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Introduction

After developing the theory of arithmetic duality for Galois cohomology with a particular
focus on the cohomology of an elliptic curve over a local field or a number field, we use these
results to define Kolyvagin systems and show how they provide bounds for the Selmer groups
of the elliptic curve.

The first chapter is dedicated to the study of arithmetic duality, which consists in relating,
for a given Galois module M , the groups

Hr(G,M)∗ = Hom(Hr(G,M),Q/Z)

to the cohomology groups of the Cartier dualMD = Hom(M,Ks×). These results are mainly
due to Tate [Tat62] and later collected and generalized by Milne [Mil20].

We begin in Section 1.2 from the abstract setting of class formations, pairs (G,C) of a
profinite group and a G-module, satisfying properties which allow us to formulate results of
local class field theory in a purely algebraic language. In particular, they provide us with
so-called invariant maps, isomorphisms H2(G,C) ∼= Q/Z; these are crucial for the definition
of pairings into Q/Z which will be the building blocks for the duality isomorphisms.

In Section 1.3 G is the Galois group of a local field K. The natural map MD×M → Ks×

induces cup products Hr(G,MD) ×H2−r(G,M) → H2(G,Ks×). The pair (G,Ks×) is (the
prototypical example of) a class formation, so we may compose cup products with the invariant
isomorphism to induce maps Hr(G,MD) → H2−r(G,M)∗. Local Tate duality essentially
states that these maps are isomorphisms.

In Section 1.4 we work with abelian varieties A over a local field K. We define their
cohomology groups as the cohomology groups of M = A(Ks). The main theorem of this
section is an isomorphism of the kind Hr(K,At) ∼= H1−r(K,A)∗, where At is the dual abelian
variety.

In Section 1.5 we specialize the previous results to the torsion group M = En(Ks) of an
elliptic curve. In this case self-duality of the curve, together with the Weil pairing, gives a
relation MD = M . When K is a number field, we define a global pairing as the sum of the
local pairings for the completions Kv.

In Section 1.6 we define the Tate-Shafarevich and Selmer groups of an elliptic curve over
a number field. These are fundamental objects in the study of its arithmetic, because their
knowledge provides information on the rank of the curve. The rest of the thesis aims to
show how Selmer groups can be controlled. The last prerequisite for this is global Poitou-
Tate duality, an exact sequence which determines in particular a pairing between the Tate-
Shafarevich groups; this is the topic of Section 1.7.

In Chapter 2 we apply these duality theorems. Given an R-module T with a Galois
action, we first define Selmer modules in full generality, i.e. modules of cohomology classes
satisfying given local conditions (Section 2.2). The Selmer groups of an elliptic curve are then
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a particular example. Using our duality theory, a Selmer structure induces a structure on the
dual module. It is actually these dual Selmer modules that we are going to study.

We construct Stark systems (Section 2.3) and, finally, Kolyvagin systems (Section 2.4),
collections of elements obtained from these Selmer modules, more precisely by some exterior
power thereof, with certain compatibility properties.

The exterior power appearing in the definition of a Kolyvagin system is the core rank of
the Selmer structure. As of today, this theory is only well-established in the case of core rank
1, where the systems consist of simple cohomology classes; this is, for instance, the case of
elliptic curves over Q. To provide an upper bound for the Selmer group of TD, Kolyvagin
originally introduced Euler systems, collections of cohomology classes over different extensions
of the base field, compatible when projecting via norms from an extension to a smaller one.
From an Euler system he then constructed a ‘derived system’, a new collection of cohomology
classes, now over the base field K alone. Mazur and Rubin showed in [MR04] that these
classes satisfied stronger interrelations than previously known, and called Kolyvagin system
any system satisfying these relations. This defines a ‘Kolyvagin derivative’ map from the
module of Euler systems to that of Kolyvagin systems and this link allows for a much more
concrete treatment of the core rank 1 case: by choosing a specific Euler system, for example
related to L-values, one gets similar relations for the corresponding Kolyvagin system and the
order of the Selmer group.

In the case of general core rank as we allow, the link between Euler and Kolyvagin systems
is still mysterious and we cannot treat any explicit examples. The theory of Kolyvagin systems
themselves, however, can still be developed and used to control Selmer groups, assuming the
knowledge of a Kolyvagin system. We do so, following [MR16].

By means of these systems and some associated invariants, we are able to bound the length
(in the module sense) of the dual Selmer modules. If E is an elliptic curve and we consider the
Z/pkZ-module Epk of torsion points (resp. the Tate module Tp(E) over Zp), then the dual
Selmer module will be the classical Selmer group Spk(K,E) (resp. Sp∞(K,E)) as desired, so
we will work in this setting, although the results hold for more general R and T .

Stark systems also control Selmer groups but we especially use them as a tool in the final
section, thanks to an equivalence between the module of Stark systems and a particular type
of Kolyvagin systems. In both cases, the theory is first explained for Z/pkZ and then extended
to Zp passing to inverse limits.



Chapter 1

Duality theorems

1.1 Preliminaries

1.1.1 Group cohomology

LetG be a group; we say that A is aG-module if it is a Z[G]-module, and we write A ∈ G-Mod.
We use notations

HomG(A,B) := HomZ[G](A,B)

Hom(A,B) := HomZ(A,B).

Definition 1.1.1. For A ∈ G-Mod, we define its r-th cohomology group as

Hr(G,A) := ExtrG(Z, A) := Rr HomG(Z,−)(A),

where Rr denotes the r-th right derived functor.

More explicitly, we may compute this as follows: choose a projective G-resolution P• →
Z→ 0 of Z (seen as a G-module via the trivial action), consider the complex

0→ HomG(P0, A)→ HomG(P1, A)→ · · ·

and define Hr(G,A) as the r-th cohomology group of this complex. Even more explicitly, we
can choose the above resolution in a standard way by setting Pi := Z[Gi+1] with differentials

d : Pi → Pi−1, (g0, . . . , gi) 7→
i∑

j=0

(−1)j(g0, . . . , gj−1, gj+1, . . . , gi)

for i > 1, and

ε : P0 = Z[G]→ Z,
∑
g

ngg 7→
∑
g

ng

The elements of HomG(Pi, A) are functions f : Gi+1 → A satisfying the property
f(sg0, . . . , sgi) = sf(g0, . . . , gi); so, by multiplying the arguments by suitable elements,
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8 CHAPTER 1. DUALITY THEOREMS

f is determined by its values on elements of the form (1, g1, g1g2, . . . , g1 · · · gi), and thus we
can identify it with a function

ϕ : Gi → A, ϕ(g1, . . . , gi) := f(1, g1, g1g2, . . . , g1 · · · gi).

For these ϕ we get the following boundary formula

(dϕ)(g1, . . . , gi+1) = g1ϕ(g2, . . . , gi+1)+

+

i∑
j=1

(−1)jϕ(g1, . . . , gjgj+1, . . . , gi+1) + (−1)i+1ϕ(g1, . . . , gi)

and we can describe the homology classes accordingly. For example, for r = 1, the cocycles are
maps G→ A such that ϕ(gg′) = gϕ(g′) +ϕ(g) and the coboundaries are maps ϕ(g) = ga− a
for a ∈ A.

Remark 1.1.2. We will usually deal with profinite groups G. In this case we will always
assume that all G-modules are discrete, meaning equivalently that

• the action G×A→ A is continuous for the discrete topology on A;

• A =
⋃
U A

U , union over all open U P G;

and we will compute cohomology using continuous cochains, i.e. in the above description we
will restrict ourselves to those functions ϕ which are continuous.

For A,B ∈ G-Mod, the abelian group Hom(A,B) has a G-module structure given by
gϕ(a) = gϕ(g−1a). Then we have HomG(A,B) = (Hom(A,B))G and, in particular,

H0(G,A) := HomG(Z, A) = (Hom(Z, A))G ∼= AG.

Moreover, if 0 → A → B → C → 0 is an exact sequence of G-modules, we have the usual
cohomology long exact sequence

· · · → Hq(G,A)→ Hq(G,B)→ Hq(G,C)
δ−→ Hq+1(G,A)→ · · · .

If H 6 G, we define the restriction morphism as the morphism

Res: Hr(G,A)→ Hr(H,A)

induced by the inclusion H ↪→ G. When H is normal, we define the inflation morphism as
the composition

Inf : Hr(G/H,AH)→ Hr(G,AH)→ Hr(G,A)

of the morphisms induced by G → G/H and AH ↪→ A respectively. A fundamental result is
the exactness of the restriction-inflation sequence,

0→ H1(G/H,AH)
Inf−−→ H1(G,A)

Res−−→ H1(H,A).

Given a finite group G and a bilinear G-equivariant pairing of G-modules A×B → C, there
are cup-product pairings

(x, y) 7→ x ∪ y : Ĥr(G,A)× Ĥr(G,B)→ Ĥr+s(G,C)

(Ĥr denotes the Tate cohomology groups, see proof of Theorem 1.2.3) satisfying properties
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• dx ∪ y = d(x ∪ y) and x ∪ dy = (−1)rd(x ∪ y)

• x ∪ (y ∪ z) = (x ∪ y) ∪ z

• x ∪ y = (−1)rsy ∪ x

• Res(x ∪ y) = Res(x) ∪ Res(y) and Inf(x ∪ y) = Inf(x) ∪ Inf(y)

Theorem 1.1.3 (Tate-Nakayama). Let G be a finite group, A a G-module, u ∈ H2(G,A).
Suppose that, for all H 6 G,

• H1(H,A) = 0,

• H2(H,A) = 〈Res(u)〉 and |H2(H,A)| = |H|.

Then, for any G-module B with TorZ1 (B,A) = 0, cup product with u induces an isomorphism

x 7→ x ∪ u : Ĥr(G,B)→ Ĥr+2(G,B ⊗A)

for all r ∈ Z.

1.1.2 Spectral sequences
Definition 1.1.4. A first-quadrant E2-spectral sequence in a category C, denoted by Ep,q2 =⇒
Ep+q, consists of the following data:

• objects Ep,qr ∈ C for p, q > 0, r > 2

• morphisms dp,qr : Ep,qr → Ep+r,q−r+1
r such that:

– d ◦ d = 0

– for every (p, q), dpqr and dp−r,q+r−1
r vanish for large enough r

– ker dp,qr / im dp−r,q+r−1
r

∼= Ep,qr+1

(this implies that, for r large enough, Ep,qr is independent of r and we can denote it by
Ep,q∞ )

• objects En with a finite filtration En ⊃ · · · ⊃ FkEn ⊃ Fk+1E
n ⊃ · · · ⊃ 0 such that

Ep,q∞
∼= FpEp+q/Fp+1E

p+q

This setting provides us with useful exact sequences:

Lemma 1.1.5.

1. If Ep,q2 = 0 for all p > 0 and q > 1, then there is a long exact sequence

0→ E1,0
2 → E1 → E0,1

2
d−→ E2,0

2 → E2 → E1,1
2

d−→ E3,0
2 → · · ·

2. If Ep,q2 = 0 for all q > 0 and p > 1, then there is a short exact sequence

0→ E1,n−1
2 → En → E0,n

2 → 0.

Proof. See, for example, [Neu93].
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We introduce a spectral sequence of great importance. For M , N ∈ G-Mod and H 6 G,
we define HomH(M,N) :=

⋃
H6U6G Hom(M,N)U , U open. This is a discrete G/H-module

and defines a left-exact functor HomH(M,−) from (discrete) G-Mod to (discrete) G/H-Mod.
We denote its right derived functors in the natural way, ExtrH(M,N) := RrHomH(M,−)(N).

Theorem 1.1.6. Let H 6 G be a normal closed subgroup, N , P ∈ G-Mod, M ∈ G/H-Mod
with TorZ1 (M,N) = 0. Then there is a spectral sequence

ExtrG/H(M, ExtsH(N,P )) =⇒ Extr+sG (M ⊗Z N,P ).

Proof. This is a particular case of Grothendieck’s spectral sequence, which relates the derived
functor of a composition G ◦ F to the derived functors of F and G. The result, proven in
Grothendieck’s Tôhoku paper [Gro57], states

(RpG ◦RqF )(A) =⇒ Rp+q(G ◦ F )(A)

if F maps injective objects to G-acyclic objects. Hence, it is enough to show that HomG(M⊗Z
N,−) = G ◦ F for F = HomH(N,−) and G = HomG/H(M,−), and that F has the required
property.

From this we can easily deduce the famous

Corollary 1.1.7 (Hochschild-Serre spectral sequence). If we choose (M,N,P ) := (Z,Z,M),
we get

Hr(G/H,Hs(H,M)) =⇒ Hr+s(G,M).

Corollary 1.1.8. If we choose (M,N,P ) := (Z,M,N) and H = 1, we get

Hr(G, Exts(M,N)) =⇒ Extr+sG (M,N).

and, if M is finitely generated, Lemma 1.1.5 then yields a long exact sequence

0→H1(G,Hom(M,N))→ Ext1
G(M,N)→ H0(G,Ext1(M,N))→

→H2(G,Hom(M,N))→ · · ·

and we can also deduce that:

• ExtrG(M,N) is torsion for r > 1;

• if N is divisible by all primes occurring as the order of an element in M , then
Ext1(M,N) = 0 and consequently

Hr(G,Hom(M,N)) = ExtrG(M,N).

1.1.3 Ext pairings

Given a pairing of G-modules M × N → P , there is a canonical product ExtrG(N,P ) ×
ExtsG(M,N)→ Extr+sG (M,P ) which becomes, in the case M = Z,

ExtrG(N,P )×Hs(G,N)→ Hr+s(G,P ).
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This pairing will be the starting point for our duality theorems. It is compatible with the
cup-pairing, in the sense that the following diagram commutes:

Hr(G,M) × Hs(G,N) Hr+s(G,P )

Hr(G,Hom(N,P ))

ExtrG(N,P ) × Hs(G,N) Hr+s(G,P )

where the map Hr(G,Hom(N,P ))→ ExtrG(N,P ) exists because of the spectral sequence in
Theorem 1.1.6.

If K is a field, the category of algebraic group schemes over K is abelian, hence we can
define ExtrK(A,B) for A,B algebraic group schemes over K. In this setting we will write

G = Gal(Ks/K),

Hr(K,A) := Hr(G,A(Ks)).

If K is perfect, A 7→ A(Ks) is an exact functor (since Ks is algebraically closed) and there is
a canonical pairing

ExtrK(A,B)×Hs(K,A)→ Hr+s(K,B)

defined so that the following compatibility holds:

ExtrK(A,B) × Hs(K,A) Hr+s(K,B)

ExtrG(A(Ks), B(Ks)) × Hs(G,A(Ks)) Hr+s(G,B(Ks))

where the bottom row is the previously defined Ext pairing for G-modules.

Proposition 1.1.9. For perfect K there is also a spectral sequence resembling 1.1.8 for
algebraic group schemes over K,

Hr(G,ExtsKs(A,B)) =⇒ Extr+sK (A,B)

which can be used to show the following [Oor66]: if A is a finite group scheme over K of order
not divisible by char(K), then

ExtrK(A,Gm) ∼= ExtrG(A(Ks),Ks×).

1.2 Class formations
Definition 1.2.1. If G is a profinite group and C is a G-module, we say (G,C) is a class
formation if there is a system of isomorphisms {invU : H2(U,C)

∼−→ Q/Z | U 6 G open},
H1(U,C) = 0 and, whenever V P U 6 G,

H2(U,C) H2(V,C)

Q/Z Q/Z

Res

invU invV

[U :V ]
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commutes.
Equivalently, the requirement that invU are isomorphisms may be replaced with the re-

quirement that they be injections inducing isomorphisms

H2(U/V,CV )
∼−→ 1

[U :V ]Z/Z,

if we add the condition that |G| is divisible by all integers, where |G| denotes the profinite order
of G = lim←−Gi, defined formally as

∏
p p

maxi{|Gi|p} (product over all primes, |Gi|p denoting
the p-factor in |Gi|).

This notion is an abstraction of the following fundamental situation from local class field
theory:

Theorem 1.2.2. LetK be a local field, G = Gal(Ks/K). Then (G,Ks×) is a class formation.

To construct the invariant maps we need to recall some facts. Let I be the inertia subgroup
Gal(Ks/Kun), hence G/I = Gal(Kun/K). Then:

1. H2(G,Ks×) ∼= H2(G/I,Kun).

2. the map H2(G/I,Kun)→ H2(G/I,Z), induced by the additive valuation v : K× → Z,
is an isomorphism.

