
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in Automation Engineering

Development of a real-time Motion

Cueing Algorithm based on Nonlinear

Model Predictive Control techniques

Supervisor Master Candidate
Prof. Ing. Alessandro Beghi Silvia Fano
Università di Padova

Co-supervisors
Ing. Mattia Bruschetta
Dott. Ing. Enrico Picotti
Università di Padova

16 December 2019 - Academic Year 2018/ 2019

ii

Abstract

Dynamic driving simulators are nowadays a common tool in the automotive field. The effec-
tiveness of such devices is strictly related to the quality of the driver’s motion experience. The
limited operational space does not allow a one-to-one reproduction of the vehicle behaviour,
hence Motion Cueing Algorithms are necessary to generate a realizable set of control inputs
to the platform, transforming the motion of a real vehicle into platform motions. The goal of
this work is to develop aMotion Cueing Algorithm based onModel Predictive Control, which
generate a trajectory that minimize a cost function, while not exceeding the simulator limits,
exploiting the prediction of the future linear accelerations and angular velocities on the driver’s
head. Demonstrations of how the weighting matrices of the cost function affect the platform
behaviour are provided, and considerations about computational time are made. Later, two re-
ceding horizon strategies are presented, with the aim to decrease the computational burden. A
valuable MPC-based MCA requires a prediction horizon wide enough to anticapiate and pre-
vent limits violation, thus maximizing the platform capabilities. In the last part of this thesis a
proof of how the prediction window length affect the algorithm performances is given.

iii

iv

Contents

Abstract iii

1 Introduction 1

2 Driving simulator andMotion Cueing Algorithms 3
2.1 History of driving simulators . 4
2.2 Classical Motion Cueing Algorithms . 6

3 MPC basedMotion Cueing Algorithms 9
3.1 Advantages of MPC . 10
3.2 Theory of MPC . 10
3.3 Process model . 12
3.4 Cost function . 13
3.5 Constraints . 14
3.6 Mathematical formulation . 14
3.7 Optimization . 19

4 Hexapod Stewart platform 21
4.1 Geometry and workspace . 21
4.2 Kinematic model . 22

5 Implementation usingMATMPC 29
5.1 Constraints . 29
5.2 Cost function . 30

6 Results 33
6.1 Importance of the prediction horizon length to stabilize the algorithm 33
6.2 Washout and tilt coordination effects . 36
6.3 Computational time . 39
6.4 Influence of the prediction horizon length in the algorithm performances . . 43

7 Discussion and future works 47

References 49

v

vi

1
Introduction

The role of driving simulators has become increasingly important in recent years, thanks to the
great variety of fields in which they operate [1]. Originally, simulators weremainly employed in
the racing area, useful for driver training and vehicle set-up. Nowadays, they represent an essen-
tial device for engineering applications, since they facilitate the planning of road infrastructures
and vehicles, by the design and the test of the interior of the car and the human-machine inter-
face, allowing to savemoney and time. They are also involved inmany research topics addressed
to medical rehabilitation, driving assistance, security control systems, driving in critical condi-
tions, emergency maneuvers and strategies to avoid accident. Moreover, driving simulators are
crucial for studies about driver behaviour in rare or dangerous situations, such as the effects
of tiredness and drugs, or driver distractions. The aim of a driving simulator is to reproduce
the cues that the driver would perceive in a real car, by means of visual and auditory feedback
in the case of static simulators, or adding the inertial stimulus in dynamic simulators. Hence,
the effectiveness of these devices is measured by the quality of the driver’s motion experience.
In the dynamic case, since the limited platform operational space does not allow a one-to-one
reproduction of the vehicle behaviour, a determinant role is played by the Motion Cueing Al-
gorithms (MCAs). In their classical approach, MCAs make use of a combination of high-pass
and low-pass filters [2] [3]: the former extract the fast dynamics and reproduce the related accel-
erations by means of small linear displacements, while the latter reproduce the low-frequency
motions by the use of tilt coordination, i.e. the tilt of the platform to exploit the gravity force.
This method, however, presents some disadvantages. First of all, the tuning phase is a difficult
and non-intuitive process, since the parameters to be tuned do not have physical meaning, and
also small changes in the values may translate in unexpected behaviour of the platform. More-
over, the platform constraints cannot be explicitly dealt, so parameters have to be tuned taking
into account the worst-case motion, thus not exploiting the available workspace.

1

To overcome these issues, modern MCAs exploit the Model Predictive Control (MPC) tech-
nique [4][5][6], whose key properties are:

• it is model-based, so the controller can deal with the entire dynamics. Moreover, models
of the human perception system can be adopted;

• it is a predictive technique, so the controller can anticipate the platform maneuvers, pre-
venting constraints violation;

• the control input is calculated through the minimization of a cost function, and the tun-
able parameters are clearly associated to physical quantities;

• constraints canbe explicitly declared, and this allows tobest exploit theplatformworkspace.

The goal of this thesis is to develop a MPC-based motion cueing algorithm for a dynamic
driving simulator consisting of a Hexapod Stewart Platform [7][8]. The kinematic model of
the platform is implemented, imposing constraints on legs lengths, velocities and accelerations.
Great attention is paid to the tuning phase. Later, considerations about computational time
and how constraints treatment affects it are made, discussing two receding horizon strategies to
decrease computational burden.
In details, the thesis is organized as follows:

• Chapter 2 is divided in two parts. The first part introduces driving simulators, with a
description of their fidelity-based classification and an overview of the main application
fields. History and development of simulators are briefly presented. In the second part
the most important classical motion cueing algorithms are described.

• Chapter 3 illustrates the model predictive control techniques for motion cueing algo-
rithms, highlighting its advantages and themost important differenceswith classicalMCAs.
The theory and themain features behind themethod, together with its mathematical im-
plementation, are deeply described.

• Chapter 4 analyzes the kinematicmodel of the hexapod Stewart platform, with a detailed
description of the geometry of the simulator and of the constraints on legs lengths, veloc-
ities and accelerations.

• Chapter 5 concerns the implementation inMATLABof theMPCprocess, togetherwith
the description of the constraints relaxation and the utilized cost function.

• Chapter 6 shows the simulation results, investigating how the tunable parameters affects
the algorithm performances. Different strategies to decrease the computational time are
introduced.

• Chapter 7 provides a recap of the work, and concluding remarks are given. At last, some
considerations about possible future investigations are made.

2

2
Driving simulator andMotion Cueing

Algorithms

The aim of motion simulation is the reproduction, in a virtual environment, of the stimuli and
perceptions that a driver would feel in a real vehicle. To best meet the needs of this task, the
driver has to receive visual, acoustic, vestibular and haptic information, named cues.

Motion simulators are classified according to fidelity [1]:

• Low-level simulator consists of a seat fixed to the ground and a fixed screen, with the
view angle as large as possible. The driver receives force feedback from steering wheels
and pedals, in addition to audio feedback;

• Mid-level simulator includes a car that can accelerate in one direction (often along y or
x-axis or around z-axis) and a screen that can be fixed or can move together with the car.
Audio and force feedback is given to the driver;

• High-level simulator is composed by a payload actuated in at least 6DOF, but redundant
DOF can be introduced to allow longer planar excursions. Graphics projected cover a
view angle of at least 220◦.

Driving simulators are employed in many and different areas of use, shortly described in the
following.

Entertainment

This field, whichmainly includes video games, employs fix screen simulators with atmost 0 or 1
DOF. The work of military and entertainment industries increases the benefit of the low-level
simulators, thanks to technical development which leads to higher fidelity systems.

3

Research

Driving simulators play a fundamental role in research, facilitating the planning of road infras-
tructures or the design and test of the interior of the car and the human-machine interface. In
addition to this, they allow studies about driver behaviour in situations which are dangerous to
reproduce, such as the effects of tiredness and drugs or driver distractions.

Training

The use of driving simulators for training sessions results to be advantageous for many reasons.
They can be economical in cases when the real vehicle is too expensive, and they allow training
in a risk-free situation, in which it is possible to monitor and advise students.

In the following, a general overview of the development of the simulators is presented, and then
classical motion cueing algorithms are briefly proposed.

2.1 History of driving simulators

The birth of the motion simulator dates back at the beginning of the 20th century in the flight
simulation field, to cope with the large cost of repair due to heavy landings by student.
In 1909 the Antoinette company starts producing complete aircraft by their own design [9],
but the operation for the control was not easy and after some crashes the company developed a
simulator to teach pilots to generate the correct maneuvers. The first simulator, shown in Fig.
2.1, comprised two halves of a barrel connected by a flexible joint, with one half forming a base
and the other a cockpit. The cockpit was moved manually by the instructor, while the student
used the control to correct the roll and pitch of the simulator and line up a reference bar with
the horizon.

Figure 2.1: First moঞon simulator created by the Antoine�e company

4

An important turning point in the history of the simulator coincides with the introduction
of theGough-Stewart Platform. In 1962 Stewart, starting from the idea ofGough, designed the
parallel 6DOF system, consisting of two platforms and six actuators. The structure, also called
hexapod, is composed of a fixed base, a moving top platform and moving, independent actua-
tors, attached in pairs to three positions on the base, crossing over to three attachment point on
the top disk. The kinematic structure of the hexapod allowsmovement of the payload following
the 6 degrees of freedom, great accuracy in the positioning and satisfactory high acceleration of
the platform.

