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Abstract

In questo lavoro di tesi é stato sviluppato uno stack protocollare basato su IPv6
per il sistema operativo TinyOS nell’ambito delle reti di sensori wireless. Lo
stack protocollare utilizza come layer di adattamento tra il livello data-link,
che segue lo standard IEEE 802.15.4, e il livello di rete, che segue appunto lo
standard IPv6, il nuovo standard 6lowPAN. L’architettura generale dello stack
permette di cambiare gli standard usati mantenendo inalterata la struttura dei
componenti e delle interfacce cosi da rendere il codice riutilizzabile sia per altri
scopi che per altri sistemi operativi. Lo sviluppo di un componente che gestisce
in maniera autonoma un blocco di memoria RAM, ha permesso di astrarre ul-
teriormente la gestione dei pacchetti IP rendendola indipendente dal particolare
standard implementato.

Nello stack protocollare sviluppato sono state implementate le procedure di
compressione e decompressione dell’header IPv6 specificate nel draft hc-15 e
le procedure di frammentazione e deframmentazione dei pacchetti IPv6 spiegate

nellRFC 4944.

L’autore.
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Chapter 1

Sensor networks and IPv6

Abstract:

In this chaptera brief introduction is given about wireless sensor networks and

related internet standards, (IPv6, 6lowPAN, adaptation layer).

1.1 Wireless Sensor Networks

1.1.1 Sensor Networks and Internet of Things

A sensor network is a network where a set of small devices, placed inside the
interested environment, keeps under observation some kind of environmental
conditions (temperature, light, humidity, position, ...) and communicates these
informations to a sink node that collects and store them.

An heavy engineering work have permitted to design of a new generation of
devices which are able to consume a relative small amount of energy, but also
provide a moderate processing power. These small devices, so called "sensor
nodes" or "motes", are usually equipped with sensors to detect and to measure
some environmental conditions, and with a radio module to be able to commu-
nicate with each other or with the sink node.

Typical deployments of these networks are monitoring and controlling environ-
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ment in special situations like wildlife nature (to prevent forests’ fire for exam-
ple), earthquake site, road traffic analysis or in sensitive buildings like bridges
or dams.

The network topology is ad-hoc or mesh; nodes can act like server, client or
router, they request data to other nodes, answer to a request from another node,
or route informations between two nodes that are too far to have a direct com-
munication.

Due to the nature of possible applications, that doesn’t permit to easily reach
nodes during their operations, these devices have to run for long time on battery
power, hence they have to save energy as more as they can. Therefore the char-
acteristics of the nodes are: frequent and long periods on sleep-mode, small radio
transmit power (small radio range), relatively slow working clock frequency.
The most important and crucial aspect is the network protocols: a node can
live just few days with radio chip always on; hence a reliable and energy-saving
communication protocol is necessary to permit to leave switched off the radio

chip as more as we can.

Internet of Things

Internet of Things refers to a new concept on how to think about all the physical
objects. If we suppose that it is possible to provide an internet connection to
every electronic object, we obtain a network made by objects that communicate
each other without the human presence. With Internet of Things every object
make itself recognizable by the rest of the world, communicate its identity, its
assignment and its capabilities; in the same way every object can ask to other
things who and where they are, what they can do, and determines if they are
useful to perform its work better or if they can extend its capabilities.

It is a communication revolution, every electronic object will interoperate with
all other electronic objects in the world. Things will start to work for us and

make our lives easier: an alarm clock that rings ealier in the morning if it knows
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that it will be road traffic, a fridge that writes the shopping list for us or an
house that closes its windows when it starts raining and so on.

An important application that is based on the concept of Internet of Things is
the Smart Grid. It concerns the electric distribution network that till nowadays
has been being typically unidirectional: a power plant produces and provides
energy to factories and private houses. But, with new renewable source energies,
everyone can produce and give energy to the community. In this new configura-
tion every single device that consumes or produces energy should be connected
to the electric provider network, and it would be possible to control and mon-
itor the energy consumption and production to efficiently capitalize renewable
energy.

As the microelectronics research goes on, devices like nodes can be smaller and
smaller and with more computing power even keeping a low power consumption,
so0 it is possible to put in every electronic item a small node useful to interoperate
with the object and communicate with its neighbor or maybe with every device
connected to internet. Therefore we can move the wireless sensor network algo-
rithms, protocols and features to the Internet of Things concept. The issue is to
design an efficient and reliable network stack for nodes, to make nodes ready to

get in the huge world of internet and internet protocols.

1.1.2 Hardware Platform and TinyOS

Since energy consumption determines sensor node lifetime, nodes tend to have
a very limited computational and communication resources. Instead of modern
32-bit or 64-bit CPU with gigabytes of RAM and terabytes of storage memory,
they have 8-bit to 16-bit CPU, with few kilobytes of RAM and few tens of kilo-
bytes for program memory. CPUs have 1 to 10 megahertz of clock frequency, and
their radio module can send data to a maximum ratio of few hundreds of kilobit
per second. As a result, algorithms, protocols and even their implementations

need to be vey efficient in terms of resource computation (CPU, ROM, RAM,
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energy, bandwidth).

The hardware platform chosen for this project is the TelosB mote. It was orig-
inally developed at UC Berkeley and now are produced by the Crossbow Tech-
nology company and by Moteiv Corporation, now called Sentilla Corporation.
TelosB motes feature a Texas Instruments MSP430 MCU, a 16-bit RISC MCU
clocked at 8 MHz. The platform offers 10 kB of RAM, 48kB of program mem-
ory and 16 kB of EEPROM to permanently storage essential datas. It draws
1.8 mA in active mode and just 5.1 pA in sleep mode. Its radio chip, a Texas
Instruments CC2420, is a low-power RF transceiver compatible with the IEEE
802.15.4 standard, and it can send up to 250 kbps at 2.4 GHz carrier frequency.
It provides a 128-byte TX/RX buffer and it draws 18.8 mA to receive and 17.4
mA to send. So it is easy to note that in terms of power, the radio dominates

the system.

TinyOS

TinyOS is a lightweight event-driven operating system specifically designed for
low-power wireless sensor nodes. The project started as a collaboration between
the University of California, Berkeley in co-operation with Intel Research and
Crossbow Technology, and has since grown to be an international consortium,
the TinyOS Alliance.

TinyOS differs from most other operating system in that its design focuses on
ultra low-power operation. It is designed for small, low-power microcontrollers
motes; furthermore it has very aggressive systems and mechanisms for saving
power by automatically bringing MCU in low-power mode every time it is pos-
sible.

TinyOS has a very small footprint, the OS core requires only 400 bytes of pro-
gram and RAM memory; there is no dynamic memory allocation no memory

management and no virtual memory, all memory is allocated statically at com-
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pile time. The system provides a set of reusable components which can be
combined together. Components implement hardware abstractions of sensors to
access to them on an high level interface, a scheduler to handle tasks, hardware
interrupts, timers, access to flash memory and radio chip.

In TinyOS blocking operations are avoided, I/O calls or long-latency operations
are usually split-phase: rather than block until completion, a function returns
immediately and then the caller gets a call back when the function or I/O driver
completes its operations. It also provides tasks which are functions that are
executed when every other function call have been terminated. Since only one
task can be executed at once there is no warry about data races.

TinyOS uses nesC, a dialect of the C programming language. It doesn’t count
on dynamic memory allocation or linking. This allows the programmers to an-
alyze their programs in terms of memory occupation at compile time resulting
in an efficient code optimization. NesC compiler works like a pre-compiler that
takes nesC source code and produces a C code. This C code, then, has to be
compiled by a C compiler. The structure of a nesC program is relatively simple:
there are interfaces that set out what a components can do by declaring a set
of commands and events, commands can be called and events must be handled
by every component that declares to use that interface. Components realize one

or more interface maybe by using other interfaces.  Components are of two

provides

Component Interface
uses

Command Event

Figure 1.1: nesC program architecture
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types: configurations and modules. A module implements interfaces. A con-
figuration connects modules together via their interfaces by providing a wiring

specification.

1.1.3 802.15.4 standard

IEEE 802.15.4 standard specifies physical and media access control layers for low-
rate and low-power wireless personal area network. Such networks are typically
limited to an area of about ten meters width with no infrastructure and limited
power availability devices.
It presents a set of network topologies which indicates two types of devices:
full-function devices (FFD) and reduced-funcion devices (RFD). RFDs would be
simple actuators or sensors like switches or temperature sensors with no large
amount of data to send, hence RFDs can be very simple devices. On the other
hand, FFDs are smarter than RFDs and can work like Personal Area Network
(PAN) coordinator . Therefore FFDs can talk to other FFDs and to RFDs,
RFDs can just talk to one FFDs at a time.
In every network cell a PAN coordinator must be present. The smallest network
cell is composed by an FFDs acting like PAN coordinator and an RFD connected
to the PAN coordinator. This PAN must have a PAN identifier which shall be
unique within the radio range. Every PAN can be configured like a star network,
where every device must comunicate only with the coordinator; like a cluster-
tree network where PAN coordinator uses other FFDs to extend its range and to
reach farest devices, RFDs can only partecipate like leave nodes; or like a pure
peer-to-peer network, a mesh network, where every FFD can talk to each other,
using its neighbor to extend the range, here again RFDs can only talk with the
nearest FFD.

Every device shall have unique 64-bit extended IEEE address, set by the
manufacturer, that can be used to directly communicate within the PAN. But, a

device can use a 16-bit short address that shall be unique just within the PAN.



1.1 Wireless Sensor Networks 7

L Q o
Star"\4 / © .\3/ g
o« f\. \./ o
o0 E
) " o

Cluster Tree

.‘\,. . Coordinator (FFD)
\ /‘ @ Full Function Device
. / © Reduced Function Device

Mesh

.7 \b
\
Figure 1.2: 802.15.4 possible network topologies

Therefore a new device that wants to join to a specified PAN needs first to wait
for its PAN coordinator which allows the use of a new 16-bit address.

