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Abstract (IT)

Contenuto della tesi

Gli obiettivi di questo lavoro di tesi sono la progettazione, lo sviluppo e la valutazione
delle prestazione di un filtro di localizzazione satellitare basato su tecnologia GPS.
Una possibile applicazione è a bordo di un CubeSat per dimostrazione scientifica di
astrofisica a raggi gamma, in fase di studio persso l’Università degli Studi di Padova.

Per le fasi di sviluppo e test, la missione Fermi Gamma-Ray Space Telescope
è stata presa come applicazione di riferimento. Mediante l’utilizzo dei dati delle
telemetrie di Fermi abbiamo costruito il nostro filtro per poi confrontare i risultati
con il filtro ”NAV” sviluppato per Fermi.

Questo lavoro è stato diviso in due parti. La prima parte si è concentrata sul de-
sign e sullo sviluppo del filtro, è stato svolto uno studio di fattibilità analizzando una
applicazione on-board ed una on-ground. Nel dettaglio è stato testato un metodo ai
minimi quadrati non lineari ed un filtro di Kalman.
La seconda parte è stata la validazione del filtro di navigazione, applicando i risul-
tati ottenuti ad uno studio scientifico che richiede una conoscenza della posizione del
satellite molto precisa: il processo di timing di una pulsar millisecondo.

La sorgente che è stata scelta per la validazione è la pulsar millisecondo J1231-
1411. Questa sorgente è molto debole per Fermi e non sarà possibile rilevarla me-
diante il piccolo dimostratore scientifico in studio per l’università. Sorgenti più lu-
minose però presenterebbero un rateo osservato dal dimostratore comparabile con
quello studiato, quindi questa validazione rappresenta un valido test.
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Abastract (EN)

Content of the thesis

The purpose of this thesis work is the design, development and performance evalu-
ation of a satellite’s localization filter based on the GPS technology. One possible
application is a proposed CubeSat demonstrator for MeV gamma-ray astrophysics
being investigated at the University of Padova.

For the development and test the Fermi Gamma-Ray Space Telescope mission is
taken as reference application. Using available real telemetry data from Fermi, we
build our own navigation filter and compare its performance with the Fermi ’s NAV
filter.

The work is divided in two parts. The fist part is about the design and the im-
plementation of the filter, with a feasibility study of an on-board and an on-ground
version. In detail we tested a non linear least square approach and a Kalman filtering
approach.
The second part is about the validation of the navigation filer with a real science
application. We selected the most exacting analysis making use of the exact satellite
position: the timing of a millisecond pulsar.

The source that we selected for the validation is the millisecond pulsar J1231-
1411. This source is very faint for Fermi and it will never be seen by the small
payload demonstrator of the CubeSat; on the other hand other bright pulsars would
have a comparable statistics seen with the small demonstrator, so it is a reasonable
test.
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Chapter 1

Gamma-ray astrophysics from
space

1.1 Gamma-ray direct observations

Gamma-ray astrophysics is the study of astrophysical phenomena in the energy range
above a few 100s keV, as we can see from Figure 1.1 just above x-ray astrophysics.
In this energy window many sources are available for investigation all across the Uni-
verse: local (e.g. the Sun), Galactic (e.g. pulsars) and remote (e.g. active galaxies).

In order to study directly this kind of events in an effective way we use orbiting
satellite telescopes, to move above the atmosphere which is opaque to energetic pho-
tons1.
Recent gamma-ray missions of interest are: CGRO (Compton Gamma Ray Observa-
tory, NASA 1991), carrying 4 instruments to cover different energy ranges (BATSE
and OSSE for lower energies, COMPTEL [0.75-30 MeV] and ERGET [20 - 30000
MeV] for higher energies), Fermi (Fermi Gamma-ray Space Telescope, NASA 2008)
carrying the LAT and a lower energy Burst Monitor, and AGILE (Astrorilevatore
Gamma ad Immagini Leggero, Italy, ASI, INAF, INFN, 2007).

In this thesis work we use data from Fermi LAT, a detailed description of this
mission is given in Section 1.4

1An alternative is to perform indirect observations from the ground and look for the gamma
rays being absorbed by the atmosphere
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Figure 1.1: Electromagnetic spectrum description.

1.2 Future full scale MeV missions

Upcoming full scale missions (payload mass around 1 ton) are being proposed in the
MeV energy range (bridging between the LAT range and x-ray instruments).
Among these we mention:

• e-ASTROGRAM (enanched ASTROGRAM), an observatory space mission
dedicated to the study of non-thermal Universe in the photon energy range
from 0.3 MeV to 3 GeV [11]

• AMEGO (All-sky Medium Energy Gamma-ray Observatory), a probe class
mission that combines high sensitivity in the 200 KeV - 10 GeV energy range
with a wide field of view [21]

MeV mission of smaller scale are also being proposed. MEGA (Medium En-
ergy Gamma-ray Astronomy) is a telescope concept aiming to improve sensitivity at
medium gamma-ray energies (0.4 - 50 MeV) by at least an order of magnitude over

2



that of COMPTEL with a payload mass around 650 kg [8].

1.3 Nano scale MeV missions

Our team at the University of Padova is proposing a nano-satellite Compton telescope
based on a silicon tracker and a Cesium-Iodide calorimeter [20] [23], as technological
pathfinder for the coming MeV full-scale observatories but with a certain science
potential on its own.

This Compton detector is currently in the design phase, managed as a series of
thesis projects (bachelor and master) dealing with both engineering and scientific
issues.

See [20],[7] (optimization of the tracker and calorimeter design), [22] (evaluation
of the flux of cosmic protons along the orbit), [5] (study of the satellites material
activation), [9] (sensitivity of the CubeSat to Gamma Ray Bursts).

1.4 Fermi -LAT

The Fermi Gamma-ray Space Telescope (FGST or Fermi) is a space observatory
launched in 2008 by NASA and its mission is to observe the Universe in gamma rays
from a Low Earth Orbit (LEO). Fermi orbit is a circular LEO with an altitude of
550 km and an inclination of 25.8 deg.

The main instrument on board Fermi is the Large Area Telescope (LAT), this is
an imaging, wide field-of-view telescope that cover an energy range from ∼ 20 MeV
to > 1 TeV [6].

The performance of the scientific payload is described in https://www.slac.

stanford.edu/exp/glast/groups/canda/lat_Performance.htm and references
therein. Here we mention only a few relevant figures. As mentioned above the
energy range covers from a few 10’s MeV to a couple of TeV. The angular resolution
depends on the photon’s energy, it goes from about 10◦ at 100 MeV down to about
0.1◦ above 10 GeV; selecting data around a source we have to favor the lower energy
end. The efficiency is usually given in terms of the effective area, i.e. the scaling
factor between source flux (in ph/cm2/s) and instrument count rate (in counts/s).

3
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Figure 1.2: Fermi-LAT continuum sensitivity (the faintest observable flux as a func-
tion of energy for a point source with continuum spectrum) compared to other space
telescopes.

It reaches up to ∼ 0.7 to 1 m2 around 1 GeV for normal incidence, depending on
the event selection, and almost constant up to a few 100’s GeV where it drops;
this is relevant because pulsar spectra decrease rapidly with energy in this range,
so the lower the low energy cut the fewer events we keep, but as we have seen the
lower we go the larger the selection radius and the higher the background we collect.
Background for point sources includes the bright diffuse emission from the Galactic
medium, especially relevant for Galactic sources such as pulsars. Depending on the
source location and the LAT pointing history an additional background source is
the very bright Earth limb, where gamma rays are being produced by cosmic proton
hitting the atmosphere. During normal operation the LAT axis faces away from the
Earth but it swings towards the orbit poles periodically, and at times the limb gets
into the edges of the field of view.

