
UNIVERSITÀ DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

MASTER DEGREE IN COMPUTER ENGINEERING

A Comparative Study and Analysis of
Conversational Search Algorithms to Improve

their Reproducibility

Supervisor
Prof. Ferro Nicola

Submitted by
Carraretto Gianmarco

Co-supervisor
Faggioli Guglielmo

4 April 2022

Abstract

Conversational Search is a field of Information Retrieval that is steadily
gaining popularity in recent years. A conversational retrieval system aims
to engage with the users in conversations using natural language. In this
work, we studied, implemented and compared a total of eleven state-of-
the-art algorithms and strategies for conversational search. Additionally,
we developed a conversational retrieval framework focused on modularity,
extensibility and reproducibility, that we used to test said algorithms. The
top-performant method we tested, Context Query, obtained an nDCG@3 of 0.43,
beating more complex methods, like the ones based on coreference resolution
or Large Language models (i.e., BERT), by at least 10%. Concerning the
reproducibility aspect, we’ve been able to reach comparable results on several
methods for which we had a suitable comparing value.

Sommario

La Ricerca Conversazionale è un settore del Reperimento delle Informazio-
ni che sta guadagnando sempre più popolarità negli ultimi anni. Un sistema
di reperimento conversazionale punta a interagire con gli utenti mediante
conversazioni tenute in linguaggio naturale. In questo lavoro, noi abbiamo
studiato, implementato e comparato undici strategie e algoritmi allo stato
dell’arte per la ricerca conversazionale. Abbiamo, inoltre, sviluppato un
framework per la ricerca conversazionale incentrato sulla modularità, esten-
sibilità e riproducibilità, che abbiamo usato per testare i suddetti algoritmi.
Il metodo più performante da noi testato, Context Query, ha ottenuto un
nDCG@3 di 0.43, superando metodi più complessi, come quelli basati sulla
risoluzione delle coreferenze o su grandi modelli linguistici (ovvero, BERT),
di almeno il 10%. Per quanto concerne l’aspetto della riproducibilità, siamo
stati in grado di raggiungere risultati comparabili in diversi metodi per i quali
avevamo un appropiato valore di confronto.

Contents

1 Introduction 1

2 Background 3
2.1 Related Works . 3

2.1.1 Traditional IR . 3
2.1.2 Conversational Search 4
2.1.3 Existing Methods for Conversational Search 6

2.2 Tools for Statistical Analysis 8
2.2.1 Analysis of Variance 8
2.2.2 Multiple Comparison 9
2.2.3 Partial Omega Squared 10

3 Implemented Algorithms 11
3.1 Structure and Notation . 11
3.2 Rewriting Algorithms . 13

3.2.1 Concat Query . 13
3.2.2 First Query . 14
3.2.3 Context Query . 15
3.2.4 Coref 1 . 16
3.2.5 Coref 2 . 17
3.2.6 Historical Query Expansion 18
3.2.7 DBpedia & ConceptNet Query Expansion 20

3.3 Reranking Algorithms . 21
3.3.1 Seen Filter . 21
3.3.2 Bottom Up . 22
3.3.3 Historical Answer Expansion 23

4 Implementation 25
4.1 Structure . 25

4.1.1 Step . 26
4.1.2 Pipeline . 28

i

CONTENTS ii

4.1.3 PipelineFactory . 30
4.2 Methods . 30

4.2.1 Concat Query Rewriter 31
4.2.2 First Query Rewriter 32
4.2.3 Context Query Rewriter 33
4.2.4 Coref 1 Rewriter . 33
4.2.5 Coref 2 Rewriter . 34
4.2.6 Historical Query Rewriter 35
4.2.7 DBpedia Rewriter . 36
4.2.8 Seen Filter Reranker 39
4.2.9 Bottom Up Reranker 40
4.2.10 Historical Answer Reranker 40

4.3 Pipelines . 41
4.4 Technical Details . 43

5 Experiments 46
5.1 Experimental setup . 46

5.1.1 Topics . 46
5.1.2 Collection . 47

5.2 Results . 52
5.2.1 Concat Query . 52
5.2.2 First Query . 55
5.2.3 Context Query . 57
5.2.4 Coref 1 . 60
5.2.5 Coref 2 . 63
5.2.6 HQE . 65
5.2.7 DBPedia . 68
5.2.8 Seen Filter . 71
5.2.9 Bottom Up . 73
5.2.10 HAE . 76
5.2.11 Sub Index . 78
5.2.12 Methods Comparison 82

6 Conclusion And Future Works 86

Bibliography 88

Chapter 1

Introduction

Information Retrieval (IR) is a very old yet extremely actual subject. From
traditional library catalogues to modern search engines, the task of finding
useful data from previously stored information is essential to keep the knowl-
edge accessible. With the technological advancement of recent years, we’re
seeing an increase in the popularity of personal assistants with interactive
voice-based (or chit-chat based) interfaces: Google Assistant, Apple Siri, Ama-
zon Alexa and many more. All these systems have their foundation inside
the domain of Conversational Search.

Conversational Search Traditional IR interfaces are limited. They rely
on the ability of the user to construct suitable questions that the system will
be able to process and employ a one-shot user-machine interaction that is
unsuited for non-keyboard based interfaces. A conversational retrieval system
aims to provide the opposite interaction: let the users express their information
needs in natural language, and engage with them through conversations.
Conversational Search shifts the responsibility of query understanding from
the user to the machine, allowing for easier and more natural ways to
search through the knowledge. Unfortunately, this is still a challenging task
that leads to much research around the world.

The importance of context The most important challenge posed by
Conversational IR is natural language processing. Queries expressed
in natural language are often imprecise, ambiguous and frequently contains
reference to previous subjects. Consequently, a conversational system must
be able to retain the context of the ongoing conversation and exploit it to
resolve ambiguity, co-reference and, in general, all the implicit information
contained in the query.

1

CHAPTER 1. INTRODUCTION 2

Comparative analysis In this work, we studied several state-of-the-art
algorithms for conversational search. We discussed their implementability,
focusing on the unclear or implementation-depending parts and providing our
implementation of said methods.

We developed a conversational search framework to make reproducible
tests of the implemented methods. The framework is modular and easy to
extend, allowing the integration of additional algorithms or the reuse of its
components in other projects.

Employing the conversational collection from “TREC CAsT 2019” [DXC20],
we ran extensive tests of the implemented algorithms. We present the ob-
tained results, along with an accurate statistical analysis and performance
charts, to make a fair comparison between the different methods. We included
popular techniques, like pseudo relevance feedback and coreference resolution,
and tested their effectiveness on a conversational context.

Contributions With this work, we provide the following contributions:

• Implemented a comparative framework for the main conversational
search techniques;

• Evaluated the effect of different parameters on each of these techniques;

• Compared all the implemented methods with each other;

• Discussed and evaluated the reproducibility of some of the top perfor-
mant submissions of TREC CAsT[DXC20];

Structure of this work In Chapter 2, we present the background on In-
formation retrieval and Conversational Searching and describe the statistical
tools used for the results’ analysis. In Chapter 3, we provide a formal descrip-
tion of every implemented algorithms. In Chapter 4, we describe the structure
of our framework and the implementation of the methods. In Chapter 5,
we present the results of our tests and the statistical analysis. Finally, on
Chapter 6, we summarized the work and suggest future improvements.

Chapter 2

Background

Information Retrieval (IR) is the process of finding information that satisfy
the information need of the user from a collection of resources.

Traditional IR systems employ a one-shot interaction process with the
user who is tasked to find the most-effective query that will lead to the wanted
results. While these systems are widely implemented, from search engines
to library catalogues, they can be complex to use effectively and limit the
possible interactions with a platform.

Conversational IR tries to solve these problems by engaging with the user
in a conversation using natural language. The next section mention some
works that might help in outlining what is conversational search and how it’s
different from traditional IR.

2.1 Related Works

2.1.1 Traditional IR

Archiving and retrieving written information is a very old subject. Cataloguing
methods and bibliographic systems were developed from ancient times to
help find stored information. In the 20th century, thanks to the technological
advancement, some people started to think of creating automatic systems for
storing and finding information.

In an essay published in 1945 titled “As We May Think”, Vannevar Bush
described a hypothetical electromechanical device, named Memex, able to
store and retrieve documents (microfilms) together with annotation and links
[Bus45], introducing the idea of automatic access to large amount of stored
knowledge [SG01]. Later in 1950, the American’s computer scientist Calvin
Mooers, coined the term Information Retrieval (IR) denoting the recovery,

3

CHAPTER 2. BACKGROUND 4

from a given collection of documents, of a set of documents that includes
all documents with a specified content (possibly in conjunction with not
relevant ones) [Fai58]. From there, a lot of researched developed. One of the
most influential (according to [Fai58]) happened in 1957, when H.P. Luhn
proposed a statistical approach for encoding and searching documents based
on a “thesaurus-type dictionary and index” [Luh57].

Early-developed retrieval systems performed a boolean search combining
words using AND, OR and NOT operators. These systems operate without notion
of relevance or document ranking [Fai58]. To overcome this limitation, the
Vector Space Model [SWY75] was introduced. In this model, a document
is represented by a vector of terms where, if a term is inside a document,
the vector for that document will have a non-zero value in the corresponding
dimension. Comparing the vectors for two documents (or a document and a
query), it’s possible to measure a similarity score between them, reflecting the
similarity between the corresponding terms and term weights [SWY75; Fai58].
In 1960, M.E. Maron proposed the idea of a probabilistic retrieval model and
the notion of relevance [MK60]. This family of models ranks documents in
decreasing order of probability of relevance (Probability Ranking Principle
[Rob77]). Another common IR model is the Inference Model, introduced by
Howard Turtle in 1990 [TC90], that make use of Bayesian inference networks.

2.1.2 Conversational Search

The root of conversational search trace back as early as 1980, when some
researches started to investigate strategies for interactive IR systems, focusing
on understanding the user’s information need [Bel80; CT87]. With the diffu-
sion of internet, more works was done towards models for information retrieval
more suitable for user interaction; like the “berrypicking” model presented by
Bates in 1989 [Bat89]. Belkin et al., in 1995, proposed a model of information
retrieval system based on dialogue structure and specific information-seeking
dialogues [Bel+95]. Nordlie, in 1999, studied the progression on user queries
in online searches applying a communication model, based on theories of
conversations between stranger [Nor99].

More recently, the work of Christakopoulou et al. studied how to make a
recommendation system behave more like a human [CRH16]. Vtyurina et al.
compared the effectiveness of current conversational search assistants with
real human conversation and discussed the limitation of the former [Vty+17].

