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Abstra
t
In questo lavoro di tesi é stato sviluppato uno sta
k proto
ollare basato su IPv6per il sistema operativo TinyOS nell'ambito delle reti di sensori wireless. Losta
k proto
ollare utilizza 
ome layer di adattamento tra il livello data-link,
he segue lo standard IEEE 802.15.4, e il livello di rete, 
he segue appunto lostandard IPv6, il nuovo standard 6lowPAN. L'ar
hitettura generale dello sta
kpermette di 
ambiare gli standard usati mantenendo inalterata la struttura dei
omponenti e delle interfa

e 
osí da rendere il 
odi
e riutilizzabile sia per altris
opi 
he per altri sistemi operativi. Lo sviluppo di un 
omponente 
he gestis
ein maniera autonoma un blo

o di memoria RAM, ha permesso di astrarre ul-teriormente la gestione dei pa

hetti IP rendendola indipendente dal parti
olarestandard implementato.Nello sta
k proto
ollare sviluppato sono state implementate le pro
edure di
ompressione e de
ompressione dell'header IPv6 spe
i�
ate nel draft h
-15 ele pro
edure di frammentazione e deframmentazione dei pa

hetti IPv6 spiegatenell'RFC 4944. L'autore.
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Chapter 1
Sensor networks and IPv6
Abstra
t:In this 
haptera brief introdu
tion is given about wireless sensor networks andrelated internet standards, (IPv6, 6lowPAN, adaptation layer).1.1 Wireless Sensor Networks1.1.1 Sensor Networks and Internet of ThingsA sensor network is a network where a set of small devi
es, pla
ed inside theinterested environment, keeps under observation some kind of environmental
onditions (temperature, light, humidity, position, ...) and 
ommuni
ates theseinformations to a sink node that 
olle
ts and store them.An heavy engineering work have permitted to design of a new generation ofdevi
es whi
h are able to 
onsume a relative small amount of energy, but alsoprovide a moderate pro
essing power. These small devi
es, so 
alled "sensornodes" or "motes", are usually equipped with sensors to dete
t and to measuresome environmental 
onditions, and with a radio module to be able to 
ommu-ni
ate with ea
h other or with the sink node.Typi
al deployments of these networks are monitoring and 
ontrolling environ-



2 Sensor networks and IPv6ment in spe
ial situations like wildlife nature (to prevent forests' �re for exam-ple), earthquake site, road tra�
 analysis or in sensitive buildings like bridgesor dams.The network topology is ad-ho
 or mesh; nodes 
an a
t like server, 
lient orrouter, they request data to other nodes, answer to a request from another node,or route informations between two nodes that are too far to have a dire
t 
om-muni
ation.Due to the nature of possible appli
ations, that doesn't permit to easily rea
hnodes during their operations, these devi
es have to run for long time on batterypower, hen
e they have to save energy as more as they 
an. Therefore the 
har-a
teristi
s of the nodes are: frequent and long periods on sleep-mode, small radiotransmit power (small radio range), relatively slow working 
lo
k frequen
y.The most important and 
ru
ial aspe
t is the network proto
ols: a node 
anlive just few days with radio 
hip always on; hen
e a reliable and energy-saving
ommuni
ation proto
ol is ne
essary to permit to leave swit
hed o� the radio
hip as more as we 
an.Internet of ThingsInternet of Things refers to a new 
on
ept on how to think about all the physi
alobje
ts. If we suppose that it is possible to provide an internet 
onne
tion toevery ele
troni
 obje
t, we obtain a network made by obje
ts that 
ommuni
ateea
h other without the human presen
e. With Internet of Things every obje
tmake itself re
ognizable by the rest of the world, 
ommuni
ate its identity, itsassignment and its 
apabilities; in the same way every obje
t 
an ask to otherthings who and where they are, what they 
an do, and determines if they areuseful to perform its work better or if they 
an extend its 
apabilities.It is a 
ommuni
ation revolution, every ele
troni
 obje
t will interoperate withall other ele
troni
 obje
ts in the world. Things will start to work for us andmake our lives easier: an alarm 
lo
k that rings ealier in the morning if it knows



1.1 Wireless Sensor Networks 3that it will be road tra�
, a fridge that writes the shopping list for us or anhouse that 
loses its windows when it starts raining and so on.An important appli
ation that is based on the 
on
ept of Internet of Things isthe Smart Grid. It 
on
erns the ele
tri
 distribution network that till nowadayshas been being typi
ally unidire
tional: a power plant produ
es and providesenergy to fa
tories and private houses. But, with new renewable sour
e energies,everyone 
an produ
e and give energy to the 
ommunity. In this new 
on�gura-tion every single devi
e that 
onsumes or produ
es energy should be 
onne
tedto the ele
tri
 provider network, and it would be possible to 
ontrol and mon-itor the energy 
onsumption and produ
tion to e�
iently 
apitalize renewableenergy.As the mi
roele
troni
s resear
h goes on, devi
es like nodes 
an be smaller andsmaller and with more 
omputing power even keeping a low power 
onsumption,so it is possible to put in every ele
troni
 item a small node useful to interoperatewith the obje
t and 
ommuni
ate with its neighbor or maybe with every devi
e
onne
ted to internet. Therefore we 
an move the wireless sensor network algo-rithms, proto
ols and features to the Internet of Things 
on
ept. The issue is todesign an e�
ient and reliable network sta
k for nodes, to make nodes ready toget in the huge world of internet and internet proto
ols.1.1.2 Hardware Platform and TinyOSSin
e energy 
onsumption determines sensor node lifetime, nodes tend to havea very limited 
omputational and 
ommuni
ation resour
es. Instead of modern32-bit or 64-bit CPU with gigabytes of RAM and terabytes of storage memory,they have 8-bit to 16-bit CPU, with few kilobytes of RAM and few tens of kilo-bytes for program memory. CPUs have 1 to 10 megahertz of 
lo
k frequen
y, andtheir radio module 
an send data to a maximum ratio of few hundreds of kilobitper se
ond. As a result, algorithms, proto
ols and even their implementationsneed to be vey e�
ient in terms of resour
e 
omputation (CPU, ROM, RAM,



4 Sensor networks and IPv6energy, bandwidth).The hardware platform 
hosen for this proje
t is the TelosB mote. It was orig-inally developed at UC Berkeley and now are produ
ed by the Crossbow Te
h-nology 
ompany and by Moteiv Corporation, now 
alled Sentilla Corporation.TelosB motes feature a Texas Instruments MSP430 MCU, a 16-bit RISC MCU
lo
ked at 8 MHz. The platform o�ers 10 kB of RAM, 48kB of program mem-ory and 16 kB of EEPROM to permanently storage essential datas. It draws1.8 mA in a
tive mode and just 5.1 µA in sleep mode. Its radio 
hip, a TexasInstruments CC2420, is a low-power RF trans
eiver 
ompatible with the IEEE802.15.4 standard, and it 
an send up to 250 kbps at 2.4 GHz 
arrier frequen
y.It provides a 128-byte TX/RX bu�er and it draws 18.8 mA to re
eive and 17.4mA to send. So it is easy to note that in terms of power, the radio dominatesthe system.
TinyOSTinyOS is a lightweight event-driven operating system spe
i�
ally designed forlow-power wireless sensor nodes. The proje
t started as a 
ollaboration betweenthe University of California, Berkeley in 
o-operation with Intel Resear
h andCrossbow Te
hnology, and has sin
e grown to be an international 
onsortium,the TinyOS Allian
e.TinyOS di�ers from most other operating system in that its design fo
uses onultra low-power operation. It is designed for small, low-power mi
ro
ontrollersmotes; furthermore it has very aggressive systems and me
hanisms for savingpower by automati
ally bringing MCU in low-power mode every time it is pos-sible.TinyOS has a very small footprint, the OS 
ore requires only 400 bytes of pro-gram and RAM memory; there is no dynami
 memory allo
ation no memorymanagement and no virtual memory, all memory is allo
ated stati
ally at 
om-



1.1 Wireless Sensor Networks 5pile time. The system provides a set of reusable 
omponents whi
h 
an be
ombined together. Components implement hardware abstra
tions of sensors toa

ess to them on an high level interfa
e, a s
heduler to handle tasks, hardwareinterrupts, timers, a

ess to �ash memory and radio 
hip.In TinyOS blo
king operations are avoided, I/O 
alls or long-laten
y operationsare usually split-phase: rather than blo
k until 
ompletion, a fun
tion returnsimmediately and then the 
aller gets a 
all ba
k when the fun
tion or I/O driver
ompletes its operations. It also provides tasks whi
h are fun
tions that areexe
uted when every other fun
tion 
all have been terminated. Sin
e only onetask 
an be exe
uted at on
e there is no warry about data ra
es.TinyOS uses nesC, a diale
t of the C programming language. It doesn't 
ounton dynami
 memory allo
ation or linking. This allows the programmers to an-alyze their programs in terms of memory o

upation at 
ompile time resultingin an e�
ient 
ode optimization. NesC 
ompiler works like a pre-
ompiler thattakes nesC sour
e 
ode and produ
es a C 
ode. This C 
ode, then, has to be
ompiled by a C 
ompiler. The stru
ture of a nesC program is relatively simple:there are interfa
es that set out what a 
omponents 
an do by de
laring a setof 
ommands and events, 
ommands 
an be 
alled and events must be handledby every 
omponent that de
lares to use that interfa
e. Components realize oneor more interfa
e maybe by using other interfa
es. Components are of two
Component Interface

Command Event

uses

provides

Figure 1.1: nesC program ar
hite
ture



6 Sensor networks and IPv6types: 
on�gurations and modules. A module implements interfa
es. A 
on-�guration 
onne
ts modules together via their interfa
es by providing a wiringspe
i�
ation.1.1.3 802.15.4 standardIEEE 802.15.4 standard spe
i�es physi
al and media a

ess 
ontrol layers for low-rate and low-power wireless personal area network. Su
h networks are typi
allylimited to an area of about ten meters width with no infrastru
ture and limitedpower availability devi
es.It presents a set of network topologies whi
h indi
ates two types of devi
es:full-fun
tion devi
es (FFD) and redu
ed-fun
ion devi
es (RFD). RFDs would besimple a
tuators or sensors like swit
hes or temperature sensors with no largeamount of data to send, hen
e RFDs 
an be very simple devi
es. On the otherhand, FFDs are smarter than RFDs and 
an work like Personal Area Network(PAN) 
oordinator . Therefore FFDs 
an talk to other FFDs and to RFDs,RFDs 
an just talk to one FFDs at a time.In every network 
ell a PAN 
oordinator must be present. The smallest network
ell is 
omposed by an FFDs a
ting like PAN 
oordinator and an RFD 
onne
tedto the PAN 
oordinator. This PAN must have a PAN identi�er whi
h shall beunique within the radio range. Every PAN 
an be 
on�gured like a star network,where every devi
e must 
omuni
ate only with the 
oordinator; like a 
luster-tree network where PAN 
oordinator uses other FFDs to extend its range and torea
h farest devi
es, RFDs 
an only parte
ipate like leave nodes; or like a purepeer-to-peer network, a mesh network, where every FFD 
an talk to ea
h other,using its neighbor to extend the range, here again RFDs 
an only talk with thenearest FFD.Every devi
e shall have unique 64-bit extended IEEE address, set by themanufa
turer, that 
an be used to dire
tly 
ommuni
ate within the PAN. But, adevi
e 
an use a 16-bit short address that shall be unique just within the PAN.
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Figure 1.2: 802.15.4 possible network topologiesTherefore a new devi
e that wants to join to a spe
i�ed PAN needs �rst to waitfor its PAN 
oordinator whi
h allows the use of a new 16-bit address.In 802.15.4 standard there are two operation modes: a bea
on-enabled mode andnon-bea
on mode. In bea
on-enabled mode, the PAN 
oordinator periodi
allysends two bea
ons to the broad
ast address; these two bea
ons edge a superframestru
ture.As it is shown in Figure 1.3, the superframe 
ontains three time se
tions. The
Figure 1.3: 802.15.4 superframe stru
ture in bea
on-enabled modeCAP se
tion (Contention A

ess Period) is divided in sixteen time slots. The�rst time slot is reserved for PAN 
oordinator bea
on trasmission, the other