The use of hydraulic actuation, typical of the first simulators, has been replaced by the develop-
ment of electric technology, which led to an improvement in the driving simulation experience.
In the following some of the most high-level fidelity simulators are introduced:

Volkswagen: In the early 70s, Volkswagen built the first driving simulator, composed by a car
moving by a roll, pitch, and yaw mechanism, i.e. a 3DOF simulator. The driver received visual
inputs from a flat screen situated in front of the seat.

IFAS: In 1984 IFAS produced a 1DOF simulator, moving on a hydraulically driven y-sled.
The visuals were projected in a box in front of the driver.

VTI: In 1984 the SwedishRoad andTrafficResearch Institute VTI created a 4DOF simulator,
a half car mounted on a motion platform that can accelerate in roll, pitch and yaw, on a y-sled.
The simulatorwas equippedwith a fixed screen. In 2004VTI increased the size of the simulator,
also adding a vibration table, to reproduce high frequent road rumbles.

Daimler-Benz: In 1985 Daimler-Benz introduced the first simulator that can be driven in
6DOF. It was an hydraulic hexapod, with a car situated inside a dome. Moreover, six CRT pro-
jectors display a 180◦ field of view. In 1993 the simulator improved due to an extension of the
motion system in lateral direction.

JARI,Nissan: JARI and Nissan, respectively in 1996 and 1999, built a 6DOF hydraulic
simulator. The hexapod, equipped with three additional cylinders, attaches the payload at the
height of the driver’s head, since the idea is that it is easier to tilt the payload around the driver’s
vestibular system.

NADS-1: In 2002 theNorth AmericanDriving Simulator is themost advanced driving simu-
lator. It is a 9DOF driving simulator, consisting of an hexapod mounted on a xy-table. On the
top of the hexapod there is a yaw turntable, which provides yaw-accelerations and supported a
dome with a full-size car inside.

UoLDS: Since 2006, the simulator ofUniversity of LeedsDriving Simulator is one of themost
advanced driving simulators in research environment. In particular it is employed in intelligent
speed adaptation and effects of automated systems on safety.

5

2.2 ClassicalMotion Cueing Algorithms

Although in the last decades driving simulators have reached a considerable level of realism,
thanks to advanced graphic systems, good real-time vehicle models and high-fidelity steering
torque motors, it is not totally clear how to best produce motion cues from the real vehicle mo-
tion. One of themain issues that arises from the use of simulators is the limitedworkspace of the
motionplatform, considerably smaller than the space usedby a real car to perform themaneuver.
So, transformations are needed to compute a realizable set of platform motions from the mo-
tion of the real vehicle [3]. These transformations are referred to asMotion Cueing Algorithms,
the most important of which are presented in the following.

Classical washout algorithm

Classical washout algorithm, whose scheme is presented in Fig. 2.2, is the firstmotion cueing al-
gorithmpresented in the literature. It uses high-pass filters to remove the low-frequencymotion
components, allowing the reproductionof the higher frequencyones, and guaranteeing that the
platform does not exceed its limits. Most classical algorithms make use of tilt coordination, i.e.
use roll and pitch rotations, at a rate below the perception threshold, to reproduce, respectively,
sustained lateral and longitudinal accelerations. The low-pass filter used for tilt coordination
is 2nd-order and the cut-off frequency is chosen such that all the translational motion is repro-
duced, through platform translation or by platform tilt. The filter cut-off frequencies, damping
factors, and gains are tuned through a trial-and-error process, considering the worst-case vehicle
acceleration. For a non-experienced user, it is not intuitive to decide which parameters to vary
and in which direction, in order to achieve the desired platform response.

Figure 2.2: Classical moঞon cueing scheme

Adaptive washout algorithm

This algorithm, which employs filters with adaptive gains, aims tominimize a cost function that
penalizes motion error, motion magnitude and the variation of the adaptive parameters from

6

their initial values. The resulting motion is a trade-off between a faithful reproduction of a real
car performance and the limitation of the platform movement. The pitch/longitudinal and
roll/lateral axis pairs are treated together and the cost function to beminimized is the following:

Jy =
1

2
[W1(a− as)

2 +W2(θ̇ − θ̇s)
2 +W3ẏ

2
s +W4y

2
s +W5θ̇

2
s +W6θ

2
s +

2∑
i=1

Wi+6∆P 2
i]

whereWi are theweights used to tune the filters, andPi are the adaptive filters gains. Once again,
the tuning process is based on the worst-case acceleration. If on the one hand the difficulties of
how to choose the parameters remain, on the other it is more intuitive to tune the cost weights.

Optimal control-based algorithm

The algorithms use the approach typical of the tracking problem represented in Fig. 2.3: the
acceleration perceived by the driver in the platform should track the acceleration perceived in a
real car, hence the aim is to minimize the error e(s), i.e. the difference between the two, while
respecting the simulator workspace. For this purpose it is necessary to understand the relation-
ship between the body motion and the motion perceived by the brain, and so the vestibular
model is introduced. The washout filter is generated by a Linear Quadratic Regulator design
process and results to be the one that minimizes the cost function

J = E{eTQe+ xT
dRdxd + uT

s RUs}

where e is the perception error, xd a vector comprising the states of the platform, us the input
for the platformmotion, andQ,Rd and R are cost weight matrices.
The tuning process is easier and intuitive for the non-expert: filter parameters are completely
removed and the tuning is done by just regulating the cost function weights.

Figure 2.3: Moঞon tracking problem

7

The three algorithms described present some weaknesses, among which:

• The tuning process, except for optimal control-based algorithms, is complex and non-
intuitive, due to the fact that the filter parameters do not have physical meaning, and also
small value variations may have unexpected results on driver’s perception;

• Platform limits are not taken into account explicitly so it is necessary to tune the algo-
rithm for the worst-case motion;

• It is not possible to use any information on driver’s behavior in the future.

An algorithm that tries to compensate for these shortcomings will be presented in the next
chapter.

8

3
MPC basedMotion Cueing Algorithms

In this chapter the Model Predictive Control technique will be illustrated. MPC occupies an
important role in the field of control engineering, both in the industrial and academic research
sphere. The approach differs from the other classical motion cueing algorithms mainly in four
aspects:

1. It ismodel-based, and this provides important information to the algorithm since the
controller can deal directly with the entire dynamics. An accurate model can reach con-
sistent prediction of the future.

2. It is a predictive technique, hence the algorithm optimizes the motion of the plat-
form over a prediction horizon. Thanks to the knowledge of future reference trajectories,
the controller can anticipate the platform maneuvers, for an optimal simulation experi-
ence.

3. It is an optimal control strategy, since the minimization of a cost function allows
to calculate the optimal control input. The cost function can be formulated to define the
best behaviour of the system, and can depend on inputs, states, and outputs.

4. It canhandle constraints, soft or hard, which are explicitly defined. This aspect is of
fundamental importance to deal with the strict limits required by the use of simulators,
and allows to best exploit platform workspace.

The model predictive control computes the input sequence u to optimize the future be-
haviour of the output y. The optimization is performed within a limited time window giving
plant information at the start of the time window.
In the following sections the method will be described in detail, and in particular the model,
the cost function and the constraints will be analyzed. The last two sections are reserved to
mathematical formulation and optimization.

9

3.1 Advantages ofMPC

The significant development in control engineering technology has a strong impact on all ar-
eas of the control discipline, such as theory, controllers, actuators, sensors, industrial processes,
computer methods and so on. Much of these challenges involved the industrial field, which
benefited from the Richalet’s model predictive control technique from the late 1960s [10].
MPC is one of the more popular advanced techniques for industrial process applications and,
in the last years, the development of robust and efficient implementations, and performing soft-
ware tools made the design of MPC algorithms easier.
Themain advantages that distinguishMPC from other methods can be summarized as follows:

• it can be used in different levels of the process control structure;

• the design formulation is easy and intuitive. Changing model or specifications does not
require complete redesign;

• the parameter tuning process is simple for non-expert users, thanks to its intuitiveness;

• it can deal with soft and hard constraints, which can be explicitly defined;

• the optimization process can be performed on-line;

• it can handle Multi-Input Multi-Output system;

• non-linearities in both system dynamics and constraints can be introduced;

• since the algorithm considers the platformmotion over a future time window, the effect
of future disturbances can be anticipated and removed. Moreover, the knowledge of fu-
ture reference trajectories can be used to best exploit platform workspace.

Model Predictive Control is introduced in the following by consulting Fabio Maran’s Ph.D.
thesis [11], however, for a more detailed illustration, Wang [10] is recommended.

3.2 Theory ofMPC

Model Predictive Control technique is based on iterative, finite-horizon optimization of the fu-
ture control trajectory of the plant, subject to operational constraints. To introduce the theory
behind MPC, a discrete time domain problem is considered. Assume that at time k ∈ Z a ref-
erence trajectory r(t|k), t ≥ k, and a current measurement of the output y(k) are available;
the current input is not yet computed. Suppose to have a complete model of the process to be
controlled and that the state of the system (or an estimate of it) is available. Hence, considering
a time window of length Np (Np is called prediction horizon length), it is possible to compute
the future output sequence

y(k + i|k), i = 1, ..., Np,

10

Figure 3.1: Model Predicঞve Control scheme

resulting from the input

u(k + i|k), i = 1, ..., Np − 1.