A comprehensive theoretical study on conversational approaches for infor-
mation retrieval was conducted by Radlinski et al. [RC17]. In that works, a
conversational search system is described as:

CHAPTER 2. BACKGROUND 5

a system for retrieving information that permits a mixed-initiative1

back and forth between a user and agent, where the agent’s actions
are chosen in response to a model of current user needs within the
current conversation, using both short and long-term knowledge
of the user.

Additionally, they provide five properties that a conversation system must
have:

User Revealment The system assists the user discovering their information
needs;

System Revealment The system reveal to the user its capabilities, i.e,
what it can or cannot do;

Mixed Initiative Both the system and the user can take initiative;

Memory The user can refer to past statements (which are considered true
until contradicted);

Set Retrieval The system can present sets of complementary items as solu-
tion;

Modern conversational search includes a large amount of related task,
like the generation of clarifying questions [Tav20], the analysis of spoken
conversations [Tri+19], utterance rewriting [Mel+21] and many others.

Conversational search can be applied to various fields. Here’s some of the
most popular:

Recommendation System Recommendation system can use conversation
as a more natural way to learn user preferences [Jan+22];

Chatbot Chatbots are non-goal-oriented conversational agents that engage
on users through chit-chat (i.e., small talk), traditionally with a text-
based interface. They are a traditional application of conversational
search, dating back in the 1960s [WY19a; Zam+22];

SERP Traditional Search Engine use a query-based paradigm that can make
difficult for the user to express their information needs. A conversational-
based interface can make this task considerably easier [Ren+21];

1Mixed-initiative refers to a flexible interaction strategy where all agents (human or
computer) can contribute with “what it is best suited at the most appropriate time”
[AGH99]

CHAPTER 2. BACKGROUND 6

Speech-based search Smart assistants, embedded in mobile devices or
home smart devices (like Google Home or Amazon Alexa), that are
gaining in popularity in recent years have speech-only interfaces that
aim to work in natural language. For that reason they are one of the
most popular application of conversational search and take huge benefits
from its improvements [Tri19; Tri+20; Cla+19];

A conversational search system is often a sequence-aware system as it take
in input a list of user interaction in chronological order [QCJ18]. Sequence-
aware systems can be divided in two groups: sequential and session-based
[JMB20].

Sequential systems Sequential systems incorporate all the past interac-
tions, i.e., past interactions with the users are stored for future usage;

Session-based systems Session-based systems focus only on the ongoing
session and do not keep any long-term information;

Another common distinction between conversational systems, is whether
the system is goal-oriented or non-goal-oriented (chit-chat).

Goal-oriented A goal-oriented system is designed to help people in a specific
task (e.g., making a reservation, buy a ticket) [WY19b]. In goal-oriented
systems there is, often, a single correct (while context-dependent) answer
[GAS19];

Chit-chat A chit-chat system (chatbot) aim, instead, to engage in a conver-
sation with the user for entertainment/companionship reasons [WY19b];

2.1.3 Existing Methods for Conversational Search

While it’s not a rule, a lot of conversational search’s systems employ a pipeline
composed of three stage:

rewriting → retrieval → reranking

The majority of the work that distinguish a traditional IR pipeline from a
conversational one, is in the rewriting and reranking stages.

Commonly used techniques

Considering that one of the main goal of the Conversational Search field is
to interact with the user using natural language, there should be no surprise
that coreference resolution is one of the most popular rewriting method.

CHAPTER 2. BACKGROUND 7

Coreference resolution describe a set of techniques that aims at resolving
repeated reference of an object inside a text. It’s a core component of natural
language processing (NLP) and it’s often used in combination with other
techniques [Suk+20]. This is a challenging task that is often implemented
through Deep Learning Networks (like with the popular library AllenNLP
[Gar+18]).

Another commonly used technique (not only in conversational search, but
in IR in general) to improve the results is a pseudo relevance feedback model
called RM3. This method consist in: do a first retrieval, take the top-M
terms in the top-N documents and use them to expand the original query
(using a weight w) then re-do the retrieval with the newly created query
[Jal+04]. The idea behind this method is that terms that appear frequently
in the best documents should be relevant to the query itself, so adding them
to the query for a new search may help to move relevant documents to the
top of the results.

A popular model used for reranking is BERT. Bidirectional Encoder
Representations from Transformers (BERT) is a language representation
model used in machine learning for NLP tasks [Dev+18]. It is designed to
pre-train deep bidirectional neural networks from unlabelled text on both left
and right contexts. BERT pre-trained model can be fine-tuned with a single
additional layer. The resulting model can be used for a variety of tasks (e.g.,
question answering, language inference) without substantial modifications.

Example of conversational methods

In this section are reported some example of methods used for conversa-
tional search by other works (selected by the ones submitted for CAsT 2019
[DXC20]).

Kumar et al. [KC19] propose a system composed by three components.
The first one decides if contextual information needs to be incorporated in
the current query. This decision is based on the KL-divergence between
the original query’s retrieved documents and whether the query is made by
pronouns. The second component identifies the contextual information for
the current query using an SVN classifier with BERT attention weights. The
third component does the actual retrieval using Indri.

Kaiser et al. [KRW20] proposed an unsupervised method for conversational
passage ranking that formulate the passage score for a query as a combination
of similarity and coherence. More specifically, the passages that contain
semantically similar words to the question’s ones, and where those words are
more close by, are preferred. They built a word proximity network to achieve
that result.

CHAPTER 2. BACKGROUND 8

Ríssola et al. [Rís+19] developed a neural model (based on BERT) for
identifying other turns relevant to the current one and reformulating the
user’s information need considering the conversational context. They also
employ coreference resolution and reranking techniques (also based on BERT)
to obtain better results.

L.A. Clarke [Cla19] proposed a pipeline with coreference resolution, custom
stopword set and a rewriting method that glue the first query in every
conversation to the current one2. Employ a standard BM25 search with RM3
and a rerank method based on BERT.

2.2 Tools for Statistical Analysis
This section outline some statistical tools used for methods comparison in
this work. The tools used were Analysis of Variance, Multiple Comparison
and Partial Omega Squared, all three computed using MATLAB3.

2.2.1 Analysis of Variance

Analysis of Variance (ANOVA) is a statistical tool that can be used to analyse
differences among means and reveal the influence of the input variables on the
result. ANOVA can be presented as a linear model in which the probability
distribution of the responses follow these assumptions:

• Independence of observations;

• Normality of residuals;

• Equality of variances;

While the correctness of these assumptions may not be always respected in
this specific use-case, the analysis of variance remains a very powerful tool to
distinguish models and parameters that lead to meaningful difference in the
results.

This work use the MATLAB function anovan to generate ANOVA ta-
bles. Said function implements an n-way analysis of variance, i.e., ANOVA
between n different variables that, for this work, will be models or models’
parametrizations.

The returned ANOVA table contains six columns:
2This rewriting method is used by other works, including this one, and will be later

referred as First Query
3https://mathworks.com/products/matlab.html

https://mathworks.com/products/matlab.html

CHAPTER 2. BACKGROUND 9

Source Sum Sq. d.f. Mean Sq. F Prob>F
X1 3.781 1 3.781 0.82 0.4174
X2 199.001 1 199.001 42.95 0.0028
X3 0.061 1 0.061 0.01 0.914
Error 18.535 4 4.634
Total 221.379 7

Table 2.1: Example of ANOVA from MATLAB documentation (anovan)

Source This column contains the name of the variables, plus Error and
Total;

Sum Squares (Sum Sq.) This column contains the sum of squared devia-
tion for every variable, plus the error due a lack-of-fit. It measures the
variability of the distribution associated with the variable;

Degrees of Freedom (d.f.) It measures the number of values that are free
to vary without violating any constraint;

Mean Squares (Mean Sq.) The mean squared is an estimation of the
variance of the variable. It’s obtained by scaling the sum of squares by
the degrees of freedom;

F-test (F) This column contains the F-statistic, i.e., the ratio of the mean
squares;

P-value (Prob>F) It’s the probability that the F-statistic can take a value
larger than the computed test-statistic one (derived from the cumulative
distribution function of the F-distribution);

A p-value < 0.05 generally denote a meaningful variable.
In addition to the table, anovan return a collection of statistics that can

be used for the multiple comparison.

2.2.2 Multiple Comparison

The multiple comparison is a test performed on the statistics returned by
ANOVA, using the multcompare MATLAB function. This function plot an
interactive graph that shows the estimates and comparison intervals of an
ANOVA variable, allowing to visually compare different methods (or choices
of parameters).

All tested values are displayed on the y-axis, their mean is identified by an
empty circle with a line extending from it that represent the values’ interval.

CHAPTER 2. BACKGROUND 10

The selected group is coloured in blue, while groups that are significantly
different from it are red. Others, non-significant, groups are grey. In particular,
not overlapping intervals are an indication of significant difference.

2.2.3 Partial Omega Squared

Partial omega squared (ω2) is a measure of the degree of association for a
population (effect size), i.e., it’s an estimate of the strength of the relationship
between two variable in a population. The partial in the name refer to the
fact that we are considering the omega square calculated for a single factor.

As a rule of thumbs, values of ω2 > 0.14 denote a large-size effect,
0.06 ≤ ω2 ≤ 0.14 denote a medium-size effect and 0.01 ≤ ω2 < 0.06 denotes a
small-size effect. Negative values of ω2 are meaningless, i.e., the factor does
not provide contributions.

Chapter 3

Implemented Algorithms

This chapter is dedicated to explaining the various algorithms implemented
in this work. We focus on two categories: rewriting and reranking. Rewriting
algorithms provides a way to rewrite queries before issuing them to the
retrieval system and, specifically in the conversational domain, focus on
providing the missing context for the query. On the other end, reranking
approaches are applied after a first retrieval phase (often called first stage
retrieval) to revise the expected relevance, thus the rank, of the retrieved
documents.

3.1 Structure and Notation
This section describes the general structure of rewriting and reranking algo-
rithms and provides a basic notation to define them. However, if the paper
that originally described an algorithm presents its notation, we’ll use that
instead.

A conversation (also called a session) is defined by a sequence of utterances:

S =< u1, u2, ..., ui, ..., un−1, un > (3.1)

where ui is the user’s utterance of the ith turn (i.e., the ith query expressed
by the user inside the session). All utterances of all conversations form a list
of query:

Q =< S1, ..., Sj > = < q1, ..., qN > (3.2)

Rewriting Algorithm A rewriting algorithm takes as input the current
utterance (and possibly all the previous ones in the conversation) and return
as output the rewrite of that utterance.

