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Abstract
Toit is a new objectoriented programming language for microcontrollers. The Toit virtual

machine enables multiple independent apps to run sidebyside through softwarebased

fault isolation. Toit is being developed as open source by the Danish company Toitware

ApS, which collaborates with DTU Compute in the EU project TRANSACT. Although there

are a plethora of programming solutions for IoT devices, they typically either involve low

level programming or their highlevel programming requires too many resources. The

objective of the thesis is to develop a communication solution for IoT devices using the

Toit language. The solution proposed in this thesis is a treebased network that allows

devices to exchange data over Bluetooth Low Energy data channels without involving

cloud connectivity.
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1 Introduction
The concept of the Internet of Things (IoT) was first predicted by Mark Weiser in 1991 [1]

where he describes what he calls Ubiquitous Computing: an elevated number of hetero

geneous devices, interconnected with each other in a wireless fashion, deeply integrated

in the fabric of everyday life and so small to be mostly invisible.

In 2007 [2] it was predicted that by 2024 everything will be connected to the web to the

extent that the environment in which we live will be fundamentally indistinguishable from

the web itself, and that “Every item, every artefact [...] will have some sliver of connectivity

that will be part of the web”.

Today the aforementioned concept is a consolidated reality and although there is no uni

versally accepted definition [3] , the IoT paradigm can be described as multitude of het

erogeneous smart objects (Things) capable of exchanging data with each other over a

network. Moreover, a Thing can be any physical object  or their virtual representation

 that is assigned an unique identifier and is able to collect, exchange and process data

over a Internetlike structure: in the broad spectrum of IoT application a Thing can be

a home surveillance camera, a smart LED lightbulb, smart speakers, smartphones and

smart wearable devices, but also RFID tags, a person wearing a heart monitor implant

and a farm animal with a biochip transponder [4, 5].

The interest in Internet of Things grew over the year due to its huge potential in industrial,

agricultural, healthcare and military application, and the numbers speak for themselves:

in 2021 there were more than 10 billions active IoT devices and the number is expected

to grow to more than 25 billions by 2030 [6]. If we also consider passive IoT connections

 such as RFID tags  then by the end of 2030 there will be over 50 billions IoT devices

installed around the world [7]. Although there has been a slow down in the production of

smart devices, caused by the COVID pandemic and the war in Ukraine  earlier forecast

from 2016 [8] were expecting 46 billions devices by 2021  it is clear that the Internet of

Things is here to stay.

IoT is already a consolidated paradigm in industrial applications  the so called Industry

4.0  where a huge number of smart connected devices are used to manage fleet of au

tonomous vehicle and to monitor the production line [9].
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In agriculture, a network of wireless sensors and satellites allows a farmer to monitor the

crops soil moisture and temperature and to make decision based on rainfall and wind di

rection reports from a network of weather station [10, 11].

A person can use their smartphone to start the washing machine, modify the temperature

of the air conditioning and warm the oven, on his way home from work [12].

Every timewewear a smartwatch, every timewe control our thermostat through our smart

phone and every time we ask Alexa to play a song, we are taking part in the Internet of

Things: it is already part of our everyday life. IoT will be deeply integrated in the cities

of the future  smart cities  which will employ a huge network of sensors to thoroughly

monitor and manage every aspect of the city life, such as smart transportation, home and

office automation, traffic, security and smart energy and water management[13].

The wide variety of applications and scenarios makes it impossible to find a onefitall so

lution when it comes to communication technologies, but rather multiple possible choices

depending on the requirements of the system. Other than that, the biggest challenge that

the academia and the industry are facing when it comes to IoT development is the lack of

standardization: the multitude of protocols employed by these devices, the platform they

run on and the lack of a universally accepted architecture is seriously slowing down the

technological advancement of IoT [14]. This greatly affect interoperability [15]  i.e., the

capacity for multiple components within an IoT deployment to effectively communicate,

share data and perform together to achieve a shared outcome  and poses a security

threat as well [16]. The absence of a standard approach to IoT often leads IoT develop

ers to employ their own proprietary solutions, further deepening the issue. In some cases,

major participants in the IoT scene might want to defer the standardization debate for as

long as possible in order to preserve some proprietary technology that controls the access

to the market.

On the other hand, there are some serious concerns whether the imposition of a universal

standard might be used by powerful actors in an attempt to seize a decisive technological

advantage at the expenses of their competitors [17].

The other great issue that IoT is facing is the incapability of traditional cloud models to

keep up with the evergrowing amount of data produced on site. The huge volume of data

produced tirelessly by the billions smart objects that make up the Internet of Things needs
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to be transferred to the cloud to be processed, however, the bandwidth availability and

latency are restrictive bottlenecks when it comes to timecritical scenarios or application

that crank out large quantities of data.

To address this issue, there is a tendency in providing the smart devices with more com

puting power, so that part of the data processing can be performed on the edge of the

network. The importance of this new model of computation, called Edge or Fog comput

ing, in the take over of the Internet of Things is discussed in section 2.1.

In most of the mentioned cases the smart objects  which are the building blocks of the

Internet of Things  are small microcontrollers programmed to implement some commu

nication protocol in order to connect with other devices. Developing and deploying the

code for these microcontroller is a crucial part in the building of an IoT systems.

Toitware ApS, a Danish company founded in 2018, developed the Toit platform, along with

a high level language with a syntax similar to Python’s, to ease the task of programming

microcontrollers in IoT contexts. The code runs on a virtual machine which allows for

overtheair updates and multiple programs running at the same time, independently [18].

The scope of this thesis is to explore the capabilities of a Toitpowered edge device in the

Internet of Things.

The thesis is structured as follows:

• In chapter chapter 2 will be given an overview of IoT systems and a survey of the

most popular communications protocol employed in IoT applications, their advan

tages, their practical issues and their typical use cases;

• In chapter chapter 3 will be given a detailed description of the Bluetooth Low Energy

(BLE) protocol;

• In chapter chapter 4 will be given a description of the Toit platform;

• In chapter chapter 5 will be described the implementation of a communication solu

tion using the BLE protocol in the Toit programming language;

• In chapter chapter 6 the proposed implementation will be evaluated.
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1 Introduzione
L’idea di Internet of Things (IoT) o Internet delle Cose è stata immaginata inizialmente

da Mark Weiser nel 1991[1] con il nome di Ubiquitous Computing (Computazione On

nipresente): un elevata quantità di dispositivi eterogenei, interconnessi tra di loro inmodal

ità wireless, profondamente integrati nel tessuto della vita di tutti i giorni e di dimensioni

così ridotte da essere praticamente invisibili.

Nel 2007 [2] è stato previsto che entro il 2024 l’ambiente che ci circonda sarà sostanzial

mente indistinguibile dal web stesso, e che ”ogni oggetto, ogni manufatto [...] sarà almeno

in parte connesso al web”.

Oggi i concetti appena riportati sono una realtà affermata e nonostante non ne esista una

definizione universalmente accettata [3], il paradigma IoT può essere descritto come una

moltitudine di smart object (Things, Cose) in grado di scambiare dati tra di loro tramite

una rete. In particolare, una Cosa può essere ogni oggetto reale  o la sua rappresen

tazione virtuale  a cui viene assegnato un identificatore univoco, in grado di raccogliere,

trasmettere ed elaborare dati tramite una rete come l’internet: nell’ampio spettro delle

applicazioni IoT, una Cosa può essere una videocamera di sorveglianza domestica, una

lampadina LED intelligente, altoparlanti smart, smartphone e dispositivi smart indossabili,

ma anche etichette RFID, una persona che indossa un impianto per il monitoraggio car

diaco o un animale da fattoria equipaggiato con un biochip transponder [4, 5].

L’interesse per l’Internet of Things è cresciuto negli anni grazie al suo enorme potenziale

in applicazioni industriali, agricole, sanitarie e militari, e i numeri parlano da sé: nel 2021

erano attivi più di 10 miliardi di dispositivi IoT, e si aspetta che entro il 2030 saranno più

di 25 miliardi [6]. Se si considerano anche le connessioni IoT passive  come le tag RFID

 allora entro la fine del 2030 ci saranno più di 50 miliardi di dispositivi IoT operativi nel

mondo [7]. Nonostante ci sia stato un rallentamento della produzione di dispositivi smart

causata dalla pandemia COVID e dalla guerra in Ucraina  nel 2016 le previsioni si as

pettavano 46 miliardi di dispositivi entro il 2021 [8]  è chiaro che l’Internet of Things è qui

per rimanere.

L’IoT è un paradigma già affermato nelle applicazioni industriali  la cosiddetta Industria

4.0  dove un grande numero di dispositivi smart connessi vengono usati per gestire flotte
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di veicoli autonomi e per monitorare la linea di produzione[9].

Nel settore agricolo, una rete di sensori wireless e satelliti permette all’agricoltore di mon

itorare l’umidità e la temperatura del terreno, e di prendere decisioni basate sui report

atmosferici provenienti da un network di stanzoni meteo [10, 11].

Un utente può usare il proprio smartphone per avviare la lavatrice, modificare la temper

atura del condizionatore e preriscaldare il forno, durante il tragitto di ritorno dal lavoro [12].

Ogni volta che indossiamo uno smartwatch, ogni volta che controlliamo il termostato della

nostra casa con il cellulare e ogni volta che chiediamo ad Alexa di riprodurre un brano,

stiamo prendendo parte all’Internet delle Cose: è già parte della nostra vita quotidiana.

L’IoT sarà profondamente integrato nelle città del futuro  smart cities  che impiegheranno

un ampio network di sensori per monitorare e gestire scrupolosamente ogni aspetto della

vita cittadina, come i trasporti pubblici smart, automazione domotica, traffico, sicurezza e

gestione smart dell’acqua e dell’energia[13].

La grande varietà di applicazioni e scenari rende impossibile una soluzione universale,

parlando di tecnologie di comunicazione: esistono invece diverse alternative possibili a

seconda dei requisiti di sistema. Oltre a questo, la grossa sfida che l’industria e la ricerca

stanno affrontando nel campo sello sviluppo IoT è la mancanza di standardizzazione:

la moltitudine di protocolli impiegati da questi dispositivi e la mancanza di un’architettura

standard universalmente riconosciuta costituiscono un serio rallentamento all’avanzamento

tecnologico dell’IoT [14]. Questo ha un impatto negativo sull’interoperabilità [15]  i.e., la

capacità di diversi componenti all’interno di un sistema IoT di comunicare, scambiare dati

e collaborare efficacemente al fine di perseguire un traguardo comune  e costituisce in

oltre un rischio per la sicurezza [16]. L’assenza di un approccio standard spinge molti

sviluppatori IoT a impiegare le loro soluzioni proprietarie, aggravando di conseguenza il

problema. In alcuni casi, grandi nomi del settore IoT hanno tutto l’interesse nel rallentare

e posticipare il dibattito sulla standardizzazione, con lo scopo di preservare alcune tec

nologie proprietarie che controllano l’accesso al mercato.

D’altro canto, ci sono serie preoccupazioni riguardo al fatto che l’imposizione di standard

universali possa essere sfruttata da attori potenti per impadronirsi di vantaggi tecnologici

decisivi alle spalle dei loro concorrenti [17].

L’altro grande problema che l’IoT si ritrova ad affrontare è l’incapacità dei modelli cloud
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tradizionali di stare al passo con la enorme quantità di dati, in costante crescita, che viene

prodotta sul posto. L’enorme volume di dati prodotto incessantemente dai miliardi di dis

positivi che formano l’Internet of Things necessita di essere trasferito sul cloud per venire

elaborato, tuttavia, la disponibilità di banda e la latenza sono stretti colli di bottiglia, spe

cialmente in applicazioni timesensitive o che sfornano grosse quantità di dati.

Per affrontare questo problema, c’è la tendenza a fornire sempre più potenza di cal

colo ai dispositivi smart, così che parte dell’elaborazione dati possa svolgersi in loco.

L’importanza di questo nuovo modello di elaborazione dati, chiamato Edge o Fog com

puting, nell’avvento dell’Internet delle Cose, è discussa insection 2.1.

Nella maggior parte dei casi menzionati, gli smart objects  che sono i mattoni costituenti

dell’Internet of Things  sono piccoli microcontrollori programmati per implementare qualche

protocollo di comunicazione, con lo scopo di connettersi ad altri dispositivi. Sviluppare il

codice per questi microcontrollori è una parte cruciale nella costruzione di un sistema IoT.

L’azienda Danese Toitware ApS, fondata nel 2018, ha sviluppato la piattaforma Toit,

assieme a un omonimo linguaggio di alto livello simile a Python, per facilitare il compito

di programmare microcontrollori in un contesto IoT. Il codice sviluppato viene eseguito su

una macchina virtuale che consente aggiornamenti overtheair e esecuzione simultanea

ed indipendente di diversi programmi [18].

Lo scopo di questa tesi è di sondare le capacità di dispositivi Toit come edge device nel

contesto dell’Internet of Things.

La tesi è strutturata in questo modo:

• Nel capitolo chapter 2 verrà data una panoramica dei sistemi IoT e un elenco dei

protocolli di comunicazione maggiormente impiegati in applicazioni IoT;

• Nel capitolo chapter 3 verrà data una descrizione dettagliata del protocollo Bluetooth

Low Energy (BLE);

• Nel capitolo chapter 4 verrà data una descrizione della piattaforma Toit;

• Nel capitolo chapter 5 verrà descritta l’implementazione di una soluzione di comu

nicazione basata sul protocollo BLE usando il linguaggio di programmazione Toit;

• Nel capitolo chapter 6 l’implementazione proposta verrà valutata.
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2 Literature Review

2.1 Cloud Computing and Edge Computing
Cloud computing is a paradigm characterized by the transfer of data to and from a client

over the internet. Cloud services such as Dropbox, Google Drive and iCloud are extremely

popular and most of us uses them on a daily basis, but it’s important to remark that cloud

computation is much more than just online data storage. Cloud computation involves data

synchronization between multiple distributed devices, data processing on server side and

data transfer from the server back to the client over the internet.

The focus of cloud computing, also called ondemand computing, is to exploit the max

imum potential of computing resources, distributed all over the globe, shared between

multiple clients and dynamically reallocated [19, Chapter 2].

Given the premises, cloud computing has worked  and works  well when it comes to non

timedriven data processing that require huge amount of computing power. However, the

enormous abundance of data produced tirelessly by the billions of smart things connected

to the network is incompatible with traditional cloud models. Not only the amount of band

width required to transfer all the data to the cloud is out of reach, but the latency  i.e., the

time between the data being produced by the device and its processing  makes cloud

computing unsuitable for timesensitive applications.

The unprecedented volume of data generated by the Internet of Things that needs to be

processed and analysed on the spot require for a new model of computation, where the

processing power is physically located in proximity of the data producers, that is, on the

Edge of the network [19, Chapter 2].

Edge computing, also called fog computing, is a new paradigm that involves the placement

of fog nodes  any device with processing, storage and network connectivity capabilities

 to extend the capabilities of the cloud allowing for the processing of timesensitive data

shortly after they are produced. The potential of edge computing in the contest of IoT is

well understood and estimates shows that in 2015 the amount of data analysed on the

edge is 40% [20]. This paradigm shift is inevitable and will likely become a standard in

IoT applications. The cloud alone cannot fulfill the necessities of the Internet of Things,

and the relevance of edge computing will grow to the point of surpass the cloud’s [21].
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2.2 IoT Architecture
Due to the lack of standardization mentioned in the Introduction, there is no universally

accepted architecture for IoT systems, but rather multiple possible layered representa

tions. One widely used when designing an IoT infrastructure is the fourstage architecture

(fig. 2.1) [22][23][24]:

Sensors and
actuators

Data
acquisition

and gateway
Edge IT Cloud or

DatacenterTh
e 

Ed
ge

Figure 2.1: Layout of the fourstage architecture.