Fig. 3.1 shows a graphical representation of this principle. The main idea is to calculate the
input sequence û(k + i|k) that minimizes a cost function J, typically related to the tracking
error, i.e. the difference between the desired and the actual outputs

ϵ(k + i|k) = r(k + i|k)− y(k + i|k) i = 1, ..., Np

while respecting a set of constraints that can be imposed on inputs, states, outputs or other
variables related to the problem. Considering the optimal control sequence just computed, only
its first element is applied, thus

u(k) = û(k|k)

is used to produce the new output y(k + 1). Iteratively, at time k + 1 a new optimal input
sequence is computed, and once again only its first element is considered. This technique is
referred to as receding horizon: at each time step, the prediction horizon is shifted in order to
deal with Np instants in the future, starting from the current time. In this way the MPC al-
gorithm can use the information provided by the new measurements to correct errors due to
disturbances, errors in the model or system variations. This gives the algorithms a certain de-
gree of robustness. Note that in general the first element of the new optimal control sequence
û(k+1|k+1) is different from the second element of the previous control sequence û(k+1|k),
since the outputy(k)depends onpast inputu(k−1),u(k−2),..., andnot by actual inputu(k).
Thus, at each time step the algorithm takes advantage of the information on new computation
and this improves the MPC performances.

11

3.3 Process model

The process model is extremely important in model predictive control, since the effectiveness
of the control is strictly related to the accuracy of system representation, even if the receding
horizon technique can compensate some inaccuracies of the model. In recent years, state-space
models have been preferred among variousmodel structures, such as FIRmodels, step-response
models, impulse-response models and transfer function models. This because, thanks to the
simplicity of the design framework, they make immediately accessible state variables and, if not
directly available, are particularly well suited to design state estimator. Moreover, they are the
best way to represent MIMO systems. In this thesis, state-space models are used for the imple-
mentation of a Motion Cueing algorithm.

Consider a linear, discrete state-space model of the form

xm(t+ 1) = Amxm(t) +Bmu(t)

y(t) = Cmxm(t)
(3.1)

whereu is the input variable,xm is the state variable andy is the output. Following the formula-
tion proposed byWang, it is convenient to approximate the input derivative in order to include
∆u(t) in the cost function.
Hence the control variable is

∆u(t) = u(t)− u(t− 1). (3.2)

Considering then the difference of the state variable

∆xm(t) = xm(t)− xm(t− 1), (3.3)

the state equation can be expressed in the new form

∆xm(t+ 1) = Am∆xm(t) +Bm∆u(t). (3.4)

The output difference results to be

y(t+ 1)− y(t) = CmAm∆xm(t) + CmBm∆u(t) (3.5)

and a new state variable vector is introduced to enclose∆xm(t) and y(t), obtaining

x(t) =
[
∆xm(t)

T y(t)T
]T

(3.6)

12

The previous equation leads to the following expression of the state-space model:

x(t+ 1) =

[
Am 0

CmAm I

]
x(t) +

[
Bm

CmBm

]
∆u(t)

y(t) =
[
0 I

]
x(t)

(3.7)

3.4 Cost function

The optimal control input sequence is obtained by minimizing a cost function, which, basing
on the specific features of the system, is designed to follow the reference signals, while respecting
the plant limits expressed by soft or hard constraints. To reduce complexity in resolution, the
cost function J has a quadratic form, and it can consider, for examples, the error between the
predicted trajectory and the future reference in the prediction horizon of lengthNp, the future
inputs and input difference in the control horizonNc:

J(t) =

Np∑
j=1

δ(j)||y(t+ j|t)− r(t+ j)||2 +
Nc−1∑
j=0

λ(j)||u(t+ j)||2+

+
Nc−1∑
j=0

γ(j)||∆u(t+ j)||2
(3.8)

J(t) has to be minimized with respect to u(t) and∆u(t). Since system inputs comprise longi-
tudinal accelerations, that are high-frequency and discontinuous signals, sometimes it may be
useful to introduce in the cost function the weighting term γ(j), to act on their (approximate)
derivative, in order to achieve a certain degree of regularity and to avoid excessive stress of the
actuators and possible unfeasibilities in the optimization problem. It is important that the cost
function is expressed in a quadratic form to reduce the computational cost, however, the choice
of which terms have to be included is not unique and depends on the problem needs.

In equation (3.8), the control horizon lengthNc is introduced. It corresponds to the length of
the input sequence that is calculated by the algorithm at each step, soNc ≤ Np. IfNc < Np,
the lastNp −Nc elements of the control sequence are considered constant and equal to the last
one of the control horizon, hence

u(t+Nc − 1) = u(t+Nc) = u(t+Nc + 1) = ... = u(t+Np) (3.9)

or, in terms of∆u

∆u(t+Nc) = ∆u(t+Nc + 1) = ... = ∆u(t+Np) = 0 (3.10)

13

This approach is useful in cases in which fast computation is needed, since in this way the size
of the optimal sequence to be computed is smaller, and the problem resolution easier. During
the tuning phase, the parametersNc andNp have to be tuned accurately to obtain satisfactory
performance.

3.5 Constraints

In many real situations, the presence of constraints on signals is unavoidable, due to consumer
specifications, safety restriction or physical limitation of the simulator workspace. Controller
parameters have to be tuned to keep the platform within its bounds, but at the same time the
control system should drive the process towards the constraints as close as possible, since closer
to limits in general means better performances. One of the most important characteristics of
MPC is that it is a constrained optimal control procedure, since it takes constraints into account
in its formulation. Therefore, the optimal unconstrained solution ismodified in such away that
constraints are not violated. This necessarily implies an increase of complexity in finding the so-
lution, since the introduction of constraints makes the problem impossible to be solved in an
analytical way, and heuristic solvers have to be used. An important aspect has to be considered:
the introduction of constraints leads to possible infeasibility of the problem, i.e., given a certain
set of constraints, there might be particular situations in which it is impossible to find a solu-
tion. The solver should be able to handle this critical case, for example by relaxing some of the
constraints in the so called soft constraint, in opposition to hard ones which cannot be violated.
In this context, constraints are translated in expressions concerning bounds on input, state or
output

umin ≤ u(t) ≤ umax (3.11)

xmin ≤ x(t) ≤ xmax (3.12)

ymin ≤ y(t) ≤ ymax (3.13)

Note that constraints can be also defined over others system variables. Considering the process
model (3.7), constraints on inputs variations are set

∆umin ≤ ∆u(t) ≤ ∆umax (3.14)

Theminimization of the cost function taking constraints into account ensures the best possible
control input within limits, while better exploiting the operational space.

3.6 Mathematical formulation

The aim is tomanipulate theMPCproblem in order to obtain aQP one, where only∆u has to
beminimized. It is important to notice that the cost function (3.8) is quadratic, and constraints

14

(3.11), (3.12) and (3.13) are linear.

AQuadratic Programming (QP) problem is an optimization problem in which:

1. the function to be minimized has a quadratic form;

2. the constraints are linear.

Dealing withQP problem has several advantages: it has been studied in detailed in literature,
it is not too complex to solve and different optimizer are provided.

Consider model (3.7) and define matricesA,B andC as follows:

A =

[
Am 0

CmAm I

]
B =

[
Bm

CmBm

]
C =

[
0 I

]
(3.15)

then the state evolution is

x(t+ 1|t) = Ax(t) +B∆u(t)

x(t+ 2|t) = Ax(t+ 1|t) +B∆u(t+ 1) = A2x(t) + AB∆u(t) +B∆u(t+ 1)

...

x(t+Np|t) = ANpx(t) + ANp−1B∆u(t) + ANp−2B∆u(t+ 1) + ...+

+ ANp−NcB∆u(t+Nc − 1)

(3.16)

and consideringNc < Np the corresponding outputs are given by

y(t+ 1|t) = CAx(t) + CB∆u(t)

y(t+ 2|t) = CAx(t+ 1|t) + CB∆u(t+ 1) =

= CA2x(t) + CAB∆u(t) + CB∆u(t+ 1)

...

y(t+Np|t) = CANpx(t) + CANp−1B∆u(t) + CANp−2B∆u(t+ 1) + ...+

+ CANp−NcB∆u(t+Nc − 1).

(3.17)

As can be seen, the output variables are expressed as a function of the current state x(t) and the
input sequence∆u(t+ i), with i = 0, 1, ..., Nc − 1. It is possible to introduce the vectors

Y = vec{y(t+ i|t)}i=1,...,Np =


y(t+ 1|t)
y(t+ 2|t)

...

y(t+Np|t)

 ∈ R(Np·nout)×1 (3.18)

15

∆U = vec{∆u(t+ i|t)}i=1,...,Nc−1 =


∆u(t)

∆u(t+ 1)
...

∆u(t+Nc − 1)

 ∈ R(Nc·nin)×1 (3.19)

where nout and nin specify the size of y and∆u respectively, and represent the input-output
prediction evolution using the single equation

Y = Fx(t) + Φ∆U (3.20)

where matrices F andΦ are defined as follows

F =



CA

CA2

CA3

...