Fermi mounts a General Dynamics Viceroy-4 GPS receiver (see Appendix). Each

4



detected photon is timestamped using the internal clock time. This is based on the
PPS signal from the GPS driving a 10-MHz oven controlled oscillator and in turn a
20-MHz stabilized scaler giving the fraction of a second. The residuals in the scaler
time when a PPS arrives are used to keep track of e.g. drift. The specifications allow
for a ±0.6 µs drift per minute under loss of GPS.
Localization in orbit is obtained on board from the GPS raw location processed by
a Kalman filter, giving usually residuals < 20 m.

5
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Chapter 2

Pulsars and timing

2.1 Pulsars

Pulsars are neutron stars (NS) characterized by fast rotation and high magnetiza-
tion.
These bodies are extremely dense: the mass is comparable to the mass of the Sun
but the radius is of the order of few tens of kilometers. They produce an energetic
beam from the magnetic poles, converting rotational energy into electromagnetic ra-
diation at all wavelengths. If the magnetic poles are not aligned with the rotation
axis the pulsar behaves like a ”lighthouse”, causing electromagnetic pulses every time
the beam crosses the observer’s line of sight. In Figure 2.1 is reported a schematic
representation of a rotating NS.

The first pulsar was detected in 1967 as a series of periodic radio pulses. In the
1970’s pulsars were observed in gamma rays, but the identified sources were only
the brightest: Crab and Vela. In the 1990’s CGRO discovered some new gamma-ray
pulsars but the game changer was Fermi-LAT : as of today it detected more than a
hundred pulsars, including dozens of radio-quiet gamma-ray pulsars and millisecond
pulsars [3] [10].

The timing of a millisecond pulsar is probably the scientific analysis, in gamma
astrophysics, placing most exacting requirements on the satellite’s positional and
clock uncertainties. In particular a millisecond pulsar can have a pulse amplitude of
∼ 0.1 ms or less: to reconstruct this we have to locate the satellite with an accuracy
of a few km at worst.

7



Figure 2.1: Schematic representation of a rotating NS (not in scale) [19].

2.2 Timing

Pulsar timing is performed by tracking Time of Arrival (ToA) of the photons and
reconstructing of the pulse profile, assigning to each detected photon the rotational
phase of the pulsar at the time of its emission. A phase histogram typically shows
one or two emission peaks, corresponding to the emission regions crossing the line of
sight. In Figure 2.2 is reported a basic observational setup required for pulsar timing
[19].

In the gamma range the brightest pulsar is Crab, with a flux of 10−5 ph/cm2/s
above 100 MeV, with an effective area of ∼ 1 m2 (Fermi -LAT under optimal con-
ditions) we can detect approximately 1 photon every 10 seconds, and the faintest

8



Figure 2.2: Basic concept of a pulsar timing observation [19].

pulsars detected have fluxes smaller by more than three orders of magnitude. Since
the rotational periods are from ∼ 1 ms to ∼ 0.4 s the data is sparse and the folding
process is needed. This process consists in phase-stacking many pulses to get an
averaged pulse profile with high signal-to-noise ratio (S/N or SNR).

In the gamma study of a pulsar, each ToA is measured directly from the times-
tamp of the event. From these ToAs we build the phase histogram combining the
ToAs with the pulsar ephemeris.
In Figure 2.3 the phase histogram of the Crab pulsar seen by LAT is reported. The
pulsar period of rotation is about 33 ms, so the pulse width of 0.05 phase units
correspond to ∼ 1.5 ms.
This implies that we need a time resolution of the signal better than 0.5 ms to avoid
smearing the peaks. Correspondingly, in case of a millisecond pulsar the resolution
needed for the timing process is of the order of 10’s µs.

In gamma rays we timestamp each photon and get the ToA in the topocentric
reference frame (i.e. centered on the telescope position). We need to relate the ToA
to the Solar-system barycentric (SSB) frame that with good approximation is an
inertial frame (co-moving with the pulsar). Another advantage of the change in the
reference frame is that the computed data can easily combined with ToAs measured
in different locations at different times.

After the transformation to the barycentric system we have to describe the ro-
tational motion of the pulsar. In the SSB the rotational period of a pulsar is nearly
constant over the time of the observations: in the Fermi -LAT catalog period deriva-
tives are around 10−14 s/s for normal pulsars and 10−20 s/s for millisecond pulsars.

9



Figure 2.3: Phase histogram for the Crab pulsar in gamma rays, from [2]. Mind that
2 full phases are shown to avoid clipping the main peak.

Therefore we can express the time dependent phase as a Taylor expansion:

N(t) = N0 + ν̇0(t− t0) +
1

2
ν̈0(t− t0)2 + ... (2.1)

Where N0 and t0 are arbitrary reference phase and epoch ν0 is the rotational
frequency and ν̇0, ν̈0 are its first and second derivative at the reference epoch.
Is important to notice that the observed rotational phase at each ToA is defined
modulus an integer number of rotations. The average propagation time from source
to detector, excluding the motion of the satellite in the SSB frame and any proper
motion of the source, is absorbed into the arbitrary phase offset.

10



Observed ToAs can be compared to the predicted ToAs, and the differences are
called ”timing residuals”. The uncertainties on the reconstruction of the pulsar’s
phase are: intrinsic (e.g. instabilities of the pulsar’s rotation), on the inferred rota-
tional parameters, and instrumental. The latter includes timing and location errors;
see also Section 2.4.

Errors in deriving the rotational parameters lead to characteristic residual distri-
butions. In Figure 2.4 are reported four different pulsar timing examples:

• Panel (a) reports a good solution with a residual random distribution with a
zero mean

• Panel (b) shows the effect of an error in the frequency derivative

• Panel (c) shows an error in the position (sinusoidal trend with one year period)

• Panel (d) shows the error due to an un-modeled proper motion of the pulsar

2.3 Ephemeris

The rotation of each pulsar is characterized by its ephemeris. This is usually provided
as a set of parameters describing the timing model as we discussed previously. The
main information reported in the ephemeris are given in Table 2.1, where we follow
the naming convention used by the TEMPO2 software, see Section 2.5.

The parameters in the ephemeris depend on time and are given at a set reference
time (the epoch), and are valid in the specified time intervals. From the Fermi GRST
is possible to get an open source table of published ephemeris for timing LAT Pulsars
[13].

2.4 Pulsars with Fermi -LAT

of the scientific outputs of the Fermi mission is the pulsar catalog [3] which contains
pulsars with a period ranging from ∼ 400 to ∼ 1 ms. The integrated measured fluxes
at energy > 100 MeV goes from 10−5 ph/cm2/s for the brightest down to a factor
104 less for the faintest. Given an effective area of ∼ 1 m2 under optimal conditions,
this means that our data are sparse (1 photon every many periods).

11



Figure 2.4: Residuals due to error on the fitting parameters [19].

In Figure 2.5 the periods and the periods derivative of known pulsars of the cat-
alog are shown. As we can see, standard pulsars and millisecond pulsars are located
in specific areas of this plot, a consequence of the different nature of these sources.

For the validation of the filter we performed a timing analysis of a millisecond
pulsar. We selected J1231-1411 (T∼ 3.6 ms). We used the ephemeris in preparation
for the Fermi LAT catalog (a slightly updated version of the publicly available ones,
developed for the third version of the catalog).
Other tools from Fermi used in the validation phase of the filter are the data about
the events from the open source archive. In Section 2.5 the TEMPO2 software is
described, briefly we use this software to compute the phase histogram. This plug-in
reports the phase histogram, some statistic indicators and the computed phase of
each photon.