(1) Sensors and Actuators: this is the stage of the Things. In this stage are present

devices capable of converting the information from the environment into data. Such

devices are, for example, temperature sensors, waterlevel detectors, pressure sen

sors, accelerometers and so on. We use the term sensor in a broad sense: every

thing is counted as a sensor as long as it provides data about its current state.

Actuators are devices capable of intervene on the environment in order to change

the physical conditions that generate the data. An actuator can regulate a water

valve, shut off the power supply or adjust the speed of a cooling fan.

In this stage there is usually no processing  although in a IoT architecture some

data processing may occur in each of the four stages  and the data is forwarded to

the next stage;

(2) Data Acquisition and Gateway: in this stage the raw information from the sensors

is collected, converted into digital data and preprocessed by the Data Acquisition

System (DAS). The Internet Gateway takes the digital data and forwards it to Stage

3 of Stage 4 systems via WiFi or wired LAN.

The Stage 2 systems often are physically located in proximity of the Stage 1 sys

tems: imagine an industrial machinery in a production line that mounts several sen
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sors and actuators (Stage 1) connected  for instance via Bluetooth  to the Electronic

Control Unit (Stage 2) of the machinery.

This stage is of vital importance because the several sensors in the previous stage

will produce a large volume of data in short times which exceed the available band

width if directly forwarded to the next stages. To carry on the previous example,

imagine a facility employing hundreds of industrial machinery, each of them with

dozens of sensors constantly producing data. This data will quickly overcome the

capacity of the infrastructure if directly forwarded to the next stage, therefore every

machine is equipped with a Stage 2 system that takes care of collecting, convert

ing and preprocessing the sensor’s data, significantly reducing its volume, before

submitting it to the next stage.

(3) Edge IT : this stage refers to processing systems that offer enhanced analytics, ma

chine learning and visualization technologies. This stage of data processing allows

to have quick access to meaningful information and scan for anomalies in the data.

In time critical scenarios this is particularly useful rather than just send the data to

the next Stage. Edge systems are often physically close to the previous stage: in

our example, the facility employs a highly integrated compute system which process

the data from all the machines in the production line and provides an easy to read

overview of the status of each machine to the human operators, while also display

ing production statistics and scanning for anomalies.

In some application, where the amount of data produced in the previous stages is

contained and there aren’t time critical requirements, there is no need for a Stage

3 system, and the data is directly forwarded to the Cloud  e.g., in a smart home

context.

In other cases it may be more convenient to have powerful smart devices, capa

ble of processing the data on their own before sending it to the cloud, therefore

incorporating Stage 2 and 3 in the same device;

(4) Cloud or Data Center : this is the last stage, where the data is stored for indepth

processing and analysis. This stage allows to extract insights, trends and patterns

from the gathered information, in order to make crucial business decisions. Cloud

based systems provide the processing power to perform thorough examination of

the data sent by several facilities. At this stage, the data is accessible for every

device with an internet connection.
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The architecture just described is by any means no standard in IoT, but rather an attempt

to categorize all the parts in an IoT system; in some scenarios there might not be a clear

distinction between the stages.

Other architectures proposed in the literature are the three and fivelayer architecture

(fig. 2.2). The threelayer architecture is themost basic layered representation that defines

Perception layer

Transport layer

Processing layer

Application layer

Business layer

Perception layer

Network layer

Application layer

(a) (b)

Figure 2.2: (a) threelayer and (b) fivelayer architecture.

the main idea of IoT [25][26]. The three layers are:

(1) The Perception layer is a physical layer composed of sensors and smart objects.

It is responsible for sensing and gathering information about the environment and

identifying other smart devices;

(2) The Network layer is responsible for transmitting and processing information ob

tained from the perception layer, and connecting to other smart objects;

(3) The Application layer is responsible for delivering application specific services to

the end user such as data visualization and advanced analytics. The function of

this layer is providing all kinds of applications for each industry.

The fivelayer architecture proposed by the literature allows for a finer distinction between

the functionalities of IoT systems [25][26]. The layers are:

(1) The Perception layer, as before;

(2) The Transport layer is responsible for transmitting the data received from the Per

ception Layer to the processing center through various network;

(3) The Processing layer store, analyse and process the large volume of information
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received from the transport layer. The reason behind this layer being severed from

the 3layer architecture’s network layer is that the huge amount of information to

be processed represents one of the main challenges of IoT systems. The main

technologies employed are databases, cloud computing and big data processing

(4) The Application layer, as before;

(5) TheBusiness layer manages the whole IoT system, including applications, business

and profit models, and users’ privacy.

2.3 Communication protocols
As explained in the introduction, the variety of IoT applications goes hand in hand with the

multitude of the protocols employed. They differ for range, data rate, power consumption,

network topology, security and frequency, making each protocol valid for some specific

scenario. The protocols can be categorized in several way, depending on weather they

are for short or long range data transfer; which layer of the OSI model they work on and

so on.

Bluetooth
Bluetooth is a low power radio that streams data over 79 channels in the 2.4GHz unli

censed industrial, scientific, and medical (ISM) frequency band [27][19, Chapter 3]. It

was introduced in 1994 as a wireless communication standard for data exchange between

computer and mobile phones, but gained its initial popularity thanks to wireless headsets

that allowed to make phone calls without holding the phone. Today it’s one of the most

used IoT protocols in domestic application and in handheld devices  every smartphone

has Bluetooth capabilities  and estimates forecast 7 billions of Bluetooth enabled devices

shipped annually by 2026 [27].

The Bluetooth standard is completely controlled by the Bluetooth Special Interest Group

(SIG) and it includes application profile to describe the data exchange for a particular

task, like audio streaming or remote control of a television. The Bluetooth SIG also of

fers qualification process to ensure that every product that utilize the technology comply

with the standard specification. This allows for an incredible flexibility and interoperability
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between certified devices [28]. Bluetooth is designed for mediumshort range  up to 100

meters for industrial grade radios  low power data transmission at up to 3 Mbit/s. This,

along with the cost effectiveness of the implementation, makes it first choice technology

for wearable smart devices and domestic application in small battery powered devices.

Bluetooth offers pointtopoint and star type (piconet) network topology.

Bluetooth is typically employed in smart watches, smart home appliances and home au

tomation, medical devices, car and home entertainment systems and all those application

where a device is connected to a smartphone or a tablet.

The main disadvantage of classic Bluetooth technology is it’s reach, especially the fact

that the strength of the connection drops quickly when obstacles such as walls are be

tween its path, even within the 10 meter range. The topology offered by this technology

does not allows to work around this problem. Another drawback is the limit of active con

nections  one master can have only seven active connection to other slave devices  and

the security issues found is some popular chipsets that could lead to denial of service and

arbitrary code execution [29].

MQTT

Message Queuing Telemetry Transport is a machinetomachine, open source network

protocol. It was introduced in 1999 by IBM as a way to monitor oil pipelines and since

then has been widely employed in industrial scenarios. In 2013, the OASIS MQTT techni

cal committee was founded in an effort to standardized the protocol [30], in order to make

it a more viable option in the IoT scene. The light weight of the protocol and it’s ability

to deliver data messages over unreliable network make MQTT the ideal choice when it

comes to condition monitoring in logistic and industrial application, such as transportation

status monitoring [31] and petrolchemical plant and powerplant monitoring [32][33], but it

is also used in smart home scenarios for energy and water consumption monitoring and

smart home appliances [34].

MQTT is designed to work on low resources and optimize the network bandwidth and al

lows for bidirectional communication devicetocloud and cloudtodevice. It is built on top

of TCP/IP and is suitable to 2G, 3G and 4G networks [35]. MQTT employs a publish/sub

scribe architecture (fig. 2.3) by defining two entities: clients  publishers and/or subscribers

 and brokers  or servers. Clients can connect to a broker and publish messages under
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a certain topic. Whenever a message is received by the broker, it is forwarded to all the

clients subscribed to the message topic [36]. This architecture allows for millions of de

vices to exchange data in an efficient way, ensuring great scalability.

Another great feature is the reliability of the message delivery, with three defined level of

Broker
Sensor 1

Sensor 2

Sensor 3

publish sensor/temperature 

publish sensor/temperature 

publish sensor/humidity 

Client 1

Client 2

subscribe sensor/temperature 

subscribe sensor/humidity 

Figure 2.3: MQTT clientbroker architecture.

quality of service (QoS), in increasing order of overhead [37]:

(1) At most once (QoS 0): there is no guarantee of delivery. The recipient does not ac

knowledge receipt of the message and the message is not stored and retransmitted

by the sender;

(2) At least once (QoS 1): guarantees that a message is delivered at least one time to

the receiver. The message is stored by the sender and retransmitted periodically

until the receiver responds with an acknowledgement;

(3) Exactly once (QoS 2): a fourpart handshake between the sender and the receiver

guarantees that the message is received exactly one time. This QoS has greater

latency and overhead.

The messages are composed of a 1byte control header, that defines the message type

and the flags; a variable header of length 1 to 4 bytes, to carry additional control informa

tion; and the payload, for a maximum packet size of 256 MB [37].

The main drawback of this protocol is that, due to the asynchronous nature of the com

munication, one publisher have no way to know if the message has reached the desired

client; there are also some open discussions about the feasibility of the quality of service

of level 3 in practice [38]. Another critical point, inherent to the architecture, is the cen

trality of the broker, which, in case of failure, will interrupt the connection between all the

devices involved.
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ZigBee

ZigBee is wireless networking protocol defined in the IEEE 802.15.4 standard as a Low

Rate Wireless Personal Area Network (LRWPAN) [39]. It is designed as an open global

standard to address the needs of lowcost, lowpower wireless IoT networks.

It offers support for multiple network topologies such as pointtopoint, star and mesh

networking (fig. 2.4), the latter being a key point in it’s usefulness in IoT scenarios. The

ZigBee architecture consist of three types of nodes:

(1) The coordinator : there is one in every network and is responsible for handling and

storing the information while receiving and transmitting data operations;

(2) The routers: allow the data to hop through them;

(3) The end devices: produce and consume the data.

The small dimensions of ZigBee chips  5x5 mm  makes it an ideal technology to adopt

in small batterypowered device.

ZigBee operates in the 2.4 GHz (global), 915 MHz (America) and 868 MHz (Europe) fre

quencies, and has a coverage from 10 to 100 meters in lineofsight, depending on the

power output. The ZigBee Alliance takes care of maintaining and updating the specifica

tions, ensuring a good level of interoperability between products from different vendors

[40] but still providing the possibility of creating specific variation to manufacturers.

Due to its characteristic, ZigBee is placed in direct competition with Bluetooth as a low

power, high interoperability, low range technology for small IoT contest such as home

automation and healthcare applications like patient condition monitoring [41].

With respect to Bluetooth, ZigBee offer more possibilities in terms of network topologies,

which in turns means a greater reach of the network. ZigBee mesh network is selfforming

and selfhealing, meaning that it configures itself automatically and dynamically to repair

itself if some nodes are removed; they also allows for a much greater number of con

nected devices to the network  65536 devices in a ZigBee network against 8 devices in

a classic Bluetooth piconet.

On the downside, the larger the network, the greater the latency between two distant de

vices, as the message need to hop through the routers to reach its target. A great number

of devices also means that each one of these devices must be powered, although ZigBee

offers two operating modes, beacon and nonbeacon. In beacon mode, the coordinator
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Figure 2.4: ZigBee network topologies: (a) pointtopoint, (b) star and (c)mesh

.

periodically transmit the beacon, which is used to dictate a schedule and synchronize the

communication in the network: this way, all the devices know when to communicate to

each other, allowing them to sleep in between beacons. This mode works best when

the coordinator and the routers are battery powered, as long as the timing circuits in the

devices are accurate. In nonbeacon mode instead, the end devices are sleeping almost

all the time and periodically wake up to confirm their presence to the coordinator, which

is always awake. The end devices only start communicating on detection of activity.

The great advantages of ZigBee are consrained by the low data rate of 250 kbit/s on 2.4

GHz band. This is because ZigBee is designed for Wireless Sensonr Network (WSN),

expecially for condition monitoring context, where the volume of data is little [39].

ZWave
ZWave is proprietary wireless communication protocols developed the Danish company

Zensys in 1999 for residential and lightweight commercial environments, and is now reg

ulated by the ZWave Alliance.

ZWave operates in the sub1 GHz band  from 865 Mhz to 926 MHz depending on the

country  which ensure low power transmission at 100 kbit/s up to 30 meters [42]. By op

erating in the sub1 GHz band, ZWave signal is able to penetrate obstacles such as walls

while avoiding possible collisions with WiFi and Bluetooth signals  but may interfere with

cordless phones and other wireless devices.
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ZWave network operates using controllers and slaves. A controller may send a message

to a slave which act as a monitoring device or as an actuator; thus, responds and exe

cutes the controller’s instructions. Slave nodes are usually small low cost batterypowered

devices, while masters are usually smartphones or wireless remotes. ZWave supports

mesh networking allowing message to hop from one device to another, extending the

reach of the network [43].

ZWave technology shares a lot of applications with ZigBee and Bluetooth, its main com

petitors, however, ZWave was specifically design to transmit small messages from one

control unit to slave devices; instead of utilising a large bandwidth, it supports only short

burst commands such as toggling the lights, set the alarm, locking the doors, turning on

the sprinklers etc. The extremely low power consumption of the slave devices makes it

an excellent choice in home automation  smart lightning, smart locks, smart security and

alarms [44]  by ensuring long battery life and low latency transmission.

There are currently more than 700 members of the ZWave Alliance that manufacture Z

Wave devices, the most famous being Samsung SmartThings and General Electric, and

in 2005 there were over 50 millions ZWave devices for a total of 70% of the home au

tomation market share [45]. ZWave devices are easy to setup and is guaranteed vendor

agnostic levels of interoperability and backward compatibility [43], although the latter has

raised some concern about security [46].

ZWave mesh networks can theoretically accommodate 232 nodes, although most ven

dors recommend to deploy no more than 4050 devices. Another downside is that the

maintenance of the network is cumbersome: moving a slave device once it was added to

the network may prevents other devices from receiving messages, and there are cases

of unusual behaviour reported by customers. The solution in this case is to factory reset

the master unit and relearn the network topology [42].

The regionspecific operating frequency is also a limiting factor, devices working in one

country may not function in another one.

LoRaWAN

LoRaWAN  which stands for Long Range Wide Area Network  is a MAC layer, open

protocol developed and maintained by the LoRa Alliance. The first specification was re

leased in 2015, making it one of the youngest protocol for IoT. It is built on top of LoRa, a

physical proprietary radio modulation technique derived from the Chirp Spread Spectrum
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(CSS) technology.

The technology employs a spreading technique, according to which a symbol is encoded

in a longer sequence of bits, thus reducing the signal to noise and interference ratio re

quired at the receiver for correct reception, without changing the frequency bandwidth of

the wireless signal. This make it possible to select the data rate in the range of 300 bit/s

to 37.5 kbit/s, which offers a trade off between throughput and coverage range or power

consumption [47]. This characteristics allows LoRa to cover a greater area with less gate

ways, compared to cellular network. LoRa and LoRaWAN together defines a Low Power

Wide Area (LPWA) networking protocol designed to connect multiple batterypowered de

vices over long distances. The technology operates in the 169 MHz, 433 MHz and 915

MHz bands in the USA, but in Europe it works in the 868 MHz band.

