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Introduction

After developing the theory of arithmetic duality for Galois cohomology with a particular
focus on the cohomology of an elliptic curve over a local field or a number field, we use these
results to define Kolyvagin systems and show how they provide bounds for the Selmer groups
of the elliptic curve.

The first chapter is dedicated to the study of arithmetic duality, which consists in relating,
for a given Galois module M, the groups

H"™(G, M)* = Hom(H" (G, M), Q/Z)

to the cohomology groups of the Cartier dual M P = Hom(M, K**). These results are mainly
due to Tate [Tat62] and later collected and generalized by Milne [Mil20].

We begin in Section 1.2 from the abstract setting of class formations, pairs (G, C) of a
profinite group and a G-module, satisfying properties which allow us to formulate results of
local class field theory in a purely algebraic language. In particular, they provide us with
so-called invariant maps, isomorphisms H?(G,C) = Q/Z; these are crucial for the definition
of pairings into Q/Z which will be the building blocks for the duality isomorphisms.

In Section 1.3 G is the Galois group of a local field K. The natural map MP” x M — K5*
induces cup products H" (G, MP) x H?>~"(G, M) — H?*(G, K®*). The pair (G, K**) is (the
prototypical example of) a class formation, so we may compose cup products with the invariant
isomorphism to induce maps H"(G, MP) — H?~"(G,M)*. Local Tate duality essentially
states that these maps are isomorphisms.

In Section 1.4 we work with abelian varieties A over a local field K. We define their
cohomology groups as the cohomology groups of M = A(K®). The main theorem of this
section is an isomorphism of the kind H" (K, A') = H'="(K, A)*, where A is the dual abelian
variety.

In Section 1.5 we specialize the previous results to the torsion group M = E, (K®) of an
elliptic curve. In this case self-duality of the curve, together with the Weil pairing, gives a
relation MP = M. When K is a number field, we define a global pairing as the sum of the
local pairings for the completions K.

In Section 1.6 we define the Tate-Shafarevich and Selmer groups of an elliptic curve over
a number field. These are fundamental objects in the study of its arithmetic, because their
knowledge provides information on the rank of the curve. The rest of the thesis aims to
show how Selmer groups can be controlled. The last prerequisite for this is global Poitou-
Tate duality, an exact sequence which determines in particular a pairing between the Tate-
Shafarevich groups; this is the topic of Section 1.7.

In Chapter 2 we apply these duality theorems. Given an R-module T with a Galois
action, we first define Selmer modules in full generality, i.e. modules of cohomology classes
satisfying given local conditions (Section 2.2). The Selmer groups of an elliptic curve are then
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a particular example. Using our duality theory, a Selmer structure induces a structure on the
dual module. It is actually these dual Selmer modules that we are going to study.

We construct Stark systems (Section 2.3) and, finally, Kolyvagin systems (Section 2.4),
collections of elements obtained from these Selmer modules, more precisely by some exterior
power thereof, with certain compatibility properties.

The exterior power appearing in the definition of a Kolyvagin system is the core rank of
the Selmer structure. As of today, this theory is only well-established in the case of core rank
1, where the systems consist of simple cohomology classes; this is, for instance, the case of
elliptic curves over Q. To provide an upper bound for the Selmer group of T°, Kolyvagin
originally introduced Fuler systems, collections of cohomology classes over different extensions
of the base field, compatible when projecting via norms from an extension to a smaller one.
From an Euler system he then constructed a ‘derived system’, a new collection of cohomology
classes, now over the base field K alone. Mazur and Rubin showed in [MRO04] that these
classes satisfied stronger interrelations than previously known, and called Kolyvagin system
any system satisfying these relations. This defines a ‘Kolyvagin derivative’ map from the
module of Euler systems to that of Kolyvagin systems and this link allows for a much more
concrete treatment of the core rank 1 case: by choosing a specific Euler system, for example
related to L-values, one gets similar relations for the corresponding Kolyvagin system and the
order of the Selmer group.

In the case of general core rank as we allow, the link between Euler and Kolyvagin systems
is still mysterious and we cannot treat any explicit examples. The theory of Kolyvagin systems
themselves, however, can still be developed and used to control Selmer groups, assuming the
knowledge of a Kolyvagin system. We do so, following [MR16].

By means of these systems and some associated invariants, we are able to bound the length
(in the module sense) of the dual Selmer modules. If E is an elliptic curve and we consider the
Z/p*Z-module E,. of torsion points (resp. the Tate module T,(E) over Z,), then the dual
Selmer module will be the classical Selmer group Sy« (K, E) (resp. Sy~ (K, E)) as desired, so
we will work in this setting, although the results hold for more general R and T

Stark systems also control Selmer groups but we especially use them as a tool in the final
section, thanks to an equivalence between the module of Stark systems and a particular type
of Kolyvagin systems. In both cases, the theory is first explained for Z/p*Z and then extended
to Z, passing to inverse limits.



Chapter 1

Duality theorems

1.1 Preliminaries

1.1.1 Group cohomology

Let G be a group; we say that A is a G-module if it is a Z[G]-module, and we write A € G-Mod.
We use notations

Homg (A, B) := Homgg)(A, B)
Hom(A, B) := Homy(A, B).
Definition 1.1.1. For A € G-Mod, we define its r-th cohomology group as
H"(G, A) = Ext(Z,A) = R"Homg(Z, —)(A),
where R" denotes the r-th right derived functor.

More explicitly, we may compute this as follows: choose a projective G-resolution P, —
Z — 0 of Z (seen as a G-module via the trivial action), consider the complex

0 — Homg (P, A) - Homg(Py, A) — - -

and define H" (G, A) as the r-th cohomology group of this complex. Even more explicitly, we
can choose the above resolution in a standard way by setting P; := Z[G*T!] with differentials

d: Pi— Pic1,  (goy---59i) Z(—l)j(go»ung—hgjﬂ, -3 9i)
=0

for i > 1, and

e: Py =7|G] = Z, angHan
g g

The elements of Homg(P;, A) are functions f: G**! — A satisfying the property
f(sgo,-..,89:) = sf(go,--.,9i); so, by multiplying the arguments by suitable elements,
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8 CHAPTER 1. DUALITY THEOREMS

f is determined by its values on elements of the form (1,g1,9192,--.,91 - ¢:), and thus we
can identify it with a function

0: G > A, ogr,.-,9) = f(1,91,9192,- - 91" Gi)

For these ¢ we get the following boundary formula

(do)(g1,---,9i+1) = g190(g2s - - -, Git1)+

+Y (= (g1, 95115 gin) + (=) olg1, . g0)
j=1

and we can describe the homology classes accordingly. For example, for r = 1, the cocycles are
maps G — A such that ¢(gg’) = gp(g’) + ©(g) and the coboundaries are maps ¢(g) = ga — a
for a € A.

Remark 1.1.2. We will usually deal with profinite groups G. In this case we will always
assume that all G-modules are discrete, meaning equivalently that

e the action G x A — A is continuous for the discrete topology on A;
o A=J, AU union over all open U < G;

and we will compute cohomology using continuous cochains, i.e. in the above description we
will restrict ourselves to those functions ¢ which are continuous.

For A, B € G-Mod, the abelian group Hom(A, B) has a G-module structure given by
go(a) = go(g~ta). Then we have Homg(A, B) = (Hom(A, B)) and, in particular,

H°(G, A) = Homg(Z, A) = (Hom(Z, A))“ = A°.

Moreover, if 0 = A — B — C — 0 is an exact sequence of G-modules, we have the usual
cohomology long exact sequence

o= HY(G, A) —» HY(G, B) — HY(G,C) > HT™™ (G, A) — -- - .
If H < G, we define the restriction morphism as the morphism
Res: H"(G,A) — H"(H, A)

induced by the inclusion H < G. When H is normal, we define the inflation morphism as
the composition
Inf: H"(G/H, A™) — H"(G,A") — H"(G, A)

of the morphisms induced by G — G/H and A < A respectively. A fundamental result is
the exactness of the restriction-inflation sequence,

0— HY(G/H, A™) 2 gi(a, A) 2 7Y (1, A).

Given a finite group G and a bilinear G-equivariant pairing of G-modules A x B — C| there
are cup-product pairings

(z,y) = xUy: H (G, A) x H'(G,B) = H™(G,C)

(ﬁ " denotes the Tate cohomology groups, see proof of Theorem 1.2.3) satisfying properties
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e dzUy=d(xzUy) and zUdy = (—1)"d(z Uy)

e zU(yUz)=(zUy)Uz

e xUy=(—-1)"yUx

e Res(z Uy) = Res(x) URes(y) and Inf(z Uy) = Inf(z) U Inf(y)

Theorem 1.1.3 (Tate-Nakayama). Let G be a finite group, A a G-module, u € H?(G, A).
Suppose that, for all H < G,

e HY(H,A) =0,
e H?(H,A) = (Res(u)) and |H*(H, A)| = |H]|.
Then, for any G-module B with Tor%(B ,A) =0, cup product with u induces an isomorphism
v xUu: H'(G,B) —» H'(G,B® A)

for all r € Z.

1.1.2 Spectral sequences

Definition 1.1.4. A first-quadrant Es-spectral sequence in a category C, denoted by Fy? —
EPT4, consists of the following data:

e objects EP1 € C for p,q >0, 7 > 2
e morphisms dP7: EP9 — EPT47F1 guch that:
—dod=0

— for every (p,q), d?? and d2~"97"~! vanish for large enough

— D:q /[ § p—7,q+r—1 o pP:d
ker dP*9/im dP = B

(this implies that, for r large enough, EP*9 is independent of r and we can denote it by
B2)

e objects E™ with a finite filtration E™ D -+ D FxE™ D Frp1E™ O -+ D 0 such that
EP4 =~ F EPHa)F, EPt

This setting provides us with useful exact sequences:

Lemma 1.1.5.

1. If 27 =0 for all p > 0 and ¢ > 1, then there is a long exact sequence
05 B 5B 5 B S E20 L g2 L EML L E30
2. If ER'? =0 for all ¢ > 0 and p > 1, then there is a short exact sequence
0= Ey" ' 5 E" 5 EJ" = 0.

Proof. See, for example, [Neu93]. O
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We introduce a spectral sequence of great importance. For M, N € G-Mod and H < G,
we define Homp (M, N) = UH<U<G Hom(M, N)Y, U open. This is a discrete G/ H-module
and defines a left-exact functor Hom g (M, —) from (discrete) G-Mod to (discrete) G/ H-Mod.
We denote its right derived functors in the natural way, Ext’y (M, N) .= R" Hompy (M, —)(N).

Theorem 1.1.6. Let H < G be a normal closed subgroup, N, P € G-Mod, M € G/H-Mod
with Tor} (M, N) = 0. Then there is a spectral sequence

Extg (M, Exty (N, P)) = Extg (M @z N, P).

Proof. This is a particular case of Grothendieck’s spectral sequence, which relates the derived
functor of a composition GG o F' to the derived functors of F' and G. The result, proven in
Grothendieck’s Tohoku paper [Gro57], states

(RPG o RIF)(A) = RPT(G o F)(A)

if F maps injective objects to G-acyclic objects. Hence, it is enough to show that Homg (M ®7
N,—)=GoF for '=Hompy(N,—) and G = Homg, g (M, —), and that F' has the required
property. O

From this we can easily deduce the famous

Corollary 1.1.7 (Hochschild-Serre spectral sequence). If we choose (M, N, P) = (Z,7Z, M),
we get
H"(G/H,H*(H,M)) = H""%(G,M).

Corollary 1.1.8. If we choose (M, N, P):=(Z,M,N) and H = 1, we get
H"(G,Ext*(M,N)) = Exty*(M,N).
and, if M is finitely generated, Lemma 1.1.5 then yields a long exact sequence

0 —H'(G,Hom(M, N)) — Extg(M,N) — H°(G,Ext' (M, N)) —
—H?*(G,Hom(M, N)) — - -

and we can also deduce that:
e Extg (M, N) is torsion for r > 1;

e if N is divisible by all primes occurring as the order of an element in M, then
Ext'(M, N) = 0 and consequently

H"(G, Hom(M, N)) = Extl, (M, N).

1.1.3 Ext pairings

Given a pairing of G-modules M x N — P, there is a canonical product Extg (N, P) X
Ext, (M, N) — Extf;™* (M, P) which becomes, in the case M = Z,

Extl,(N, P) x H*(G,N) — H™(G, P).
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This pairing will be the starting point for our duality theorems. It is compatible with the
cup-pairing, in the sense that the following diagram commutes:

H"(G, M) x  H%(G,N) — H™5(G,P)
{
H"(G, Hom(N, P))
{
Ext(N, P) x  H%(G,N) — H™(G,P)

where the map H" (G, Hom(N, P)) — Extg (N, P) exists because of the spectral sequence in
Theorem 1.1.6.

If K is a field, the category of algebraic group schemes over K is abelian, hence we can
define Ext’ (A, B) for A, B algebraic group schemes over K. In this setting we will write

G = Gal(K®/K),
H™(K,A) = H"(G, A(K?)).