CANp


, Φ =



CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0
...

...

CANp−1B CANp−2B CANp−3B . . . CANp−NcB


(3.21)

Introducing a vectorization of the reference signal r(t+ i), i = 1, ..., Np, the cost function can
be rewritten as

J(∆U) = (Rs −Y)TQ(Rs −Y) +UTSU+∆UTR∆U (3.22)

whereQ, S, R are block diagonal weight matrices.
Let express the input sequence u(t + i), i = 0, ..., Nc − 1 as a function of ∆U in order to
obtain a cost function depending only on∆U


u(t)

u(t+ 1)
...

u(t+Nc − 1)


︸ ︷︷ ︸

U

=



I 0 0 . . . 0

I I 0 . . . 0

I I I . . . 0
...

...

I I I . . . I


︸ ︷︷ ︸

T


∆u(t)

∆u(t+ 1)
...

∆u(t+Nc − 1)


︸ ︷︷ ︸

∆U

+


u(t− 1)

u(t− 1)
...

u(t− 1)


︸ ︷︷ ︸

Ūi

(3.23)

or in vectorized form
U = T∆U+ Ūi (3.24)

16

The substitution of (3.24) and (3.20) in (3.22) leads to

J(∆U) = (Rs − Fx(t)− Φ∆U)TQ(Rs − Fx(t)− Φ∆U)+ (3.25)

+ (T∆U+ Ūi)
TS(T∆U+ Ūi) + ∆UTR∆U (3.26)

which, discarding the constant terms not depending on∆U and thus not affecting the results
of the minimization, and after some manipulations, becomes

J(∆U) = ∆UT (ΦTQΦ+R+T TST)∆U+2∆UT (ΦTQ(Fx(t)−Rs)+T TSŪi). (3.27)

Defining

H = 2(ΦTQΦ+R + T TST) (3.28)

f = 2(ΦTQ(Fx(t)−Rs) + T TSŪi) (3.29)

(3.27) can be rewritten as follows

J(∆U) =
1

2
∆UTH∆U+∆UTf (3.30)

which is the expression of the cost function for aQP problem, where∆U is the variable to be
minimized.

Problemwithout constraints

If no constraints are taken into consideration, the optimization problem can be solved by im-
posing the derivative of the cost function with respect to ∆U equal to 0. Assuming that the
inverse ofH exists, it results

∂J

∂∆U
= 0 ⇒ ∆Uopt = H−1f (3.31)

Problemwith constraints on inputs and outputs

If constraints are taken into account, theQP problem comprises also the inequality

A∆U ≤ b (3.32)

withA and b containing the information on constraints expressed as a function of∆U.
It is necessary to reformulate constraints, referring them to inputs variation. Limits on∆u(t)

17

are easier to set, leading to

I 0 . . . 0

0 I . . . 0
...

. . .
...

0 0 . . . I

−I 0 . . . 0

0 −I . . . 0
...

. . .
...

0 0 . . . −I


︸ ︷︷ ︸

M1


∆u(t)

∆u(t+ 1)
...

∆u(t+Nc)


︸ ︷︷ ︸

∆U

≤



∆umax

∆umax

...

∆umax

−∆umin

−∆umin

...

−∆umin


︸ ︷︷ ︸

n1

(3.33)

Equation (3.24) allows translating constraints on u(t) to∆u(t), resulting in



I 0 . . . 0

I I . . . 0
...

. . .
...

I I . . . I

−I 0 . . . 0

−I −I . . . 0
...

. . .
...

−I −I . . . −I


︸ ︷︷ ︸

M2


∆u(t)

∆u(t+ 1)
...

∆u(t+Nc)


︸ ︷︷ ︸

∆U

≤



umax − u(t− 1)

umax − u(t− 1)
...

umax − u(t− 1)

−umin + u(t− 1)

−umin + u(t− 1)

−umin + u(t− 1)
...

−umin + u(t− 1)


︸ ︷︷ ︸

n2

(3.34)

Observe that n2 is time-variant, since it depends on u(t− 1)with t the current time. Hence it
has to be updated at each time step and cannot be defined offline.
The same considerations hold for constraints on y(t), which are translated into constraints on
∆u(t), by using equation (3.20). The following formulation is obtained[

Φ

−Φ

]
︸ ︷︷ ︸

M3

∆U ≤

[
Ymax − Fx(t)

−Ymin + Fx(t)

]
︸ ︷︷ ︸

n3

(3.35)

whereYmax andYmin are, respectively, the vectorizations of the upper and lower bounds of
ymax and ymin.
Finally, by combining inequalities (3.33), (3.34) and (3.35) constraints can be expressed in the

18

classic form for aQP problem

A∆U ≤ b with A =

M1

M2

M3

 b =

n1

n2

n3

 (3.36)

Theproceduredescribed above allows to convert anMPCproblemwithquadratic cost function
and linear constraints into aQP problem, where the control sequence∆u(t+ i), i = 0, ...,

Nc − 1 has to be calculated by minimizing the cost function J.

3.7 Optimization

To solve QP problem, the use of appropriate solvers is necessary, since the presence of con-
straints makes impossible to find an analytical solution. GenericQP solvers are inadequate for
the strict real-time requirements, since fast dynamics needs small computation times. There-
fore, particular algorithms that exploit the structure ofQPs arising inMPC are needed, and can
be of two different types: offline and online solvers.
The major aspect of offline optimizers is the offline precomputation of a solution for all the
possible instances arising in the problem. Constraints are used to divide the state space in poly-
hedral critical regions, in each of which the optimal control law is an affine function of the
state. The online procedure consists of evaluating the region associated with the current state
and its corresponding affine function. The main drawback of this strategy is that it can only
deal with low-dimensional problems, since the number of regions increases with the number
of constraints and the offline computation burden has exponential growth, making the evalua-
tion slower. Moreover, the online tuning, of crucial importance for the presence of the human
driver in the loop, becomes very difficult due to the offline computation.
For these reasons, in this applications the use of online QP solvers has been preferred. Online
quadratic optimization comprise two main categories of algorithms:

1. Interior Point (IP): the idea is to replace the inequality constraint with a log barrier func-
tion in the objective. Exploiting the convexity of the cost function, these methods are ap-
propriate for dealingwith linear andQPproblems. However, they lack effective hot-start
strategies, i.e. the capability of obtaining a smart starting point for the current problem
using the results derived at the previous step, hence reducing the computational effort.

2. Active Set (AS): its idea is similar to the one used in the offline approach, but AS aim at
calculating the current critical regionwithout a pre-computation phase. When an iterate
violates some inequality constraints, these are treated as equality constraints (active con-
straints) until the algorithm moves off of the inequality. At this point those constraints
are ignored. Thesemethods provide a hot start strategy assuming that the active set in one
QPdoes not changemuch from the previous one during theMPCprocess. Moving from
the old problem to the new one along directions derived from the parameters, exploiting
the convexity of the parameter space and considering only a subset of constraints in order

19

to reduce problem complexity, intermediate QPs are solved, until the global solution is
found. In case of boundary crossing of the current set, the new active set is calculated
online.

To deal with the MPC problem, an Active Set method has been preferred.

The main principle of AS, is that, at time t of the MPC, there exists an optimal solution∆U∗

which minimizes (3.30), associated to specific values of vector f in (3.29) and constrained vec-
tor b in (3.36), both depending on the state x(t). Consider that starting from an optimum
point guarantees the feasibility at the start of the iterations. Subsequently, at the next time step,
the parameters f(x(t + 1)) and b(x(t + 1)) are calculated and the new solution∆U∗,new is
computed. At this point, in order to reduce the problem complexity, only the set of constraints
satisfied by equalities are taken into account, and the correspondingQP problem is solved. The
feasibility and the optimality of this intermediate solution has to be verified; if one of this two
conditions doesn’t hold, a different set of constraints is considered and the process iterated until
an optimal solution is found.

The chosen AS algorithm has been proposed by Ferreau and exploit the structure of aQP prob-
lem derived fromMPC. The idea is that of a smart recalculation way that allows to move on a
feasible line from x(t) to x(t + 1), evaluating the progress through the new optimum when
updating vectors f and b, while ensuring the feasibility of the intermediate problems: all the
steps from the old optimal solution to the new one are performed along homotopic variations
of the parameters. The new optimum is obtainedwhen themaximum step length of homotopy
that can be calculated is reached. This interpretation is thought forMPCprocess, since it can be
assumed that the system behaviour does not change much during two consecutive time steps.
The proposedmethod has a freeware C++ implementation by theOPTEC group at University
of Leuven, qpOASES, a ready-to-use package with real-time capabilities that offers some use-
ful solutions for matching different real-time requirements. Major analysis and details can be
found in Ferreau [12].

20

4
Hexapod Stewart platform

In the following section, the plant model will be described, starting from the model in [7]. The
simulator employed in this thesis is a Stewart Platform and the relationship between input, state,
and output governing the kinematic model will be described, with particular attention to the
limitations of the operational space.