LoRa networks are typically deployed in a starofstars topology: multiple end devices

 wireless sensors and actuators  are connected through a single hop to one or many

gateways, that are in turn connected to a common Network Server via standard TCP/IP

protocols (fig. 2.5). The end devices are not required to associate to a specific gateway

to gain access to the network, but only to the Network Server; the gateways act as simple

relays and forward the data to the network server, which is responsible for filtering the

messages and replying to the end devices.

TCP/IP

Gateways

LoRa RF

Network
Server

End
devices

Applications

Figure 2.5: LoRaWAN network architecture overview.
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Interoperability of end devices is guaranteed by the LoRa Alliance Certification Programs,

which ensure end customers that their applicationspecific end devices will operate on any

LoRaWAN network [48].

The long range coverage even in harsh environments and the indoor penetration capa

bility, granted by operating in the sub1 GHz spectrum, makes LoRa the technology of

choice in largescale residential, agricultural and smart city applications, such as room

temperature monitoring of entire buildings [47], smart lightning and smart parking [49].

The coverage of a single gateway is between 2 and 6 km in urban scenarios, and up to

18 km in rural areas [50], making it possible to cover the extent of a large city with less

then a hundred gateways, each of them capable of supporting 15000 nodes [47].

By operating in the unlicensed ISM band it’s not required to buy expensive frequency

spectrum license fees to deploy a LoRaWAN network, however this comes at the cost

of adopting 1% (or 0.1%) duty cycled transmission depending on the transmission fre

quency, as regulated by regional and global entities, which is a limiting factor in terms of

throughput and network size [51][52].

Another downside is that the starofstars network topology adopted by LoRaWAN, in

particular the use of gateways to connect the end devices might be a bottleneck due

to a single point of failure. LoRaWAN modules are also more expensive than other RF

modules that employ GFSK and FSK, and the technology itslef is not suited for real time

applications that require low latency.

Despite these flaws, LoRaWAN is a young and modern protocol  the most recent spec

ification is from October 2020 [53]  that is bound to be a big player in smart cities IoT

applications [47].

Sigfox

Sigfox is a French global network operator founded in 2010 with the goal of providing

a controlled network for lowpower IoT devices, similar to the cellular network. Sigfox

proprietary technology employs ultranarrow band (UNB) modulation, taking up only 192

KHz of the 868 MHz (Europe) and 91MHz (US) bands in the unlicensed ISM spectrum

[54]. Sigfox offer ultralong range bidirectional communication at extremely low power

consumption. The UNB modulations allows for high resilience to interference, coverage

from 3 km up to 10 km in urban area  and up to 30 km in rural area [55]  and good indoor

penetration capabilities. This at the cost of an extremely low data rate of up to 100 bit/s
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and small size payload of 12 bytes.

Like other LPWA networking protocols, Sigfox aims at providing connectivity for lowend

sensors distributed over a wide area in agricultural, industrial and smart city applications.

For example, Sigfox has been employed in Marseille to monitor the water level of over

5,000 storm drains using selfpowered sensors [56].

The SigFox network topology has been designed to provide a scalable, highcapacity net

work, with very low energy consumption, while maintaining a simple and easy to rollout

onehop starbased cell infrastructure, as show on fig. 2.6: the devices are connected to

base stations, which act as gateways to forward the messages to Sigfox Support System

over standard IP link.

Figure 2.6: Sigfox network architecture overview [57].

The Sigfox Support System is in charge of processing the messages and send them

through callbacks to the customer system. The data can be accessed and collected by

the users from any device with an internet connection using web interfaces and API [57].

Unlike cellular connectivity protocols, Sigfox devices are not attached to a specific base

station and the transmitted messages are received by any nearby stations (spatial di

versity). The transmission is unsynchronized between the network and the device. The

device emits a message on a random frequency and then sends 2 replicas on different

frequencies and time (time and frequency diversity). Spatial diversity coupled with the

time and frequency diversity of the repetitions are the main factors behind the high quality

of service of the Sigfox network [57].
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Sigfox is present in 75 countries and services 20 millions registered devices over 6 million

square kilometers of covered area.

On the downsides, Sigfox suffer from the same ISM band usage restrictions of LoRa,

constraining the devices to no more than 6 12bytes per hour [57]. This, coupled with

the 25 seconds of latency between reception and transmission make Sigfox unsuited for

real time applications and scenarios where large volume of data is produced over short

periods of time.

Other than that customers are required to purchase a subscription from Sigfox certified lo

cal cellular operator in order to deploy their smart embedded devices. Given the premises,

Sigfox is a viable options for big business and public administrations that require infre

quent monitoring of multiple sensors spread over a large area.

Radio Frequency Identification (RFID)

RFID is a technology based on the use of electromagnetic fields to transfer small quan

tity of data between two devices in close proximity. Predecessors of this technology have

been around since the 1940s, but the first patented commercial RFID systems dates back

to the 1980s [58]. Since then RFID systems have been widely deployed in logistic applica

tions in industrial and commercial environments, such as items tracking, precision timing

and telemetry, and toll collection.

A typical RFID system is composed of twomain entities: a tag and an interrogator [59][60].

A micro chip and a small antenna constitute a tag. The tag information  from a few bits

up to 8KB  is stored in a nonvolatile memory that can be either readonly, readwrite or

writeonce readmultiple. Tags have a unique ID and can be of three types:

(1) Passive: they cheaper and smaller because they have no battery, instead they are

powered by the current induced by the signal sent from the interrogator to transmit

the data;

(2) Active: they coupled with a small battery and periodically transmit their ID;

(3) Batteryassisted passive: they have batteries like active tags but are only activated

when in presence of an interrogator.

RFID tags come in several form factors and are priced a few cents up to 100$, depend

ing on frequency, memory size, battery life, encapsulation protections, etc [61]. Highend

active tags can also mount sensors to capture environmental changes in temperature,
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humidity, pressure and even GPS. Due to its simple nature, RFID is a technology prone

to miniaturization and the smallest tag measure only 0.15x0.15 mm [62].

Interrogators are devices that transmit and receive radio waves and are responsible of

the communication with RFID tags.

RFID operates in three frequency bands: low frequency (125–134.2 kHz and 140–148.5

kHz), high frequency (13.56 MHz) and ultrahigh frequency (865–928 MHz). While low

and high frequency RFID tags can be used globally, there is no global standard for ultra

high frequency tags, and the specific regulations differs from country to country. Depend

ing on the type and the operational frequency, RFID tags can be read at less than 10

centimeters up to 100 meters regardless of obstacles and occlusion [63].

RFID tags are a relatively inexpensive solution that provide nolatency transmission of

small quantities of data at short distance; they are widely employed for contactless pay

ments, ID cards and machine readable documents, smart locks, tracking of shipping,

luggage and livestock, antitheft systems in retail and timing of sport events [64].

On the downside, the wide use of RFID tags raised several security concerns about the

fact that the tags can be read by unauthorized users with malicious intents, and legitimate

transactions can be eavesdropped from nontrivial distances. This allows the criminal to

identify or track packages, persons, carriers, or the contents of a package [65] [66]. The

term ”RFID skimming” is the practice of unlawfully obtain someone’s payment card infor

mation using a RFID reading device [67].

There are also privacy concerns since RFID tags used in retail remain functional after the

customers have purchased and taken home the products, making it possible to be used

for surveillance and other unlawful purposes unrelated to the original logistic functions of

the tags.

Despite that, RFID tags are still widely employed and the total RFID market is expected

to be worth over $12 billions in 2022 [68].

Near Field Communication (NFC)

NFC is a secure, shortrange communication standard for interaction between two elec

tronic devices wirelessly, without the need for any prior setup [69]; the first NFC specifi

cation was introduced in 2003 by Sony and Philips [70].

NFC technology is based on RFID and operates at 13.56 MHz in the unlicensed ISM band

with the same functional principles: inductive coupling between two loop antennas.
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The devices involved are an active initiator and a target, which may be both active  bat

tery powered  or passive  draw the operating power from the initiatorprovided magnetic

field. NFC communications supports between two devices in close proximity  1020cm 

at data rates of 106, 212 or 424 kbit/s. A NFC device can operate in three possible modes

[71]:

(1) Reader/Writer mode: an active initiator can read/write data from/to targets detected

in close proximity, such as passive RFID and NFC tags;

(2) Peertopeer mode: two active NFC devices can exchange information over a bidi

rectional half duplex channel, meaning that when one device is transmitting, the

other one has to listen and should start to transmit data after the first one finishes;

(3) Card emulation mode: a portable NFC device such as a smartphone can act as a

passive smart card to be read by an active reader.

NFC technology is integrated in every modern smartphone and widely employed as to

perform contactless payments, ticketing and access control [71]. NFC plays an important

role in IoT as a technology enabler [72]: smart objects are often equipped with NFC tech

nology to replace the pairing of Bluetoothenabled devices or the configuration of a WiFi

network through PINs and keys, by simply touching the devices.

NFC is subject to security concerns similar to those of RFID. The close range required

by NFC communication does not make it immune to eavesdropping, which, with the right

equipment, can be carried out at distances up to 10 meters; RFID jamming devices can

transmit a signal that interfere with the transmission between a mobile NFC phone and a

reader of a service provider, causing denial of service; malicious NFC tags that contains

false information can be used to replace legitimate tags in a phishing attempt [73].
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3 Bluetooth Low Energy
Bluetooth Low Energy (BLE) was defined for the first time in 2010 by the Bluetooth SIG

as part of the Bluetooth 4.0 specification, it’s main feature being offering similar perfor

mances of classic Bluetooth in terms of range and data rate, while significantly reducing

the power consumption.

3.1 Stack Architecture
The BLE stack (fig. 3.1)[74][75] is composed of two major blocks, the Host and the Con

troller, which act as separate logical containers in the architecture; the Host and the Con

troller communicate through the Host Controller Interface (HCI). This allows a Bluetooth

system to consist of host and controller components from different manufacturers.
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Figure 3.1: Bluetooth Low Energy protocol stack [75].

Physical layer
The Physical layer defines all the aspect of BLE technology related to the use of RF, such

as modulation schemes, frequency bands and channel use. BLE operates in 2.4 GHz ISM

band but instead of the classic Bluetooth 79 1MHz channels, Bluetooth Low Energy has
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40 2MHz channels. These channels are divided into three advertising channels, which

are used for device discovery, connection establishment and broadcast transmission, and

37 data channels, used for bidirectional communication between connected devices.

The modulation scheme used by BLE is the Gaussian Frequency Shift Keying (GFSK).

Link layer

BLE devices can communicate according to two different patterns supported by the Link

layer :

(1) Advertiser/Scanner : one device, the advertiser, broadcast the data unidirectionally

in the advertising channels; the other device, the scanner, can receive the data.

Also called connectionless communication;

(2) Master/Slave: the advertiser and the scanner establish a bidirectional connection

and adopt the slave and master roles, respectively. The master can connect to mul

tiple slaves at the same time.

Host Controller Interface

The HCI defines a standardized interface via which a host can issue commands to the

controller and a controller can communicate with the host.

Logical Link Control and Adaptation Protocol

The Logical Link Control and Adaptation Protocol (L2CAP) provides connectionoriented

and connectionless data services to the upper layer protocols with protocol multiplexing.

Attribute Protocol

The Attribute Protocol (ATT) defines the server and client roles. The server exposes a

series of composite data items known as attributes to a client in a peer device. Attributes

are identified by a unique index value, so that they can be referenced by the client; a

Universally Unique Identifier (UUID) that identifies the attribute type; a set of permissions

that indicate whether read, write or both forms of access are permitted; and a value, which

is a byte array that contains the attribute’s value.
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Generic Attribute Profile
The Generic Attribute Profile (GATT) defines a framework that uses the ATT for the dis

covery of services, and the exchange of characteristics from one device to another. A

characteristic is a set of data which includes a value and properties. The data related to

services and characteristics are stored in attributes.

Security Manager Protocol
The Security Manager Protocol (SMP) supports the execution of security related proce

dures such as pairing, bonding and key distribution, and provides a cryptographic toolbox

for security functions.

Generic Access Profile
The Generic Access Profile (GAP) defines the generic procedures related to discovery,

link management, and security aspects for communication between BLE devices.

3.2 Specifications
The Bluetooth 4.0 specification [76] doesn’t allow a slave node to take part in multiple

connections simultaneously with other masters. Therefore, the only network topology

supported by BLE is the star topology.

Despite the vibrant interest displayed by both industry and academia, BLE technology

was falling short to populate the wireless home automation market, only allowing star

networks being the bottleneck. Mesh networks, like those employed by BLE main com

petitors  e.g., ZigBee and ZWave  proved to bemore efficient in domestic context, where

multiple smart objects in different rooms are hard to reach in a single hop, and communi

cation between two nonadjacent end nodes may be required. The same problem can be

observed in industrial, agricultural and urban scenarios, where direct communication be

tween end devices may not be possible and the nodes are deployed over an area greater

than the reach of a single device.

In 2013, the release of the Bluetooth 4.1 specification [77] introduces a fundamental

change with regard to BLE mesh network support. A slave node is now allowed to be

simultaneously connected to more than one master. In addition, one device can act both

as slave and as a master, keeping parallel communications with its neighbors.

This game changer extends the possibilities in term of network topology by allowing de
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vices to take part in mesh networks. At this point there is no official specification about

the implementation of mesh networking for BLE technology, and multiple solutions are

studied and proposed by both vendors and researcher.

Bluetooth 4.2 (2014)[78] and 5.0 (2016)[79] incorporate improvements in terms of range,

data rate, security and advertising channel functionality, but do not offer further function

ality to support BLE mesh networks.

The big step is taken in 2017 with the release of the the Bluetooth Mesh Profile speci

fication [80], which defines fundamental requirements to enable an interoperable mesh

networking solution for BLE technology.

3.3 Mesh Networks
A wireless mesh network consist of multiple nodes connected together in a manytomany

fashion; nodes can communicate with each other even if not directly connected, by send

ing messages that can hop through nodes in the network to reach their destination. Mesh

networks are effective approach to providing coverage of large areas, extending range

and providing resilience.

Routing vs. Flooding

Since the release of Bluetooth 4.0 there as been multiple proposal for implementing

mesh networking with Bluetooth Low Energy devices, that can be classified in two dis

tinct groups, based on the multihop paradigm adopted [81].

BLE devices can send data in two different ways, that is by broadcasting  advertising  the

data or by establishing a connection. This duality makes way for two possible approaches:

• Routingbased approach: the data is forwarded through the network over the data

channels by establishing a connection. A routing algorithm is used at every step to

pick the next hop in order to reach the target node;

• Floodingbased approach: the data is broadcasted over the advertising channels to

all the neighbouring nodes, which in turn broadcast the message until the target is

reached.
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The strong point of Floodingbased mesh networks is their simplicity: it is not required to

establish a connection, and there is no need to employ complex routing protocols. This

means no delay due to route discovery and less memory usage for storing and maintain

ing routing tables. On the downside, since the messages are broadcasted through all the

network, floodingbased solutions suffer poor message throughput, which worsen with

the increase of network size. The other issue is with security, since SMP services are

only available over data packets sent through the data channels, and not over advertising

packets [81].