8 Sensor networks and IPv6�fteen slots are 
ontended with other devi
es of the PAN, in a slotted CSMA-CA (Carrier Sense Multiple A

ess, Collision Avoidan
e) me
hanism. The CFPse
tion (Contention Free Period) is an optional se
tion and it is needed whenthere are low-laten
y appli
ations running on devi
es that need a bandwidthguarantee (GTS means guaranteed time slot). The last se
tion is an ina
tivese
tion, in this interval of time PAN 
oordinator usually goes on sleep-mode,and other devi
es should go too.There is di�eren
e between data transfers from a devi
e to a 
oordinator andvi
eversa. When a devi
e needs to send data to the 
oordinator it uses slottedCSMA-CA during CAP, instead when PAN 
oordinator has a message for adevi
e, it indi
ates in the bea
on that data are pending for the devi
e. Thendevi
e requests it within CAP, the 
oordinator replies with data within CAPtoo, both using CSMA-CA. Hen
e when a devi
e doesn't have data for the
oordinator it 
an't goes on sleep-mode for a while, but it must periodi
allywake up and listen to bea
on to look if there is any message for it.On non-bea
on mode there isn't any superframe stru
ture and an unslottedCSMA-CA me
hanism is used. Bea
ons are still needed for asso
iation pro
esses.Data transfer from 
oordinator to devi
e still o

urs with noti�
ation-request-reply pro
edure. If there is no message for the nodes, the 
oordinator sends abea
on-data frame with zero-length payload.The max frame length is 128 bytes, that means a payload of about 110 bytes.802.15.4 frames are asso
iated with a 16-bit CRC to dete
t errors. Every framemay be a
knowledged with the optional use of a
knowledgements. We remarkthat aknowledgements are sent dire
tly without using CSMA-CA, both in bea
onand non-bea
on mode.There are also two optional types of se
urity servi
es that 
an be 
hosen. In ACL(a

ess 
ontrol list) mode, devi
es maintain a list of devi
es from whi
h they arewilling to re
eive frames. In se
ure mode, devi
es use 
ryptography servi
es inaddition to ACL.



1.2 Internet Proto
ol version 6 91.2 Internet Proto
ol version 6IPv6 proto
ol is supposed to be the next generation internet addressing standard.It is designed to su

eed IPv4. It is quite di�erent from IPv4. The most impor-tant di�eren
e is the addressing spa
e: from the IPv4 32-bit address, (4 × 10
9possible addresses), IPv6 goes to a 128-bit address, that is 3.4 × 10

38 possibleaddresses, 6 × 10
23 addresses per square meter on the earth. Obviously this
hange implies that the header length doubles from 20 to 40 byte. Beyond this,IPv6 simpli�es some IPv4 problems and limitations like the 
on
ept of NetworkAddress Translation (NAT) that be
omes obsolete, the DHCP proto
ol that,in the 6 version (DHCPv6), be
omes more powerful and e�
ient. Furthermorethere are some routing pro
ess sempli�
ations.It is impossible to fully des
ribe all 
hanges in IPv6 so, for the s
ope of this the-sis, only the details inherent to 6LOWPAN implementation will be dis
ussed.An IPv6 pa
ket 
an 
arry 1280 bytes of payload and the header format is shownin �gure 1.4.Version, payload length, next header, hop limit, sour
e and destination address

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Destination Address

Source Address

64

32

0 3 11 15 23 31

192

Figure 1.4: Default IPv6 header�elds are the same as in IPv4 header, and their meanings 
an be simply inferable;tra�
 
lass and �ow label �elds are still on experimental phase, but they will be



10 Sensor networks and IPv6Address type Binary pre�xUnspe
i�ed 00...0 (128 bits)Loopba
k 00...1 (128 bits)Multi
ast 11111111Link-lo
al uni
ast 1111111010Global uni
ast everything elseTable 1.1: IPv6 address type identi�
ationused for QoS and priority queue management. On the 
ontrary some IPv4 �eldshad been eliminated: 
he
ksum is useless, in fa
t both upper and lower proto
olshave their error dete
tion me
hanisms. Identi�
ation and fragment o�set �eldswere elided, this doesn't mean that IPv6 doesn't have fragmentation, but thatIPv6 fragmentation is like an option that needs optional header. NextHeader�eld in
ludes optional headers like sour
e routing, hop-by-hop routing and oth-ers, they all have a �xed length with a known pattern, so the length 
an be
al
ulated, and the payload beginning 
an be well inferred.Be
ause of this huge address spa
e extension that IPv6 introdu
es, address as-signement 
an be rethought in another way.First of all, in IPv6 addresses are assigned to interfa
es, and they 
an be of threetypes, uni
ast, multi
ast or any
ast: uni
ast address indi
ates one and only onespe
i�
 interfa
e; multi
ast address spe
i�es a set of interfa
es, a message sent toa multi
ast address must be delivered to all interfa
es of the set; any
ast addressindi
ates a set too, but when a message is sent to an any
ast address, it 
an bedelivered just to only one interfa
e of the set.The type of an IPv6 address is identi�ed by its high-order bits as it is shown intable 1.1. Last bits of an IPv6 address represent the interfa
e ID or, for multi
astaddresses, the group ID. Interfa
e IDs are set up by the devi
e 
onstru
tor andare permanently stored in the devi
e's memory.



1.2 Internet Proto
ol version 6 11In �gure 1.5 some typi
al IPv6 address stru
tures are shown; �gure 1.5b shows
global routing prefix subnet ID interface ID

n bits m bits 128 − n − m bits(a) Global uni
ast address
1111111010 interface ID

10 bits 54 bits 64 bits

00...00(b) Link-lo
al uni
ast address
1111111010 interface ID

10 bits 54 bits 64 bits

subnet ID(
) Site-lo
al address
11111111 flags scope group ID

8 bits 4 bits 4 bits 112 bits(d) Multi
ast addressFigure 1.5: IPv6 address typesthe link-lo
al address template; when a devi
e starts up it forms the link-lo
aladdress without the help of any DHCP server; then using that address as sour
eaddress it 
an 
onta
t the nearest DHCP server, using UDP, to ask for the globalpre�x of its subnet to form a global uni
ast address, and starts to 
ommuni
atewith the whole internet network. The only di�eren
e between a link-lo
al ad-dress and global address is that routers don't forward link-lo
al pa
kets. Hen
esubnet masks or NAT servi
es be
omes useless.The IPv6 headers typi
ally is 40 byte long, while IPv6 standard de
laresthat the maximum payload length for a single IPv6 pa
ket 
an be 1280 bytes,the result is a very e�
ient division between payload and overhead. But data-link standards typi
ally don't provide messages payload with those dimensions,hen
e it is often needed to design an adaptation layer to �t IPv6 pa
kets insidedata-link messages.



12 Sensor networks and IPv6Sin
e in most network topologies, hosts have no energy problems, data-link pro-to
ols don't have to save energy or keep under 
ontrol energy usage, and hen
ethese adaptation layers are quite simple, they just have to provide a way to breakinto pie
es IPv6 pa
kets to let these fragments �t in data-link messages.In wireless sensor networks, other than pa
ket dimension problems, there arealso energy problems to solve, so a more 
ompli
ated adaptation layer is needed.Moreover another aspe
t should be noted: in wireless sensor networks, messages
arry small amount of data, only 
on�guration informations or small values liketemperature or lightness, that 
an easily �t in a single data-link message, but ifhosts use IPv6 proto
ol they have 40 more bytes to 
arry in every message, anda noti
eable ine�
ien
y appears, espe
ially for what 
on
erns the energy usedby radio 
hip.6lowPAN working group within the IETF is 
on
erned with the spe
i�
ationfor transmitting IPv6 pa
kets over low energy and lossy networks. The groupis working on two di�erent do
uments: header-
ompression draft and neighbor-dis
overy draft. Both drafts have arrived at their �fteenth version. The �rstdo
ument des
ribes how to make IPv6 pra
ti
al on 802.15.4 networks, me
h-anisms for header 
ompression and for pa
ket fragmentation, and provisionsfor pa
ket delivery in 802.15.4-based mesh networks. The se
ond draws some
hanges to IPv6 neighbor dis
overy pro
ess that doesn't suit in low-power, lossyand transitive networks.In this work, the se
ond draft wasn't been 
onsidered, so it will not be 
om-mented anymore.
A �rst raw version of 6lowPAN standard do
ument is RFC 4944 ([1℄), inwhi
h fragmentation, header 
ompression and mesh dispat
hing are des
ribed.
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1     0 hops leftV F

40 2 3 8

originator address, final destination addressFigure 1.6: Mesh header formatMesh headerMesh header has been thought for mesh networks where routing operations ismade at data-link level. In that 
on�guration every forwarder host 
hanges thesour
e and destination data-link address �elds with respe
tively its data-linkaddress and the next-hop data-link address. The interesting thing is that everyrouting operations is made at data-link level, so in order to keep the true sour
eand �nal destination data-link addresses it is ne
essary to write them somewhere.Figure 1.6 shows the mesh header format. First two bits 
ompose the patternto re
ognize that mesh header is present, V and F �ags indi
ates respe
tively ifthe originator or the �nal destination data-link addresses is written in a 16-bitformat or in an IEEE extended 64-bit format. Addresses would follows these�ags. With these address informations every forwarder 
an know who is theoriginator, who is the �nal destination and then 
al
ulates who is the next hopfor that pa
ket to rea
h the destination host.
Fragmentation pro
essThe fragmentation me
hanism uses a fragmentation header that must be presentin every fragment of the pa
ket, and some rules on how to break the pa
ketpayload and to write the right data in the headers. On �gure 1.7 fragmentationheaders formats are shown. The �rst fragment relative to other ones has adi�erent initial pattern value. This di�eren
e saves the 1-byte �eld datagramo�set, in fa
t sin
e the �rst fragment is re
ognizable by the pattern, it doesn'tneed to 
arry the o�set, that is 0. Rules to break the IPv6 pa
ket in two
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datagram size datagram tag1 1 0 0 0

0 4 6 31(a) Fragmentation header for �rst fragment
datagram size datagram tag1 1 1 0 0