If K is perfect, A — A(K®) is an exact functor (since K® is algebraically closed) and there is
a canonical pairing

Ext} (A, B) x H*(K,A) - H""*(K, B)
defined so that the following compatibility holds:

Ext}, (A, B) x HS(K,A) — H™*(K, B)

1 I I
Extg(A(K®), B(K®))  x  H(G,A(K®)) — H""*(G, B(K"))

where the bottom row is the previously defined Ext pairing for G-modules.

Proposition 1.1.9. For perfect K there is also a spectral sequence resembling 1.1.8 for
algebraic group schemes over K,

H" (G, Extie. (A, B)) = Bxt7*(A, B)

which can be used to show the following [Oor66]: if A is a finite group scheme over K of order
not divisible by char(K), then

Exth (4, Gn) = Extl(A(K®), K5%).

1.2 Class formations
Definition 1.2.1. If G is a profinite group and C' is a G-module, we say (G,C) is a class

formation if there is a system of isomorphisms {invy: H?(U,C) = Q/Z | U < G open},
H(U,C) =0 and, whenever V < U < G,

H2(U,C) 2=, H2(V,0)

linv U linvv

oz —2 s @)z
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commutes.
Equivalently, the requirement that invy are isomorphisms may be replaced with the re-
quirement that they be injections inducing isomorphisms

H2(U/)V,CY) & ﬁZ/Z,

if we add the condition that |G| is divisible by all integers, where |G| denotes the profinite order
of G = lim G, defined formally as [], pmaxitlGils} (product over all primes, |Gj|, denoting
the p-factor in |G;|).

This notion is an abstraction of the following fundamental situation from local class field
theory:

Theorem 1.2.2. Let K be alocal field, G = Gal(K®/K). Then (G, K*) is a class formation.

To construct the invariant maps we need to recall some facts. Let I be the inertia subgroup
Gal(K®/K"™), hence G/I = Gal(K""/K). Then:

1. H2(G, K%)= H*(G/I, K™).

2. the map H*(G/I, K*™) — H?(G/I,Z), induced by the additive valuation v: K* — Z,
is an isomorphism.

3. H*(G/I,Z) = H*(G/I,Q/Z): indeed, consider the long cohomology sequence arising
from 0 = Z — Q — Q/Z — 0 considered as trivial G/I-modules. Since Q is uniquely
divisible, it has trivial cohomology, hence the connecting morphisms are isomorphisms.

4. HY(G/I,Q/Z) = Hom(G/I,Q/Z) because the action on Q/Z is trivial (Hom denotes
continuous homomorphisms). Hom(G/I,Q/Z) is isomorphic to Q/Z via ¢ — ¢(1).

Composing these isomorphisms together, we define
invg = invg: H*(G, K%%) — Q/Z.

If L/K is a finite Galois extension of K corresponding to a subgroup H < G, we construct in
the same way the map invy, = invy: H?(H,L**) = H*(H, K**) — Q/Z and we can finally
check that

H*(G,K**) = H?(H,K**)

lian linVL

z —C1 gz

commutes, hence (G, K®*) is a class formation. For the proof of this, as well as of facts
(1) and (2) (and of the following statements about local class field theory), one can refer to
[Ser67].

Theorem 1.2.3. If (G, C) is a class formation, there is a canonical map, called the reciprocity
map,
recg: C9 — Gab

with dense image and kerrece = [ Ng /UC’U (intersection over U < G open of finite index;
recall Ngju =3 ,equ 0)-



1.2. CLASS FORMATIONS 13

Proof. This follows from the Tate-Nakayama theorem 1.1.3: first apply the theorem to the
particular case

(G/U)™ = H™*(G/U,Z) = H*(G/U,Z® CY) = C° /NguCY
a—alug/u,

then pass to the inverse maps; by examining the morphisms in the inverse systems we see that
these bijections induce a morphism of inverse systems which, passing to the limit, provides
an injection

CG/ﬂNg/UcU — Gab.
U

Composing on the left with the projection from C¢ gives the required map recg; then,
composing on the right with G® — (G/U)?P for any open U < G gives a surjection, showing
that the image is dense. O

Example 1.2.4. This is again a construction which arises naturally in local class field theory.
For a finite Galois extension L/K, the isomorphism between K* /Ny ,xL* and Gal(L/K)*"
is called the local reciprocity map. Passing to projective limits we get the reciprocity map
K* — G?P: it is injective but not surjective, and it factors as

KX (K*)" = lm K* /Ny L™ = G*
L
through the completion of K* for the topology defined by the so-called norm subgroups.

1.2.1 Duality for class formations

When M € G-Mod and (G, C) is a class formation, we can compose the Ext pairings with
the invariant map to obtain pairings

Ext},(M,C) x H>"(G, M) — H*(G,C) 2 Q/Z.
Writing A* = Hom(A4, Q/Z) for A an abelian group, this induces maps
a"(G,M): Extl(M,C) — H* (G, M)*.
The following theorem holds:
Theorem 1.2.5 (Duality for class formations).

e (G, M) (r > 2) is bijective for all finitely generated M.

e ol (G, M) is bijective for all torsion-free finitely generated M:;
it is bijective for all finitely generated M if o' (U, Z/mZ) is bijective for all open U < G
and all m.

e a(G, M) is bijective for all finite M if ol (G, M) is and in addition o®(U,Z/mZ) is
bijective for all open U < G and all m.

We start by examining the particular cases M = Z and M = Z/mZ; that is, when the
G-action is trivial. In the case M = Z:
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a(G,7): C¢ = H°(G,C) — H?*(G,Z)* = Hom(G,Q/Z)* = G?" is the reciprocity map
recqg

(recall the identification of H?(G,Z) with Hom(G, Q/Z) as in Theorem 1.2.2. Moreover,
the equality involving G*" follows from Pontryagin duality for profinite abelian groups);

o} (G,Z): 0= HYG,C) - HY(G,Z)* =0 is the zero map;

a?(G,Z): H*(G,C) — H°(G,Z)* = Q/Z is the map invg.
They follow easily from the definitions except for a”. For this, first note that in this case the
Ext pairing coincides with the cup-product pairing H(G,C) x H*(G,Z) — H?*(G,C), which

we can identify with a pairing (—, —): C¢ x Hom(G,Q/Z) — Q/Z. We want to check that
the induced morphism ¢ — (¢, —) coincides with the composition

OO G, G X Hom(G, Q/Z)F, ¢ (x = X(TGCG(C)))»

that is, (¢, x) = x(recg(c)) for all ¢ € C¢ and x € Hom(G,Q/Z): this is a well known result
in local class field theory, see [Ser80, XI1.3, Proposition 2|.
The case M = Z/mZ then follows:

a®(G,Z/mZ) is such that the composition
aO
C%m] —*— H?*(G,Z/mZ)* — G*m)|

is induced by recg on the kernels of the multiplication by m;
ot (G, Z/mZ): CF/mC% — G*P /mG=P is induced by recg;
o?(G,Z/mZ): H*(G,C)[m] — L7Z/7Z is induced by invg.

Proof of Theorem 1.2.5. Let us first show that domain and codomain of the maps both vanish
for large r. Precisely: for M finitely generated, Extg(M,C) =0 (r > 4); if M is torsion-free,
also Ext2,(M,C) = 0. To show this, it is enough to show Exty(M,C) = 0 (r > 3) in the
torsion-free case, because then, for general M, a resolution 0 — M; — My — M — 0 with
M; finitely generated torsion-free will yield a sequence Ext (M;,C) = 0 — BExtg(M,C) —
0 = Extg (Mo, C).

Set N = Hom(M,Z), hence N ®; C = Hom(M,C) as G-modules; by Corollary 1.1.8 we
have

Extg(M,C) = H'(G,N ® C) = lim H'(G/U,N ® CV)

where the limit over N < G open with NV = N is relative to the Inf maps. This limit is zero
when r > 3: indeed, we have a diagram

H™%(G/U,N) —~ H"(G/U,N @ CV)

l[U:V]Inf l[nf

H™2(G/V,N) — H"(G/V,N® C")

where the rows are the isomorphisms a — a U u from the Tate-Nakayama Theorem 1.1.3,
for r —2 > 1; the diagram commutes because Inf(ug,y) = [U : V]ug,v (by definition)
and Inf(a U b) = Inf(a) U Inf(b). As H""?(G/U,N) is torsion (Corollary 1.1.8) and the
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profinite order |U| is divisible by all integers (see definition of class formation), the limit
ling’"*(G/U, N) relative to the maps [U : V]Inf is zero, as we claimed.

This proves the cases r > 4. It also implies that Ext(Z,C) = 0, and we easily deduce
Ext(Z/mZ,C) = 0: indeed, from the exact sequence 0 — Z % 7Z — Z/mZ — 0 we get

Ext?(Z,C) — Ext*(Z,C) — Ext*(Z/mZ,C) — 0 = Ext*(Z, C)

and Ext*(Z,C) = H*(G,C) = Q/Z is divisible, hence Ext*(Z/mZ,C) = 0. Together with
the previous analysis of the cases M = Z or Z/mZ, this proves the theorem in case of trivial
G-action.

In the general case, embed M in a sequence 0 - M — M, — M; — 0 where M, =
Hom(Z[G /U], M) = Z|G /U] ® M for U < G open satisfying MY = M. Then H" (G, M,) =
H" (U, M) and Extg (M., C) = Exty; (M, C) by applying Theorem 1.1.6 with Z[G/U], M, C.
We get a commutative diagram with exact rows

Extg,(M;,C) — Ext[;(M,C) — BExt(M,C) — Exti ! (M;,C) —

lar(G,Ml) lof(U,M) la’"(G,M) lo/"*l(G,Ml)

H?>™"(G, My)* — H*"(UM)* — H*"(G,M)* — H'""(G,M;)* —
a3 (U, M), o*(G, M;) and o*(U, M) are isomorphisms because of the above discussion, so
by the five-lemma o3(G, M) is surjective. Since this holds for all M, o®(G, M;) is also an
isomorphism, and again by the five lemma (G, M) is an isomorphism. Now we can repeat

the argument to show a?(G, M) is an isomorphism.

If M is torsion-free or if o'(U,Z/mZ) is bijective, then also o!(U, M) is an isomorphism

(because the theorem is true in case of trivial action), and we use the five lemma twice as
before. The proof for a’(G, M) proceeds in the same way. O

1.3 Local duality for G-modules

Throughout this section:
K is a non-archimedean local field and G = Gal(K®/K);
if M is a G-module, we set MP = Hom (M, K5*);

if N is a group, N denotes its completion with respect to the subgroups of finite index
or, if N has a natural topology induced from K, the completion relative to the subgroups
of finite index which are open for that topology.

Recalling that (G, K5%) is a class formation (Theorem 1.2.2), we apply the result of the
previous section to this particular case.

Theorem 1.3.1 (Local Tate duality). Let M be a finitely generated G-module with char(K)
not dividing |Tors(M)|. Then, the cup product induces isomorphisms

H"(G,MP) - H*"(G,M)*  (r=1)
H(G,MP)" — H*(G, M)*

Moreover, HY(G, M) and H'(G, MP) are finite.
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Proof. K% is divisible by all primes except for char(K), so Ext" (M, K®*) =0 for all r > 1,
and therefore using Corollary 1.1.8 we may write H" (G, MP) = Ext{,(M, K**). The result
then follows as a particular case from the next theorem. O

Theorem 1.3.2. Let M be a finitely generated G-module; then, there are isomorphisms
Exty (M, K*) — H* "(G,M)*  (r>1)
Homg (M, K8)" — H?*(G, M)*
(Homg (M, K**) — H?*(G, M)* if M is finite).
Moreover, Exte (M, K5*) and H"(G, M) are
e finite for all r if M is finite with char(K) { | M|
e finite for r = 1 if M is finitely generated with char(K)  |Tors(M)|.

Proof. Duality for class formations (Theorem 1.2.5) immediately implies the isomorphisms
for r > 2; for r = 1 it will follow once we check that every a!(U,Z/mZ) is an isomorphism;
and, if M is finite, it will also follow for » = 0 if we show that every a°(U,Z/mZ) is an
isomorphism. Recall that these two maps are induced by recg resp. on cokernels and kernels
of m; recall the following diagram from local class field theory

0 o) KX Y7 0
0 I2b Gab 7 0

[Ser67, p. 144]; then consider the induced diagrams respectively on cokernels and kernels by
m to conclude that a! (and o for finite M) are isomorphisms.

