) = 0.15, px(0.1) =

0.1. The std equal to 0means that no noise is summed up at all. I have created this pdf based
on the fact that in practice the signals have only the standard noise due to the baselinewander
etc, hence the signals without any additional noise are the most likely, whereas the probabil-
ity of a more andmore noisy signal is less and less probable. Thus, during the training phase,
for each signal in a batch, I generate a std value, using the afore-mentioned random variable,
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Figure 5.10: F1 score vs std of the noise, R peak.

for the addition of the noise signal.
The second method is the most realistic one since in practice the signals are affected by ran-
domnoises and not by noises with the same std. Plus, the secondmethod is computationally
better since I train only one network for all the cases rather than train each network for each
level of noise. The first method is dubbed CNN4/6, the second one CNN4/6-mix.

The results for the noisy scenario for the R, P and T peaks are depicted in Fig. 5.10, 5.11
and 5.12, respectively. For the R peak, the XQRS alg continues to be the best one. The
addition of the noise for all the std values does not make any difference. I can say that it is
the most robust alg against the noise. Alsomy own alg performs very well even when a noise
with std = 0.1 is added. The difference between CNN4 and CNN4-mix is indiscernible.
PanTom and Hamilton loses slightly more than 1 % in the worst scenario. The Wavelet alg
is the only one that suffers from the insertion of noise, already for std = 0.03. We have also
to consider that, as it is evident from Fig. 5.9, albeit the presence of high noise, the R peak is
quite perceivable. This is why almost all the algs keep on performing very well.

The reasoning does not hold for the P and T peaks. In fact, now, all the algorithms, some
more than others, have a clear drop in performances. This trend is more significant for the P
peak. The Wavelet alg still shows a very prominent fall. In regard to my algorithm, now the
CNN4-mix is behind CNN4 for 1-3 %. This is quite obvious since CNN4 is trained with
signals with the same std. I can surmise thatmy algorithm is very robust against noisy signals,
even as the noise’s std is high. Into the bargain, CNN4/6-mix, although trained with noisy
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Figure 5.11: F1 score vs std of the noise, P peak.

Figure 5.12: F1 score vs std of the noise, T peak.
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and noiseless signals, performs almost equal to the ones trained with a specific level of noise,
thereby showing its high adaptation to a very diversified scenario.

55



56



6
Conclusions and Future Work

In this thesis I have proposed a brand-newDeep Learning-based ECG delineator. I have not
found anything similar on the Net, thus I consider my work a novelty. In the field of ECG
processing, CNNs have been used mainly for classification tasks, yet, in my work, I have
showed that they can be used for the ECG delineation, too. I have implemented a thorough
processing pipeline, starting off with the pre-processing stage, passing through the core of
my thesis, the learning framework, and eventually finishing up with the post-processing leg.

The pre-processing stage is crucial for obtaining optimal results; still, it’s been the most
demanding and tedious part due to the issues related to the QT database.

One of the most interesting aspect of my thesis is that I have got very good results using
very efficient Convolutional Neural Networks. An efficient CNN entails a small computa-
tional load and memory footprint, thereby permitting my algorithm to work in real-time
scenarios. However, I have tried to add recent features to my CNNs, such as inverted resid-
ual and bottleneck, but they led no improvement. This is due to the fact that an ECG signal
is not complex like a 3D image could be, hence a relatively non-deep CNN is able to cap-
ture entirely its features. A key feature for pulling out the P and T delineation with good
results has been the use of atrous convolution, that has allowed the network to increase the
receptive field without increasing the total number of parameters. Plus, my CNNs has the
advantage of not depending on the input’s length, thus not having that constraint of the
standard CNNs.

Although the total number of signals was quite scant for a DL approach, the results ob-
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tained by my implementation are better than or very similar to the other state-of-the-art al-
gorithms I have tested. For the P and T peaks, my algorithm outstrips the others. Further-
more,my algorithmperforms verywell also in noisy scenarios, being the best algorithm. This
means that my algorithm is robust against the presence of severe noisy conditions.

6.1 FutureWork

As future work, it will be interesting to add at least the individuation of the onset and offset
of the QRS complex (i.e., Q and S peaks). Surely, this should be done in coordination with
somedeterministic approaches. Regarding the offset and onset of the P andTpeaks, I esteem
that is very difficult for theCNNs to learn their position, or at least they have to be supported
with some kind of derivative/wavelet-based technique.

Another future development could be that of enriching the post-processing step in order
to decrease even more the number of TPs. This stage does not rely on the CNNs, but it is a
parametric phase.

In conclusion, it would be very interesting to see if the addition of more examples for
the training phase would increase the global performances. This depends on whether new
databases will be made public.
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