0 4 6 32

datagram offset

40(b) Fragmentation header for subsequent fragmentsFigure 1.7: fragmentation headersor more fragments are 
ompli
ated and have been dis
ussed for long time on6lowPAN IETF mailing list. First of all, datagram size �eld must indi
ate thesize of the un
ompressed unfragmented IPv6 pa
ket. Then the datagram o�setstates, by multiple of 8 bytes, the position where to pla
e the fragment payloadwithin the un
ompressed unfragmented IPv6 pa
ket. So the IPv6 pa
ket mustbe broken in parts that are multiple-of-8-byte long, ex
ept the last fragmentthat will 
ontain the remaining bytes. In prin
iple these rules seem to be simple,but in pra
ti
e there are some problems. In fa
t the header 
ompressor has toremind the size of the new 
ompressed header and, at the same time, the old sizeof the un
ompressed header just be
ause when the fragmentation module startsbreaking the IPv6 pa
ket, it has to take the original size of the IPv6 pa
ketinto a

ount to 
al
ulate the right size of fragments, even if it will write the
ompressed version of the IPv6 header.Anyway this me
hanism permits to defragmentation module to instantly allo
atea bu�er to save and restore the unfragmented IPv6 pa
ket, as it re
eives the �rstfragment (
hronologi
ally �rst) of the pa
ket, and, if we are sure that only the�rst (�rst by position) fragment will 
ontain 
ompressed headers, it will be ableto 
opy the 802.15.4 frame payload of last (last by position) fragments withinthe bu�er just by wat
hing at the datagram o�set of the frame.Last, there is a tag �eld that is a random 16-bit �eld, that must be equal forevery fragment of a pa
ket. It is needed to distinguish fragments of di�erent
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ol version 6 15pa
kets.IPv6 header 
ompressionThere are several rules to 
ompress an IPv6 header. A �rst series of rules wereexplained in RFC4944, but after few months a new do
ument has started to bewritten, more detailed, with more e�
ient rules and me
hanisms. Su
h rules areexplained on the 6lowPAN draft HC-15 ([2℄).The 
ompressed IPv6 header is signaled by the presen
e of the LOWPAN-IPHCDispat
h. After a distin
tive pattern, there are a series of �ags indi
ating howthe original IPv6 header has been 
ompressed and whi
h header �elds are 
arriedin-line and immediately follow the dispat
h. Figure 1.8 shows the Dispat
h.2 bits TF �eld refers to Tra�
 Class and Flow Label �elds. 4 
ombinations
0    1    1 TF NH HLIM CID SAC SAM M DAM

0 3 5 8 9 10 12 13 14 16

DACFigure 1.8: LOWPAN IPHC Dispat
hare possible so 4 
ompression sizes 
an be used, ea
h 
ombination indi
ates howmany bytes have been 
ompressed and how many bytes are kept from the origi-nal IPv6 �elds. It is possible to 
arry �elds all in-line (4 bytes) or to 
arry onlyone of them, the other is impli
itly stated 0, or if they are both 0 it is possibleto elide them at all.1 bit NH �eld states if the next Header �eld uses the LOWPAN-NHC 
ompres-sion me
hanism or if the IPv6 next header �eld is 
arried in-line. Next HeaderCompression is a parti
ular te
niques that permits to 
arry some informationabout transport layer proto
ol or about IPv6 extension headers within the 1byte next header �eld.2 bits HLIM �eld 
ompresses the hop limit �eld; there are some standard hoplimit values often used for normal pa
ket transmissions. These three values (1,64, 255) 
an be rapresented by a 2 bits value, the fourth 
ombination states that



16 Sensor networks and IPv6the hop limit �eld is 
arried in-line after the Dispat
h.1 bit CID, SAC and DAC �elds deal with the 
ontext 
ompression me
hanism.It involves a periodi
ally information ex
hanges by routers to hosts. Do
ument[2℄ des
ribes how to use these 
ontext informations, while do
ument [3℄ explainhow these information should be 
reated and 
ommuni
ated a
ross the network.In pra
ti
e "
ontext informations" means that hosts should have informations,stored in their memory, about state of the network and other hosts sorroundingthem. With these informations shared by every host, it is possible to elide partof, or maybe the whole, internet address of another host. Writing a small 
ode(4 bit) that is used like an index, an host 
an retrieve in its 
a
he, informationsabout a neighbor host. This work doesn't deal with this kind of 
ompression.2 bits SAM and DAM �elds states respe
tively how many bytes of sour
e anddestination addresses are written in-line. Possible 
hoi
es are 128, 64, 16 bits or0 bit. With a stateless 
ompression, that means no 
ontext information avail-able, an address 
an be 
ompressed if and only if it has a link-lo
al pre�x, so�rst 64 bits 
an be elided; if the last 64 bits present a parti
ular pattern, it ispossible to 
ompress them till 16 or even to 0 bits, that means that the wholeaddress 
an be 
al
ulated by some default known patterns and by address �eldsof the data-link header.A spe
ial note has to be made about multi
ast addresses; �rst of all only des-tination address 
an be a multi
ast address, so the 1 bit M �eld refers only todestination address and spe
i�es if it is or not a multi
ast address. If it isn't,destination address 
ompression works like for sour
e address one; if it is, thereis another set of patterns to 
ompress it, so if destination multi
ast addresspresents one of those patterns it 
an be 
ompressed to 48, 32 or 16 bits.Using these 
ompression rules a 40 byte IPv6 header 
an be 
ompressed to only3 bytes.Be
ause of low-power and lossy network behaviours, as transport proto
olUDP is often used. In fa
t UDP doesn't need handshaking operations or a
-
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ol version 6 17knowledegement me
hanisms, so a lot of energy 
an be saved. The UDP headeris mu
h smaller than TCP header, for example, but in [2℄ a me
hanism to 
om-press UDP header too is shown.As it is explained, if the 1 bit NH value states that LOWPAN-NHC 
ompression
1    1    1    1    1    0 C P

0 5 6 7Figure 1.9: LOWPAN NHC headeris used, in the next header �eld it is possible to 
arry some information aboutUDP header. Figure 1.9 shows the 1 byte next header �eld with UDP proto
olinformations. First �ve bits �eld is a pattern to re
ognize that informations areabout UDP header, C bit states if 
he
ksum �eld is present, while 2 bits P �eldindi
ates how sour
e and destination port number �elds has been 
ompressed.LOWPAN-NHC 
ompression 
ounts on a set of UDP port numbers that 
an befully 
ompressed: if sour
e and destination ports are both in the range that goesfrom 0xF0B0 to 0xF0BF , they 
an be 
ompressed in a 1 byte �eld. If eithersour
e or destination port is in the range that goes from Ox0F000 to 0xF0FFit 
an be 
ompressed in a 1 byte �eld, the other port number is 
arried in-line.With this 
ompression me
hanism an UDP header 
an be redu
ed from a sizeof 8 bytes to 1 byte.Last thing to say is about length �eld of IPv6 and UDP headers: those values
an be well inferred either from lower layer or fragmentation header.
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Chapter 2
Related work
Abstra
t:In this 
hapter the most important works on 6lowPAN implementation for low-power development platforms are presented. Sin
e it is hard to �nd informationabout 
ommer
ial version of 6lowPAN implementations, for this thesis only a
a-demi
 works were been studied.2.1 6lowPAN by Matú² HarvanMatú² Harvan has implemented the very �rst a
ademi
 version of 6lowPAN forTinyOS. He shared his work in 2007, and it is based only on RFC4944 [1℄ sin
e6lowPAN h
 drafts ([2℄) ([3℄) were not been started to be written yet. So thefeatures of LOWPAN_IPHC 
ompression te
niques are not implemented.Anyway this implementation is able to manage mesh and fragmentation header,broad
ast header (that is an header for link-level broad
ast messages) and LOW-PAN_HC1 
ompression me
hanism des
ribed in [1℄.Even if this proje
t still remain a good starting point to study how to build agood implementation of a 6lowPAN module for TinyOS, it has a lot of limita-tions and gaps. It 
an't manage two defragmentation pro
esses at same time,so only one fragmented pa
ket at a time 
an be re
eived. It is impossible to use



20 Related workanother transport proto
ol sin
e there is no interfa
e to dire
tly a

ess to anyIP module or something like that, only UDP datagrams 
an be sent. Last thingis about the stru
ture of the implementation: when Harvan 
omposed 6lowPANstru
tures and headers he didn't use pa
ked stru
ture that permit to e�
ientlystore 1-bit �ags, but he de�ned all these stru
tures as traditional stru
ture andthen to pi
k �ags he �ltered these variables with masks. With pa
ked stru
turesthe a

ess to �ags be
omes easier and more dire
t, and maybe, sin
e a lot of bit-wise operation to extra
t 1-bit values be
omes useless, some program memory
an be saved.2.2 blipBlip (Berkely Low-power IP sta
k) is an implementation in tinyOS of a numberof IP-based proto
ols, that is been being 
arried on by Berkeley WEBS (wirelessembedded systems) group.Blip �rst release was on 2008, and now a 2.0 version is available. This last ver-sion is based on draft h
-06, so most of the relevant updates from RFC 4944has been made. WEBS group is working on a new version that will respe
t last6lowPAN standard rules, but as written in their website, they are still waitingfor a �nal and approved do
ument, even for neighbor-dis
overy standard too.Blip is a very big and well-stru
tured proje
t that supports various interfa
es,header �les and modules. In fa
t it doesn't deal only with IPv6 header 
om-pression but also with transport layer proto
ols (UDP and TCP), with neighbordis
overy pro
edures and with routing proto
ols (next version will have RPL asrouting proto
ol). WEBS group within the �rst version also have provided aBaseStation appli
ation with a 
on�guration s
ript to install an IPv6 networkinterfa
e on a Linux-based PC to start developing a real IPv6-based sensor net-work. So Blip is surely a ready-to-go implementation of 6lowPAN for TinyOS.In this thesis only header 
ompression is dealt with, so all other BLIP parts will



2.2 blip 21be ignored.The most 
onsiderable thing is how RAM memory is managed while dealingwith pa
kets and header 
ompression operations. As said before, in TinyOSRAM memory allo
ation is stati
, so variables and bu�ers are allo
ated during
ompilation stage; hen
e if a big bu�er is rarely needed and for the most of theoperating time it would be useless, i.e. that amount of RAM memory would stayunused. When dealing with pa
kets of di�erent sizes, this limit is ampli�
ated;in fa
t even if the most of pa
kets would be few bytes long, it is ne
essary toallo
ate an amount of memory to let the biggest possible pa
ket �t in. In blipthis problem is solved with a set of fun
tions that manages a huge bu�er, 
alledheap, between modules; 
alling mallo
 and free fun
tions every blip modules
an ask for some memory and then release it. With this original innovation, itis possible to deal with more than one pa
ket at a time while using less memorythan the biggest possible pa
ket size.Blip also provides more than one transport proto
ol interfa
e, so it is possibleto 
hoose between UDP and TCP, but if both of this proto
ols are not suitable,it is possible to dire
tly link appli
ations to IPv6 interfa
e, to 
all send and r
v(re
eive) 
ommands, and hen
e to implement an proprietary transport proto
ol.On the 
ontrary blip is very heavy both in terms of program and RAM memory:a small appli
ation like UDPE
ho that just answers to request made to port 7,
ompiled with blip, weighs about 25 kilobytes in program memory and 5 kilo-bytes in RAM memory; so in a platform like telosB it remains only 23 kilobytesin program memory and only 5 kilobytes in RAM memory. Generally an appli-
ation needs not only a transport appli
ation but also an appli
ation proto
ollike soap or 
oap; so less than 23 kilobytes may be not enough for an appli
ationproto
ol and the appli
ation too.