Routingbased solutions instead employ a routing algorithm to find a route to deliver a

data packet from one node to another. These solutions may use advertising channels for

neighbor discovery and route formation but the data is exchanged over the data channels

after a connection is established. Many routingbased solutions exploit the capability,

introduced with Bluetooth 4.1, of performing multiple connections as both a slave and a

master, while other, mostly older, approaches rely on one connection at a time.

Routing algorithms often require the construction and maintenance of routing table, which

is a cost in overhead.

Bluetooth mesh architecture
Starting from the summer of 2017, with the release of the Bluetooth Mesh Profile specifi

cation [80], support for mesh network topology is officially available for BLE devices. The

document defines the Bluetooth mesh stack as a layered architecture built on top of the

BLE stack (fig. 3.2) [82].

Bearer Layer
The Bearer Layer defines how network messages are transported between nodes.

At the moment of writing the specification defines two mesh bearers over which mesh

messages may be transported:

• the advertising bearer, used to send mesh packet;

• the GATT bearer, using to allow older BLE devices, which do not support the adver

tising bearer, to take part in a Bluetooth mesh network.

Network Layer
The Network Layer defines how transport messages are addressed towards one or more

elements. It also decides whether to relay/forward messages, accept them for further
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Bearer Layer

Network Layer

Lower Transport Layer

Upper Transport Layer

Access Layer

Foundation Model Layer

Bluetooth Low Energy

Bluetooth Mesh Profile

Model Layer

Figure 3.2: Bluetooth Mesh stack [80].

processing, or reject them, and defines how a network message is encrypted and au

thenticated.

Lower Transport Layer

The Lower Transport Layer takes PDUs from the Upper Transport Layer and sends them

to the Lower Transport Layer on a peer device; it defines how Upper Transport Layer

messages are segmented and reassembled into multiple Lower Transport PDUs in order

to deliver large Upper Transport Layer messages to other nodes.

Upper Transport Layer

The Upper Transport Layer is responsible for the encryption, decryption and authentica

tion of application data passing to and from the Access Layer.

Access Layer

The Access Layer defines the format of the application data and how higher layer appli

cations can use the upper transport layer.

Foundation Layer

The Foundation Model Layer defines the states, messages, and models required to con

figure and manage a mesh network.
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Model Layer

Finally, the Model Layer defines the models, that is standard software components that,

when included in a product, determine what it can do as a mesh device [83]; a model de

fines the implementation of behaviors, messages, states, state bindings and basic func

tionality of nodes on a mesh network.

The Bluetooth Mesh Model specification [84] is a document that defines over 50 models

for different applications, such as lightning, sensors and even models that are “deliber

ately positioned as generic, having potential utility within a wide range of device types”

([85]).

Bluetooth mesh operation

Nodes

Devices which take part in a BLEmesh network are called nodes, and they are the building

blocks of the network. All nodes are able to receive and transmit messages, but in addition

they can also be of one or more of these types:

• Relay nodes are able to retransmit the received messages over the advertising

bearer. Relaying is the mechanism by which a message can propagate through

the network, hopping from one node to another;

• Proxy nodes are able to transmit messages between GATT and advertising bearers.

This functionality allows devices which posses a BLE stack but not a Bluetooth mesh

stack to take part in a BLE mesh network, by connecting to a Proxy node;

• Low Power nodes are able to take part in a mesh network at low power consumption

by operating at significantly reduced receiver duty cycle. This is only possible on

conjunction with a Friend node. Low Power nodes are usually poweredconstrained

devices. A Low Power node can connect to only one Friend node;

• Friend nodes enable Low Power nodes to operate in a mesh network. A Friend node

stores the messages directed to the Low Power node and send them to it whenever

its possible  that is, whenever the Low Power node polls the Friend node. A Friend

node can be connected to multiple Low Power nodes.

Unlike other low power mesh networks, such as those offered by ZigBee and Zwave,

Bluetooth mesh do not require a centralized controller: the messages hop across the

network to reach their destination without the need to pass through a coordinator, which

results in reduced latency and less overhead. Bluetooth mesh allows for a vast and diver
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sified network (fig. 3.3), to which multiple devices of different kinds can take part: devices

powered by a small battery can participate in the network through a Friend node without

compromising battery life and interoperability is extended to older devices thanks to Proxy

nodes.

Node

Proxy node

Friend node

Low Power node

Relay node

GATT bearer

Advertising bearer

Low power
advertising bearer

Figure 3.3: Example of a Bluetooth Mesh topology [80].

Elements and States

Every node in the network contains one or more elements; an element is an addressable

entity within a node, and represent a component of the device that can be controlled in

dependently. For example, a smart lightning product that has three separate lightbulbs is

represented in a mesh network as a node containing three elements, one for each light

bulb.

The status of an element is described by one or more states; states are data items with

one or more values that indicate the condition of the element. For example, a smart light

controlled by a dimmed switch would possess two states, one to indicate whether the light

is on or off and one to represent the brightness level.

When a state changes its value it’s called state transition.

Sometimes a state transition may trigger a change in another state. This kind of relation

ship between states is called state binding. In the previous example, changing the value

of brightness level to zero will trigger a state transition in the OnOff state from on to off.
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Models
Models encapsulate the previous concepts to define some or all the functionalities of an

element. Models can be of three types:

Figure 3.4: Bluetooth Mesh node composition [83].

• Server models define a collection of states, state transitions, state bindings and

messages which the element containing the models may send or receive. They

also define behaviors relating to messages, states and state transitions;

• Client models do not define any states. Instead, they defines the messages which

they may send or receive in order to request, change, or obtain the value of the

corresponding server model states.

• Control models encapsulate both a server model and a client model.

For example, a simple binary light switch contains an element, which represents the

switch, whose functionality is defined by the Generic On/Off Client model. This model

controls the Generic On/Off Server Model, which defines the functionality of a simple

light, by sending it messages.

The Bluetooth Mesh Model specification [84] defines states, state transitions, state bind

ings and messages of over 50 models that describe the functionality of multiple elements

spanning over different devices and applications.

Communication
Communication within the network is achieved via messages. Messages operate on

states and for each state there is a defined set of messages that a server supports and

that a client may use to request the value of a state or to change a state (fig. 3.5).
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Figure 3.5: Bluetooth clientserver model communication [80].

Messages can be acknowledged or unacknowledged. The former requires a response

from the nodes that receive them to confirm that the message was delivered, while the

latter doesn’t.

Messages must be sent to addresses, which can be of three types:

• Unicast addresses identify a single element of a node, and are assigned during the

provisioning process;

• Group addresses identify multiple elements spanning over one or more nodes. The

Bluetooth SIG defines four Fixed Group Addresses named Allproxies, Allfriends,

Allrelays and Allnodes.

Group addresses may also be assigned dynamically by the user: for example, a

group address may identify all the lights in a room in order to control them with a

single switch;

• Virtual addresses identify multiple elements spanning over one or more nodes and

are usually preconfigured by the manufacturer.

The exchange of messages in the network is defined as using the publish/subscribe

paradigm (fig. 3.6). A node publish messages to an address  unicast, group or virtual

 and nodes that are interest in receiving the messages will subscribe to these addresses.
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Nodes may subscribe to multiple addresses.

Figure 3.6: Example of publish/subscribe communication in a BLE mesh [82].

Provisioning
A device that is not member of a mesh network is called an unprovisioned device. Adding

an unprovisioned device to the mesh network is a process called provisioning. This pro

cess is started by the unprovisioned device, which advertise its presence to the Provi

sioner  usually a smartphone. The Provisioner then invites the device to the network,

which is followed by the exchange of public keys. Then the Provisioner requires an au

thentication: the user must enter into the Provisioner a random number that is output

by the new device. After the provisioning has been completed, the provisioned device

possesses the network key, which is used to secure and authenticate messages at the

network layer: the device is now part of the mesh network and therefore a node.

Managed flooding
Managed flooding is the protocol chosen by the Bluetooth Mesh Working Group to allow

nodes to exchange messages in a mesh network. Flooding is a technique based on

advertising the message to all the neighboring nodes, which in turn will relay the message

to other nodes, until the destination node is reached.

With respect to other flooding techniques, managed flooding offers some improvements:

• Messages are assigned a timetolive (TTL) field, which limits the number of times

that the message can be relayed. The TTL field is decremented every time the

message is relayed until it reaches zero, then the message does not get relayed

further. The TTL field optimize the overall power consumption of the network by

preventing a message from being transmitted further than is required;
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• Heartbeatmessages are sent periodically to signal to other nodes in the network that

the sender is still active. Heartbeat messages contain data which allows receiving

nodes to estimate how far away is the sender in terms of number of hops required

to reach it; this data can be used to tune the TTL field;

• Messages are cached by all the nodes. Every node has a cache that contains the

message that the node has received and sent recently. Whenever a node receive a

message that is present in its cache it discards it. This way messages are prevented

from being transmitted multiple times by the same node;

• Friendship is the relationship between a Friend node and a Low Power node, allow

ing the latter to operate in a power efficient way.
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4 Toit Platform
Toitware ApS is a Danish company founded in February 2018 by former Google software

engineers Kasper Lund, Erik Corry, Florian Loitsch and Anders Johnsen.

Their product is the Toit Platform, a software development and deployment platform for

IoT that allows for highlevel programming of embedded devices without compromising

on performance, with focus on connectivity and edge computing. Toit’s mission is to make

IoT developing accessible to everyone by providing a simple and efficient programming

language and taking care of all the thorny aspect of embedded programming, such as

connectivity, overtheair software and firmware update and fleet management [86].

Toit Language

Toit applications are written in the Toit language, a highlevel language with a syntax simi

lar to Python’s. When developing code for embedded devices themost common approach

is to programming in native C language. This allows to access lowlevel operation such

as bit wise data manipulation and precise memory management, while achieving high

performances due to little to no overhead. However, C is a lowlevel language that might

be hard to learn and require technical hardware knowledge when used for embedded sys

tems programming. Simple functionalities take time to build and modern coding technique

might be difficult to implement.

On the other hand, the use of highlevel languages such MicroPython and Java SE Em

bedded implicate higher memory usage, higher power consumption and much lower per

formances. This is not ideal in IoT applications where the smart objects are typically

batterypowered, lowend devices.

With these premises, Toit spent one year putting together an approachable highlevel,

objectoriented programming language that runs code efficiently on constrained devices.

Toit simple syntax and recognizable programming style make it quickly to learn and easy

to use. It comes with readymade reliable libraries to access lowlevel functionalities. It is

declarative, statically analyzable, memory safe and garbage collected [87]. The programs

are compiled to compact binaries that execute 30 times faster than MicroPython [86].
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Toit Virtual Machine

The Toit firmware is composed of the ESPIDF operating system and the Toit Virtual Ma

chine (VM) built on top of it [88]. The code developed runs on the Toit VM as one or more

applications in a sandboxed environment  that is, Toit programs can’t write to arbitrary

memory locations. The applications run isolated from one another and from the underly

ing hardware. This means that one application’s crashing does not constitute a problem

for the system and the other applications, which keep running. Separate specification

files controls the execution of each application, allowing for multiple applications running

side by side.

Not only that, this means that applications can be installed and uninstalled on a device

without affecting the execution of the other applications already installed on the platform.

The traditional approach requires that all applications are compiled, linked and deployed

Figure 4.1: Architecture of the Toit Platform (right) in comparison with traditional

firmware deployment (left) [88].

together, which makes the code prone to errors and hard to maintain; Toit VM offers a

more flexible and robust alternative to deploy and run software that allows the developer

to focus only on the end goal and not the hardware technicalities.

Toit Cloud and API

Devices provisioned with the Toit firmware can be organized through the Toit Cloud, which

gives both a clear overview and detailed information about the health and status of the

fleet [89]. The Cloud takes care of scheduling overtheair updates of both firmware and
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software for online and offline devices alike. Software and firmware updates are in the

form of small patches ranging from 40 to 500KB, meaning that they can be quickly de

ployed even over an unstable WiFi or cellular connection; the connectivity logic in the Toit

firmware is built as a standalone feature, completely isolated from the application code,

meaning that updates can be safely carried out even in the event of connectivity drops

[90].

Toit devices can communicate with each other through the Toit Cloud using an outofthe

box, publish/subscribe messaging service. An application can publish data on a certain

topic, the data is sent to all the applications subscribed to that topic. Since Toit connectiv

ity is isolated from application code, a Toit app focuses only on producing data and saving

it on the device. The data is then uploaded to the cloud each time a device comes online,

without loss of data over connectivity issues [90].

All communication between the device and the cloud is endtoend encrypted using mod

ern publickey encryption [89].

Toit offers public API to give full programmatic control of the devices and access to the

data published by Toit applications [89].

Hardware

The Toit Platform runs on the ESP32 chip from Espressif [91].

The ESP32 SystemonChip (SoC) is designed for ultra lowpower consumption, mobile,

wearable electronics, and IoT applications. It’s capable of functioning reliably in industrial

environments, with an operating temperature ranging from –40°C to +125°C. It mounts

two Xtensa 32bit LX6 microprocessors that runs at 240 MHz and 520KB of RAM [92][93].

It comes with 34 GPIO pins for peripherals, configurable to be used for communication

protocols (SPI, I2C, UART), analog/digital interfacing (ADC/DAC), Ethernet and PMW.

It has built in WiFi and Bluetooth modules, and since 2019 it has officially passed the SIG

Bluetooth LE 5.0 certification.

The ESP32 SoC has been chosen by Toit because it perfectly fulfills the characteristics

of a batterypowered smart device in most of IoT applications, that is:

• Lowpower consumption and advanced powermanagement technologies: with five

different power modes the ESP32 can run on standard AA batteries for years;

• Costeffective: ESP32 chips are low cost, which means that a large scale deploy

ment would be less expensive compared to other MCUs;
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• High connectivity: ESP32 offers both wireless and wired connectivity options, mak

ing it easy to build an IoT infrastructure around them, regardless of the use case;

• Computing power: the dualcore microprocessor enable more processing and con

trol of the data at the edge, before sending it to the cloud.

Use cases

Toit provides a cheap solution for a large scale deployment of smart devices with enough

computing power to manage multiple sensors and actuators, process the data gathered

by the sensors and forward it to the cloud; Toit takes care of all the pain points in IoT

development leaving the developers to focus only on the applications that run on the

smart devices. This allows business who operate in IoT to cut their expenses in hardware

and connectivity gateways while reducing the workload of the developers.

Example of real use cases of the Toit Platform are:

• Consibio [94] is a techspinout company that builds custom hardware for monitoring

and optimization of bioprocesses. Their typical product consist of several sensors

mounted on microcontrollers, connected to a Linux gateway, working with an estab

lished IoT platform that ensured connectivity to the cloud. The different units had to

be programmed using various programming languages and it was not possible to

update the sensors connected to the gateway.

Adopting the Toit Platform allowed Consibio to have all the components connected

only to the microcontroller, with no need for a gateway (fig. 4.2). Other than that

Consibio reported reduced cost in hardware and time spent programming the de

vices, along with the other benefits such as lower power consumption, secure and

quick overtheair updates and remote managing of the deployed fleet.

Toitpowered devices have been deployed in a biofactory that grows insects for

sustainable protein production. The devices measure the temperature and humidity

of the farm, making sure that the optimal condition for insect growth are met, and

send an SMS alert otherwise. They also operate an industrial valve that controls

the airflow when the presence of malodorous air is detected.