4.1 Geometry andworkspace

The hexapod is composed by a baseB and amoving top platformP , connected by six prismatic
actuators, or legs. As can be seen in Fig.(4.1), to describe the dynamics of the hexapod, it is
important to introduce three Cartesian reference frames:

• the Platform frame (P) is attached to the center of the hexapod top diskOP and moves
together with the platform. TheX axis is pointing forward, theY axis to the right, and
the Z axis downward;

• TheWorld frame (W) is an inertial frame, with the originOW coinciding withOP when
the hexapod is in neutral position. The axes convention is the same used for frame P;

• theHead frame (H) is located at the center of driver’s headOH andmoves together with
the driver. TheX axis is pointing forward, theY axis to the left, and theZ axis upward. In
this thesis it is assumed that position and orientation of frameHwith respect to frame P
do not change during themotion. More precisely, the position of driver’s head expressed
in Platform frame P rH , and the rotation matrix from Platform to Head frame HRP are
set equal to:

P rH =

 0
0
−1

 HRP =

1 0 0
0 cos(π) −sin(π)
0 sin(π) cos(π)


21

It implies that PRH = HRT
P .

Figure 4.1: Hexapod

Tab.(4.1) reports the coordinates of the legs attachment points, that define the hexapod ge-
ometry. The coordinates of the attachment points on the base are expressed in World frame,
whereas the ones on the top disk are expressed in Platform frame.
The workspace of the hexapod platform is defined by constraints on legs lengths, velocities
and accelerations, whose limits, together with legs lengths in neutral position, are reported in
Tab.(4.2).

4.2 Kinematic model

The relationship between input, state, and output that rules the simulator motion is here de-
scribed.
The state xhex consists of the pose of the hexapod platform p ∈ RNp , Np = 6, and its first
derivatives v ∈ RNp :

xhex =

[
p

v

]
=


pW
lin

peul

vW
lin

veul

 (4.1)

where pW
lin ∈ R3 contains the coordinates of the linear position expressed in the World frame,

and peul ∈ R3 includes roll, pitch, yaw Euler angles, defined as Tait-Bryan angles, with the

22

Corners x y z

[m] [m] [m]
BW
1 0.57 0.99 1.30

BW
2 0.36 1.06 1.30

BW
3 −1.34 0.11 1.30

BW
4 −1.34 −0.11 1.30

BW
5 0.36 −1.06 1.30

BW
6 0.57 −0.99 1.30

PP
1 0.84 0.11 0

PP
2 −0.54 0.91 0

PP
3 −0.74 0.79 0

PP
4 −0.74 −0.79 0

PP
5 −0.54 −0.91 0

PP
6 0.84 −0.11 0

Table 4.1: Coordinates of legs a�achment points

min max neutral
pl [m] 1.284 1.934 1.593

vl [m/s] −0.465 0.465 0

al [m/s2] −8.6 8.6 0

Table 4.2: Limits on leg length pl , velocity vl and acceleraঞon al

23

sequence Z, Y’, X” and the convention of intrinsic rotations. vW
lin = ṗW

lin represents the linear
velocity inWorld frame, and veul = ṗeul is the first derivative of Euler angles.

The hexapod input includes the second derivatives of the pose of the top platform:

uhex =

[
aW
lin

aeul

]
(4.2)

where aW
lin = v̇W

lin and aeul = v̇eul.
By the combination of Eq. (4.1) and Eq. (4.2), the hexapod kinematic model can be expressed
as:

ẋhex =

[
0 I

0 0

]
xhex +

[
0

I

]
uhex (4.3)

where 0, I ∈ RNp×Np are null and identity matrices, respectively.

Using the components of peul, and indicating with α, β, and θ the roll, pitch and yaw angle,
respectively, the rotation matrix from Platform toWorld frame can be computed:

WRP = PRT
W =

 cβ cθ cβ sθ −sβ

sα sβ cθ − cα sθ cα cθ + sα sβ sθ cβ sα

sα sθ + cα sβ cθ cα sβ sθ − sα cθ cα cβ

 (4.4)

For easiness of notation, the time dependence of the angles is omitted.
The first and second derivatives, which will be useful later, are now calculated, obtaining:

W ṘP =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.5)

24

where

a11 = −sβ cθ β̇ − cβ sθ θ̇

a12 = cβ cθ θ̇ − sβ sθ β̇

a13 = −cβ β̇

a21 = sα sθ α̇− cα cθ θ̇ + cα sβ cθ α̇ + cβ sα cθ β̇ − sα sβ sθ θ̇

a22 = cα sβ sθ α̇− cα sθ θ̇ − sα cθ α̇ + cβ sα sθ β̇ + sα sβ cθ θ̇

a23 = cα cβ α̇− sα sβ β̇

a31 = cα sθ α̇ + sα cθ θ̇ + cα cβ cθ β̇ − sα sβ cθ α̇− cα sβ sθ θ̇

a32 = sα sθ θ̇ − cα cθ α̇ + cα cβ sθ β̇ + cα sβ cθ θ̇ − sα sβ sθ α̇

a33 = −cβ sα α̇− cα sβ β̇

and

W R̈P =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 (4.6)

where

b11 = 2 sβ sθ θ̇ β̇ − cβ cθ θ̇
2 − sβ cθ β̈ − cβ sθ θ̈ − cβ cθ β̇

2

b12 = cβ cθ θ̈ − cβ sθ θ̇
2 − cβ sθ β̇

2 − sβ sθ β̈ − 2 sβ cθ θ̇ β̇

b13 = sβ β̇
2 − cβ β̈

b21 = cα sθ α̇
2 + cα sθ θ̇

2 − cα cθ θ̈ + sα sθ α̈− sα sβ sθ θ̈ − sα sβ cθ α̇
2 − sα sβ cθ β̇

2 + cα sβ cθ α̈+

+ cβ sα cθ β̈ − sα sβ cθ θ̇
2 + 2 sα cθ θ̇ α̇− 2 cα sβ sθ θ̇ α̇− 2 cβ sα sθ θ̇ β̇ + 2 cα cβ cθ β̇ α̇

b22 = cα sβ sθ α̈− cα cθ θ̇
2 − sα cθ α̈− cα sθ θ̈ − sα sβ sθ α̇

2 − sα sβ sθ β̇
2 − cα cθ α̇

2 + cβ sα sθ β̈+

− sα sβ sθ θ̇
2 + sα sβ cθ θ̈ + 2 sα sθ θ̇ α̇ + 2 cα cβ sθ β̇ α̇ + 2 cα sβ cθ θ̇ α̇ + 2 cβ sα cθ θ̇ β̇

b23 = cα cβ α̈− cβ sα β̇
2 − cβ sα α̇

2 − sα sβ β̈ − 2 cα sβ β̇ α̇

b31 = cα sθ α̈− sα sθ α̇
2 − sα sθ θ̇

2 + sα cθ θ̈ − cα sβ cθ α̇
2 − cα sβ cθ β̇

2 + cα cβ cθ β̈ − cα sβ cθ θ̇
2+

+ 2 cα cθ θ̇ α̇− sα sβ cθ α̈− cα sβ sθ θ̈ + 2 sα sβ sθ θ̇ α̇− 2 cβ sα cθ β̇ α̇− 2 cα cβ sθ θ̇ β̇

b32 = sα cθ α̇
2 − cα cθ α̈ + sα cθ θ̇

2 + sα sθ θ̈ − cα sβ sθ α̇
2 − cα sβ sθ β̇

2 + cα cβ sθ β̈ − cα sβ sθ θ̇
2+

+ cα sβ cθ θ̈ + 2 cα sθ θ̇ α̇− sα sβ sθ α̈− 2 sα sβ cθ θ̇ α̇ + 2 cα cβ cθ θ̇ β̇ − 2 cβ sα sθ β̇ α̇

b33 = 2 sα sβ β̇ α̇− cα cβ β̇
2 − cβ sα α̈− cα sβ β̈ − cα cβ α̇

2

The hexapod output includes the signals that the driving simulator aims to reproduce: the
specific force f , which will be referred to as linear acceleration, and the angular velocityω, both
at the center of the driver’s head and expressed in the Head frame.

25

The linear acceleration is a function of xhex and uhex and can be expressed as:

fH(xhex,uhex) =
HRW (xhex)g

W + H r̈H(xhex,uhex) (4.7)

where gW is the gravitational acceleration expressed in the World frame, and HRW is the rota-
tional matrix fromWorld to Head frame, derived by:

HRW = HRP · PRW .