22 Related work2.3 Contiki and µIPv6Contiki is an open sour
e operating system for memory-
onstrained networkedembedded systems. It is written by Adam Dunkels from the Swedish Instituteof Computer S
ien
e. Contiki is designed for embedded systems with smallamounts of memory. A typi
al Contiki 
on�guration is 2 kilobytes of RAM and40 kilobytes of ROM.Like TinyOS, Contiki adopts an event-driven system to manage memory andthreads, but, opposed to tinyOS, it permits to dynami
ally load and unload pro-grams and servi
es.One of Contiki's main features is a set of well stru
tured and lightweight net-work proto
ol sta
ks whi
h µIPv6 is surely the leading edge. µIPv6 is the world'ssmallest 
erti�ed IPv6 sta
k, it 
an runs on IEEE 802.15.4 and Ethernet, its di-mension is about 11 kylobytes of program memory and 1.8 kylobytes of RAMmemory. Within µIPv6 there is a set of header and fun
tion �les, so 
alled SIC-Slowpan, that realizes a 6lowPAN implementation that respe
ts RFC4944 andthe se
ond version of 6lowPAN header-
ompression draft (h
-01). As reported,a full-feature IPv6/6lowPAN Contiky OS image weighs 40 kylobytes of programmemory and 10 kylobytes of RAM memory. SICSlowpan is not imlemented likea servi
e but like a set of fun
tions, that are 
alled by MAC when a pa
ket arrivesor by the IP servi
e when there is a pa
ket to send. Like 6lowpan by HarvanSICSlowpan defragmentation fun
tion 
an't pro
ess more than one pa
ket at atime, so while it is re
ostru
ting one pa
ket, all fragments that doesn't belongto that pa
ket will be dropped. Mesh header and link level routing are ignoredsin
e Contiki targets the route-over te
nique.2.4 TinyNETTinyNET [4℄ doesn't deal with 6lowPAN, but it is a framework that allows devel-opment and a qui
k integration of network proto
ols in TinyOS. It is developed



2.4 TinyNET 23at the University of Padova. The development originated from the fa
t that veryfew appli
ations are a
tually built based on reusable 
omponents, sin
e the mostwidespread approa
h is to implement ad ho
, monolithi
 blo
ks that deliver therequired fun
tionalities. The original idea is to 
reate a general stru
ture tosupport the use of di�erent proto
ols without totally 
hanging the ba
kbone ofTinyOS network sta
k. With this idea an ar
hite
ture made of interfa
es and
on�guration �les has been implemented, it permits to anyone to implement hisown network proto
ol at any level of proto
ol sta
k, without thinking about onhow to integrate his proto
ol in TinyOS network proto
ol sta
k.Sin
e the importan
e of this thesis is not how 6lowPAN 
ompression fun
tionshas been implemented, but how the whole ar
hite
ture has been thought, andsin
e tinyNET stru
ture design is one of the basi
 prin
iples of this proje
t, anintrodu
tion to this work is in order.
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Chapter 3
Implementation
Abstra
t:Chapter starts with a general and high-level des
ription, then goes down ana-lyzing interfa
es 
ommands and events and some spe
i�
 and pe
uliar fun
tionsthat distinguish this work from other implementations.
3.1 Introdu
tionBefore starting to des
ribe proje
t obje
ts and ar
hite
ture features, it is ne
es-sary to make some remarks.In this 6lowPAN implementation work the author has had a relevant role at ea
hsteps, from the beginning when other tinyOS 6lowPAN implementations mustbe studied and analyzed to �nd la
ks, through the main steps when the ar
hi-te
ture has been designed, and the implementation has been made, even till theend when tests were realized and exe
uted.
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iplesThe design stage of this sixlowpan implementation were made in 
ollaborationwith Eng. Angelo P. Castellani and Eng. Mattia Gheda, who had the lead ofstarting this new proje
t. They has some spe
i�
 ideas and obje
ts about howto realize an e�
ient and versatile network sta
k and how to stru
ture interfa
esand 
omponents of this 6lowpan implementation:� RAM memory 
entri
 optimization: 
reate a memory manager 
omponentthat would manage RAMmemory for the whole programs and appli
ationsrunning on a node. Fo
us on RAM management that 
ompensates thatTinyOS gap about stati
 RAM allo
ation. This module provides two basi
fun
tions to deal with RAM memory from appli
ations: allo
 and freefun
tions, and some other fun
tions properly designed for network proto-
ols: reallo
 and hreallo
, fun
tions that extends or redu
e a bu�errespe
tively on tail or head. These kind of fun
tion are very useful whendealing with pa
kets, headers and footers;Figure 3.1 shows that this new 
omponent's fun
tions and features will be
Application

6lowPAN

UDP
(TCP)

IPV6

802.15.4

M
em

or
y

Figure 3.1: Design of memory 
omponent ar
hite
ture
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iples 27shared by all 
omponents of a node maybe by appli
ation programs too,not only when they have to send a message but also for their own fun
tions.� modular standard support: in
apsulate as mu
h as possible all proto
oldependant pro
edures and fun
tions to allow future updates or to makefun
tions portable to other platforms or other OSs;� 
lear layer design: split layers as mu
h as possible and avoid modules thatin
lude more than one proto
ol to simplify the design operations and 
ode.But at the same time keep redu
ed the number of fun
tion 
alls that weigha lot on 
ode dimension. With the right data stru
tures, fun
tion 
alls 
anbe redu
ed and 
ode 
an be made light. Hen
e if the ar
hite
ture is welldesigned, it is possible to take advantage of modular fun
tions keeping
ode light.� level 2 and level 3 routing support: develop both route-over and mesh-under routing me
hanisms to postpone the 
hoi
e. With route-over, nodesbuild routing tables with IPv6 addresses and routing proto
ol works withIPv6 messages, at data-link level only an IPv6 to data-link address transla-tion is needed sin
e route-over provides IPv6 address of next-hop hosts. Onthe 
ontrary with mesh-under, nodes build routing tables with data-linkaddresses and routing proto
ol works with data-link messages, IPv6 mod-ule 
ommuni
ates to lower levels the destination's IPv6 addresses ignoringhow routing operations are made.RAM memory manager was designed implemented and tested before this proje
tstarted, so it will be dis
ussed but not referred to as a 
omponent designed duringthis thesis work.



28 Implementation3.3 Ar
hite
tureIn �gure 3.2 the overall proto
ol sta
k ar
hite
ture with raw rapresentations ofdi�erent modules is shown.As it is shown every network proto
ol layer has its own module, so if a right

MeshUnder

RouteOverIPv6 layer

IPv6 Adaptation Layer
(6lowPAN)

MAC layer

UDP ICMPv6

IPv6Config

NeighborResolution

Figure 3.2: An outline about system ar
hite
tureset of interfa
es and data stru
tures are written with right set of input param-eters to ea
h 
ommands and events, it is possible to implement, for example, adi�erent IPv6 adaptation layer for the same MAC layer without modifying anyother modules. The ISO-OSI proto
ol sta
k prin
iple that says that every layeris indipendent from others is kept. This guideline together with the RAM mem-ory 
omponent that stores and shares data between modules, it make possible toimplement a generi
, reusable and, at the same time, light and e�
ient stru
turethat stays indipendent from whi
h proto
ol standard is 
hosen.The same reasoning 
an be made for what 
on
erns routing proto
ols. A rout-ing proto
ol has substantially to answer to few questions that may be asked bynetwork or data-link layers about next hop hosts' addresses to rea
h a given des-



3.3 Ar
hite
ture 29tination. Routing proto
ols try to �nd these answers with a messages ex
hangebetween nodes. So a routing proto
ol implementation needs to send and re
eivemessages and have to answer to next-hop questions.i n t e r f a 
 e RouteOver {
ommand void getNextHop ( slp_ip6_addr_t* addr , slp_ip6_addr_t*nextHop) ;
ommand void forwardAddr ( slp_ip6_addr_t* addr , slp_ip6_addr_t*nextHop) ;} Listing 3.1: Route over routing interfa
ei n t e r f a 
 e MeshUnder {
ommand ieee154_saddr_t getNextHop ( slp_ip6_addr_t* addr ) ;
ommand ieee154_saddr_t forwardAddr ( ieee154_saddr_t addr ) ;} Listing 3.2: Mesh Under routing interfa
eHen
e as it 
an bee seen in �gure 3.2 and in listings 3.1 and 3.2, routing inter-fa
es are simple but 
omplete. IPv6 module will be linked to RouteOver interfa
ewhile 6lowPAN module will use MeshUnder interfa
e's 
ommands.Obviously these two modules will never work at the same time, sin
e just onerouting module is needed, so if route-over is 
hosen, mesh-hunder be
ome anuseless module and vi
eversa.Both MeshUnder and RouteOver interfa
es have two 
ommands that, apart thename, appear to be equal; the di�eren
e is that with getNextHop 
ommand rout-ing module must answer with a valid address, but with forwardAddr 
ommandrouting module 
an answer with a null address if it doesn't want that messagesare forwarded.For messages ex
hange, RouteOver module will be linked to ICMPv6 module,while MeshUnder module will be dire
tly linked to tinyOS radio drivers.
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on�guration both route-over and mesh-under routing modules be-
ome two bla
k boxes, IPv6 and 6lowPAN modules don't need to know anythingabout them, whi
h routing proto
ol is used, if route-over or mesh-under is used,what kind of informations are ex
hanged, it is possible to implement any kindof routing proto
ol without a�e
ting any other modules.This aspe
t is key for this thesis. To build a stru
ture that permits to reuse 
odes,to implement the newest proto
ol version without any other thought about thewhole stru
ture of the system.In �gure 3.2 there are two more modules not been presented yet: NeighborRes-olution module provides 
ommands to translate an IPv6 address in a data-linkaddress; IPv6Con�g module provides all features inherent to host addresses.Every data-link interfa
e 
an have more than one IPv6 address, normally it hasa link-lo
al and a global uni
ast address, but also it 
an be registered to oneor more multi
ast addresses; hen
e IPv6Con�g maintains and manages a 
a
hewith all these addresses.3.4 Memory modulei n t e r f a 
 e Memory {
ommand memory_id_t a l l o 
 (memory_size_t s i z e ) ;
ommand void f r e e (memory_id_t id ) ;
ommand void * id2p (memory_id_t id , memory_size_t* s i z e ) ;
ommand error_t r e a l l o 
 (memory_id_t id , memory_size_t s i z e ) ;
ommand error_t h r e a l l o 
 (memory_id_t id , memory_size_t s i z e ) ;} Listing 3.3: memory 
omponent interfa
eAs it 
an be seen in listing 3.3 memory interfa
e provides 
ommands to handleRAM memory: memory_size_t and memory_id_t are two uint16_t data types,the �rst one is used to de�ne the memory size in bytes, the se
ond one is usedto identify an allo
ated bu�er.