LAT-related uncertainties on pulsar timing come mainly from 2 sources: the
timing uncertainties on the event timestamp, based on the internal clock, and uncer-
tainties on the telescope location in space. In this work we focus on the latter and

12



Parameter Units Description

PSRJ String Pulsar Name
RAJ sex-hr Right Ascension (J2000)

DECJ sex-deg Declination (J2000)
PEPOCH MJD Period Epoch (Modified Julian Date)

F0 Hz Fundamental freq of the PSR
F1 Hz/s First derivative of rotational freq
F2 Hz/s/s Second derivative of rotational freq

POSEPOCH MJD Position Epoch
DM pc/cm3 Dispersion Measure

START MJD Time the eph is valid from
FINISH MJD Time the eph is valid till
BINARY String The binary model used (if any)
EPHVER Integer The eph version

Table 2.1: Ephemeris parameters as found in a TEMPO2 ephemeris file for TEMPO2
see Section 2.5.

consider the former to be negligible.

2.5 Timing with TEMPO2

TEMPO2 is a software package for the analysis of pulsar pulse ToA [12] and it is an
updated version of the TEMPO software.

A Fermi plug-in for TEMPO2 is available [14] that allows to compute a pulsar
rotational phase for for each photon in a Fermi LAT event file. As described in Sec-
tion 2.2 the first operation done by the plug-in is the computation of the telescope
position in function of time in order to convert it in the barycentric reference system.
After this operation for each photon the software calculates the time it was emitted
by the pulsar, the rotational phase of the latter using the ephemeris file, computes
an histogram of the pulse profile and the significance of the observation of a pulsed
signal [17]

The software requires three file to work in its minimal setup.

• The ft1 file is the photon file in fits format. It lists the selected events, giving

13



Figure 2.5: Periods and period derivatives of known pulsars, from [3]. Gamma-ray
pulsars in the Fermi -LAT catalog are indicated in color.

the time of detection, arrival direction, energy, etc.

• The ft2 file is the spacecraft position file in .fits format. It lists the location
of the telescope and its attitude as a function of time, typically at intervals of
30 s.

• The parfile contains the pulsar ephemeris.
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Chapter 3

Satellite localization

3.1 Orbital motion

The motion of two bodies due to their mutual gravitational attraction is known as
two body problem, if the mass of the main body is m1 >> m2 the motion of the
smaller body refers to the restricted two body problem. The ideal Keplerian dynamic
model is:

r̈(t) =
µ

r3
r(t) (3.1)

Where r̈(t) is the acceleration vector, r(t) represent the orbital radius components
and µ is the Earth’s standard gravitational parameter.

In the real case this model is affected by perturbations. Figure 3.1 is reports the
intensity of the perturbations related to the orbit highness, main perturbations in
LEO are:

• Gravitational perturbations

• Atmospheric drag

3.1.1 Gravitational perturbations

The main perturbation that affects a LEO satellite orbit is given by the effect of the
non uniformity of the Earth gravitational field.
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Figure 3.1: Intensity of the perturbations related to the orbit highness, from [18].

A simplified model is obtained considering only the first few zonal harmonics. If
we consider only the J2 effect the equation of motion from Equation 3.1 become:

ẍ = −µx
r3

[
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ÿ = −µy

r3

[
1 + J2

(Re

r

)2 3

2

(
1− 5

z2

r2

)]
z̈ = −µz

r3

[
1 + J2

(Re

r

)2 3

2

(
3− 5

z2

r2

)] (3.2)

If we add the J3 and J4 effects to the Equation 3.2, we obtain the model described
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in Equation 3.3:
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3.1.2 Atmospheric drag

After the gravitational perturbations the atmospheric drag is the main perturbation
that affects a LEO satellite, the effect of this perturbation is the dissipation of the
satellite energy. Drag phenomena changes orbital elements (mainly the semi-major
axis and the eccentricity).

The acceleration due to the aerodynamic drag involves different physical pro-
prieties of satellite and atmosphere. This means that a good knowledge of each
parameter is required to determining the drag effects.
In Equation 3.4 is reported the basic equation of the aerodynamic drag:

adrag = −1

2

cDA

m
ρv2

rel

vrel
|vrel|

(3.4)

The term (cDA)/m, also known as ballistic coefficient (BC), is related to satellite’s
proprieties. In detail:

• cD is the satellite’s coefficient of drag

• A is the exposed cross-sectional area (defined as the area normal to the satel-
lite’s velocity)

• m is the satellite mass
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Another satellite-related parameter is the relative velocity vrel. This is not the ve-
locity represented on the state vector but is the satellite velocity relative to the
atmosphere, it depends from satellite’s velocity and position.

The atmospheric density (ρ) is the most difficult parameter to determine. The
density of the upper atmosphere is influenced by several factors as solar activity,
local time (day-night time), latitude and longitude and many more. For detailed
descriptions see [27].

3.1.3 Other perturbations

Gravitational and drag perturbation are the main disturbing forces on a LEO satel-
lite. Other perturbations that could affect the motion of a satellite are:

• Third-Body accelerations: massive body as Moon and Sun affect the satellites
on higher altitude orbits.

• Solar radiation pressure: as the atmospheric drag, it is a non conservative
perturbation and it becomes more important at higher altitudes. This pertur-
bation is related to the pressure that the solar radiation flux has on the satellite.
The magnitude of this force depends on the cross-sectional area exposed to the
flux, the intensity of the flux and shadowing effects on the spacecraft.

3.1.4 Orbit propagation

For orbit propagation we used a 4th order Runge-Kutta (RK4) method. This method
is a single-step that combine the state at one time with the rates at several other
times, based on the state value at time t0.

The RK4 is often preferred for this kind of applications because it doesn’t require
state values before the t0 to start the integrator. The Runge-Kutta methods evaluate
the function of motion at intermediate points and these value are used only one time
for the integration. To deepen this topic and for other integration methods see [27].
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3.2 Reference systems

3.2.1 Earth-Centered Inertial

The Earth-Centered Inertial (ECI) is a Cartesian reference frame that has the ori-
gin located at the Earth’s center. The x-axis is fixed in a direction relative to the
celestial sphere (this definition of the x-axis give the inertial characteristic of the
frame because the axis does not rotate with the Earth). The z-axis is normal to x
and coincides with the Earth’s rotation axis, it passes through the north pole. The
y-axis completes the frame.

In Figure 3.2 is described the J2000 ECI reference frame. This is a common ECI
frame, the x-axis is aligned with the mean equinox of the current epoch (in this case
the mean equinox at 12:00 terrestrial time on 01/01/2000). The x-y plane lies on
the Earth’s equatorial plane.

Figure 3.2: ECI-J2000 reference system representation [24].
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3.2.2 Earth-Centered, Earth-Fixed

The Earth-Centered, Earth-Fixed (ECEF) is a Cartesian reference frame and like
the ECI frame the origin is placed at the Earth’s center. The x-axis points to the
intercept of the mean Greenwich meridian and the equator, the z-axis coincides with
the Earth’s rotation axis and the y-axis completes the frame.

Due to the definition of the x-axis the ECEF frame rotates with the Earth. This
frame is commonly the best choice to represent Earth related objects that need a
location with respect to the Earth’s surface.
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3.3 Orbit determination and estimation

Orbit determination is one of the first problem that astronomers tried to solve. In
the early 1800s Gauss and Legendre worked independently to estimate and predict
the orbit of the asteroid Ceres, the result was a technique close to the least-squares
method that will be discussed in the next session.

In the modern epoch the main application of the orbit determination passed from
the estimation of orbits of bodies around the Sun to the space surveillance and the
study of bodies in orbit around the Earth.
Determination of satellite position and orbit estimation has an important role due
to the increasing population of spacecrafts in LEO. There are two different kinds of
approach to get the state vector (position and velocity) of an orbiting body: ground
based and space based techniques.