The integration of the gravity effect inside the model allows to automatically achieve the tilt
coordination correction, giving an important contribution to the tracking of the simulation
signals.
To compute H r̈H , which is the linear acceleration of the Head frame with respect to theWorld
frame, expressed in Head frame, the second derivative of the position of the center of driver
head expressed in theWorld frameW rH is calculated, and then it is rotated by thematrix HRW :

W rH = W rP + WRP
P rH

W ṙH = W ṙP + W ṘP
P rH + WRP

P ṙH
W r̈H = W r̈P + W R̈P

P rH + 2W ṘP
P ṙH + WRP

P r̈H

Since it is assumed that position andorientation of the driver’s headwith respect to the Platform
frame are constant during the motion, and noticing thatW r̈P = alin, it results:

W r̈H = alin +
W R̈P

P rH (4.8)
H r̈H = HRW

W r̈H (4.9)

The angular velocity of the Head frame with respect to the World frame, expressed in Head
frame, can be obtained by the components of the skew-symmetric matrix resulting from the
following:

[ωH(xhex)]× = HRW (xhex)
W ṘH(xhex) (4.10)

=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (4.11)

whereW ṘH is given by
W ṘH = W ṘP

PRH

26

To conclude, the output can be written as function of xhex and uhex:

y(xhex,uhex) =

[
fH(xhex,uhex)

ωH(xhex)

]
. (4.12)

Kinematic constraints on legs lengths, velocities and accelerations define the limits of the hexa-
pod workspace. The length ℓ of the i-th leg is a function of state and can be written as:

ℓi(xhex) = ∥PW
i (xhex − BW

i)∥ (4.13)

= ∥WRP (xhex)PP
i + W rP (xhex)− BW

i ∥ (4.14)

where W rP is the position of the origin of the Platform frame expressed in World frame, i.e.
pW
lin.

Leg velocities ℓ̇ and accelerations ℓ̈ are the first and second derivatives, respectively, of Eq. (4.14).
Referring to the argument of the previous norm with hℓi

hℓi =
WRP (xhex)PP

i + W rP (xhex)− BW
i (4.15)

the following equality holds:

ℓi(xhex) = [(hℓi)
T (hℓi)]

1
2 (4.16)

obtaining

ℓ̇i(xhex) =
1

2
[(hℓi)

T (hℓi)]
− 1

2 [˙(hℓi)T (hℓi) + (hℓi)
T ˙(hℓi)]

=
(hℓi)

T ˙(hℓi)

ℓi

(4.17)

ℓ̈i(xhex,uhex) =
[(hℓi)

T ¨(hℓi) + ˙(hℓi)T ˙(hℓi)]ℓi − ℓ̇i(hℓi)
T ˙(hℓi)

ℓ2i
. (4.18)

By deriving the inverse kinematics k: ℓ(xhex)

ℓ̇(xhex)

ℓ̈(xhex,uhex)

 = k(xhex,uhex), (4.19)

27

leg lower and upper bounds (ℓ, ℓ) can be expressed as follows:ℓℓ̇
ℓ̈

 ≤ k(xhex,uhex) ≤

ℓℓ̇
ℓ̈

 . (4.20)

28

5
Implementation using MATMPC

TheModelPredictiveControl process, previously described in chapter3, has been implemented
inMATLAB, usingMATMPC.This tool, developedbyYutao, aims at providing an easy-to-use
nonlinear MPC implementation. Its most important characteristic is that it does not require
the user to understand how to make or compile libraries, since all the algorithmic routiness
are written in MATLAB and can be compiled into MEX functions. For a more detailed de-
scriptions of MATMPC, visit [13]. In the following sections, the choices adopted in the MPC
process implementation, concerning the constraints relaxation, the cost function creation, and
the tuning phase will be presented.

5.1 Constraints

Asmentioned before, one of the main advantages ofMPC is the possibility of explicitly declare
the constraints to which the platform is forced. Two types of constraints can be considered:
hard, which set conditions on variables which under no circumstances can be violated, or soft,
to which some variable values are associated, that are penalized in the objective function if the
conditions are not satisfied.

In this thesis, it has been chosen to use soft constraints in order to examine the systembehaviour
in conditions where the platform gets close to the limits or violates them, overcoming the fact
that, by adopting hard constraints, in the same situations the problem becomes infeasible.
Consider, for example, the hard constraints related to legs lengths

ℓ ≤ ℓ(xhex) ≤ ℓ.

29

The implementation as soft constraints adding a slack variables ζl > 0 results in

ℓ− ζl ≤ ℓ(xhex) ≤ ℓ+ ζl

or, allowing ζl to assume any positive or negative value, in the adopted form

ℓ ≤ ℓ(xhex) + ζl ≤ ℓ.

Introducing slack variables ζl, ζv, ζa, associated to legs lengths, velocities and accelerations re-
spectively, the considered constraints are the following:

ℓ ≤ ℓ(xhex) + ζl ≤ ℓ (5.1)

ℓ̇ ≤ ℓ̇(xhex) + ζv ≤ ℓ̇ (5.2)

ℓ̈ ≤ ℓ̈(xhex,uhex) + ζa ≤ ℓ̈ (5.3)

which have to be added to the cost function using the quadratic formulation.

5.2 Cost function

Motion Cueing algorithms based onModel Predictive Control techniques aim at compute the
optimal control input for the system by minimizing a cost function.
In this specific case, the cost function to be minimized has been chosen as:

J =
1

2

[Np∑
k=1

||y(xk,uk)−ŷk||2Wy
+

Np−1∑
k=0

||xk−x̂k||2Wx
+||uk−ûk||Wu+||ζk−ζ̂k||Wζ

]
(5.4)

where hats refer to reference signals to be tracked. It is important to underline the meaning of
every variable composing (5.4) :

• ŷ represents the output signals trajectories to be tracked, i.e. the linear accelerations and
the angular velocities that the driver would perceive at the center of his head in a real car;

• x̂ plays the role of a washout filter. In fact, valuable motion cueing algorithms have to
consider a washout action to cope with the limited platform workspace. MPC includes
an alternative to the classical, filter based procedure by setting constant zero reference
signals for the position and velocities of the center of the hexapod top diskOP . This real-
ization of washout is easy to handle and to modify, allowing a considerable exploitation
of the platformmovements.

• û equal to the zero vector aims to minimize the input signals, i.e. the accelerations of the
hexapod top disk, in order to provide sustainable control signals from the actuators.

30

• ζ = [ζl ζv ζa]T is the vector containing the slack variables. The reference signal ζ̂ is
constant and equal to [0 0 0]T , since slack variables have to be as smaller as possible
to ensure the platform does not violate its limits.

• Wy,Wx,Wu,Wζ are symmetric positive-definite weighting matrices. The weights repre-
sent the tuning parameters of themotion cueing algorithm and aremanipulated to reach
the desired performance in the reproduction of the accelerations and velocities. Their
main advantage is the fact that they are associated to physical quantities of the system,
and so are easy to interpret also by non-expert users.

31

32

6
Results

In this chapter, experimental resultswill be presented, with the aim to verify themain features of
the motion cueing algorithm based on MPC. Later, considerations about computational time
will be made, and different receding horizon strategies will be discussed.
In all the following simulations, the reference signal of the linear output acceleration along the x
axis is given by the secondderivative of a sinewave, withmagnitude equal to 16mand frequency
equal to 1

16
Hz.

Simulations are run on PC Intel(R) Core(TM) i7 -7700HQ@ 2.80GHz CPU.

6.1 Importanceofthepredictionhorizonlengthtostabilizethealgorithm

The length of the prediction window directly affects the control performance, soNp becomes
a tunable parameter that can be varied in order to obtain the desired tracking performance.
At the end of this chapter, a discussion about the role of the prediction horizon length to best
exploit the available workspace will be made. In the following,Np is treated as a tunable param-
eter that affects the stability of the MPC. Since this algorithm suffers of instability issues, it is
necessary to choose a minimum value ofNp which stabilizes the problem.
To illustrate how the value of Np affects the control performance, two simulations are made,
using for the first oneNp = 20, and for the second oneNp = 40. The weighting matrices are
set equal to:

Wy = diag

([
10 10 10 10 10 10

])
(6.1)

Wx = diag

([
0.01 0.01 10 10 10 10 10 10 10 1 1 1

])
(6.2)

33

Wu = diag

([
0.001 0.001 0.001 0.001 0.001 0.001

])
(6.3)

Wζ = diag

([
1000 1000 1000

])
(6.4)

where diag(vector) creates a square matrix with the elements of the vector on the main diago-
nal. For reasons of convenience, this set of matrices is referred withW1.
The comparison between the resulting linear acceleration at the center of the driver head, per-
formed along the x axis, in the case withNp = 20 and in the case betweenNp = 40, is shown
in Fig. 6.1. UsingNp = 40, the system output fx perfectly tracks the reference signal, and in
Fig.6.2, the linear displacement of the center of the top disk from its neutral position can be
seen.

Figure 6.1: Comparison between the output tracking fx in the case withNp = 20 and in
the case withNp = 40. The set of matricesW1 is used.

Figure 6.2: Comparison between the linear displacement along the x axis ofOp in the case
withNp = 20 and in the case withNp = 40. The set of matricesW1 is used.

34

Op draws a smooth trajectory, without sudden movements. On the contrary, the output
resulting from the test withNp = 20 diverges from the reference signal on several points. This
is due to the fact that, how can be observed in Fig.6.2, when actuators overcome their limits,
the platform is forced to unexpected and sharpmaneuvers to get away from the limits andmove
towards the neutral position.

Fig.6.3 and Fig.6.4 compare slack variables in the two examined cases. The plot shows the
behaviour of the hexapod legs: as can be seen, usingNp = 20 both constraints on legs lengths
and velocities are violated, denoting the instability of the algorithm. In the case withNp = 40,
instead, thanks to the wider prediction horizon, all the slack variables are equal to zero, i.e. no
constraints violation occurs.