11

CHAPTER 3. IMPLEMENTED ALGORITHMS 12

Formally, a rewrite algorithm can be defined as a function:

rewrite : S ↦→ Sr (3.3)

where Sr is defined as:
Sr =< ur1 , ..., urn > (3.4)

where uri is the rewrite of ui.

Results Ranked List The search will provide an ordered list of documents
from the documents’ collection:

D =< D1, ..., DN > = < d1,1, ..., d1,k, ..., dN,1, ..., dN,k > (3.5)

where Di =< di,1, ..., di,k > is the result list for the query qi. Every document
di,j have an associated score si,j so that:

si,j ≥ si,j+1 ∀i = 1, ..., N ∀j = 1, ..., k − 1 (3.6)

Reranking Algorithm A reranking algorithm takes as input the collection
of ranked documents and returns a new collection, with the same documents
in a different order.

Formally, a reranking algorithms can be defined as a function:

rerank : D ↦→ Drr (3.7)

where Drri is defined as:

Drr =< di,rr1 , ..., di,rrk > (3.8)

where rrj is the new rank for the document that originally had rank j.

Concatenation of Utterances The operation of utterances’ concatenation
(commonly used by rewriting algorithms) is represented with the addition
symbol and always includes a whitespace character between different utter-
ances.

Formally, given two utterances ui =< ci,1, ..., ci,n > and uj =< cj,1, ..., cj,m >:

ui + uj =< ci,1, ..., ci,n, ␣, cj,1, ..., cj,m > (3.9)

where cx,k is the k-th character of ux.

CHAPTER 3. IMPLEMENTED ALGORITHMS 13

Title: Uranus and Neptune
Description: Information about Uranus and Neptune.
Turn Conversation Utterance
1 Describe Uranus.
2 What makes it so unusual?
3 Tell me about its orbit.
4 Why is it tilted?
5 How is its rotation different from other planets?
6 What is peculiar about its seasons?
7 Are there any other planets similar to it?
8 Describe the characteristics of Neptune.
9 Why is it important to our solar system?
10 How are these two planets similar to each other?
11 Can life exist on either of them?

Table 3.1: CAsT 2019 [DXC20] Training Topic #18

3.2 Rewriting Algorithms

3.2.1 Concat Query

Concat Query is a simple rewriting algorithm that concatenates all the previous
utterances in the conversation with the current one. Formally:

ui ↦→ u1 + ...+ ui−1 + ui (3.10)

While this makes sure to include all possible context, it may also include
non-relevant (or too general) keywords, possibly repeated several times, thus
leading to non-relevant results. However, it’s worth mentioning that, some-
times, this method is used as a step inside more complex searching strategies
precisely for the just mentioned reason of including all the available context.

For example, looking at the 3rd utterance of Table 3.1:

Tell me about its orbit.

Rewriting it using Concat Query we obtain:

Describe Uranus. What makes it so unusual? Tell me about its
orbit.

The rewritten utterance is certainly more meaningful than the first one, as
we added the topic to it (“Uranus”). Yet, adding “unusual” to it’s misleading,
as it refers to the previous sub-topic, not the current one.

CHAPTER 3. IMPLEMENTED ALGORITHMS 14

Algorithm 3.1 Concat Query
Input: S
Output: Sr

1: ur1 ← u1

2: for i = 2, ..., |S| do
3: uri ← uri−1

+ ui

4: end for
5: Sr ←< ur1 , ..., ur|S| >

3.2.2 First Query

First query [Mel+21] is a rewriting algorithm that rewrites utterances by
concatenating the first utterance of the conversation with the current one.
Formally:

ui ↦→ u1 + ui (3.11)

The advantage of this algorithm is that including the first utterance often
means including the main topic of the conversation without adding too many
irrelevant words. Still, this does not consider eventual context shifts and
might lead to unwanted results after one occurred.

The algorithm’s description in the mentioned paper does not explain
how to rewrite the first utterance of a conversation. Thus, it’s left to the
implementation to choose between no rewrite (3.12) or utterance duplication
(3.13).

u1 ↦→u1 (3.12)
u1 ↦→u1 + u1 (3.13)

Looking at an example, the rewrite of the 3rd utterance of Table 3.1 will
be:

Describe Uranus. Tell me about its orbit.

This is an improvement over the Concat Query rewrite, as we’ve only included
the needed context. However, if we look at the 9th utterance:

Why is it important to our solar system?

The relative rewrite will be:

Describe Uranus. Why is it important to our solar system?

CHAPTER 3. IMPLEMENTED ALGORITHMS 15

This seems a good rewrite until you notice there was a context shift on the
8th utterance and, thus, the planet that should be referenced by this query is
Neptune, not Uranus. Looking at the table, we can observe that First Query
will produce acceptable rewritings up to the 7th utterance and misleading
rewritings for the last four ones.

Algorithm 3.2 First Query
Input: S
Output: Sr

1: ur1 ← u1 * or in alternative u1 + u1 *
2: for i = 2, .., |S| do
3: uri ← u1 + ui

4: end for
5: Sr ←< ur1 , ..., ur|S| >

3.2.3 Context Query

Context Query [Mel+21] is an extension of First Query. This rewriting
technique concatenates both the first and the previous utterance with the
current one. Formally:

ui ↦→ u1 + ui−1 + ui (3.14)

Even in this case, the original description does not mention how to rewrite
the first and the second utterance of a conversation. So, the implementation
should decide whether duplicate them (3.17; 3.18) or not (3.15; 3.16).

u1 ↦→u1 (3.15)
u2 ↦→u1 + u2 (3.16)

u1 ↦→u1 + u1 + u1 (3.17)
u2 ↦→u1 + u1 + u2 (3.18)

Compared to First Query, this algorithm improves the response to context
shifts by always including the previous utterance. However, there are no
guarantees that the previous utterance contains the needed context.

For example, the 9th utterance of Table 3.1

Why is it important to our solar system?

will be rewritten as:

CHAPTER 3. IMPLEMENTED ALGORITHMS 16

Describe Uranus. Describe the characteristics of Neptune. Why
is it important to our solar system?

We can observe that the rewrite includes the missing context (“Neptune”) but
also the old non-relevant one (“Uranus”). This will likely provide a better
recall than First Query, but irrelevant documents might still appear in the
first positions. Instead, if we took the 10th utterance

How are these two planets similar to each other?

and its rewrite

Describe Uranus. Why is it important to our solar system? How
are these two planets similar to each other?

we can see that there’s no meaningful context in it. We can expect the same
to happen for every query after a context shift.

Algorithm 3.3 Context Query
Input: S
Output: Sr

1: ur1 ← u1 * or in alternative u1 + u1 + u1 *
2: ur2 ← u1 + u2 * or in alternative u1 + u1 + u2 *
3: for i = 3, .., |S| do
4: uri ← u1 + u1−1 + ui

5: end for
6: Sr ←< ur1 , ..., ur|S| >

3.2.4 Coref 1

Coref 1 [Mel+21] is a coreference resolution algorithm based on machine
learning that uses the coreference resolver implemented in AllenNLP models1.

ui ↦→ ui,resolved (3.19)

AllenNLP models is a collection of classes and pre-trained models, based
on the AllenNLP2 library, for executing a wide range of natural language
processing (NLP) tasks.

1https://github.com/allenai/allennlp-models
2https://github.com/allenai/allennlp

https://github.com/allenai/allennlp-models
https://github.com/allenai/allennlp

CHAPTER 3. IMPLEMENTED ALGORITHMS 17

In particular, we use coref-spanbert [LHZ18], a pre-trained model for
coreference resolution that uses a fully differentiable approximation to high-
order inference and a span-ranking architecture. The model employs an
iterative approach that uses the antecedent distribution as an attention
mechanism to update the existing span-representation, allowing the later
coreference decisions to condition on earlier ones. Additionally, to reduce
the computational cost, it uses a coarse-to-fine approach with a less accurate
but more efficient bilinear factor that increases pruning without hurting
the accuracy. Given the heaviness of the algorithm, the library provides a
GPU-accelerated implementation of this model.

Algorithm 3.4 provides a high-level, formal description of this method,
where resolve is the function associated with the coreference resolver. We
concatenate all the conversational utterances up to the current one in a way
that allows us to re-split them after the resolution (i.e., using a non-misleading
separator string). Then we pass the constructed utterances’ concatenation
to the resolver and split the output, as we need to return only the current
query’s resolution.

Algorithm 3.4 Coref (1 & 2)
Input: < u1, ..., ui >
Output: ui,resolved

1: sep← *string separator*
2: full_concat← u1 + sep+ u2 + sep+ ...+ ui−1 + sep+ ui

3: full_resolved← resolve(full_concat)
4: < u1,resolved, ..., ui,resolved >← split(full_resolved)

For example, the phrase
What is throat cancer? Is it treatable? Tell me about lung cancer.
What are its symptoms?

is resolved by the AllenNLP model in
What is throat cancer? Is throat cancer treatable? Tell me about
lung cancer. What are lung cancer’s symptoms?

3.2.5 Coref 2

Coref 2 [Mel+21] apply the same algorithm of Coref 1 (i.e., Algorithm 3.4)
but uses neuralcoref 3 for the coreference resolution instead of AllenNLP.

Neuralcoref is an extension of SpaCy4, a popular library for natural
3https://github.com/huggingface/neuralcoref
4https://spacy.io/

https://github.com/huggingface/neuralcoref
https://spacy.io/

CHAPTER 3. IMPLEMENTED ALGORITHMS 18

language processing, that resolve coreference clusters using a neural network.
The neuralcoref model works5 by averaging the word-embedding of words

inside and around each mention and obtaining a features’ representation of
each mention and its surroundings. Then, it passes these representations into
two neural networks: the first scores each pair of a mention and a possible
antecedent, the second scores mentions without antecedents. Comparing these
scores, the model determines if a mention have an antecedent and which one
could be.

Compared with Coref 1, neuralcoref is significantly faster, however, it’s
not able to resolve as many references as the former. If we take the phrase:

What is throat cancer? Is it treatable? Tell me about lung cancer.
What are its symptoms?

the resolution will be:

What is throat cancer? Is throat cancer treatable? Tell me about
lung cancer. What are throat cancer symptoms?

As you can see, neuralcoref resolve correctly only the first mention but fails
to detect the context switch and thus incorrectly keep the old reference for
the second one.

3.2.6 Historical Query Expansion

Historical Query Expansion (HQE) [JC19] is a rewriting algorithm that aims
to find relevant keywords in previous utterances (by comparing their scores
with some thresholds) and using them to fill for the missing context.