3.4 Memory module 31When an appli
ation has to send a message it 
alls allo
 fun
tion that returnsa valid ID (if su
h amount of memory is not available it returns 0), then theappli
ation 
alls id2p fun
tion to take ba
k a pointer to memory spa
e from theID, to use for writing data. After writing it 
an pass the ID to the transportproto
ol for sending. UDP 
omponent has to add its own header to the bu�erhead, so it 
alls hreallo
 fun
tion that adds an amount of bytes taken as inputparameter, if there is no error signals, UDP 
alls again id2p fun
tion to beginwriting its header; then it passes the pa
ket to lower layer, and so on.The same pro
edure is used when a pa
ket is re
eived: the lowest layer thathandle the IPv6 pa
ket (sixlowpan) asks for a bu�er, writes the pa
ket andpasses the pa
ket to upper layer, whi
h takes a pointer to the datagram, startsreading its own header and then resizes the bu�er by 
alling hreallo
 fun
tionwith a negative value of size parameter.So appli
ations payload, on
e it is written by the lowest network layer, substan-tially doesn't move any more till it arrives to the appli
ation program that 
anstart reading it and maybe delete it by 
alling free fun
tion.With this te
nique there is no problem about bu�er pointers that 
hange valuesor be
ome obsolete, and there is no need to 
opy a huge amount of bytes to movedata to another bu�er.To implement these features, the memory 
omponent uses one huge blo
k ofRAM memory stati
ally initialized and few stru
tures made of a modi�ed Pool
omponent, 
alled SortedPool. This pool di�ers from a 
lassi
 TinyOS pool:sorted pool assigns an ID to every a
tive element, and it is able to get ba
k apointer to the element by its ID.In the memory 
omponent there are two lists made of those modi�ed Pools,one 
alled FreeList and one 
alled O

List; these two lists represent blo
ksof bu�er's memory that are respe
tively free or allo
ated. At the beginning,O

List is empty and FreeList has one element that represents a blo
k of emptymemory as large as the whole RAM memory assigned to this 
omponent. When
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 fun
tion is 
alled, it 
he
ks in the free list if there is an element that repre-sents a blo
k of empty memory bigger or equal than the requested size. If thereis, it resizes that element and also add a new element in o

upied list. Whena bu�er has to be 
leared, the referred element in the o

upied list is removed,and a new element in free list is added, then a 
he
k is made: if there are two
ontiguous elements in free list, they are joined in one element.hreallo
 fun
tion before doing the same job as allo
 fun
tion, 
he
ks if thereis an element in free list that represents an amount of free memory that liesbefore allo
ated bu�er. If there is, it removes the element in the free list andadds that amount of memory to the element that represents the bu�er, if thereisn't, it works like the allo
 fun
tion, i.e. it looks for a free memory blo
k aslarge as the sum of the allo
ated bu�er and the hreallo
 input size parameter,then 
opies data from old bu�er to that just allo
ated, and frees the old one.reallo
 fun
tion works like hreallo
 fun
tion on the bu�er tail.3.5 sixlowpan moduleThe most signi�
ant 
omponent that was implemented is 
alled sixlowpan; itprovides few interfa
es and few header �les whi
h in
lude the most signi�
antand 
ru
ial fun
tions to implement the 6lowpan layer.In �gure 3.3 header �le's names and what they realize are shown. Files with.h extension de�ne stru
tures and 
onstants for headers, while �les with .
 ex-tension de�ne fun
tions to handle these stru
tures. As it is shown, 6lowPANheaders was splitted in two di�erent header �les, one 
alled RFC4944 where frag-mentation and mesh header are handled and the other HC15 where last 6lowPANheader 
ompression te
niques, des
ribed in [2℄, are implemented.For better understanding on how these header �les are involved in 6lowPANimplementation, some stru
tures and fun
tion prototypes are shown.
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sixlowpan

RFC4944.h
fragmentation header struct definition
mesh header struct definition LOWPAN_NHC struct definition

LOWPAN_IPHC header struct definition

LOWPAN_IPHC handling functions
LOWPAN_NHC handling functions

6LOWPAN.h

packet entry struct definition

RFC4944.c
mesh handling functions

fragmentation handling functions

HC15.h

HC15.c

Figure 3.3: An outline about sixlowpan module and header �lestypede f s t r u 
 t {memory_id_t pa
ket ;slp_ip6_addr_t nextHop ;boo l 
he
ksumElide ;slp_mesh_opt_t mesh ;slp_frag_opt_t f r a g ;s lp_
ontext_t 
ontext ;uint16_t byteLe f t ;} slp_pa
ket_entry_t ;Listing 3.4: pa
ket entry data stru
turetypede f nx_stru
t {nx_uint8_t pattern : 2 ;nx_uint8_t v : 1 ;nx_uint8_t f : 1 ;nx_uint8_t hopsLeft : 4 ;nx_uint16_t o r i g i n a t o r ;nx_uint16_t f i n a lDe s t ;} slp_mesh_opt_t __attribute__ ( ( pa
ked ) ) ;Listing 3.5: mesh header stru
turetypede f nx_stru
t {nx_uint16_t pattern : 5 ;



34 Implementationnx_uint16_t s i z e : 1 1 ;nx_uint16_t tag ;nx_uint8_t o f f s e t ;} slp_frag_opt_t __attribute__ ( ( pa
ked ) ) ;Listing 3.6: fragmentation header stru
tureListing 3.4 shows the 
ru
ial stru
ture, used both by sixlowpan send and re
eive
ommands, to store fundamental informations to handle IPv6 datagrams withthe minimum number of external fun
tion 
alls.memory_id_t and slp_ip6_addr_t, are the memory ID where the pa
ket isstored and IPv6 address of the next hop host; slp_mesh_opt_t and slp_frag_opt_tare respe
tively mesh and fragmentation headers of the IPv6 pa
ket, stored inproper stru
tures (shown in listings 3.5 and 3.6) of IPv6 pa
ket; byteLeft vari-able is used by re
eive pro
edure to keep tra
e of how many bytes remains to
omplete the IPv6 pa
ket. 
he
ksumElide boolean variable indi
ates if LOW-PAN_NHC 
ompression have elided the 
he
ksum �eld. Sin
e to elide 
he
k-sum �eld sixlowpan needs the permission from appli
ation program, this variableshould state the appli
ation's order.typede f nx_stru
t {nx_uint16_t pattern : 3 ;nx_uint16_t t f : 2 ;nx_uint16_t nh : 1 ;nx_uint16_t hlim : 2 ;nx_uint16_t 
 id : 1 ;nx_uint16_t sa
 : 1 ;nx_uint16_t sam : 2 ;nx_uint16_t m: 1 ;nx_uint16_t da
 : 1 ;nx_uint16_t dam : 2 ;} slp_h
15_header_t __attribute__ ( ( pa
ked ) ) ;Listing 3.7: LOWPAN_IPHC header dispat
h stru
ture
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t {nx_uint8_t pattern : 5 ;nx_uint8_t 
 : 1 ;nx_uint8_t p : 2 ;} slp_h
15_udp_nh
_t __attribute__ ( ( pa
ked ) ) ;Listing 3.8: LOWPAN_NHC dispat
h stru
tureIn listings 3.7 and 3.8 LOWPAN_IPHC and LOWPAN_NHC header stru
turesare shown. Field and �ag's names respe
t those one assigned in the draft do
u-ment [2℄.Those stru
tures are pra
ti
ally never instantiated, but only pointers of thisstru
ture types are instantiated, and then 
asted to a generi
 bu�er. By thispro
edure, the a

ess to �ags is dire
t and doesn't need any masks or bitwiseoperations, and at the same time 
ode is kept simple and more readable.uint8_t f i l l 1 s tMs g ( slp_pa
ket_entry_t* entry , void * messagetPayload, uint8_t messagetPayloadLength , void * pa
ketPayload , uint16_tpa
ketPayloadLength , void * 
ompHeader , uint8_t 
ompSize , uint8_to r i g i n S i z e ) ;uint8_t f i l lOthe rMsg ( slp_pa
ket_entry_t* entry , void *messagetPayload , uint8_t messagetPayloadLength , void *pa
ketPayload , uint16_t pa
ketPayloadLength ) ;uint8_t de
ompress ( void * messagetPayload , slp_pa
ket_entry_t* entry) ;uint8_t f i l l P a y l o a d ( slp_pa
ket_entry_t* 
urrentEntry , void *pa
ketPayload , void * messagetPayload , uint8_tmessagetPayloadLength ) ;Listing 3.9: Some of the most important fun
tion de
larations of RFC4944.
 �leIn listing 3.9 some fun
tions used to handle mesh and fragmentation headersare shown. fill1stMsg fun
tion is used to �ll an IEEE 802.15.4 message with�rst IPv6 pa
ket's fragment or even with the whole IPv6 pa
ket if it is small



36 Implementationenough. It re
eives pointers and sizes of the data-link message payload and theIPv6 pa
ket, it also re
eives pointer and sizes of the IPv6 header before andafter 
ompression, to rightly �ll data and to 
al
ulate the o�set. fillOtherMsgis used to write other IPv6 pa
ket fragments in data-link messages, it doesn'tneed any information about the IPv6 
ompressed header sin
e in subsequentfragments the IPv6 header would not be present and the o�set value is su�
ientto 
al
ulate whi
h bytes to send are remaining. fillPayload fun
tion is used inthe re
eive pro
ess to write the IPv6 pa
ket payload within the bu�er.uint8_t HC15Compress ( void * pa
ketPayload , void * bu f f e r , uint8_t *o r i g i nS i z e , boo l useMeshOrNeigh , boo l 
he
ksumElide ) ;uint16_t HC15de
odeHeader ( slp_pa
ket_entry_t* entry , void *messagetPayload , uint8_t messagetPayloadLength , void *pa
ketPayload , ieee154_saddr_t ma
Sr
Addr , ieee154_saddr_tma
DestAddr , uint8_t * o r i g i n S i z e ) ;Listing 3.10: Some of the most important fun
tion de
larations of HC15.
 �leListing 3.10 shows the two fundamental fun
tions to 
ompress and de
ompressthe IPv6 header. HC15Compress fun
tion needs a pointer to IPv6 header be-gin and a pointer to a bu�er where to write 
ompressed header, then it returnssizes of header before and after the 
ompression pro
ess. The two parametersuseMeshorNeigh and 
he
ksumElide are needed to state if it is possible respe
-tively to elide the last 2 bytes of IPv6 addresses and the UDP 
he
ksum �eld.HC15de
odeHeader fun
tion de
ompress the IPv6 header by reading it in the�rst fragment of an IPv6 pa
ket and then writing it in a bu�er and, as for 
om-pression fun
tion, it has to return both 
ompressed and de
ompressed sizes ofIPv6 header. ma
Sr
Addr and ma
DestAddr parameters are needed in the 
asethat last 2 bytes of IPv6 addresses have been elided.The sixlowpan module mainly implements the 6lowPAN standard.
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 e IPv6Adaptation {
ommand error_t send (memory_id_t p
k , slp_ip6_addr_t* nextHop) ;event void sendDone (memory_id_t p
k , error_t e r r o r ) ;event void r e 
 e i v e (memory_id_t p
k ) ;} Listing 3.11: IPV6Adaptation interfa
eAs it is shown in listing 3.11 there is not a 6lowPAN interfa
e, but a more generi
interfa
e IPv6Adaptation. This solution keeps the system open to future im-provments and development also for other possible adaptation layers. It is aquite simple interfa
e with minimal 
ommands and events: memory_id_t is theID of the memory spa
e where IPv6 datagram is lo
ated and slp_ip6_addr_t*is a pointer to IPv6 address of the nextHop. As already explained, the name nex-tHop doesn't for
e IPv6 to provide a true next hop address, in fa
t if route-overwill be used, next hop will be true next hop and NeighborResolution module willtranslate that address to a data-link address, on the 
ontrary if mesh-under willbe used nextHop will be the destination address and the true next hop data-linkaddress will be 
al
ulated by mesh-under module.Sin
e the sixlowpan 
omponent is the �rst 
omponent in the network proto-
message_t received queuemessage_t to send queue

Ieee154Message

sixlowpan

IPv6 packet to defrag list

send path receive path

packet to send queue

Figure 3.4: sixlowpan queue ar
hite
ture and paths of send and re
eive pro
esses
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ol sta
k that has to deal with IPv6 pa
ket and data-link message at the sametime, and it has also to deal with a pa
ket fragmentation pro
ess, some poolsand queue are needed. So the memory 
omponent be
ome less useful than it isfor IPv6 or UDP module. In fa
t here it is just used to write or read the IPv6pa
ket, not to add or remove 6lowPAN headers.Furthermore, sixlowpan module must implement a lot of operations before send-ing an IPv6 pa
ket, so a non monholiti
 solution has been 
hosen. In fa
t, if alloperations would be made in a single step in
luded in the send 
ommand, CPUwould be pre-empted for too mu
h time. So the operations has been split inthree phases 
omputed by tasks. The �rst phase is implemented by sixlowpansend 
ommand and 
onsists in instantiating a new pa
ket entry and �lling thisentry with the most part of the information that 
an be 
al
ulated in that mo-ment, like mesh header or IPv6 next hop address. Last operation is to enqueuethe entry in the pa
ket entry queue. The se
ond phase is implemented by a task,
alled pa
ketTask, it makes the most important and long time operation, thatis popping �rst element of pa
ket entry queue, extra
ting the next fragment tosend, if it is the �rst, then 
ompressing IPv6 header, instantiating a new IEEE802.15.4 message, writing payload and �lling MAC header with the relevant in-formation, and, last, enqueuing the message in the message queue. The thirdand last phase is made by another task, 
alled sendTask, that has simply to pop
sixlowpan
send commandIPv6 packet task send task