Figure 6.3: Slack variables on constraints, case withW1 andNp = 20

Figure 6.4: Slack variables on constraints, case withW1 andNp = 40

This fact is confirmed by Fig.6.5 and Fig.6.6, which depict the extension and the reduction of

35

the hexapod legs lengths. In the first case, the trend is unruly and unpredictable, and actuators
saturate at the time when slack variables associated to legs lengths are different from zero, while
in the second case the trend is almost sinusoidal and symmetric, denoting a smoother motion
within the limits.

Figure 6.5: Hexapod legs lengths, case withW1 andNp = 20

Figure 6.6: Hexapod legs lengths, case withW1 andNp = 40

From now on, the length of the prediction window will be kept equal to 40.

6.2 Washout and tilt coordination effects

To provide a demonstration of the washout and tilt coordination effects, the previous case with
W1 is compared with an example in which a new set of matrices, namedW2, is used. It is given

36

by:

Wy = diag

([
10 10 10 10 10 10

])
(6.5)

Wx = diag

([
10 10 100 0.1 0.1 0.1 10 10 10 0.1 0.1 0.1

])
(6.6)

Wu = diag

([
0.001 0.001 0.001 0.001 0.001 0.001

])
(6.7)

Wζ = diag

([
1000 1000 1000

])
(6.8)

Here, the weights associated to the linear components of the platform pose have been in-
creased, while those relative to the angular components of the platformpose and of the platform
velocity have been decreased. The purpose is to force the platform to stay close to its neutral po-
sition, exploiting the gravity effects to replicate the desired outputs by tilting the top disk.
As can be seen observing Fig.6.7, the resulting output linear accelerations along the x axis are
basically the same in the case withW1 and in the case withW2. The fundamental difference is
the way in which the outputs are produced.

Figure 6.7: Comparison between the output tracking fx in the case withW1 and in the
case withW2. Np = 40 is used.

Comparing the linear displacement along the x axis ofOp, depicted in Fig.6.8, it is clear how
in the case withW2 it is much lower than in the case withW1. This comparison clearly shows
the washout effect: using the set of weighting matricesW2, the platform is repeatedly brought
back to its equilibrium position and all the motions are performed maintaining the platform
close to the origin, thus better exploiting the available workspace.

37

Figure 6.8: Comparison between the linear displacement along the x axis ofOp in the case
withW1 and in the case withW2. Np = 40 is used.

The difference between the pitch angle shown in Fig.6.9 is not very noticeable and, for the
sake of clarity, the precise values are reported in Tab.(6.1). The two signals are almost the same
because the adopted reference signal implies a considerable linear acceleration. To track the
output signal, in both cases, the simulator is required to utilize the pitch angle, otherwise, using
the only linear displacement, it would overcome the limits.

Figure 6.9: Comparison between the pla�orm pitch angle in the case withW1 and in the
case withW2. Np = 40 is used.

In conclusion, Fig.6.10 proves that the legs extension is lower than the case given byW1.

38

Case with setW1 Case with setW2

min value of xOp [m] −0.4217 −0.1188

max value of xOp [m] 0.0916 0.1227

min value of pitchOp
[rad] −0.2644 −0.2761

max value of pitchOp
[rad] 0.2595 0.2607

Table 6.1: Comparison between the values of the x-coordinate and pitch angle of the
center of the top diskOp when using the set of matricesW1 andW2.

Figure 6.10: Hexapod legs lengths, case withW2 andN = 40

Examining the above simulations, the main features of a motion cueing algorithm have been
tested.

Now, to improve the algorithm performances and use it in real-time applications, considera-
tions about computational time will be made.

6.3 Computational time

Real-time implementation is a non-trivial task, since it implies fast dynamics which requires
small computation time. Hence, first of all it is desirable to investigate how the explicitly de-
clared constraints affect resolution time.
Using Np = 40 and the set of matrices W1, three different scenarios are considered, whose
related average computation time are reported in Tab.6.2. In the first case, constraints on legs
lengths, velocities and accelerations are considered, in the second case constraints on legs lengths
and velocities are taken into account, while in the third one only constraints on legs lengths are
assumed. The substantial difference is due to the high complexity of the constraints mathemati-
cal expression, which increase the resolution time. Once an appropriate value ofNp and a good
set of matrices are chosen, it has been seen that the most restrictive constraints are those relative

39

to legs lengths, while the others are largely avoided. Hence, constraints on legs velocities and ac-
celerations will be omitted in the following simulations, thus decreasing the computation time.

Average computational time [ms]
Constraints on legs lengths, velocities and accelerations 6.6089

Constraints on legs lengths and velocities 4.4161

Constraints on legs lengths 2.861

Table 6.2: Variaঞon of the average computaঞonal ঞme in relaঞon to the declaraঞon of
constraints.

The use of valid reference signals, i.e. non constant references, requires a wide prediction hori-
zon, which results in a large number of samples: for examples, a prediction of 10 seconds at
100HzmeansNp = 1000, and the increase ofNp makes the problem very hard to be handled.
In conclusion, Np has to be chosen as small as possible to provide sustainable resolution time,
while ensuring the correct exploitation of the workspace. To satisfy this requirement, two dif-
ferent strategies are considered: move blocking and non-uniform grid.

The main computational effort of NMPC depends on the dimension of the optimal control
problem (OCP), that has to be iteratively solved on-line. Since the dimension of the OCP in-
creases proportionallywith the lengthof thepredictionhorizon, strategies to reduce thenumber
of discretisation nodes, and consequently the dimension of the OCP, are needed.
Move blocking and non-uniform grid are two widely used methods for this purpose. The idea
behind the two strategies is to divide the prediction horizon into M non-equidistant shooting
intervals, typically more dense at the beginning of the prediction horizon and more sparse at
the end of the horizon. Subsequently, in non-uniform grid iteration, the state and control tra-
jectories are parameterised into M intervals, whereas, in move blocking iteration, the state is
parameterised intoNp intervals, while control is parameterised into M shooting intervals [14].
These differences result in important aspects, such as:

• MB provides an accurate state trajectory, since for state discretisation it uses the same
grid as the uniform grid MPC. However, the calculation of trajectories and constraints
on each shooting point comes at the cost of a considerable computational time;

• Non-uniform grid schemes employs a more coarse grid, resulting in less accurate predic-
tive trajectory. This results in a larger possibility of violating constraint, since they are
fulfilled only at the shooting nodes. The advantage is that computational time is consid-
erably reduced and longer predictions are allowed.

However, simulationshave revealed that, with the increasingof thepredictionhorizon length,
the differences between the two methods are attenuated, i.e. the results regarding the linear

40

acceleration ofOp and the tracking of the output fx are almost the same, as can be seen in Fig.
6.11 and in Fig. 6.12, respectively.

Figure 6.11: Comparison between the linear acceleraঞon along the x axis ofOp when
using the move blocking and the non-uniform grid techniques.

Figure 6.12: Comparison between the output tracking fx when using the move blocking
and the non-uniform grid techniques.

Since the aim of this thesis is to operate with a prediction horizon as wide as possible, move
blocking and non-uniform grid strategies are tested using Np = 990 and M = 100, which
means a prediction horizon of 9.9s. The index used for non-uniform grid and the one of input

41

block for move blocking technique are the same, equal to:

I =[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 27, 30, 34, 38, 43, 48, 54, 60, 67, 74, 82, 90, 99, 108, 118, 128, 139, 150, 162,

174, 186, 199, 212, 226, 240, 255, 270, 285, 300, 315, 330, 345, 360, 375, 390,

405, 420, 435, 450, 465, 480, 495, 510, 525, 540, 555, 570, 585, 600, 615, 630,

645, 660, 675, 690, 705, 720, 735, 750, 765, 780, 795, 810, 825, 840, 855, 870,

885, 900, 915, 930, 945, 960, 975, 990]

Average computational time [ms]
Uniform grid 18847.8154

Non-uniform grid 60.4733

Move blocking 234.4871

Table 6.3: Average computaঞon ঞme using the three receding horizon schemes.

The sampling in the first 25 steps is equal to 10ms, then linearly increased to 150ms in 25 step,
and 150ms for the last 50 steps.
Tab. 6.3 shows the average computation time using the three receding horizon schemes. The
enormous difference between the results makes the uniform grid technique unemployable for
the purpose. Thanks to the high value ofNp, the performances in the tracking output obtained
by the three techniques are almost the same, so it is reasonable to adopt the non-uniform grid
schemes, which provides a computation time considerably smaller than the others.
However, all the obtained times are too large for real-time implementations, which require an
average computational time of 5ms. To reach a prediction horizon as wide as possible while
satisfying real-time requirements, many simulations with different grid have been tested.
Using the uniform grid technique, a prediction horizon of just 0.5 seconds can be obtained.
Choosing

I =[0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150]

as the index of input block for themove blocking technique, a prediction horizon of 1.5 seconds
can be reached. Finally, adopting

I =[0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180,

190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 310, 325, 340, 355, 370, 385, 400],

the non-uniform grid allows to exploit a prediction horizon of 4 seconds.