3. H2(G/I,Z) ∼= H1(G/I,Q/Z): indeed, consider the long cohomology sequence arising
from 0 → Z → Q → Q/Z → 0 considered as trivial G/I-modules. Since Q is uniquely
divisible, it has trivial cohomology, hence the connecting morphisms are isomorphisms.

4. H1(G/I,Q/Z) = Hom(G/I,Q/Z) because the action on Q/Z is trivial (Hom denotes
continuous homomorphisms). Hom(G/I,Q/Z) is isomorphic to Q/Z via ϕ 7→ ϕ(1).

Composing these isomorphisms together, we define

invK = invG : H2(G,Ks×)→ Q/Z.

If L/K is a finite Galois extension of K corresponding to a subgroup H 6 G, we construct in
the same way the map invL = invH : H2(H,Ls×) = H2(H,Ks×) → Q/Z and we can finally
check that

H2(G,Ks×) H2(H,Ks×)

Q/Z Q/Z

Res

invK invL

[G:H]

commutes, hence (G,Ks×) is a class formation. For the proof of this, as well as of facts
(1) and (2) (and of the following statements about local class field theory), one can refer to
[Ser67].

Theorem 1.2.3. If (G,C) is a class formation, there is a canonical map, called the reciprocity
map,

recG : CG → Gab

with dense image and ker recG =
⋂
NG/UC

U (intersection over U P G open of finite index;
recall NG/U =

∑
σ∈G/U σ).
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Proof. This follows from the Tate-Nakayama theorem 1.1.3: first apply the theorem to the
particular case

(G/U)ab = Ĥ−2(G/U,Z)
∼−→ Ĥ0(G/U,Z⊗ CU ) = CG/NG/UC

U

a 7→ a ∪ uG/U ,

then pass to the inverse maps; by examining the morphisms in the inverse systems we see that
these bijections induce a morphism of inverse systems which, passing to the limit, provides
an injection

CG/
⋂
U

NG/UC
U → Gab.

Composing on the left with the projection from CG gives the required map recG; then,
composing on the right with Gab → (G/U)ab for any open U P G gives a surjection, showing
that the image is dense.

Example 1.2.4. This is again a construction which arises naturally in local class field theory.
For a finite Galois extension L/K, the isomorphism between K×/NL/KL× and Gal(L/K)ab

is called the local reciprocity map. Passing to projective limits we get the reciprocity map
K× → Gab: it is injective but not surjective, and it factors as

K× ↪→ (K×)∧ := lim←−
L

K×/NL/KL
× ∼−→ Gab

through the completion of K× for the topology defined by the so-called norm subgroups.

1.2.1 Duality for class formations

When M ∈ G-Mod and (G,C) is a class formation, we can compose the Ext pairings with
the invariant map to obtain pairings

ExtrG(M,C)×H2−r(G,M)→ H2(G,C)
inv−−→ Q/Z.

Writing A∗ = Hom(A,Q/Z) for A an abelian group, this induces maps

αr(G,M) : ExtrG(M,C)→ H2−r(G,M)∗.

The following theorem holds:

Theorem 1.2.5 (Duality for class formations).

• αr(G,M) (r > 2) is bijective for all finitely generated M .

• α1(G,M) is bijective for all torsion-free finitely generated M ;
it is bijective for all finitely generated M if α1(U,Z/mZ) is bijective for all open U 6 G
and all m.

• α0(G,M) is bijective for all finite M if α1(G,M) is and in addition α0(U,Z/mZ) is
bijective for all open U 6 G and all m.

We start by examining the particular cases M = Z and M = Z/mZ; that is, when the
G-action is trivial. In the case M = Z:
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α0(G,Z) : CG = H0(G,C)→ H2(G,Z)∗ = Hom(G,Q/Z)∗ = Gab is the reciprocity map
recG

(recall the identification of H2(G,Z) with Hom(G,Q/Z) as in Theorem 1.2.2. Moreover,
the equality involving Gab follows from Pontryagin duality for profinite abelian groups);

α1(G,Z) : 0 = H1(G,C)→ H1(G,Z)∗ = 0 is the zero map;

α2(G,Z) : H2(G,C)→ H0(G,Z)∗ = Q/Z is the map invG.

They follow easily from the definitions except for α0. For this, first note that in this case the
Ext pairing coincides with the cup-product pairing H0(G,C)×H2(G,Z)→ H2(G,C), which
we can identify with a pairing 〈−,−〉 : CG × Hom(G,Q/Z) → Q/Z. We want to check that
the induced morphism c 7→ 〈c,−〉 coincides with the composition

CG
recG−−−→ Gab ∼−→ Hom(G,Q/Z)∗, c 7→

(
χ 7→ χ(recG(c))

)
,

that is, 〈c, χ〉 = χ(recG(c)) for all c ∈ CG and χ ∈ Hom(G,Q/Z): this is a well known result
in local class field theory, see [Ser80, XI.3, Proposition 2].

The case M = Z/mZ then follows:

α0(G,Z/mZ) is such that the composition

CG[m] H2(G,Z/mZ)∗ Gab[m]α0

is induced by recG on the kernels of the multiplication by m;

α1(G,Z/mZ) : CG/mCG → Gab/mGab is induced by recG;

α2(G,Z/mZ) : H2(G,C)[m]→ 1
mZ/Z is induced by invG.

Proof of Theorem 1.2.5. Let us first show that domain and codomain of the maps both vanish
for large r. Precisely: for M finitely generated, ExtrG(M,C) = 0 (r > 4); if M is torsion-free,
also Ext3

G(M,C) = 0. To show this, it is enough to show ExtrG(M,C) = 0 (r > 3) in the
torsion-free case, because then, for general M , a resolution 0 → M1 → M0 → M → 0 with
Mi finitely generated torsion-free will yield a sequence Ext3

G(M1, C) = 0 → Ext4
G(M,C) →

0 = Ext4
G(M0, C).

Set N = Hom(M,Z), hence N ⊗Z C ∼= Hom(M,C) as G-modules; by Corollary 1.1.8 we
have

ExtrG(M,C) ∼= Hr(G,N ⊗ C) = lim−→Hr(G/U,N ⊗ CU )

where the limit over N P G open with NU = N is relative to the Inf maps. This limit is zero
when r > 3: indeed, we have a diagram

Hr−2(G/U,N) Hr(G/U,N ⊗ CU )

Hr−2(G/V,N) Hr(G/V,N ⊗ CV )

∼

[U :V ]Inf Inf

∼

where the rows are the isomorphisms a 7→ a ∪ u from the Tate-Nakayama Theorem 1.1.3,
for r − 2 > 1; the diagram commutes because Inf(uG/U ) = [U : V ]uG/V (by definition)
and Inf(a ∪ b) = Inf(a) ∪ Inf(b). As Hr−2(G/U,N) is torsion (Corollary 1.1.8) and the
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profinite order |U | is divisible by all integers (see definition of class formation), the limit
lim−→Hr−2(G/U,N) relative to the maps [U : V ]Inf is zero, as we claimed.

This proves the cases r > 4. It also implies that Ext3
G(Z, C) = 0, and we easily deduce

Ext3(Z/mZ, C) = 0: indeed, from the exact sequence 0→ Z m−→ Z→ Z/mZ→ 0 we get

Ext2(Z, C)→ Ext2(Z, C)→ Ext3(Z/mZ, C)→ 0 = Ext3(Z, C)

and Ext2(Z, C) = H2(G,C) ∼= Q/Z is divisible, hence Ext3(Z/mZ, C) = 0. Together with
the previous analysis of the cases M = Z or Z/mZ, this proves the theorem in case of trivial
G-action.

In the general case, embed M in a sequence 0 → M → M∗ → M1 → 0 where M∗ :=
Hom(Z[G/U ],M) = Z[G/U ] ⊗M for U P G open satisfying MU = M . Then Hr(G,M∗) =
Hr(U,M) and ExtrG(M∗, C) = ExtrU (M,C) by applying Theorem 1.1.6 with Z[G/U ], M , C.
We get a commutative diagram with exact rows

ExtrG(M1, C) ExtrU (M,C) ExtrG(M,C) Extr+1
G (M1, C)

H2−r(G,M1)∗ H2−r(U,M)∗ H2−r(G,M)∗ H1−r(G,M1)∗

αr(G,M1) αr(U,M) αr(G,M) αr+1(G,M1)

α3(U,M), α4(G,M1) and α4(U,M) are isomorphisms because of the above discussion, so
by the five-lemma α3(G,M) is surjective. Since this holds for all M , α3(G,M1) is also an
isomorphism, and again by the five lemma α3(G,M) is an isomorphism. Now we can repeat
the argument to show α2(G,M) is an isomorphism.

If M is torsion-free or if α1(U,Z/mZ) is bijective, then also α1(U,M) is an isomorphism
(because the theorem is true in case of trivial action), and we use the five lemma twice as
before. The proof for α0(G,M) proceeds in the same way.

1.3 Local duality for G-modules
Throughout this section:

K is a non-archimedean local field and G = Gal(Ks/K);

if M is a G-module, we set MD = Hom(M,Ks×);

if N is a group, N∧ denotes its completion with respect to the subgroups of finite index
or, if N has a natural topology induced fromK, the completion relative to the subgroups
of finite index which are open for that topology.

Recalling that (G,Ks×) is a class formation (Theorem 1.2.2), we apply the result of the
previous section to this particular case.

Theorem 1.3.1 (Local Tate duality). LetM be a finitely generated G-module with char(K)
not dividing |Tors(M)|. Then, the cup product induces isomorphisms

Hr(G,MD)→ H2−r(G,M)∗ (r > 1)

H0(G,MD)∧ → H2(G,M)∗

Moreover, H1(G,M) and H1(G,MD) are finite.
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Proof. Ks× is divisible by all primes except for char(K), so Extr(M,Ks×) = 0 for all r > 1,
and therefore using Corollary 1.1.8 we may write Hr(G,MD) = ExtrG(M,Ks×). The result
then follows as a particular case from the next theorem.

Theorem 1.3.2. Let M be a finitely generated G-module; then, there are isomorphisms

ExtrG(M,Ks×)→ H2−r(G,M)∗ (r > 1)

HomG(M,Ks×)∧ → H2(G,M)∗

(HomG(M,Ks×)→ H2(G,M)∗ if M is finite).

Moreover, ExtrG(M,Ks×) and Hr(G,M) are

• finite for all r if M is finite with char(K) - |M |

• finite for r = 1 if M is finitely generated with char(K) - |Tors(M)|.
Proof. Duality for class formations (Theorem 1.2.5) immediately implies the isomorphisms
for r > 2; for r = 1 it will follow once we check that every α1(U,Z/mZ) is an isomorphism;
and, if M is finite, it will also follow for r = 0 if we show that every α0(U,Z/mZ) is an
isomorphism. Recall that these two maps are induced by recG resp. on cokernels and kernels
of m; recall the following diagram from local class field theory

0 O×K K× Z 0

0 Iab Gab Ẑ 0

∼

v

[Ser67, p. 144]; then consider the induced diagrams respectively on cokernels and kernels by
m to conclude that α1 (and α0 for finite M) are isomorphisms.

When M is not finite, the statement still holds if the G-action is trivial, because α0(G,Z)
defines a morphism on the completion

α0(G,Z)∧ : (K×)∧
∼−→ Gab

which is an isomorphism, being the reciprocity map of local class field theory (Example 1.2.4):
one should just note that norm subgroups ofK× coincide with the open finite index subgroups,
see [Ser67, Theorem 3]. In general, consider a finite Galois L/K such that U := Gal(Ks/L)
acts trivially, then HomG(M,Ks×) = HomG(M,L×), and this contains the open compact
subgroup HomG(M,O×L ). Therefore, using notation as in Theorem 1.2.5 for 0→M →M∗ →
M1 → 0, the exact sequence

0→ HomG(M1,K
s×)→ HomU (M∗,K

s×)→ HomG(M,Ks×)→

remains exact after completion, and we complete the proof as in Theorem 1.2.5.
We can now move to the proof of the finiteness statements. If char(K) - n, from the

Kummer sequence
0→ µn(Ks)→ Ks× n−→ Ks× → 0

we find, passing to the long cohomology sequence,

Hr(G,µn(Ks)) =


µn(K) r = 0

K×/K×n r = 1
1
nZ/Z r = 2

0 r > 3
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If M is finite with char(K) - |M |, choose a finite Galois extension L/K containing all m-th
roots of 1 for m | |M | and such that Gal(Ks/L) acts trivially on M ; then

M ∼=
⊕
m||M |

µm

hence we know Hr(Gal(Ks/L),M) is always finite, and zero for r > 3. The Hochschild-Serre
spectral sequence with H = Gal(Ks/L) becomes

Hr(Gal(L/K), Hs(Gal(Ks/L),M)) =⇒ Hr+s(G,M)

and implies that Hr(G,M) is finite for all r, because the cohomology groups of finite groups
Gal(L/K) with values in finite modules Hs(Gal(Ks/L),M) are finite. Then by Theorem 1.2.5
all αr(G,M) are isomorphisms, so ExtrG(M,Ks×) are also finite.

If M is finitely generated with char(K) - |Tors(M)|, we want to show that H1(G,M) is
finite. We may assume Tors(M) = 0, by the previous case. Choose a finite Galois extension
L/K such that Gal(Ks/L) acts trivially on M . From the exact sequence

0→ H1(Gal(L/K),M)→ H1(G,M)→ H1(Gal(Ks/L),M) = 0

we haveH1(G,M) ∼= H1(Gal(L/K),M), which is finite. Theorem 1.2.5 makes it is isomorphic
to Ext1

G(M,Ks×), which therefore is also finite.

1.4 Local duality for abelian varieties

1.4.1 Local Euler-Poincaré characteristic

We need a technical result first. For a G-module M of finite order m with char(K) - m, the
groups Hr(G,M) are finite for all r and zero for r > 3 (Theorem 1.3.2), so we can define its
Euler-Poincaré characteristic

χ(G,M) =
|H0(G,M)||H2(G,M)|

|H1(G,M)|

(note that this recalls the usual Euler characteristic of algebraic topology, but written multi-
plicatively). We now prove that, for such a module,

Theorem 1.4.1. χ(G,M) = (OK : mOK)−1.

Set p = char(k), where k is the residue field of K. Let us first consider the following
special case.

Lemma 1.4.2. If the order of M is prime to char(K), then χ(G,M) = 1.

Proof. Let I = Gal(Ks/Kun) 6 G be the inertia group of G, and Ip P I be its p-Sylow
subgroup. We have

I/Ip ∼= Ẑ/Zp

(see [Ser80, IV]). Consider the Hochschild-Serre spectral sequence

Hr(I/Ip, H
s(Ip,M)) =⇒ Hr+s(I,M);
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since Hr(Ip,M) = 0 for r > 1, its long exact sequence from Lemma 1.1.5 reads

0→ H1(I/Ip,M
Ip)→ H1(I,M)→ 0→ H2(I/Ip,M

Ip)→ H2(I,M) −→ 0→

so Hr(I,M) = Hr(I/Ip,M
Ip); moreover this is finite for all r and zero for r > 2 (see [Ser80,

XIII]). Then the Hochschild-Serre spectral sequence

Hr(G/I,Hs(I,M)) =⇒ Hr+s(G,M)

shows H0(G,M) = H0(G/I,M I) and an exact sequence

0→ H1(G/I,M I)→ H1(G,M)→ H0(G/I,H1(I,M))→ 0→
→ H2(G,M)

∼−→ H1(G/I,H1(I,M))→ 0

Since G/I ∼= Ẑ, for any finite Z-module N the exact sequence

0→ H0(Z, N)→ N
σ−1

−−→ N → H1(Ẑ, N)→ 0

(with σ a topological generator of Ẑ) shows [H0(Ẑ, N)] = [H1(Ẑ, N)], hence

χ(G,M) =
[H0(G/I,M I)][H0(G/I,H1(I,M))]

[H1(G/I,M I)][H1(G/I,H1(I,M))]
= 1.

By the lemma and the fact that both sides in Theorem 1.4.1 are additive, we may assume
pM = 0 and char(K) = 0. Suppose L/K is a finite Galois extension such that L ⊆ Ks and
M = MGal(Ls/L). Then M is an Fp[Gal(L/K)]-module. For any such module N , denote by
[N ] its class modulo the equivalence relation

[N ] = [N1] + [N2] ⇐⇒ 0→ N1 → N → N2 → 0 is exact

and denote the group of these symbols by R(Gal(L/K)). The left and right sides of Theo-
rem 1.4.1 define morphisms of groups

χl, χr : R(Gal(L/K))→ Q>0

Since Q>0 is torsion-free, it suffices to show χl = χr on a set of generators for R(Gal(L/K))⊗Z
Q.