When M is not finite, the statement still holds if the G-action is trivial, because a*(G, Z)
defines a morphism on the completion

(G, Z)": (KX & 6P

which is an isomorphism, being the reciprocity map of local class field theory (Example 1.2.4):
one should just note that norm subgroups of K * coincide with the open finite index subgroups,
see [Ser67, Theorem 3]. In general, consider a finite Galois L/K such that U := Gal(K*®/L)
acts trivially, then Homg (M, K*) = Homg (M, L*), and this contains the open compact
subgroup Homg (M, OF). Therefore, using notation as in Theorem 1.2.5 for 0 — M — M, —
My — 0, the exact sequence

0 — Homg(M;, K°*) — Homy (M., K°*) — Homg(M, K*) —

remains exact after completion, and we complete the proof as in Theorem 1.2.5.
We can now move to the proof of the finiteness statements. If char(K) t n, from the

Kummer sequence
n

0= pun(K®) = K% = K% =0
we find, passing to the long cohomology sequence,
tn (K) r=0
K*/K*™ r=1
%Z/Z r=2
0 r>=3

H' (G, pn(K7)) =
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If M is finite with char(K) 1 |M|, choose a finite Galois extension L/K containing all m-th
roots of 1 for m | |[M| and such that Gal(K®/L) acts trivially on M; then

hence we know H"(Gal(K®/L), M) is always finite, and zero for r > 3. The Hochschild-Serre
spectral sequence with H = Gal(K*®/L) becomes

H"(Gal(L/K), H*(Gal(K®/L), M)) = H™*(G, M)

and implies that H"(G, M) is finite for all r, because the cohomology groups of finite groups
Gal(L/K) with values in finite modules H*(Gal(K®/L), M) are finite. Then by Theorem 1.2.5
all a" (G, M) are isomorphisms, so Extg (M, K3%) are also finite.

If M is finitely generated with char(K) t |Tors(M)|, we want to show that H'(G, M) is
finite. We may assume Tors(M) = 0, by the previous case. Choose a finite Galois extension
L/K such that Gal(K*®/L) acts trivially on M. From the exact sequence

0 — HY(Gal(L/K),M) — H' (G, M) — H"(Gal(K*/L), M) = 0

we have H'(G, M) = H*(Gal(L/K), M), which is finite. Theorem 1.2.5 makes it is isomorphic
to Extg (M, K3*), which therefore is also finite. O

1.4 Local duality for abelian varieties

1.4.1 Local Euler-Poincaré characteristic

We need a technical result first. For a G-module M of finite order m with char(K) { m, the
groups H"(G, M) are finite for all r and zero for > 3 (Theorem 1.3.2), so we can define its
Euler-Poincaré characteristic

EG MG M|
MG = =156 )

(note that this recalls the usual Euler characteristic of algebraic topology, but written multi-
plicatively). We now prove that, for such a module,

Theorem 1.4.1. x(G,M) = (Og : mOg)~".

Set p = char(k), where k is the residue field of K. Let us first consider the following
special case.

Lemma 1.4.2. If the order of M is prime to char(K), then x(G, M) = 1.

Proof. Let I = Gal(K®/K"™) < G be the inertia group of G, and I, < I be its p-Sylow
subgroup. We have R
1/1,~7)Z,

(see [Ser80, IV]). Consider the Hochschild-Serre spectral sequence

H"™(I/I,,H*(I,,M)) = H""(I,M);
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since H"(I,, M) = 0 for r > 1, its long exact sequence from Lemma 1.1.5 reads
0— HY(I/I,,M'*) — H"(I,M) —=0— H*(I/I,, M) — H*(I,M) = 0 —

so H™(I, M) = H"(1/I,, M'»); moreover this is finite for all r and zero for r > 2 (see [Ser80,
XII1]). Then the Hochschild-Serre spectral sequence

H"(G/I,H*(I,M)) = H"t*(G, M)
shows H(G,M) = H°(G/I, M) and an exact sequence
0— HY(G/I,M") - H'(G,M) — H*(G/I,H (I, M)) = 0 —
— H*(G,M) = HY(G/I,HY(I,M)) =0
Since G/I = Z, for any finite Z-module N the exact sequence
0 HZ,N) = N2 N = H'(Z,N) - 0
(with o a topological generator of Z) shows [H%(Z, N)] = [H*(Z, N)], hence

[HO(G/1, MD)|[H"(G/1, H' (I, M))]

MG M) = (G 1M [ G/, HT(1, D)

=1.

O

By the lemma and the fact that both sides in Theorem 1.4.1 are additive, we may assume
pM = 0 and char(K) = 0. Suppose L/K is a finite Galois extension such that L C K® and
M = MGE/L) | Then M is an F,[Gal(L/K)]-module. For any such module N, denote by
[N] its class modulo the equivalence relation

[N] = [N1] 4+ [N2] <= 0— N; - N — Ny — 0 is exact

and denote the group of these symbols by R(Gal(L/K)). The left and right sides of Theo-
rem 1.4.1 define morphisms of groups

Xi; Xr: R(Gal(L/K)) — Qs

Since Qs is torsion-free, it suffices to show x; = x,- on a set of generators for R(Gal(L/K))®z

Q.

Lemma 1.4.3. If G is a finite group, then R(G) ® Q is generated by the images of the
morphism

md$: R(H)®Q = R(G)®Q, [N]+~— [®@gN]

where H < G is cyclic of order prime to p, IV is an H-module, the direct sum is over a system
of representatives mod H.

Proof. From [Ser70]. O

Hence it is enough to prove the theorem for M of the form Ind%al(L/ K) Let K’ = L¥ and
n = |N|; then we have

X(G, M) = x(Gal(K*/K'), N)
(OK : m@K) = (OK : TLOK)[K,:K] = (OK/ . TLOK/)
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which shows it is enough to prove the theorem for N, and therefore we can assume Gal(L/K)
to be cyclic of order prime to p. In this case, when r > 1, H"(Gal(L/K), M) = 0 and so
H"(G,M) = H"(Gal(K®/L), M)G2l(L/K),

Consider the group morphisms

X' R(Gal(L/K)) — R(Gal(L/K))
] > (—1)'[H'(Gal(K*/L), N)]

0: R(Gal(L/K)) = Q>0
[N] s [NGRUE/E)|
Lemma 1.4.4. x'(M) = —dim(M)[K : Q,|#F,[Gal(L/K)]
Note that, since 8 o x’ = x and [F,[Gal(L/K)]] = p, this lemma would show
X(M) = 60X/ (M) = p~ &I = (O - mOK) ™
proving the theorem. So we proceed with the proof of this lemma.

Proof. Tensoring M with an injective p%[Gal(L/ K)]-resolution of Z/pZ, we see that the cup
product defines isomorphisms of Gal(L/K)-modules

H"(Gal(K*/L),Z/pZ) ® M — H"(Gal(K®/L), M)

hence x' (M) = dim(M)x'(Z/pZ). Let My be the G-module with underlying set M and trivial
G-action. The isomorphism
F,[Gal(L/K)] ® My — F,[Gal(L/K)]|® M
cRm—=o®om
shows dim(M)#F,[Gal(L/K)] = #F,[Gal(L/K)]|M|, so the general equality in the lemma
follows from the special case M = Z/pZ.
H°(Gal(K®/L),Z/pZ) = Z/pZ
HY(Gal(K* /L), Z/pZ) = HY(Gal(K*/L), iy (K*))" = (L*/L*7)"
H2(Gal(K* /L), Z/9Z) = 1y (L)’
where (—)* denotes Hom(—,F,) seen as a Gal(L/K)-module. Since the functor Hom(—,F,)
is exact (because F), is divisible), it is defined on R(Gal(L/K)). Hence
X' (Z/pZ)" = [pp(L)] + [Z/pZ] — [L™ /L*7]
= [1p(L)] = [0F /0"
= [1p(O[)] = [0 /O,
second line following from the exact sequence 0 — OF /O;F — L* /L*P — Z/pZ — 0.

Note now the following fact: for W and W’ finitely generated Z,[H]-modules with H finite
group, if W ®Q, =W’ ® Q,, then

(W/pW] = [Wp] = W' /pW'] — [Wy] in Fp[H].
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This is shown by reducing to the case pW C W' C W, in which case we have the exact
sequence (given by the snake lemma)

0= W, =W, = W/W = W /pW' - W/pW — W/W' — 0.

We apply this result as follows. The exponential series maps an open subgroup of Of onto
an open subgroup of (Or,+), hence

(05 /05”1 = [1p(OF)] = [O1/pOL] = [(OL)p] = [O1/pOL]-
The normal basis theorem says L = Q,[Gal(L/K)]|f®] as Gal(L/K)-modules, hence
[OL/pOL] = [K : Q][Fy[Gal(L/K)]]
and we conclude by [F,[Gal(L/K)]|* = [F,[Gal(L/K)]]. Putting things together,
X' (M) = dim(M)x'(Z/pZ)
= —dim(M)[K : Q][F,[Gal(L/K)]*
(M) Fp

= — dim(M)[K : Q][ [Gal(L/K)]].

1.4.2 Local duality for abelian varieties

In this paragraph, the notion of dual abelian variety comes into play. Since we are interested
with the self-dual case of elliptic curves, we do not develop a rigorous theory for this notion.
However, since the arguments would be the same, we will state the results for general abelian
varieties, and we will content ourselves with the following definition of dual abelian variety:

At = Extl(A,(Grm)
so AY(K®) = Extk-(A,G,,). As for elliptic curves, also for general abelian varieties there is a
Weil pairing, a perfect pairing
An(K%) x AL (KF) = i (K°)
inducing an isomorphism
Al (K®) = Hom(A, (K*®), K¥).

If we set M = A, (K?®), this means that MP = A! (K®), relating these two types of duals.
We set the following notation:

H"(K, A) = H(Gal(K*/K), A(K*))

the subscript n, whether on groups or on the group scheme A, denotes the kernel of
multiplication by n.

When K is perfect, there is a pairing
Exti(A4,Gp) x H7(K, A) = H*(K,G,,) = H*(G, K**) = Q/Z

obtained composing the Ext pairing in Section 1.1.3 and the invg isomorphism. This induces
a canonical map

Q" (K, A): Exth(A,G,,) — H* (K, A)*.

Tate proved the following result:
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Theorem 1.4.5. When K is perfect, there is a canonical pairing
H"(K,A") x H'""(K,A) — Q/Z.
When char K = 0, it induces isomorphisms H" (K, A') = H!="(K, A)*, that is
o AY(K) = HY(K,A)* for r =0,
o HY(K,At) = A(K)* for r =1,
e 0 —0forrz#0,1.

Proof. When K is perfect, there is a canonical isomorphism
H"(K, A") = Ext/t (4, G,,)

following from the spectral sequence in Proposition 1.1.9 using that Ext’. (4, G,,) is 0 for
r > 2 [Oor66] and Hompg: (A4, G,,) = 0 because A is an abelian variety, so it is projective,
whereas G,,, is affine (as it corresponds to the K-algebra K[X,Y]/(XY —1)). This shows the
existence of the stated pairing.

Suppose now char(K) = 0. Consider the sequence 0 — A, — A % A — 0; applying
Ext (—, G,,) and using the canonical maps as vertical arrows, we get the following diagram
(superscript (n) denotes cokernel of the map induced by multiplication by n)

0 — Exti(A,G,,)™ — Extl(4,,G,) — Extid(A,G,,), — 0
lof(K,A)(") laT(K,A,L) loﬁ'*l(K,A)n
0 — (H>7"(K,A),)" — H*7"(K,A,)* — H'""(K,A)M* — 0

Using Ext’ (An, Gp) = Exte (A4, (K®), K3*) we identify o" (K, A,) with o"(G, A, (K?®)), so
we see that the diagram commutes; by Theorem 1.3.2, this map is an isomorphism of finite
groups for all r (recall for example that, for elliptic curves, A, (K®) is (Z/nZ)? when char(K)
does not divide n). Hence, o (K, A)(™ is injective; taking inverse limits we still get an
injective map

lima” (K, A)™: lim Extj (A, G,,) "™ — Tors(H* ™" (K, A))".

n

Let r = 1, and recall Ext}(A4,G,,) = AY(K). [Mat55] assures that, if B is an abelian
variety of dimension d over a local field K of characteristic 0, then B(K) contains an open
subgroup of finite index isomorphic to O%. It implies that B(K) = B(K)", the completion
for the profinite topology. Applying this to the variety A* and using the previous equality in
terms of Ext, we get

Exty (4, Gp) = AY(K) = lim A (K)™ = lim Ext (4, G,,,) ™.

Furthermore
Tors(H' (K, A)) = H* (K, A)

since it is finite (Theorem 1.3.2); we conclude ot (K, A) = lim a” (K, A)™ hence ol (K, A)
is injective.
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We now show H"(K,A) = 0 for r > 2. For r > 3 this follows from 1.3.2, i.e. G has
cohomological dimension 2. To show H?(K, A) = 0, take r = 0 in the diagram above: we get
an exact commutative diagram

0 0 Hompg (A,,G,,) — Ext}(A,G,,)

| ! |

0 — (H*(K,A),)" — HY(K,A,)" —— HY(K,A)*

Since the middle vertical arrow is an isomorphism and the left arrow is injective, we deduce
H?(K,A), =0 and hence H?(K, A) = 0. We also conclude that Ext} (A, G,,) (which equals
H™ G, AY)) is 0 for r # 1,2.