IPv6 packet packet entry

packet entry
queue

message 
queue

Ieee154
message M

A
C

 la
ye

r

Ieee154
message

IPv6
packet

Figure 3.5: sixlowpan sending pro
edure work�ow



3.5 sixlowpan module 39�rst element of message queue, 
all send 
ommand of Ieee154Message interfa
eand wait for sendDone signal to 
he
k if message is sent.As it is shown in �gures 3.4 and 3.5 every task manages its own queue. Theyare posted when an element is enqueued and they don't stop exe
uting till thequeue be
omes empty. In this way CPU doesn't stay busy in exe
uting one sin-gle fun
tion but it 
an be requested by other fun
tions more frequently, makinga lighter and prompt system.The re
eive pro
edure is mu
h less 
ompli
ated, in fa
t just one task is used.When tinyOS driver signals that a new message is arrived, sixlowpan re
eive
alls the event handler, enqueue the message in a re
eive message queue andthen posts the re
eiveTask. The task pops the message, extra
ts headers, thende
ompresses IPv6 header if present. If message is a fragment of an IPv6 pa
ketit 
he
ks if fragmentation header tag value is already present in the pa
ket-to-defrag list, then if it is, it writes payload in the right pla
e in the bu�er, if itis not, it allo
ates a new bu�er, write the payload and puts a new entry in thelist. When an IPv6 pa
ket is re
eived and defragmented, it passes the bu�er IDto the upper module that handles IPv6 header.We remark that it is the re
eiveTask that 
he
ks if there is a mesh header andif the message has to be forwarded, it asks to MeshUnder module to provide anext hop address, it 
hanges data-link destination address and then enqueuesmessage in the message-to-send queue.Sixlowpan module also provides an Ieee154MessageSend and Ieee154Re
eive in-terfa
e. Sin
e maybe it is ne
essary for some appli
ations to dire
tly send andre
eive non-IPv6 messages, to re
ognize these kind of messages it is ne
essaryto add on payload head one byte with a known pattern that signals that mes-sage is out of IPv6 proto
ol 
ommuni
ations. This job is made by sixlowpanmodule, and when a non-IPv6 message has to be sent, sixlowpan moves the mes-sage payload to empty the �rst byte and write the NALP (not a lowpan pa
ket)pattern. The same thing must be done when a message is re
eived: sixlowpan
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he
k if NALP pattern is present, if it is, it signals a re
eived messageon Ieee154Re
eive interfa
e, otherwise it enqueues the message as explainedbefore.3.5.1 Compression and de
ompression pro
essesSin
e it is a pro
edure explained in draft h
-15, 
ompression and de
ompressionfun
tions is performed in HC15.
 �le.. . .slp_ip6_header_t * header = NULL;slp_UDP_header_t* UDPheader = NULL;slp_h
15_header_t* HC15Dispat
h = NULL;slp_h
15_udp_nh
_t * nextHeaderCompress = NULL;. . .header = ( slp_ip6_header_t *) pa
ketPayload ;pa
ketPayload += s i z e o f ( slp_ip6_header_t ) ;. . .HC15Dispat
h = ( slp_h
15_header_t*) bu f f e r ;bu f f e r += s i z e o f ( slp_h
15_header_t) ;headerS i z e += s i z e o f ( slp_h
15_header_t ) ;. . .Listing 3.12: HC15Compress fun
tion's 
ode fragment to show stru
tures use.As said before, stru
tures like slp_h
15_header_t or slp_h
15_udp_nh
_t arenever instantiated, only the pointer of those stru
tures types are used. In listings3.12 this use is shown: pointers are initially instantiated with a NULL value;then the pointers to the bu�ers ( pa
ketPayload and buffer) are 
asted to bethose stru
ture type pointers.Other 
ode fragments show how 
ompression pro
esses is made, in parti
ular 3.13refers to the hop limit �eld, while 3.14 shows sour
e address 
ompression pro
ess.
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h ( header−>hopLimit ) {
ase 1 :HC15Dispat
h−>hlim = SLP_HC15_HLIM_1;break ;
ase 64 :HC15Dispat
h−>hlim = SLP_HC15_HLIM_64;break ;
ase 255 :HC15Dispat
h−>hlim = SLP_HC15_HLIM_255 ;break ;d e f au l t :HC15Dispat
h−>hlim = SLP_HC15_HLIM_INLINE;mem
py ( bu f f e r , &(header−>hopLimit ) , s i z e o f ( header−>hopLimit ) ) ;bu f f e r += s i z e o f ( header−>hopLimit ) ;headerS i z e += s i z e o f ( header−>hopLimit ) ;break ;} Listing 3.13: HC15Compress fun
tion's hop limit 
ompression pro
ess.temp = &(header−>sour
e ) ;HC15Dispat
h−>sa
 = SLP_HC15_SAC_STATELESS;i f (mem
mp(temp , &SLP_LINKLOCAL_NET_ADDR, s i z e o f (SLP_LINKLOCAL_NET_ADDR) ) !=0) {HC15Dispat
h−>sam = SLP_HC15_SAM_128 ;mem
py( bu f f e r , &(header−>sour
e ) , s i z e o f ( header−>sour
e ) ) ;bu f f e r += s i z e o f ( header−>sour
e ) ;headerS i z e += s i z e o f ( header−>sour
e ) ;} e l s e {temp += s i z e o f (SLP_LINKLOCAL_NET_ADDR) ;i f (mem
mp(temp , &SLP_EUI64_SHORT_ADDR, s i z e o f (SLP_EUI64_SHORT_ADDR) ) !=0) {HC15Dispat
h−>sam = SLP_HC15_SAM_64;mem
py( bu f f e r , temp , s i z e o f ( header−>sour
e ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) ) ;



42 Implementationbu f f e r += s i z e o f ( header−>sour
e ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) ;headerS i z e += s i z e o f ( header−>sour
e ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) ;} e l s e {i f ( useMeshOrNeigh )HC15Dispat
h−>sam = SLP_HC15_SAM_0;e l s e {HC15Dispat
h−>sam = SLP_HC15_SAM_16;temp += s i z e o f (SLP_EUI64_SHORT_ADDR) ;set_16t ( bu f f e r , get_16t ( temp) ) ;bu f f e r += s i z e o f ( header−>sour
e ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) − s i z e o f (SLP_EUI64_SHORT_ADDR) ;headerS i z e += s i z e o f ( header−>sour
e ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) − s i z e o f (SLP_EUI64_SHORT_ADDR) ;}}} Listing 3.14: HC15Compress fun
tion's sour
e address 
ompression pro
essJust to better understand: set_16t fun
tion is needed to solve well knownproblems about TinyOS' 
 
ompiler for MSP430 MCU that 
auses some troubleswhen 
opying 2 bytes �elds.De
ompression fun
tion works in the same manner, bu�er pointers are 
astedto be spe
i�ed stru
ture pointers and then, by simply reading LOWPAN_IPHC�ags, IPv6 header is rebuilt.3.5.2 Fragmentation and defragmentation pro
essesFragmentation and defragmentation fun
tions are implemented in RFC4944.
�le. The me
hanism 
ounts on more than two fun
tions sin
e it involves data-link payload �lling and extra
ting.
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ketPayloadLength − o r i g i n S i z e + 
ompSize <=messagetPayloadLength ) {. . . // IPv6 pa
ket 
an f i t in a s i n g l e message_t} e l s e {. . . // wr i t ing fragment headeri f ( 
ompSize < messagetPayloadLength ) {. . . / / f i l l f i r s t fragment with IPv6 
ompressed header andf i r s t fragment o f payload} e l s e {// 
ond i t i on not 
ons ide r ed}} Listing 3.15: �ll1stMsg fun
tion's 
ode fragmentAs explained, fragment header o�set value must be 
al
ulated taking 
are ofun
ompressed IPv6 header, so fill1stMsg fun
tion, that deals with �lling data-link message's payload with �rst fragment, re
eives both size values of the IPv6header, before and after 
ompression. This fun
tion has �rstly to 
he
k if thewhole IPv6 
ompressed pa
ket 
an �t in a single message, if not then startswith fragment operations. In listing 3.15 this 
he
ks are shown, in parti
ularthe �rst if statement is made to 
he
k if 6lowPAN pa
ket 
an �t in a sin-gle data-link message, this 
ontrol is made by pi
king IPv6 pa
ket size valuepa
ketPayloadLength, subtra
ting IPv6 header size value originSize (it maytakes 
are of 
ompressed UDP header) and then adding 6lowPAN header value
ompSize. The se
ond if statement is made to 
he
k if 6lowPAN header 
an�t in a single data-link message. This statement must be always true, sin
e, aswritten, the false 
ase is not handled.. . . // 
opy fragmentat ion headermessagetPayloadLength −= s i z e o f ( entry−>f rag ) ;pa
ketPayloadLength −= entry−>f rag . o f f s e t *8 ;i f ( messagetPayloadLength < pa
ketPayloadLength ) {



44 ImplementationmessagetPayloadLength = ( uint8_t ) ( messagetPayloadLength / 8) ;mem
py (messagetPayload , pa
ketPayload , messagetPayloadLength *8) ;. . .entry−>f rag . o f f s e t += messagetPayloadLength ;} e l s e {. . . / 
opy l a s t bytes o f pa
ket payload} Listing 3.16: �llOtherMsg fun
tion's 
ode fragmentIn listing 3.16 fillOtherMsg fun
tion 
ode is shown: after writing the fragmen-tation header in the 802.15.4 message payload, messagetPayloadLength andpa
ketPayloadLength values are 
al
ulated, �rst one by subtra
ting the sizeof fragmentation header, se
ond one by subtra
ting the o�set value whi
h isstated as an 8 multiplier. Then if IPv6 pa
ket payload left over is still largerthan 802.15.4 message payload, the available spa
e in the data-link message isdivided by 8 and rounded to obtain a minimum 
ommon multiplier of 8, whi
hwill be the amount of bytes (multiplied by 8) of the IPv6 pa
ket that will bewritten in the message. On the 
ontrary if IPv6 pa
ket bytes left over are lessthan the data-link message payload, they are dire
tly written, and sin
e the IPv6pa
ket is sent at all, no more o�set value has to be 
al
ulated.Fun
tions to defragment an IPv6 pa
ket are so simple that no 
ode samples areneeded.de
ompress fun
tion simply 
he
ks if the fragmentation header is present ondata-link message head, then if there is, it 
opies the header in the entry->fragstru
ture.fillPayload fun
tion re
eives pointers to the data-link message and to the IPv6pa
ket bu�er, it 
al
ulates the o�set by reading its value in the entry->fragstru
ture and then it 
opies the right amount of bytes in the bu�er. In the 
aseof �rst message whi
h 
ontains 6lowPAN header, re
eiveTask, before 
allingfillPayload fun
tion, moves the IPv6 pa
ket bu�er's pointer to the �rst byte