Lemma 1.4.3. If G is a finite group, then R(G) ⊗ Q is generated by the images of the
morphism

IndGH : R(H)⊗Q→ R(G)⊗Q, [N ] 7→ [⊕gN ]

where H 6 G is cyclic of order prime to p, N is an H-module, the direct sum is over a system
of representatives mod H.

Proof. From [Ser70].

Hence it is enough to prove the theorem for M of the form Ind
Gal(L/K)
N . Let K ′ = LH and

n = |N |; then we have

χ(G,M) = χ(Gal(Ks/K ′), N)

(OK : mOK) = (OK : nOK)[K′:K] = (OK′ : nOK′)
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which shows it is enough to prove the theorem for N , and therefore we can assume Gal(L/K)
to be cyclic of order prime to p. In this case, when r > 1, Hr(Gal(L/K),M) = 0 and so
Hr(G,M) = Hr(Gal(Ks/L),M)Gal(L/K).

Consider the group morphisms

χ′ : R(Gal(L/K))→ R(Gal(L/K))

[N ] 7→
∑

(−1)i[Hi(Gal(Ks/L), N)]

θ : R(Gal(L/K))→ Q>0

[N ] 7→ |NGal(L/K)|

Lemma 1.4.4. χ′(M) = −dim(M)[K : Qp]#Fp[Gal(L/K)]

Note that, since θ ◦ χ′ = χ and θ[Fp[Gal(L/K)]] = p, this lemma would show

χ(M) = θ ◦ χ′(M) = p−[K:Qp] dim(M) = (OK : mOK)−1

proving the theorem. So we proceed with the proof of this lemma.

Proof. Tensoring M with an injective Z
pZ [Gal(L/K)]-resolution of Z/pZ, we see that the cup

product defines isomorphisms of Gal(L/K)-modules

Hr(Gal(Ks/L),Z/pZ)⊗M → Hr(Gal(Ks/L),M)

hence χ′(M) = dim(M)χ′(Z/pZ). LetM0 be the G-module with underlying setM and trivial
G-action. The isomorphism

Fp[Gal(L/K)]⊗M0
∼−→ Fp[Gal(L/K)]⊗M

σ ⊗m 7→ σ ⊗ σm

shows dim(M)#Fp[Gal(L/K)] = #Fp[Gal(L/K)]|M |, so the general equality in the lemma
follows from the special case M = Z/pZ.

H0(Gal(Ks/L),Z/pZ) = Z/pZ
H1(Gal(Ks/L),Z/pZ) = H1(Gal(Ks/L), µp(K

s))∗ = (L×/L×p)∗

H2(Gal(Ks/L),Z/pZ) = µp(L)∗

where (−)∗ denotes Hom(−,Fp) seen as a Gal(L/K)-module. Since the functor Hom(−,Fp)
is exact (because Fp is divisible), it is defined on R(Gal(L/K)). Hence

χ′(Z/pZ)∗ = [µp(L)] + [Z/pZ]− [L×/L×p]

= [µp(L)]− [O×L /O
×p
L ]

= [µp(O×L )]− [O×L /O
×p
L ],

second line following from the exact sequence 0→ O×L /O
×p
L → L×/L×p → Z/pZ→ 0.

Note now the following fact: forW andW ′ finitely generated Zp[H]-modules with H finite
group, if W ⊗Qp ∼= W ′ ⊗Qp, then

[W/pW ]− [Wp] = [W ′/pW ′]− [W ′p] in Fp[H].
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This is shown by reducing to the case pW ⊂ W ′ ⊂ W , in which case we have the exact
sequence (given by the snake lemma)

0→W ′p →Wp →W/W ′ →W ′/pW ′ →W/pW →W/W ′ → 0.

We apply this result as follows. The exponential series maps an open subgroup of O×L onto
an open subgroup of (OL,+), hence

[O×L /O
×p
L ]− [µp(O×L )] = [OL/pOL]− [(OL)p] = [OL/pOL].

The normal basis theorem says L ∼= Qp[Gal(L/K)][K:Qp] as Gal(L/K)-modules, hence

[OL/pOL] = [K : Qp][Fp[Gal(L/K)]]

and we conclude by [Fp[Gal(L/K)]]∗ = [Fp[Gal(L/K)]]. Putting things together,

χ′(M) = dim(M)χ′(Z/pZ)

= −dim(M)[K : Qp][Fp[Gal(L/K)]]∗

= −dim(M)[K : Qp][Fp[Gal(L/K)]].

1.4.2 Local duality for abelian varieties
In this paragraph, the notion of dual abelian variety comes into play. Since we are interested
with the self-dual case of elliptic curves, we do not develop a rigorous theory for this notion.
However, since the arguments would be the same, we will state the results for general abelian
varieties, and we will content ourselves with the following definition of dual abelian variety:

At = Ext1(A,Gm)

so At(Ks) = Ext1
Ks(A,Gm). As for elliptic curves, also for general abelian varieties there is a

Weil pairing, a perfect pairing

An(Ks)×Atn(Ks)→ µn(Ks)

inducing an isomorphism
Atn(Ks) ∼= Hom(An(Ks),Ks×).

If we set M = An(Ks), this means that MD = Atn(Ks), relating these two types of duals.
We set the following notation:

Hr(K,A) = Hr(Gal(Ks/K), A(Ks))

the subscript n, whether on groups or on the group scheme A, denotes the kernel of
multiplication by n.

When K is perfect, there is a pairing

ExtrK(A,Gm)×H2−r(K,A)→ H2(K,Gm) = H2(G,Ks×) ∼= Q/Z

obtained composing the Ext pairing in Section 1.1.3 and the invG isomorphism. This induces
a canonical map

αr(K,A) : ExtrK(A,Gm)→ H2−r(K,A)∗.

Tate proved the following result:
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Theorem 1.4.5. When K is perfect, there is a canonical pairing

Hr(K,At)×H1−r(K,A)→ Q/Z.

When charK = 0, it induces isomorphisms Hr(K,At) ∼= H1−r(K,A)∗, that is

• At(K)
∼−→ H1(K,A)∗ for r = 0,

• H1(K,At)
∼−→ A(K)∗ for r = 1,

• 0→ 0 for r 6= 0, 1.

Proof. When K is perfect, there is a canonical isomorphism

Hr(K,At) ∼= Extr+1
K (A,Gm)

following from the spectral sequence in Proposition 1.1.9 using that ExtrKs(A,Gm) is 0 for
r > 2 [Oor66] and HomKs(A,Gm) = 0 because A is an abelian variety, so it is projective,
whereas Gm is affine (as it corresponds to the K-algebra K[X,Y ]/(XY −1)). This shows the
existence of the stated pairing.

Suppose now char(K) = 0. Consider the sequence 0 → An → A
n−→ A → 0; applying

ExtrK(−,Gm) and using the canonical maps as vertical arrows, we get the following diagram
(superscript (n) denotes cokernel of the map induced by multiplication by n)

0 ExtrK(A,Gm)(n) ExtrK(An,Gm) Extr+1
K (A,Gm)n 0

0
(
H2−r(K,A)n

)∗
H2−r(K,An)∗ H1−r(K,A)(n)∗ 0

αr(K,A)(n) αr(K,An) αr+1(K,A)n

Using ExtrK(An,Gm) ∼= ExtrG(An(Ks),Ks×) we identify αr(K,An) with αr(G,An(Ks)), so
we see that the diagram commutes; by Theorem 1.3.2, this map is an isomorphism of finite
groups for all r (recall for example that, for elliptic curves, An(Ks) is (Z/nZ)2 when char(K)
does not divide n). Hence, αr(K,A)(n) is injective; taking inverse limits we still get an
injective map

lim←−
n

αr(K,A)(n) : lim←−
n

ExtrK(A,Gm)(n) → Tors(H2−r(K,A))∗.

Let r = 1, and recall Ext1
K(A,Gm) = At(K). [Mat55] assures that, if B is an abelian

variety of dimension d over a local field K of characteristic 0, then B(K) contains an open
subgroup of finite index isomorphic to OdK . It implies that B(K) = B(K)∧, the completion
for the profinite topology. Applying this to the variety At and using the previous equality in
terms of Ext, we get

Ext1
K(A,Gm) = At(K) = lim←−A

t(K)(n) = lim←−Ext1
K(A,Gm)(n).

Furthermore
Tors(H1(K,A)) = H1(K,A)

since it is finite (Theorem 1.3.2); we conclude α1(K,A) = lim←−n α
r(K,A)(n), hence α1(K,A)

is injective.
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We now show Hr(K,A) = 0 for r > 2. For r > 3 this follows from 1.3.2, i.e. G has
cohomological dimension 2. To show H2(K,A) = 0, take r = 0 in the diagram above: we get
an exact commutative diagram

0 0 HomK(An,Gm) Ext1
K(A,Gm)

0
(
H2(K,A)n

)∗
H2(K,An)∗ H1(K,A)∗

Since the middle vertical arrow is an isomorphism and the left arrow is injective, we deduce
H2(K,A)n = 0 and hence H2(K,A) = 0. We also conclude that ExtrK(A,Gm) (which equals
Hr−1(G,At)) is 0 for r 6= 1, 2.

To show that α1(K,A) is an isomorphism, we show that the injections At(K)→ H1(K,A)∗

give surjections At(K)(n) →
(
H1(K,A)n

)∗ for all n. It is enough to show the groups have the
same orders. Set M = An(Ks), MD = Atn(Ks), d = dimA. We have, from Theorem 1.4.1:

χ(G,M) = (OK : nOK)−2d = χ(G,MD),

|A(K)(n)|
|A(K)n|

= [R : nR]d =
|At(K)(n)|
|At(K)n|

.

From H0(G,MD) = Atn(K) we get

|H1(G,A)n| = (OK : nOK)d|Atn(K)| = |At(K)(n)|

and we conclude.
To show that α2(K,A) is an isomorphism, consider the first diagram: we have surjectivity

of
α2(K,A) : Ext2

K(A,Gm) ∼= H1(K,At)→ A(K)∗ = H0(K,A)∗.

Repeating the calculations of the orders with A and At interchanged gives |H1(G,At)n| =
|A(K)(n)| implying that the map is an isomorphism.

1.5 Specialization to elliptic curves

1.5.1 Local duality
We use notations:

E is an elliptic curve over K

Hr(K,E) = Hr(Gal(Ks/K), E(Ks))

Hr(L/K,E) = Hr(Gal(L/K), E(L))

the subscript n, whether on groups or on the group scheme E, denotes the kernel of
multiplication by n.

Consider the composition, denoted by 〈−,−〉:

H1(K,En)×H1(K,En)
∪−→ H2(K,En ⊗ En) −→ H2(K,µn) ∼= Z/nZ

of the cup product and the map induced by the Weil pairing

En(Ks)⊗ En(Ks)→ µn(Ks).
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Theorem 1.5.1. The pairing 〈−,−〉 : H1(K,En) × H1(K,En) → Z/nZ is a perfect, sym-
metric, Galois-equivariant pairing.

Proof. This is a particular case of the duality theorem 1.3.1. The Weil pairing is perfect,
hence gives an isomorphism of abelian groups

En(Ks) ∼= Hom(En(Ks), µn(Ks)).

Setting M = En(Ks), we have

MD := Hom(M,Ks×) = Hom(M,µn(Ks)) ∼= M.

Therefore, the cup-product pairing

H1(G,MD)×H1(G,M)→ H2(G,Ks×)

is actually a pairing into H2(G,µn(Ks)), and using MD ∼= M we can now write it as

H1(K,En)×H1(K,En)→ H2(K,µn).

Theorem 1.5.2. Assume char(k) - n, where k is the residue field of K. Then:

1. the subgroup E(K)/nE(K) of H1(K,En) is isotropic for 〈−,−〉;

2. if E has good reduction, 〈−,−〉 induces a non-degenerate pairing of abelian groups

[−,−] : E(K)/nE(K)×H1(K,E)n → Z/nZ.

Proof. (1) From the commutative diagram

0 E(Kun)n E(Kun) E(Kun) 0

0 E(Ks)n E(Ks) E(Ks) 0

n

n

we pass to cohomology and extract Kummer sequences

0
E(K)

nE(K)
H1(Kun/K,En) H1(Kun/K,E)n 0

0
E(K)

nE(K)
H1(K,En) H1(K,E)n 0

Commutativity of the left square implies the existence of a commutative diagram

E(K)/nE(K)× E(K)/nE(K)

H1(Kun/K,En)×H1(Kun/K,En) H2(Kun/K, µn)

H1(K,En)×H1(K,En) H2(K,µn)

Inf × Inf Inf
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where the horizontal maps are given by the pairing 〈−,−〉. However

H2(Kun/K, µn) = 0,

so the restriction of 〈−,−〉 to E(K)/nE(K) factors through the trivial group.
(2) It is enough to check that E(K)/nE(K) is maximal isotropic.
Since E has good reduction at v, H1(Kun/K,E) = 0 hence E(K)/nE(K) is isomorphic

to H1(Kun/K,En). We conclude by the following more general theorem, applied to M =
En(Kun).

Theorem 1.5.3. Let I = Gal(Ks/Kun), Md = Hom(M,O×Kun).
If M is a finitely generated G-module with char(k) - |Tors(M)| such that M I = M , then

H1(G/I,M) and H1(G/I,Md) are the exact annihilators of each other in the pairing

H1(G,M)×H1(G,MD)→ Q/Z.

Proof. Since Ext1
I(Z,Ks×) = H1(I,Ks×) = 0 by local class field theory, the spectral sequence

1.1.6

ExtrG/I(M,ExtsI(Z,Ks×)) =⇒ Extr+sG (M,Ks×)

gives an isomorphism Ext1
G/I(M,Kun×) ∼= Ext1

G(M,Ks×). The split sequence

0→ O×Kun → Kun× → Z→ 0

shows, after applying Ext1
G/I(M,−),

Ext1
G/I(M,O×Kun) = ker

(
Ext1

G(M,Ks×)→ Ext1
G/I(M,Z)

)
.

The following diagram commutes

Ext1
G(M,Ks×) H1(G,M)∗

Ext1
G/I(M,Z) H1(G/I,M)∗

∼

Inf∗

∼

showing that also

Ext1
G/I(M,O×Kun) = ker

(
Ext1

G(M,Ks×)→ Ext1
G/I(M,Z)

)
.

Since Ext1
G(M,Ks×) ∼= H1(G,MD) and Ext1

G/I(M,O×Kun) ∼= H1(G/I,Md) by Corol-
lary 1.1.8, we can write

H1(G/I,Md) = ker
(
H1(G,MD)→ H1(G/I,M)∗

)
.
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1.5.2 Global duality
Let K be a number field. For every prime v of K, Kv is a local field and there are pairings

〈−,−〉v : H1(Kv, En)×H1(Kv, En)→ Z/nZ
[−,−]v : E(Kv)/nE(Kv)×H1(Kv, E)n → Z/nZ

as in the previous paragraph.
Let Π1(K,En) denote the restricted direct product of the groups H1(Kv, En) with respect

to their subgroups E(Kv)/nE(Kv). The sum of all local pairings yields a global pairing

〈−,−〉 : Π1(K,En)×Π1(K,En)→ Z/nZ

(a, b) 7→
∑
v

〈av, bv〉v

This is a good definition because 〈av, bv〉v can be non-zero only for the finitely many v such
that one of av, bv is not in E(Kv)/nE(Kv).

Proposition 1.5.4. The image ofH1(K,En) in Π1(K,En) is isotropic with respect to 〈−,−〉.

Proof. Let a, b ∈ H1(K,En);

〈a, b〉 =
∑
v

〈av, bv〉v =
∑
v

invv(w(av ∪ bv))

and (w(av ∪ bv))v = (w(a ∪ b)v)v ∈ Br(K). Then, by global class field theory, the sum of its
invariants is 0; in other words, there is an exact sequence

0→ Br(K)→
⊕
v

Br(Kv)
∑
◦ inv−−−−−→ Q/Z→ 0

(see [Tat67, VII.10, Theorem B]).