To show that o (K, A) is an isomorphism, we show that the injections A*(K) — H(K, A)*
give surjections A*(K)™) — (H1 (K, A)n)* for all n. It is enough to show the groups have the
same orders. Set M = A, (K®), MP = At (K®), d = dim A. We have, from Theorem 1.4.1:

X(GvM) = (OK : nOK)izd = X(GvMD)a
AR e A
|A(K)n| ' | AN (K )n|

From H°(G, MP) = Al (K) we get
[HY(G, A)ul = (Ox : nOk)!| A} (K)| = [A"(K)™)]

and we conclude.
To show that a?(K, A) is an isomorphism, consider the first diagram: we have surjectivity
of
?(K,A): Ext%(A,G,,) = H (K, A" — A(K)* = H(K, A)*.

Repeating the calculations of the orders with A and A? interchanged gives |[H(G, A?),| =
|A(K)™| implying that the map is an isomorphism. O

1.5 Specialization to elliptic curves

1.5.1 Local duality

We use notations:

FE is an elliptic curve over K
H' (K, B) = H"(Gal(K*/K), E(K*))
H(L/K, E) = H"(Gal(L/K), E(L))

the subscript n, whether on groups or on the group scheme FE, denotes the kernel of
multiplication by n.

Consider the composition, denoted by (—, —):
H'(K,E,) x H\(K,E,) = H*(K,E, ® E,) — H*(K, ji,) = Z/nZ
of the cup product and the map induced by the Weil pairing
En(K°) @ En(K°) = pn (K7).
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Theorem 1.5.1. The pairing (—, —): HY(K, E,) x HY(K, E,) — Z/nZ is a perfect, sym-
metric, Galois-equivariant pairing.

Proof. This is a particular case of the duality theorem 1.3.1. The Weil pairing is perfect,
hence gives an isomorphism of abelian groups

B, (K®) 2 Hom(E, (K*), i (K)).
Setting M = E,,(K®), we have
MP := Hom(M, K**) = Hom(M, p,,(K*®)) = M.
Therefore, the cup-product pairing
HY(G,MP)x HY(G, M) — H*(G, K*)
is actually a pairing into H?(G, p, (K®)), and using MP = M we can now write it as

HY(K,E,) x H'(K,E,) — H*(K, jt,).

Theorem 1.5.2. Assume char(k) { n, where k is the residue field of K. Then:
1. the subgroup E(K)/nE(K) of H' (K, E,,) is isotropic for {(—, —);
2. if F has good reduction, (—, —) induces a non-degenerate pairing of abelian groups

[—,—]: E(K)/nE(K) x H'(K,E),, — Z/nZ.

Proof. (1) From the commutative diagram

0 — E(K™), — E(K'") 2 E(K"™) — 0

| | |

0 — E(K®), — E(K®) ™ E(K®) — 0

we pass to cohomology and extract Kummer sequences

E(K
") HY(K"™/K,E,) — H (K"/K,E), — 0

3y [

E(K) —— HYK,E,) — HYK,E), —— 0

Commutativity of the left square implies the existence of a commutative diagram

E(K)/nE(K) x E(K)/nE(K)

[

HY(K™ /K, E,) x H(K™ /K, E,) — H(K"/K, ,)

\[Inf X Inf \[Inf

HY(K,E,) x H\(K,E,) ——— H2(K, ji,)
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where the horizontal maps are given by the pairing (—, —). However
H2(KUH/K7 pin) =0,

so the restriction of (—, —) to F(K)/nE(K) factors through the trivial group.

(2) It is enough to check that E(K)/nE(K) is maximal isotropic.

Since E has good reduction at v, H' (K" /K, E) = 0 hence E(K)/nE(K) is isomorphic
to HY(K"™/K, E,). We conclude by the following more general theorem, applied to M =
E,(K"™). O

Theorem 1.5.3. Let I = Gal(K®/K"), M?¢ = Hom(M, O%..).
If M is a finitely generated G-module with char(k) { |Tors(M)| such that M’ = M, then
HY(G/I,M) and H'(G/I, M?) are the exact annihilators of each other in the pairing
HY(G,M) x HY (G, MP) - Q/Z.

Proof. Since Ext}(Z, K3*) = H' (I, K**) = 0 by local class field theory, the spectral sequence
1.1.6

Extg (M, Ext3(Z, K°*)) = Extg * (M, K**)
gives an isomorphism Extlc/I(M, KX = Extg (M, K3%). The split sequence
0= Oguwn = K" -7Z—0
shows, after applying Exté/I(M, -),
Extl; (M, Q) = ker (Ext};(M, K¥) = Extl ) (M, Z)) .
The following diagram commutes

Extg (M, K3*) —~— HY(G, M)*

| o

Exté, (M, Z) —~— H*(G/I,M)*
showing that also
Extl; (M, Ojun) = ker (Extg(M, K%)= Extl, (M, Z)) .

Since Extg(M,K*) = HY(G,MP) and Extg/(M,0f..) = H'(G/I,M%) by Corol-
lary 1.1.8, we can write

HY(G/I, M%) = ker (H'(G,MP) — H*(G/I, M)*).
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1.5.2 Global duality

Let K be a number field. For every prime v of K, K, is a local field and there are pairings
(=, =)y: HY(K,, E,) x HY(K,, E,) = Z/nZ
[73 7]1;: E(Kv)/nE(Kv) X Hl(Kva E)n — Z/TLZ

as in the previous paragraph.
Let 1T} (K, E,,) denote the restricted direct product of the groups H'(K,, E,,) with respect
to their subgroups E(K,)/nE(K,). The sum of all local pairings yields a global pairing

<_a _>: Hl(K7 En) x Hl(Ka En) - Z/TLZ
(a,0) = Y (av,by)o
This is a good definition because (a,, b,), can be non-zero only for the finitely many v such
that one of a,, b, is not in E(K,)/nE(K,).
Proposition 1.5.4. The image of H!(K, E,,) in IT*(K, E,,) is isotropic with respect to {—, —).

Proof. Let a,b € HY(K, E,);

(a,0) = (ay,by)y = Y invy(w(ay, Ub,))

v

and (w(ay, Uby))y = (w(aUb),), € Br(K). Then, by global class field theory, the sum of its
invariants is 0; in other words, there is an exact sequence

0 - Br(K) » P Br(K,) =2 Q/Z - 0
(see [Tat67, VII.10, Theorem BJ). O

1.6 The Tate-Shafarevich and Selmer groups

Let now K be a number field, F/K an elliptic curve.

The Selmer and Tate-Shafarevich groups arise when trying to compute generators for the
weak Mordell-Weil groups F(K)/nE(K) or the rank of E, i.e. the rank of the free part of
E(K). We introduce them directly using Galois cohomology, rather than by homogeneous
spaces. Given the diagram with exact rows

E(K) _ «
nE(K)

HY(K,E,) —— HYK,E), — 0

J J

0= H nEE((I;;v)) H IZIHI(K”’EH) - IZIHI(KU,E)n — 0

v

the ultimate goal is the image of the Kummer map &, or equivalently the kernel of the top-row
surjection. This is locally easy, suggesting the definition of the following objects:
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Definition 1.6.1.

The n-Selmer group is defined as

v

S, (K, E) = ker (Hl(K, E,) — [[H' (K., E))

im Ky,

= ker (Hl(K, B =[] Hl(KEn)>

v

The Tate-Shafarevich group is defined as

(K, E) = ker <H1(K7 E) = [[H (K., E))

v

Remark 1.6.2. If a € H!(K, A), its image in H'(K,, A) is zero for almost all primes v.
Therefore, we can substitute the direct product with a direct sum in the above definition.

By the above diagram, we immediately get a relation between these two groups by the
short exact sequence

0— E(K)/nE(K) — S,(K,FE)— II(K,E), — 0.

Moreover, Selmer groups are proven to be finite and, in theory, computable. Hence, the order
|Sh(K, E)| = |[E(K)/nE(K)||II(K, E),| can be used to bound the rank of E, and the Tate-
Shafarevich group measures the difference between the bound and the actual rank. When we
are able to compute III(K, E),, then generators for E(K)/mE(K) can be found, hence for
E(K).

In the interpretation via homogeneous spaces, elements of S, (K, E) can be seen as (classes
of) homogeneous spaces which locally have rational points at every v; in particular, those
which fail to have a global rational point in K correspond to the non-trivial elements of
III(K, E),,. This occurence is a failure of the so-called Hasse principle.

A useful tool in studying these groups is the following

Proposition 1.6.3 (The Cassels-Tate pairing). There exists a canonical alternating pairing
(—, —)or: II(K,E) x II(K,E) - Q/Z
whose left and right kernel is the divisible subgroup of HI(K, E).

This was defined by Cassels in [Cas62] using homogeneous spaces and generalized to
abelian varieties by Tate in [Tat62]. We will now describe a cohomological construction
of the induced pairing on the torsion

<77 *>CT: IH(Ka E)n X HI(Ka E)n - Q/Zv
note that this also lifts to a pairing on the Selmer groups

(=, —)or: Sp(K,E) x S,,(K,E) = Q/Z.
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Let a,a’ € III(K, E),; we can lift them to b,b’ € H'(K, E,,). By definition of III(K, E),
a, =0 in H'(K,, E) for every v; hence, looking at

E(K,) — HYK,,E,) —— HY(K,, E)

| I

E(K,) —— HY(K,, E,?)

we can lift b, to b, 1 € HY(K,, E,2).

Suppose that a is divisible by n in H'(K, E), write a = nay; lift a; to by € HY(K,, E,2).
Then b,; — by, maps to zero in H'(K,, E,), so it is the image in H'(K,, E,2) of some
c, € HY(K,, A,). Set

a) = Zinvv(cy ub,) € Q/Z

where the cup product is induced by the Weil pairing.

In general, let 3 be a cocycle representing b and lift it to a cochain 8, € C1(K, E,,). Choose
Buv1 € ZY(K,, Ep2) representing b, 1 and 3’ € Z'(K,, E,,) representing b’. The coboundary
dj3; takes values in E,, and dB; U ' represents an element in H3(K,G,,). This group is zero
by, hence dB; U 8’ = de for some ¢ € C?(K,G,,). We define

(a,a'y = inv, ((Bua — Bro) U B, — &) € Q/Z.

v
It can then be checked that this construction does not depend on the choices made.

Remark 1.6.4. We may also define a general Selmer group

K T E
S(K, E) = ker (Hl(K, Tors(E)) — @ Ur;a ors( )))
im K,

where k,: F(K,) ®z (Q/Z) — H'(K,, Tors(E)), and we denote its p-primary component by

Spee (K, E) = ker (H @ ﬁ;{E )>

where k,: E(K,) ®z (Qp/Z,) - H'(K,, Ey=) and the subscript p> denotes the p-primary
part.

1.7 Global duality

Let K be a global field, G = Gal(K*®/K). Denote:
S a non-empty set of primes containing the archimedean primes
K¢ the maximal subfield of K® unramified outside S
Gs = Gal(Kg/K)
Ok,s =(ygs Ov ={a € K | ordy(a) > 0 for all v ¢ S}
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G, = Gal(K:/K,), which is isomorphic to {c € G | cw = w}, the decomposition group
of w after choosing some w | v
P the set of rational primes ¢ € Z such that ¢>° divides [Kg : K] :== |G|

We also let F//K be a finite extension contained in Kg, and let Sg be the set of primes of F
lying over primes in S; denote:

Jr = [I EX the idéle group of F (] will denote restricted product with respect to the
specified subgroups)

Cr = Jp/F* the idéle class group of F
Jrs = {(aw) € Jr | ayw =1 for w ¢ S} = HquSFuf
OF,s = w¢s, Ow the ring of Sp-integers

Crs = JF,S/O;S the group of Sp-idéle classes

Ur.s = {(aw)w € Jr | aw € OX ifw¢s,aw:11fw65}znw¢36;

Taking limits over all finite extensions F'/K contained in Kg, define

Es =lim O g Js = lim Jrs Cs =lmCrs
Os =lim Or s Us = limUrs
Let M be a finitely generated Gg-module. For v non-archimedean, write k(v) for the

residue field, g, = Gal(k(v)*/k(v)) & G,/I,; the embedding K* — K determines maps
G, — G - (g, which induce localization maps

H"(Gs,M) — H" (G, M).
We write
H"(K,,M)= H"(G,, M) if v is non-archimedean,
H"(K,,M) = H"(G,, M) if v is archimedean.

Consider the map
H"(Gg, M) — H H"(K,, M)
veS
We may restrict its codomain as follows. Every v € H"(Gg, M) comes from some 7' €
H"(Gal(L/K), M) for some Kg/L/K; almost all v are unramified in L, and for these the
image of v in H"(K,, M) lies in

Hin (Ko, M) == im (H" (g, M) = H" (G, M))
= ker (H"(Gy, M) — H"(I,, M)).

/

Therefore, if we define IT4(K, M) as the restricted product [],.g

H!.(K,, M), we have maps

H"(K,, M) relative to

BT H (Gg, M) — II's(K, M)
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whose kernels we denote by
S (K, M) =ker 8.