• Trifork [95] is a IT and business service provider that supply highquality custombuilt

applications and endtoend software solutions. One of their product, the Foodbox,
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Figure 4.2: Design of Consibio product before (left) and after (right) adopting

Toit [94].

is a growing chamber for vertical  also known as aeroponic  indoor farming. In

aeroponics farm, the roots of the plants are exposed to air and get their nutrients

from a solution sprayed as mist, needing only 5% of the water used in a traditional

farming system. The exposed roots have access to more oxygen than when sub

merged in water and thus the plants grow faster, however they are very sensible to

changes in humidity, therefore the environmental conditions of the growing chamber

must be monitored constantly.

The Foodbox cabinet contains several shelves for the plants to grow, and on the

lowest shelf there is a system made of a reservoir, a pump, a pressure accumula

tor, and spraying nozzles to spray the nutrient solution into mist. The cabinet also

contains temperature and humidity sensors and an artificial lightning system.

The condition monitoring is done by a single Toitpowered ESP32 that runs three

applications. One app measures the temperature and relative humidity in the Food

box. A second app controls the lighting. A third app is used to schedule the spraying

of the nutrient solution.

Using the PubSub service the applications logs the measurements on the cloud,

that is accessed by a smartphone app thanks to the public APIs.

Thanks to the Toit Platform, the design of the cabinet is modular and easy to main

tain: by adding extra sensors is possible to include the monitoring of the quality of

the nutrient solution and the water level, with an alarm triggered when the latter is
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running low.

The application that take care of this can be easily installed overtheair without al

tering the execution of the other applications.
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5 Implementation of BLE mesh network

with Toit

Motivation
Despite the fact that the ESP32 SoC has passed the Bluetooth 5.0 certification [96] and

the ESPBLEMESH implementation is fully Bluetooth SIGcertified [97] since 2019, at

the time of writing the Toit Platform does not support all the BLE features. That is, at the

moment a Toit device could not take part in a Bluetooth mesh as defined by the official

specification.

Since Toit devices work mostly as edge gateway devices, it is of interest to study a solution

to allow a wireless network of Toitpowered devices to communicate without requiring the

data to pass through the cloud.

The Toit Platform performs greatly under the assumption that all devices are under WiFi

or cellular coverage in order to communicate wirelessly with other Toit devices and the

cloud. While this assumption holds true in most applications targeted by the Toit product,

this may not always be the case.

For example, only a few devices of a wireless sensor network deployed inside a large

building may be within the reach of WiFi, and a wired connection to collect the data from

the end nodes may not be possible. In this case it is of interest to employ a communication

solution to collect data from the edge nodes, without having to pass through the cloud.

This chapter will propose an implementation of a mesh network to allow multiple Toit

devices to exchange messages over Bluetooth even if not directly connected.

Since the BLE functionalities available with Toit are limited  it’s not possible for a slave

to connect to multiple masters, and for a node to act as both a slave and a master  the

solution proposed will employ only the primitive functions to advertise, scan, connect and

access read/write characteristics of a server.

5.1 Overview
The solution proposed is inspired by the tree network topology presented in [98]. The

structure of the network is that of a undirected tree that is generated starting from a root

node. The tree is composed of three types of nodes:
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• The root node is a unique node; there is only one root node and the network ex

pands from the root. The root act as a sink in the network, that is, all the messages

pass through the root. In the previous example, the root node is represented by a

Toit device under WiFi/cellular coverage that act as a gateway device. Cloud con

nectivity for other nodes is not required, as all the messages pass through the root

node;

• The intermediary node is a node connected to exactly one node situated in a higher

level of the tree, and to one or more nodes in a lower level. Intermediary nodes

have the main function of relaying messages through the tree but they can also

incorporate sensors and actuators that produce and consume messages;

• The leaf node is a node that is only connected to exactly one node situated in a

higher level of the tree. Leaf nodes are typically sensors and actuators that produce

and consume data.

Every node is identified by a 2byte address that is assigned by a higher level node during

the tree generation phase, except for the root node, which has address equal to 0. Every

node advertise its address, which is used by sender nodes to route the messages in the

network. The structure of the network and the addressing is presented in fig. 5.1.

Direct communication in the network is only possible from parent to child and vice versa.

The main advantage of this restriction is that the routing algorithm is extremely simple: the

next node can be easily selected by looking at the address pattern. The other advantage

is that no routing table is required, as one node can only send messages to its parent

node or its children nodes; there is exactly only one path between two nodes.

The disadvantage, with respect to Bluetooth mesh, is that all the messages need to pass

through the root and a node can forward messages only to its descendants and ancestors.

A node can send a message by:

(1) Scanning the neighbouring devices, looking for its parent or one of its children;

(2) Connecting to the receiver node. The receiver node is connected as slave, the

sender node is connected as master;

(3) The sender node writes the message in the characteristics of the receiver;

(4) The sender node disconnects from the receiver.
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Figure 5.1: Tree network structure and addressing.

Whenever a node receives a message that is directed to another node, it forwards it to

the next node in the path. Communication from a leaf node to the root is presented in

fig. 5.2.

This implementation is meant to work in parallel with the code that produce and consume

the data.
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Figure 5.2: Message propagation from leaf node to root. The dashed lines

represent parentchild relationship, while the solid lines represent masterslave

active connection
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5.2 Implementation details

5.2.1 Data structure
Communication in the network require all node to act as slaves, to receive a message,

and as masters, to send a message. Therefore every nodes will expose a GATT service

that contains the characteristics illustrated in table 5.1. The UUID for the characteristics

have been randomly generated [99].

Table 5.1: Description of the characteristics exposed by the GATT service.

Characteristic UUID Size (bytes) Permission Description

ownAddr 0x3082 2 read/write Address of the node

newMsg 0x936A 1 read/write
Indicates whether a new

message has been received

msg 0xE51C 8 read/write Received message

The structure of a message is a 8 byte array that contains the source address, the desti

nation address and the payload (table 5.2); little endianess is used.

The OP code field allows to define behaviours in response to messages. For example

the root can send a message to a node that triggers a response, like a data request.

Table 5.2: Tree message composition

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

destination address source address message payload

opcode message data

In addition, every node has an internal FIFO buffer where messages are stored before

they are sent, and a 1 byte variable that indicates the number of children nodes. Whenever

a message needs to be sent, it is simply inserted into the message buffer.

5.2.2 Network operation
The network operation can be described by a fivestate machine (fig. 5.3). The device set

as root starts with address equal to zero and kickstart the tree generation by provisioning

the neighboring nodes.

All the other devices start with address 0xFFFF and proceed to the Advertise state.
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Figure 5.3: State diagram of the suggested BLE tree routing service.

Address Provisioning

This state is used to expand the network. The node starts by scanning the neighboring

advertising devices. For each device with address 0xFFFF discovered, the scanning

device establish a connection as master and assign an address to the slave by writing

the ownAddr characteristic of the unprovisioned device. The address is calculated as

(ownAddr ∗ 10) + i, where i is a 1byte variable that tracks the number of children, and

is incremented at every iteration; this makes for an easy identification of parent node and

children nodes. By using two byte for the address, one tree can include up to 65535

devices over six levels.

When there are no more neighboring unprovisioned devices, the node proceed to the

Advertise state.

Advertise

At this state the node advertise his address to the neighboring devices, waiting for a

connection to be assigned an address or to receive a message. When a master device

establishes a connection, the node transitions to the Connected as Slave state. If no
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connection happens before the advertising timeout  which is a parameter to be tuned 

the device goes to the Check Message Buffer state.

Connected as Slave

When a node is connected as a slave, it waits for the master to disconnect. At this point

it checks if the values of its characteristics have changed:

• If the newMsg characteristic is set to 0x10 it means that the node has just received

a message. The node checks the destination address of the message:

– If the destination address corresponds to the node own address, then the mes

sage has reached its destination. The node handles the message and then

goes to the Check Message Buffer state;

– If the destination address is different from the node own address, the message

goes to the Forward Message state, in order to send the message to the next

node.

• If the newMsg characteristic is set to 0x11, it means that the master has provisioned

the node with a new address. The node transition to the Address Provisioning state

to continue the generation of the tree;

• If none of the above, the node goes back to the Advertise state.

Forward Message

While in this state, the goal of the node is to forward the message to the next device. The

node scan the neighboring devices. The structure of the tree makes routing easy, since

there is only one path that connects two nodes.

• If the destination is at a higher level of the tree  this can be checked easily by

verifying that dstAddr < ownAddr, then the node must forward the message to its

parent. That is, the device whose address is equal to ownAddr/10;

• If the destination is at a lower level, then the node must find, amongst its children,

the only one who could be an ancestor of the destination address. Let nd be 1

plus the number of digits of the node own address. Then the node must forward the

message to the device whose address is equal to the first nd digits of the destination

address.

If such a device is found, the node establishes a connection asmaster, writes themessage
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in the msg characteristic of the slave and sets its newMsg flag to 0x10. Then transition

to the Advertise state. If the node is not able to find such device, it means that the latter

is not advertising, either because it’s no longer alive in the network, or likely because it is

trying to forward a message itself.

At this point, the node makes a random choice:

• with probability 0.5 it starts scanning again;

• with probability 0.5 it saves the current message on top of the message buffer, then

proceed to the Advertise state.

Check Message Buffer

The node simply check if the message buffer is empty:

• If the message buffer is empty it means that there are no messages to be forwarded.

The node transitions to the Advertise state;

• If the message buffer is not empty, it means that there is at least one message

waiting to be forwarded. The first message in the buffer is removed and stored into

memory, then the node transitions to the Forward Message state.

5.2.3 Messaging functionalities

The messaging functionalities offered by this implementation allow communication be

tween every pair of nodes in the network.

Standard communication can only happen between ancestors and descendants, and

reachability can be easily computed by comparing the node address with the destina

tion address: whenever a node receives a message destined to an unreachable node  a

node that is neither a descendant or an ancestor  the message is discarded. However,

such unreachable nodes can be reached by passing through the root in a way that is

called forwarding communication.

This thesis propose some basic messaging functionalities, which can be expanded to ac

commodate different applications. These functionalities are defined by the OP codes in

the opcode 1byte field of every message (see Appendix A).

The most basic type of message is a Data Message, which is simply a message con

taining some 3byte data payload. This type of message requires no response from the

receiver. In WSN applications, sensor nodes can be set to send a Data Message to the

root node at a fixed time period.
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Data Request and Response

To request data from a node, a Data Request message can be sent. The reception of a

Data Request message will trigger the transmission of Data Response message. A Data

Response message is only sent in response of a Data Request message, and is sent to

the source address of the Data Request message.

Both Data Request and Data Response messages must be sent to descendants or an

cestors.

Forwarding Communication

Forwarding communication allows to send messages to every node in the network by

sending a message to the root: since every node is a descendant of the root, the latter

will be able to forward the message to every node in the network.

This thesis propose a data request and response communication mechanism that allows

a node to request data from every other node in the network in four steps (fig. 5.4):

Message transmission

Parent-child relationship 

0

1 2

0

1 2

0

1 2

0

1 2

Forwarded Data Request
source: 0
destination: 2
requester: 1

Forward Data Response
source: 2
destination: 0
forward: 1

Forwarded Data Response
source: 0
destination: 1
requestee: 2

Forward Data Request
source: 1
destination: 0
forward: 2

(1) (2)

(3) (4)

Figure 5.4: Four steps of forwarding communication
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(1) The requester sends a Forward Data Request to the root. The forwarding address,

that is the address of the requestee node, is stored in the message data field;

(2) The root receives the Forward Data Request and sends a Forwarded Data Request

to the forwarding address. The address of the requester is stored in the message

data field;

(3) The requestee node receives a Forwarded Data Request, which triggers the trans

mission of a Forward Data Response to the root. The requester address is stored

in the message field, along with the requested data  which must fit in 1 byte;

(4) the root receives the Forward Data Response and sends a Forwarded Data Re

sponse to the requester. The message data contains the requestee address and

the requested data.

Provisioning Request
A Provisioning Request message is a special kind of message which triggers the transition

to the Address Provisioning state in the receiver. A node which receives a Provisioning

Request message will resend the message to all of its children. This can be used to

expand the network, by making the root sending a Provisioning Request to all of its chil

dren when new nodes must be added to the network. In this way, the new nodes will

automatically be placed in the tree structure.

5.2.4 Tuning
The operation of the network can be tuned to accommodate different application by chang

ing the values of some parameters:

• Provisioning Scan Duration: it’s the duration of the scan during the Address Provi

sioning state, that is, the amount of time that a node spends looking for neighbouring

unprovisioned devices;

• Forwarding Scan Duration: it’s the duration of the scan during the Forward Message

state, that is, the maximum amount of time that a node spends looking for the next

hop to transmit a message  the scan stops as soon as the next hop is found;

• Advertising Duration: it’s the duration of the advertising during the Advertise state,

that is, the amount of time that a node spends advertising it’s address. This param

eter influences the most the operation of the network and ultimately bottleneck the

throughput of the nodes. A high value makes it easier to find and connect to a node

but decreases the message throughput, as buffered messages will sit in the buffer
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for the whole duration of the Advertise state. A low value will increase the throughput

but will make it difficult for other nodes to find and connect to each others;

• Keep Looking Probability: it’s the probability that a node in the Forward Message

state will stay in the Forward Message state when the next hop is not found. This

prevents a deadlock situation, whenever two nodes are both scanning looking for

each other, by making them randomly choose whether to keep scanning or adver

tising their address (see section 5.3.2).

The value of these parameters adopted by this implementation is illustrated in table 5.3

Table 5.3: Value of the tuning parameters

Parameter Value

Provisioning Scan Duration 500 ms

Forwarding Scan Duration 700 ms

Advertising Duration 4000 ms

Keep Looking Probability 50 %

5.3 Practical issues

5.3.1 Latency
The main issue with this implementation is that a connection must be established and

broken multiple times in order to deliver a message. The time required to scan, connect,

write and disconnect makes up for a greater latency with respect to other solutions, where

the devices keep their connection active. Unfortunately, the Toit platform does not imple

ment the possibility for a node to act as both a slave and a master yet.

5.3.2 Starvation
The network structure restrict a pair nodes to be involved in only one message exchange

at a time. A deadlock situation may happen if two nodes, both carrying a message, are

scanning the network looking for each other (fig. 5.5). The deadlock is avoided by making

the nodes randomly choose between storing the message and advertising or keep scan

ning, whenever they fail to find a receiver. However, this may cause “unlucky” nodes, who

never get a chance to connect as masters, to pile up undelivered messages, leading to

congestion in the network. If the nodes produce data at a quick rate this may lead to star
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vation, heavy delays and messages delivered in nonchronological order. This problem

can be partially solved by implementing a priority system that evaluates how much time a

message has spent in the buffer, how many time a node has failed to find a receiver and

the direction of message to influence the decision to keep looking for a receiver or going

back to advertising.

0

1

1211 13

2

122121

Scanning

Advertising

Figure 5.5: Deadlock situation where two nodes are both scanning, looking for

each other. Node 12 is scanning for node 1, in order to deliver a message to

the root; node 1 is scanning for node 12 in order to deliver a message to node

121. The passage between node 1 and 12 is blocked and all the messages

that need to cross it pile up.