In 802.15.4 standard there are two operation modes: a beacon-enabled mode and
non-beacon mode. In beacon-enabled mode, the PAN coordinator periodically
sends two beacons to the broadcast address; these two beacons edge a superframe
structure.

As it is shown in Figure [[3] the superframe contains three time sections. The

Beacon
il N
CAP CFP —>i

GTS GTS INACTIVE

o1 |2)13]|4|5[6]7]8]9

of 1] 2] 13] 14|15

Superframe Duration (ACTIVE)

Beacon Interval

Figure 1.3: 802.15.4 superframe structure in beacon-enabled mode

CAP section (Contention Access Period) is divided in sixteen time slots. The

first time slot is reserved for PAN coordinator beacon trasmission, the other
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fifteen slots are contended with other devices of the PAN, in a slotted CSMA-
CA (Carrier Sense Multiple Access, Collision Avoidance) mechanism. The CFP
section (Contention Free Period) is an optional section and it is needed when
there are low-latency applications running on devices that need a bandwidth
guarantee (GTS means guaranteed time slot). The last section is an inactive
section, in this interval of time PAN coordinator usually goes on sleep-mode,
and other devices should go too.

There is difference between data transfers from a device to a coordinator and
viceversa. When a device needs to send data to the coordinator it uses slotted
CSMA-CA during CAP, instead when PAN coordinator has a message for a
device, it indicates in the beacon that data are pending for the device. Then
device requests it within CAP, the coordinator replies with data within CAP
too, both using CSMA-CA. Hence when a device doesn’t have data for the
coordinator it can’t goes on sleep-mode for a while, but it must periodically
wake up and listen to beacon to look if there is any message for it.

On non-beacon mode there isn’t any superframe structure and an unslotted
CSMA-CA mechanism is used. Beacons are still needed for association processes.
Data transfer from coordinator to device still occurs with notification-request-
reply procedure. If there is no message for the nodes, the coordinator sends a
beacon-data frame with zero-length payload.

The max frame length is 128 bytes, that means a payload of about 110 bytes.
802.15.4 frames are associated with a 16-bit CRC to detect errors. Every frame
may be acknowledged with the optional use of acknowledgements. We remark
that aknowledgements are sent directly without using CSMA-CA | both in beacon
and non-beacon mode.

There are also two optional types of security services that can be chosen. In ACL
(access control list) mode, devices maintain a list of devices from which they are
willing to receive frames. In secure mode, devices use cryptography services in

addition to ACL.
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1.2 Internet Protocol version 6

IPv6 protocol is supposed to be the next generation internet addressing standard.
It is designed to succeed IPv4. It is quite different from IPv4. The most impor-
tant difference is the addressing space: from the IPv4 32-bit address, (4 x 10°
possible addresses), IPv6 goes to a 128-bit address, that is 3.4 x 1038 possible
addresses, 6 x 10?3 addresses per square meter on the earth. Obviously this
change implies that the header length doubles from 20 to 40 byte. Beyond this,
IPv6 simplifies some IPv4 problems and limitations like the concept of Network
Address Translation (NAT) that becomes obsolete, the DHCP protocol that,
in the 6 version (DHCPv6), becomes more powerful and efficient. Furthermore
there are some routing process semplifications.

It is impossible to fully describe all changes in IPv6 so, for the scope of this the-
sis, only the details inherent to 6LOWPAN implementation will be discussed.
An IPv6 packet can carry 1280 bytes of payload and the header format is shown
in figure [[4]

Version, payload length, next header, hop limit, source and destination address

0 3 11 15 23 3:

Version| Traffic Class ‘ Flow Label

32 Payload Length ‘ Next Header Hop Limit

64

| Source Address !

192

Destination Address

Figure 1.4: Default IPv6 header

fields are the same as in IPv4 header, and their meanings can be simply inferable;

traffic class and flow label fields are still on experimental phase, but they will be
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Address type Binary prefix

Unspecified 00...0 (128 bits)
Loopback 00...1 (128 bits)
Multicast 11111111

Link-local unicast 1111111010

Global unicast everything else

Table 1.1: TPv6 address type identification

used for QoS and priority queue management. On the contrary some IPv4 fields
had been eliminated: checksum is useless, in fact both upper and lower protocols
have their error detection mechanisms. Identification and fragment offset fields
were elided, this doesn’t mean that IPv6 doesn’t have fragmentation, but that
IPv6 fragmentation is like an option that needs optional header. NextHeader
field includes optional headers like source routing, hop-by-hop routing and oth-
ers, they all have a fixed length with a known pattern, so the length can be
calculated, and the payload beginning can be well inferred.

Because of this huge address space extension that IPv6 introduces, address as-
signement can be rethought in another way.

First of all, in IPv6 addresses are assigned to interfaces, and they can be of three
types, unicast, multicast or anycast: unicast address indicates one and only one
specific interface; multicast address specifies a set of interfaces, a message sent to
a multicast address must be delivered to all interfaces of the set; anycast address
indicates a set too, but when a message is sent to an anycast address, it can be
delivered just to only one interface of the set.

The type of an IPv6 address is identified by its high-order bits as it is shown in
table[[.Il Last bits of an IPv6 address represent the interface ID or, for multicast
addresses, the group ID. Interface IDs are set up by the device constructor and

are permanently stored in the device’s memory.
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In figure some typical IPv6 address structures are shown; figure [L5b] shows

n bits m bits 128 — n — m bits

global routing prefix subnet ID interface 1D

(a) Global unicast address

10 bits 54 bits 64 bits

1111111010 00...00 interface 1D

(b) Link-local unicast address

10 bits 54 bits 64 bits

1111111010 subnet ID interface ID

(c) Site-local address

8 bits 4 bits 4 bits 112 bits

11111111 flags scope group ID

(d) Multicast address

Figure 1.5: IPv6 address types

the link-local address template; when a device starts up it forms the link-local
address without the help of any DHCP server; then using that address as source
address it can contact the nearest DHCP server, using UDP, to ask for the global
prefix of its subnet to form a global unicast address, and starts to communicate
with the whole internet network. The only difference between a link-local ad-
dress and global address is that routers don’t forward link-local packets. Hence
subnet masks or NAT services becomes useless.

The TPv6 headers typically is 40 byte long, while IPv6 standard declares
that the maximum payload length for a single IPv6 packet can be 1280 bytes,
the result is a very efficient division between payload and overhead. But data-
link standards typically don’t provide messages payload with those dimensions,
hence it is often needed to design an adaptation layer to fit IPv6 packets inside

data-link messages.
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Since in most network topologies, hosts have no energy problems, data-link pro-
tocols don’t have to save energy or keep under control energy usage, and hence
these adaptation layers are quite simple, they just have to provide a way to break
into pieces IPv6 packets to let these fragments fit in data-link messages.

In wireless sensor networks, other than packet dimension problems, there are
also energy problems to solve, so a more complicated adaptation layer is needed.
Moreover another aspect should be noted: in wireless sensor networks, messages
carry small amount of data, only configuration informations or small values like
temperature or lightness, that can easily fit in a single data-link message, but if
hosts use IPv6 protocol they have 40 more bytes to carry in every message, and
a noticeable inefficiency appears, especially for what concerns the energy used
by radio chip.

6lowPAN working group within the IETF is concerned with the specification
for transmitting IPv6 packets over low energy and lossy networks. The group
is working on two different documents: header-compression draft and neighbor-
discovery draft. Both drafts have arrived at their fifteenth version. The first
document describes how to make IPv6 practical on 802.15.4 networks, mech-
anisms for header compression and for packet fragmentation, and provisions
for packet delivery in 802.15.4-based mesh networks. The second draws some
changes to IPv6 neighbor discovery process that doesn’t suit in low-power, lossy
and transitive networks.

In this work, the second draft wasn’t been considered, so it will not be com-

mented anymore.

A first raw version of 6lowPAN standard document is RFC 4944 ([I]), in

which fragmentation, header compression and mesh dispatching are described.
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0 2 3 4 8

‘ 1 0‘ \% ‘ F ‘ hops left originator address, final destination address

Figure 1.6: Mesh header format

Mesh header

Mesh header has been thought for mesh networks where routing operations is
made at data-link level. In that configuration every forwarder host changes the
source and destination data-link address fields with respectively its data-link
address and the next-hop data-link address. The interesting thing is that every
routing operations is made at data-link level, so in order to keep the true source
and final destination data-link addresses it is necessary to write them somewhere.
Figure shows the mesh header format. First two bits compose the pattern
to recognize that mesh header is present, V and F flags indicates respectively if
the originator or the final destination data-link addresses is written in a 16-bit
format or in an IEEE extended 64-bit format. Addresses would follows these
flags. With these address informations every forwarder can know who is the
originator, who is the final destination and then calculates who is the next hop

for that packet to reach the destination host.