3.6 IPv6 module 45after the de
ompressed IPv6 header, so fillPayload fun
tion, that reads a 0 inthe o�set �eld, doesn't noti
e that it is writing not in the real �rst bu�er's byte,whi
h would a wrong position, but in the �rst byte after the IPv6 de
ompressedheader.3.6 IPv6 moduleIPv6 
omponent is very simple, it doesn't have any tasks, send 
ommand andre
eive event handler do their job at on
e.Send 
ommand doesn't provide any extension header features, so it has to add40 bytes of the default IPv6 header to the pa
ket bu�er, then it �lls IPv6 �eldsand 
alls send 
ommand of the sixlowpan 
omponent.Same thing is done by re
eive event handler that 
an't re
ognize any extensionheaders and it just reads the default IPv6 header, removes IPv6 header by usinghreallo
 Memory's fun
tion, and redire
ts re
eive signals to right transportproto
ols.3.7 UDP moduleAs the IPv6 module, the UDP fun
tions rely on the memory module to add andremove UDP header from appli
ation pa
kets. send and re
eive pro
esses areentirely held in single fun
tions and they simply handle the 
lassi
 UDP header.UDP module is linked to IPv6 module by its IANA next Header number, whi
his 17. On the other hand, appli
ations 
an be linked to UDP module by thesour
e port number, sin
e UDP doesn't deal with LOWPAN_NHC 
ompressionme
hanism and hen
e it doesn't know anything about port patterns for 
ompres-sion, there is no formally restri
tions when 
hoosing port numbers. Appli
ationsand appli
ation programmers, will de
ide what port number to use and they willtake 
are about squeezable port numbers.
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Chapter 4
Testing and results
Abstra
t:In this 
hapter, test results are shown. Sin
e neither neighbor dis
overy nor dh
p
lient modules were implemented or developed, test pro
edures only deal withpoint-to-point 
ommuni
ations, IPv6 addresses have been stati
ally assigned tonodes, and routing modules only return default values. For the same reason,even mesh header using was not tested.Hen
e prin
ipally these trial programs aim to put this sixlowpan implementationunder stress situations, both in 
ompression and de
ompression, fragmentationand defragmentation pro
edures, to �nd the saturation points of the send andre
eive fun
tions.4.1 Testing pro
eduresAll test programs work over UDP proto
ol with ports and addresses values setto permit to fully 
ompress headers. Prin
ipally three types of test have beenmade: one to test the send fun
tions, one to test the re
eive fun
tions and thelast to make this implementation 
ompatible with the most important tinyOS6lowPAN implementation i.e. blip.Throughput performan
es aimed by this implementation are all 
ompared with
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Figure 4.1: Network 
on�guration during teststhose aimed by tinyOS CC2420 radio drivers, so it will be possible to weigh thissixlowpan implementation on the whole network proto
ol sta
k of tinyOS.4.2 Send se
tionSend test programs aim to �nd the maximum bitrate that send fun
tions 
ansubstain. Normally to �nd the maximum throughput of a network proto
ol,an appli
ation send a message and wait for the send-done signal before sendinganother one; the throughput value is 
al
ulated by 
ounting the number of mess-sages sent every se
ond. But, sin
e sixlowpan module makes use of few pools,queues and tasks, to real stress the send fun
tions this kind of pro
edures wouldnot be enough.So test programs are designed in a way that pools and queues are �lled as mu
has possible and hen
e tasks never stop exe
uting themselves: the appli
ationrequests to the UDP module to the send a pa
ket every spe
i�
 time intervalwithout waiting for send-done signals, throughput is 
al
ulated by taking noteof the time interval when a lot of error messages are returned by send 
ommand.Sin
e some parameters, like pools dimension, must be set at 
ompile time, tostudy the best 
on�guration and to �nd the best performan
e a 
omplete set ofparameters was used, where all parameters 
ombinations are in
luded.
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Figure 4.2: Throughput in fun
tion of UDP pa
ket size for di�erentIEEE802.15.4 frame dimensions
To make these tests automati
 few s
ripts have been written in bash language,these s
ripts simply 
ompile and program node with a spe
i�
 set of 
on�gurationparameters, then by using well known, tinyOS java programs, they inter
epet failmessages printed on serial port by nodes. If the number of re
eived fails is morethan a spe
i�
 value they 
onsider the test as �nished and start another one withdi�erent 
on�guration parameters 
ombination. Nodes are programmed with atest program that, as said before, requests to send an UDP pa
ket at a spe
i�
time interval 
ounted by a timer. Every few minutes test appli
ation redu
esthe time interval and send the new rate time on serial port. In this way afterthe s
ript 
ompletes all possible tests, in a log �le all results are available.Apart from pools dimension the IEEE802.15.4 frame size too was 
hanged duringthe tests. This parameter a�e
ts very mu
h performan
es, in fa
t if the data-linkpayload size is redu
ed, more fragments would be needed to send a pa
ket. In�gure 4.2 this kind of in�uen
e is shown, di�erent 
olor lines represent di�erent
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Figure 4.3: Throughput in fun
tion of IEEE802.15.4 frame size for di�erent UDPpa
ket size
IEEE802.15.4 message sizes. After a transitional range of pa
ket sizes, through-puts a
hieve a stable value; for a spe
i�
 pa
ket size, di�erent IEEE802.15.4frame sizes 
hange the number of fragments per pa
ket.Figure 4.3 shows another behavior of this implementation 
ompared with thatof CC2420 tinyOS drivers. The bla
k line states the maximum throughput that
an be rea
hed by tinyOS CC2420 drivers, while other lines indi
ate throughputvalues for di�erent UDP pa
ket sizes. It is possible to see that the maximumthroughput value rea
hed by both this implementation and tinyOS drivers arefar from the maximum bitrate value supported by CC2420 radio 
hip, that is 250kbps. On the 
ontrary, the redu
tion 
aused by sixlowpan is small, and hen
e itdoesn't make throughput performan
es so mu
h worst.In �gure 4.4 another kind of in�uen
e is shown. In this 
hart throughputs are
al
ulated for di�erent values of sixlowpan module's pools size while UDP pa
ketsize and data-link frame size stay �xed. Throughput trends is substantially sta-
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Figure 4.4: Throughput in fun
tion of message_t pool size for di�erent pa
ketentry pool dimensions
ble in the range from 40 to 45 kbps, and maybe the small variation does notdipend on the parameter 
hange but on radio interferen
es and timer a

ura
y.If a queue dimension is set to one (or even two), the queue pra
ti
ally doesn'texist any more, so all advantages that 
ome from the tasks based system disap-pear. Hen
e for very small pool dimensions the throughput goes down. On the
ontrary for bigger pool dimensions, throughput di�eren
es are less visible. Thishappens be
ause of the test appli
ation ar
hite
ture: sin
e only one appli
ationrequests to send a pa
ket at a time, the number of pa
ket entries that 
an bestored at the same time doesn't matter, in fa
t just one is needed. For futureappli
atons this parameter should be set taking into a

ount the number of ap-pli
ations that 
ould request to send an IPv6 pa
ket.The same behaviours appears if the data-link message queue is too small: thetasks have to stop themselves be
ause the queue is always full, moreover a toobig queue is useless if the mean number of fragments in whi
h an IPv6 pa
ket



52 Testing and resultsis split, is less than the queue size. Moreover, sin
e the most of the time theCPU is waiting for tinyOS radio driver to send phisi
ally messages (as it will beshown next), having a big data-link message pool is useless, in fa
t after a while,tasks have to stop themselves to wait for the data-link message queue emptying.So even this parameter too, should be set to a suitable value that 
onsiders themean dimension of IPv6 pa
kets that are sent and hen
e the mean number offragments in whi
h a pa
ket is divided.To better understand the send speedness redu
tion of this implementation, an-
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Figure 4.5: Equivalent throughput for di�erent UDP pa
ket sizes in fun
tion ofthe number of sender nodes that sends in the same radio 
hannel, 
ompared withtinyOS radio driverother series of tests has been made. Their obje
tive was to saturate the radio
hannel. This purpose was rea
hed by programming more than one nodes withthe same appli
ation used to test the throughput, set to send messages over thesame radio 
hannel. In this way, the presen
e of more than one nodes, balan
esthe slowness of tinyOS radio drivers and hen
e a bigger equivalent throughput
an rea
hed.



4.3 Re
eive se
tion 53Figure 4.5 shows results of 
hannel saturation tests. The bla
k line shows equiva-lent throughput rea
hed by tiniyOS radio driver, while other lines show through-put rea
hed by UDP proto
ol for di�erent pa
ket sizes. Like in �gures above,this 6lowPAN implementation redu
es the sending speedness, but follows thetrend made by tinyOS radio driver.4.3 Re
eive se
tionA �rst series of tests was made: while one or more nodes periodi
ally sendpa
kets, another node, a
ting as a re
eiver, re
eives pa
kets and 
he
ks if it losesome pa
kets by 
omparing an inner progressive 
ounter with the one written inmessages, if they are not equal it means that some pa
kets were lost and a failmessage is signaled. But this kind of tests provides bad results both at data-linkand UDP level: a re
eiveing rate of 1 to 5 kbps. Hen
e this test algorithm wasqui
kly abandoned.A se
ond type of re
eiver tests was made: one or more node send messages,
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Figure 4.6: Re
eive rate for di�erent UDP pa
ket sizes, 
ompared with tinyOSdrivers in fun
tions of sender nodes number
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eive rate for di�erent data-link message pool sizes
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Figure 4.8: Re
eive rate pa
ket for di�erent pa
ket entry pool sizeswhile the re
eiver 
ounts how many messages it 
an re
eive every minute. Thisre
eiver results, made both on data-link and UDP level, were more en
ouraging,
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eive rate for di�erent pa
ket entry timeout interval
and they are shown in �gure 4.6. Sin
e throughputs for some UDP pa
ketsizes go down as the number of nodes grows, it seems that sixlowpan sta
kdoesn't work. However this is not 
ompletely true, UDP pa
kets are dividedinto more than one data-link messages, and if one of those messages is lost,all other fragments have been dropped after few se
onds, and hen
e they arenot in
luded in the number of re
eived pa
kets. In addition, sin
e one pa
ketentry stru
ture is busy on waiting for the last fragment (that is lost), other UDPpa
ket fragments may are dropped be
ause no other pa
ket entry stru
tures areavailable, so pa
ket entry pool dimension heavily a�e
ts re
eive rate. Moreover,even data-link message queue dimension a�e
ts the rate: re
eiver node is notable to pro
ess re
eived messages at the required speed, so if more than onesender node sends a big UDP pa
ket, re
eiver node has to enqueue all thosefragments, but, sin
e the pool dimension 
ould be smaller, it is pretty sure thatsome fragments would be dropped. Another parameter that a�e
ts re
eive rate isthe RAM memory bu�er size assigned to memory 
omponent: if memory bu�er
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omponent is redu
ed, there is less spa
e to allo
ate bu�ersand hen
e less available spa
e to re
onstru
t IPv6 pa
kets.This kind of in�uen
e on pools dimension and timeout interval is shown in �gure4.7, 4.8 and 4.9. Some sample tests were made, for di�erent data-link messagepool dimensions, and also for two di�erent pa
ket entry timeout intervals. In�gure 4.8 the a�e
ts of pa
ket entry pool dimension is shown.Unlike send se
tion, tuning operations to maximize the re
eive rate appear tobe 
ompli
ated, apparently all 
onsistent hypothesis that 
ould be made aboutpool dimensions seem to be true in reality only for big 
hanges of parametervalues, but memory availability avoid any kind of tests to proof these rules. Infa
t an indire
t 
onsequen
e of this parameter 
hanges is that if one pool isset to a big value, be
ause of limited RAM memory availability, it is ne
essaryto redu
e other pool dimensions, in parti
ular, sin
e RAM memory assigned tomemory 
omponent draws the biggest part of available RAM memory, it mustbe heavily redu
ed. So when a test to 
he
k if a bigger pool dimension may
ause better performa
es is made, results 
ould be heavily a�e
ted by otherpool dimensions redu
tion. However tests made on re
eiver se
tion were veryhard and maybe do not re�e
t a typi
al operating situation where nodes rarelysend big pa
kets at the same time. So even if 
harts shows a low ra
eive rate,this 6lowPAN implementation would not have any re
eive problems if used in anormal environment.4.4 Blip 
ompatibilityAs said before, unfortunately blip proje
t is stopped to sixth version of the draft[2℄, and further the a
tual blip version is not 
ompletely supported: there isn'tany test appli
ation that works with it, and the appli
ation that realizes thebasestation is not ready. Anyway an attempt to let this two implementations
ommuni
ate ea
h other has been made.