By our previous duality results, H"(—, M) = H?*"(—,MP)*, so the dual maps 7" to
B2 (K, MP) can be written as

3 TG (K, MP) — H*> " (Gg, M)*
We can now state the main theorem of this section.

Theorem 1.7.1 (Poitou-Tate duality). Let M be a finite G g-module such that |M| € O .
Then:

1. there is a canonical non-degenerate pairing

LI (K, M) x I (K, MP) - Q/Z

2. (Y is injective, 72 is surjective and im 87 = ker+" for r = 0, 1,2
3. for r > 3, " is a bijection H"(Gg, M) = [, ;a1 H" (Ky, M).

These statements can be represented by an exact sequence

0 0
0 — HO(Gg, M) 55 (K, M) 5 H2(Gg, MP)* —
— HY(Gs, M) 5 L (K, M) 25 HY(Gg, MP)* —>
— H2(Gg, M) 5 T2(K, M) 5 HO(Gg, MP)* — 0

The proof consists in identifying the above sequence with the Extg, (MP, —)-sequence coming
from 0 — Eg — Jg — Cg — 0, up to a few adjustments.
Denote by M¢ the following object:

Hom(M, Es) when viewing M as a Gg-module,
Hom (M, O*) when viewing M as a g,-module for v & 5,
Hom(M, K$*) when viewing M as a G,-module for v € S.
Lemma 1.7.2. In the hypothesis of the theorem, Extg, (M, Eg) = H"(Gg, M%) for all 7.

Proof. By Corollary 1.1.8 we have Extg (M, Es) = H" (G5, Hom(M, Eg)) since Eg is divisi-
ble by all integers which are units in O g, hence by all primes which are orders of elements
of M, as its order is a unit in O g. O

Lemma 1.7.3. For r > 1, Extg (M, Jg) = II5(K, M?). For r =0, it is I (K, M?) if K is

a function field and [], . g H°(Gy, M) if K is a number field.

Proof. Choose a finite subset T" C S still containing all the archimedean primes and the
primes at which M ramifies, and such that |M] is a unit in O . Define

Jrsr= [ Fxx ] Oz

weT weS\T
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Then Jg = ling,S,T (limit over T and F C Kr), hence
EXtE‘S (M, Js) = hﬂEthal(F/K)(Ma Jrs1)
FT

Since the Ext functor commutes with products in the second entry, the terms inside the limit
can be written as

ExtGair iy (M, Jrs) = (H ExtGai(r, /x,) (M, sz)> X
veT

H ExtGair, k) (M, OF, )
veS\T

We can now write the factors in the second line as
EXtrGal(Fw/KU) (M, @;‘w) = EXt;,J (M7 @;;mx) = HT(gva Md)'

The first equality follows by the usual spectral sequence 1.1.8 using the fact that (53“ has
trivial cohomology [Ser67, Proposition 1|. The second is by 1.1.8 as in the previous lemma

(0% s divisible by all integers dividing [M]). Hence

Extg, (M, Js) =lim | ] ExtGar, /) (M Fi) x [ H (90, MP)
T \veT vES\T

By 1.1.8, when r = 0, 1, the (finitely many) factors for v € T' can be written as
ExtGa(r, k) (M Foy ) = Extg, (M, K)) = H" (G, M?);

when r > 2, Ext; (M, (5}}“) = 0 because by cohomological triviality of O™ one can find
an injective resolution by g,-modules 0 — Owx 5 10 5 11 4 [Ser80]. We conclude

HvesHO(vaMd) r=20
Extg (M, Js) =  Tg(K, M) r=1
Does lim - ExtGayr, k) (M, Fy) 17 2>2
We know that S contains all primes lying over £ if ¢ divides |M]|, therefore
lim H2(Gal(K2 /), K3¥)(€) = 0,
F

hence the spectral sequence 1.1.8

ExtGar, /i) (M, H*(Gal(K}/ Fu))) — Extg, (M, K;%)

shows that
lim BExte r, /) (M, Fp) =Extg, (M, K;) =
F
= H"(G,, M%) = H"(K,, M)
which concludes the proof. O

The last essential step in the identification of the Poitou-Tate sequence with the Ext
sequence in our claim is the isomorphism Extg,_ (M, Cs)(¢) = H* " (Gg, M)*(¢). To prove it,
we need the following notions.
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1.7.1 P-class formations
Let P be a set of rational prime numbers.

Definition 1.7.4. If G is a profinite group and C is a G-module, a P-class formation (G, C)
is defined as a class formation, except that instead of requiring the maps invy to be isomor-
phisms, we require that they are injections inducing isomorphisms:

e invyy H2(U/V,CY) = [U: V]7'Z/Z for all V < U,
o HX(U,C)(t) = (Q/Z)(¥) for all £ € P.

Let P be the set of prime numbers ¢ such that £°>° divides the degree of Kg over K, defined
as the profinite order |Gal(Kg/K)|. When P contains all primes, a P-class formation is just a
class formation. We can immediately generalize duality for class formations (Theorem 1.2.5)
to:

Theorem 1.7.5 (Duality for P-class formations).

e a"(G,M)({): Exty,(M,C)(¢) — H?*"(G,M)*(¢) (r > 2) is bijective for all finitely
generated M,

e a!(G,M)(¥) is bijective for all torsion-free M;
it is bijective for all finitely generated M if o (U, Z/¢™Z) is bijective for all open U < G
and all m,

e a°(G, M) is bijective for all finite ¢-primary M if a°(U, Z/¢™Z) is bijective for all open
U < G and all m.

We claim that:
Proposition 1.7.6. (Gg,Cs) is a P-class formation.

Proof. In general, whenever (G, C) is a class formation and H < G is closed, then (G/H, CH)
is a P-class formation for P the set of primes £ such that ¢>° divides [G : H].
Set C = h_H)lF Cr indexed over the separable finite extensions of K and let G be the

absolute Galois group of K as before; then (G, C) is a class formation. Hence, (Gg, CHs) is
a P-class formation. Now there is a canonical isomorphism H"(Gg, CHs) — H"(Gg,Cg) for
all 7 > 1 and the same holds for any open subgroup of Gg. Indeed, there is an exact sequence

0—-Us—CHs 5 Cg =0

(when S is finite pass to direct limits over the isomorphisms Cp s — Cp/U. F,s to obtain an
isomorphism Cg —» C’g 5/Ug; for a general S one should show that the limit of the ideal
class groups lim Id(Op g) is zero, and this is done by global class field theory). Now we have
H"(Ggs,Ug) =0 for r > 1, because by definition

H"(Gs,Us) = lim H™(Gal(F/K), T[ O%),
F wé&SE

the terms inside the limit can be written as

1 T (Gal(F,/K.),0%)

vESK wlv
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and each of the single factors is zero because v is unramified in F' and (55 is cohomologically
trivial, as before [Ser67, Proposition 1].

Now taking the long cohomology sequence from the above exact sequence allows to con-
clude. O

Lemma 1.7.7. Let M be a finitely generated Gg-module, £ € P. Then there are isomor-
phisms

a"(Gg, M)(£): Extgs(M, Cs)(f) = H2_T(GS,M)*(€)
for all r > 1.

Proof. Follows from Theorem 1.7.5 since (Gg,Cys) is a P-class formation. Just note that, for
all £ € P and m, o'(Gg,Z/{™Z) is bijective. O

1.7.2 End of the proof
By lemmas 1.7.2, 1.7.3 and 1.7.7, the sequence
— Extg (MP, Es) — Extg (MP, Jg) — Exty, (MP,Cs) —

can be rewritten as

0 — HO(Gs,M) — H HO(KU,M) — HOHIGS(MD,CS) —
- HYGs,M) — 1S(K M) - HYGg,MP)* —
- H?*Gs,M) — %(K M) - H%Gs,MP)* —
— H3Gs,M) — @, ,aH* (G, M) — 0 —
- HT(GS7M) 1> @vreal (GU?M) - 0

(r > 4). This is almost the Poitou-Tate sequence, except that we must change the first three
terms to

(0] 0
0 — HO(Gs, M) 5 (K, M) 15 H2(Gg, MP)* —

and check surjectivity of I1%(K, MP) — H°(Ggs, M)*. Surjectivity holds because this map is
dual to H°(Gg, M) — T1%(K, M), which is injective. So, now we have a sequence

0 —>H0(G5',M) — HyeSHO(vaM) — HOIDGS(MD,Cs) —
— HYGs,M) — IL(K, M) -  HYGg,MP)* —
— H*(Gs,M) — (K, M) - H°%Gs,MP)* — 0

and it is enough to substitute the first half (up to II} (K, M)) with the dual of the second
half, which is exactly the beginning of the Poitou-Tate sequence, concluding the proof.



Chapter 2

Kolyvagin systems

The main results of this chapter are the following: for Selmer groups S,«(K,E) (resp.
Spee (K, E)), Theorem 2.3.8 (resp. Theorem 2.3.13) using Stark systems; Theorem 2.4.13
(resp. Theorem 2.4.17) using Kolyvagin systems.

2.1 Preliminaries

2.1.1 Ray class fields

Given a number field K, we construct extensions which generalize the cyclotomic extensions
of Q. Recall the idele class group Cx = Jx/K*, where Jk is the idele group.

Definition 2.1.1. For an ideal m = Hp p”r . the ray class group mod m is
Ji/JRK™ (2 Ck/CR)
where, setting n, = 0 for p | oo, we defined Jg =[], Uén”) (CR=JRK*/K*),

L+p™  pfoo
Uéo) =U,, U,Sn") =(RY C K, preal if n, > 0.
C* = K, p complex

Proposition 2.1.2. The closed subgroups of finite index of C'x are exactly the subgroups
that contain some Cp.

From global class field theory we have

Theorem 2.1.3 (Existence theorem). The map L + Np/xCyp is a 1-1 correspondence be-
tween the finite abelian extensions of K and the closed subgroups of finite index of C'x. The
field corresponding to such a subgroup N is called the class field of V.

Proof. By studying the global reciprocity map Cx /Ny xCr = Gal(L/K). O
Hence, combining this with the proposition we can immediately make the following

Definition 2.1.4. For an ideal m, the extension K™ /K corresponding to the subgroup C¢
is called the ray class field mod m.

33
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This extension is such that Gal(K™/K) = Ck/C® and every finite abelian extension
L/K is contained in some K™. We see now why these extensions K™ generalize cyclotomic
extensions: the Kronecker-Weber theorem states that every finite abelian extension of Q is
contained in some cyclotomic field; moreover, one also has

Proposition 2.1.5. If K = Q and m = (m), then Cop/C8 = (Z/mZ)* (= Gal(Q(um)/Q)).

2.1.2 Exterior algebras

We quote a technical result which will be used later. Assume R is a local principal ideal ring
(in our examples we will be working with R = Z/p*Z or Z,).

Proposition 2.1.6. Suppose 0 - N — M Y, C is an exact sequence of finitely generated
R-modules with C free of rank 1. Then, if r > 1, there is a unique map

V: N'M—=CoN'N
such that

1. the composition
NMLCoNINSCoN M

is given by

.
mi A\ ANmy — Z(—l)i+1¢(mi)® (m1 N Amy—1 A Mg /\~-~/\mr)
=1

2. the image of zZ is the image of

imyp@ AN 'N—=CoN\ "N

Proof. [MR16, Proposition A.1]. O

2.2 Generalities

Throughout this chapter, we will use the following notation:
p € Z is a rational prime.

R will be usually Z/p*Z; when otherwise stated, R = Z,,. We always denote the maximal
ideal of R by m, i.e. Z/pZ or pZ, respectively. (The results, however, hold more generally
for R principal artinian local ring or discrete valuation ring, respectively).

T is a free finitely generated R-module with a continuous Gg-action, where K will be
a local or number field; we are mainly thinking of 7' = E,x, the torsion group of an
elliptic curve E in the case of finite R, or T = T,,(E), the Tate module, in the case of
R=17Z,.

TP = Hom(T, pip=) as an R[[G]]-module.

len denotes the length of a module.
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2.2.1 Local conditions

In addition to the previously fixed notation, K here is a local field; if non-archimedean, we
denote

O its ring of integers;

I its residue field;

I = Gal(K/K") its inertia group, hence Gy = G /I.
We also suppose that 7' is unramified, i.e. T7 = T.

Definition 2.2.1. A local condition F on T over K is an R-submodule H%(K,T) C
HY(K,T).
The following cases are important:

o if L/K is a Galois extension, the L-transverse local condition is
H} (K., T) = ker(H"(K,T) — H'(L,T)) = H'(L/K,T%)

(where the last equality follows from the inflation-restriction sequence). The following
are special cases of this:

e L = K gives the unrestricted or relazed condition H'(K,T);

e [ = K gives the strict condition 0;

L = K", when K is non-archimedean and T is unramified, gives the finite (or unram-
ified) condition

H}(K,T) = ker(H'(K,T) - H' (K", T)) = HY(K"™/K,T);

if L/K is a totally tamely ramified cyclic extension such that [L : K]T = 0, we write
H(K,T) for H} . .(K,T).