Fragmentation process

The fragmentation mechanism uses a fragmentation header that must be present
in every fragment of the packet, and some rules on how to break the packet
payload and to write the right data in the headers. On figure [[L7] fragmentation
headers formats are shown. The first fragment relative to other ones has a
different initial pattern value. This difference saves the 1-byte field datagram
offset, in fact since the first fragment is recognizable by the pattern, it doesn’t

need to carry the offset, that is 0. Rules to break the IPv6 packet in two
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0 4 6 31
‘1 100 O‘ datagram size ‘ datagram tag ‘

(a) Fragmentation header for first fragment

0 4 6 32 40
‘1 110 0‘ datagram size ‘ datagram tag ‘ datagram offset ‘

(b) Fragmentation header for subsequent fragments

Figure 1.7: fragmentation headers

or more fragments are complicated and have been discussed for long time on
6lowPAN IETF mailing list. First of all, datagram size field must indicate the
size of the uncompressed unfragmented IPv6 packet. Then the datagram offset
states, by multiple of 8 bytes, the position where to place the fragment payload
within the uncompressed unfragmented IPv6 packet. So the IPv6 packet must
be broken in parts that are multiple-of-8-byte long, except the last fragment
that will contain the remaining bytes. In principle these rules seem to be simple,
but in practice there are some problems. In fact the header compressor has to
remind the size of the new compressed header and, at the same time, the old size
of the uncompressed header just because when the fragmentation module starts
breaking the IPv6 packet, it has to take the original size of the IPv6 packet
into account to calculate the right size of fragments, even if it will write the
compressed version of the IPv6 header.

Anyway this mechanism permits to defragmentation module to instantly allocate
a buffer to save and restore the unfragmented IPv6 packet, as it receives the first
fragment (chronologically first) of the packet, and, if we are sure that only the
first (first by position) fragment will contain compressed headers, it will be able
to copy the 802.15.4 frame payload of last (last by position) fragments within
the buffer just by watching at the datagram offset of the frame.

Last, there is a tag field that is a random 16-bit field, that must be equal for

every fragment of a packet. It is needed to distinguish fragments of different
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packets.

IPv6 header compression

There are several rules to compress an IPv6 header. A first series of rules were
explained in RFC4944, but after few months a new document has started to be
written, more detailed, with more efficient rules and mechanisms. Such rules are
explained on the 6lowPAN draft HC-15 ([2]).

The compressed IPv6 header is signaled by the presence of the LOWPAN-IPHC
Dispatch. After a distinctive pattern, there are a series of flags indicating how
the original IPv6 header has been compressed and which header fields are carried
in-line and immediately follow the dispatch. Figure [[8 shows the Dispatch.

2 bits TF field refers to Traffic Class and Flow Label fields. 4 combinations

3 5 8 9 10 12 13 14 1
0 1 1| TF | NH HUM |CIDSAC SAM | MDAC DAM |

Figure 1.8: LOWPAN IPHC Dispatch

are possible so 4 compression sizes can be used, each combination indicates how
many bytes have been compressed and how many bytes are kept from the origi-
nal IPv6 fields. It is possible to carry fields all in-line (4 bytes) or to carry only
one of them, the other is implicitly stated 0, or if they are both 0 it is possible
to elide them at all.

1 bit NH field states if the next Header field uses the LOWPAN-NHC compres-
sion mechanism or if the IPv6 next header field is carried in-line. Next Header
Compression is a particular tecniques that permits to carry some information
about transport layer protocol or about IPv6 extension headers within the 1
byte next header field.

2 bits HLIM field compresses the hop limit field; there are some standard hop
limit values often used for normal packet transmissions. These three values (1,

64, 255) can be rapresented by a 2 bits value, the fourth combination states that



16 Sensor networks and IPv6

the hop limit field is carried in-line after the Dispatch.

1 bit CID, SAC and DAC fields deal with the context compression mechanism.
It involves a periodically information exchanges by routers to hosts. Document
[2] describes how to use these context informations, while document [3] explain
how these information should be created and communicated across the network.
In practice "context informations" means that hosts should have informations,
stored in their memory, about state of the network and other hosts sorrounding
them. With these informations shared by every host, it is possible to elide part
of, or maybe the whole, internet address of another host. Writing a small code
(4 bit) that is used like an index, an host can retrieve in its cache, informations
about a neighbor host. This work doesn’t deal with this kind of compression.

2 bits SAM and DAM fields states respectively how many bytes of source and
destination addresses are written in-line. Possible choices are 128, 64, 16 bits or
0 bit. With a stateless compression, that means no context information avail-
able, an address can be compressed if and only if it has a link-local prefix, so
first 64 bits can be elided; if the last 64 bits present a particular pattern, it is
possible to compress them till 16 or even to 0 bits, that means that the whole
address can be calculated by some default known patterns and by address fields
of the data-link header.

A special note has to be made about multicast addresses; first of all only des-
tination address can be a multicast address, so the 1 bit M field refers only to
destination address and specifies if it is or not a multicast address. If it isn’t,
destination address compression works like for source address one; if it is, there
is another set of patterns to compress it, so if destination multicast address
presents one of those patterns it can be compressed to 48, 32 or 16 bits.

Using these compression rules a 40 byte IPv6 header can be compressed to only

3 bytes.

Because of low-power and lossy network behaviours, as transport protocol

UDP is often used. In fact UDP doesn’t need handshaking operations or ac-
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knowledegement mechanisms, so a lot of energy can be saved. The UDP header
is much smaller than TCP header, for example, but in [2] a mechanism to com-
press UDP header too is shown.

As it is explained, if the 1 bit NH value states that LOWPAN-NHC compression

0 5 6 7
111110 ¢ P

Figure 1.9: LOWPAN NHC header

is used, in the next header field it is possible to carry some information about
UDP header. Figure [[9 shows the 1 byte next header field with UDP protocol
informations. First five bits field is a pattern to recognize that informations are
about UDP header, C bit states if checksum field is present, while 2 bits P field
indicates how source and destination port number fields has been compressed.
LOWPAN-NHC compression counts on a set of UDP port numbers that can be
fully compressed: if source and destination ports are both in the range that goes
from 0xFOBO to OxFOBF , they can be compressed in a 1 byte field. If either
source or destination port is in the range that goes from Ox0F000 to 0xFOFF
it can be compressed in a 1 byte field, the other port number is carried in-line.
With this compression mechanism an UDP header can be reduced from a size
of 8 bytes to 1 byte.

Last thing to say is about length field of IPv6 and UDP headers: those values

can be well inferred either from lower layer or fragmentation header.
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Chapter 2

Related work

Abstract:

In this chapter the most important works on 6lowPAN implementation for low-
power development platforms are presented. Since it is hard to find information
about commercial version of 6lowPAN implementations, for this thesis only aca-

demic works were been studied.

2.1 6lowPAN by Matas Harvan

Matus Harvan has implemented the very first academic version of 6lowPAN for
TinyOS. He shared his work in 2007, and it is based only on RFC4944 [I] since
6lowPAN hc drafts ([2]) ([3]) were not been started to be written yet. So the
features of LOWPAN TPHC compression tecniques are not implemented.
Anyway this implementation is able to manage mesh and fragmentation header,
broadcast header (that is an header for link-level broadcast messages) and LOW-
PAN_HCI compression mechanism described in [IJ.

Even if this project still remain a good starting point to study how to build a
good implementation of a 6lowPAN module for TinyOS, it has a lot of limita-
tions and gaps. It can’t manage two defragmentation processes at same time,

so only one fragmented packet at a time can be received. It is impossible to use
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another transport protocol since there is no interface to directly access to any
IP module or something like that, only UDP datagrams can be sent. Last thing
is about the structure of the implementation: when Harvan composed 6lowPAN
structures and headers he didn’t use packed structure that permit to efficiently
store 1-bit flags, but he defined all these structures as traditional structure and
then to pick flags he filtered these variables with masks. With packed structures
the access to flags becomes easier and more direct, and maybe, since a lot of bit-
wise operation to extract 1-bit values becomes useless, some program memory

can be saved.

2.2 blip

Blip (Berkely Low-power IP stack) is an implementation in tinyOS of a number
of IP-based protocols, that is been being carried on by Berkeley WEBS (wireless
embedded systems) group.

Blip first release was on 2008, and now a 2.0 version is available. This last ver-
sion is based on draft hc-06, so most of the relevant updates from RFC 4944
has been made. WEBS group is working on a new version that will respect last
6lowPAN standard rules, but as written in their website, they are still waiting
for a final and approved document, even for neighbor-discovery standard too.
Blip is a very big and well-structured project that supports various interfaces,
header files and modules. In fact it doesn’t deal only with IPv6 header com-
pression but also with transport layer protocols (UDP and TCP), with neighbor
discovery procedures and with routing protocols (next version will have RPL as
routing protocol). WEBS group within the first version also have provided a
BaseStation application with a configuration script to install an IPv6 network
interface on a Linux-based PC to start developing a real IPv6-based sensor net-
work. So Blip is surely a ready-to-go implementation of 6lowPAN for TinyOS.

In this thesis only header compression is dealt with, so all other BLIP parts will
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be ignored.

The most considerable thing is how RAM memory is managed while dealing
with packets and header compression operations. As said before, in TinyOS
RAM memory allocation is static, so variables and buffers are allocated during
compilation stage; hence if a big buffer is rarely needed and for the most of the
operating time it would be useless, i.e. that amount of RAM memory would stay
unused. When dealing with packets of different sizes, this limit is amplificated;
in fact even if the most of packets would be few bytes long, it is necessary to
allocate an amount of memory to let the biggest possible packet fit in. In blip
this problem is solved with a set of functions that manages a huge buffer, called
heap, between modules; calling malloc and free functions every blip modules
can ask for some memory and then release it. With this original innovation, it
is possible to deal with more than one packet at a time while using less memory
than the biggest possible packet size.

Blip also provides more than one transport protocol interface, so it is possible
to choose between UDP and TCP, but if both of this protocols are not suitable,
it is possible to directly link applications to IPv6 interface, to call send and rcv
(receive) commands, and hence to implement an proprietary transport protocol.
On the contrary blip is very heavy both in terms of program and RAM memory:
a small application like UDPEcho that just answers to request made to port 7,
compiled with blip, weighs about 25 kilobytes in program memory and 5 kilo-
bytes in RAM memory; so in a platform like telosB it remains only 23 kilobytes
in program memory and only 5 kilobytes in RAM memory. Generally an appli-
cation needs not only a transport application but also an application protocol
like soap or coap; so less than 23 kilobytes may be not enough for an application

protocol and the application too.
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2.3 Contiki and pIPv6

Contiki is an open source operating system for memory-constrained networked
embedded systems. It is written by Adam Dunkels from the Swedish Institute
of Computer Science. Contiki is designed for embedded systems with small
amounts of memory. A typical Contiki configuration is 2 kilobytes of RAM and
40 kilobytes of ROM.