1.6 The Tate-Shafarevich and Selmer groups
Let now K be a number field, E/K an elliptic curve.

The Selmer and Tate-Shafarevich groups arise when trying to compute generators for the
weak Mordell-Weil groups E(K)/nE(K) or the rank of E, i.e. the rank of the free part of
E(K). We introduce them directly using Galois cohomology, rather than by homogeneous
spaces. Given the diagram with exact rows

0
E(K)

nE(K)
H1(K,En) H1(K,E)n 0

0
∏
v

E(Kv)

nE(Kv)

∏
v

H1(Kv, En)
∏
v

H1(Kv, E)n 0

κ

the ultimate goal is the image of the Kummer map κ, or equivalently the kernel of the top-row
surjection. This is locally easy, suggesting the definition of the following objects:
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Definition 1.6.1.

The n-Selmer group is defined as

Sn(K,E) = ker

(
H1(K,En)→

∏
v

H1(Kv, E)

)

= ker

(
H1(K,En)→

∏
v

H1(Kv, En)

imκv

)

The Tate-Shafarevich group is defined as

X(K,E) = ker

(
H1(K,E)→

∏
v

H1(Kv, E)

)

Remark 1.6.2. If a ∈ H1(K,A), its image in H1(Kv, A) is zero for almost all primes v.
Therefore, we can substitute the direct product with a direct sum in the above definition.

By the above diagram, we immediately get a relation between these two groups by the
short exact sequence

0→ E(K)/nE(K)→ Sn(K,E)→X(K,E)n → 0.

Moreover, Selmer groups are proven to be finite and, in theory, computable. Hence, the order
|Sn(K,E)| = |E(K)/nE(K)||X(K,E)n| can be used to bound the rank of E, and the Tate-
Shafarevich group measures the difference between the bound and the actual rank. When we
are able to compute X(K,E)n, then generators for E(K)/mE(K) can be found, hence for
E(K).

In the interpretation via homogeneous spaces, elements of Sn(K,E) can be seen as (classes
of) homogeneous spaces which locally have rational points at every v; in particular, those
which fail to have a global rational point in K correspond to the non-trivial elements of
X(K,E)n. This occurence is a failure of the so-called Hasse principle.

A useful tool in studying these groups is the following

Proposition 1.6.3 (The Cassels-Tate pairing). There exists a canonical alternating pairing

〈−,−〉CT : X(K,E)×X(K,E)→ Q/Z

whose left and right kernel is the divisible subgroup of X(K,E).

This was defined by Cassels in [Cas62] using homogeneous spaces and generalized to
abelian varieties by Tate in [Tat62]. We will now describe a cohomological construction
of the induced pairing on the torsion

〈−,−〉CT : X(K,E)n ×X(K,E)n → Q/Z;

note that this also lifts to a pairing on the Selmer groups

〈−,−〉CT : Sn(K,E)× Sn(K,E)→ Q/Z.
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Let a, a′ ∈X(K,E)n; we can lift them to b, b′ ∈ H1(K,En). By definition of X(K,E),
av = 0 in H1(Kv, E) for every v; hence, looking at

E(Kv) H1(Kv, En) H1(Kv, E)

E(Kv) H1(Kv, En2)

we can lift bv to bv,1 ∈ H1(Kv, En2).
Suppose that a is divisible by n in H1(K,E), write a = na1; lift a1 to b1 ∈ H1(Kv, En2).

Then bv,1 − b1,v maps to zero in H1(Kv, En), so it is the image in H1(Kv, En2) of some
cv ∈ H1(Kv, Am). Set

〈a, a′〉 =
∑
v

invv(cv ∪ b′v) ∈ Q/Z

where the cup product is induced by the Weil pairing.
In general, let β be a cocycle representing b and lift it to a cochain β1 ∈ C1(K,En). Choose

βv,1 ∈ Z1(Kv, En2) representing bv,1 and β′ ∈ Z1(Kv, En) representing b′. The coboundary
dβ1 takes values in En and dβ1 ∪ β′ represents an element in H3(K,Gm). This group is zero
by, hence dβ1 ∪ β′ = dε for some ε ∈ C2(K,Gm). We define

〈a, a′〉 =
∑
v

invv ((βv,1 − β1,v) ∪ β′v − εv) ∈ Q/Z.

It can then be checked that this construction does not depend on the choices made.

Remark 1.6.4. We may also define a general Selmer group

S(K,E) := ker

(
H1(K,Tors(E))→

⊕
v

H1(Kv,Tors(E))

imκv

)

where κv : E(Kv)⊗Z (Q/Z)→ H1(Kv,Tors(E)), and we denote its p-primary component by

Sp∞(K,E) := ker

(
H1(K,Ep∞)→

⊕
v

H1(Kv, Ep∞)

imκv

)

where κv : E(Kv) ⊗Z (Qp/Zp) → H1(Kv, Ep∞) and the subscript p∞ denotes the p-primary
part.

1.7 Global duality
Let K be a global field, G = Gal(Ks/K). Denote:

S a non-empty set of primes containing the archimedean primes

KS the maximal subfield of Ks unramified outside S

GS = Gal(KS/K)

OK,S =
⋂
v/∈S Ov = {a ∈ K | ordv(a) > 0 for all v /∈ S}
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Gv = Gal(Ks
v/Kv), which is isomorphic to {σ ∈ G | σw = w}, the decomposition group

of w after choosing some w | v

P the set of rational primes ` ∈ Z such that `∞ divides [KS : K] := |GS |

We also let F/K be a finite extension contained in KS , and let SF be the set of primes of F
lying over primes in S; denote:

JF =
∏′

F×w the idéle group of F (
∏′ will denote restricted product with respect to the

specified subgroups)

CF = JF /F
× the idéle class group of F

JF,S = {(aw) ∈ JF | aw = 1 for w /∈ S} ∼=
∏′
w∈S F

×
w

OF,S =
⋂
w/∈SF Ow the ring of SF -integers

CF,S = JF,S/O×F,S the group of SF -idéle classes

UF,S = {(aw)w ∈ JF | aw ∈ Ô×w if w /∈ S, aw = 1 if w ∈ S} ∼=
∏
w/∈S Ô×w

Taking limits over all finite extensions F/K contained in KS , define

ES = lim−→O
×
F,S JS = lim−→ JF,S CS = lim−→CF,S

OS = lim−→OF,S US = lim−→UF,S

Let M be a finitely generated GS-module. For v non-archimedean, write k(v) for the
residue field, gv = Gal(k(v)s/k(v)) ∼= Gv/Iv; the embedding Ks ↪→ Ks

v determines maps
Gv → G� GS , which induce localization maps

Hr(GS ,M)→ Hr(Gv,M).

We write

Hr(Kv,M) = Hr(Gv,M) if v is non-archimedean,

Hr(Kv,M) = Ĥr(Gv,M) if v is archimedean.

Consider the map
Hr(GS ,M)→

∏
v∈S

Hr(Kv,M)

We may restrict its codomain as follows. Every γ ∈ Hr(GS ,M) comes from some γ′ ∈
Hr(Gal(L/K),M) for some KS/L/K; almost all v are unramified in L, and for these the
image of γ in Hr(Kv,M) lies in

Hr
un(Kv,M) := im (Hr(gv,M)→ Hr(Gv,M))

= ker (Hr(Gv,M)→ Hr(Iv,M)) .

Therefore, if we define Πr
S(K,M) as the restricted product

∏′
v∈S H

r(Kv,M) relative to
Hr

un(Kv,M), we have maps

βr : Hr(GS ,M)→ Πr
S(K,M)
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whose kernels we denote by
Xr

S(K,M) = kerβr.

By our previous duality results, Hr(−,M) ∼= H2−r(−,MD)∗, so the dual maps γr to
β2−r(K,MD) can be written as

γr : Πr
S(K,MD)→ H2−r(GS ,M)∗

We can now state the main theorem of this section.

Theorem 1.7.1 (Poitou-Tate duality). Let M be a finite GS-module such that |M | ∈ O×K,S .
Then:

1. there is a canonical non-degenerate pairing

X1
S(K,M)×X2

S(K,MD)→ Q/Z

2. β0 is injective, γ2 is surjective and imβr = ker γr for r = 0, 1, 2

3. for r > 3, βr is a bijection Hr(GS ,M)→
∏
v realH

r(Kv,M).

These statements can be represented by an exact sequence

0 H0(GS ,M) Π0
S(K,M) H2(GS ,M

D)∗

H1(GS ,M) Π1
S(K,M) H1(GS ,M

D)∗

H2(GS ,M) Π2
S(K,M) H0(GS ,M

D)∗ 0

β0 γ0

β1 γ1

β2 γ2

The proof consists in identifying the above sequence with the ExtGS (MD,−)-sequence coming
from 0→ ES → JS → CS → 0, up to a few adjustments.

Denote by Md the following object:

Hom(M,ES) when viewing M as a GS-module,

Hom(M, Ôun×
v ) when viewing M as a gv-module for v /∈ S,

Hom(M,Ks×
v ) when viewing M as a Gv-module for v ∈ S.

Lemma 1.7.2. In the hypothesis of the theorem, ExtrGS (M,ES) = Hr(GS ,M
d) for all r.

Proof. By Corollary 1.1.8 we have ExtrGS (M,ES) = Hr(GS ,Hom(M,ES)) since ES is divisi-
ble by all integers which are units in OK,S , hence by all primes which are orders of elements
of M , as its order is a unit in OK,S .

Lemma 1.7.3. For r > 1, ExtrGS (M,JS) = Πr
S(K,Md). For r = 0, it is Π0

S(K,Md) if K is
a function field and

∏
v∈S H

0(Gv,M
d) if K is a number field.

Proof. Choose a finite subset T ⊂ S still containing all the archimedean primes and the
primes at which M ramifies, and such that |M | is a unit in OK,T . Define

JF,S,T :=
∏
w∈T

F×w ×
∏

w∈S\T

Ô×w .
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Then JS = lim−→ JF,S,T (limit over T and F ⊂ KT ), hence

ExtrGS (M,JS) = lim−→
F,T

ExtrGal(F/K)(M,JF,S,T ).

Since the Ext functor commutes with products in the second entry, the terms inside the limit
can be written as

ExtrGal(F/K)(M,JF,S,T ) =

(∏
v∈T

ExtrGal(Fw/Kv)(M,F×w )

)
× ∏

v∈S\T

ExtrGal(Fw/Kv)(M, Ô×Fw)


We can now write the factors in the second line as

ExtrGal(Fw/Kv)(M, Ô×Fw) = Extrgv (M, Ôun×
v ) = Hr(gv,M

d).

The first equality follows by the usual spectral sequence 1.1.8 using the fact that Ôun×
v has

trivial cohomology [Ser67, Proposition 1]. The second is by 1.1.8 as in the previous lemma
(Ôun×

v is divisible by all integers dividing |M |). Hence

ExtrGS (M,JS) = lim−→
F,T

∏
v∈T

ExtrGal(Fw/Kv)(M,F×w )×
∏

v∈S\T

Hr(gv,M
D)


By 1.1.8, when r = 0, 1, the (finitely many) factors for v ∈ T can be written as

ExtrGal(Fw/Kv)(M,F×w ) = ExtrGv (M,K×v ) = Hr(Gv,M
d);

when r > 2, Extrgv (M, Ôun×
v ) = 0 because by cohomological triviality of Ôun× one can find

an injective resolution by gv-modules 0→ Ôun× → I0 → I1 → 0 [Ser80]. We conclude

ExtrGS (M,JS) =


∏
v∈S H

0(Gv,M
d) r = 0

Π1
S(K,M) r = 1⊕
v∈S lim−→F

ExtrGal(Fw/Kv)(M,F×w ) r > 2

We know that S contains all primes lying over ` if ` divides |M |, therefore

lim−→
F

H2(Gal(Ks
v/Fw),Ks×

v )(`) = 0,

hence the spectral sequence 1.1.8

ExtrGal(Fw/Kv)(M,Hs(Gal(Ks
v/Fw))) =⇒ ExtrGv (M,Ks×

v )

shows that

lim−→
F

ExtrGal(Fw/Kv)(M,F×w ) = ExtrGv (M,Ks×
v ) =

= Hr(Gv,M
d) =: Hr(Kv,M

d)

which concludes the proof.

The last essential step in the identification of the Poitou-Tate sequence with the Ext
sequence in our claim is the isomorphism ExtrGS (M,CS)(`) ∼= H2−r(GS ,M)∗(`). To prove it,
we need the following notions.
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1.7.1 P -class formations
Let P be a set of rational prime numbers.

Definition 1.7.4. If G is a profinite group and C is a G-module, a P -class formation (G,C)
is defined as a class formation, except that instead of requiring the maps invU to be isomor-
phisms, we require that they are injections inducing isomorphisms:

• invU/V H
2(U/V,CV )

∼−→ [U : V ]−1Z/Z for all V P U,

• H2(U,C)(`)
∼−→ (Q/Z)(`) for all ` ∈ P .

Let P be the set of prime numbers ` such that `∞ divides the degree of KS over K, defined
as the profinite order |Gal(KS/K)|. When P contains all primes, a P -class formation is just a
class formation. We can immediately generalize duality for class formations (Theorem 1.2.5)
to:

Theorem 1.7.5 (Duality for P -class formations).

• αr(G,M)(`) : ExtrG(M,C)(`) −→ H2−r(G,M)∗(`) (r > 2) is bijective for all finitely
generated M ,

• α1(G,M)(`) is bijective for all torsion-free M ;
it is bijective for all finitely generatedM if α1(U,Z/`mZ) is bijective for all open U 6 G
and all m,

• α0(G,M) is bijective for all finite `-primary M if α0(U,Z/`mZ) is bijective for all open
U 6 G and all m.

We claim that:

Proposition 1.7.6. (GS , CS) is a P -class formation.

Proof. In general, whenever (G,C) is a class formation and H P G is closed, then (G/H,CH)
is a P -class formation for P the set of primes ` such that `∞ divides [G : H].

Set C = lim−→F
CF indexed over the separable finite extensions of K and let G be the

absolute Galois group of K as before; then (G,C) is a class formation. Hence, (GS , C
HS ) is

a P -class formation. Now there is a canonical isomorphism Hr(GS , C
HS )→ Hr(GS , CS) for

all r > 1 and the same holds for any open subgroup of GS . Indeed, there is an exact sequence

0→ US → CHS → CS → 0

(when S is finite pass to direct limits over the isomorphisms CF,S
∼−→ CF /UF,S to obtain an

isomorphism CS
∼−→ CHSS /US ; for a general S one should show that the limit of the ideal

class groups lim−→ Id(OF,S) is zero, and this is done by global class field theory). Now we have
Hr(GS , US) = 0 for r > 1, because by definition

Hr(GS , US) = lim−→
F

Hr(Gal(F/K),
∏
w/∈SF

Ô×w ),

the terms inside the limit can be written as∏
v/∈SK

∏
w|v

Hr(Gal(Fw/Kv), Ô×w )
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and each of the single factors is zero because v is unramified in F and Ô×w is cohomologically
trivial, as before [Ser67, Proposition 1].

Now taking the long cohomology sequence from the above exact sequence allows to con-
clude.

Lemma 1.7.7. Let M be a finitely generated GS-module, ` ∈ P . Then there are isomor-
phisms

αr(GS ,M)(`) : ExtrGS (M,CS)(`)
∼−→ H2−r(GS ,M)∗(`)

for all r > 1.

Proof. Follows from Theorem 1.7.5 since (GS , CS) is a P -class formation. Just note that, for
all ` ∈ P and m, α1(GS ,Z/`mZ) is bijective.

1.7.2 End of the proof
By lemmas 1.7.2, 1.7.3 and 1.7.7, the sequence

→ ExtrGS (MD, ES)→ ExtrGS (MD, JS)→ ExtrGS (MD, CS)→

can be rewritten as

0 → H0(GS ,M) →
∏
v∈S H

0(Kv,M) → HomGS (MD, CS) →
→ H1(GS ,M) → Π1

S(K,M) → H1(GS ,M
D)∗ →

→ H2(GS ,M) → Π2
S(K,M) → H0(GS ,M

D)∗ →
→ H3(GS ,M) →

⊕
v realH

3(Gv,M) → 0 →
→ Hr(GS ,M)

∼−→
⊕

v realH
r(Gv,M) → 0

(r > 4). This is almost the Poitou-Tate sequence, except that we must change the first three
terms to

0 H0(GS ,M) Π0
S(K,M) H2(GS ,M

D)∗
β0 γ0

and check surjectivity of Π2
S(K,MD)→ H0(GS ,M)∗. Surjectivity holds because this map is

dual to H0(GS ,M)→ Π0
S(K,M), which is injective. So, now we have a sequence

0 → H0(GS ,M) →
∏
v∈S H

0(Kv,M) → HomGS (MD, CS) →
→ H1(GS ,M) → Π1

S(K,M) → H1(GS ,M
D)∗ →

→ H2(GS ,M) → Π2
S(K,M) → H0(GS ,M

D)∗ → 0

and it is enough to substitute the first half (up to Π1
S(K,M)) with the dual of the second

half, which is exactly the beginning of the Poitou-Tate sequence, concluding the proof.