To achieve that result, this algorithm divides every query in tokens (cor-
responding to words) and find the maximum BM25 score between every
token and the documents’ collection. Then, compares the score’s value to
two thresholds to determine if the token is a relevant keyword to the current
query (rQ) or the current session (rS). A third threshold (θ) is compared with
the higher score for a particular query to determine if that query is ambiguous
or not. Non-ambiguous queries are expanded with all the session keywords
found up to that moment. Ambiguous ones receive a further expansion with
all the query keywords from the last three queries.

The Algorithm 3.5 shows the pseudocode for the algorithm using the same
notation of the paper’s authors, where:

5https://medium.com/huggingface/state-of-the-art-neural-coreference-
resolution-for-chatbots-3302365dcf30

https://medium.com/huggingface/state-of-the-art-neural-coreference-resolution-for-chatbots-3302365dcf30
https://medium.com/huggingface/state-of-the-art-neural-coreference-resolution-for-chatbots-3302365dcf30

CHAPTER 3. IMPLEMENTED ALGORITHMS 19

Algorithm 3.5 HQE: Historical Query Expansion
Input: S = {Qi}Ni=1, D
Output: S

1: WS ← ()
2: WQ ← ()
3: for i = 1 to N do
4: for k = 1 to n(i) do
5: rik = max

dj∈D
F (dj, (q

i
k))

6: if rik > rS then
7: WS.insert(qik)
8: end if
9: if rik > rQ then

10: WQ.insert(qik)
11: end if
12: end for
13: if i > 1 then
14: Ri = max

dj∈D
F (dj, Qi) = max

dj∈D
F (dj, (q

i
0, q

i
1, ..., q

i
n(i)))

15: Qi.insert(qkn)∀qnk ∈ WS

16: if Ri < θ then
17: Qi.insert(qnk) ∀qnk ∈ WQ ∧ n ≥ i− 3
18: end if
19: end if
20: end for

S is the session, i.e., the list of conversational utterances;

D is the documents’ collection;

WS and WQ are the sets of session’s (respectively query’s) keywords;

F is the function that calculate the BM25 score between a token and a
document;

rS and rQ are the session’s and query’s relevant thresholds;

θ is the threshold for considering a query non-ambiguous;

Qi is the current query (represented as a list of tokens);

Despite providing the pseudocode for the algorithm, the authors don’t
provide suggestions on reasonable values for the thresholds or strategies to
find them, leaving the decision to the implementation.

CHAPTER 3. IMPLEMENTED ALGORITHMS 20

3.2.7 DBpedia & ConceptNet Query Expansion

DBpedia [Sam19] is a rewriting algorithm that uses external knowledge to
enrich the queries with contextual words that might lead to a higher recall
on the results list.

The algorithm works by concatenating the previous conversational utter-
ances to the current one, then searching for entities using DBpedia Spotlight6.
Spotlight is a public API to find entities linked to DBpedia7, a project that
extracts and publish structured content from Wikipedia. If at least one is
found, they are used to querying Wikipedia’s API and retrieve snippets of
relevant text. Then, all the unique terms from the snippets are scored, and
the current utterance is expanded with the top-10 ones. When no entity is
found, n-grams of nouns and adjectives from the query are used to retrieve
connected nodes (i.e., related terms) from ConceptNet8 and use them for
expansion.

Algorithm 3.6 DBpedia & ConceptNet Query Expansion
Input: S =< u1, ..., un >
Output: S

for i = 1 to n do
qc = u1 + ...+ ui−1 + ui

E ← spotlight(qc)
if |E| > 0 then

O =< o1, ..., om >= wikipedia(E)
U =< t1, ..., tk >= unique_terms(E)
scoreti =

∑︁on
o1
(tf(oj, ti)/|oj|) · r(oj) · log(1/df(ti))

Us = {tsi ∈ U} | |Us| ≤ 10 ∧ scoretsi ≥ scoretsi+1
∀i = 1, ..., |Us| − 1

ui = concat({ui} ∪ Us)
else

NG = {< t1, ..., tt >| ti ∈ nouns ∪ adjectives}
connected_nodes = concept_net(NG)
ui = concat({ui} ∪ terms(connected_nodes))

end if
end for

Algorithm 3.6 formally describe this algorithm, where:

spotlight is the function that retrieve liked entities from DBpedia Spotlight;
6https://www.dbpedia-spotlight.org/
7https://www.dbpedia.org/
8https://conceptnet.io/

https://www.dbpedia-spotlight.org/
https://www.dbpedia.org/
https://conceptnet.io/

CHAPTER 3. IMPLEMENTED ALGORITHMS 21

wikipedia is the function that retrieves snippets of text from Wikipedia;

concat is the function that create the concatenation between terms in a set
(separated by a space);

concept_net is the function that retrieves connected nodes from Concept-
Net;

tf(oj, ti) is the term frequency of the i-th term in the j-th snippet;

r(oj) is the reciprocal rank of oj in the results;

df(ti) is the document frequency of a term;

Some details are not specified by the authors, like if the document frequency
should be calculated on the documents’ collection or on the retrieved snippets
and how to choose n-grams from the text.

3.3 Reranking Algorithms

3.3.1 Seen Filter

Seen Filter is a reranking algorithm adapted from Top-Down [Mar19] that
penalize documents already returned for a previous utterance of the same
conversation with the rationale that, if a document was relevant for a previous
less-specific utterance, then it’s unlikely to be relevant for the subsequent
ones.

The original version works by keeping in memory the top-20 documents of
each utterance’s results and removing them from all the subsequent utterances’
results list in the same conversation.

The algorithm implemented in this work generalize that idea by allowing
to tune two parameters:

m the multiplicative factor to reduce the score of the already seen documents.
Should be comprised between 0 and 1. If 0 then the original algorithm’s
behaviour is preserved9;

k the maximum rank to consider when keeping documents in memory, i.e.,
only the top-k documents of each utterance’s results list will be kept and
penalized in subsequent results. If 20 the original algorithm’s behaviour
is preserved;

9Technically, the document isn’t removed from the list, however, setting its score to 0
put it at the end of the list, effectively removing it from the calculated measures.

CHAPTER 3. IMPLEMENTED ALGORITHMS 22

Formally:

si,j ↦→

⎧⎨⎩ m · si,j if di,j ∈
j−1⋃︁
l=1

Dl[1..k]

si,j otherwise
(3.20)

where si,j is the score of di,j, i.e., the j-th documents in the results list of the
i-th utterance in the conversation.

The Algorithm 3.7 shows the pseudocode of this method, where conversation(i)
return the conversation identifier of the results list Di and sort(Di) sort the
list of documents Di =< di,1, ..., di,n > by their score < si,1, ..., si,n > by
decreasing values.

Algorithm 3.7 Seen Filter
Input: D, k,m
Output: D

1: for Di ∈ D, i = 1, ..., |D| do
2: if i = 1 ∨ conversation(i) ̸= conversation(i− 1) then
3: E ← ∅
4: end if
5: for di,j ∈ Di, j = 1, ..., |Di| do
6: if di,j ∈ E then
7: si,j ← m · si,j
8: end if
9: E ← E ∪Di[1..k]

10: Di ← sort(Di)
11: end for
12: end for

3.3.2 Bottom Up

Bottom Up [Mar19] is a reranking algorithm that penalize documents assigned
to later utterances of a conversation, in previous ones. It’s based on the idea
that further utterances will ask about more specific knowledge, so assigning
documents from the last utterance (in a conversation) to the first and filtering
out the already assigned ones should leave better results.

As with Seen Filter, the implemented version accept the parameters m
(multiplier) and k (max rank). Formally:

si,j ↦→

⎧⎨⎩ m · si,j if di,j ∈
|D|⋃︁

l=j+1

Dl[1..k]

si,j otherwise

(3.21)

CHAPTER 3. IMPLEMENTED ALGORITHMS 23

The Algorithm 3.8 shows the pseudocode for the Bottom Up algorithm.
It’s nearly the same as Seen Filter, but it loops through the results list in
reverse order so that the first encountered utterance in a conversation would
be the last one.

Algorithm 3.8 Bottom Up
Input: D, k, m
Output: D
1: for Di ∈ D, i = |D|, ..., 1 do
2: if i = |Di| ∨ conversation(i) ̸= conversation(i+ 1) then
3: E ← ∅
4: end if
5: for di,j ∈ Di, j = 1, ..., |Di| do
6: if di,j ∈ E then
7: si,j ← m · si,j
8: end if
9: E ← E ∪Di[1..k]

10: Di ← sort(Di)
11: end for
12: end for

3.3.3 Historical Answer Expansion

Historical Answer Expansion (HAE) [JC19] is a reranking technique that is
meant to be used on top of HQE (Section 3.2.6).

HAE exploits a BERT classifier to estimate the log-likelihood between
queries and documents. Then, for every query in a conversation:

1. Consider the current query’s result documents with unmodified likeli-
hood;

2. Consider the previous query’s result documents with likelihood decreased
by a factor λ;

3. Sort the documents by likelihood;

4. Assign the top-k documents to the current query;

The Algorithm 3.9 shows the pseudocode of HAE using a notation close
to the original paper10, where:

10The original pseudocode can be difficult to interpret on some passages, so we made
some changes to make it easier to understand.

CHAPTER 3. IMPLEMENTED ALGORITHMS 24

Algorithm 3.9 HAE: Historical Answer Expansion
Input: A = {(Qi, Di)}Ni=1, λ
Output: A

1: for i = 1 to N do
2: for j = 1 to k do
3: Li,j ← log_likelihood(Qi, di,j)
4: P [i][j]← (di,j, Li,j)
5: end for
6: end for
7: Ptemp ←< ∅ >
8: for i = 1 to N do
9: Ptemp ← Ptemp + P [i]

10: Ptemp ← sort(Ptemp)
11: Ptemp ← Ptemp[1..k]
12: Di ←< di,j >∈ Ptemp

13: for j = 1 to k do
14: Ptemp[i]← (di,j, λ · Li,j) ∀ (di,j, Li,j) ∈ P [i][j]
15: end for
16: end for

A is the collection of input pairs of same-conversation query Qi and relative
documents returned by the search Di;

λ is the decay factor, i.e., the multiplicative factor to apply to the log-
likelihood of previous query’s documents before adding them to the
current list;

sort(Ptemp) function that sort Ptemp by decreasing values of log-likelihood;

Chapter 4

Implementation

This chapter describes the software developed as part of this work, which
includes:

• The implementation of the previously mentioned methods;

• A conversational search framework, based on pyterrier1;

In particular, we designed the framework to achieve:

• Modularity: classes can be combined in different ways or reused in other
projects;

• Extensibility: new classes can be integrated without modifying existing
ones;

• Flexibility: search pipelines can be configured using text files and the
framework support multiple output format;

4.1 Structure
The framework is structured around three main interfaces: Pipeline, Step
and PipelineFactory. During the initialization of these interfaces, a dic-
tionary containing all the possible common objects (e.g., query structure,
cache folder, . . .) will be passed to the constructor. For this reason, every
implementing class must accept an arbitrary number of arguments and discard
the ones that don’t use.