Like TinyOS, Contiki adopts an event-driven system to manage memory and
threads, but, opposed to tinyOS, it permits to dynamically load and unload pro-
grams and services.

One of Contiki’s main features is a set of well structured and lightweight net-
work protocol stacks which uIPv6 is surely the leading edge. pIPv6 is the world’s
smallest certified IPv6 stack, it can runs on IEEE 802.15.4 and Ethernet, its di-
mension is about 11 kylobytes of program memory and 1.8 kylobytes of RAM
memory. Within uIPv6 there is a set of header and function files, so called SIC-
Slowpan, that realizes a 6lowPAN implementation that respects RFC4944 and
the second version of 6lowPAN header-compression draft (hc-01). As reported,
a full-feature IPv6/6lowPAN Contiky OS image weighs 40 kylobytes of program
memory and 10 kylobytes of RAM memory. SICSlowpan is not imlemented like
a service but like a set of functions, that are called by MAC when a packet arrives
or by the IP service when there is a packet to send. Like 6lowpan by Harvan
SICSlowpan defragmentation function can’t process more than one packet at a
time, so while it is recostructing one packet, all fragments that doesn’t belong
to that packet will be dropped. Mesh header and link level routing are ignored

since Contiki targets the route-over tecnique.

2.4 TinyNET

TinyNET [4] doesn’t deal with 6lowPAN;, but it is a framework that allows devel-

opment and a quick integration of network protocols in TinyOS. It is developed
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at the University of Padova. The development originated from the fact that very
few applications are actually built based on reusable components, since the most
widespread approach is to implement ad hoc, monolithic blocks that deliver the
required functionalities. The original idea is to create a general structure to
support the use of different protocols without totally changing the backbone of
TinyOS network stack. With this idea an architecture made of interfaces and
configuration files has been implemented, it permits to anyone to implement his
own network protocol at any level of protocol stack, without thinking about on
how to integrate his protocol in TinyOS network protocol stack.

Since the importance of this thesis is not how 6lowPAN compression functions
has been implemented, but how the whole architecture has been thought, and
since tinyNET structure design is one of the basic principles of this project, an

introduction to this work is in order.
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Chapter 3

Implementation

Abstract:

Chapter starts with a general and high-level description, then goes down ana-
lyzing interfaces commands and events and some specific and peculiar functions

that distinguish this work from other implementations.

3.1 Introduction

Before starting to describe project objects and architecture features, it is neces-
sary to make some remarks.

In this 6lowPAN implementation work the author has had a relevant role at each
steps, from the beginning when other tinyOS 6lowPAN implementations must
be studied and analyzed to find lacks, through the main steps when the archi-
tecture has been designed, and the implementation has been made, even till the

end when tests were realized and executed.
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3.2 Design principles

The design stage of this sixlowpan implementation were made in collaboration
with Eng. Angelo P. Castellani and Eng. Mattia Gheda, who had the lead of
starting this new project. They has some specific ideas and objects about how
to realize an efficient and versatile network stack and how to structure interfaces

and components of this 6lowpan implementation:

e RAM memory centric optimization: create a memory manager component
that would manage RAM memory for the whole programs and applications
running on a node. Focus on RAM management that compensates that
TinyOS gap about static RAM allocation. This module provides two basic
functions to deal with RAM memory from applications: alloc and free
functions, and some other functions properly designed for network proto-
cols: realloc and hrealloc, functions that extends or reduce a buffer
respectively on tail or head. These kind of function are very useful when
dealing with packets, headers and footers;

Figure B shows that this new component’s functions and features will be

Application

UbP
(TCP)

IPV6

Memory

6lowPAN

802.15.4

Figure 3.1: Design of memory component architecture



3.2 Design principles 27

shared by all components of a node maybe by application programs too,

not only when they have to send a message but also for their own functions.

e modular standard support: incapsulate as much as possible all protocol
dependant procedures and functions to allow future updates or to make

functions portable to other platforms or other OSs;

e clear layer design: split layers as much as possible and avoid modules that
include more than one protocol to simplify the design operations and code.
But at the same time keep reduced the number of function calls that weigh
a lot on code dimension. With the right data structures, function calls can
be reduced and code can be made light. Hence if the architecture is well
designed, it is possible to take advantage of modular functions keeping

code light.

e level 2 and level 3 routing support: develop both route-over and mesh-
under routing mechanisms to postpone the choice. With route-over, nodes
build routing tables with IPv6 addresses and routing protocol works with
[Pv6 messages, at data-link level only an IPv6 to data-link address transla-
tion is needed since route-over provides IPv6 address of next-hop hosts. On
the contrary with mesh-under, nodes build routing tables with data-link
addresses and routing protocol works with data-link messages, IPv6 mod-
ule communicates to lower levels the destination’s IPv6 addresses ignoring

how routing operations are made.

RAM memory manager was designed implemented and tested before this project
started, so it will be discussed but not referred to as a component designed during

this thesis work.
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3.3 Architecture

In figure the overall protocol stack architecture with raw rapresentations of
different modules is shown.

As it is shown every network protocol layer has its own module, so if a right

UbDP ICMPv6

IPV6CoNfig ~ |=--- -+ IPVv6 layer le -] RouteOver

IPv6 Adaptation Layer

NeighborResolution |- - - - - | R ——— MeshUnder

(6lowPAN)

MAC layer

Figure 3.2: An outline about system architecture

set of interfaces and data structures are written with right set of input param-
eters to each commands and events, it is possible to implement, for example, a
different IPv6 adaptation layer for the same MAC layer without modifying any
other modules. The ISO-OSI protocol stack principle that says that every layer
is indipendent from others is kept. This guideline together with the RAM mem-
ory component that stores and shares data between modules, it make possible to
implement a generic, reusable and, at the same time, light and efficient structure
that stays indipendent from which protocol standard is chosen.

The same reasoning can be made for what concerns routing protocols. A rout-
ing protocol has substantially to answer to few questions that may be asked by

network or data-link layers about next hop hosts’ addresses to reach a given des-



3.3 Architecture 29

tination. Routing protocols try to find these answers with a messages exchange
between nodes. So a routing protocol implementation needs to send and receive

messages and have to answer to next-hop questions.

interface RouteOver {
command void getNextHop (slp ip6 addr tx addr, slp ip6 addr t=
nextHop) ;
command void forwardAddr (slp ip6 addr_ tx addr, slp ip6_ addr t=
nextHop) ;

Listing 3.1: Route over routing interface

interface MeshUnder {
command ieeelb54 saddr t getNextHop (slp ip6 addr tx addr);
command ieeel54 saddr t forwardAddr (ieeelb4 saddr t addr);

Listing 3.2: Mesh Under routing interface

Hence as it can bee seen in figure and in listings Bl and B2, routing inter-
faces are simple but complete. TPv6 module will be linked to RouteQOver interface
while 6lowPAN module will use MeshUnder interface’s commands.

Obviously these two modules will never work at the same time, since just one
routing module is needed, so if route-over is chosen, mesh-hunder become an
useless module and viceversa.

Both MeshUnder and RouteOver interfaces have two commands that, apart the
name, appear to be equal; the difference is that with getNextHop command rout-
ing module must answer with a valid address, but with forwardAddr command
routing module can answer with a null address if it doesn’t want that messages
are forwarded.

For messages exchange, RouteOver module will be linked to ICMPv6 module,

while MeshUnder module will be directly linked to tinyOS radio drivers.
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With this configuration both route-over and mesh-under routing modules be-
come two black boxes, IPv6 and 6lowPAN modules don’t need to know anything
about them, which routing protocol is used, if route-over or mesh-under is used,
what kind of informations are exchanged, it is possible to implement any kind
of routing protocol without affecting any other modules.

This aspect is key for this thesis. To build a structure that permits to reuse codes,
to implement the newest protocol version without any other thought about the
whole structure of the system.

In figure there are two more modules not been presented yet: NeighborRes-
olution module provides commands to translate an ITPv6 address in a data-link
address; IPv6Config module provides all features inherent to host addresses.
Every data-link interface can have more than one IPv6 address, normally it has
a link-local and a global unicast address, but also it can be registered to one
or more multicast addresses; hence IPv6Config maintains and manages a cache

with all these addresses.

3.4 Memory module

interface Memory {
command memory id_t alloc (memory size t size);
command void free (memory id t id);
command void * id2p (memory id t id, memory size tx size);
command error t realloc (memory id t id, memory size t size);

command error t hrealloc (memory id t id, memory size t size);

Listing 3.3: memory component interface

As it can be seen in listing memory interface provides commands to handle
RAM memory: memory_size_t and memory_id_t are two uint16_t data types,
the first one is used to define the memory size in bytes, the second one is used

to identify an allocated buffer.
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When an application has to send a message it calls alloc function that returns
a valid ID (if such amount of memory is not available it returns 0), then the
application calls 1d2p function to take back a pointer to memory space from the
ID, to use for writing data. After writing it can pass the ID to the transport
protocol for sending. UDP component has to add its own header to the buffer
head, so it calls hrealloc function that adds an amount of bytes taken as input
parameter, if there is no error signals, UDP calls again id2p function to begin
writing its header; then it passes the packet to lower layer, and so on.

The same procedure is used when a packet is received: the lowest layer that
handle the IPv6 packet (sixlowpan) asks for a buffer, writes the packet and
passes the packet to upper layer, which takes a pointer to the datagram, starts
reading its own header and then resizes the buffer by calling hrealloc function
with a negative value of size parameter.