Chapter 2

Kolyvagin systems

The main results of this chapter are the following: for Selmer groups Spk(K,E) (resp.
Sp∞(K,E)), Theorem 2.3.8 (resp. Theorem 2.3.13) using Stark systems; Theorem 2.4.13
(resp. Theorem 2.4.17) using Kolyvagin systems.

2.1 Preliminaries

2.1.1 Ray class fields
Given a number field K, we construct extensions which generalize the cyclotomic extensions
of Q. Recall the idele class group CK = JK/K

×, where JK is the idele group.

Definition 2.1.1. For an ideal m =
∏

p p
np , the ray class group mod m is

JK/J
m
KK

× (∼= CK/C
m
K)

where, setting np = 0 for p | ∞, we defined Jm
K =

∏
p U

(np)
p (Cm

K = Jm
KK

×/K×),

U
(0)
p = Up, U

(np)
p =


1 + pnp p -∞
R×+ ⊂ K×p p real
C× = K×p p complex

if np > 0.

Proposition 2.1.2. The closed subgroups of finite index of CK are exactly the subgroups
that contain some Cm

K .

From global class field theory we have

Theorem 2.1.3 (Existence theorem). The map L 7→ NL/KCL is a 1-1 correspondence be-
tween the finite abelian extensions of K and the closed subgroups of finite index of CK . The
field corresponding to such a subgroup N is called the class field of N .

Proof. By studying the global reciprocity map CK/NL/KCL
∼−→ Gal(L/K)ab.

Hence, combining this with the proposition we can immediately make the following

Definition 2.1.4. For an ideal m, the extension Km/K corresponding to the subgroup Cm
K

is called the ray class field mod m.

33
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This extension is such that Gal(Km/K) ∼= CK/C
m
K and every finite abelian extension

L/K is contained in some Km. We see now why these extensions Km generalize cyclotomic
extensions: the Kronecker-Weber theorem states that every finite abelian extension of Q is
contained in some cyclotomic field; moreover, one also has

Proposition 2.1.5. If K = Q and m = (m), then CQ/C
m
Q
∼= (Z/mZ)× (∼= Gal(Q(µm)/Q)).

2.1.2 Exterior algebras
We quote a technical result which will be used later. Assume R is a local principal ideal ring
(in our examples we will be working with R = Z/pkZ or Zp).

Proposition 2.1.6. Suppose 0 → N → M
ψ−→ C is an exact sequence of finitely generated

R-modules with C free of rank 1. Then, if r > 1, there is a unique map

ψ̂ :
∧r

M → C ⊗
∧r−1

N

such that

1. the composition ∧r
M

ψ̂−→ C ⊗
∧r−1

N → C ⊗
∧r−1

M

is given by

m1 ∧ · · · ∧mr 7→
r∑
i=1

(−1)i+1ψ(mi)⊗ (m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr)

2. the image of ψ̂ is the image of

imψ ⊗
∧r−1

N → C ⊗
∧r−1

N.

Proof. [MR16, Proposition A.1].

2.2 Generalities
Throughout this chapter, we will use the following notation:

p ∈ Z is a rational prime.

R will be usually Z/pkZ; when otherwise stated, R = Zp. We always denote the maximal
ideal ofR bym, i.e. Z/pZ or pZp respectively. (The results, however, hold more generally
for R principal artinian local ring or discrete valuation ring, respectively).

T is a free finitely generated R-module with a continuous GK-action, where K will be
a local or number field; we are mainly thinking of T = Epk , the torsion group of an
elliptic curve E in the case of finite R, or T = Tp(E), the Tate module, in the case of
R = Zp.

TD = Hom(T, µp∞) as an R[[GK ]]-module.

len denotes the length of a module.
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2.2.1 Local conditions
In addition to the previously fixed notation, K here is a local field; if non-archimedean, we
denote

O its ring of integers;

F its residue field;

I = Gal(K/Kun) its inertia group, hence GF = GK/I.

We also suppose that T is unramified, i.e. T I = T .

Definition 2.2.1. A local condition F on T over K is an R-submodule H1
F (K,T ) ⊂

H1(K,T ).
The following cases are important:

• if L/K is a Galois extension, the L-transverse local condition is

H1
L-tr(K,T ) = ker(H1(K,T )→ H1(L, T )) = H1(L/K, TGL)

(where the last equality follows from the inflation-restriction sequence). The following
are special cases of this:

• L = K gives the unrestricted or relaxed condition H1(K,T );

• L = K gives the strict condition 0;

• L = Kun, when K is non-archimedean and T is unramified, gives the finite (or unram-
ified) condition

H1
f (K,T ) = ker(H1(K,T )→ H1(Kun, T )) = H1(Kun/K, T );

• if L/K is a totally tamely ramified cyclic extension such that [L : K]T = 0, we write
H1

tr(K,T ) for H1
L-tr(K,T ).

Lemma 2.2.2.

1. There is a canonical functorial isomorphism H1
f (K,T ) ∼= T/(Fr− 1)T .

2. There are canonical functorial isomorphisms

H1
tr(K,T ) ∼= Hom(I, TFr=1) H1

tr(K,T )⊗Gal(L/K) ∼= TFr=1

3. The composition H1
tr(K,T ) ↪→ H1(K,T ) � H1(K,T )/H1

f (K,T ) is an isomorphism,
hence there is a canonical splitting

H1(K,T ) = H1
f (K,T )⊕H1

tr(K,T ).

Proof. (1) Evaluating cocycles at the Frobenius gives a well-defined injection

H1(Kun/K, T )→ T/(Fr− 1)T, c 7→ c(Fr)

which can be shown to be surjective [Ser80, XIII.1].
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(2) We have an exact sequence

0→ H1(Kun/K, T I)→ H1(K,T )→ H1(I, T )Gk → H2(Kun/K, T I)

and the last term is 0, so there is an isomorphismH1
f (K,T ) ∼= Hom(I, T )Fr=1. From |F×|T = 0

and I/|F×|I ∼= F×, we get

Hom(I, T )Fr=1 = Hom(I/|F×|I, T )Fr=1 = Hom(F×, T )Fr=1 = Hom(F×, TFr=1)

and we conclude.
(3) Since L/K is totally ramified and T is unramified, we have

TGL = TGK = TGk = TFr=1

and therefore there is a commutative diagram

H1
tr(K,T ) H1(K,T ) H1

f (K,T )

Hom(I, TFr=1)

H1(L/K, TGL) Hom(Gal(L/K), TFr=1) Hom(I/|F×|I, TFr=1)

∼

∼

∼ ∼

∼

By the hypothesis T I = T , GF acts on T , so the Frobenius action induces an endomorphism

FrT : T → T, t 7→ Fr · t.

Suppose det(1− FrT ) = 0, and define

P (x) := det(1− FrT ◦ x) ∈ R[x]

where FrT ◦ x : t 7→ Fr · xt when x ∈ R. Since P (1) = 0, we can factor P (x) = (x − 1)Q(x)
in R[x]; moreover, by the Cayley-Hamilton theorem, P (Fr−1

T ) is the zero endomorphism of T ,
that is,

P (Fr−1)T = (Fr−1 − 1)Q(Fr−1)T = 0.

Therefore Q(Fr−1)T ⊂ TFr=1, and the following definition makes sense:

Definition 2.2.3. When det(1− FrT ) = 0 we define the finite-singular comparison map ϕfs

as the composition

H1
f (K,T )

∼−→ T/(Fr− 1)T
Q(Fr−1)−−−−−→ TFr=1 ∼−→ H1

tr(K,T )⊗Gal(L/K).

Lemma 2.2.4. If T/(Fr− 1)T is a free R-module of rank 1, then det(1−FrT ) = 0 and ϕfs is
an isomorphism. In particular, H1

f (K,T ) and H1
tr(K,T ) are both free R-modules of rank 1.

Recalling the local pairing

〈−,−〉 : H1(K,T )×H1(K,TD)→ H2(K,µp∞) ∼= Qp/Zp,
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a local condition F on T induces a local condition FD on TD by taking

H1
FD (K,TD) := H1

F (K,T )⊥

:= {a ∈ H1(K,TD) | 〈a, b〉 = 0 ∀b ∈ H1
F (K,T )}

the orthogonal complement. This operation behaves well since the pairing is perfect (hence
non-degenerate), e.g. H1

F (K,T )⊥⊥ = H1
F (K,T ). So, the dual structure FD also gives a

structure on T by taking H1
FD (K,T ) = H1

F (K,TD)⊥, which in this case denotes the left
orthogonal. Note that fD = f and trD = tr as structures on T : this follows from the next
proposition.

Proposition 2.2.5.

1. H1
f (K,T )⊥ = H1

f (K,TD)

2. H1
tr(K,T )⊥ = H1

tr(K,T
D)

Proof. (1) see Theorem 1.5.3.
(2) It suffices to show that 〈α, α′〉 = 0 for every α ∈ H1

tr(K,T ) and α′ ∈ H1
tr(K,T

D); then
maximality will follow from (1) using the decompositions

H1(K,T ) = H1
f (K,T )⊕H1

tr(K,T )

of Lemma 2.2.2 for T and TD.
Suppose first pk | |F×|, R = Zp, T = Z/pkZ with trivial GK-action. Then µpk ⊂ K× and

H1
tr(K,T ) = Hom(Gal(L/K),Z/pkZ) ∼= Hom(K×/NL/KL

×,Z/pkZ)

H1
tr(K,T

D) = Hom(Gal(L/K), µpk) ∼= ker
(
K×/(K×)p

k

→ L×/(L×)p
k
)
,

recalling results from class field theory and Kummer theory, and the pairing can be identified
with the natural pairing

Hom(K×,Z/pkZ)×K× → Z/pkZ.

Let α be a representative of some element in H1
tr(K,T

D) according to the above identification,
so α = βp

k

with β ∈ L×. Then we can compute

NL/Kβ = α|F
×|/pk .

K×/NL/KL
× is cyclic of order |F×| and α is divisible by pk, so it is sent to zero by every

element of Hom(K×/NL/KL
×,Z/pkZ). This proves the special case.

In the general case, since T is unramified and L/K is totally ramified we have

TGK = TGK/IK = TGk = TGl = TGL/IL = TGL

and analogously for TD. Therefore

H1
tr(K,T ) = H1(L/K, TGL) = H1(L/K, TGK ) = H1

tr(K,T
GK )

and analogously for TD. Writing now TGK ∼=
⊕

n Z/pknZ, the thesis follows from previous
case.
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2.2.2 Selmer structures
Here K is a number field with algebraic closure K ⊂ C; for a prime q of K, Kq is a fixed
algebraic closure containing K, i.e. we fix an extension of q to K. Moreover:

Dq := Gal(Kq/Kq) ⊂ GK is a fixed decomposition group;

Iq ⊂ Dq is the inertia group;

Frq ∈ Dq/Iq is the Frobenius element;

K(q) is maximal p-power extension of the ray class field of K modulo q and K(q)q is
its completion at the fixed prime above q.

If q is principal, thenK(q)q is cyclic and totally tamely ramified. In this case, if T is unramified
at q and [K(q)q : Kq]T = 0, then we define as before the transverse submodule

H1
tr(Kq, T ) = ker

(
H1(Kq, T )→ H1(K(q)q, T )

)
.

Definition 2.2.6. A Selmer structure F on T is the following data:

• Σ(F), a finite set of places of K including all infinite places, all primes above p and all
primes where T is ramified;

• for every q ∈ Σ(F), a local condition H1
F (Kq, T ) ⊂ H1(Kq, T ).

Definition 2.2.7. If F is a Selmer structure, we define the Selmer module H1
F (K,T ) as the

kernel of the sum of restriction maps:

H1
F (K,T ) := ker

H1(KΣ(F)/K, T )→
⊕

q∈Σ(F)

H1(Kq, T )

H1
F (Kq, T )

 ⊂ H1(K,T )

where KΣ(F) denotes the maximal extension of K unramified outside Σ(F). That is, the
Selmer module consists of the classes which are unramified outside Σ(F) and satisfy the local
condition given by F for every q ∈ Σ(F).

Using the local Tate pairings 〈−,−〉q, a Selmer structure F on T induces a dual structure
FD by taking dual local conditions

H1
FD (Kq, T

D) := H1
F (Kq, T )⊥

as in the previous section.
These constructions generalize the Selmer groups we have seen in Section 1.6. Let E/K

be an elliptic curve, R = Z/pkZ, T = Epk and F given as follows:

• Σ(F) := {v : E has bad reduction at v} ∪ {v : v | p} ∪ {v : v | ∞}

• H1
F (Kv, T ) := im

(
κv : E(Kv)/p

kE(Kv) ↪→ H1(Kv, Epk)
)
.

Then H1
F (K,T ) is the usual Selmer group from Definition 1.6.1. As we already know, the

Weil pairing identifies EDpk = Epk , and we can also show FD = F .
As another example, let R = Zp, T = Tp(E) := lim←−k Epk the p-adic Tate module, F

defined analogously. In this case TD = Etp∞ = Ep∞ and H1
F (K,TD) = Sp∞(K,E) is the

Selmer group defined in Remark 1.6.4.
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Definition 2.2.8. F is called cartesian (on the category of quotients of T ) if the local
condition is cartesian for every q ∈ Σ(F), i.e. for any injection α : T/IT ↪→ T/JT between
quotients of T , H1

F (Kq, T/IT ) is the inverse image of H1
F (Kq, T/JT ) under the map induced

by α on cohomology.
Equivalently, for all q ∈ Σ(F), there is a cartesian square

H1(Kq, T/IT )

H1
F (Kq, T/IT ) H1(Kq, T/JT )

H1
F (Kq, T/JT )

α

α

Definition 2.2.9. By Selmer data we mean a triple (T,F ,P) where T is as before and
unramified outside finitely many primes, F is a Selmer structure on T and P is a set of
primes of K disjoint from Σ(F).

Definition 2.2.10. If q - p∞ is principal, let Iq be the maximal power of m which contains
[K(q)q : Kq]R and such that

T

(Frq − 1)T + IqT

is free of rank 1 over R/Iq, if one such power exists; if it does not exist or if q is not principal,
set Iq = R.

Let us make a remark on the above definition; in case Iq = 0, it follows that T/(Frq− 1)T
is a free R-module of rank 1, which is the assumption required to apply Lemma 2.2.4 and
conclude that H1

f (Kq, T ) and H1
tr(Kq, T ) are also free R-modules of rank 1. Therefore, when

working over R = Z/pkZ we will usually make the assumption Iq = 0 for all q ∈ P (by
restricting to Pk := {q ∈ P | Iq ⊂ mk}).

Set moreover

N := N (P) := {squarefree products of primes in P} ∪ {1} where 1 denotes the ideal
(1) = O;

In :=
∑

q|n Iq for 1 6= n ∈ N , I1 := 0.

If F is a Selmer structure and a, b and n are pairwise coprime ideals of K with n ∈ N
and InT = 0, we define a new Selmer structure Fb

a (n) by:

• Σ(Fb
a (n)) := Σ(F) ∪ {q : q | abn},

• H1
Fb

a (n)(Kq, T ) :=


H1
F (Kq, T ) q ∈ Σ(F)

0 q | a
H1(Kq, T ) q | b
H1

tr(Kq, T ) q | n.

If any of a, b or n are equal to 1, we omit them from the notation.
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We have Fb
a (n)D = (FD)ab(n), since

H1
Fb

a (n)D (Kq, T ) = H1
Fb

a (n)(Kq, T
D)⊥

=


H1
F (Kq, T

D)⊥ = H1
FD (Kq, T ) q ∈ Σ(F)

0⊥ = H1(Kq, T ) q | a
H1(Kq, T

D)⊥ = 0 q | b
H1

tr(Kq, T
D)⊥ = H1

trD (Kq, T ) = H1
tr(Kq, T ) q | n

= H1
(FD)ab(n)(Kq, T ).

where in the last line we used properties of the transverse conditions under dualization (Propo-
sition 2.2.5).