3.3.1 Ground based techniques

This kind of approach is based on measurements provided by ground stations that
use radars or laser beams to track the targets.

Radar Ranging

The satellite radar ranging (SRR) was one of the first orbital positioning system, it
is based on:

• measurement of the aiming angle (relative to the station’s coordinates).

• measurement of the satellite/radar range, obtained from the delay of the echo.

• measurement of the range rate, obtained from the Doppler shift.

The SRR can be implemented with a network of radar stations that give a precise
measurement using the trilateration process. This trilateration ranging technique
allow to know the state of the satellite with a (1σ) position error < 6 m and a (1σ)
velocity error < 1 cm/s [15]. The main advantage of SRR is the capability to detect
bodies without on board receiver or dedicated laser reflectors.

Laser Ranging

The Satellite Laser Ranging (SLR) is the most accurate ranging technique with a
position accuracy error < 1 cm (is important to remember that the accuracy of the
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ranging process is correlated with the length and the resolution of the laser pulses).
The distance measurement is derived from the time of flight of a laser pulse that
travels from the station to the satellite; target spacecrafts have to be equipped with
dedicated retro-reflectors. Figure 3.3 shows a representation of the SLR system
architecture.

Figure 3.3: Principle of SLR, from [25].

The ground based techniques provide data characterized by a very good accuracy,
despite the high accuracy potential the main disadvantages are:

• High costs related to the building and the management of the ground stations.

• Dependence on weather conditions.

• Non homogeneous tracking data distribution due to the fact that the target
will be in the station’s field of view for a limited time interval.

3.3.2 Space based techniques

A space based orbit determination system uses instrumentation on board the satellite
to get the state vector. Due to its accuracy and due to the low cost of a receiver the
GPS-based orbit determination is the most common choice and is widely used for
real-time precise positioning in LEO.
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3.4 Global Navigation Satellite System

The Global Navigation Satellite System (GNSS) is a system of satellite constellations
used to provide position and velocity of a receiver, giving an high precision timing
of the events. These processes are known as Position Navigation and Timing (PNT)
and are guaranteed at any time in every point of the Earth’s surface (and sky) inde-
pendently of weather conditions. The only the only constraint is the visibility of a
minimum number of satellites from the receiver position.

Currently the main GNSS constellations are the US Global Positioning System
NAVigation Satellite Timing And Ranging (shortly GPS NAVSTAR), the Russian
GLObal NAvigation Space System (GLONASS) and the European Galileo. Other
systems are the Chinese BeiDou, the Japanese QZSS1 and the Indian NAVIC/IRSNSS.

The GNSS positioning is based on the trilateration process. This technique is
similar to the triangulation but uses range measurements instead of angle measure-
ments. In the GNSS case is uses a passive ranging (one way) based on the time
of flight of the signal from the satellites to the receiver. Because ranging is a mea-
surement of distance, a measurement of distance using the time of flight is called
pseudoranging.

Let us consider the GPS NAVSTAR as an example of GNSS.

The GPS NAVSTAR program started in 1973 for military purposes and was
extended to civil activities in 1991. The first satellite was launched in 1978 and the
constellation was completed in 1994.
The Global Positioning System is composed by three different segments: the Space
segment (SS), the Control segment (CS) and the User segment (US).

3.4.1 Space Segment

The SS is composed by 24 satellites that are orbiting in six orbital planes. For each
orbital plane there are four satellites with an interval of 60 degrees of longitude. The
orbits are circular at 20200 km of altitude with an inclination of 55 degree, each
satellite has an orbit period of an half sidereal day with the same ground track each
day. A representation of the constellation is in Figure 3.4.

As we will see later, the minimum number of satellites needed for the positioning
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process is four; with the actual expanded constellation there are usually more than
four satellites in sight from any point of the Earth’s surface. This redundancy of
satellites in sight ensures a good positioning process at any time in every place.

Figure 3.4: Representation of GPS NAVSTAR representation constellation.

3.4.2 Control Segment

The CS is a network of facilities located along the equatorial line that tracks, moni-
tors and commands each satellite of the system. This network is composed of:

• A Master Control Station and an Alternate Master Control Station

• 11 command and control antennas

• 16 monitoring sites

In Figure 3.5 are shown the locations of the facilities in a map provided by the
Official U.S. government information about the Global Positioning System (GPS)
and related topics
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Figure 3.5: Map of the GPS NAVSTAR CS facilities.

The Monitor Stations check operational status, position and velocity of the satel-
lites. Also the orbital errors and the clock drift of each satellite are monitored in
order to keep it into the operational range of precision.
The data provided by the Monitor Stations are sent to the Master Control Sta-
tion that computes position and velocity of all the constellation. These computed
information is sent to the GPS satellites with a navigational update in order to syn-
chronize the atomic clocks and correct the ephemeris of the satellites in their internal
orbital model.

3.4.3 User Segment

The User segment is composed by every user of the GPS system. They could use the
system for PNT in different situation as maritime, aerial and terrestrial navigation.
A receiver decodes the signals from the satellites and computes its position.

3.4.4 GPS Signal

The GPS works on two frequencies based on f0 = 10.23 MHz provided by the internal
atomic oscillator :
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• L1 signal = f0 · 154 = 1575.42 MHz

• L2 signal = f0 · 120 = 1227.60 MHz

For the L1 signal a CDMA (Code Division Multiple Access) technique is used: a
low-bitrate navigation message (50 Hz) is encoded with an high-bitrate pseudoran-
dom (PRN) code that is different for each satellite (the receiver needs to know the
PRN codes to reconstruct the message).
This signal is also known as Coarse Acquisition Code (C/A) and is characterized
by a data transmission at 1023 chips per millisecond. The positioning process based
on the C/A code is called SPS (Standard Positioning System) and is for civilian uses.

The L2 signal is encoded with a different pseudorandom code called Precision
Code (P-code) with a repeat period of one week. The P-code has a data transmis-
sion of 10.23 million chips per second (corresponding a frequency of 10.23 MHz) and
is used for military purposes, it can be encrypted with an additional code. In this
case is called P(Y) code and the message is reconstruct only by equipment with the
decryption key. The positioning system based on the P-code is called PPS (Precise
Positioning System).

In Figure 3.6 is shown the modulation scheme for L1 and L2.

In addition to the PNR code, position and time of each GPS satellite needs to be
known from the receiver, this information are encoded in the navigation message.
This navigation message contains:

• The GPS date and time and the status of the transmitting GPS satellite

• The ephemeris of the transmitting GPS satellite (4 hours of validity)

• The almanac, containing status and orbital information of every satellite of the
constellation

3.4.5 Timing

In order to keep the time synchronization error low, the GPS uses the satellites clocks
instead of the receiver clock for the timing process. The receiver clock is usually a
low cost quartz clock that has an accuracy worse than one part in a million, that
is not enough precise (an error of 1 millisecond means a 300 meters error for the
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Figure 3.6: Modulation scheme for L1 and L2.

pseudorange) and this is why the GPS satellite’s atomic clocks are used.

The synchronization error is calculated finding the pseudorange of an extra satel-
lite, so the receiver needs three satellites for the computation of the position along
x,y and z axis and another one for the time error ∆t.
This means that the minimum number of satellites in sight that a receiver needs for
a precise positioning process is four.

Pulse Per Second (PPS)

The Pulse Per Second (PPS) is an electrical signal that is repeated every second with
an high precision. It is an output of precision clock devices, as the GPS system.
A PPS signal is used to synchronize computers and time measurement. This signal
does not indicate the time (it simply marks the start of a second), in order to have
a precise local time indication the PPS needs to be combined with a date and time
source.