So applications payload, once it is written by the lowest network layer, substan-
tially doesn’t move any more till it arrives to the application program that can
start reading it and maybe delete it by calling free function.

With this tecnique there is no problem about buffer pointers that change values
or become obsolete, and there is no need to copy a huge amount of bytes to move
data to another buffer.

To implement these features, the memory component uses one huge block of
RAM memory statically initialized and few structures made of a modified Pool
component, called SortedPool. This pool differs from a classic TinyOS pool:
sorted pool assigns an ID to every active element, and it is able to get back a
pointer to the element by its ID.

In the memory component there are two lists made of those modified Pools,
one called FreeList and one called OccList; these two lists represent blocks
of buffer’s memory that are respectively free or allocated. At the beginning,
OccList is empty and FreeList has one element that represents a block of empty

memory as large as the whole RAM memory assigned to this component. When
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alloc function is called, it checks in the free list if there is an element that repre-
sents a block of empty memory bigger or equal than the requested size. If there
is, it resizes that element and also add a new element in occupied list. When
a buffer has to be cleared, the referred element in the occupied list is removed,
and a new element in free list is added, then a check is made: if there are two
contiguous elements in free list, they are joined in one element.

hrealloc function before doing the same job as alloc function, checks if there
is an element in free list that represents an amount of free memory that lies
before allocated buffer. If there is, it removes the element in the free list and
adds that amount of memory to the element that represents the buffer, if there
isn’t, it works like the alloc function, i.e. it looks for a free memory block as
large as the sum of the allocated buffer and the hrealloc input size parameter,
then copies data from old buffer to that just allocated, and frees the old one.

realloc function works like hrealloc function on the buffer tail.

3.5 sixlowpan module

The most significant component that was implemented is called sixlowpan; it
provides few interfaces and few header files which include the most significant
and crucial functions to implement the 6lowpan layer.

In figure B.3] header file’s names and what they realize are shown. Files with
.h extension define structures and constants for headers, while files with .c ex-
tension define functions to handle these structures. As it is shown, 6lowPAN
headers was splitted in two different header files, one called RFC4944 where frag-
mentation and mesh header are handled and the other HC15 where last 6lowPAN
header compression tecniques, described in [2], are implemented.

For better understanding on how these header files are involved in 6lowPAN

implementation, some structures and function prototypes are shown.
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Figure 3.3: An outline about sixlowpan module and header files

typedef struct {

memory id_t packet;
slp_ip6 addr_t nextHop;
bool checksumElide ;
slp_mesh opt_ t mesh;
slp_frag opt_t frag;
slp _context t context;
uintl6 _t byteLeft;

} slp_packet entry t;

Listing 3.4: packet entry data structure

typedef nx_struct {
nx_uint8_t pattern:2;
nx_uint8_t v:1;
nx_uint8 t f:1;
nx_uint8 t hopsLeft:4;
nx_uintl6_t originator;
nx_uintl6é_t finalDest ;

} slp_mesh opt_t _ attribute _ ((packed));

Listing 3.5: mesh header structure

typedef nx_struct {

nx_uintl6é_t pattern:5;
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nx_uintl6_t size:11;
nx_uintl6_t tag;
nx_uint8 t offset;

} slp_frag opt_t _ _attribute _ ((packed));

Listing 3.6: fragmentation header structure

Listing 34 shows the crucial structure, used both by sixlowpan send and receive
commands, to store fundamental informations to handle IPv6 datagrams with
the minimum number of external function calls.

memory_id_t and slp_ip6_addr_t, are the memory ID where the packet is
stored and IPv6 address of the next hop host; slp_mesh_opt_t and slp_frag_opt_t
are respectively mesh and fragmentation headers of the TPv6 packet, stored in
proper structures (shown in listings and B.06]) of IPv6 packet; byteLeft vari-
able is used by receive procedure to keep trace of how many bytes remains to
complete the IPv6 packet. checksumElide boolean variable indicates if LOW-
PAN NHC compression have elided the checksum field. Since to elide check-
sum field sixlowpan needs the permission from application program, this variable

should state the application’s order.

typedef nx_struct {
nx_uintl6é_t pattern:3;
nx_uintlé_t tf:2;
nx_uintl6_t nh:1;
nx_uintl6é_t hlim:2;
nx_uintl6_t cid:1;
nx_uintl6_t sac:1;
nx_uintl6_t sam:2;
nx_uintl6é_t m:1;
nx_uintl6_t dac:1;
nx_uintl6_t dam:2;

} slp_hcl5 _header t _  attribute  ((packed));

Listing 3.7: LOWPAN IPHC header dispatch structure
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typedef nx_struct {
nx_uint8_t pattern:5;
nx_uint8_t c:1;
nx_uint8 t p:2;
} slp_hcl5 udp_nhc_ t _ attribute_ ((packed));

Listing 3.8: LOWPAN NHC dispatch structure

In listings B.7and B LOWPAN TPHC and LOWPAN NHC header structures
are shown. Field and flag’s names respect those one assigned in the draft docu-
ment [2].

Those structures are practically never instantiated, but only pointers of this
structure types are instantiated, and then casted to a generic buffer. By this
procedure, the access to flags is direct and doesn’t need any masks or bitwise

operations, and at the same time code is kept simple and more readable.

uint8 t filllstMsg (slp_ packet entry tx entry, void+* messagetPayload
, uint8 t messagetPayloadLength, voids packetPayload, uintl6 ¢t
packetPayloadLength , void* compHeader, uint8 t compSize, uint8 ¢
originSize );

uint8 t fillOtherMsg (slp_ packet entry tx entry, voidsx
messagetPayload , uint8 t messagetPayloadLength, void=*
packetPayload , uintl6 t packetPayloadLength);

uint8 t decompress (void* messagetPayload, slp_ packet entry t* entry
)

uint8 t fillPayload (slp_packet entry t* currentEntry, void=
packetPayload , void* messagetPayload, uint8 t
messagetPayloadLength ) ;

Listing 3.9: Some of the most important function declarations of RFC4944.c file

In listing 3.9] some functions used to handle mesh and fragmentation headers
are shown. fillilstMsg function is used to fill an IEEE 802.15.4 message with

first IPv6 packet’s fragment or even with the whole IPv6 packet if it is small
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enough. It receives pointers and sizes of the data-link message payload and the
[Pv6 packet, it also receives pointer and sizes of the IPv6 header before and
after compression, to rightly fill data and to calculate the offset. £i110therMsg
is used to write other IPv6 packet fragments in data-link messages, it doesn’t
need any information about the IPv6 compressed header since in subsequent
fragments the IPv6 header would not be present and the offset value is sufficient
to calculate which bytes to send are remaining. fillPayload function is used in

the receive process to write the IPv6 packet payload within the buffer.

uint8 t HC15Compress (void* packetPayload , voidx buffer , uint8 t=x
originSize , bool useMeshOrNeigh, bool checksumElide);

uint16 _t HC1l5decodeHeader (slp packet entry t= entry, voidsx
messagetPayload , uint8 t messagetPayloadLength , void=*
packetPayload , ieeel54 saddr t macSrcAddr, ieeelb4 saddr t

macDestAddr, uint8 t% originSize);

Listing 3.10: Some of the most important function declarations of HC15.c file

Listing B10l shows the two fundamental functions to compress and decompress
the IPv6 header. HC15Compress function needs a pointer to IPv6 header be-
gin and a pointer to a buffer where to write compressed header, then it returns
sizes of header before and after the compression process. The two parameters
useMeshorNeigh and checksumElide are needed to state if it is possible respec-
tively to elide the last 2 bytes of IPv6 addresses and the UDP checksum field.
HC15decodeHeader function decompress the IPv6 header by reading it in the
first fragment of an IPv6 packet and then writing it in a buffer and, as for com-
pression function, it has to return both compressed and decompressed sizes of
[Pv6 header. macSrcAddr and macDestAddr parameters are needed in the case
that last 2 bytes of [IPv6 addresses have been elided.

The sixlowpan module mainly implements the 6lowPAN standard.
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interface IPv6Adaptation {
command error_t send(memory id t pck, slp ip6 addr_ tx nextHop);
event void sendDone (memory id t pck, error t error);

event void receive (memory id t pck);

Listing 3.11: TIPV6Adaptation interface

As it is shown in listing B.IT] there is not a 6lowPAN interface, but a more generic
interface IPv6Adaptation. This solution keeps the system open to future im-
provments and development also for other possible adaptation layers. It is a
quite simple interface with minimal commands and events: memory_id_t is the
ID of the memory space where IPv6 datagram is located and slp_ip6_addr_t*
is a pointer to IPv6 address of the nextHop. As already explained, the name nex-
tHop doesn’t force IPv6 to provide a true next hop address, in fact if route-over
will be used, next hop will be true next hop and NeighborResolution module will
translate that address to a data-link address, on the contrary if mesh-under will
be used nextHop will be the destination address and the true next hop data-link
address will be calculated by mesh-under module.

Since the sixlowpan component is the first component in the network proto-

sixlowpan
send path receive pat

packet to send ?ueue IPv6 packet to defrag list

message_t to send queuemessage_t received queye

leeel54Message

Figure 3.4: sixlowpan queue architecture and paths of send and receive processes
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col stack that has to deal with IPv6 packet and data-link message at the same
time, and it has also to deal with a packet fragmentation process, some pools
and queue are needed. So the memory component become less useful than it is
for IPv6 or UDP module. In fact here it is just used to write or read the IPv6
packet, not to add or remove 6lowPAN headers.