These structures satisfy the following diagram, where q is prime and nq ∈ N :

H1
Fq(n)(K,T )

H1
F(n)(K,T ) H1

F(nq)(K,T )

H1
Fq(n)(K,T )

a b

c d

and the same diagram for TD becomes

H1
Fq(n)D (K,TD)

H1
F(n)D (K,TD) H1

F(nq)D (K,TD)

H1
Fq(n)D (K,TD)

cD dD

aD bD

Lemma 2.2.11. Let R = Z/pkZ, q prime, nq ∈ N with Inq = 0 and let the letters on the
arrows above denote the lengths of the corresponding cokernels. Then the following equalities
hold:

1. 0 6 a, b, c, d, aD, bD, cD, dD 6 k

2. a+ c = b+ d, aD + cD = bD + dD

3. k = a+ aD = b+ bD = c+ cD = d+ dD

4. a > d, b > c, cD > bD, dD > aD.

Proof. (1) We have by definition

H1
F(n)(K,T ) = ker

(
H1
Fq(n)(K,T )→ H1

tr(Kq, T )
)

H1
Fq(n)(K,T ) = ker

(
H1
F(n)(K,T )→ H1

f (Kq, T )
)
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so we can write the cokernels in question as quotients modulo the kernels above; using the
canonical isomorphism they are submodules of free R-modules of rank 1 (by Lemma 2.2.4)
and (1) follows.

(2) is immediate from the diagrams.
(3) Consider the exact sequences

0 H1
G1(K,T ) H1

G2(K,T )
⊕
q

H1
G2(Kq, T )

H1
G1(Kq, T )

0 H1
GD2

(K,TD) H1
GD1

(K,TD)
⊕
q

H1
GD1

(Kq, T
D)

H1
GD2

(Kq, TD)

loc

locD

(2.1)

with G2 = Fq(n), G1 = F(n). By the Poitou-Tate sequence Theorem 1.7.1, im loc and
im(locD) are orthogonal complements with respect to the pairing

∑
q〈−,−〉q, and (3) follows.

(4) By definition H1
F(n)(K,T ) ∩ H1

F(nq)(K,T ) = H1
Fq(n)(K,T ), whence the first two in-

equalities of (4); for the other two, replace (T,F) with (TD,FD).

Lemma 2.2.12. With hypothesis as in the above lemma, denote T := T/mT ,

λ(n, T ) := lenH1
F(n)(K,T ) λ(n, TD) := lenH1

F(n)D (K,TD)

Then:

1. there are inequalities

|λ(nq, T )− λ(n, T )| 6 k |λ(nq, TD)− λ(n, TD)| 6 k

2. if the localization H1
F(n)(K,T )→ H1

f (Kq, T ) is surjective, then

H1
F(nq)D (K,TD) = H1

Fq(n)D (K,TD) ⊂ H1
F(n)D (K,TD)

3. the image of

mλ(n,TD)H1
F(n)(K,T )

locq−−→ H1
f (Kq, T )

ϕfs
q−−→ H1

tr(Kq, T )⊗Gq

is equal to the image of

mλ(n,TD)H1
F(nq)(K,T )

locq−−→ H1
tr(Kq, T )⊗Gq

4. If both localization maps

H1
F(n)(K,T )[m]→ H1

f (Kq, T ) H1
F(n)D (K,TD)[m]→ H1

f (Kq, T
D)

are non-zero, then

λ(nq, T ) = λ(n, T )− 1 λ(nq, T
D

) = λ(n, T
D

)− 1
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Proof. (1) follows from the diagrams studied in the above lemma.
(2) If the localization map is surjective, then c = k (because the image of the map, a free

rank-1 R-module, is isomorphic to the cokernel whose length is c) and so bD = 0 by (3) and
(4) above.

(3) Denote the images by Cn, Cnq respectively. It is enough to show they have the same
length. The previous diagrams show

lenCn = max{0, c− λ(n, TD)} lenCnq = max{0, d− λ(nq, TD)}

λ(n, TD)− λ(nq, TD) = dD − cD = c− d

and we conclude lenCn − lenCnq = 0.
(4) If the localization maps in the statement are non-zero, then the localization maps

H1
F(n)(K,T )→ H1

f (Kq, T ) H1
F(n)D (K,T

D
)→ H1

f (Kq, T
D

)

are surjective (see the next proposition). By (2) we have λ(nq, T
D

) = λ(n, T
D

) − 1 and
we conclude λ(nq, T ) = λ(n, T ) − 1 as required (since the differences λ(n, T ) − λ(n, TD) are
independent of n ∈ N : see (3) of the next proof).

Proposition 2.2.13. Let R = Z/pkZ. Let F be a cartesian Selmer structure on T and
suppose TGK = (TD)GK = 0. If n ∈ N satisfies In = 0, then:

1. the exact sequence 0→ T/miT → T → T/mk−iT → 0 induces an isomorphism

H1
F(n)(K,T/m

iT )
∼−→ H1

F(n)(K,T )[mi]

and an exact sequence

0→ H1
F(n)(K,T )[mi]→ H1

F(n)(K,T )→ H1
F(n)(K,T/m

k−iT )→ 0

2. the inclusion TD[mi] ↪→ TD induces an isomorphism

H1
F(n)D (K,TD[mi])

∼−→ H1
F(n)D (K,TD)[mi]

3. there is a unique r ∈ Z, independent of n, such that there are non-canonical isomor-
phisms

H1
F(n)(K,T ) ∼= H1

F(n)D (K,TD)⊕Rr if r > 0

H1
F(n)(K,T )⊕R−r ∼= H1

F(n)D (K,TD) if r 6 0

Proof. (1) Cohomology of the exact sequences

0 T/miT T T/mk−iT 0

0 T/mk−iT T

ιk−i

shows that ιk−i : H1(K,T/miT )
∼−→ H1(K,T )[mi] is an isomorphism, and one can easily see

that it induces a map ιk−i : H1
F (K,T/miT )

∼−→ H1
F (K,T )[mi]. To show that this map is an

isomorphism amounts to showing that ι−1
k−i(H

1
F (K,T )) satisfies the local conditions to lie in
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H1
F (K,T/miT ). For v ∈ Σ(F) this holds by the hypothesis of the structure being cartesian;

for v /∈ Σ(F), let us show ι−1
k−i(H

1
F (Kv, T )) ⊂ H1

F (Kv, T/m
iT ). Writing Iv for the inertia

group of Gv, we have a diagram

0 H1
f (Kv, T/m

iT ) H1(Kv, T/m
iT ) Hom(Iv, T/m

iT )

0 H1
f (Kv, T ) H1(Kv, T ) Hom(Iv, T )

ιk−i ιk−i ιk−i

with exact rows; the right vertical map is injective, so, if c ∈ H1(Kv, T/m
iT ) and ιk−i(c) is

unramified, then c is also unramified.
(2) Let β be the generator of mi; cohomology of the exact sequences

0 TD[mi] TD miTD 0

0 miTD TD TD/miTD 0

β

yields, writing G = Gal(KΣ(F)/K),

0 H1(G,TD[mi]) H1(G,TD) H1(G,miTD)

0 H1(G,miTD) H1(G,TD)

β

whence H1(KΣ(F)/K, T
D[mi])

∼−→ H1(KΣ(F)/K, T
D)[mi]. The Selmer structure FD on

TD[mi] is induced by the same Selmer structure on TD; consider then

0 H1
FD (K,TD[mi]) H1(KΣ(F)/K, T

D[mi])
⊕

v∈Σ(F)

H1(Kv, T
D[mi])

H1
FD (Kv, TD[mi])

0 H1
FD (K,TD)[mi] H1(KΣ(F)/K, T

D)[mi]
⊕

v∈Σ(F)

H1(Kv, T
D)

H1
FD (Kv, TD)

.

The rows are exact by definition, the middle vertical map is an isomorphism by the above,
the right vertical map is injective by definition of induced Selmer structure; therefore, the left
vertical map is an isomorphism as was to be shown.

(3) Since R is principal, we can write every finitely generated R-module B as a direct sum
B =

⊕
iR/m

ki , hence its isomorphism class is determined by the function i 7→ len(B[mi]).
We have to show that there is an integer t such that

len
(
H1
F(n)(K,T )[mi]

)
− len

(
H1
F(n)D (K,TD)[mi]

)
= ti.

Using points (1) and (2) we rewrite the left term as

len
(
H1
F(n)(K,T/m

iT )
)
− len

(
H1
F(n)D (K,TD[mi])

)
.

Let us first observe that this quantity does not depend on the choice of n satisfying In = 0,
so we may take n = 1, i.e. replace F(n) with F . Indeed, by Poitou-Tate duality one proves
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the following equality, holding for finite T [MR04, Proposition 2.3.5]:

lenH1
F (K,T )− lenH1

FD (K,TD) =

= lenH0(K,T )− lenH0(K,TD)−∑
v∈Σ(F)

(
lenH0(Kv, T )−H1

F (Kv, T )
)

;

then, if In = 0, we apply Lemma 2.2.4 to get lenH1
f (Kv, T ) = lenH1

tr(Kv, T ) for v | n,
so the left side of the equality is unchanged when we replace F by F(n), which was the
claim. Now, applying this equality to T/miT , we get a formula for the difference we want to
compute. At the right side of the equality, the first two terms will be zero (because SGK = 0
for every subquotient S of T ), and the non-zero terms will be linear in i: indeed, if we
denote by l(i) = len

(
H0(K,T/miT )

)
− len

(
H1
F (K,T/miT )

)
, using the cartesian condition

and propagation of F to quotients, cohomology induces an exact sequence

0→ H0(K,T/miT )→ H0(K,T/mi+jT )→ H0(K,T/mjT )→
→ H1

F (K,T/miT )→ H1
F (K,T/mi+jT )→ H1

F (K,T/mjT )

whence l(i+ j) = l(i) + l(j). This allows us to conclude.

Definition 2.2.14. For a Selmer structure (T,F) with R = Z/pkZ, the number r from the
above proposition is called the core rank of (T,F), denoted by χ(T ). If (T,F) is a Selmer
structure with R = Zp, we define χ(T ) := χ(T/mT ).

From now on, r := χ(T ). For n ∈ N , we denote:

λ(n) := lenH1
F(n)D (K,TD);

µ(n) := lenH1
(Fn)D (K,TD);

ν(n) the number of primes dividing n.

Corollary 2.2.15. Let R = Z/pkZ, r = χ(T ) > 0, n ∈ N , In = 0. There are non-canonical
isomorphisms

1. H1
F(n)(K,T ) ∼= H1

F(n)D (K,TD)⊕Rr;

2. H1
Fn(K,T ) ∼= H1

(Fn)D (K,TD)⊕Rr+ν(n);

3. mλ(n)
∧r

H1
F(n)(K,T ) ∼= mλ(n);

4. mµ(n)
∧r+ν(n)

H1
Fn(K,T ) ∼= mµ(n).

Proof. (1) is Proposition 2.2.13.3.
(2) Applying Proposition 2.2.13.3. to (T,Fn), we get

H1
Fn(K,T ) ∼= H1

(Fn)D (K,TD)⊕Rχ(T,Fn)

and we conclude by observing χ(T,Fn) = χ(T ) +ν(n), which is a consequence of Poitou-Tate
global duality (apply the sequences 2.1 above to Fn and F).

(3) follows directly from (1).
(4) follows directly from (2).
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2.3 Stark systems

The aim of this section is to describe the structure of the dual Selmer group H1
FD (K,TD) in

terms of so-called Stark systems.
Let R = Z/pkZ and let (T,F ,P) satisfy Iq = 0 for every q ∈ P.
Recalling definition 2.2.10 of Iq, the condition Iq = 0 ensures that T/(Frq − 1)T is a free

R-module of rank 1 and therefore, by Lemma 2.2.4, H1
f (Kq, T ) and H1

tr(Kq, T ) are also free
R-modules of rank 1.

Definition 2.3.1. For n ∈ N , define

Wn :=
⊕
q|n

Hom(H1
tr(Kq, T ), R),

Yn :=
∧r+ν(n)

H1
Fn(K,T )⊗

∧ν(n)
Wn.

By the above observation, Wn is free of rank ν(n).
Writing n = q1 · · · qν(n) and fixing generators hi of Hom(H1

tr(Kqi , T ), R), then
∧ν(n)

Wn is
a rank 1 free R-module generated by h1 ∧ · · · ∧ hν(n).

We will now construct maps making the Yn into an inverse system indexed over N .

Definition 2.3.2. We define maps loctr
q and locf

q by composing the localization map with
the two projections from H1(K,T ) = H1

f (K,T )⊕H1
tr(K,T ) (recall Lemma 2.2.2) and, in the

second case, also with ϕfs
q (from Definition 2.2.3), which is an isomorphism by Lemma 2.2.4:

H1
tr(Kq, T )

H1(K,T ) H1(Kq, T )

H1
f (Kq, T ) H1

tr(Kq, T )⊗Gal(K(q)q/Kq)

locq

loctrq

locfq

ϕfs
q

∼

We now construct maps that make the Yn into an inverse system. Let n = q1 · · · qt ∈ N
and n′ = q1 · · · qs | n; there is a map

Ψn,n′ : Yn → Yn′

given as follows. Let ni :=
∏
j6i qj , denote ψi := hi ◦ loctr

qi
and consider the exact sequence

0→ H1
Fni−1 (K,T )→ H1

Fni (K,T )
ψi−→ R; by Proposition 2.1.6, there are unique maps

ψ̂i :
∧i

H1
Fni (K,T )→ R⊗

∧i−1
H1
Fni−1 (K,T )

whose composition with R⊗
∧i

H1
Fni (K,T ) is given by

m1 ∧ · · · ∧mi 7→
i∑

j=1

(−1)j+1ψi(mj)⊗ (m1 ∧ · · · ∧mj−1 ∧mj+1 ∧ · · · ∧mi)
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and whose image is the image of

imψi ⊗
∧i−1

H1
Fni−1 (K,T )→ R⊗

∧i−1
H1
Fni−1 (K,T ).

We can compose these maps as

ψ̂s+1 ◦ · · · ◦ ψ̂t :
∧r+t

H1
Fn(K,T )→

∧r+s
H1
Fn′ (K,T ).

Taking the tensor product of the above with the isomorphism
∧ν(n)

Wn →
∧ν(n′)

Wn′ , (h1 ∧
· · ·∧ht) 7→ (h1∧ · · ·∧hs), finally gives a map Ψn,n′ which is independent of the choices made.
One can moreover check the following compatibility property: if n ∈ N and n′′ | n′ | n, then

Ψn′,n′′ ◦Ψn,n′ = Ψn,n′′ .

This property allows us to make the following definition:

Definition 2.3.3. Given Selmer data (T,F ,P), we define the R-module of Stark systems of
rank r as the inverse limit of the inverse system (Yn,Ψn,n′):

SSr(T ) = SSr(T,F ,P) := lim←−
n∈N

Yn.

We will denote a Stark system by ε = (εn)n∈N .

Lemma 2.3.4. Let Y ′n := mµ(n)Yn recalling µ(n) = lenH1
(Fn)D (K,TD). Then:

1. Y ′n is a cyclic R-module and len(Y ′n) = max{k − µ(n), 0};

2. there is n ∈ N such that H1
(Fn)D (K,TD) = 0;

3. if H1
(Fn)D (K,TD) = 0 then Yn is a free R-module of rank 1;

4. if H1
(Fn)D (K,TD) = 0 and n′ | n then Ψn,n′ = Y ′n.

Proof. (1) follows from Corollary 2.2.15.4.
(2) Use n :=

∏
i qi with qi ∈ N satisfying locqi(ci) 6= 0 for generators c1, . . . , ct of

H1
FD (K,TD)[m]; their existence is proven in [MR04, Proposition 3.6.1] using the Cebotarev

density theorem (see also the proof of Proposition 2.3.6 below).
(3) follows from Corollary 2.2.15.4.
(4) Ψn,n′(Yn) = m

lenH1

Fn′ (K,T )−k(r+ν(n′))
Yn′ and from Corollary 2.2.15.2 we conclude

lenH1
Fn′ (K,T )− k(r + ν(n′)) = lenH1

(FD)n′
(K,TD).

Theorem 2.3.5. SSr(T ) is a free R-module of rank 1. For every n ∈ N , the image of the
projection SSr(T )→ Yn is Y ′n.

Proof. By the lemma, point (2), we can choose d such that H1
(FD)d

(K,TD) = 0; so,
H1

(FD)n
(K,TD) = 0 for all d | n ∈ N , and we conclude by the lemma, point (4).