Lemma 2.2.2.
1. There is a canonical functorial isomorphism H{ (K,T) = T/(Fr — 1)T.

2. There are canonical functorial isomorphisms

HL(K,T)=Hom(I,T"=')  HL(K,T)® Gal(L/K)=T"=!

3. The composition HL(K,T) < HY(K,T) - HY(K,T)/H}(K,T) is an isomorphism,
hence there is a canonical splitting

Hl(Ka T) = Hfl(K7 T) D Htlr(K7 T)
Proof. (1) Evaluating cocycles at the Frobenius gives a well-defined injection
HY(K"™/K,T) - T/(Fr— 1)T, ¢ c(Fr)

which can be shown to be surjective [Ser80, XIIL.1].
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(2) We have an exact sequence
0— HYKY/K,T!) - HY(K,T) — H'(I,T)% — H*(K"/K,T")

and the last term is 0, so there is an isomorphism H{ (K, T) = Hom(I,T)¥=!. From |[F*|T =0
and I/|F*|I 2 F*, we get

Hom(I, T)7"~" = Hom(I/[F*|1, 7)™~ = Hom(F*, T)"~" = Hom(F*,7"~")

and we conclude.
(3) Since L/K is totally ramified and T is unramified, we have

TGL — TGK — TGk — TFer

and therefore there is a commutative diagram

H{(K,T) —————— HY(K.,T) H{ (K,T)
~ Hom(Z, TF=")

TN
HY(L/K,T%t) —~— Hom(Gal(L/K),T*=') —~— Hom(I/|F*|I,T¥=1)
O
By the hypothesis T = T, G acts on T, so the Frobenius action induces an endomorphism
Frp: T —T, tw— Fr-t.
Suppose det(1 — Fry) = 0, and define
P(z) == det(l — Frr oz) € R[x]

where Frr o x: t — Fr-xzt when # € R. Since P(1) = 0, we can factor P(z) = (z — 1)Q(z)
in R[z]; moreover, by the Cayley-Hamilton theorem, P(Fr;l) is the zero endomorphism of T,
that is,

PFr H)T = (Fr ! - 1DQEFEHT =0.

Therefore Q(Fr~ )T c T¥=!, and the following definition makes sense:

Definition 2.2.3. When det(1 — Fry) = 0 we define the finite-singular comparison map ¢
as the composition

—1
HME,T) = T/(Fr — 1T 28 7P=1 > gl (K, T) © Gal(L/K).

Lemma 2.2.4. If T/(Fr —1)T is a free R-module of rank 1, then det(1 — Frr) = 0 and ¢ is
an isomorphism. In particular, H} (K,T) and H..(K,T) are both free R-modules of rank 1.

Recalling the local pairing

<_7_>: Hl(KvT) X Hl(K7TD) - HZ(KMMI)OO) = Qp/Zpa
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a local condition F on 7T induces a local condition F? on T by taking

Hyip(K,TP) = Hx(K,T)*
={a € H (K, T?) | {(a,b) =0 Vb€ H-(K,T)}

the orthogonal complement. This operation behaves well since the pairing is perfect (hence
non-degenerate), e.g. HL(K,T)*+ = HL(K,T). So, the dual structure 7 also gives a
structure on 7' by taking H}D (K,T) = HL(K,TP)L, which in this case denotes the left
orthogonal. Note that f? = f and tr” = tr as structures on T: this follows from the next
proposition.

Proposition 2.2.5.
1. Hfl(K7T)J- = H}(K, TP)
2. Htlr(KV T)J_ = Htlr(Ka TD)

Proof. (1) see Theorem 1.5.3.
(2) It suffices to show that (o, a’) = 0 for every a € HL(K,T) and o/ € HL(K,TP); then
maximality will follow from (1) using the decompositions

HY(K,T) = H{ (K,T) ® Hy,(K,T)

of Lemma 2.2.2 for T and TP.
Suppose first p* | [FX|, R = Z,, T = Z/p*Z with trivial Gk-action. Then ppr C K and

Hy (K, T) = Hom(Gal(L/K),Z/p*Z) = Hom(K* /Ny L™, Z/p"7Z)
HL (K, TP) = Hom(Gal(L/K), j1,.) = ker (KX/(KX)pk - LX/(LX)P’“) ,
recalling results from class field theory and Kummer theory, and the pairing can be identified

with the natural pairing
Hom(K*,Z/p*7) x K* — Z/p"Z.

Let a be a representative of some element in HE (K, TP) according to the above identification,
SO0 o = Bpk with 8 € L*. Then we can compute

NpjicB = ol I,

K*/Np g L* is cyclic of order |[F*| and « is divisible by p*, so it is sent to zero by every
element of Hom (K™ /Ny, x L™, 7/p*7). This proves the special case.
In the general case, since T is unramified and L/K is totally ramified we have

TGK — TGK/IK — TGk _ TGL — TGL/IL _ TGL
and analogously for TP. Therefore
HL(K,T) = H'(L/K,T%) = H'(L/K,T%) = HL(K,T%¥)

and analogously for TP. Writing now TC¢x = D,.z/ p*n7Z, the thesis follows from previous
case. O
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2.2.2 Selmer structures

Here K is a number field with algebraic closure K C C; for a prime q of K, K is a fixed
algebraic closure containing K, i.e. we fix an extension of q to K. Moreover:

Dy = Gal(K,/K4) C Gk is a fixed decomposition group;
1, C Dy is the inertia group;
Frq € Dq/Z, is the Frobenius element;

K(q) is maximal p-power extension of the ray class field of K modulo q and K(q)q is
its completion at the fixed prime above g.

If q is principal, then K (q)q is cyclic and totally tamely ramified. In this case, if T' is unramified
at q and [K(q)q : K4]T = 0, then we define as before the transverse submodule

Htlr(KCh T) = ker (Hl(va T) — Hl (K(Q)q, T)) .
Definition 2.2.6. A Selmer structure F on T is the following data:

e X(F), a finite set of places of K including all infinite places, all primes above p and all
primes where 7' is ramified;

e for every q € X(F), a local condition Hy(K4,T) C H' (K4, T).

Definition 2.2.7. If F is a Selmer structure, we define the Selmer module H%(K,T) as the
kernel of the sum of restriction maps:

H\(K,, T
HE(K,T) =ker | H'(Ksr /K. T) = H}f(}{zﬂ%
qEX(F) ’

C HY(K,T)

where Ky, r) denotes the maximal extension of K unramified outside ¥(F). That is, the
Selmer module consists of the classes which are unramified outside X(F) and satisfy the local
condition given by F for every q € 3X(F).

Using the local Tate pairings (—, —)4, a Selmer structure F on 7" induces a dual structure
FP by taking dual local conditions

Hbo (Kq, TP) = Hy(K,, T)*

as in the previous section.
These constructions generalize the Selmer groups we have seen in Section 1.6. Let E/K
be an elliptic curve, R = Z/p*Z, T = E,x and F given as follows:

e X(F):={v: F has bad reduction at v} U{v:v |p}U{v:v| oo}
o HL(K,,T) =im (m; E(K,)/pFE(K,) — H (K., Epk)).

Then H:(K,T) is the usual Selmer group from Definition 1.6.1. As we already know, the
WEeil pairing identifies Eﬁ = E,x, and we can also show F b=F.

As another example, let R = Z,, T = T,(E) = l'glk E,« the p-adic Tate module, F
defined analogously. In this case TP = El. = Eye and H}(K,TP) = Sy (K, E) is the
Selmer group defined in Remark 1.6.4.
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Definition 2.2.8. F is called cartesian (on the category of quotients of T') if the local
condition is cartesian for every q € X(F), i.e. for any injection «: T/IT < T/JT between
quotients of T', Hy (K4, T/IT) is the inverse image of Hx(K,,T/JT) under the map induced
by a on cohomology.

Equivalently, for all g € ¥(F), there is a cartesian square

HY(K,,T/IT)

\
/

(K, T/JT)

Definition 2.2.9. By Selmer data we mean a triple (T, F,P) where T is as before and
unramified outside finitely many primes, F is a Selmer structure on 7" and P is a set of
primes of K disjoint from 3(F).

Definition 2.2.10. If q { poo is principal, let I; be the maximal power of m which contains
[K(q)q : Kq]R and such that
T
(Fry — )T + I,T

is free of rank 1 over R/Ig, if one such power exists; if it does not exist or if q is not principal,
set Iy = R.

Let us make a remark on the above definition; in case I; = 0, it follows that 7'/ (Frq —1)T
is a free R-module of rank 1, which is the assumption required to apply Lemma 2.2.4 and
conclude that H{ (K4, T) and H{.(K,,T) are also free R-modules of rank 1. Therefore, when
working over R = Z/p*Z we will usually make the assumption I, = 0 for all ¢ € P (by
restricting to Py = {q € P | I, C m*}).

Set moreover

N = N(P) := {squarefree products of primes in P} U {1} where 1 denotes the ideal
(1) =0;

L= qnlgfor 1#neN, I =0.

If F is a Selmer structure and a, b and n are pairwise coprime ideals of K with n € N/
and I,T = 0, we define a new Selmer structure 72 (n) by:

o N(FF(n)=X(F)U{q:q]abn},

Hy(Kq,T) q€X(F)
0 qla
Hl(vaT) qlb
Htlr(vaT) q|n.

e H!

f};(n)(Km T) =

If any of a, b or n are equal to 1, we omit them from the notation.
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We have FP(n)P = (FP)&(n), since
Hjl":g(n)D(Kq’T) = H;—'é’ (n) (KCHTD)J_

H;’(KCHTD)L = H}-‘D(KCHT) q € E(f)
_ Ol:Hl(KChT) CI|Cl
) HY(K,. TP): =0 q|b

Htlr(KmTD)J_ :Hter(KQ7T):H1;1r(Kq7T) q |ﬂ
1
= H(]—'D)g(n)(KCUT)‘
where in the last line we used properties of the transverse conditions under dualization (Propo-

sition 2.2.5).
These structures satisfy the following diagram, where q is prime and nq € N:

H;—'q (n) (K7 T)
/ (X
x %
]‘[Jl,_-‘1 () (K,T)

H (o (K, T7) H (nqyo (K, T7)
(G,X» %
H}Tq(n)D (K, TD)

Lemma 2.2.11. Let R = Z/p*Z, q prime, nq € N with I.q = 0 and let the letters on the
arrows above denote the lengths of the corresponding cokernels. Then the following equalities
hold:

1. 0<a,b,e,d,aP,bP,cP.dP <k

2. a+c=b+d,a? +cP =bvP +4dP

3. k=a+a’ =b+b" =c+cP =d+dP
4. a>d, b>c, c? >bP,dP > dP.

Proof. (1) We have by definition
Hi oy (K. T) = Ker (Hzo ) (K, T) = Hy(Kq. 1))

HY (K, T) = ker (H}T(n)(K, T) — H (K, T))
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so we can write the cokernels in question as quotients modulo the kernels above; using the
canonical isomorphism they are submodules of free R-modules of rank 1 (by Lemma 2.2.4)
and (1) follows.

(2) is immediate from the diagrams.

(3) Consider the exact sequences

0 — HY (K, T) — HL (K, T) —¢ H, (Kq, T)
g1< I ) g2( ’ ) H(_l; (Kc“T)
q 1
(2.1)
HL (K, TP)
1 D 1 Dy loc? gL\ @
0 (T s Hyp(ac) 2 @y O

q

with Go = Fi(n), G = F(n). By the Poitou-Tate sequence Theorem 1.7.1, imloc and

im(loc”) are orthogonal complements with respect to the pairing > q{—s—)q, and (3) follows.
(4) By definition H}_-(n)(K7 )N H}(nq)(K, T) = H}q(n)(K7 T), whence the first two in-
equalities of (4); for the other two, replace (T, F) with (TP, FP). O

Lemma 2.2.12. With hypothesis as in the above lemma, denote T := T/mT,
A(n, T) = len H(, (K, T) A(n,TP) = len Hzy0 (K, T7)
Then:
1. there are inequalities

|>\(TIC|,T) - /\(nv T)| < k |)‘(nq7TD) - )\(ﬂ, TD)| < k
2. if the localization H}(n)(K, T) — H} (K4, T) is surjective, then
H(qqy0 (K, T7) = Hipo (0 (K, T7) C H o0 (K, T7)

3. the image of

locq

fs
mA T H L (KCT) = HY (K, T) 2 HL(Kq, T) @ Gy
is equal to the image of

m/\(n,TD)H]l__( )(K, T) loi> Htlr(anT) ®Gq

nq
4. If both localization maps
Hy (K, T)[m] = H{ (K,,T) HL o o(K,TP)m] — H} (K, TP)
F(n)\s f P F(n)P A\ f P

are non-zero, then

Ang,T) = A\(n,T) — 1 Ang, T7) = A(n, T") — 1
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Proof. (1) follows from the diagrams studied in the above lemma.