42

6.4 Influenceofthepredictionhorizonlengthinthealgorithmperformances

Considering similar computational time, it is now interesting to investigate how the prediction
horizon length can affect the algorithm performances, comparing the uniform grid technique
withNp = 40 and the non-uniformgrid schemewhich allows a predictionhorizonof4 seconds.
For this purpose, a particular set of matricesW3 has been chosen, with the aim of testing the
algorithm capabilities of handle a situation in which the platform gets close to its limits. W3 is
set equal to:

Wy = diag

([
50 10 0.000001 10 10 10

])
(6.9)

Wx = diag

([
30 10 100000 1 5 1 10 10 10 1 10 1

]
· 3
)

(6.10)

Wu = diag

([
0.0001 0.001 0.001 0.001 0.001 0.001

])
(6.11)

Wζ = diag

([
5000

])
(6.12)

For the next simulations, the reference signal of the linear output acceleration along the x
axis is given by an initial part in which the signal is equal to zero and a second part, starting after
1 second, consisting of the second derivative of a sine wave, with magnitude equal to 0.25m
and frequency equal to 0.6Hz. It is worth noticing that a prediction window of 4 s allows the
algorithm to make prediction about almost an entire period of the reference trajectory.

Figure 6.13: Comparison between the output tracking fx when using a predicঞon horizon
of 0.4s and 4s. W3 is adopted.

Fig. 6.13 depicts the tracking of the output linear acceleration along the x axis for the two
cases. The most relevant difference is that the trajectory derived by the uniform grid scheme

43

diverges from the reference signal at the times when the hexapod legs lengths violate their limits,
as canbe seen in Fig. 6.14. On the contrary, in the case inwhich the non-uniformgrid technique
is used, the platform performs motions within its limits, as can be verified in Fig. 6.15.

Figure 6.14: Hexapod legs lengths when using a predicঞon horizon of 0.4s. W3 is
adopted.

Figure 6.15: Hexapod legs lengths, when using a predicঞon horizon of 4s. W3 is adopted.

It is now important to describe how the prediction horizon length affects the platform be-
haviour. The linear displacement along the x axis of Op and the platform pitch angle when
using the two different strategies are reported in Fig. 6.16 and Fig. 6.17, respectively.
In the uniform grid scheme with Np = 40, the platform starts moving just before the begin-
ning of the reference sine wave, due to the limited prediction horizon length that avoids the
algorithms to anticipate maneuvers. As a result, the simulator is forced to perform an initial
rough maneuver to track the reference signal, resulting in the violation of the limits on legs

44

lengths. To compensate the irregular trajectory ofOp along the x axis, a great component of the
pitch angle is exploited, in order to track the reference signal.
Very different is the platform behaviour resulting from the non-uniform grid procedure. In the
initial moments, the algorithm is able to predict a wide portion of the sine wave, and this allows
it to anticipate the movement. In fact, the center of the top diskOp departs from its neutral po-
sition quite before the beginning of the sine wave, to prepare the output tracking. This initial
maneuver is compensated by the use of a little pitch angle. Both movements, along the x axis
and around the y axis, are generally periodic and symmetric with respect to the neutral position.
The sinusoidal trajectory performed along the x axis by Op is perfectly in phase with the pitch
angle, contrary to the case with the uniform grid scheme.

Figure 6.16: Comparison between the linear displacement along the x axis ofOp when
using a predicঞon horizon of 0.4s and 4s. W3 is adopted.

Figure 6.17: Comparison between the pla�orm pitch angle when using a predicঞon horizon
of 0.4s and 4s. W3 is adopted.

45

The previous example demonstrates the importance of the predictive technique of the Mo-
tion Cueing Algorithms based on Model Predictive Control: the knowledge of a considerable
portion of the future reference trajectory allows the controller to anticipate platformmaneuvers,
to optimize the motion within the available workspace.

46

7
Discussion and future works

Thanks to its increasing importance, the dynamic driving simulator is being largely investigated,
with the aim of further improve the driver’s motion experience. The effectiveness of such de-
vice strictly depends, in addition to actuators characteristics, to the performance of the motion
cueing algorithm, which, by the use of specific transformations, allows the reproduction of the
sensation that the driver would perceive in the real car, while respecting the limited platform
workspace. This thesis has presented and developed amotion cueing algorithm based onmodel
predictive control technique, relying on the kinematic model of a hexapod Stewart platform
simulator. Themost important features of the algorithm have been described and proved, with
particular attention to the role of the tunable parameters in the algorithm performances.
The weightingmatrices associated to the terms of the cost function strongly affect the platform
behaviour: the use of a relative small weights for the linear components allows the platform to
perform considerable displacements within its operational space, while higher weights associ-
ated to the linear components force the platform to stay close to its neutral position, exploiting
the washout and the tilt coordination effects.
To reduce the computational burden, considerations about how the constraints declaration af-
fects the resolution time have been made, and consequently constraints on legs velocities and
accelerations have been removed.
Furthermore, two different receding horizon strategies have been described, move blocking and
non-uniform grid, with the aim to reduce the optimal control problem and, as a result, decrease
the computational time. Themainproperties of the twomethods have beenpresented, together
with the maximum prediction horizon lengths they can provide.
To conclude, another tunable parameter considered is the prediction horizon length Np. A
valuable MPC-based MCA requires a prediction horizon wide enough to anticipate and pre-
vent limits violation, thus maximizing the platform capabilities. In fact, Np small results in

47

an increased probably of violating constraints, with the consequence of the infeasibility of the
problem. An example to illustrate this concept has been provided, highlighting the advantage
of the previously mentioned non-uniform grid strategy.
Thenatural development of thiswork is the implementationof the discussed algorithmon a real
dynamic simulator with a professional driver. Other solutions to improve the computational
time can be tried. Moreover, the hexapod can be equipped by a tripod to increase the number
of DOF and enhance the driver’s motion experience.

48

References

[1] J. Slob, “State-of-the-art driving simulators, a literature survey,” DCT report, vol. 107,
2008.

[2] D. Cleij, J. Venrooij, P. Pretto, M. Katliar, H. Bülthoff, D. Steffen, F. Hoffmeyer, and
H.-P. Schoener, “Comparison between filter- and optimization-based motion cueing al-
gorithms for driving simulation,”Transportation Research Part F: Traffic Psychology and
Behaviour, 05 2017.

[3] N. J. Garrett and M. C. Best, “Driving simulator motion cueing algorithms – a survey
of the state of the art,” 2010.

[4] A. Beghi, M. Bruschetta, and F. Maran, “A real time implementation of mpc based mo-
tion cueing strategy for driving simulators,” 12 2012, pp. 6340–6345.

[5] M. Bruschetta, C. Cenedese, and A. Beghi, “A real-time, mpc-based motion cueing algo-
rithm with look-ahead and driver characterization,” Transportation research part F: traf-
fic psychology and behaviour, vol. 61, 2019.

[6] M. Bruschetta, F. Maran, and A. Beghi, “A nonlinear, mpc-based motion cueing algo-
rithm for a high-performance, nine-dof dynamic simulator platform,” IEEE Transac-
tions on Control Systems Technology, vol. 25, no. 2, pp. 686–694, 2016.

[7] M. K. M. Olivari, F.M. Drop and H. Bülthoff, “Driving simulators with hexapod mo-
tion system: Adding a yaw turntable,” in DSC 2018 Europe VR: Driving Simulation
Conf., 2018.

[8] M.K. F.M.Drop,M.Olivari andH.Bülthoff, “Model predictivemotion cueing: Online
prediction andwashout tuning,” InProc.Driving SimulationConference andExhibition
(DSC), 2018.

[9] “Early flight simulators - a history of simulation.” [Online]. Available: https:
//www.historyofsimulation.com/early-flight-simulators-2/

[10] L. Wang, “Model predictive control: Design and implementation using matlab,” Pro-
ceedings of the American Control Conference, 2009.

[11] F.Maran, “Model-based control techniques for automotive applications.”Doctoral thesis.
University of Padova. Control System Engineering, 2013.

49

https://www.historyofsimulation.com/early-flight-simulators-2/
https://www.historyofsimulation.com/early-flight-simulators-2/

[12] H. J. Ferreau, “Model predictive control algorithms for applications with millisecond
timescales,” Arenberg Doctoral School of Science, Engineering & Technology, Faculty of
Engineering, Department of Electrical Engineering, 2011.

[13] “Matmpc.” [Online]. Available: https://github.com/chenyutao36/MATMPC

[14] Y. Chen, N. Scarabottolo, M. Bruschetta, and A. Beghi, “An efficient move blocking
strategy for multiple shooting based nonlinear model predictive control,” IET Control
Theory and Applications, 10 2019.

50

https://github.com/chenyutao36/MATMPC

	Abstract
	Introduction
	Driving simulator and Motion Cueing Algorithms
	History of driving simulators
	Classical Motion Cueing Algorithms

	MPC based Motion Cueing Algorithms
	Advantages of MPC
	Theory of MPC
	Process model
	Cost function
	Constraints
	Mathematical formulation
	Optimization

	Hexapod Stewart platform
	Geometry and workspace
	Kinematic model

	Implementation using MATMPC
	Constraints
	Cost function

	Results
	Importance of the prediction horizon length to stabilize the algorithm
	Washout and tilt coordination effects
	Computational time
	Influence of the prediction horizon length in the algorithm performances

	Discussion and future works
	References