Furthermore, sixlowpan module must implement a lot of operations before send-
ing an IPv6 packet, so a non monholitic solution has been chosen. In fact, if all
operations would be made in a single step included in the send command, CPU
would be pre-empted for too much time. So the operations has been split in
three phases computed by tasks. The first phase is implemented by sixlowpan
send command and consists in instantiating a new packet entry and filling this
entry with the most part of the information that can be calculated in that mo-
ment, like mesh header or IPv6 next hop address. Last operation is to enqueue
the entry in the packet entry queue. The second phase is implemented by a task,
called packetTask, it makes the most important and long time operation, that
is popping first element of packet entry queue, extracting the next fragment to
send, if it is the first, then compressing IPv6 header, instantiating a new [EEE
802.15.4 message, writing payload and filling MAC header with the relevant in-
formation, and, last, enqueuing the message in the message queue. The third

and last phase is made by another task, called sendTask, that has simply to pop
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Figure 3.5: sixlowpan sending procedure workflow
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first element of message queue, call send command of Ieeel54Message interface
and wait for sendDone signal to check if message is sent.

As it is shown in figures B.4] and every task manages its own queue. They
are posted when an element is enqueued and they don’t stop executing till the
queue becomes empty. In this way CPU doesn’t stay busy in executing one sin-
gle function but it can be requested by other functions more frequently, making
a lighter and prompt system.

The receive procedure is much less complicated, in fact just one task is used.
When tinyOS driver signals that a new message is arrived, sixlowpan receive
calls the event handler, enqueue the message in a receive message queue and
then posts the receiveTask. The task pops the message, extracts headers, then
decompresses IPv6 header if present. If message is a fragment of an IPv6 packet
it checks if fragmentation header tag value is already present in the packet-to-
defrag list, then if it is, it writes payload in the right place in the buffer, if it
is not, it allocates a new buffer, write the payload and puts a new entry in the
list. When an IPv6 packet is received and defragmented, it passes the buffer ID
to the upper module that handles IPv6 header.

We remark that it is the receiveTask that checks if there is a mesh header and
if the message has to be forwarded, it asks to MeshUnder module to provide a
next hop address, it changes data-link destination address and then enqueues
message in the message-to-send queue.

Sixlowpan module also provides an Teeel54MessageSend and Teeel54Receive in-
terface. Since maybe it is necessary for some applications to directly send and
receive non-IPv6 messages, to recognize these kind of messages it is necessary
to add on payload head one byte with a known pattern that signals that mes-
sage is out of IPv6 protocol communications. This job is made by sixlowpan
module, and when a non-IPv6 message has to be sent, sixlowpan moves the mes-
sage payload to empty the first byte and write the NALP (not a lowpan packet)

pattern. The same thing must be done when a message is received: sixlowpan
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firstly check if NALP pattern is present, if it is, it signals a received message
on Ieeelb4Receive interface, otherwise it enqueues the message as explained

before.

3.5.1 Compression and decompression processes

Since it is a procedure explained in draft hc-15, compression and decompression

functions is performed in HC15.c file.

slp_ip6 header ts* header = NULL;

slp_ UDP_header tx+ UDPheader = NULL;

slp_hclb header tx HCI15Dispatch = NULL;
slp_hcl5 _udp_nhc t* nextHeaderCompress = NULL;

header = (slp_ip6 header t %) packetPayload;
packetPayload +—= sizeof (slp ip6 header t);

HC15Dispatch = (slp_hcl5 header tx) buffer;
buffer += sizeof(slp_hcl5 header t);
headerSize +— sizeof(slp_hcl5 header t);

Listing 3.12: HC15Compress function’s code fragment to show structures use.

As said before, structures like s1lp_hc15_header_t or slp_hcl15_udp_nhc_t are
never instantiated, only the pointer of those structures types are used. In listings
this use is shown: pointers are initially instantiated with a NULL value;
then the pointers to the buffers ( packetPayload and buffer) are casted to be
those structure type pointers.

Other code fragments show how compression processes is made, in particular B.13]

refers to the hop limit field, while .14l shows source address compression process.
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switch (header—>hopLimit) {
case 1:
HC15Dispatch—>hlim = SLP_HC15 HLIM 1;
break ;

case 64:
HC15Dispatch—>hlim = SLP_HC15 HLIM 64,
break;
case 255:
HC15Dispatch—>hlim = SLP_HC15 HLIM 255;
break ;
default
HC15Dispatch—>hlim = SLP_HC15 HLIM INLINE;

memcpy (buffer , &(header—>hopLimit), sizeof(header—hopLimit));
buffer += sizeof (header—hopLimit);
headerSize += sizeof (header—hopLimit);

break ;

Listing 3.13: HC15Compress function’s hop limit compression process.

temp = &(header—>source);
HC15Dispatch—>sac = SLP_HC15_SAC_STATELESS;

if (memcmp(temp, &SLP LINKLOCAL NET ADDR, sizeof (
SLP_LINKLOCAL_NET ADDR))!=0)  {
HC15Dispatch—>sam = SLP_HC15 SAM 128;
memcpy( buffer , &(header—>source), sizeof (header—>source));
buffer += sizeof (header—>source);
headerSize += sizeof (header—>source) ;
} else {
temp += sizeof (SLP_LINKLOCAL NET ADDR);
if (memcmp(temp, &SLP EUI64 SHORT ADDR, sizeof (
SLP_EUI64_SHORT ADDR))!=0) {
HC15Dispatch—>sam = SLP_HC15 SAM_64;
memcpy( buffer , temp, sizeof(header—>source) — sizeof (

SLP_LINKLOCAL NET ADDR));
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buffer += sizeof(header—>source) — sizeof(

SLP LINKLOCAL NET_ ADDR) ;

headerSize +—= sizeof (header—>source) — sizeof(
SLP_LINKLOCAL_NET ADDR) ;
} else {

if (useMeshOrNeigh)
HC15Dispatch—>sam = SLP_HCI15 SAM 0;
else {
HC15Dispatch—>sam = SLP_HC15_SAM_16;
temp += sizeof (SLP_EUI64 SHORT ADDR);
set 16t (buffer , get 16t (temp));
buffer += sizeof (header—>source) — sizeof(
SLP LINKLOCAL NET ADDR) — sizeof (SLP_EUI64 SHORT ADDR);
headerSize += sizeof (header—>source) — sizeof(

SLP LINKLOCAL NET ADDR) — sizeof (SLP_EUI64 SHORT ADDR);

Listing 3.14: HC15Compress function’s source address compression process

Just to better understand: set_16t function is needed to solve well known
problems about TinyOS’ ¢ compiler for MSP430 MCU that causes some troubles
when copying 2 bytes fields.
Decompression function works in the same manner, buffer pointers are casted
to be specified structure pointers and then, by simply reading LOWPAN TPHC
flags, IPv6 header is rebuilt.

3.5.2 Fragmentation and defragmentation processes

Fragmentation and defragmentation functions are implemented in RFC4944.c
file. The mechanism counts on more than two functions since it involves data-

link payload filling and extracting.
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if ( packetPayloadLength — originSize + compSize <=
messagetPayloadLength ) {
// IPv6 packet can fit in a single message ¢
} else {
// writing fragment header
if (compSize < messagetPayloadLength) {
.../ / fill first fragment with IPv6 compressed header and
first fragment of payload

1 else {

// condition not considered

Listing 3.15: filllstMsg function’s code fragment

As explained, fragment header offset value must be calculated taking care of
uncompressed IPv6 header, so £i111stMsg function, that deals with filling data-
link message’s payload with first fragment, receives both size values of the IPv6
header, before and after compression. This function has firstly to check if the
whole IPv6 compressed packet can fit in a single message, if not then starts
with fragment operations. In listing this checks are shown, in particular
the first if statement is made to check if 6lowPAN packet can fit in a sin-
gle data-link message, this control is made by picking IPv6 packet size value
packetPayloadLength, subtracting IPv6 header size value originSize (it may
takes care of compressed UDP header) and then adding 6lowPAN header value
compSize. The second if statement is made to check if 6lowPAN header can
fit in a single data-link message. This statement must be always true, since, as

written, the false case is not handled.

//copy fragmentation header
messagetPayloadLength —= sizeof (entry—>frag);
packetPayloadLength —= entry—>frag. offset %8;
if (messagetPayloadLength < packetPayloadLength) {
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messagetPayloadLength — (uint8 t) (messagetPayloadLength / 8);
memcpy (messagetPayload, packetPayload , messagetPayloadLength x8);

entry—>frag. offset += messagetPayloadLength ;

} else {

/copy last bytes of packet payload

Listing 3.16: fillOtherMsg function’s code fragment

In listing f£i110therMsg function code is shown: after writing the fragmen-
tation header in the 802.15.4 message payload, messagetPayloadLength and
packetPayloadLength values are calculated, first one by subtracting the size
of fragmentation header, second one by subtracting the offset value which is
stated as an 8 multiplier. Then if IPv6 packet payload left over is still larger
than 802.15.4 message payload, the available space in the data-link message is
divided by 8 and rounded to obtain a minimum common multiplier of 8, which
will be the amount of bytes (multiplied by 8) of the IPv6 packet that will be
written in the message. On the contrary if IPv6 packet bytes left over are less
than the data-link message payload, they are directly written, and since the IPv6
packet is sent at all, no more offset value has to be calculated.

Functions to defragment an [Pv6 packet are so simple that no code samples are
needed.

decompress function simply checks if the fragmentation header is present on
data-link message head, then if there is, it copies the header in the entry->frag
structure.

fillPayload function receives pointers to the data-link message and to the IPv6
packet buffer, it calculates the offset by reading its value in the entry->frag
structure and then it copies the right amount of bytes in the buffer. In the case
of first message which contains 6lowPAN header, receiveTask, before calling

fillPayload function, moves the IPv6 packet buffer’s pointer to the first byte
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after the decompressed IPv6 header, so fillPayload function, that reads a 0 in
the offset field, doesn’t notice that it is writing not in the real first buffer’s byte,
which would a wrong position, but in the first byte after the IPv6 decompressed

header.