Every execution of the software, with its configuration, is called “run”. A
run might contain multiple pipelines to simplify comparisons and writes all
the related outputs in a folder.

1https://pyterrier.readthedocs.io/

25

https://pyterrier.readthedocs.io/

CHAPTER 4. IMPLEMENTATION 26

The next sections explain in details the mentioned interfaces.

4.1.1 Step

The Step interface (see Figure 4.1) represents a single step of search (e.g., a
rewrite/rerank/retrieve step). A step has the following attributes:

name representative name for the step and its configuration;

type the type of the step, must be an instance of StepType. Three types of
definition exist:

FULLY_PARALLEL defines a step that can be parallelized on an arbitrary
subset of queries;

CONVERSATIONALLY_PARALLEL defines a step that can be parallelized
between different conversations but must loop through every ut-
terance of a conversation sequentially;

SEQUENTIAL define a step that must be executed sequentially on the
whole set. This type is currently used for steps that use the GPU
as they need to manage the eventual parallelization on their own;

cleanup() optional method for cleaning up resources;

Callable the Step must receive a table of queries or results and return a
new table with the appropriate modifications;

While the Step interface is enough to make the framework run, we provide
two sub-interfaces to distinguish the steps’ function:

Rewriter represents a query rewriter, with a rewrite(queries) method
that receives a table of queries and returns the same table with the
appropriate rewriting;

Reranker represents a document reranker, with a rerank(results) method
that receives a table of queries’ results and returns the same table with
the documents for each query in a (possibly) changed order.

Additionally, the framework provides the wrappers:

Model for the retrieving step;

RM3 for the RM3 pseudo feedback model;

For every algorithm implemented, there is a class of the appropriate
interface. These classes can be used and combined outside the specific
pipelines presented in this work.

CHAPTER 4. IMPLEMENTATION 27

Figure 4.1: Framework Structure

CHAPTER 4. IMPLEMENTATION 28

4.1.2 Pipeline

The Pipeline interface (see Figure 4.1) represents a search pipeline composed
of multiple steps (e.g., model → rewriter → reranker). A pipeline has the
following attributes:

name easy-to-parse name of the pipeline. Must be a unique name that
defines the pipeline and its configuration so that two pipelines with the
same name will do the same steps and produce the same results;

run_on(queries, pool) method for executing the pipeline on a collection
of queries, optionally with a parallel pool;

There are two ways to construct a pipeline:

• Writing a custom class that implements the interface. This option
gives complete control over the execution flow but might be excessively
tedious for simple pipelines;

• Using a factory. This alternative is limited to what the chosen factory
class can achieve but allow for a more straightforward way to change
the steps through the configuration file;

The framework includes two abstract Pipeline classes that might help
writing a new one:

AbstractParallelPipeline abstract class that provides two methods to
execute a Step on a parallel pipeline (one for a fully parallel step, the
other for a conversationally parallel one);

ChainPipeline extension of the previous pipeline that executes a list of
steps received when instantiated;

Both classes accept objects that do not fully implement the Step interface
with the caveats that:

• They must be Callable objects that work like a step (i.e., receive a
table of queries or results and return a new one);

• If they don’t provide a name field, the class name will be used instead;

• If they don’t provide a type field, will be considered FULLY_PARALLEL;

CHAPTER 4. IMPLEMENTATION 29

Figure 4.2: Factory classes

CHAPTER 4. IMPLEMENTATION 30

4.1.3 PipelineFactory

The PipelineFactory interface (see Figure 4.2) allows creating Pipeline
objects with the Factory Method pattern. It defines the following attributes:

set(config) method for parsing the configuration. config is a dictionary of
options extracted from the run configuration file that the factory must
parse to set its parameters. Every configurable aspect of the factory
must be editable through this method;

build() method that returns a Pipeline’s instance in accordance to the
factory configuration;

The framework provides two factory implementations:

BasePipelineFactory constructs a pipeline composed of:

[Rewriter]→ Model→ [RM3]→ [Reranker]

1. An optional Rewriter
2. A retrieval model
3. Optional RM3
4. An optional Reranker

SubIndexPipelineFactory constructs a pipeline that uses a sub-index
strategy to retrieve conversational results.
For every conversation:

1. A first retrieval is done on the first utterance;
2. A temporary sub-index is generated with the returned documents;
3. Optionally, the first utterance’s retrieval is executed again on the

sub-index (rerun_first attribute);
4. All the subsequent utterances’ retrievals are executed on the sub-

index;

This factory accepts the same parameters of the previous one, plus a base
rewriter, model, and RM3 that will be applied to the first utterance’s
retrieval only.

4.2 Methods
This section provides information on the implementation of the various
methods. To understand the next algorithms, we need to define the basic
data structure of queries and results.

CHAPTER 4. IMPLEMENTATION 31

Queries’ Table Queries are represented by rows in a table with two columns:

• qid: contains the unique identifier for the query;

• query: contains the text associated with the query;

Results’ Table Results are stored in an extension of the previous table
with the following additional columns:

• docno: contains the identifier for the returned document (i.e., document
number);

• score: contains the score of the returned document

• rank: contains the rank of the document, i.e., the position of the
document by score value for the relative query;

• text: contains the text of the returned document;

Common functions We define these common functions that will be used
in the followings pseudocodes:

map(qid) takes a query identifier and returns the conversation that contains
said query2;

join(q. . .) concatenates queries separating them with a space;

joinsep(q . . .) concatenates queries separating them with a suitable separa-
tor;

splitsep(q . . .) separate queries previously joined using joinsep;

splittable split a text by whitespace and construct a queries’ table with a
row for every word;

4.2.1 Concat Query Rewriter

Concat Query is implemented in the ConcatQueryRewriter. The class is
conversationally parallel as we need all the queries in the same conversation.
The concatenation is done by getting the query identifier and accessing the
query structure to find the previous conversational utterances (Algorithm 4.1).

2This function is an exemplification of the actual procedure to access the queries’
structure

CHAPTER 4. IMPLEMENTATION 32

Algorithm 4.1 ConcatQueryRewriter
1: procedure rewrite_single(q)
2: qid← q[qid]
3: conversation← map(qid)
4: return join(conversation≤qid)
5: end procedure
6: procedure rewrite(queries)
7: for q ∈ queries do
8: q[query]← rewrite_single(q)
9: end for

10: return queries
11: end procedure

4.2.2 First Query Rewriter

The implementation class for First Query is called FirstQueryRewriter. It
works similarly to ConcatQueryRewriter, this time concatenating only the
first and the current utterance.

Given the ambiguity of the algorithm regarding the first query in a conversa-
tion, FirstQueryRewriter implements both the repeating and non-repeating
strategies, with the non-repeating one used by default as no significant differ-
ence was observed in the resulting metrics. As you can see in Algorithm 4.2,
an additional parameter (repeat) is used to select the desired variant. The
rewrite procedure is analogous to Algorithm 4.1.

Algorithm 4.2 FirstQueryRewriter
1: procedure rewrite_single(q, repeat)
2: qid← q[qid]
3: conversation← map(qid)
4: if qid = conversation[0][qid] then
5: if repeat then
6: return join(q, q)
7: else
8: return q[query]
9: end if

10: end if
11: return join(conversation[0], q)
12: end procedure

CHAPTER 4. IMPLEMENTATION 33

4.2.3 Context Query Rewriter

ContextQueryRewriter is the implementation class for Context Query algo-
rithm.

Like with FirstQueryRewriter, it implements both the repeating a non-
repeating variant to fill the ambiguity on the rewrite for the first and second
utterance of a conversation and uses the non-repeating one by default. The
Algorithm 4.3 shows the pseudocode for the rewrite_single procedure.

Algorithm 4.3 ContextQueryRewriter
1: procedure rewrite_single(q, repeat)
2: qid← q[qid]
3: conversation← map(qid)
4: if qid = conversation[0][qid] then
5: if repeat then
6: return join(q, q, q)
7: else
8: return q[qid]
9: end if

10: else if qid = conversation[1][qid] then
11: if repeat then
12: return join(conversation[0], conversation[0], q)
13: else
14: return join(conversation[0], q)
15: end if
16: end if
17: return join(conversation[0], conversation[1], q)
18: end procedure

4.2.4 Coref 1 Rewriter

We provide a Coref 1 ’s cached and GPU-accelerated implementation named
AllennlpCoreferenceQueryRewriter.

The GPU acceleration is automatically enabled if a CUDA environment is
detected and currently support only one card. It’s technically possible, though
not trivial (with this framework’s architecture), to implement a multi-GPU
version of this rewriter. Instead, we focused on a cached approach that gives
better speed benefits. If needed, it’s permitted to disable both the acceleration
and the cache, allowing to overcome eventual borderline cases.

CHAPTER 4. IMPLEMENTATION 34

The rewriter’s type is decided at runtime. If the GPU acceleration is
used, then it’s considered SEQUENTIAL. Otherwise, it might try to access the
same card with multiple processes resulting in a crash. Alternatively, if no
acceleration is used, the returned type is CONVERSATIONALLY_PARALLEL to
allow for some parallelization.

The Algorithm 4.4 shows the pseudocode for this rewriter, where the
resolve function calls the AllenNLP coreference resolver.

Algorithm 4.4 AllennlpCoreferenceQueryRewriter
1: procedure coref(q)
2: qid← q[qid]
3: conversation← map(qid)
4: full_concat← joinsep(conversation≤qid)
5: full_coref ← resolve(full_concat)
6: return splitsep(full_coref)[last]
7: end procedure
8: procedure rewrite_single(q, cache)
9: qid← q[qid]

10: if qid ∈ cache then
11: return cache[qid]
12: end if
13: rewrite← coref(q)
14: cache[qid]← rewrite
15: return rewrite
16: end procedure
17: procedure rewrite(queries)
18: cache← load_cache()
19: for q ∈ queries do
20: q[query]← rewrite_single(q, cache)
21: end for
22: save_cache(cache)
23: return queries
24: end procedure

4.2.5 Coref 2 Rewriter

The implementation for Coref 2 is called NeuralCorefRewriter. It’s a
simpler implementation compared to the previous one as neuralcoref is pretty
fast even on the CPU.

CHAPTER 4. IMPLEMENTATION 35

Two variants are provided that use a different spacy model: a default and a
large one. Unfortunately, no improvement was observed with the large model.
On Algorithm 4.5 you can see the pseudocode for the rewrite_single
function of this method that accepts an additional boolean parameter (large)
that specify the variant to use.