5.3.3 Robustness and Security
This implementation does not take into account security concerns. The tree structure of

the network suffers from singlenode failure, meaning that if one single node becomes

inactive, the whole subtree of devices becomes unreachable. The network lacks self

healing capabilities, that is, it’s not able to rearrange itself to cope with nodes becoming

inactive. Although the messages are sent over data channels, the simple addressing

pattern allows for a device to insert itself in the network by guessing an address and

advertising it. Other than that, advertising nodes accept all connections, therefore an

attacker device can just connect to a random node and keep it occupied, blocking every

message from passing through.
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6 Evaluation
In this chapter the tree network implementation proposed in the previous chapter will be

evaluated in terms of time performances and functionalities.

6.1 Experimental Setup
The implementation will run on three M5Stack Core 2, which is a IoToriented device that

uses an ESP32 model D0WDQ6V3 as MCU. In addition to the feature of ESP32, the M5

device mounts a 2.0inch capacitive touch screen, USB typeC interface, RTC module

and a 390mAh battery.

These devices are programmed with Jaguar, a Toit application that uses the Toit VM to

update and restart the code on ESP32 over WiFi.

The network will be tested in three different configuration to evaluate the messaging func

tionalities (fig. 6.1), that is:

(1) Singlehop communication: direct communication between two nodes, i.e., parent

child communication;

(2) Multihop communication: communication between two nodes that are separated

by one or more level in the tree, i.e., ancestordescendant communication;

(3) Forwarding communication: communication between two nodes passing through

the root;

Latency between transmission from source node and reception at destination node will

be measured using the built in RTC module: the devices clock will be synchronized and

the timestamps at transmission and reception will be compared. The measurements are

taken in a network without traffic.

6.2 Singlehop communication
In this section the time performances of singlehop communications will be evaluated.

The tree network is composed of just two nodes.

6.2.1 Data Message
A node is set to send a simple Data Message to its parent node; the following time mea

surements are taken:
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Figure 6.1: Test tree configurations: (a) singlehop communication, (b) multi

hop communication and (c) forwarding communication.

• ∆t1 indicates the amount of time since when the message is buffered to when it is

removed from the buffer to be transmitted. This value is heavily influenced by the

Advertising Duration parameter and at which moment the message is buffered;

• ∆t2 indicates the amount of time that passes between transmission and reception,

that is the time since when a message is found in the buffer to when the parent node

receives it;

• ttot is the amount of time that passes since when a message is buffered to when the

parent node receives it, that is ∆t1 +∆t2.

The time measurements can be visualized in fig. 6.2.

6.2.2 Data Request and Response

A node is set to send a Data Request message to its parent node, which will send back a

Data Response message. The following time measurements are taken:

• ∆t1 indicates the amount of time since when the Data Request message is buffered

to when it is removed from the buffer to be transmitted, as before;
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Figure 6.2: Representation of the singlehop Data Message transmission time

measurements. It can be easliy seen that ∆t1 depends on the duration of the

Advertise state and at which moment the message is buffered. The duration

of the Check Message Buffer state is fixed, and the duration of the Forward

Message state is upper bounded by the Forwarding Scan Duration parameter

 since there is no traffic in the network, the destination node is always found

on the first try.

• ∆t2 indicates the amount of time that passes between the transmission of the re

quest and the reception of response, that is the time since when the Data Request

message is found in the buffer of the child node to when the Data Response mes

sage is received by the same node;

• ttot is the amount of time that passes since when a Data Request message is

buffered to when the corresponding Data Response message is received, that is

∆t1 +∆t2.

The time measurements can be visualized in fig. 6.3.

6.3 Multihop communication
In this section the time performances of multihop communications will be evaluated. The

tree network is composed of three nodes on three different levels.

6.3.1 Data Message
Node 11, on the second level, is set to send a simple Data Message to the the root; the

message will need to pass through the node 1, on level 1. The following time measure

ments are taken:

• ∆t1 indicates the amount of time since when the Data message is buffered to when
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Figure 6.3: Representation of the singlehop Data Request and Response

transmission time measurements.

it is removed from the buffer to be transmitted, as before;

• ∆t2 indicates the amount of time that passes between the transmission and recep

tion, that is the time since when the message is found in the buffer to when it is

received by the root;

• ttot is the amount of time that passes since when the request message is buffered

to when the root node receives it, that is ∆t1 +∆t2.

The time measurements can be visualized in fig. 6.4.
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Figure 6.4: Representation of the multihop Data Message transmission time

measurements.
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6.3.2 Data Request and Response
Node 11, on the second level, is set to send a Data Request message to the the root; the

message will need to pass through the node 1, on level 1. Upon reception, the root will

send back a Data Response message, destined to node 11. The following time measure

ments are taken:

• ∆t1 indicates the amount of time since when the Data Request message is buffered

to when it is removed from the buffer to be transmitted, as before;

• ∆t2 indicates the amount of time that passes between the transmission of the re

quest and the reception of response, that is the time since when the Data Request

message is found in the buffer of node 11 to when the Data Response message is

received by the same node;

• ttot is the amount of time that passes since when a Data Request message is

buffered to when the corresponding Data Response message is received, that is

∆t1 +∆t2.

The time measurements can be visualized in fig. 6.5.
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Figure 6.5: Representation of the multihop Data Request and Response trans

mission time measurements.

6.4 Forwarding communication
In this section the time performances of forwarding communications will be evaluated.

The tree network is composed of three nodes on two levels: the root and two child nodes,

1 and 2.
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Node 1 is set to send a Forward Data Request message to the root, with forward address

2. The root will receive the message and send a Forwarded Data Request message to

node 2. Upon reception, node 2 will send a Forward Data Response message to the root,

with forward address 1. The root will receive the message and send a Forwarded Data

Response message to node 1. The following time measurements are taken:

• ∆t1 indicates the amount of time since when the Forward Data Request message

is buffered to when it is removed from the buffer to be transmitted, as before;

• ∆t2 indicates the amount of time that passes between the transmission of the re

quest and the reception of response, that is the time since when the Forward Data

Request message is found in the buffer of node 1 to when the Forwarded Data

Response message is received by the same node;

• ttot is the amount of time that passes since when a Forward Data Request mes

sage is buffered to when the corresponding Forwarded Data Response message is

received, that is ∆t1 +∆t2.

The time measurements can be visualized in fig. 6.6.
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Figure 6.6: Representation of the Forward Data Request and Response trans

mission time measurements.

6.5 Results
The timemeasurements explained in the previous sections are reported in the table 6.1,ta

ble 6.2 and table 6.3 respectively.

Every messaging functionality has been tested over different number of messages: the

reason is explained in section 6.6
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Table 6.1: Singlehop communication time performances

∆t1

(ms)

∆t2

(ms)

ttot

(ms)

Max 4184 1978 5758

Min 97 1225 1550

Avg 1965 1591 3556

(a) Singlehop Data Message time perfor

mances over 40 messages

∆t1

(ms)

∆t2

(ms)

ttot

(ms)

Max 4020 3421 6881

Min 10 2421 2798

Avg 2166 2804 4970

(b) Singlehop Data Request and Response

time performances over 25 messages

Table 6.2: Multihop communication time performances

∆t1

(ms)

∆t2

(ms)

ttot

(ms)

Max 4033 3639 7276

Min 107 2319 2958

Avg 2856 2867 5723

(a) Multihop Data Message time perfor

mances over 20 messages

∆t1

(ms)

∆t2

(ms)

ttot

(ms)

Max 4027 5408 9396

Min 3519 5120 8705

Avg 3810 5270 9079

(b) Multihop Data Request and Response

time performances over 5 messages

Table 6.3: Forwarding communication time performances over 5 messages

∆t1

(ms)

∆t2

(ms)

ttot

(ms)

Max 3716 6827 10543

Min 478 5381 6072

Avg 3073 6065 9137

It can be easily noticed that ∆t1 is highly variable, as it depends entirely on how much

time of the Advertise state is left when the message is buffered, plus the short amount

of time required to inspect the message buffer and extract the first message. While the

former is upper bounded by the Advertising Duration parameter  4000 ms  the latter is
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expected to grow with the number of messages sitting in the buffer. The ∆t1 time is the

same for every type of message, as explained in the previous section.

The∆t2 time instead strongly depends on the number of hops that a message take before

reaching its final destination, plus a small overhead. This overhead is composed of the

time needed to find the next node, which is bounded by the Forwarding Scan Duration

parameter, plus the time needed to handle the message. The former is present in every

message hop, while the latter is present only in advanced messaging functionalities.

For example in table 6.2b the message goes through three nodes before reaching the

destination: after being sent by node 11 it goes through node 1, then node 0, then again

node 1, and finally it reaches node 11. Whenever the message is received by node 1,

it is immediately forwarded. Only when the message reaches the root, it require to be

handled, which means generating a response, buffer it, debuffer it and send it.

In table 6.3 the message still goes through three nodes, but the handling process is done

every time, which causes a little more overhead, and it is why the ∆t2 times are slightly

larger in the latter case.

This difference can be visually seen in figures fig. 6.5 and fig. 6.6.

While the time performances measured are no match for a system employing the official

Bluetooth Mesh implementation [100], the implementation proposed is still suitable for a

WSN where the nodes produce nontimesensitive data at large time intervals.

The latencies can be surely improved by keeping the connections alive during the entire

network operations, therefore greatly reducing the ∆t1 times, as well as the time needed

to find the next hop. However this possibility is not feasible at the current state of the Toit

platform.

6.6 Issues
All the messaging functionalities presented were tested, and work as intended. However,

the way the Toit VM manages the memory and the BLE resources of the device causes

the application to crash frequently, especially every time a message is received. These

crashes happens at different times during the run of the application: sometimes the ap

plication crashes at the beginning, other times it is able to run for tens of minutes before

crashing.

This problem becomemore frequent with the number of hops that amessage goes through,

and it is the reason behind the small number of test messages for multihop and forward

ing communication measurements.

60 Communication solution for IoT devices using the Toit programming language



The downside of the Toit platform is that the memory management is handled by the Toit

VM and its garbage collector, with little to no freedom left to the developer.

The reasons behind the crashes can also be blamed on the fact that the implementation of

BLE functionalities in Toit is at an infant state, barely up to the 4.0 Bluetooth specifications;

the same functionalities changed during the development of this project.
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7 Conclusion
In the previous chapter it was proposed a communication solution to achieve wireless

data exchange between devices without involving cloud connectivity, in a wireless sen

sor network scenario. The solution proposed is based on a tree structure and a simple

addressing pattern that allows for a quick routing algorithm without the need for routing ta

bles. The tree exploits BLE advertising channels for the routing process, while the actual

data is exchanged over data channel after a connection is established. The connections

between devices are established and kept up only in the event of data exchange.

The solution proposed was developed for running on Toitprovisioned ESP32 at the cur

rent state of the BLE functionalities implemented in the Toit platform.

The solution was tested in terms of functionalities and time performances. While all the

functionalities proposed work as intended, the application often crashes unpredictably

due to the memory and BLE resource management of the Toit VM.

Future updates of the Toit platform BLE implementation will allow to improve the proposed

solution by allowing the nodes to keep the connections active for the whole operation of

the network, decreasing the latency between message transmission and reception.

Despite the memory leakage issues in this particular application, the Toit platform is an

innovative solution when it comes to IoT development, that takes care of many thorny

aspect of microcontroller programming; the Toit language is easy to learn and to use. The

whole Toit framework is a highly functional alternative for IoT application that targets de

velopers and companies that cannot or do not want to invest the time and resources into

classical microcontroller development, which requires hardware and C language knowl

edge that are usually difficult to obtain. The team behind Toit is constantly at work to

update and improve their product, and they offer constant support over their webside and

Discord server.

The approach to IoT development taken by Toitware ApS will likely become more popular

as the Internet of Things will continue to spread.
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7 Conclusione
Nel capitolo precedente è stata proposta una soluzione di comunicazione per permet

tere lo scambio di dati wireless tra dispositivi senza l’utilizzo di connettività cloud, in uno

scenario di tipo wireless sensor netowrk. La soluzione proposta è basata su una strut

tura ad albero e su un semplice schema di indirizzamento che consentono l’utilizzo di

un algoritmo di routing rapido, che non necessita di routing table. La struttura ad albero

sfrutta i canali BLE di advertising per la fase di routing, mentre i dati veri e propri vengono

scambiati tramite i canali data, dopo aver stabilito una connessione. Le connessioni tra

dispositivi vengono stabilite e mantenute solo nell’eventualità di scambio dati.

La soluzione proposta è stata sviluppata per essere utilizzata su ESP32 provviste di

firmware Toit, all’attuale stato dell’implementazione delle funzionalità BLE da parte della

piattaforma Toit.

La soluzione è stata testata in termini di funzionalità e performance temporali. Nonostante

tutte le funzionalità proposte funzionano come previsto, l’applicazione soffre di crash fre

quenti e imprevedibili a causa della gestione della memoria e delle risorse BLE da parte

della macchina virtuale Toit.

Futuri aggiornamenti dell’implementazione BLE nella piattaforma Toit potranno migliorare

la soluzione proposta permettendo ai nodi di mantenere attive le connessioni durante tutto

il funzionamento del network, diminuendo la latenza tra trasmissione e ricezione.

Nonostante i problemi di gestione della memoria in questa particolare applicazione, la pi

attaforma Toit rappresenta una soluzione innovativa per lo sviluppo IoT; il linguaggio Toit

è facile da imparare ed utilizzare. L’intero framework Toit è una alternativa altamente fun

zionale per applicazioni IoT, mirata ad aziende e sviluppatori che non possono investire

tempo e risorse nel classico sviluppo software per microcontrollori, che richiede profonde

conoscenze dell’hardware e del linguaggio C, tipicamente difficili da ottenere. Il team di

etro Toit è costantemente al lavoro per aggiornare e migliorare il loro prodotto, e offrono

continuo supporto tramite il loro sito web e il loro server Discord.

L’approccio alternativo allo sviluppo IoT intrapreso da Toitware ApS diventerà probabil

mente molto popolare in futuro, con la incrementale diffusione dell’Internet delle Cose.
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A Message OP Codes
OP codes are used to define advanced messaging functionalities between nodes. This

thesis propose some basic message types and their receiving behaviours that can be

expanded to satisfy the requirement of the deployment.

Data Message
Consist of a simplemessage containing data. It is sent independently and does not require

a response from the receiver

Table A.1: Data Message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

destination address source address 0x00 message data

Data Request
A Data Request message is sent to a node in order to request a Data Response message.

The data payload field is left reserved: depending on the application, it can be used to

specify the type of data requested.

The message must be sent only to direct descendants and ancestors. To send a data

request to other nodes the forwarding functionality must be used.

Table A.2: Data Request message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

destination address source address 0x01 reserved

Data Response
A Data Response message is sent when a Data Request message is received. The

destination address is the source address of the Data Request. The data payload contains

the data requested.
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Table A.3: Data Response message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

destination address source address 0x02 requested data

Forward Data Request
A Forward Data Request message is sent to request data from a node that is not a de

scendant or an ancestor, therefore not reachable with a standard Data Request message.

The Forward Data Request message is sent to the root node, which will forward the re

quest to the recipient node, by sending a Forwarded Data Request message. The data

payload contains the requestee address, that is the address of the final recipient node.

The Byte 0 is left reserved: depending on the application, it can be used to specify the

type of data requested.

Table A.4: Forward Data Request message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0000

(root address)
requester address 0x03 requestee address reserved

Forwarded Data Request
When the root node receives a Forward Data Request message, it sends a Forwarded

Data Request to the requestee address. The requester address of the Forward Data

Request message is contained in the data payload field. The Byte 0 is the same Byte 0

of the corresponding Forward Data Request message.