3.6 IPv6 module

IPv6 component is very simple, it doesn’t have any tasks, send command and
receive event handler do their job at once.

Send command doesn’t provide any extension header features, so it has to add
40 bytes of the default TPv6 header to the packet buffer, then it fills IPv6 fields
and calls send command of the sixlowpan component.

Same thing is done by receive event handler that can’t recognize any extension
headers and it just reads the default IPv6 header, removes IPv6 header by using
hrealloc Memory’s function, and redirects receive signals to right transport

protocols.

3.7 UDP module

As the IPv6 module, the UDP functions rely on the memory module to add and
remove UDP header from application packets. send and receive processes are
entirely held in single functions and they simply handle the classic UDP header.
UDP module is linked to IPv6 module by its TANA next Header number, which
is 17. On the other hand, applications can be linked to UDP module by the
source port number, since UDP doesn’t deal with LOWPAN NHC compression
mechanism and hence it doesn’t know anything about port patterns for compres-
sion, there is no formally restrictions when choosing port numbers. Applications
and application programmers, will decide what port number to use and they will

take care about squeezable port numbers.
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Chapter 4

Testing and results

Abstract:

In this chapter, test results are shown. Since neither neighbor discovery nor dhcp
client modules were implemented or developed, test procedures only deal with
point-to-point communications, IPv6 addresses have been statically assigned to
nodes, and routing modules only return default values. For the same reason,
even mesh header using was not tested.

Hence principally these trial programs aim to put this sixlowpan implementation
under stress situations, both in compression and decompression, fragmentation
and defragmentation procedures, to find the saturation points of the send and

receive functions.

4.1 Testing procedures

All test programs work over UDP protocol with ports and addresses values set
to permit to fully compress headers. Principally three types of test have been
made: one to test the send functions, one to test the receive functions and the
last to make this implementation compatible with the most important tinyOS
6lowPAN implementation i.e. blip.

Throughput performances aimed by this implementation are all compared with
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Figure 4.1: Network configuration during tests

those aimed by tinyOS CC2420 radio drivers, so it will be possible to weigh this

sixlowpan implementation on the whole network protocol stack of tinyOS.

4.2 Send section

Send test programs aim to find the maximum bitrate that send functions can
substain. Normally to find the maximum throughput of a network protocol,
an application send a message and wait for the send-done signal before sending
another one; the throughput value is calculated by counting the number of mess-
sages sent every second. But, since sixlowpan module makes use of few pools,
queues and tasks, to real stress the send functions this kind of procedures would
not be enough.

So test programs are designed in a way that pools and queues are filled as much
as possible and hence tasks never stop executing themselves: the application
requests to the UDP module to the send a packet every specific time interval
without waiting for send-done signals, throughput is calculated by taking note
of the time interval when a lot of error messages are returned by send command.
Since some parameters, like pools dimension, must be set at compile time, to
study the best configuration and to find the best performance a complete set of

parameters was used, where all parameters combinations are included.
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Figure 4.2: Throughput in function of UDP packet size for different
IEEE802.15.4 frame dimensions

To make these tests automatic few scripts have been written in bash language,
these scripts simply compile and program node with a specific set of configuration
parameters, then by using well known, tinyOS java programs, they intercepet fail
messages printed on serial port by nodes. If the number of received fails is more
than a specific value they consider the test as finished and start another one with
different configuration parameters combination. Nodes are programmed with a
test program that, as said before, requests to send an UDP packet at a specific
time interval counted by a timer. Every few minutes test application reduces
the time interval and send the new rate time on serial port. In this way after
the script completes all possible tests, in a log file all results are available.

Apart from pools dimension the IEEE802.15.4 frame size too was changed during
the tests. This parameter affects very much performances, in fact if the data-link
payload size is reduced, more fragments would be needed to send a packet. In

figure this kind of influence is shown, different color lines represent different
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Figure 4.3: Throughput in function of IEEE802.15.4 frame size for different UDP

packet size

[EEES802.15.4 message sizes. After a transitional range of packet sizes, through-
puts achieve a stable value; for a specific packet size, different IEEE802.15.4
frame sizes change the number of fragments per packet.

Figure 3] shows another behavior of this implementation compared with that
of CC2420 tinyOS drivers. The black line states the maximum throughput that
can be reached by tinyOS CC2420 drivers, while other lines indicate throughput
values for different UDP packet sizes. It is possible to see that the maximum
throughput value reached by both this implementation and tinyOS drivers are
far from the maximum bitrate value supported by CC2420 radio chip, that is 250
kbps. On the contrary, the reduction caused by sixlowpan is small, and hence it
doesn’t make throughput performances so much worst.

In figure 4] another kind of influence is shown. In this chart throughputs are
calculated for different values of sixlowpan module’s pools size while UDP packet

size and data-link frame size stay fixed. Throughput trends is substantially sta-
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ble in the range from 40 to 45 kbps, and maybe the small variation does not
dipend on the parameter change but on radio interferences and timer accuracy.
If a queue dimension is set to one (or even two), the queue practically doesn’t
exist any more, so all advantages that come from the tasks based system disap-
pear. Hence for very small pool dimensions the throughput goes down. On the
contrary for bigger pool dimensions, throughput differences are less visible. This
happens because of the test application architecture: since only one application
requests to send a packet at a time, the number of packet entries that can be
stored at the same time doesn’t matter, in fact just one is needed. For future
applicatons this parameter should be set taking into account the number of ap-
plications that could request to send an IPv6 packet.

The same behaviours appears if the data-link message queue is too small: the
tasks have to stop themselves because the queue is always full, moreover a too

big queue is useless if the mean number of fragments in which an IPv6 packet
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is split, is less than the queue size. Moreover, since the most of the time the
CPU is waiting for tinyOS radio driver to send phisically messages (as it will be
shown next), having a big data-link message pool is useless, in fact after a while,
tasks have to stop themselves to wait for the data-link message queue emptying.
So even this parameter too, should be set to a suitable value that considers the
mean dimension of IPv6 packets that are sent and hence the mean number of
fragments in which a packet is divided.

To better understand the send speedness reduction of this implementation, an-
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Figure 4.5: Equivalent throughput for different UDP packet sizes in function of
the number of sender nodes that sends in the same radio channel, compared with

tinyOS radio driver

other series of tests has been made. Their objective was to saturate the radio
channel. This purpose was reached by programming more than one nodes with
the same application used to test the throughput, set to send messages over the
same radio channel. In this way, the presence of more than one nodes, balances
the slowness of tinyOS radio drivers and hence a bigger equivalent throughput

can reached.
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Figure @5 shows results of channel saturation tests. The black line shows equiva-
lent throughput reached by tiniyOS radio driver, while other lines show through-
put reached by UDP protocol for different packet sizes. Like in figures above,
this 6lowPAN implementation reduces the sending speedness, but follows the

trend made by tinyOS radio driver.

4.3 Receive section

A first series of tests was made: while one or more nodes periodically send
packets, another node, acting as a receiver, receives packets and checks if it lose
some packets by comparing an inner progressive counter with the one written in
messages, if they are not equal it means that some packets were lost and a fail
message is signaled. But this kind of tests provides bad results both at data-link
and UDP level: a receiveing rate of 1 to 5 kbps. Hence this test algorithm was
quickly abandoned.

A second type of receiver tests was made: one or more node send messages,

70—

——MAC
——663
272
—93

Kbps

sender nodes number

Figure 4.6: Receive rate for different UDP packet sizes, compared with tinyOS

drivers in functions of sender nodes number
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while the receiver counts how many messages it can receive every minute. This

receiver results, made both on data-link and UDP level, were more encouraging,
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Figure 4.9: Receive rate for different packet entry timeout interval

and they are shown in figure LGl Since throughputs for some UDP packet
sizes go down as the number of nodes grows, it seems that sixlowpan stack
doesn’t work. However this is not completely true, UDP packets are divided
into more than one data-link messages, and if one of those messages is lost,
all other fragments have been dropped after few seconds, and hence they are
not included in the number of received packets. In addition, since one packet
entry structure is busy on waiting for the last fragment (that is lost), other UDP
packet fragments may are dropped because no other packet entry structures are
available, so packet entry pool dimension heavily affects receive rate. Moreover,
even data-link message queue dimension affects the rate: receiver node is not
able to process received messages at the required speed, so if more than one
sender node sends a big UDP packet, receiver node has to enqueue all those
fragments, but, since the pool dimension could be smaller, it is pretty sure that
some fragments would be dropped. Another parameter that affects receive rate is

the RAM memory buffer size assigned to memory component: if memory buffer
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assigned to memory component is reduced, there is less space to allocate buffers
and hence less available space to reconstruct IPv6 packets.

This kind of influence on pools dimension and timeout interval is shown in figure
A7 A8 and £3. Some sample tests were made, for different data-link message
pool dimensions, and also for two different packet entry timeout intervals. In
figure L8] the affects of packet entry pool dimension is shown.

Unlike send section, tuning operations to maximize the receive rate appear to
be complicated, apparently all consistent hypothesis that could be made about
pool dimensions seem to be true in reality only for big changes of parameter
values, but memory availability avoid any kind of tests to proof these rules. In
fact an indirect consequence of this parameter changes is that if one pool is
set to a big value, because of limited RAM memory availability, it is necessary
to reduce other pool dimensions, in particular, since RAM memory assigned to
memory component draws the biggest part of available RAM memory, it must
be heavily reduced. So when a test to check if a bigger pool dimension may
cause better performaces is made, results could be heavily affected by other
pool dimensions reduction. However tests made on receiver section were very
hard and maybe do not reflect a typical operating situation where nodes rarely
send big packets at the same time. So even if charts shows a low raceive rate,
this 6lowPAN implementation would not have any receive problems if used in a

normal environment.