Algorithm 4.5 NeuralCorefRewriter
1: procedure rewrite_single(q, large)
2: qid← q[qid]
3: conversation← map(qid)
4: full_concat← joinsep(conversation≤qid

5: full_coref ← resolve(full_concat, large)
6: return splitsep(full_coref)[last]
7: end procedure

4.2.6 Historical Query Rewriter

We provide two different implementation for Historical Query Expansion:

• HistoricalQueryRewriter is solely based on the algorithm description;

• HQERewriter is based on the castorini’s HQE implementation3

To find suitable starting values for rS, rQ and θ we’ve proceeded as follows:

1. Ran a BM25 pipeline with single words treated as entire queries;

2. Manually analysed the results, comparing words’ scores with:

(a) How much important the word was in the original query;

(b) How much important the word was in the entire conversation;

3. Ran a normal BM25 pipeline to compare the queries’ scores to their
ambiguity;

We found that:

• Ambiguous queries often have a score lower than 30 (θ = 30);

• Session-relevant words tend to score at least 10 (rS = 10);
3https://github.com/castorini/chatty-goose

https://github.com/castorini/chatty-goose

CHAPTER 4. IMPLEMENTATION 36

• Query-relevant words usually score at least 15 (rQ = 15);

Having rQ > rS is justified by the fact that session-related words are frequently
less specific than query-related ones. Moreover, our tests show that values of
rS bigger than rQ produce results significantly worse than the opposite.

HistoricalQueryRewriter This version of HQE was the first implemen-
tation we made, looking only at [JC19], and follows the original algorithm
as close as possible. You can see the pseudocode on Algorithm 4.6, with the
following symbols:

tokens_table is a table with the current query’s words in the query column;

WS is the list of session-relevant keywords;

WQ is the list of queries’ relevant keywords, structure as a list of lists where
every sub-list contains the keywords of a single query;

first is a boolean that signals if the current query is the first one in its
conversations as we don’t need to expand it;

Despite following the method’s definition, this rewriter underperforms
compared to the original paper’s results.

HQERewriter Trying to pin down the reason for the performance below
expectation, we decided to look at another HQE implementation and replicate
it. HQERewriter is based on the code for the “Chatty Goose” framework
developed by Castorini.

The most notable difference with our implementation resides in tokens
filtering. HQERewriter uses spacy to analyse queries’ text and only select
nouns and adjectives as tokens.

Unfortunately, this version performs similarly to the previous one, meaning
that the reason for the underperformance is likely in the core searching
techniques of this framework.

4.2.7 DBpedia Rewriter

The DBpedia method is implemented in the DbPediaRewriter class. This
method requires an additional parameter (freq_type) to choose between the
index-frequency and the snippets-frequency. The Algorithm 4.7 shows the
pseudocode, where:

CHAPTER 4. IMPLEMENTATION 37

Algorithm 4.6 HistoricalQueryRewriter
1: procedure expansion(text, first,WS,WQ)
2: tokens_table← split(text)
3: tokens_table← score(tokens_table)
4: Qrel ← ()
5: for row ∈ tokens_table do
6: if row[score] > rQ then
7: Qrel.insert(row[query])
8: end if
9: if row[score] > rS then

10: WQ.insert(row[query])
11: end if
12: end for
13: WQ.insert(Qrel)
14: if first then
15: return text
16: else
17: T ← tokens_table[query] ∪WS

18: if score(text) < θ then
19: for Qold ∈ WQ[last 4] do
20: T ← T ∪Qold

21: end for
22: end if
23: return join(T)
24: end if
25: end procedure
26: procedure rewrite(queries)
27: WQ ← list()
28: WS ← list()
29: current_conv ← none
30: for q ∈ queries do
31: if conversation_of(q) ̸= current_conv then
32: WQ.clear(); WS.clear()
33: q[query]← expansion(q[query], true,WS,WQ)
34: else
35: q[query]← expansion(q[query], false,WS,WQ)
36: end if
37: end for
38: return queries
39: end procedure

CHAPTER 4. IMPLEMENTATION 38

spotlight(qc) is the function that query DBpedia Spotlight and return the
list of found entities;

wiki(entity) is the function that queries Wikipedia and returns snippets
for the specified entity;

score_terms(snippets, freq_type is the function that scores the terms
using either their frequency in the documents’ index or their frequency
in the returned snippets;

find_nouns_adjectives is a function that returns a list of nouns and
adjectives (filtered with spacy) from the provided query;

concept_net is the function that queries ConceptNet and returns a list of
terms related with the provided one;

To select the n-grams for ConceptNet (in function find_nouns_adjectives),
we decided to choose adjacent nouns and adjectives from the queries’ concate-
nated text, as it’s likely for adjacent words to be related.

Algorithm 4.7 DbPediaRewriter
1: procedure rewrite_single(q, freq_type)
2: qc ← join(map(q[qid]))
3: entities← spotlight(qc)
4: P ← list(qc)
5: if len(entities) > 0 then
6: for entity ∈ entities do
7: snippets← wiki(entity)
8: scored_terms← score_terms(snippets, score_type)
9: P ← P ∪ scored_terms[first 10]

10: end for
11: else
12: ngrams← find_nouns_adjectives(qc)
13: for n ∈ ngrams do
14: P ← P ∪ {concept_net(n)}
15: end for
16: end if
17: return join(P)
18: end procedure

CHAPTER 4. IMPLEMENTATION 39

4.2.8 Seen Filter Reranker

Seen Filter is implemented in SeenFilterReranker. The implementation
is close to the formal definition and employs two additional types of data
structures:

• set is an unordered collection of elements that doesn’t allow duplicates
(i.e., adding an already-existing element won’t change the set);

• dict (dictionary) is a collection of key-value pairs where every key
exist only one time (i.e., setting a value for an already-existing key will
replace the old one);

The Algorithm 4.8 shows the pseudocode, where the function conversation(qid)
returns the identifier for the conversation that contains the query with the
specified qid.

Algorithm 4.8 SeenFilterReranker
1: procedure rerank_single(r, k,m, seen)
2: score← r[score]
3: qid← r[qid]
4: conv_id← conversation(qid)
5: if conv_id /∈ seen then
6: seen[conv_id]← set()
7: end if
8: if q[docno] ∈ seen[conv_id] then
9: score← score ·m

10: end if
11: if q[rank] ≤ k then
12: seen[conv_id].add(q[docno])
13: end if
14: return score
15: end procedure
16: procedure rerank(results, k,m)
17: seen← dict()
18: for r ∈ results do
19: r[score]← rerank_single(r, k,m, seen)
20: end for
21: end procedure

CHAPTER 4. IMPLEMENTATION 40

4.2.9 Bottom Up Reranker

We’ve implemented the Bottom Up algorithm in the BottomUpReranker class.
As it’s possible to see in Algorithm 4.9, it requires a 2-pass strategy:

1. In the first pass it loops through every conversation and every qid (in
reversed order) to find all the (qid, docno) pairs that must be filtered;

2. In the second pass it changes the score of the previously identified rows;

This is done in two passages to manipulate the results’ table more easily and
keep the queries’ order.

Algorithm 4.9 BottomUpReranker
1: procedure rerank(results, k,m)
2: R← dict()
3: for conversation ∈ results do
4: seen = set()
5: for query_results ∈ reversed(conversation) do
6: R[qid]← set(query_results[docno] ∩ seen)
7: top_docs← list(query_results[docno])[1..k]
8: seen← seen ∪ top_docs
9: end for

10: end for
11: for conversation ∈ results do
12: for r ∈ conversation do
13: if r[docno] ∈ R[qid] then
14: r[score]← r[score] ·m
15: end if
16: end for
17: end for
18: return results
19: end procedure

4.2.10 Historical Answer Reranker

Historical Answer Expansion is implemented in the HAEReranker class as
SEQUENTIAL reranker. The algorithm is divided in two phases: classification
and ranking.

CHAPTER 4. IMPLEMENTATION 41

Classification In the classify function on Algorithm 4.10, we compute the
log-likelihood value for every row. We use the Hugging Face4 and pytorch5

libraries to work with the BERT model. In particular, Hugging Face already
has the same pre-trained model used in the original HAE paper in its collection.
The classification process performs four steps:

1. The BERT tokenizer is used to encode the query-document pair in
vectors compatibles with the model;

2. The BERT model is applied to the encoding to obtain the logits, i.e.,
the vector of raw predictions;

3. The softmax function is used to normalize the logits;

4. The negative logarithm is computed on the wanted prediction, i.e., the
probability that the query and the documents belong to the same class.
This is the log-likelihood for the current row;

Given the heaviness of the computation, it’s recommended to use a GPU
classifier. Our implementation includes both a CPU6 and a GPU classifier,
where the latter will be automatically chosen if a CUDA environment is
detected. The GPU implementation have a limited support for multi-card
environments7.

Ranking The ranking phase, shown in the rerank procedure in Algo-
rithm 4.10, uses the likelihood computed with the BERT classifier to apply
the HAE technique, staying as close as possible to the formal definition.

To lighten the computation, the reranker accept an additional parameter
(k) that specify a cut-off for the number of documents-per-query that should
be fed to the classifier.

4.3 Pipelines
In addition to the single rewriters and rerankers, our framework includes some
pre-constructed pipelines that represent some noteworthy methods. We have
implemented the following pipelines:

• PlainBM25Pipeline: simple pipeline with BM25, optional RM3 and
no rewriters nor rerankers;

4https://huggingface.co/
5https://pytorch.org/
6single core implementation
7Multi-GPU use a threading model, so the CPU will become a bottleneck at some point

https://huggingface.co/
https://pytorch.org/

CHAPTER 4. IMPLEMENTATION 42

Algorithm 4.10 HAEReranker
1: procedure classify(results)
2: for row ∈ results do
3: encoding ← bert_tokenizer(row[query], row[text])
4: logits← bert_model(encoding)[logits]
5: sft← softmax(logits)
6: row[log]← −ln(sft[0][1])
7: end for
8: return results
9: end procedure

10: procedure rerank(results, λ, k)
11: results← * max k rows per qid *
12: results← classify(results)
13: last← list()
14: for conversayion ∈ results do
15: for qid, query_results ∈ conversation do
16: curr ← query_results[docno, log]
17: temp← curr ∪ {(docno, log · λ) ∈ last \ curr}
18: last← curr
19: temp← temp.sort()[top k]
20: for row ∈ query_results do
21: row[log]← temp[docno = row[docno]][log]
22: end for
23: end for
24: end for
25: results[score]← results[log]
26: result.sort()
27: return results
28: end procedure

CHAPTER 4. IMPLEMENTATION 43

• PlainPipeline: simple pipeline with Dirichlet language model, optional
RM3 and no rewriters nor rerankers;

• ConcatQueryPipeline: extension of PlainPipeline with the
ConcatQueryRewriter;

• FirstQueryPipeline: extension of PlainPipeline with the
FirstQueryRewriter;

• ContextQueryPipeline: extension of PlainPipeline with the
ContextQueryRewriter;

• Coreference1Pipeline: extension of PlainPipeline with the
AllennlpCoreferenceQueryRewriter;

• Coreference2Pipeline: extension of PlainPipeline with the
NeuralCorefRewriter

• DBPediaPipeline: extension of PlainPipeline with the
DbPediaRewriter;

• BottomUpUamPipeline: implementation of the Bottom Up method,
using BM25 and the BottomUpReranker;

• HistoricalQueryExpansionPipeline: implementation of HQE with
BM25 and HQERewriter (or, optionally, HistoricalQueryRewriter);

• HistoricalQueryAndAnswerExpansionPipeline: extension of the
previous with HAEReranker;

4.4 Technical Details
The framework is developed in python 3.8 (as required by some dependencies)
using pyterrier for the core retrieval mechanism. Step objects (including
rewriters and rerankers) must conform to the pyterrier data model8.