Currently the PPS accuracy in the GPS receiver is about 20 nanoseconds, a GPS
receiver that works in single frequency contains a temperature controlled crystal
oscillator which oscillates at 16MHz [26].
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3.4.6 Sources of error

The major sources of GPS positional errors are [16]:

• Signal propagation errors

• Clock errors

• Ephemeris (orbital path) data errors

• Multi-path effects

The GPS satellites layout in the sky is another source that influence the accu-
racy of the positioning process, the optimal layout is an uniformed arrangement on
a sphere around the receiver. When GPS satellites are close together in the sky, the
positioning process suffers from Dilution Of Precision (DOP).

DOP values range from 1 (ideal case where there is no influence) to more than
20 (in which case, there is so much error the data should not be used). The DOP is
defined as combination of different geometric components, the Horizontal Dilution
Of Precision (HDOP) and the Vertical Dilution Of Precision (VDOP). The DOP
related to the positioning is called Position Dilution Of Precision (PDOP, related to
3 spatial coordinates).
Since the orbital path of the GPS satellites is known, is possible to predict the PDOP
for a given time and location.
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3.5 Measurement errors

All the collected observations of satellite’s position and velocity are affected by errors.
The measurement error is defined as the variation of the observation respect the true
value of the state vector. There are three main categories of errors:

• Bias, constant offset from the true value.

• Noise, statistical distribution of random variation around the measured mean
value.

• Drift, unpredictable and slow variation of the observed mean value from the
true value.

Figure 3.7: Representation of bias, noise and drift [27].

In Figure 3.7 there is a schematic representation of these errors: the mean of the
observations has a bias from the true position, the variation around the mean value
is the noise. Another kind of error is the variation of the bias over time respect to the
average of the observations, this motion represent the changes in sensor performance
and we can assume it as drift.
In order to compute the true position of a satellite different approaches could be
used. In this work we will discuss the least-square analysis and the Kalman filtering.
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Chapter 4

Developing and testing the
localization filter

4.1 Requirements

The pulsar timing process objective is to detect the peaks of a millisecond pulsar. If
the rotational period of the pulsar is about 1 ms and the peak has full width at half
maximum (FWHM) of 1/10 of this period we need a timing accuracy of ∼ 30 µs,
this will translate in a position accuracy of ∼ 10 km. In order get a safety result,
the maximum error on the position that we will accept is about 1 km.

This performance is easily reached using a GPS receiver. The filter corrections
are required to smooth outliers on the GPS data, so hopefully it will give a decisive
response only rarely during the mission.

4.2 Analysis of numerically generated data

To satisfy the positioning requirements of the mission, the performance of the Fermi
NAV filter is taken as reference for the design of our positioning filter.

The work for the filter design was scheduled as follow:

1. Analysis of numerically generated data

• Least square analysis

• Kalman filter analysis
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2. Analysis of real GPS data from Fermi telemetry

3. Comparison with the NAV filter

In order to compare our results to the Fermi NAV filter data, we tested the orbit
determination processes on a numerically propagated orbit with the same orbital
elements (OE) of Fermi mission.

Figure 4.1: Position noise on the ideal orbit.

With a RK4 propagator we generated a reference orbit from a Fermi state vector
using the J4 model of motion described in Equation 3.3. Main OE of the propagated
orbit are reported in Table 4.1.

As preliminary simulation the orbit is propagated for one period (T = 5702 sec).
In order to simulate the GPS sensor performance, white noise with a zero mean is
added on the simulation. In detail we added 15 m noise (1σ) on position and 0.1
m/s noise (1σ) on velocity, these values are given by the Fermi GPS data sheet
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(Appendix). In Figure 4.1 is reported the position noise added on the three axes to
the propagated orbit. In the next sections we will refer to the propagated orbit as
”ideal orbit”.

Eccentricity 0.001282
Semi-major axis 6912.9 km

Inclination 25.58 deg

Table 4.1: Main OE of the propagated orbit.
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4.3 Least-Squares techniques

Least-Squares based algorithms are widely used in data fitting applications. The aim
is to compute the best fit that minimize the sum of the squared residuals, where the
residual is the difference between the fitted model and the observed data. The orbit
determination is a nonlinear problem, so a Nonlinear Least-Squares (NLS) algorithm
with differential correction was implemented following the [27] approach.

In order to understand why a NLS algorithm has a remarkable computational
cost, we will give a focus on the calculation of the partial derivative matrix.

Partial derivative matrix

The partial derivative matrix, A, describes how little variations in the initial state
influence the computed positions. Given the initial state X0:

X0 =
[
rI rJ rK vI vJ vK

]
A =

δobservations

δX0

δobsi
δX0

=


δrI,i
δrI,0

δrI,i
δrJ,0

δrI,i
δrK,0

δrI,i
δvI,0

δrI,i
δvJ,0

δrI,i
δvK,0

δrJ,i
δrI,0

δrJ,i
δrJ,0

δrJ,i
δrK,0

δrJ,i
δvI,0

δrJ,i
δvJ,0

δrJ,i
δvK,0

δrK,i

δrI,0

δrK,i

δrJ,0

δrK,i

δrK,0

δrK,i

δvI,0

δrK,i

δvJ,0

δrK,i

δvK,0


A is calculated using the finite differencing method (the term δi represent the vari-
ation of the initial state’s parameters):

δobservations

δX̂0

∼=
f(X̂ + δi)− f(X̂)

δi

The steps of the finite differencing algorithm are:

1. Orbital propagation from the nominal initial state to the state at time ”ti”:

rnom, vnom,∆ti → ri, vi
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2. For j = 1 to 6 (number of the state parameters)
Introduction of a little variation (1% of the nominal value) on the parameter j:

δj = X̂nom,j · (0.01) → δj = X̂nom,j + δj

3. Orbital propagation from the modified initial state:

rmod, vmod,∆ti → ri, vi

4. Computation of the j-column of the A matrix:

δobsj
δj

=
obsmod − obsnom

δj

5. Reset of X̂mod,j to its nominal value and restart the loop with the next j value.

This loop has to be computed for every measured data. Assuming that a set of
data is composed by ”n” observations, a number of ”6 · n” numerical integration of
motion are required for each iteration until the convergence is reached.
This amount of numerical integration processes has an important computational cost,
for this reason the NLS method is recommended for a posteriori (on ground) analysis
of the spacecraft position.

Due to the limitation of computing performance on a satellite’s CPU, it is not
advisable to run effectively a NLS code for real time orbit determination.

4.4 NLS application

The NLS application for orbit determination is quite simple. As described previously,
the [27] approach was implemented.

The principle of this application is to find the best estimate of the initial state
vector that minimize the squared residuals between a computed orbit and the ob-
served position. The optimized initial state is obtained from differential correction
to each parameter ( x y z position and x y z velocity), in Figure 4.2 an example is
reported of the position correction trend over iterations for a simulation of one orbit.

In order to analyze the performance of the NLS algorithm, different data sampling
intervals were tested. The reference set up for the simulation has 1 s of sampling
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Figure 4.2: Example of position corrections on the initial State Vector.

interval for 1 orbit simulation, so we have a batch of data composed by almost 5700
states.

The results of this simulation are impressively good. As reported in Figure 4.3,
the computed position along the three axes is included between ±1 m error from the
ideal orbit.

The results of the NLS analysis are strongly related to accuracy of the model of
motion used for the orbital propagation, if the model diverges from the reality the
computed position will drift from the ideal and errors will arise.
Due to the differences between the orbital models with and true motion, the analysis
of real data using NLS can not be done for a long time-span (our NLS simulations
on the numerically generated data use a J4 orbital model that is the same used for
the ideal orbit propagation and this is an optimal case).
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Figure 4.3: Differences between the computed orbit and the ideal orbit over time.