4.4 Blip compatibility

As said before, unfortunately blip project is stopped to sixth version of the draft
[2], and further the actual blip version is not completely supported: there isn’t
any test application that works with it, and the application that realizes the
basestation is not ready. Anyway an attempt to let this two implementations

communicate each other has been made.
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UdpEcho application was modified to suit the newer blip version and also some
changes for what concern IPv6 address assignement has been made. On the
other side, in this 6lowPAN implementation some modification are needed to
downgrade the addressing compression mechanism from fifteenth to sixth version
of the draft.

Finally a small system has been made: a node running UDP Echo application
with blip, answers to another node that sends an ICMPv6 echo request by using
this 6lowPAN implementation. Ping tests has been running for few years without
any problems or fails.

With this compatibility result a comparing chart has been drawn, to compare
send throughput of this two 6lowPAN implementations.

Since blip UDP interface doesn’t provide a sendDone signal, test procedure that
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Figure 4.10: A comparison between sixlowpan and blip stack, throughput for

different UDP packet sizes

was used to test blip has been the same used to test send section of this 6lowPAN

implementation: a timer that marks the rate of UDP packet sending.

— blip
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Figure 10 shows that blip can reach good values of throughput just for big
packets, this means that the rate, number of packets per seconds substantially
doesn’t change when packets grows, and hence blip spends always the same time

to send a packet, no matter how big it is.

4.5 Memory occupation and CPU time analysis

Low power network means also low memory platforms, so after the analysis of
the performances it is necessary to study and analyze the memory usage of this
implementation. The most heavy module is obviously sixlowpan and its header
files.

Sixlowpan module itself occupy 8522 bytes of program memory and 543 bytes
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[ |pecompression
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[l other things

31%
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Figure 4.11: Program memory occupation of sixlowpan module

of RAM memory. Those amount of RAM memory is principally used by queues
pools and function calls, since only pointers are istantiated during 6lowPAN pro-

cedures (compression, fragmentation ...).
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Figure 1T shows how program memory is shared out among various sixlowpan
sections. Compression and decompression functions occupy the same amount of
memory, while receive tasks are heavier than send ones.

IPv6 module occupies about one kilobyte of program memory and only few bytes
of RAM memory. IPv6 send section occupies about 70 % of its ROM memory
and 30 % the receive section. Anyway those values might be wrong since IPv6
module is not complete at all.

UDP module is even much smaller, it occupies just three hundreds of byte, prin-
cipally used by send function.

Both TPv6 and UDP module substantially don’t use RAM memory, this ad-
vantage come from the using of the memory module that permits to only use
pointers and to save structure instantiations.

After memory occupation it is possible to see CPU time using of various pro-
cesses execution. This chart is obtained by keeping tracking of CPU time when
processes start and when they finish.

Obviously this measure can’t be accurate since the function that saves and cal-
culates CPU times use itself the CPU and so the measure is affected by its.
Anyway it can give an idea of how much tinyOS radio drivers use the CPU time.
More than 80 % of the time, CPU is busy on executing radio drivers’ functions
and procedures. Sixlowpan module spend a lot of time not in compression or
fragmentation functions but in functions calling to take elements by queues or

to set data-link header.
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Chapter 5

Conclusion

Abstract:

In this chapter few final considerations about this project are made. Pros and
cons are analyzed. To understand if this work will be useful for future imple-
mentations of high-level network applications or even if this architecture could
be reused to implement low-level network protocols. Missing parts are signaled
and finally some remarks to explain where performances can be improved maybe

with few changes on algorithms.

5.1 Further improvements

A lot of parts are still missing from this implementation and hence this imple-
mentation is not ready to start working in a network.

Anyway there are some code parts that could be changed to enhance perfor-
mances both for memory usage and energy consumption sides.

Memory component passed a series of tests that has proved that the component
as it is, is almost stable. But it occupies quite some RAM memory as a side
effect. This means that other than the used buffer there are few structures that
use a lot of RAM and program memory to manage buffers among applications.

Moreover this memory component is quite stable if buffers are allocated just to
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send a message and then they are released, no tests have been made to check
how this component behaves when an amount of memory are constantly used
and allocated while the rest of RAM are used by many applications. No defrag-
mentation tasks are implemented, so it is possible that after a while some kind
of fragmentation problems could rise.

Compression and decompression functions are written without any kind of provi-
sions for stateful compression so code dimensions surely will grow as context-base
compression would be implemented.

Moreover compression function simply reads IPv6 header and starts to com-
press. This procedure could be improved if IPv6 module passes to sixlowpan
module some informations on which IPv6 addresses has been used, if it can pass
a boolean value to let sixlowpan knows if link-local or global unicast addresses
are written in IPv6 header, compression function could save a lot of computation
time and program memory space.

Unfortunatelly, the decompression function, that already now is bigger than the
compression one, can’t be improved, in decompression phase, since sixlowpan
module doesn’t know anything about IPv6 header of a packet, so every possible

compression combination must be handled.

5.2 Conclusion

It’s too early to tell if this implementation could be useful to develop applications
easier and faster than now, but surely the ideas that stand behind this project
are quite good to change the network stack structure of tinyOS.

Static allocation of RAM memory is a good thing to develop programs and mod-
ule that runs on memory constrained platforms, but it suffers when dealing with
packets and more than one network layer.

Similarly, developing one huge stand-alone component that implements all net-

work layers needed for applications, is useful to save program memory, to make
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an efficient module that doesn’t waste RAM memory or computing time, but
when standards are updated or maybe only some rules are modified it’s very
complicated to handle those complex programs to make the changes. Hence
even if some program or RAM memory are wasted, it is better to separate stan-
dards in different modules to permit in an easier way to change parts of code or

to implement other standards, even later.
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Conclusion

Abstract:

In questo capitolo vengono fatte alcune considerazioni finali su questo progetto.
Vengono analizzati i pro e i contro per capire se questo lavoro potré essere utile
per future implementazioni di appplicazioni di rete ad alto livello, o magari
se ’architettura potra essere riutilizzata per implementare protocolli di rete a
basso livello. Vengono segnalate le parti mancanti e, per finire, vengono fatte
alcune note per spiegare dove modificare 'implementazione per aumentare le

performance dello stack.

Ulteriori miglioramenti

Molte parti sono ancora mancanti, percié questa implementazione non é pronta
per poter funzionare all’interno di una rete.

In ogni caso esistono alcune parti di programma che potrebbero essere modifi-
cate per migliorare le prestazioni sia in termini di memoria usata sia in termini
di energia consumata.

Il componente memory ha subito numerosi test ed é stato provato che allo stato
attuale esso é pressocché stabile. Forse per6 vi é un eccessivo spreco di memoria
RAM come effetto collaterale, infatti oltre al buffer allocato, ci sono alcune strut-
ture dati, utili a gestire i buffer tra le applicazioni, che occupano troppa memoria

RAM e memoria di programma . Inoltre, questo componente é stabile se i buffer
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vengono allocati solo per inviare messaggi per poi essere liberati; nessun test é
stato fatto per verificare il comportamento del componente nella situazione in
cui un buffer é allocato permanentemente mentre il resto della memoria viene us-
ata dalle applicazioni. Nessuna procedura di deframmentazione, infatti, é stata
implementata, percio é possibile, che dopo un certo di periodo di funzionamento,
possa insorgere un problema di deframmentazione della memoria.

Le funzioni di compressione e decompression sono scritte senza nessun tipo di
predisposizione alla compressione di tipo stateful, quindi con molta probabilita
la dimensione del codice aumentare, non appena la compressione a contesto verra
aggiunta.

La funzione di compressione semplicemente legge l'intestazione IPv6 e comprime
il pit possible secondo le regole; questa procedure potrebbe essere migliorata se
il modulo IPv6 passasse al modulo sixlowpan qualche informazione circa il tipo
di indirizzo IPv6 usato. Con un valore booleano, ad esempio, IPv6 potrebbe
informare sixlowpan se gli indirizzi sono in formato link-local o global, facendo
cosi risparmiare al modulo sixlowpan tempo e memoria programma.
Sfortunatamente, la funzione di decompressione, che gia allo stato attuale oc-
cupa piu che quella di compressione, non pud essere resa pia leggera: in fase di
decompressione, il modulo sixlowpan non conosce nulla sul tipo di compressione
usata, perci6 deve essere in grado di interpretare qualunque tipo di intestazione

6lowPAN.

Conclusione

E troppo presto per dire se questa implementazione potra essere utile per svilup-
pare applicazioni in maniera pit semplice e veloce rispetto ad adesso, ma di sicuro
le idee che stanno alla base di questo progetto saranno utili alla riformulazione
della struttura dello stack protocollare di tinyOS.

L’allocazione statica della memoria RAM A" utile per lo sviluppo di programmi
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e moduli impiegati su piattaforme con vincoli sulla memoria, ma é deleterio
quando si ha a che fare con pacchetti e pit di un layer protocollare.

In maniera analoga, sviluppare un unico grande componente che implementa
tutti i livelli di rete necessari alle applicazioni, é necessario se bisogna risparmi-
are memoria, o per realizzare un modulo efficiente che non sprechi memoria
RAM o tempo di calcolo; ma quando gli standard vengono aggiornati o magari
soltanto alcune direttive vengono modificate, diventa molto complicato maneg-
giare questi componenti per implementare i cambiamenti. Perci6, anche a costo
di sprecare un po’ di memoria RAM e programma, é meglio separare gli stan-
dard in diversi moduli per permettere, di fare piccoli cambiamenti, o addiritttura
cambiare l'intero standard, in maniera pia semplice e facile, anche se ci’gdovesse

avvenire in un secondo momento.
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