For ε ∈ SSr(T ), define the following objects:
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• ϕε(n) := max{j | εn ∈ mjYn} for n ∈ N ;

• the operator ∂ by(
f : N −→ N ∪ {∞}

)
7→

(
∂f : N −→ N ∪ {∞}

i 7→ min{f(n) | n ∈ N , ν(n) = i}

)

• ord(ε) := min{ν(n) | n ∈ N , εn 6= 0} = min{i | ∂ϕε(i) 6=∞};

• dε(i) := ∂ϕε(i)− ∂ϕε(i+ 1) for i > ord(ε).

As will be clear soon, dε(i) and ord(ε) are independent of the choice of non-zero ε ∈ SSr(T )
and are attached to information about the dual Selmer module H1

FD (K,TD).
Recall that we have defined

λ(n) := lenH1
F(n)D (K,TD) µ(n) := lenH1

(Fn)D (K,TD)

We can compute the functions ∂λ and ∂µ:

Proposition 2.3.6. Let R = Z/pkZ. Write H1
FD (K,TD) ∼=

⊕
i>1R/m

ei with e1 > e2 >
· · · > 0. Then

∂λ(t) = ∂µ(t) =
∑
i>t

ei for every t > 0.

Proof. Let n ∈ N , write ν(n) = t; consider the map

H1
FD (K,TD)→

⊕
q|n

H1
f (Kq, T

D)

induced by composition of projection and localization as usual. The right side is a free R-
module of rank t, so the image of this map is a quotient of H1

FD (K,TD) generated by at
most t elements. Therefore it has length at most

∑
i6t ei and the kernel has length at least∑

i>t ei. By definition the kernel is H1
(FD)n

(K,TD), which is contained in H1
F(n)D (K,TD), so

λ(n) > µ(n) >
∑
i>t

ei.

We prove by induction on t that, for any t > 0, we can choose some n satisfying ν(n) = t
and H1

F(n)D (K,TD) ∼=
⊕

i>tR/m
ei , in which case we have equalities in the above formula

and the lemma follows.
For t = 0 it suffices to take n = 1.
For t > 1, let n ∈ N satisfy ν(n) = t − 1 and H1

F(n)D (K,TD) ∼=
⊕

i>t−1R/m
ei . Since

χ(T ) > 0, then mk−1H1
F(n)(K,T ) 6= 0 by Corollary 2.2.15. Fix a non-zero element

c ∈ mk−1H1
F(n)(K,T ) ⊂ mk−1H1

F(n)(K,T )[m].

If et > 0, choose a non-zero element

c′ ∈ met−1H1
F(n)D (K,TD) ⊂ mk−1H1

F(n)D (K,TD)[m].

We may choose q ∈ P with locq(c) 6= 0 and, if et > 0, locq(c′) 6= 0 as well: this is done
by Cebotarev’s density theorem (if C is a conjugacy class in Gal(L/K), then the primes v
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whose Frobenius conjugacy class is C have density |C|/|G|) and is proven in [MR04, Propo-
sition 3.6.1]. Since H1

f (Kq, T ) is free of rank 1 and, by our choice of q, the localization
of mk−1H1

F(n)(K,T ) at q is non-zero, it follows that the localization map H1
F(n)(K,T ) →

H1
f (Kq, T ) is surjective. Similarly metH1

F(n)D (K,TD) = 0 and, if et > 0, then the localization
of met−1H1

F(n)D (K,TD) at q is non-zero, so

H1
F(n)D (K,TD)

H1
Fq(n)D

(K,TD)
∼= locq

(
H1
F(n)D (K,TD)

)
∼= R/met

and thereforeH1
Fq(n)D (K,TD) ∼=

⊕
i>tR/m

ei . MoreoverH1
F(nq)D (K,TD) = H1

Fq(n)D (K,TD)

by Lemma 2.2.12.2. so nq ∈ N satisfies the request.

Recall that SSr(T ) is free of rank 1 over Z/pkZ by Theorem 2.3.5, so the submodule
generated by an arbitrary ε is msSSr(T ) for some power of m.

Proposition 2.3.7. Let R and ei be as in the previous proposition. Let ε ∈ SSr(T ) generate
msSSr(T ) for some s; then

∂ϕε(t) =

{
s+

∑
i>t ei if s+

∑
i>t ei < k

∞ if s+
∑
i>t ei > k

for every t > 0.

Proof. It is enough to prove the case s = 0; so, assume ε generates SSr(T ). By Theorem 2.3.5,
SSr(T ) projects onto Y ′n, which is therefore generated by εn:

Rεn = Y ′n := mµ(n)Yn

which is cyclic of length max{k − µ(n), 0} by Lemma 2.3.4.1; hence εn ∈ mµ(n)+1Yn if and
only if µ(n) > k, and therefore

∂ϕε(t) =

{
∂µ(t) if ∂µ(t) < k

∞ if ∂µ(t) > k
for every t > 0.

We conclude by the previous proposition which computes ∂µ(t) =
∑
i>t ei.

We can now describe the dual of the Selmer group in terms of Stark systems.

Theorem 2.3.8. Let R = Z/pkZ and ei as before, let ε ∈ SSr(T ) such that ε1 6= 0. Then

∂ϕε(0) > ∂ϕε(1) > ∂ϕε(2) > · · · > 0

dε(0) > dε(1) > dε(2) > · · · > 0

and
H1
FD (K,TD) ∼=

⊕
i>0

R/mdε(i).

Proof. Write Rε = msSSr(T ); if ε1 6= 0, then ∂ϕε(0) < k, so the above proposition gives
∂ϕε(t) = s+

∑
i>t ei for every t, and the first chain of inequalities follows. Moreover,

dε(t) = ∂ϕε(t)− ∂ϕε(t+ 1) = s+
∑
i>t

ei − s−
∑
i>t+1

ei = et+1

and, since we are assuming the et are decreasing, the remaining inequalities follow, as well as
the structure isomorphism.

This shows that the quantities dε(i) are independent of ε such that ε1 6= 0.
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2.3.1 The DVR case
We study the case R = Zp in order to obtain results involving the p-torsion Ep∞ of an elliptic
curve. Recall that this is obtained as a dual module TD where T = Tp(E) := lim←−k Epk is the
Tate module, and the Selmer module in this case is H1

F (K,TD) = Sp∞(K,E), the Selmer
group defined in Remark 1.6.4.

Denote again by m the maximal ideal of R, i.e. pZp. In order to study SSr(T ), we will
apply our previous results to R/mk = Z/pkZ, considered with the canonical Selmer structure
induced by F . Indeed, a local condition F on T propagates canonically to the quotients T/IT
by taking H1

F (Kv, T/IT ) to be the image of H1
F (Kv, T ) under the projection T � T/IT .

Define sets Pj := {q ∈ P | Iq ∈ mj} satisfying inclusions

Pj+1 ⊂ Pj ⊂ P ⊂ N .

Definition 2.3.9. Let n ∈ N . We define:

Wn :=
⊕
q|n

Hom(H1
tr(Kq, T/InT ), R/In)

Yn :=
∧r+ν(n)

H1
Fn(K,T/InT )⊗

∧ν(n)
Wn

Y ′n := m
lenH1

(Fn)D
(K,TD[In])

Yn

and we define a Stark system of rank r for (T,F ,P) as a collection {εn ∈ Yn | n ∈ N}
satisfying, for n′ | n,

Ψn,n′(εn) = εn′

where εn′ is the image of εn′ in Yn′ ⊗R/In and Ψn,n′ : Yn → Yn′ ⊗R/In is obtained from the
map defined for T/InT and R/In as in the previous case of finite ring (recall that by definition
In is some power of m and therefore R/In is some finite ring Z/pkZ). Again, we denote by
SSr(T,F ,P) the R-module of Stark systems.

Lemma 2.3.10. If j 6 k, then the projection T/mkT → T/mjT and the restriction to Pk
induce a surjection and an isomorphism, respectively:

SSr(T/m
kT,Pk) SSr(T/m

jT,Pk) SSr(T/m
jT,Pj).∼

Proof. Let n ∈ Nk be such that H1
(FD)n

(K,TD[m]) = 0. Then, by Theorem 2.3.5, projecting
to Yn gives a diagram

SSr(T/m
kT,Pk) SSr(T/m

jT,Pk) SSr(T/m
jT,Pj)

Yn ⊗R/mk Yn ⊗R/mj Yn ⊗R/mj
∼ ∼ ∼

=

whence we conclude immediately.

Composing the surjection with the (inverse of the) isomorphism above gives maps
SSr(T/m

kT,Pk) → SSr(T/m
jT,Pj) for j 6 k which make the R-modules SSr(T/m

kT,Pk)
into an inverse system, and we can form the inverse limit. Then:

Theorem 2.3.11.



50 CHAPTER 2. KOLYVAGIN SYSTEMS

1. The maps T � T/mkT and Pk ↪→ P induce an isomorphism

SSr(T,P)
∼−→ lim←−SSr(T/m

kT,Pk).

2. SSr(T,P) is free of rank 1 over R, generated by a Stark system ε whose image in
SSr(T/mT,P) is non-zero.

3. The maps SSr(T,P)→ SSr(T/m
kT,Pk) are surjective for all k.

Proof. (1) If 0 6= ε ∈ SSr(T ), there is n such that 0 6= εn ∈ Yn. If n 6= 1 then In 6= 0 and we
let k be such that mk = In. If n = 1 choose k so that ε1 6= 0 in

∧r
H1
F (K,T/mkT ). In either

case In ⊂ mk and the image of ε in SSr(T/m
kT,Pk) is non-zero, proving injectivity.

To prove surjectivity, let (ε(k))k ∈ lim←−SSr(T/m
kT,Pk). If n ∈ N and n 6= 1, let j be such

that In = mj and define εn := ε
(j)
n ∈ Yn. If n = 1, define

ε1 = lim
k→∞

ε
(k)
1 ∈ lim

k→∞

∧r
H1
F (K,T/mkT ) =

∧r
H1
F (K,T ) = Y1.

This defines an element ε := (εn)n ∈ SSr(T,P) that maps to ε(k) for every k, proving
surjectivity.

(2) and (3) By Theorem 2.3.5, SSr(T/mkT,Pk) is free of rank 1 over R/mk for all k.
The maps SSr(T/m

k+1T,Pk+1) → SSr(T/m
kT,Pk) are surjective by Lemma 2.3.10, so we

conclude by the previous point.

We say that ε ∈ SSr(T ) is primitive if it generates SSr(T ) as an R-module; such elements
exist by the above theorem. We apply these results to obtain an analogue of Proposition 2.3.7
and Theorem 2.3.8 for the case of R = Zp discrete valuation ring.

Proposition 2.3.12. Let

a := corankRH
1
FD (K,TD)

:= rankR HomR(H1
FD (K,TD),Qp/Zp)

and ei be such that

H1
FD (K,TD)

H1
FD (K,TD)div

∼=
⊕
i>a

R/mei , ea+1 > ea+2 > · · ·

Let ε ∈ SSr(T ) generate msSSr(T ); then

∂ϕε(t) =

{
s+

∑
i>t ei if t > a

∞ if t < a.

Proof. H1
FD (K,TD) = lim−→k

H1
FD (K,TD[mk]) By Proposition 2.2.13, we have

H1
FD (K,TD[mk]) = H1

FD (K,TD)[mk] ∼=
⊕
i>1

R/mmin{k,ei}

where we set e1 = · · · = ea =∞. For k > 0 let ε(k) be the image of ε in SSr(T/m
kT,Pk) and

write Rε = msSSr(T ). Then ε(k) generates msSSr(T/mkT ), by the above theorem.



2.3. STARK SYSTEMS 51

Let t and n ∈ N with ν(n) = t, write In = mk. By the computation of ∂ϕε(t) in the case
of finite R we have

ε
(k)
n = 0 if t < a

ε
(k)
n ∈ ms+

∑
i>t eiYn if t > a

Since ε(k)
n = εn ∈ Yn, we conclude

∂ϕε(t) =∞ if t < a

∂ϕε(t) > s+
∑
i>t

ei if t > a

If t > a, we must show equality: by Proposition 2.3.7, for any k > s +
∑
i>t ei one can find

n ∈ N with In ⊂ mk such that ε(k)
n /∈ ms+1+

∑
i>t eiYn, hence also εn, and we conclude.

We can now conclude easily. Here, ϕε, ∂, ord(ε) and dε(i) are defined as in Section 2.3.

Theorem 2.3.13. Let R = Zp, ε ∈ SSr(T ), ε 6= 0. Then:

1. There are sequences
∂ϕε(0) > ∂ϕε(1) > ∂ϕε(2) > · · · > 0

dε(0) > dε(1) > dε(2) > · · · > 0

whose terms are finite for t > ord(ε).

2. There is an isomorphism

H1
FD (K,TD)

H1
FD (K,TD)div

∼=
⊕

i>ord(ε)

R/mdε(i)

3. Setting ∂ϕε(∞) := limt→∞ ∂ϕε(t),

len

(
H1
FD (K,TD)

H1
FD (K,TD)div

)
= ∂ϕε(ord ε)− ∂ϕε(∞)

4. lenH1
FD (K,TD) <∞ if and only if ε1 6= 0.

5. lenH1
FD (K,TD) 6 ∂ϕε(0) = max{s | ε1 ∈ ms

∧r
H1
F (K,T )} and equality holds if and

only if ε is primitive.

Proof. (1) and (2) follow as before using the previous proposition and writing dε(i) = ei+1,
a = ord(ε).

(3) The length is the sum of the lengths of the direct summands in (2), i.e.∑
i>ord(ε)

dε(i) =
∑

i>ord(ε)

(
∂ϕε(i)− ∂ϕε(i+ 1)

)
= ∂ϕε(ord ε)− ∂ϕε(∞).

(4) If ε1 = 0 then ord(ε) > 1, so H1
FD (K,TD) has infinite length since ord(ε) is its corank.

Conversely, if ε1 6= 0 then ∂ϕε(0) is finite, so the claim follows from the next point.
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(5) The inequality follows by writing

H1
F(n)D (K,TD) =

⋃
i

H1
F(n)D (K,TD)[mi]

where lenH1
F(n)D (K,TD[mi]) = lenH1

F(n)D (K,TD)[mi] by the isomorphism in Proposi-
tion 2.2.13.2; so we are reduced to the case of finite R and we can apply Theorem 2.4.13.
Finally, if Rε = msSSr(T ), for t big enough we have ∂ϕε(t) = s +

∑
i>t ei by Proposi-

tion 2.3.12, so ∂ϕε(∞) = 0 if and only if ε generates SSr(T ) (i.e. ε is primitive) and in this
case the stated equality follows from (3).

2.4 Kolyvagin systems

2.4.1 Sheaves on a graph

A graph is as usual a couple (V,E) where V is a set of vertices and E is a set of edges
{{v, w} | v, w ∈ V, v 6= w}. Let us introduce some general notions.

Definition 2.4.1.

• A sheaf S of R-modules associated to a graph is the data of

– an R-module S(v) for every vertex v,

– an R-module S(e) for every edge e,

– an R-module morphism ψev : S(v)→ S(e) for every e and v ∈ e.

• A global section of S is a set {κv ∈ S(v) | v vertex} such that

ψev(κv) = ψev′(κv′) ∈ S(e)

whenever e = {v, v′}.
Denote by Γ(S) the R-module of global sections.

• S is locally cyclic if S(v) and S(e) are cyclic and ψev are surjective for all v and e.

• A vertex v is a hub of S if, for every vertex w, there is a surjective path from v to w,
i.e. a path (v = v1, v2, . . . , w = vk) such that ψeivi+1

is an isomorphism if ei = {vi, vi+1}.
Given a surjective path P as above, there is a surjective map S(v)→ S(w) defined as

ψP := (ψek−1
vk

)−1 ◦ ψek−1
vk−1

◦ · · · ◦ (ψe1v2)−1ψe1v1 ∈ Hom(S(v), S(w))

• S has trivial monodromy if, given surjective paths P = (v, . . . , w) and P ′ = (v, . . . , w′)
and an edge e = {w,w′}, then

ψew ◦ ψP = ψew′ ◦ ψP ′ ∈ Hom(S(v), S(e)).

In particular, given two surjective paths P and P ′ from v to w, we have ψP = ψP ′ ∈
Hom(S(v), S(w)).

Proposition 2.4.2. If S is locally cyclic and v is a hub, then:
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1. The map fv : Γ(S)→ S(v), κ = (κv)v 7→ κv is injective. It is surjective if and only if S
has trivial monodromy.