Table A.5: Forwarded Data Request message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

requestee address
0x0000

(root address)
0x04 requester address reserved
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Forward Data Response

When a node receive a Forwarded Data Request message, it sends as a response a

Forward Data Response message. This message is sent to the root node, which will

forward it to the requester. The requester address is contained in the data payload. The

Byte 0 contains the requested data.

Table A.6: Forward Data Response message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0000

(root address)
requestee address 0x05 requester address requested data

Forwarded Data Request

When the root node receives a Forward Data Response it sends a Forwarded Data Re

sponse to the requester node. The requester address contained in the Forward Data Re

quest is not the destination address. The requestee address is the address of the node

that sent the Forwarded Data Request message. The Byte 0 contains the requested data.

Table A.7: Forwarded Data Response message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

requester address
0x0000

(root address)
0x06 requestee address requested data

Provisioning Request

The Provisioning Request message is used to trigger the Address Provisioning state in

order to expand the network. When a node receive a Provisioning Request message it

transition to the Address Provisioning state. Then it sends a Provisioning Request mes

sage to all its children nodes. The last three bytes are reserved.
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Table A.8: Provisioning Request message structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

destination address source address 0x07 reserved
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B Tree Message
The TreeMessage class defines a message object, which is exchanged by node during

the operation of the network. As seen before, a message is an 8byte data structure con

taining the source and destination addresses, the OP code and the message data.

In a TreeMessage object these four elements are stored as four separate ByteArrays  in

Toit, a ByteArray is a fixedlength list for 8bit unsigned integers.

The class provides two constructor to initialize a TreeMessage object, either by providing

a 8byte ByteArray in the format of a message, or by providing the four distinct field as

integer arguments.

The class provides dynamic getter methods to obtain source and destination addresses,

OP code and message data, as well as convenience static methods for conversion be

tween ByteArray and elements and vice versa, while taking care of endianess.

Before the class the OP codes are defined as constants

Listing B.1: TreeMessage class and constant definitions

1 /∗∗
2 Messages OPCODE
3 ∗/
4 DATA_MESSAGE : := 0x00
5 DATA_REQUEST : := 0x01
6 DATA_RESPONSE : := 0x02
7 FORWARD_DATA_REQUEST : := 0x03
8 FORWARDED_DATA_REQUEST : := 0x04
9 FORWARD_DATA_RESPONSE : := 0x05

10 FORWARDED_DATA_RESPONSE : := 0x06
11 PROVISIONING_REQUEST : := 0x07
12

13 NOT_A_TREE_MESSAGE_EXCEPTION : := ”The ByteArray i s not i n the
TreeMessage format ! ”

14

15 /∗∗
16 A message exchanged i n the t r e e network .
17 ∗/
18 class TreeMessage :
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19 s r cAddr / ByteArray :=?
20 dstAddr / ByteArray :=?
21 msg_data / ByteArray :=?
22 opcode / ByteArray :=?
23

24 /∗∗
25 Bu i l d a message by r e c e i v i n g d e s t i n a t i o n addre s s , s ou r c e addre s s ,

opcode and message data .
26 ∗/
27 constructor ds t / i n t s r c / i n t opc/ i n t data / i n t :
28 msg_data = data_to_bytea r ray data
29 dstAddr = addr_to_bytea r ray d s t
30 s r cAddr = addr_to_bytea r ray s r c
31 opcode = opcode_to_bytear ray opc
32

33 /∗∗
34 Bu i l d a message from the 8−byte b y t e a r r a y .
35 ∗/
36 constructor msg/ ByteArray :
37 if msg . s i z e != 8 :
38 throw NOT_A_TREE_MESSAGE_EXCEPTION
39 else :
40 dstAddr = msg [ . . 2 ]
41 s r cAddr = msg [ 2 . . 4 ]
42 opcode = msg [ 4 . . 5 ]
43 msg_data = msg [ 5 . . ]
44

45

46 /∗∗
47 Takes an i n t message data and r e t u r n the c o r r e s p o n d i n g 3−byte

b y t e a r r a y .
48 L i t t l e e n d i a n e s s i s used .
49 The data must be 3−byte long , t ha t i s data <= 0xFFFFFF .
50 ∗/
51 static data_to_bytea r ray data / i n t −> ByteArray :
52 byte_2 := ( data & BYTE_2_MASK) >> 16
53 byte_1 := ( data & BYTE_1_MASK) >> 8
54 byte_0 := ( data & BYTE_0_MASK)
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55

56 return #[byte_0 , byte_1 , byte_2 ]
57

58 /∗∗
59 Takes an i n t a d d r e s s and r e t u r n the c o r r e s p o n d i n g 2−byte b y t e a r r a y .
60 L i t t l e e n d i a n e s s i s used .
61 addr must be 2−byte long , t ha t i s addr <= 0xFFFF .
62 ∗/
63 static addr_to_bytea r ray addr / i n t −> ByteArray :
64 byte_1 := ( addr & BYTE_1_MASK) >> 8
65 byte_0 := ( addr & BYTE_0_MASK)
66

67 return #[byte_0 , byte_1 ]
68

69 /∗∗
70 Takes an i n t opcode and r e t u r n the c o r r e s p o n d i n g 1−byte b y t e a r r a y .
71 opc must be 1−byte long , t ha t i s addr <= 0xFF .
72 ∗/
73 static opcode_to_bytear ray opc/ i n t −> ByteArray :
74 byte_0 := opc & BYTE_0_MASK
75

76 return #[byte_0 ]
77

78

79 /∗∗
80 Takes a 4−byte a d v e r t i s i n g data and r e t u r n s the c o r r e s p o n d i n g i n t

a d d r e s s .
81 ∗/
82 static adv_data_to_address adv_data / ByteArray −> i n t :
83 return adv_data [ 2 ] + ( adv_data [3]<<8)
84

85 /∗∗
86 Takes a 2−byte b y t e a r r a y and r e t u r n s the c o r r e s p o n d i n g i n t a d d r e s s .
87 ∗/
88 static by t ea r r a y_to_add r e s s a r r a y / ByteArray −> i n t :
89 return a r r a y [ 0 ] + ( a r r a y [1]<<8)
90

91 /∗∗
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92 Returns the message 8−byte b y t e a r r a y .
93 ∗/
94 get_message_bytear ray −> ByteArray :
95 return #[dstAddr [ 0 ] , dstAddr [ 1 ] , s r cAddr [ 0 ] , s r cAddr [ 1 ] , opcode [ 0 ] ,

msg_data [ 0 ] , msg_data [ 1 ] , msg_data [ 2 ] ]
96

97 /∗∗
98 Returns the s ou r c e a d d r e s s o f the message .
99 ∗/

100 get_src_addr −> i n t :
101 return s r cAddr [ 0 ] + ( s rcAddr [1]<<8)
102

103 /∗∗
104 Returns the d e s t i n a t i o n a d d r e s s o f the message .
105 ∗/
106 get_dst_addr −> i n t :
107 return dstAddr [ 0 ] + ( dstAddr [1]<<8)
108

109 /∗∗
110 Returns the opcode o f the message .
111 ∗/
112 get_opcode −> i n t :
113 return opcode [ 0 ]
114

115 /∗∗
116 Returns the message data o f the message .
117 ∗/
118 get_msg_data −> i n t :
119 return msg_data [ 0 ] + ( msg_data [1]<<8) + ( msg_data [2] < <16)
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C Tree Node
The TreeNode class defines a node which takes part in a Tree network. A TreeNode

object is initialized with a boolean value, which indicates whether that node is the root.

The message buffer, the current and next state of the node, the number of children and

the current message that is being handled are stored as private fields.

A TreeNode object start operating with the method StartNetwork, which can only be called

once per node. This method launches a task  a Toit task is a block of code with an

independent control flow that takes turn to run  containing a while loop. In this while

loop, the 5state machine is implemented with separate functions, each function returns

an integer indicating which function  that is, which state  should be executed at the next

iteration.

The class also offers methods to obtain the address, the children and the current state of

the node.

A message is sent by inserting it in the message buffer, which will be checked in the next

Check Message Buffer state.

The class also contains a message handler function, which defines the behaviours upon

message reception, depending on the message OP code.

Before the class, the characteristics UUIDs, the states indicator, the tuning parameters,

the exceptions and other constants are defined.

Listing C.1: TreeNode class and constant definitions

1 TREE_MESSAGE_SERVICE : := b l e . uu id 0x8AEC
2 OWN_ADDRESS : := b l e . uu id 0x3082 // 2−byte
3 NEW_MSG : := b l e . uu id 0x936A // 1−byte
4 TREE_MSG : := b l e . uu id 0xE51C // 8−byte
5

6 STATE_INIT : := 0x01
7 STATE_ADDRESS_PROVISIONING : := 0x02
8 STATE_ADVERTISE : := 0x03
9 STATE_CHECK_MSG_BUFFER : := 0x04

10 STATE_FORWARD_MESSAGE : := 0x05
11

12 NEW_ADDRESS_RECEIVED : := 0x10
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13 NEW_MESSAGE_RECEIVED : := 0x11
14

15 PROVISIONING_SCAN_DURATION : := Dura t i on −−ms = 0_500
16 ADVERTISING_DURATION : := Dura t i on −−s = 4
17 FORWARDING_SCAN_DURATION : := Dura t ion −−ms = 0_700
18

19 ROOT_ADDR : := 0x0000
20 UNPROVISIONED_ADDRESS : := 0xFFFF
21

22 NEXT_HOP_NOT_FOUND_EXCEPTION : := ” Next hop not found ! ”
23 UNREACHABLE_ADDRESS_EXCEPTION : := ” D e s t i n a t i o n a d d r e s s i s

un r e a chab l e ”
24 NETWORK_ALREADY_STARTED_EXCEPTION : := ” This node a l r e a d y s t a r t e d the

network o p e r a t i o n ! ”
25

26 KEEP_LOOKING_PROBABILITY/ i n t : := 50
27

28 /∗∗
29 A node i n a t r e e network .
30 ∗/
31 class TreeNode :
32 mgs_buffer_ / L i s t := [ ]
33 i_ / i n t := 0
34 i s_ roo t_ / boo l
35

36 own_addr_ / i n t ? := null

37 curr_msg_ / TreeMessage ? := null

38 a l r e a d y _ s t a r t e d _ / boo l := false

39

40 next_state_ / i n t := ?
41 cu r r_s ta t e_ / i n t := STATE_INIT
42

43 /∗∗
44 Bu i l d a node by s p e c i f y i n g i f i t i s the r oo t o f the network .
45 Only one r oo t node i s a l l owed .
46 ∗/
47 constructor . i s_ roo t_ :
48
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49 if i s_ roo t_ :
50 next_state_ = STATE_ADDRESS_PROVISIONING
51 own_addr_ = ROOT_ADDR
52 else :
53 next_state_ = STATE_ADVERTISE
54 own_addr_ = UNPROVISIONED_ADDRESS
55

56 /∗∗
57 I f root , k i c k s t a r t s the network by l o o k i n g f o r n e i g h b o r s .
58 El se , a d v e r t i s e i t ’ s p r e s en c e i n the network .
59 ∗/
60 s t a r tNe two rk :
61 if a l r e a d y _ s t a r t e d _ :
62 p r i n t ”The network i s a l r e a d y s t a r t e d ! ”
63 return

64

65 a l r e a d y _ s t a r t e d _ = true

66

67 c o n f i g := b l e . S e r v e r C o n f i g u r a t i o n
68 t r e e M s g S e r v i c e := c o n f i g . add_s e r v i c e TREE_MESSAGE_SERVICE
69 ownAddr := t r e e M s g S e r v i c e . a d d _ r e a d _ w r i t e _ c h a r a c t e r i s t i c

OWN_ADDRESS
70 newMsg := t r e e M s g S e r v i c e . a d d _ r e a d _ w r i t e _ c h a r a c t e r i s t i c NEW_MSG
71 msg := t r e e M s g S e r v i c e . a d d _ r e a d _ w r i t e _ c h a r a c t e r i s t i c TREE_MSG
72

73 t a s k : :
74 while true :
75 if next_state_ == STATE_ADDRESS_PROVISIONING :
76 next_state_ = a d d r e s s _ p r o v i s i o n i n g
77 else if next_state_ == STATE_ADVERTISE :
78 next_state_ = a d v e r t i s e c o n f i g ownAddr newMsg msg
79 else if next_state_ == STATE_CHECK_MSG_BUFFER:
80 next_state_ = check_msg_buffer
81 else if next_state_ == STATE_FORWARD_MESSAGE:
82 next_state_ = forward_message
83

84 return

85
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86

87 /∗∗
88 Scan f o r n e i g h b o r i n g u n p r o v i s i o n e d d e v i c e s .
89 I f found any , i t changes t h e i r ownAddr c h a r a c t e r i s t i c .
90 ∗/
91 a d d r e s s _ p r o v i s i o n i n g −>i n t :
92

93 cu r r_s ta t e_ = STATE_ADDRESS_PROVISIONING
94 p r i n t ” S t a r t Addres s P r o v i s i o n i n g s t a t e ”
95

96 d e v i c e := b l e . Dev i ce . d e f a u l t
97 d e v i c e s := L i s t
98

99 d e v i c e . scan −−d u r a t i o n=PROVISIONING_SCAN_DURATION : | r emote_dev i ce
/ b l e . RemoteDevice |

100 if r emote_dev i ce . data . s e r v i c e _ c l a s s e s . c o n t a i n s
TREE_MESSAGE_SERVICE :

101 addr := TreeMessage . adv_data_to_address ( remote_dev i ce . data .
manufacture r_data )

102 if addr == UNPROVISIONED_ADDRESS and ( not d e v i c e s . c o n t a i n s
remote_dev i ce . a d d r e s s ) :

103 d e v i c e s . add ( remote_dev i ce . a d d r e s s )
104 p r i n t ”Found $remote_dev ice . a d d r e s s ”
105

106 p r i n t ” Scan t e rm ina t ed ! ”
107 if d e v i c e s . i s_empty :
108 p r i n t ”No d e v i c e s found ! ”
109 d e v i c e . c l o s e
110 return own_addr_ == ROOT_ADDR ? STATE_ADDRESS_PROVISIONING :

STATE_ADVERTISE
111

112 c l i e n t s := L i s t
113 d e v i c e s . do : | a d d r e s s |
114 e := catch :
115 c l i e n t := d e v i c e . connect a d d r e s s
116 c l i e n t s . add c l i e n t
117 p r i n t ” Connected to $add r e s s ”
118 if e :
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119 continue . do

120

121 c l i e n t s . do : | c l i e n t |
122 s e r v i c e := c l i e n t . r e a d _ s e r v i c e TREE_MESSAGE_SERVICE
123 addr_char := s e r v i c e . r e a d _ c h a r a c t e r i s t i c OWN_ADDRESS
124 new_msg_char := s e r v i c e . r e a d _ c h a r a c t e r i s t i c NEW_MSG
125 i_ = i_ + 1
126 next_addr := ( own_addr_ ∗10) + i_
127 p r i n t ” P r o v i s i o n e d $ c l i e n t . a d d r e s s w i th a d d r e s s $(%x next_addr ) ”
128 addr_char . w r i t e _ v a l u e ( TreeMessage . addr_to_bytea r ray next_addr )
129 new_msg_char . w r i t e _ v a l u e #[NEW_ADDRESS_RECEIVED]
130

131 d e v i c e . c l o s e
132 return STATE_ADVERTISE
133

134 /∗∗
135 A d v e r t i s e i t ’ s add re s s , w a i t i n g f o r a c l i e n t conne c t i on .
136 ∗/
137 a d v e r t i s e c o n f i g / b l e . S e r v e r C o n f i g u r a t i o n ownAddr/ b l e .