In addition to the influence of the model of motion implemented, we find a depen-
dence of the solution accuracy from the initial condition knowledge. Good precision
on the initial state vector will help a lot the convergence speed of the method and
its solution accuracy.
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4.5 Kalman filtering

The Kalman filter was developed for the trajectory estimation of the Apollo program
spacecrafts. It takes its name from its inventor, Rudolf Kalman.

This filter uses a set of measurements affected by Gaussian noise to valuate the
best estimate of a system status based on a system model.

We can define the problem as:

Xk = Φs ·Xk−1 + εk−1

Yk = Hk ·Xk + vk

Where:

• X = State vector

• k = instant of time in valuation

• Φs = State transition matrix

• ε = State determination noise

• Y = Measurement vector

• H = Measurement matrix

• v = Measurement noise

For noise and error evaluation we define the matrices Q (Covariance matrix of the
state model), R (Covariance matrix of the measurement noise) and P (Covariance
matrix of the state valuation).
The algorithm works in two main phases:

1. Prediction of the State vector at time ”k + 1” from the State at time ”k”

2. Correction of the State vector at time ”k+1” using the measurement at ”k+1”

As reference, the over-line on a term denotes a predicted term. Terms with hat are
corrected.
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Prediction

As first phase we will compute a predicted state Xk+1 and a predicted error covari-
ance Pk+1 at time ”k + 1”.

Xk+1 = ΦsX̂k Predicted State

Pk+1 = ΦP̂kΦ
T + Q Predicted Error Covariance

Correction

As second phase we will correct the predicted state. The corrected state comes from
a trade off between the predicted and the measured state, this operation is based on
the Kalman Gain ”K”.
The Kalman Gain denotes how much we trust the measure compared to the predic-
tion model. The terms of K are between 0 and 1: if K → 0 we trust the model
prediction, otherwise if K → 1 we trust the measurement.
The steps of the correction phase are:

Kk+1 = Pk+1H
T [HPk+1H

T + R]−1 Kalman Gain computation

X̂k+1 = Xk+1 + Kk+1[Y −HXk+1] State Estimate

P̂k+1 = [I−Kk+1H]Pk+1 Error Covariance Estimate

These two phases are repeated in loop using the State and the Error Covariance
Estimate at ”k + 1” as starting point for the next iteration.

4.5.1 Model

For our application we will use a 3d constant acceleration model of motion.
The State vector X is a 9x1 element defined as:

XT = [rxryrzvxvyvzaxayaz]
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According to the acceleration dynamic model, we find velocity and acceleration by
knowing acceleration and integrating:

a(t) = a0

v(t) = v0 + a0∆t

r(t) = r0 + vo∆t+
1

2
a0∆t

Or in the matrix form for the three axis:

Φ =



1 0 0 ∆t 0 0 ∆t2

2
0 0

0 1 0 0 ∆t 0 0 ∆t2

2
0

0 0 1 0 0 ∆t 0 0 ∆t2

2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(4.1)

The measurements are provided by the satellite’s GPS receiver, it give us position
measurements (rx, ry, rz) and velocity measurements (vx, vy, vz). The measurement
matrix will be:

H =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 (4.2)

The covariance matrix of the measurements noise (R) depends on the perfor-
mance of the measurement sensors. It is a diagonal matrix with terms related to
the accuracy of position measurements (σPx, σPy, σPz) and velocity measurements
(σV x, σV y, σV z).
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R =


σ2
Px 0 0 0 0 0
0 σ2

Py 0 0 0 0
0 0 σ2

Pz 0 0 0
0 0 0 σ2

V x 0 0
0 0 0 0 σ2

V y 0
0 0 0 0 0 σ2

V z

 (4.3)

4.6 Kalman filter application

4.6.1 Kinematic model errors

We implemented the Kalman filter with a ”Kinematic model” described by Equation
4.1, but the orbital motion is a non linear problem. This assumption introduces an
error that depends on the sampling interval.

The error trend on the three axes depends also from the satellite’s velocity: when
the velocity on an axis is small also the error become little. To get an idea of the
error magnitude we can simply compute it from the propagated orbit, as:

Error = Position(t = k) + V elocity(t = k) · dt− Position(t = k + 1) (4.4)

In Figure 4.4 is reported the trend of the errors due to a sampling time of 1
second. As we can see, the errors on the three axes have a sinusoidal trend that
follow the velocity but the norm of the errors is almost constant around 4.18 meters.

4.6.2 Q and R matrix

As we described in Section 4.5 the Q matrix is the covariance matrix of the state
model and it represent the error of the motion model. In our case Q can be tuned
using the errors on position and velocity computed like in Section 4.6.1.
We followed an alternative way, to construct Q we treated the covariance model as
the 3rd derivatives of the satellite’s positions (da/dt) as zero-mean random variables
(jerk) with known variances, σJx, σJy and σJz.

The R matrix components are set from the GPS receiver performance. According
to the Fermi GPS datasheet (Section 6.1), we will set:
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Figure 4.4: Error due to the 1 sec kinematic model on the three axes and it’s norm.

R =


(15)2 0 0 0 0 0

0 (15)2 0 0 0 0
0 0 (15)2 0 0 0
0 0 0 (0.1)2 0 0
0 0 0 0 (0.1)2 0
0 0 0 0 0 (0.1)2

 (4.5)

4.6.3 Different sampling frequencies

As we said in Section 4.6.1, different sampling frequencies lead to different errors
on the model. In order to estimate the optimal sampling interval we have analyzed
different solutions, in detail the sampling interval tested are: 0.5, 0.75, 1, 2, 3, 5, 10,
15 seconds.
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The results are reported in Figures 4.5, 4.6, 4.7, 4.8. It is clearly visible that with
the increasing of the time span between the observations the filter’s performance
drops.

As we can in see in Figure 4.5 for 15 and 10 seconds intervals, the performance
of the filter is the same of the GPS sensor. This fact is due to the error of the
kinematic model that becomes grater than the sensor’s noise and the filter trusts the
observations more than the model prediction.
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Figure 4.5: 15 and 10 seconds sampling time filter performance.
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Figure 4.6: 5 and 3 seconds sampling time filter performance.
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Figure 4.7: 2 and 1 seconds sampling time filter performance.
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Figure 4.8: 0.75 and 0.5 seconds sampling time filter performance.
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4.6.4 Outlier events

Once we have tested the performance of the filter under Gaussian distributed errors,
we now evaluate its behavior when we introduce one much larger position error (out-
lier). This kind of errors will be described in Section 4.9, they can be induced in the
telemetry e.g. by an erroneous association of a time with a measured position. In a
LEO orbit a satellite flies with a speed of ∼ 7 km/s, it means that a time-stamping
error of 0.5 second would be seen as a position error of about ∼ 3.5 km.

In order to simulate these outliers we introduce in our noise model a large position
error with a magnitude of 100 times the standard deviation σ. In Figure 4.9 the
comparison of the position residuals with and with out the filter is reported. As we
can see the filter performance is good, it allows to smooth the bad position with a
residual that is one order of magnitude better than the original.

Figure 4.9: High position error (above) and relative filter performance (below).
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In Figure 4.10 there is a focus on the correction. After the bad position data the
filter takes a little settling time to reach again the optimal performance.

Figure 4.10: Detail of the high position error correction.
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4.7 Fermi position data analysis

Due to the NLS high computational cost and to uncertainties on the orbit model
we decided to test only the Kalman filter. The analysis of the filter performance on
the Fermi telemetry data was based on a time interval of a month, from UTC time
’2016-12-31 23:30:01.540099’ to ’2017-02-01 00:29:59.940076’ (1 month se-
lected at random plus 30’ padding at either end).