2. If κ ∈ Γ(S) and u is a vertex such that κu 6= 0 and Rκu = miS(u) for some i, then
Rκw = miS(w) for every vertex w.

Proof. We can write κw = ψPw(κv) for any w, Pw a surjective path from v to w; whence
injectivity of fv. To show surjectivity, let c ∈ S(v) and define κw := ψPw(c) for every w. If
S has trivial monodromy, then this is independent of Pw, so κ = (κw)w ∈ Γ(S) and c = κv;
conversely, suppose fv is surjective and write c = κv for some κ. Then κw = ψPw(κv) = ψPw(c)
so, if we consider an edge e = {w,w′}, we have

ψew ◦ ψPw(c) = ψew(κw) = ψew′(κw′) = ψew′ ◦ ψPw′ (c) ∈ S(e)

hence S has trivial monodromy.

2.4.2 The Selmer sheaf
Definition 2.4.3. Let X = X (P) be the graph whose set of vertices is N and whose edges
join exactly the vertices n, nq ∈ N for q prime.

We want to define a sheaf on this graph X . For n ∈ N , define

Gn :=
⊗
q|n

Gal(K(q)q/Kq).

By definition of the fields K(q)q, every Gal(K(q)q/Kq) is cyclic and its order is contained in
In, since In ⊃ Iq ⊃ [K(q)q : Kq]R by definition of In. It follows that Gn ⊗ (R/In) is a free
R/In-module of rank 1.

For q prime dividing n,
T/InT

(Frq − 1)(T/InT )

is a free R/In-module of rank 1, hence Lemma 2.2.4 says that

ϕfs
q : H1

f (Kq, T/InT )
∼−→ H1

tr(Kq, T/InT )⊗Gq

is an isomorphism and both the finite and the transverse submodules are free of rank 1.
Therefore, using again exterior algebra Proposition 2.1.6 we define maps as in the previous
section and get a diagram

S(n) :=
(∧r

H1
F(n)(K,T/InT )

)
⊗Gn

S(e) := H1
tr(Kq, T/InqT )⊗

(∧r−1
H1
Fq(n)(K,T/InqT )

)
⊗Gnq

S(nq) :=
(∧r

H1
F(nq)(K,T/InqT )

)
⊗Gnq

l̂ocfq⊗1=:ψen

̂loctrq ⊗1=:ψenq
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Definition 2.4.4. The Selmer sheaf S associated to (T,F ,P) is the sheaf on X defined
taking S(n), S(nq), S(e), ψen and ψenq as in the diagram above.

We can finally give the definition of Kolyvagin system:

Definition 2.4.5. A Kolyvagin system of rank r for (T,F ,P) is a global section of S, i.e. a
collection

{κn ∈ S(n) | n ∈ N , ψen(κn) = ψenq(κnq) ∈ S(e), q prime} ∈ Γ(S).

We also write KSr(T ) = KSr(T,F ,P) := Γ(S) for the R-module of Kolyvagin systems.

Let now R = Z/pkZ and assume once again that Iq = 0 for q ∈ P.

Definition 2.4.6. A vertex n ∈ N is a core vertex for T if λ(n) := lenH1
F(n)D (K,TD) = 0.

Proposition 2.4.7. The following are equivalent:

1. n is a core vertex for T ;

2. H1
F(n)(K,T ) is a free R-module of rank χ(T );

3. S(n) is a free R-module of rank 1;

4. n is a core vertex for T/mT .

Proof. (1) ⇐⇒ (2) follows from Corollary 2.2.15.
(1) ⇐⇒ (4) follows from Proposition 2.2.13.2.
(2) ⇐⇒ (3) is easy to see.

We define a subsheaf of S. The definition is prompted by the following observation:

Proposition 2.4.8. If n, nq ∈ N and e is the edge joining them, then

ψen(mλ(n)S(n)) = ψenq(mλ(nq)S(nq)) ⊂ S(e).

Proof. By definition of the maps and using exterior algebra Proposition 2.1.6, we have

ψen(S(n)) = im(l̂ocf
q ⊗ 1) = im(ϕfs

q locq ⊗ 1) =

= ϕfs
q (locqH

1
F(n)(K,T ))⊗

∧r−1
H1
Fq(n)(K,T )⊗Gn

ψenq(S(nq)) = im(̂loctr
q ⊗ 1) = im(locq ⊗ 1) =

= locqH
1
F(nq)(K,T )⊗

∧r−1
H1
Fq(n)(K,T )⊗Gnq

and by Lemma 2.2.12.3 we have

mλ(n)ϕfs
q (locqH

1
F(n)(K,T )) = mλ(nq)locqH

1
F(nq)(K,T )⊗Gq

and we conclude.
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Definition 2.4.9. The sheaf of stub Selmer modules is the subsheaf S ′ ⊂ S defined by

S ′(n) :=mλ(n)S(n)

=mλ(n)
(∧r

H1
F(n)(K,T )

)
⊗Gn ⊂ S(n)

and, taking their images through the vertex-to-edge maps, we define the modules for the edges

S ′(e) :=ψen(mλ(n)S(n)) = ψenq(mλ(nq)S(nq)) ⊂ S(e)

which is a good definition by the above proposition. The vertex-to-edge maps for S ′ are the
restrictions of the ψen.

Definition 2.4.10. A stub Kolyvagin system is a global section of the sheaf S ′; the R-module
of stub Kolyvagin systems is KS′r(T ) = KS′r(T,F ,P) := Γ(S ′) ⊂ KSr(T ).

We mention that, in the case of core rank r = 1, stub Kolyvagin systems and Kolyvagin
systems are the same, that is, KS′1(T ) = KS1(T ): see [MR04, Theorem 4.4.1].

Theorem 2.4.11. Let (T,F ,P) be Selmer data and S its associated Selmer sheaf on the
graph X . Then the following hold:

1. There are core vertices.

2. If n, n′ are core vertices, there is a path

n = n0 n1 · · · nt = n′
e1 e2 et

in X such that every ni is a core vertex and all the maps ψeini , ψ
ei+1
ni are isomorphisms.

3. The stub subsheaf S ′ is locally cyclic and every core vertex is a hub. For every n ∈ N
there is a core vertex n′ ∈ N divisible by n.

Proof. Let T := T/mT and λ be the correspondent of λ for T .
To show that there are core vertices, we show more precisely that

• for every n ∈ N there is a coprime n′ ∈ N such that ν(n′) = λ(n) and nn′ is a core
vertex.

If n′ ∈ N is prime to n, then λ(nn′) > λ(n) − ν(n′). Construct a sequence ni ∈ N such that
ni+1 = niqi for some prime qi ∈ N and λ(ni+1) < λ(ni) (this can be done by the next point):
then we reach a nd with λ(nd) = 0. Then nd is equivalently a core vertex for T (recall the
equivalence in Proposition 2.4.7). Then we have λ(nn′) = 0 and consequently ν(n′) > λ(n),
so we have equality as required. Let us show that such a sequence can be constructed:

• if n ∈ N with λ(n, T
D

) > 0, then there is q ∈ P prime to n such that λ(nq, T
D

) <

λ(n, T
D

) and ψen is an isomorphism where e = {n, nq}.

By the Cebotarev density theorem we may choose q ∈ P such that the localization maps

mk−1H1
F(n)(K,T )→ H1

f (Kq, T ) H1
F(n)D (K,TD)[m]→ H1

f (Kq, T
D)



56 CHAPTER 2. KOLYVAGIN SYSTEMS

are non-zero. Then we have λ(nq) < λ(n) by Poitou-Tate global duality (Lemma 2.2.12.4).
The localization H1

F(n)(K,T )→ H1
f (Kq, T ) is surjective, so

l̂ocq :
∧r

H1
F(n)(K,T )→ H1

f (Kq, T )⊗
(∧r−1

H1
Fq(n)(K,T )

)
is also surjective. Looking at the definition of S ′(e), we deduce then that

S ′(e) = mλ(n)H1
tr(Kq, T )⊗

(∧r−1
H1
Fq(n)(K,T )

)
⊗Gnq,

and therefore lenR(S ′(e)) > k−λ(n) = lenR(S ′(n)) where the last equality follows from Corol-
lary 2.2.15.3 Since the map S ′(n)→ S ′(e) is surjective, it must therefore be an isomorphism.

• If n, n′ are core vertices, there is a path

n = n0 n1 · · · nt = n′
e1 e2 et

in X such that every ni is a core vertex and all the maps ψeini , ψ
ei+1
ni are isomorphisms.

The case for core rank 1 is proved in [MR04, Theorem 4.3.12]; the case for general core
rank can be done in the same way, or by induction as in [MR16, Theorem 14.4].

• S ′ is locally cyclic and every core vertex is a hub.

By Corollary 2.2.15.3, S ′(n) is a cyclic R-module for every n ∈ N . By definition of S ′, the
maps ψen are surjective, so the S ′(e) are also cyclic.

Let n0 be a core vertex and n ∈ N be any other vertex. Let us show by induction on λ(n)
that the two vertices are joined by a surjective path in S ′. If λ(n) = 0 then n is also a core
vertex and we know the claim is true. If λ(n) > 0, we may find q ∈ P not dividing n such that
λ(nq) < λ(n) and ψ{n,nq}n is an isomorphism. By the inductive hypothesis there is a surjective
path from n0 to nq; adjoining it to the edge {n, nq} we get the desired path.

Theorem 2.4.12.

1. KS′r(T ) is free of rank 1 over R. For every core vertex n, the specialization map

KS′r(T )→ S ′(n) =
(∧r

H1
F(n)(K,T )

)
⊗Gn

κ = (κn)n 7→ κn

is an isomorphism.

2. There is a (stub) Kolyvagin system κ ∈ KS′r(T ) such that κn generates S ′(n) for every
n ∈ N .

3. S ′ has trivial monodromy.

Proof. By the previous theorem, every core vertex is a hub and the sheaf is locally cyclic, so
we may apply Proposition 2.4.2.

We say that κ ∈ KS′r(T ) is primitive if it generates KS′r(T ) as an R-module, or equiva-
lently if κn generates S ′(n) for every n; such elements exist by the above theorem. We can
now state and prove the following bounds for the length of Selmer groups.
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Theorem 2.4.13. Suppose R = Z/pkZ and let κ ∈ KS′r(T ); then:

1. if κ1 6= 0, then

lenH1
FD (K,TD) 6 k − lenRκ1 = max{i | κ1 ∈ mi

∧r
H1
F (K,T )};

2. if κ is primitive and κ1 6= 0, equality holds in 1;

3. if κ is primitive and κ1 = 0, then lenH1
FD (K,TD) > k.

Proof. We recall that by definition λ(1) = lenH1
FD (K,TD). By definition and using Corol-

lary 2.2.15.3,
κ1 ∈ S ′(1) := mλ(1)∧rH1

F (K,T ) ∼= mλ(1)

is cyclic of length max{0, k − λ(1)}, which is k − λ(1) if κ1 6= 0 (since otherwise we would
have S ′(1) = 0 hence κ1 = 0). Therefore,

len(Rκ1) 6 len(S ′(1)) = k − λ(1)

proving (1). If moreover κ is primitive then S ′(1) = Rκ1 so we have equality in the above,
proving (2).

On the other hand, if κ is primitive and κ1 = 0 then S ′(1) = Rκ1 = 0, hence

0 = len(Rκ1) = len(S ′(1)) = max{0, k − λ(1)} > k − λ(1).

We now show how to build a correspondence between Stark systems and stub Kolyvagin
systems. Let R = Z/pkZ and consider the following cartesian diagram:

H1
F(n)(K,T ) H1

Fn(K,T )

0
⊕
q|n

H1
tr(Kq, T )⊗Gq

⊕locfq

Using Proposition 2.1.6, this diagram yields a map

∧r+ν(n)
H1
Fn(K,T )⊗

∧ν(n)
Hom

(⊕
q|n

H1
tr(Kq, T )⊗Gq, R

)

∧r
H1
F(n)(K,T )

and, tensoring both sides with Gn, we get a map

Πn : Yn → S ′(n) =
∧r

H1
F(n)(K,T )⊗Gn.

The next theorem, whose technical proof we omit, describes the desired correspondence:
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Theorem 2.4.14. Let ε ∈ SSr(T ) and define

Π(ε) := {(−1)ν(n)Πn(εn) | n ∈ N}.

Then:

1. Π(ε) ∈ KS′r(T ).

2. The resulting R-module morphism Π: SSr(T )→ KS′r(T ) is an isomorphism.

Proof. [MR16, 12.2, 12.3, 12.4].

2.4.3 The DVR case
In this paragraph we obtain results in the case R = Zp analogous to the previous section,
replacing Stark systems by (stub) Kolyvagin systems. We begin with the following theorem,
analogous to Theorem 2.3.11.

Theorem 2.4.15.

1. T � T/mkT and Pk ↪→ P induce an isomorphism

KS′r(T,P)
∼−→ lim←−KS′r(T/m

kT,Pk).

2. KS′r(T,P) is free of rank 1 over R, generated by a Kolyvagin system κ whose image in
KS′r(T/mT ) is non-zero.

3. The maps KS′r(T,P)→ KS′r(T/m
kT,Pk) are surjective.

Proof. By Theorem 2.4.12, stub Kolyvagin systems are free of rank 1 in the case of finite R,
so the proof can be done directly as for Stark systems, Theorem 2.3.11.

We can use this correspondence to prove replace Stark systems with stub Kolyvagin sys-
tems. Define the following objects, in complete analogy with the Stark system case:

• ϕκ(n) := max{j | κn ∈ mj
∧r

H1
F(n)(K,T )} for κ ∈ KSr(T );

• the previously defined operator ∂,(
f : N −→ N ∪ {∞}

)
7→

(
∂f : N −→ N ∪ {∞}

i 7→ min{f(n) | n ∈ N , ν(n) = i}

)

• ord(κ) := min{ν(n) | n ∈ N , κn 6= 0} = min{i | ∂ϕκ(i) 6=∞};

• dκ(i) := ∂ϕκ(i)− ∂ϕκ(i+ 1) for i > ord(κ).

The following proposition states that the invariants defined above for a stub Kolyvagin
system are the same as the invariants for the corresponding Stark system.

Proposition 2.4.16. Let κ ∈ KS′r(T ), ε ∈ SSr(T ) and κ = Π(ε). Then:

ord(κ) = ord(ε) ∂ϕκ(i) = ∂ϕε(i) dκ(i) = dε(i)

for all i.
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Proof. Let us first consider R = Z/pkZ; if κ generates KS′r(T ) and ε generates SSr(T ), then
we know κn generates mλ(n)S(n) and εn generates mµ(n)Yn. Therefore:

∂ϕκ(i) =

{
∂λ(i) if ∂λ(i) < k

∞ if ∂λ(i) > k
∂ϕε(i) =

{
∂µ(i) if ∂µ(i) < k

∞ if ∂µ(i) > k

By the computation of ∂λ and ∂µ (Proposition 2.3.6), we know ∂λ(i) = ∂µ(i) and the theorem
follows. For R = Zp, the proof follows as for Stark systems (Proposition 2.3.12).

By recalling Theorem 2.3.13 for Stark systems and using the isomorphism Π and the above
property concerning invariants, we immediately get the analogous result for stub Kolyvagin
systems:

Theorem 2.4.17. Let R = Zp, κ ∈ KS′r(T ), κ 6= 0. Then:

1. There are sequences
∂ϕκ(0) > ∂ϕκ(1) > ∂ϕκ(2) > · · · > 0

dκ(0) > dκ(1) > dκ(2) > · · · > 0

whose terms are finite for t > ord(κ).

2. There is an isomorphism

H1
FD (K,TD)

H1
FD (K,TD)div

∼=
⊕

i>ord(κ)

R/mdκ(i)

3. Setting ∂ϕκ(∞) := limt→∞ ∂ϕκ(t),

len

(
H1
FD (K,TD)

H1
FD (K,TD)div

)
= ∂ϕκ(ordκ)− ∂ϕκ(∞)

4. lenH1
FD (K,TD) <∞ if and only if κ1 6= 0.

5. lenH1
FD (K,TD) 6 ∂ϕκ(0) = max{s | κ1 ∈ ms

∧r
H1
F (K,T )} and equality holds if and

only if κ is primitive.

Proof. By Theorem 2.3.13 we can prove the result for the corresponding ε ∈ SSr(T ). By the
previous proposition, the same result holds for κ.
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