R e a d W r i t e C h a r a c t e r i s t i c newMsg/ b l e . R e a d W r i t e C h a r a c t e r i s t i c msg/
b l e . R e a d W r i t e C h a r a c t e r i s t i c :

138

139 cu r r_s ta t e_ = STATE_ADVERTISE
140 p r i n t ” S t a r t A d v e r t i s i n g s t a t e w i th a d d r e s s $own_addr_”
141

142 d e v i c e / b l e . Dev i ce ? := null

143 try :
144 d e v i c e = b l e . Dev i ce . d e f a u l t c o n f i g
145 a d v e r t i s e r := d e v i c e . a d v e r t i s e
146 data := b l e . Adver t i s ementData
147 −−name=” t o i t _ d e v i c e ”
148 −−s e r v i c e _ c l a s s e s =[TREE_MESSAGE_SERVICE ]
149 −−manufacture r_data=#[0xFF , 0xFF , ( TreeMessage .

add r_to_bytea r ray own_addr_ ) [ 0 ] , ( TreeMessage .
add r_to_bytea r ray own_addr_ ) [ 1 ] ]

150

151 a d v e r t i s e r . s e t_data data
152 a d v e r t i s e r . s t a r t −−connect ion_mode=b l e .

Communication solution for IoT devices using the Toit programming language 85



BLE_CONNECT_MODE_UNDIRECTIONAL
153

154 r e c e i v e d / i n t ? := null

155

156 t imeout := catch :
157 with_t imeout (ADVERTISING_DURATION) : d e v i c e .

wa i t _ f o r _ c l i e n t_ co n ne c t e d
158

159 if t imeout :
160 p r i n t ” A d v e r t i s i n g t imeout r eached ”
161 a d v e r t i s e r . c l o s e
162 d e v i c e . c l o s e
163 return own_addr_ == UNPROVISIONED_ADDRESS ? STATE_ADVERTISE :

STATE_CHECK_MSG_BUFFER
164 else :
165 p r i n t ” Connected as s l a v e ”
166 r e c e i v e d = newMsg . v a l u e [ 0 ]
167 d e v i c e . w a i t _ f o r _ c l i e n t _ d i s c o n n e c t e d
168 if r e c e i v e d == NEW_MESSAGE_RECEIVED:
169 curr_msg_ = TreeMessage msg . v a l u e
170 a d v e r t i s e r . c l o s e
171 d e v i c e . c l o s e
172

173 if curr_msg_ . get_dst_addr == own_addr_ :
174 t ime := ( Time . now . p l u s −−h=2) . l o c a l
175 p r i n t ” Message r e c e i v e d at t ime $(%02d t ime . h ) : $(%02d t ime

.m) : $(%02d t ime . s ) : $(%03d t ime . ns /1000000) ”
176 return message_hand le r curr_msg_
177

178 else :
179 return STATE_FORWARD_MESSAGE
180

181 else if r e c e i v e d == NEW_ADDRESS_RECEIVED:
182 own_addr_ = TreeMessage . b y t e a r r a y_to_add r e s s ownAddr . v a l u e
183 p r i n t ” P r o v i s i o n e d wi th a d d r e s s $own_addr_”
184 a d v e r t i s e r . c l o s e
185 d e v i c e . c l o s e
186 return STATE_ADDRESS_PROVISIONING
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187

188 a d v e r t i s e r . c l o s e
189 d e v i c e . c l o s e
190 return STATE_ADVERTISE
191 finally :
192 if d e v i c e : d e v i c e . c l o s e
193

194 /∗∗
195 Check message b u f f e r i f t h e r e a r e messages w a i t i n g to be s en t .
196 ∗/
197 check_msg_buffer −>i n t :
198 cu r r_s ta t e_ = STATE_CHECK_MSG_BUFFER
199 p r i n t ” S t a r t Check Message B u f f e r s t a t e ”
200

201

202 if mgs_buffer_ . is_empty :
203 p r i n t ”No messages i n message b u f f e r ”
204 return STATE_ADVERTISE
205

206 else :
207 p r i n t ” $mgs_buffer_ . s i z e message ( s ) i n the b u f f e r ”
208 curr_msg_ = mgs_buffer_ . f i r s t
209 mgs_buffer_ = mgs_buffer_ [ 1 . . ] . copy
210 t ime := ( Time . now . p l u s −−h=2) . l o c a l
211 p r i n t ” Message d e b u f f e r e d at t ime $(%02d t ime . h ) : $(%02d t ime .m) :

$(%02d t ime . s ) : $(%03d t ime . ns /1000000) ”
212

213 return STATE_FORWARD_MESSAGE
214

215 /∗∗
216 Forward a message i n the t r e e network .
217 I f the nex t node i n the path i s not found , i t randomly choose s

between keep l o o k i n g
218 or go ing back to a d v e r t i s i n g
219 ∗/
220 forward_message −>i n t :
221

222 cu r r_s ta t e_ = STATE_FORWARD_MESSAGE
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223 p r i n t ” S t a r t Forward Message s t a t e ”
224

225 next_hop := ?
226

227 if own_addr_ > curr_msg_ . get_dst_addr :
228 // Going up .
229 next_hop = own_addr_/10
230

231 else :
232 // Going down .
233 d s t _ l v l := l e v e l curr_msg_ . get_dst_addr
234 n e x t _ l v l := ( l e v e l own_addr_ ) + 1
235 next_hop = curr_msg_ . get_dst_addr / ( ( math . pow 10 ( d s t _ l v l −

n e x t _ l v l ) ) . t o_ in t )
236

237 if not i s _ r e a c h a b l e next_hop :
238 throw UNREACHABLE_ADDRESS_EXCEPTION
239

240 d e v i c e / b l e . Dev i ce ? := null

241 next_hop_addr := null

242 try :
243 d e v i c e = b l e . Dev i ce . d e f a u l t
244 s can_e r r := catch :
245 next_hop_addr = f ind_next_hop d e v i c e next_hop
246 if s can_e r r :
247 p r i n t ” $ scan_e r r ”
248 c h o i c e := random 1 101
249 if c h o i c e <= KEEP_LOOKING_PROBABILITY :
250 p r i n t ”Random c h o i c e : keep l o o k i n g f o r nex t hop”
251 d e v i c e . c l o s e
252 return STATE_FORWARD_MESSAGE
253 else :
254 p r i n t ”Random c h o i c e : go back to a d v e r t i s e ”
255 tmp := [ curr_msg_ ]
256 mgs_buffer_ . do : | i t |
257 tmp . add i t
258 mgs_buffer_ = tmp . copy
259 d e v i c e . c l o s e
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260 return STATE_ADVERTISE
261 else :
262 c l i e n t / b l e . C l i e n t ? := null

263 e := catch :
264 c l i e n t = d e v i c e . connect next_hop_addr
265 p r i n t ” connected to $ c l i e n t . a d d r e s s ”
266 if e :
267 p r i n t ” E r r o r $e . . Try ing aga in . . . ”
268 return STATE_FORWARD_MESSAGE
269

270 s e r v i c e := c l i e n t . r e a d _ s e r v i c e TREE_MESSAGE_SERVICE
271 msg_char := s e r v i c e . r e a d _ c h a r a c t e r i s t i c TREE_MSG
272 new_msg_char := s e r v i c e . r e a d _ c h a r a c t e r i s t i c NEW_MSG
273 msg_char . w r i t e _ v a l u e curr_msg_ . get_message_bytear ray
274 new_msg_char . w r i t e _ v a l u e #[NEW_MESSAGE_RECEIVED]
275 return STATE_ADVERTISE
276

277 finally :
278 if d e v i c e : d e v i c e . c l o s e
279

280

281 f ind_next_hop d e v i c e / b l e . Dev i ce next_hop / i n t :
282 d e v i c e . scan −−d u r a t i o n=FORWARDING_SCAN_DURATION: | r emote_dev i ce /

b l e . RemoteDevice |
283 if r emote_dev i ce . data . s e r v i c e _ c l a s s e s . c o n t a i n s

TREE_MESSAGE_SERVICE :
284 addr := TreeMessage . adv_data_to_address ( remote_dev i ce . data .

manufacture r_data )
285 if addr == next_hop :
286 p r i n t ” nex t hop ( $next_hop ) found : $ remote_dev ice . a d d r e s s ”
287 return r emote_dev i ce . a d d r e s s
288

289 throw NEXT_HOP_NOT_FOUND_EXCEPTION
290

291 /∗∗
292 I n s e r t a message i n the message b u f f e r .
293 ∗/
294 send_message msg/ TreeMessage :
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295 mgs_buffer_ . add msg
296 return

297

298 /∗∗
299 Returns the c u r r e n t a d d r e s s o f the node .
300 ∗/
301 ge t_add re s s −> i n t :
302 return own_addr_
303

304 /∗∗
305 Returns the number o f c h i l d r e n o f the node .
306 ∗/
307 ge t_ i −>i n t :
308 return i_
309

310 /∗∗
311 Returns a l i s t o f the a d d r e s s o f the c h i l d r e n .
312 ∗/
313 g e t _ c h i l d r e n −>L i s t :
314 c h i l d r e n := L i s t
315 i_ . r e p e a t : | i |
316 c h i l d r e n . add ( own_addr_ ∗10) + i
317

318 return c h i l d r e n
319

320 /∗∗
321 Returns the c u r r e n t s t a t e o f the node ( Address p r o v i s i o n i n g ,

a d v e r t i s i n g , check i ng message b u f f e r , f o r w a r d i n g message )
322 ∗/
323 ge t_ s t a t e −>i n t :
324 return cu r r_s ta t e_
325

326 /∗∗
327 Message h a n d l e r f u n c t i o n . I t i s c a l l e d when a node r e c e i v e a message

wi th dstAddr == ownAddr .
328 ∗/
329 message_hand le r msg/ TreeMessage :
330 opc := msg . get_opcode
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331 if opc == DATA_MESSAGE:
332 data := msg . get_msg_data
333 p r i n t ” r e c e i v e d $data from $msg . get_src_addr ”
334

335 if opc == DATA_REQUEST:
336 p r i n t ” Rece i v ed Data Request from $msg . get_src_addr ”
337 // data_re sponse := get_data
338 data_re sponse := random 0 0xFFFFFF
339 r e s p o n s e := TreeMessage msg . get_src_addr own_addr_ DATA_RESPONSE

data_re sponse
340 send_message r e s p o n s e
341 p r i n t ” Sent $data_response as r e s p o n s e to $msg . get_src_addr ”
342

343 if opc == DATA_RESPONSE:
344 data := msg . get_msg_data
345 p r i n t ” Rece i v ed $data as r e s p o n s e from $msg . get_src_addr ”
346

347 if opc == FORWARD_DATA_REQUEST:
348 fwd_addr := msg . get_msg_data & 0x00_00_FF_FF
349 r e s p o n s e := TreeMessage fwd_addr own_addr_

FORWARDED_DATA_REQUEST msg . get_src_addr
350 if i s _ r e a c h a b l e fwd_addr :
351 send_message r e s p o n s e
352 p r i n t ” Forwarded DATA REQUEST from $msg . get_src_addr to

$fwd_addr ”
353 else :
354 throw UNREACHABLE_ADDRESS_EXCEPTION
355

356 if opc == FORWARDED_DATA_REQUEST:
357 rec_addr := msg . get_msg_data
358 p r i n t ” Rece i v ed fo rwa rd data r e q u e s t from $rec_addr ”
359 // data_re sponse := get_data
360 data := random 0 0xFF
361 r e s p o n s e := TreeMessage ROOT_ADDR own_addr_

FORWARD_DATA_RESPONSE ( rec_addr + ( data <<16))
362 send_message r e s p o n s e
363 p r i n t ” Sent $data as fo rwa rd r e s p o n s e to $rec_addr ”
364
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365 if opc == FORWARD_DATA_RESPONSE:
366 fwd_addr := msg . get_msg_data & 0x00_00_FF_FF
367 data := msg . get_msg_data>>16
368 r e s p o n s e := TreeMessage fwd_addr own_addr_

FORWARDED_DATA_RESPONSE (msg . get_src_addr + ( data <<16))
369 if i s _ r e a c h a b l e fwd_addr :
370 send_message r e s p o n s e
371 p r i n t ” Forwarded DATA RESPONSE from $msg . get_src_addr to

$fwd_addr ”
372 else :
373 throw UNREACHABLE_ADDRESS_EXCEPTION
374

375 if opc == FORWARDED_DATA_RESPONSE:
376 rec_addr := msg . get_msg_data & 0x00_00_FF_FF
377 data := msg . get_msg_data>>16
378 p r i n t ” Rece i v ed $data as fo rwa rd r e s p o n s e from $rec_addr ”
379

380 if opc == PROVISIONING_REQUEST :
381 ” S t a r t i n g a d d r e s s p r o v i s i o n i n g t r i g g e r e d by r e q u e s t from $msg .

get_src_addr ”
382

383 c h i l d r e n := g e t _ c h i l d r e n
384 c h i l d r e n . do : | c |
385 tmp := TreeMessage c own_addr_ PROVISIONING_REQUEST 0
386 send_message tmp
387 return STATE_ADDRESS_PROVISIONING
388 return STATE_CHECK_MSG_BUFFER
389

390 /∗∗
391 Given a d e s t i n a t i o n addre s s , r e t u r n s whether t ha t a d d r e s s i s

r e a c h a b l e from t h i s node .
392 That i s , i f t h a t a d d r e s s i s e i t h e r a descendant or an a n c e s t o r o f

t h i s node .
393 ∗/
394 i s _ r e a c h a b l e dst_addr / i n t −>boo l :
395

396 l v l _ d i f f := ( ( l e v e l dst_addr ) − ( l e v e l own_addr_ ) ) . abs
397
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398 if own_addr_ < dst_addr :
399 return own_addr_ == ( dst_addr / ( ( math . pow 10 l v l _ d i f f ) . t o_ in t ) )
400 else :
401 return dst_addr == ( own_addr_ /( ( math . pow 10 l v l _ d i f f ) . t o_ in t ) )
402

403

404 /∗∗
405 Conven ience method .
406 Returns the t r e e l e v e l o f a node g i v en i t s node a d d r e s s .
407 Correspond to the number o f d i g i t s o f the addre s s , e x c ep t f o r the root

, which has l e v e l 0 .
408 a d d r e s s must be a p o s i t i v e i n t e g e r < 65535 .
409 ∗/
410 l e v e l a d d r e s s / i n t −> i n t :
411 6 . r e p e a t : | l v l |
412 if a d d r e s s / ( ( math . pow 10 l v l ) . t o_ in t ) == 0 :
413 return l v l
414

415 return −1
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Toit is a new objectoriented programming language for microcontrollers. The Toit virtual machine

enables multiple independent apps to run sidebyside through softwarebased fault isolation. Toit

is being developed as open source by the Danish company Toitware ApS, which collaborates with

DTUCompute in the EU project TRANSACT. Although there are a plethora of programming solutions

for IoT devices, they typically either involve lowlevel programming or their highlevel programming

requires too many resources. The objective of the thesis is to develop a communication solution for

IoT devices using the Toit language. The solution proposed in this thesis is a treebased network

that allows devices to exchange data over Bluetooth Low Energy data channels without involving

cloud connectivity.
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