Parameter Units Description

Telemetry packets time string UTC Time
GPS clock seconds GPS Time
NAV clock seconds Mission Elapsed Time

GPS position X meters ECEF Position
GPS position Y meters ECEF Position
GPS position Z meters ECEF Position
GPS velocity X meters/seconds ECEF velocity
GPS velocity Y meters/seconds ECEF velocity
GPS velocity Z meters/seconds ECEF velocity
NAV position X meters ECI J2000 Position
NAV position Y meters ECI J2000 Position
NAV position Z meters ECI J2000 Position
NAV velocity X meters/seconds ECI J2000 velocity
NAV velocity Y meters/seconds ECI J2000 velocity
NAV velocity Z meters/seconds ECI J2000 velocity

Squared residuals NAV/GPS meters2 (optional output)

Table 4.2: Selected Fermi telemetry outputs.

The outputs that we selected from the Fermi telemetry database are reported
in Table 4.2 (internal data, courtesy of the Fermi LAT Collaboration). The GPS
location is given in an ECEF reference system, the output of the navigation Filter on
board (NAV) is given in an ECI reference system, as required by the science analysis
software. LAT times are given as MET (Mission Elapsed Time), seconds elapsed
from 2001-01-01 00:00:00 UTC. The GPS Time is similar, but does not account for
leap seconds. Each telemetry packet is timestamped with its UTC time string, fre-
quency is approximately 2 packets per seconds.
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The selected data from the telemetry stream were dumped into a .csv file com-
posed by 5809824 points, for a dimension of 1.13 GB. The telemetry packets are sent
quite frequently and out-of-sync with either NAV and GPS clocks, so each location
is reported in the file two or more time, with a different telemetry time-stamp, so we
developed a data selector in order to extract and clean the data of interest for our
application.

As we have discussed, using the telemetry stream adds some additional compli-
cations and require some data selection and cleaning that would not arise if working
on the on board CPU and accessing the NAV and GPS registers.
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4.8 Results

During the analysis of Fermi telemetry the filter recognizes correctly the two kinds
of error that we tested with the numerically propagated orbit.

The differences between these errors are clearly visible. As reported in Figure
4.11, errors due to the sensor noise produce tens of meters residuals from the GPS
measured position.

Figure 4.11: Example of correction of sensor noise.

Note: The time reported on the plots is normalized respect the time of the first
point of the examined .csv file.

As expected, errors due to outliers are detected and smoothed. In Figure 4.12 it is
possible to see that the corrections have an huge magnitude compared to GPS noise.
In the example we show, peaks are smoothed and they present squared residuals of
≈ 2.5 · 107 m2 (around 5 km error). It means that this would translate into a timing
error of ≈ 0.8 s.
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Figure 4.12: Example of errors due to outliers.

Compared to the Fermi corrected NAV data, the performance of our filter is good
and it achieves comparable results on errors detection and error smoothing.

An interesting result is reported in in Figure 4.13, in this plot we show a compar-
ison between the two filters. As we can see the in house filter detects and corrects a
position error peak of ≈ 9 meters with a performance close to the NAV. Our filter
detects also a pattern of periodical small recurrent deviations of about 6 m, which
we do not understand but are inconsequential.

To try to understand this behaviour of the filters, we checked the NAV data and
discovered that the discrepancies we observe are not detected explicitly by the NAV
filter, i.e. they do not appear in the reported squared residuals output, but appear
to be corrected in the right way nonetheless.
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Figure 4.13: Comparative plot between the in house and the NAV filter.

From Figure 4.13 is also possible to notice that our filter produces less residuals
most of the time, this means that we follow the GPS more than the NAV, which
smooths more.

4.9 Investigation of the outliers

To understand the nature of the outliers we investigated the datastream with great
attention looking for artefacts.

One source of errors was related to the introduction of the leap second between
2016-12-31 23:59:59 and 2017-01-01 00:00:00.
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Then we noticed that in some case the telemetry reads the registers while they
are being updated, so we can have two packets containing e.g. the same GPS lo-
cation while the GPS time is already incremented, or the opposite. This causes a
large apparent error in the location, and we had to tag and remove all such events.
With a dedicated data selector code we handled the multiplicity of positions and
timestamps as exceptions. In Table 4.3 is reported a typical outlier characterized by
two different positions for the same timestamp.

UTC time MET GPSposY GPSposX GPSposZ

’2017-01-03 16:18:46.000’ 505153131 5523137.58 4031817.52 -1056494.98

’2017-01-03 16:18:48.000’ 505153133 5519727.87 4037285.64 -1053427.44

’2017-01-03 16:18:48.000’ 505153133 5516312.38 4042749.46 -1050358.70

’2017-01-03 16:18:49.000’ 505153134 5512890.92 4048208.86 -1047288.55

’2017-01-03 16:18:50.000’ 505153135 5509463.61 4053663.90 -1044217.10

Table 4.3: Detail of a typical outlier.

So it turns out that in order to simulate the performance of the filter as it would
be running on a CPU, so with no artefacts, we had to operate an ”outlier cleaning
process” on the telemetry data.

In Figure 4.14 we report the squared residuals of the filter corrections over the
month of valuation after this cleaning process. Compared to the focus on the outliers
correction (Figure 4.12), is clearly visible that the filter finds only errors due to the
GPS noise.

This result is even more evident looking the distribution of the corrections re-
ported in Figure 4.15 and Figure 4.16.

The first plot reports the distribution of the corrections in the case of a file with
outliers, as we can see it presents a lot of corrections with a magnitude of ≈ 1000
meters and a tail with magnitude around 6000 meters.

The second plot reports the case of the telemetry cleaned from the outliers. As
expected the distribution looks like a decreasing exponential, with most corrections
within 60 meters and few cases from 60 to 160 meters.

In conclusion of our investigation, large outliers are just artefacts of the telemetry
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Figure 4.14: Corrections on the GPS measured position without outliers.

stream and can be removed with a cleaning process.
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Figure 4.15: Correction distribution on a telemetry file with outliers.

Figure 4.16: Correction distribution of data in Figure 4.14.
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Chapter 5

Verification with pulsar timing

5.1 ft1 file

As told previously, in Section 2.5, the ft1 file contains the data of the photons
detected by Fermi LAT. This input file is obtained from the LAT Data Server1

where we did a selection of data based on:

• Energy range: 100 MeV – 10 GeV

• Radius: 5◦ around RA,DEC=(187.8,-14.2)

• Time of interest: January 2017 (MET 504921604–507600005)

• Local zenith of photons: < 100◦

The cut on the zenith angle of the incoming photons is required due to the
contamination caused by the Earth’s limb inside the field of view of the telescope.
As shown in Figure 5.1 there is a large numbers of photons (in red) coming from
close to the limb location (the peak of the gamma emission from the atmosphere is
at a zenith angle of 112◦ [4]), and while all other photons come with a constant rate,
these appear as two bright flashes at specific times when the LAT rocks towards the
Earth.
In Figure 5.2 the skymap of the detected photons is reported, again the photons
related to the effect of the Earth’s limb are represented in red. As we can see there
is a concentration of photons that denote the presence of the pulsar while the limb
contribution is uniform.

1https://fermi.gsfc.nasa.gov/ssc/data/access/lat
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Figure 5.1: Zenith angle cut. Left: distribution of zenith angle for all photons; right:
corresponding arrival times.Red: zenith< 100◦; red: zenith> 100◦.
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Figure 5.2: Skymap (r.a. and dec.) of the selected data. Color: zenith angle
selection.

5.2 ft2 file

The ft2 file describes the spacecraft’s position during the specified time selection
and comes from the Fermi database.
For our analysis we tested three files. The reference one is the one we downloaded,
with the positions from the NAV filter. The product of this work is the one where we
replaced the location of the satellite with those produced by our filter. In addition
we prepared another one using the raw GPS positions, cleaned of the outliers with
the techniques described above.
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5.3 parfile

The parfile is the ephemeris file for J1231-1411, provided by the Fermi LAT col-
laboration.