Non-conforming Step Provided PipelineFactory classes are written to
allow reusing pyterrier transformers or generic callable objects that conform
to the pyterrier data model. However, when doing so, some assumptions will
be made to fill for missing properties:

8https://pyterrier.readthedocs.io/en/latest/datamodel.html

https://pyterrier.readthedocs.io/en/latest/datamodel.html

CHAPTER 4. IMPLEMENTATION 44

Figure 4.3: Pipelines

CHAPTER 4. IMPLEMENTATION 45

• The class name will be used as step name, so the resulting pipeline
name won’t contain the configuration parameters. Consequently, issuing
the same pipeline with different step’s configuration won’t work, as the
subsequent pipelines will be discarded for being duplicates;

• The step will be considered FULLY_PARALLEL;

Even when providing the previous properties, it’s not mandatory to extend
the Step class as factories will try to dynamically load the property before
falling back to the mentioned assumptions.

Spacy version Neuralcoref requires spacy 2, but the 3rd version was
released some times ago. Consequentially, classes that use it should account
for both version to allow reusability. Provided classes that use spacy, except
for NeuralCorefRewriter, account for that possibility.

Chapter 5

Experiments

5.1 Experimental setup
This work uses “TREC Conversational Assistance Track” (CAsT) [DXC20] as
a source for topics and evaluations1.

TREC CAsT is an initiative to facilitate Conversational Information Seek-
ing research and create a large-scale reusable test collection for conversational
search systems. The goal of the CAsT Task (in the 2019 edition) is to satisfy
a user’s information need (expresses as turns in a conversation) with responses
limited to brief text passages (of ≈ 1-3 sentence length). Formally, given
a sequence of conversational turns for a topic (T) with utterances (u), for
each turn T = {u1, ..., ui, ..., un}, the task is to identify relevant passages Pi

for each turn to satisfy the information needs in round i with the context of
round u<i = {u1, ..., ui−1}.

5.1.1 Topics

The topics were semi-manually constructed from a combination of previous
TREC initiatives, MS MARCO Conversational Search Sessions and the
authors’ expertise.

They were selected to ensure:

• Requirement of multiple rounds of elaboration;

• Open-domain (no expert domain knowledge);

• Answerable within the passages’ collection;
1https://www.treccast.ai/

46

https://www.treccast.ai/

CHAPTER 5. EXPERIMENTS 47

Conversational utterances were manually created for each turn in a topic,
ensuring that:

• Later turns only depend on previous utterances;

• Mimic realistic dialogues;

• Contains common conversation phenomena (e.g., coreference and omis-
sion);

• Simple factoid responses are insufficient;

5.1.2 Collection

The collection of passages used for retrieval includes the passages from
MS MARCO2 and the paragraph collection from TREC CAR Y2 3 [Die+18].

To handle the presence of near-duplicates, duplicate files are provided for
both sources, so the resulting collection only contains unique passages.

Queries relevance

To compute the scores for the results, TREC CAsT provides a collection of
relevant judgements composed of utterance-document pairs, manually labelled
in the [0, 4] range, where:

4. Fully meets : the passage is a perfect answer;

3. Highly meets : the passage is a satisfactory answer;

2. Moderately meets: the passage partially answer the query or contains
unrelated information;

1. Slightly meets : the passage includes some information but doesn’t answer
the query;

0. Fails to meet : the passage is unrelated;

Given that the labels only cover a portion of the topics, from now on, we
will restrict to that for analysis and results scoring (20 conversations, 173
queries covered with a total of 29350 labelled documents).

CHAPTER 5. EXPERIMENTS 48

Figure 5.1: Number of relevant documents

Figure 5.2: Mean of relevant documents’ number per conversation

CHAPTER 5. EXPERIMENTS 49

Relevance analysis

Figure 5.1 shows the number of relevant documents for every utterance in a
conversation. We can observe that it’s not equally distributed (in particular,
for some queries, there are only a few relevant passages), and this will likely
reflect on the results. In Figure 5.2 is shown the conversation mean of the
same data.

Figure 5.3: Number of still-relevant documents from the previous query

Figure 5.3 shows the number of documents, from the second utterance
onwards, that are relevant for both the previous and the current query. This
is interesting for methods like Seen Filter or Bottom Up where the documents
from previous (or subsequent) utterances are filtered.

Figure 5.4 shows the heatmaps, conversation per conversation, of the
cosine similarity between queries. This gives an idea of the dependence
between the queries in a conversation. The cosine similarity was obtained by:

1. Constructing a list (of arbitrary order) with all the terms in the two
queries (every term a single time);

2http://www.msmarco.org/
3https://trec-car.cs.unh.edu/

http://www.msmarco.org/
https://trec-car.cs.unh.edu/

CHAPTER 5. EXPERIMENTS 50

Figure 5.4: Cosine similarity between queries

2. Constructing two vectors, one for every query, that have, for every
component, 1 if the query contains the term, 0 otherwise;

3. Computing the cosine similarity as

A ·B
∥ A ∥∥ B ∥

(5.1)

Figure 5.5 and Figure 5.6 show the overall recall when considering the
documents returned from the first conversational utterance only. This provides
some insight on the performance that we can expect from the sub-index
technique, where the search for subsequence utterance is performed on the
first utterance results’ documents.

CHAPTER 5. EXPERIMENTS 51

Figure 5.5: Recall per qid on the docs retrieved with the 1st utterance

Figure 5.6: Recall per conversation on the docs retrieved with the 1st utterance

CHAPTER 5. EXPERIMENTS 52

5.2 Results
This section shows some results on the discussed methods. Following TREC CAsT
[DXC20] the main evaluation metric will be the discounted cumulative gain
for the first three documents (nDCG@3), calculated as follows:

nDCG@3 =
3∑︂

i=1

reli
log2(i+ 1)

(5.2)

where reli is the label for the i-th document.
We decided to consider also the recall for the first 100 documents (R@100)

because methods with a good recall but a poor nDCG@3 might still be used
in combination with other reranking techniques.

R@100 =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(5.3)

Sometimes, we provide additional metrics to compare our implementation
with the original results, as not every author has picked the same evaluation
metrics we have chosen.

For the retrieval stage, we used an index with the Krovetz stemmer and
the Indri’s4 stopwords list, to be as compliant as possible to the indexing
settings on [Mel+21]. All the results were calculated by doing the mean of
the per-conversation mean of the per-query results.

5.2.1 Concat Query

Concat Query was tested using Dirichlet language model of parameter µ
and RM3 pseudo relevance feedback (prf). Table 5.1 shows the best results
obtained, sorted by nDCG@3. It’s plain to notice that the first three results
are identical: this is confirmed by Figure 5.7d where it’s shown that these
variations are equivalent.

µ RM3 AP R@100 nDCG@3
1000 t5-d20-l0.3 0.174461 0.322022 0.277390†
1000 t5-d20-l0.5 0.174461 0.322022 0.277390
1000 t5-d20-l0.7 0.174461 0.322022 0.277390
1000 t5-d30-l0.3 0.178709 0.322448 0.275817

Table 5.1: Concat Query results

4https://www.lemurproject.org/indri/

https://www.lemurproject.org/indri/

CHAPTER 5. EXPERIMENTS 53

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 82.6448 19 4.34973 3739.76 < 1e-5 0.9548
model 0.0036 5 0.00073 0.62 0.6817 —
prf 3.9509 27 0.14633 125.81 < 1e-5 0.5007
Error 3.8475 3308 0.00116
Total 90.4469 3359

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 57.5769 19 3.03036 1097.14 < 1e-5 0.8611
model 0.2626 5 0.05253 19.02 < 1e-5 0.0261
prf 1.5993 27 0.05923 21.45 < 1e-5 0.1411
Error 9.1369 3308 0.00276
Total 68.5758 3359

(b) nDCG@3

Table 5.2: ANOVA Tables for Concat Query

Table 5.2 and Figure 5.7 show the statistical analysis performed on these
results. On R@100, we can observe that both conversation and RM3 cause a
strong variation on the results. However, looking at Figure 5.7c we can see
that RM3 always worsen the results. The model variations (i.e., µ), instead,
does not have a meaningful impact.

On nDCG@3, all the three parameters (conversation, model and prf) provides
a significant contribution. In particular, both conversation and RM3 have a
strong effect, while model only has a small one.

The strong impact of conversations in both metrics is confirmed by Fig-
ure 5.8 where we can see that there is a wide performance variation between
them. In addition, we can notice that not all the conversations that scores
better with a metrics, keep that position on the other.

CHAPTER 5. EXPERIMENTS 54

0.28 0.282 0.284 0.286 0.288 0.29 0.292

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

Concat Query (mu on R@100)

(a) Dirichlet µ on R@100

0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25 0.255

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

Concat Query (mu on nDCG@3)

(b) Dirichlet µ on nDCG@3

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

Concat Query (RM3 on R@100)

(c) RM3 on R@100

0.2 0.22 0.24 0.26 0.28

prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

Concat Query (RM3 on nDCG@3)

(d) RM3 on nDCG@3

Figure 5.7: Multcompare for Concat Query

(a) R@100 (b) nDCG@3

Figure 5.8: Concat Query performances

CHAPTER 5. EXPERIMENTS 55

5.2.2 First Query

First Query was tested with Dirichlet language model of parameter µ, RM3
pseudo relevance feedback and using both the repeating and non-repeating
(no-rep) variant.