(2) If the localization map is surjective, then ¢ = k (because the image of the map, a free
rank-1 R-module, is isomorphic to the cokernel whose length is ¢) and so b” = 0 by (3) and
(4) above.

(3) Denote the images by Cy, Cnq respectively. It is enough to show they have the same
length. The previous diagrams show

len Cy, = max{0,c — A\(n,T7)} len Chq = max{0,d — A(nq, T")}

A, TP) = A(ng, TP)=dP —cP =c—d

and we conclude len C,, — len Cyq = 0.
(4) If the localization maps in the statement are non-zero, then the localization maps

— — —D =D
Hz (K, T) — H{ (Kq,T) Hi (o (K, T7) = H{ (Kq,T")

are surjective (see the next proposition). By (2) we have /\(nq,TD) = )\(n,TD) — 1 and
we conclude A(nq,T) = A(n,T) — 1 as required (since the differences A(n,T) — A\(n, TP) are
independent of n € N: see (3) of the next proof). O

Proposition 2.2.13. Let R = Z/p*Z. Let F be a cartesian Selmer structure on 7' and
suppose T¢x = (TP)¢x = 0. If n € \ satisfies I, = 0, then:

1. the exact sequence 0 — T/m‘T — T — T /mk~*T — 0 induces an isomorphism
and an exact sequence

0= H(m (K, T)[m'] = Hp (K, T) = Hp (K, T/m"~'T) = 0

2. the inclusion TP[m?] — TP induces an isomorphism

H;—'(n)D <K7 T [mz]) = H}-‘(n)D (Ka TD)[mi]

3. there is a unique r € Z, independent of n, such that there are non-canonical isomor-
phisms

Hy) (K, T) = Hy (o (K, T") ® R" if 7

>0
Hy (K, T)® R 2= Hy (o (K, TP) ifr <0

Proof. (1) Cohomology of the exact sequences
0 — T/mT "5 T — T/mh=iT — 0
0 — T/mF='T — T
shows that t_;: HY(K,T/m!T) = H'(K,T)[m’] is an isomorphism, and one can easily see

that it induces a map ty_;: H=(K,T/m‘T) = H%(K,T)[m]. To show that this map is an
isomorphism amounts to showing that ¢; ', (HL(K,T)) satisfies the local conditions to lie in
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HL(K, T/m‘T) For v € E(f) this holds by the hypothesis of the structure being cartesian;
for v ¢ S(F), let us show ¢, ', (H-(K,,T)) C Hx(K,, T/mT). Writing I, for the inertia
group of G,, we have a dlagram

0 — HYK,,T/m'T) — H (K, T/m'T) — Hom(I,,T/m'T)

J/Lk—q‘, J/Lk—'i J{Lkﬂ'

0 — H}(K,,T) — HY(K,,T) — Hom(/,,T)
with exact rows; the right vertical map is injective, so, if ¢ € H'(K,,T/m'T) and t;_;(c) is

unramified, then c is also unramified.
(2) Let 8 be the generator of m*; cohomology of the exact sequences

0 — TP[mi] — TP L5 miT? — 0
0 — mT? — TP — TP /miTP — 0
yields, writing G = Gal(Kyx(r)/K),
0 — HY(G,TP[w]) — HY(G,TP) 2 H'(G,m'TP)
0 — H'(G,m'T") — HY(G,TP)

whence H'(Ky7) /K, TP[m']) = H'(Ksr)/K,T?)[m’]. The Selmer structure 7 on
TP[m?] is induced by the same Selmer structure on T7; consider then

1 D i
05 Ho (KT lw]) + B (sn KT + @) g e
fD vy

veEX(F)
| L ¢

, H(K,, T?)
0~ H}_—D(K7TD)[‘[I1’] -+ H KE(]: /K T @ TI‘D)

vEX(F

The rows are exact by definition, the middle vertical map is an isomorphism by the above,
the right vertical map is injective by definition of induced Selmer structure; therefore, the left
vertical map is an isomorphism as was to be shown.

(3) Since R is principal, we can write every finitely generated R-module B as a direct sum
B = @, R/m"*i hence its isomorphism class is determined by the function i — len(B[m‘]).
We have to show that there is an integer t such that

len (H;(n)(K, T) [mi]) —len (H}(H)D(K, TD>[mi]) — ti.
Using points (1) and (2) we rewrite the left term as
len (H}T(n)(K, T/miT)) ~len (H;(n)D (K, TP [mi])) .

Let us first observe that this quantity does not depend on the choice of n satisfying I,, = 0,
so we may take n = 1, i.e. replace F(n) with F. Indeed, by Poitou-Tate duality one proves
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the following equality, holding for finite T' [MR04, Proposition 2.3.5]:

len H(K,T) —len Hyp (K, TP) =
=len H(K,T) —len H*(K,T")—
> (lenH(K,,T) — Hp(K,,T));

veEX(F)

then, if I, = 0, we apply Lemma 2.2.4 to get len H} (K,,T) = len H.(K,,T) for v | n,
so the left side of the equality is unchanged when we replace F by F(n), which was the
claim. Now, applying this equality to T/m‘T, we get a formula for the difference we want to
compute. At the right side of the equality, the first two terms will be zero (because S¢x =0
for every subquotient S of T), and the non-zero terms will be linear in 4: indeed, if we
denote by (i) = len (H°(K,T/m'T)) — len (H3(K,T/m'T)), using the cartesian condition
and propagation of F to quotients, cohomology induces an exact sequence
0— HYK,T/m'T) — H°(K,T/m"T) - H'(K,T/m’T) —
— Hp(K,T/m'T) - Hp(K,T/m"7T) - H-(K,T/m’T)

whence [(i + j) = 1(¢) + I(j). This allows us to conclude. O

Definition 2.2.14. For a Selmer structure (7,F) with R = Z/p*Z, the number r from the
above proposition is called the core rank of (T, F), denoted by x(T). If (T,F) is a Selmer
structure with R = Z,,, we define x(T') = x(T/mT).

From now on, r := x(T). For n € N/, we denote:
A(n) :==len H}(n)D(K, TP),
pu(n) = len H 'z (K, TP);
v(n) the number of primes dividing n.

Corollary 2.2.15. Let R = Z/p*Z, r = x(T) > 0, n € N, I, = 0. There are non-canonical
isomorphisms

1. H}T(n)(K7 T)= H}(n)D(K, TP)® R™;

2. Hyo(K,T) = Hlpoyp (K, TP) @ RT;
3. mAM® A" H}(n) (K, T) = m ),

4. mr) /\r+u(n) HY, (K, T) = ()

Proof. (1) is Proposition 2.2.13.3.
(2) Applying Proposition 2.2.13.3. to (T, F"), we get

I{Jl.,_-‘1 (K,T) = ]l[(l}_")D(I{7 TD) @ RX(T.F")

and we conclude by observing x (7, F*) = x(T') + v(n), which is a consequence of Poitou-Tate
global duality (apply the sequences 2.1 above to F" and F).

(3) follows directly from (1).

(4) follows directly from (2). O
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2.3 Stark systems

The aim of this section is to describe the structure of the dual Selmer group H}D (K, TP) in
terms of so-called Stark systems.

Let R = Z/p*Z and let (T, F,P) satisfy I; = 0 for every q € P.

Recalling definition 2.2.10 of I, the condition Iy = 0 ensures that T'/(Frq — 1)T is a free
R-module of rank 1 and therefore, by Lemma 2.2.4, H} (K4, T) and HL (K4, T) are also free
R-modules of rank 1.

Definition 2.3.1. For n € NV, define

Wa = €D Hom(HL, (Kq, T), R),
q/n
Yo = A7 HL (K, T) @ AV W,

By the above observation, W, is free of rank v(n).

Writing n = gy - - - q,,(n) and fixing generators h; of Hom(H{,(Kq,,T), R), then AW, is
a rank 1 free R-module generated by hy A -+ A hy )

We will now construct maps making the Y, into an inverse system indexed over N.

Definition 2.3.2. We define maps locli and loc by composing the localization map with
the two projections from H*(K,T) = H{ (K,T) ® Htlr(K T) (recall Lemma 2.2.2) and, in the
second case, also with <plff (from Deﬁnltlon 2.2.3), which is an isomorphism by Lemma 2.2.4:

/q—\9 Htlr(Kq?T)
T

T~

HE(Kq, T) 25 Htlr(vaT)@?Gal(K(q)q/Kq)

f
locq

We now construct maps that make the Y, into an inverse system. Let n =q;---q; € N
and 0 = ¢y - -+ qs | n; there is a map

Uyt Yy — Yy

given as follows. Let n; := HJ <i qj, denote 1; = h; o loct? and consider the exact sequence

0— HL

Fuioa (K T) — HL. (K, T) — R; by Proposition 2.1.6, there are unique maps

N Hk (K, T) = R N'7' Hia,, (K, T)

whose composition with R ® A’ H}.,(K,T) is given by

/\mzf—>z J+1’l/)1 m1)®(m1/\"'/\mj—l/\mj—i-l/\"'/\mi)



46 CHAPTER 2. KOLYVAGIN SYSTEMS

and whose image is the image of
imy; @ A\ Hee, (K, T) » R N7 Hee, L, (K, T).
We can compose these maps as

Dari ooty NTVHL (K, T) — N7 HL, (K, T).

n

Taking the tensor product of the above with the isomorphism /\V(n) Wy — /\V("/) W, (h1 A
<+ Ahy) = (hi A--- Ahy), finally gives a map ¥, v which is independent of the choices made.
One can moreover check the following compatibility property: if n € A" and n” | n’ | n, then

\I’I‘l/,ﬂ” (] \IJI‘I,I‘I/ = ‘lll‘l,‘l'l”'
This property allows us to make the following definition:

Definition 2.3.3. Given Selmer data (T, F,P), we define the R-module of Stark systems of
rank r as the inverse limit of the inverse system (Yy, Uy o ):
SS,.(T) =SS, (T, F,P) = lim Y,.

<_
eEN

=

We will denote a Stark system by € = () nen-

Lemma 2.3.4. Let Y := m*("Y, recalling u(n) = len H(I}.,,)D(K, TP). Then:
1. Y/ is a cyclic R-module and len(Y;) = max{k — u(n),0};
2. there is n € A such that H(lfn)D(K, TP) = 0;

3. if H}

(]_.,,)D(K, TP) =0 then Y, is a free R-module of rank 1;

4. if H(1 ,,)D(K,TD) =0and n' | nthen ¥, , =Y.

Proof. (1) follows from Corollary 2.2.15.4.

(2) Use n == [[,q;, with q; € N satisfying locg,(¢;) # 0 for generators ci,...,c; of
HL,(K,TP)[m]; their existence is proven in [MRO04, Proposition 3.6.1] using the Cebotarev
density theorem (see also the proof of Proposition 2.3.6 below).

(3) follows from Corollary 2.2.15.4.

(4) U (Yy) = m'™ H . (KD)=k(r+v()y and from Corollary 2.2.15.2 we conclude
len Hy.., (K, T) = k(r +v(v')) = len H zpy (K, T").
O

Theorem 2.3.5. SS,(T) is a free R-module of rank 1. For every n € N, the image of the
projection SS,.(T) — Y, is Y.
Proof. By the lemma, point (2), we can choose 0 such that H(l}.D)D(K, TP) = 0; so,

H(lfD)n (K, TP) =0 for all 0 | n € N, and we conclude by the lemma, point (4). O

For € € SS,.(T), define the following objects:
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@e(n) == max{j | e, € MY, } for n € N

the operator 0 by

. 0f : N — NU {co}
(f'N%NU{OO])H( i»—)min{f(n)|n€./\/,z/(n):i}>

ord(e) == min{v(n) | n € N, e, # 0} = min{i | dp. (i) # oo};
de (i) = 0pe (i) — Ope (i + 1) for i > ord(e).

As will be clear soon, d.(7) and ord(e) are independent of the choice of non-zero ¢ € SS,.(T")
and are attached to information about the dual Selmer module H}, (K, TP).
Recall that we have defined

A(n) :=len H}:(H)D(K, TP) pu(n) = lenH(l}-n)D(K, TP)
We can compute the functions OA and Ju:

Proposition 2.3.6. Let R = Z/p*Z. Write H}, (K, T?) = Disy R/m with e1 > e2 >
-+ > 0. Then
OA(t) = du(t) = Z e; foreveryt > 0.

i>t

Proof. Let n € N, write v(n) = t; consider the map

HYo (K, TP) = @) H} (K, TP)
qln
induced by composition of projection and localization as usual. The right side is a free R-

module of rank ¢, so the image of this map is a quotient of H:,(K,T") generated by at
most t elements. Therefore it has length at most Zi@ e; and the kernel has length at least

2> € By definition the kernel is Hi;p) (K, TP), which is contained in HE (o (K, TP), so

Am) = p(m) =) e
i>t

We prove by induction on ¢ that, for any ¢ > 0, we can choose some n satisfying v(n) = ¢
and H}.(n)D(K, TP) =~ P,., R/m®, in which case we have equalities in the above formula
and the lemma follows.