5.4 Results

As described in Section 5.2, we compared the result of the timing process of J1231-
1411 done with position given by our filter, NAV filter and cleaned GPS data.

Figure 5.3: Graphical output of a TEMPO2 run with the reference data. Right:
scatter plot of photon phase versus time; top left: phase histogram; bottom left:
significance of pulse detection versus time.

In Figure 5.3 is reported the graphical output from a TEMPO2 run based on
the LAT reference data. At the right of the Figure there is the scatter plot of the
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photons’ phase as a function of the time of detection. On the left we have the phase
histogram (above) and the significance plot (below). The peak emission is observed
at a phase between 0.6 and 0.7.

In Figure 5.4 we draw the phase histogram resulting from the timing with the
three different position sets. As we can see the differences between the different kind
of data are negligible, only one photon presents a little variation.

Figure 5.4: Phase histogram for the selected month, obtained with the reference
data, with cleaned GPS localization and with this work. The difference is negligible.
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Chapter 6

Conclusion

After the validation phase we conclude that the navigation filter, developed with
this thesis, works as requested. It is mostly required to smooth outliers in the GPS
data, so hopefully it will be a decisive factor only rarely during a mission, when such
outliers arise.

The timing process of pulsar J1231-1411 with the data corrected by our filter did
not highlight considerable differences with respect to the Fermi NAV filter taken as
reference.

Remarkably, if we apply our cleaning technique to the GPS data and take the
resulting locations we obtain results that are comparable with the others. Therefore,
for a posteriori position analysis based on the telemetry data it will be sufficient
to implement a cleaning code that excludes outliers. The latter appear to be only
artefacts related to telemetry packaging in our time interval of 1 month, but we did
not investigate the remaining time history looking e.g. for losses of GPS lock. The
timing evaluation process allowed us to conclude that even for the analysis of a mil-
lisecond pulsar the positional level of accuracy provided by the GPS measurement
under nominal operational conditions is enough.

Under nominal conditions, assuming to work on board directly accessing the GPS
receiver and spacecraft clock, the most frequent event that will need to be filtered
is the loss of GPS lock due to a DOP. Also some unexpected events could happen,
like the anomaly of the GPS timing in January 2016 [1]. In these cases the filter will
play a crucial role to maintain the satellite positioning accuracy in order to fulfill the
scientific requirements.
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6.1 Future work

Future improvement of this navigation filter will be focused on its possible use on
board of the proposed CubeSat demonstrator for MeV gamma-ray astrophysics by
the University of Padova, described in Section 1.3 .

The main feature that needs to be implemented in our filter is the ability to main-
tain the spacecraft location also in case of loss of GPS lock for long time intervals
(several minutes) without drifting respect to the real position. In order to get this
feature the dynamic model tested with this filter will need to be upgraded.

The last step will be the implementation of the filter on a CubeSat CPU and a
test it directly with a GPS receiver.
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Appendix

Software used in this thesis

The implementation of the filter was done with the software MATLAB. The Fermi
science tools were used for the data selection.

TEMPO2 (see Section 2.5) was used for the pulsar timing process and the soft-
ware TOPCAT (Tool for OPerations on Catalogues And Tables) was used for the
visualization of the .fits files.

Fermi GPS receiver data sheet

In the next pages is reported the Fermi GPS receiver data sheet, in detail it is a
General Dynamics Viceroy-4 GPS receiver.

67



Overview 
General Dynamics’ Viceroy-4 Global Positioning System 
(GPS) Spaceborne Receiver provides position, velocity, 
and time information for Low Earth Orbit (LEO) and 
Geostationary Earth Orbit (GEO) applications. The use of 
dual antennas for LEO enhances the performance and 
satellite visibility. Each of the 12 GPS channels can be 
assigned to either antenna. The design supports an RS-422 
interface.

Key Features
nn Space Qualified Digital Design

nn Full Spaceborne Capability

nn Autonomous Operation

nn Pseudorange and Integrated Carrier Phase at One Second 
Rate

nn One PPS Clock Output Synchronized to GPS Time

nn Radiation Hardened Static RAM

nn Up to 12 Receive Tracking Channels

nn 53 Cubic Inches

nn 2.4 Pounds

nn 20 to 35 VDC Operation

nn Improved Radiation Hardened Digital Electronics

nn 12 Channels Support All-in-View Tracking

nn Dual Antenna – Any Channel Assigned to Either Antenna  
(LEO only)

nn Fast Cold Start Mode Simplifies Integration and Autonomous 
Operation

nn Low Signal Acquisition and Tracking Supports GEO Sidelobe 
Tracking

nn Enhanced Resolution 1 Pulse per Second Output

Viceroy®-4 GPS Spaceborne Receiver
Superior positioning with 200+ years of on-orbit performance

Design based on legacy space qualified digital design

20 years of trouble-free spaceflight heritage

Same reliable position, velocity, time, pseudorange  
and carrier phase at 1Hz

Same form-factor and interface control as heritage Viceroy receiver



D-VICEROY4-02-0919 ©2019 General Dynamics. All rights reserved. General Dynamics reserves the right to make changes in its products and specifications at anytime and without notice.  All trademarks 
indicated as such herein are trademarks of General Dynamics. All other product and service names are the property of their respective owners. ® Reg. U.S. Pat. and Tm. Off. PRI-1908-0054

Performance Characteristics

Receiver Architecture
nn 12 channels with enhanced fast acquisition processor

nn Dual antenna – any channel to either antenna (LEO only)

nn L1: 1575.42 MHz, C/A code

nn Carrier-aided code tracking

nn Based on legacy Viceroy architecture (hardware and software)

nn Kalman filter or least squares solution

Input/Output
nn RS-422 serial I/O (standard)

nn X.25 protocol with ECEF position, velocity, time, longitude, latitude, 
pseudorange, carrier phase

nn One pulse per second (GPS, UTC, or Measurement Epoch Time)

nn 9-pin male Mirco-D for prime power

nn 37-pin female Sub-D for command and telemetry

nn SMA female connector for RF signal

Solution Accuracy
nn Autonomous Position: < 15 meters, 1 sigma (LEO)  
           < 100 meters, 1sigma (GEO)

nn Autonomous Velocity: < 0.1 meters/second, 1 sigma (LEO)  
           < 0.01 meters/second, 1 sigma (GEO)

nn 1PPS time: < 100 ns, 1 sigma (typical)

Time to First Fix
nn LEO: 4 minutes, cold start

nn GEO: 10 minutes, cold start

Orbital Dynamics
nn Altitude: approx 200km to 2000km (LEO) 
    approx 35,800km  (GEO)

nn Velocity: up to 16,000 meters/second

nn Acceleration: 1G

Optional and Custom Features: Contact Factory
nn Single string or redundant configurations 

nn Precision internal reference Ovenized Crystal Oscillator (OCXO)

nn External 10 MHz reference oscillator

nn Time Strobe Input: < 100 ns, 1 sigma

nn MEO and HEO Altitudes

Physical/Environmental
nn Size: 6.0” x 5.2” x 1.7” (152 x 132 x 43 mm)

nn Weight: 2.4 lbs (1.1 kg) max

nn DC Power: 8 W max; steady-state tracking (20-35 V)

nn Vibration: 17 Grms

nn Shock: 1750 G @ 500 Hz

nn Temperature: -20°C to +60°C

Standard positioning service in space

Space Inquiries   •  1-877-449-0600   •  www.gdmissionsystems.com/space  •  www.gdmissionsystems.com/contact-us
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