4.4 Blip 
ompatibility 57UdpE
ho appli
ation was modi�ed to suit the newer blip version and also some
hanges for what 
on
ern IPv6 address assignement has been made. On theother side, in this 6lowPAN implementation some modi�
ation are needed todowngrade the addressing 
ompression me
hanism from �fteenth to sixth versionof the draft.Finally a small system has been made: a node running UDP E
ho appli
ationwith blip, answers to another node that sends an ICMPv6 e
ho request by usingthis 6lowPAN implementation. Ping tests has been running for few years withoutany problems or fails.With this 
ompatibility result a 
omparing 
hart has been drawn, to 
omparesend throughput of this two 6lowPAN implementations.Sin
e blip UDP interfa
e doesn't provide a sendDone signal, test pro
edure that
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Figure 4.10: A 
omparison between sixlowpan and blip sta
k, throughput fordi�erent UDP pa
ket sizeswas used to test blip has been the same used to test send se
tion of this 6lowPANimplementation: a timer that marks the rate of UDP pa
ket sending.



58 Testing and resultsFigure 4.10 shows that blip 
an rea
h good values of throughput just for bigpa
kets, this means that the rate, number of pa
kets per se
onds substantiallydoesn't 
hange when pa
kets grows, and hen
e blip spends always the same timeto send a pa
ket, no matter how big it is.4.5 Memory o

upation and CPU time analysisLow power network means also low memory platforms, so after the analysis ofthe performan
es it is ne
essary to study and analyze the memory usage of thisimplementation. The most heavy module is obviously sixlowpan and its header�les.Sixlowpan module itself o

upy 8522 bytes of program memory and 543 bytes
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Figure 4.11: Program memory o

upation of sixlowpan moduleof RAM memory. Those amount of RAM memory is prin
ipally used by queuespools and fun
tion 
alls, sin
e only pointers are istantiated during 6lowPAN pro-
edures (
ompression, fragmentation ...).



4.5 Memory o

upation and CPU time analysis 59Figure 4.11 shows how program memory is shared out among various sixlowpanse
tions. Compression and de
ompression fun
tions o

upy the same amount ofmemory, while re
eive tasks are heavier than send ones.IPv6 module o

upies about one kilobyte of program memory and only few bytesof RAM memory. IPv6 send se
tion o

upies about 70 % of its ROM memoryand 30 % the re
eive se
tion. Anyway those values might be wrong sin
e IPv6module is not 
omplete at all.UDP module is even mu
h smaller, it o

upies just three hundreds of byte, prin-
ipally used by send fun
tion.Both IPv6 and UDP module substantially don't use RAM memory, this ad-vantage 
ome from the using of the memory module that permits to only usepointers and to save stru
ture instantiations.After memory o

upation it is possible to see CPU time using of various pro-
esses exe
ution. This 
hart is obtained by keeping tra
king of CPU time whenpro
esses start and when they �nish.Obviously this measure 
an't be a

urate sin
e the fun
tion that saves and 
al-
ulates CPU times use itself the CPU and so the measure is a�e
ted by its.Anyway it 
an give an idea of how mu
h tinyOS radio drivers use the CPU time.More than 80 % of the time, CPU is busy on exe
uting radio drivers' fun
tionsand pro
edures. Sixlowpan module spend a lot of time not in 
ompression orfragmentation fun
tions but in fun
tions 
alling to take elements by queues orto set data-link header.
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Chapter 5
Con
lusion
Abstra
t:In this 
hapter few �nal 
onsiderations about this proje
t are made. Pros and
ons are analyzed. To understand if this work will be useful for future imple-mentations of high-level network appli
ations or even if this ar
hite
ture 
ouldbe reused to implement low-level network proto
ols. Missing parts are signaledand �nally some remarks to explain where performan
es 
an be improved maybewith few 
hanges on algorithms.5.1 Further improvementsA lot of parts are still missing from this implementation and hen
e this imple-mentation is not ready to start working in a network.Anyway there are some 
ode parts that 
ould be 
hanged to enhan
e perfor-man
es both for memory usage and energy 
onsumption sides.Memory 
omponent passed a series of tests that has proved that the 
omponentas it is, is almost stable. But it o

upies quite some RAM memory as a sidee�e
t. This means that other than the used bu�er there are few stru
tures thatuse a lot of RAM and program memory to manage bu�ers among appli
ations.Moreover this memory 
omponent is quite stable if bu�ers are allo
ated just to
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lusionsend a message and then they are released, no tests have been made to 
he
khow this 
omponent behaves when an amount of memory are 
onstantly usedand allo
ated while the rest of RAM are used by many appli
ations. No defrag-mentation tasks are implemented, so it is possible that after a while some kindof fragmentation problems 
ould rise.Compression and de
ompression fun
tions are written without any kind of provi-sions for stateful 
ompression so 
ode dimensions surely will grow as 
ontext-base
ompression would be implemented.Moreover 
ompression fun
tion simply reads IPv6 header and starts to 
om-press. This pro
edure 
ould be improved if IPv6 module passes to sixlowpanmodule some informations on whi
h IPv6 addresses has been used, if it 
an passa boolean value to let sixlowpan knows if link-lo
al or global uni
ast addressesare written in IPv6 header, 
ompression fun
tion 
ould save a lot of 
omputationtime and program memory spa
e.Unfortunatelly, the de
ompression fun
tion, that already now is bigger than the
ompression one, 
an't be improved, in de
ompression phase, sin
e sixlowpanmodule doesn't know anything about IPv6 header of a pa
ket, so every possible
ompression 
ombination must be handled.5.2 Con
lusionIt's too early to tell if this implementation 
ould be useful to develop appli
ationseasier and faster than now, but surely the ideas that stand behind this proje
tare quite good to 
hange the network sta
k stru
ture of tinyOS.Stati
 allo
ation of RAM memory is a good thing to develop programs and mod-ule that runs on memory 
onstrained platforms, but it su�ers when dealing withpa
kets and more than one network layer.Similarly, developing one huge stand-alone 
omponent that implements all net-work layers needed for appli
ations, is useful to save program memory, to make
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lusion 63an e�
ient module that doesn't waste RAM memory or 
omputing time, butwhen standards are updated or maybe only some rules are modi�ed it's very
ompli
ated to handle those 
omplex programs to make the 
hanges. Hen
eeven if some program or RAM memory are wasted, it is better to separate stan-dards in di�erent modules to permit in an easier way to 
hange parts of 
ode orto implement other standards, even later.
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Con
lusion
Abstra
t:In questo 
apitolo vengono fatte al
une 
onsiderazioni �nali su questo progetto.Vengono analizzati i pro e i 
ontro per 
apire se questo lavoro potrá essere utileper future implementazioni di apppli
azioni di rete ad alto livello, o magarise l'ar
hitettura potrá essere riutilizzata per implementare proto
olli di rete abasso livello. Vengono segnalate le parti man
anti e, per �nire, vengono fatteal
une note per spiegare dove modi�
are l'implementazione per aumentare leperforman
e dello sta
k.Ulteriori miglioramentiMolte parti sono an
ora man
anti, per
ió questa implementazione non é prontaper poter funzionare all'interno di una rete.In ogni 
aso esistono al
une parti di programma 
he potrebbero essere modi�-
ate per migliorare le prestazioni sia in termini di memoria usata sia in terminidi energia 
onsumata.Il 
omponente memory ha subito numerosi test ed é stato provato 
he allo statoattuale esso é presso

hé stabile. Forse peró vi é un e

essivo spre
o di memoriaRAM 
ome e�etto 
ollaterale, infatti oltre al bu�er allo
ato, 
i sono al
une strut-ture dati, utili a gestire i bu�er tra le appli
azioni, 
he o

upano troppa memoriaRAM e memoria di programma . Inoltre, questo 
omponente é stabile se i bu�er
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lusionvengono allo
ati solo per inviare messaggi per poi essere liberati; nessun test éstato fatto per veri�
are il 
omportamento del 
omponente nella situazione in
ui un bu�er é allo
ato permanentemente mentre il resto della memoria viene us-ata dalle appli
azioni. Nessuna pro
edura di deframmentazione, infatti, é stataimplementata, per
ió é possibile, 
he dopo un 
erto di periodo di funzionamento,possa insorgere un problema di deframmentazione della memoria.Le funzioni di 
ompressione e de
ompression sono s
ritte senza nessun tipo dipredisposizione alla 
ompressione di tipo stateful, quindi 
on molta probabilitála dimensione del 
odi
e aumentare, non appena la 
ompressione a 
ontesto verráaggiunta.La funzione di 
ompressione sempli
emente legge l'intestazione IPv6 e 
omprimeil piú possible se
ondo le regole; questa pro
edure potrebbe essere migliorata seil modulo IPv6 passasse al modulo sixlowpan qual
he informazione 
ir
a il tipodi indirizzo IPv6 usato. Con un valore booleano, ad esempio, IPv6 potrebbeinformare sixlowpan se gli indirizzi sono in formato link-lo
al o global, fa
endo
osí risparmiare al modulo sixlowpan tempo e memoria programma.Sfortunatamente, la funzione di de
ompressione, 
he giá allo stato attuale o
-
upa piú 
he quella di 
ompressione, non puó essere resa piú leggera: in fase dide
ompressione, il modulo sixlowpan non 
onos
e nulla sul tipo di 
ompressioneusata, per
ió deve essere in grado di interpretare qualunque tipo di intestazione6lowPAN.Con
lusioneÉ troppo presto per dire se questa implementazione potrá essere utile per svilup-pare appli
azioni in maniera piú sempli
e e velo
e rispetto ad adesso, ma di si
urole idee 
he stanno alla base di questo progetto saranno utili alla riformulazionedella struttura dello sta
k proto
ollare di tinyOS.L'allo
azione stati
a della memoria RAM �� utile per lo sviluppo di programmi
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lusion 67e moduli impiegati su piattaforme 
on vin
oli sulla memoria, ma é deleterioquando si ha a 
he fare 
on pa

hetti e piú di un layer proto
ollare.In maniera analoga, sviluppare un uni
o grande 
omponente 
he implementatutti i livelli di rete ne
essari alle appli
azioni, é ne
essario se bisogna risparmi-are memoria, o per realizzare un modulo e�
iente 
he non spre
hi memoriaRAM o tempo di 
al
olo; ma quando gli standard vengono aggiornati o magarisoltanto al
une direttive vengono modi�
ate, diventa molto 
ompli
ato maneg-giare questi 
omponenti per implementare i 
ambiamenti. Per
ió, an
he a 
ostodi spre
are un po' di memoria RAM e programma, é meglio separare gli stan-dard in diversi moduli per permettere, di fare pi

oli 
ambiamenti, o addiritttura
ambiare l'intero standard, in maniera piú sempli
e e fa
ile, an
he se 
i'ødovesseavvenire in un se
ondo momento.
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