For t = 0 it suffices to take n = 1.

For t > 1, let n € N satisfy v(n) = ¢ — 1 and H}(H)D(K7 TP) = @,., , R/m*. Since
x(T) > 0, then mk_lHJl,__(n) (K,T) # 0 by Corollary 2.2.15. Fix a non-zero element

cem"  Hy (K, T) C mF " Hy ) (K, T)[m].
If e; > 0, choose a non-zero element
¢ em Hy o (K, TP) Cwm* ' Hy o (K, T7)[m].

We may choose q € P with locq(c) # 0 and, if e, > 0, locg(¢’) # 0 as well: this is done
by Cebotarev’s density theorem (if C' is a conjugacy class in Gal(L/K), then the primes v



48 CHAPTER 2. KOLYVAGIN SYSTEMS

whose Frobenius conjugacy class is C have density |C|/|G|) and is proven in [MR04, Propo-
sition 3.6.1]. Since H{ (K4, T) is free of rank 1 and, by our choice of q, the localization

of mF~ 1H}T(n)(K T) at q is non-zero, it follows that the localization map H: Fn )(K, T) —
H} (K, T) is surjective. Similarly mefH}(n)D(K, TP) =0 and, if e; > 0, then the localization

of met— 1}[}( 1o (K, TP) at q is non-zero, so

HL (K, TP)
F(n)P ~ ( 1 D ) ~ et
=3 H K,T >R
Hiq (yp (K, TP) ¢ \Hp(uyp (F-T7) /m
and therefore Hz., o (K, TP) = @,., R/m®. Moreover HE (o (K, TP) = Hq (o (K, TP)
by Lemma 2.2.12.2. so nq € N satisfies the request. O

Recall that SS,.(T) is free of rank 1 over Z/p*Z by Theorem 2.3.5, so the submodule
generated by an arbitrary e is m*SS,.(T') for some power of m.

Proposition 2.3.7. Let R and e; be as in the previous proposition. Let ¢ € SS,.(T') generate
m?®SS,.(T) for some s; then

(’)%(t) = {S + Zl>t e s+ Zz>t e; <k

for every ¢t > 0.
00 if5+zi>tei>k ez

Proof. Tt is enough to prove the case s = 0; so, assume ¢ generates SS,.(T'). By Theorem 2.3.5,
SS,.(T) projects onto Y,/, which is therefore generated by e,:

Re, =Y, = mHy,

which is cyclic of length max{k — pu(n),0} by Lemma 2.3.4.1; hence ¢, € m*M*+1Y, if and
only if pu(n) > k, and therefore

Boe(t) = {aﬂ(t) if Ou(t) < k

f t>0.
~ i oult) > k or every

We conclude by the previous proposition which computes du(t) = ., €. O

We can now describe the dual of the Selmer group in terms of Stark systems.

Theorem 2.3.8. Let R = Z/p*7Z and e; as before, let € € SS,.(T) such that £ # 0. Then

0 (0) = 0p:(1) = 0pc(2) = --- >0
0:(0) > de(1) > de(2) > - > 0
and
Hyo(K,TP) = @ R/m? .
20
Proof. Write Re = m*SS,.(T); if e; # 0, then dp.(0) < k, so the above proposition gives
Ope(t) = s+ ;5. €; for every t, and the first chain of inequalities follows. Moreover,

de(t) = 0pe(t) — D (t+ 1) = s+ Zei —5— Z €; = €1
i>t i>t+1

and, since we are assuming the e; are decreasing, the remaining inequalities follow, as well as
the structure isomorphism. [

This shows that the quantities d.(¢) are independent of € such that €1 # 0.
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2.3.1 The DVR case

We study the case R = Z,, in order to obtain results involving the p-torsion Ej,~ of an elliptic
curve. Recall that this is obtained as a dual module TP where T = T,,(E) == fm [, is the

Tate module, and the Selmer module in this case is Hx(K,TP) = Sy~ (K, E), the Selmer
group defined in Remark 1.6.4.

Denote again by m the maximal ideal of R, i.e. pZ,. In order to study SS,(T"), we will
apply our previous results to R/m* = Z/p*Z, considered with the canonical Selmer structure
induced by F. Indeed, a local condition F on T propagates canonically to the quotients T'/IT
by taking Hx(K,,T/IT) to be the image of H3(K,,T) under the projection T'— T'/IT.

Define sets P; := {q € P | I; € m’} satisfying inclusions

Pj+1 ij CPCN.
Definition 2.3.9. Let n € N'. We define:

Wi == @ Hom(HY, (K, T/I.,T), R/I,)
qin
Y, = A" HL (K, T/I,T)  \"™ W,

mlen H(l}_“)D (K, TP

V! — [In])Yn

n

and we define a Stark system of rank r for (T, F,P) as a collection {e¢, € Y, | n € N}
satisfying, for n’ | n,
\IJn,u’ (Eu) =Ew

where £,/ is the image of e in Yo @ R/, and Wy 0 Yy — Yy ® R/, is obtained from the
map defined for T/I,T and R/I, as in the previous case of finite ring (recall that by definition
I, is some power of m and therefore R/I, is some finite ring Z/p*Z). Again, we denote by
SS..(T, F,P) the R-module of Stark systems.

Lemma 2.3.10. If j < k, then the projection T/m*T — T/mIT and the restriction to Py
induce a surjection and an isomorphism, respectively:

SS,.(T/m*T, Py) — SS,.(T/mIT,Py) «+~— SS,.(T/mT,P;).

Proof. Let n € N be such that H(lfD)n(K, TP[m]) = 0. Then, by Theorem 2.3.5, projecting
to Y, gives a diagram

SS,.(T/m*T, Py,) —— SS,.(T/m/T, P;) «—— SS,.(T/mIT,P;)
V,@ R/mF ———— = YV, @ R/m) «+————— Y, ®@ R/m/
whence we conclude immediately. O

Composing the surjection with the (inverse of the) isomorphism above gives maps
SS,(T/m*T,Py) — SS,(T/m’T, P;) for j < k which make the R-modules SS,(T/m*T, Py)
into an inverse system, and we can form the inverse limit. Then:

Theorem 2.3.11.
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1. The maps T — T/m*T and Py — P induce an isomorphism

SS,(T,P) = lim SS,.(T/m"T, Py).

2. SS,.(T,P) is free of rank 1 over R, generated by a Stark system ¢ whose image in
SS,.(T/mT,P) is non-zero.

3. The maps SS,.(T,P) — SS,.(T/mFT,P;) are surjective for all k.

Proof. (1) If 0 # ¢ € SS,.(T), there is n such that 0 # ¢, € Y,,. If n # 1 then I, # 0 and we
let k be such that m* = I,,. If n = 1 choose k so that &1 # 0 in A" H-(K,T/m*T). In either
case I, C m* and the image of € in SS,.(T/m*T, P}) is non-zero, proving injectivity.

To prove surjectivity, let (¢)), € @SST(T/ka, Pr). If n € N and n # 1, let j be such

that I, = m? and define ¢, := 5,(3) €Y, If n=1, define

e = lim &M € lim A" HL(K, T/mkT) = \" HL(K,T) = ;.
k—o0 k—o0

This defines an element ¢ = (e4), € SS,(T,P) that maps to e®) for every k, proving
surjectivity.

(2) and (3) By Theorem 2.3.5, SS,.(T/m*KT,Py) is free of rank 1 over R/m* for all k.
The maps SS,.(T/m* 1T, Pri1) — SS,.(T/m*T, Py) are surjective by Lemma 2.3.10, so we
conclude by the previous point. O

We say that ¢ € SS,.(T) is primitive if it generates SS,.(T') as an R-module; such elements
exist by the above theorem. We apply these results to obtain an analogue of Proposition 2.3.7
and Theorem 2.3.8 for the case of R = Z,, discrete valuation ring.

Proposition 2.3.12. Let

a = corankg Hyp (K, T?)

= rankg Homg(H70 (K, T7),Q,/Z,)
and e; be such that
HL,(K,TP)
HLp (K, TP)aiy
Let € € SS,.(T) generate m*SS,.(T); then

5+ 6 ift>a
00 ift <a.

e (t) = {

Proof. Hy.p(K,TP) = lim H,(K,TP[m*]) By Proposition 2.2.13, we have

HLo (K, TP ) = Hyo (K, T7) ] = ) B/mmin e

i>1

where we set e; = --- = e, = 00. For k > 0 let ) be the image of ¢ in SS,.(T/m*T,P;,) and
write Re = m*SS,.(T). Then ) generates m*SS,.(T/m*T), by the above theorem.
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Let t and n € N with v(n) = ¢, write I, = m*. By the computation of dy.(t) in the case

of finite R we have

61(1’6) =0 ift<a

al(lk) e mstis ey, ift>a
Since 5£1k) = e, € Y,, we conclude

Ope(t) = 00 ift<a

Q@E(t)BerZei ift>a

i>t
If t > a, we must show equality: by Proposition 2.3.7, for any k > s+ >, , ¢; one can find
n € N with I, € m* such that aslk) ¢ msHt1H2is0 €Y, hence also e,, and we conclude. O
We can now conclude easily. Here, ., 0, ord(e) and d. (i) are defined as in Section 2.3.

Theorem 2.3.13. Let R =7Z,, ¢ € 8SS,(T), ¢ # 0. Then:

1. There are sequences
o (0) = 0. (1) =2 0pe(2) = --- 20
0

de(0) 2 d-(1) > de(2) 2 -~ 2
whose terms are finite for ¢ > ord(e).
2. There is an isomorphism

H! (K TD) .
FD ) ~ de (i)
= @ R/m
H}D(K,TD)div /

i>ord(e)

3. Setting Ope(00) = limy_y00 Ope(t),

HL, (K, TD)
len (m> = Oy (orde) — O (00)

4. len Hp (K, TP) < oo if and only if &1 # 0.

5. len Hyp (K, TP) < 0p-(0) = max{s | &1 € m* \" Hx(K,T)} and equality holds if and
only if ¢ is primitive.
Proof. (1) and (2) follow as before using the previous proposition and writing d. (i) = e; 1,
a = ord(e).
(3) The length is the sum of the lengths of the direct summands in (2), i.e.

Z de (i) = Z (8906(1) — Ope (i + 1)) = 0. (orde) — Oy (00).

i>ord(e) i>ord(e)

(4) If 1 = 0 then ord(e) > 1, so H}p (K, TP) has infinite length since ord(e) is its corank.
Conversely, if 1 # 0 then 9y, (0) is finite, so the claim follows from the next point.
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(5) The inequality follows by writing

H.}T(n)D (K’ TD) = U H}:(n)D (K7 TD)[mZ]

where len H}T(n)D(K, TPm?]) = len H}_.(H)D(K, TP)[m'] by the isomorphism in Proposi-
tion 2.2.13.2; so we are reduced to the case of finite R and we can apply Theorem 2.4.13.
Finally, if Re = m®SS,(T'), for ¢t big enough we have dp.(t) = s+ > .., e; by Proposi-
tion 2.3.12, so dy.(00) = 0 if and only if & generates SS,.(T) (i.e. € is primitive) and in this
case the stated equality follows from (3). O

2.4 Kolyvagin systems

2.4.1 Sheaves on a graph

A graph is as usual a couple (V,E) where V is a set of vertices and E is a set of edges
{{v,w} | v,w € V, v # w}. Let us introduce some general notions.

Definition 2.4.1.
e A sheaf S of R-modules associated to a graph is the data of

— an R-module S(v) for every vertex v,
— an R-module S(e) for every edge e,

— an R-module morphism ¢¢: S(v) — S(e) for every e and v € e.

A global section of S is a set {k, € S(v) | v vertex} such that

Py (o) = 95 (Kor) € S(e)

whenever e = {v,v'}.

Denote by I'(S) the R-module of global sections.

S is locally cyclic if S(v) and S(e) are cyclic and ¢ are surjective for all v and e.

A vertex v is a hub of S if, for every vertex w, there is a surjective path from v to w,

i.e. a path (v=wv1,vs,...,w = vg) such that oi,, is an isomorphism if e; = {vi, vig1}-

Given a surjective path P as above, there is a surjective map S(v) — S(w) defined as

vp = (Ppr) "ot oo (i) T € Hom(S(v), S(w))

S has trivial monodromy if, given surjective paths P = (v,...,w) and P’ = (v,...,w’)
and an edge e = {w,w’}, then

Yrp 0P = iy 0 Ypr € Hom(S(v), S(e)).

In particular, given two surjective paths P and P’ from v to w, we have ¢p = ¢p/ €

Hom(S(v), S(w)).

Proposition 2.4.2. If S is locally cyclic and v is a hub, then:
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1. The map f,: T'(S) = S(v), k = (ky)v = Ky 18 injective. It is surjective if and only if S
has trivial monodromy.

2. If k € T(S) and u is