Table 5.3 presents the first results (ordered by nDCG@3) and the comparison
with the original [Mel+21] values. As can be noted, the first values are the
same: this agrees with Figure 5.9d where the multiple comparison shows the
equivalence of these values. Making a comparison with the original values, our
same-settings run scored significantly lower on recall and average precision
and slightly lower on nDCG@3. However, our better run scored better on the
discounted cumulative gain, slightly lower on the recall and similarly on the
average precision.

Given the simplicity of the method, we think that there might be two
possible explanation for the difference with the same-settings run. Either the
original paper used different settings that were not reported, or the underlying
retrieval framework is responsible for this difference.

mu variant RM3 AP R@100 R@200 nDCG@3
1000 repeat t5-d20-l0.3 0.202914 0.330487 0.414397 0.327624†

1000 repeat t5-d20-l0.5 0.202914 0.330487 0.414397 0.327624
1000 no-rep t5-d20-l0.7 0.202914 0.330487 0.414397 0.327624
1000 no-rep t5-d20-l0.3 0.202914 0.330487 0.414397 0.327624
1000 no-rep t5-d20-l0.5 0.202914 0.330487 0.414397 0.327624
1000 no-rep t5-d20-l0.7 0.202914 0.330487 0.414397 0.327624
2000 repeat t5-d30-l0.3 0.195073 0.329968 0.426240 0.315478†

2500 no-rep t20-d20-l0.5 0.146738 0.259525 0.333781 0.242949†

original [Mel+21]
2500 — t20-d20-l0.5 0.2091 — 0.4588 0.2663

Table 5.3: First Query results

The statistical analysis of the results is displayed on Table 5.4 and Fig-
ure 5.9. In both metrics, the rewriting variant is irrelevant to the results,
while conversation, model and RM3 provides a significant contribution. The
model ’s contribution is equally small in both cases. Instead, RM3 holds a
large-but-negative (Figure 5.9c) effect on the recall and a medium one on the
discounted cumulative gain. Like with Concat Query, the high ω2 value for the
conversations is the symptom of a wide performance variation (Figure 5.10).

CHAPTER 5. EXPERIMENTS 56

0.275 0.28 0.285 0.29 0.295 0.3 0.305

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

First Query (mu on R@100)

(a) Dirichlet µ on R@100

0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

First Query (mu on nDCG@3)

(b) Dirichlet µ on nDCG@3

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

First Query (RM3 on R@100)

(c) RM3 on R@100

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

First Query (RM3 on nDCG@3)

(d) RM3 on nDCG@3

Figure 5.9: Multcompare for First Query

(a) R@100 (b) nDCG@3

Figure 5.10: First Query performances

CHAPTER 5. EXPERIMENTS 57

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 196.17 19 10.3247 8329.36 < 1e-4 0.9469
model 0.337 5 0.0674 54.4 < 1e-4 0.0292
variant 0 1 0 0 1 —
prf 8.938 36 0.2483 200.29 < 1e-4 0.4469
Error 10.93 8818 0.0012
Total 216.375 8879

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 147.165 19 7.74554 1961.59 < 1e-5 0.8075
model 1.034 5 0.20674 52.36 < 1e-5 0.0281
variant 0 1 0 0 1 —
prf 3.125 36 0.0868 21.98 < 1e-5 0.07847
Error 34.819 8818 0.00395
Total 186.142 8879

(b) nDCG@3

Table 5.4: ANOVA Tables for First Query

5.2.3 Context Query

Context Query was tested with Dirichlet language model of parameter µ, RM3
pseudo relevance feedback and using both the repeating and non-repeating
(no-rep) variant.

Table 5.5 shows the first results (by nDCG@3) and the comparison with
the [Mel+21] result. We can immediately notice that the first six results are
identical, as shown also in Figure 5.11d.

Comparing the results with the original (using the same settings), our
implementation performs slightly better on the discounted cumulative gain,
while it underperforms on recall and average precision. Our best result,
instead, achieved better scores in all the three comparing metrics. Like for
First Query, we think this difference is caused by either the usage of different
settings in the original work or by the underlying retrieval framework.

The statistical analysis for this method’s results is displayed in Table 5.6
and Figure 5.11. We can observe that the variant (repeat or no-repeat) is
irrelevant on both metrics.

On R@100, the model provides a very small (but still significative) contri-
bution and RM3 a strong one, although Figure 5.11c shows that the RM3
contribution has only a negative effect.

On nDCG@3, the significance of RM3 is reduced, and we can see on Fig-

CHAPTER 5. EXPERIMENTS 58

mu variant RM3 AP R@100 R@200 nDCG@3
1000 no-rep t5-d30-l0.3 0.215190 0.379442 0.471900 0.311693†

1000 no-rep t5-d30-l0.5 0.215190 0.379442 0.471900 0.311693
1000 no-rep t5-d30-l0.7 0.215190 0.379442 0.471900 0.311693
1000 no-rep t5-d30-l0.3 0.215190 0.379442 0.471900 0.311693
1000 no-rep t5-d30-l0.5 0.215190 0.379442 0.471900 0.311693
1000 no-rep t5-d30-l0.7 0.215190 0.379442 0.471900 0.311693
1000 repeat t5-d20-l0.3 0.209381 0.367899 0.457245 0.308339
2500 no-rep t20-d20-l0.5 0.159414 0.283115 0.364840 0.258069†

original [Mel+21]
2500 — t20-d20-l0.5 0.1903 — 0.4263 0.2315

Table 5.5: Context Query results

ure 5.11d that there are no values of it that provide a meaningful improvement
on the results.

Even in this case, we see a wide performance variation between different
conversations. Additionally, it’s noticeable in Figure 5.12b that there is a huge
variance in the performance of the same conversation. This is likely caused
by the presence of context shifts that completely overturn the effectiveness of
this method.

CHAPTER 5. EXPERIMENTS 59

0.305 0.31 0.315 0.32 0.325 0.33

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

Context Query (mu on R@100)

(a) Dirichlet µ on R@100

0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

Context Query (mu on nDCG@3)

(b) Dirichlet µ on nDCG@3

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

Context Query (RM3 on R@100)

(c) RM3 on R@100

0.22 0.24 0.26 0.28 0.3 0.32

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

Context Query (RM3 on nDCG@3)

(d) RM3 on nDCG@3

Figure 5.11: Multcompare for Context Query

(a) R@100 (b) nDCG@3

Figure 5.12: Context Query performances

CHAPTER 5. EXPERIMENTS 60

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 193.357 19 10.1767 7871.52 < 1e-4 0.9439
model 0.236 5 0.0472 36.49 < 1e-4 0.0196
variant 0 1 0 0 1 —
prf 12.202 36 0.339 262.18 < 1e-4 0.5143
Error 11.4 8818 0.0013
Total 217.195 8879

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 153.386 19 8.07292 2346.85 < 1e-5 0.8339
model 0.54 5 0.10804 31.41 < 1e-5 0.0168
variant 0 1 0 0 1 —
prf 3.405 36 0.09458 27.5 < 1e-5 0.0970
Error 30.333 8818 0.00344
Total 187.664 8879

(b) nDCG@3

Table 5.6: ANOVA Tables for Context Query

5.2.4 Coref 1

Coref 1 was tested using Dirichlet language model of parameter µ and RM3
pseudo relevance feedback. Table 5.7 shows the first results and the comparison
with the original [Mel+21] one. The first three results are equivalent, in
accordance with Figure 5.13d.

Using the same settings of the original work, our implementation scored a
little better on nDCG@3, but significative lower on the recall. Our best result,
instead, achieved a better score in all the three considered metrics (nDCG@3,
R@200, AP). Like with the previous methods, we think this difference might
be caused by different non-reported settings or by the underlying retrieval
framework.

The statistical analysis (Table 5.8 and Figure 5.13) shows that both the
model and RM3 provide a significant contribution to the results. On R@100,
the model has a small effect on the results, while RM3 provides a strong but
negative contribution (as shown on Figure 5.13c). On nDCG@3, both the model
and RM3 still provide a small effect, and we can observe (Figure 5.13d) that
RM3 does not bring meaningful improvements to the results.

It’s possible to observe, on Figure 5.14, that there is a huge performance
variance on both metrics, probably related to the inability of this method to
always correctly solve the coreference.

CHAPTER 5. EXPERIMENTS 61

mu RM3 AP R@100 R@200 nDCG@3
1000 t5-d30-l0.3 0.193598 0.305603 0.391142 0.290831†
1000 t5-d30-l0.5 0.193598 0.305603 0.391142 0.290831
1000 t5-d30-l0.7 0.193598 0.305603 0.391142 0.290831
1000 t5-d10-l0.3 0.192467 0.300844 0.378579 0.288469†

2500 t20-d20-l0.5 0.144803 0.239380 0.304888 0.237636†

original [Mel+21]
2500 t20-d20-l0.5 0.1691 — 0.3772 0.2148

Table 5.7: Coref 1 results

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 91.2871 19 4.80458 4308.84 < 1e-5 0.9485
model 0.1537 5 0.03074 27.57 < 1e-5 0.0291
prf 3.3352 36 0.09264 83.09 < 1e-5 0.399
Error 4.8828 4379 0.00112
Total 99.6588 4439

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 74.5224 19 3.92223 1113.73 < 1e-5 0.8264
model 0.6226 5 0.12453 35.36 < 1e-5 0.0373
prf 0.5887 36 0.01635 4.64 < 1e-5 0.0287
Error 15.4216 4379 0.00352
Total 91.1553 4439

(b) nDCG@3

Table 5.8: ANOVA Tables for Coref 1

CHAPTER 5. EXPERIMENTS 62

0.25 0.255 0.26 0.265 0.27 0.275 0.28

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

Coref 1 (mu on R@100)

(a) Dirichlet µ on R@100

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27 0.275

mu=c=500

mu=c=3000

mu=c=2500

mu=c=2000

mu=c=1500

mu=c=1000

Coref 1 (mu on nDCG@3)

(b) Dirichlet µ on nDCG@3

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3
prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

Coref 1 (RM3 on R@100)

(c) RM3 on R@100

0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t15-d30-l0.7
prf=rm3-t15-d30-l0.5
prf=rm3-t15-d30-l0.3
prf=rm3-t15-d20-l0.7
prf=rm3-t15-d20-l0.5
prf=rm3-t15-d20-l0.3
prf=rm3-t15-d10-l0.7
prf=rm3-t15-d10-l0.5
prf=rm3-t15-d10-l0.3
prf=rm3-t10-d30-l0.7
prf=rm3-t10-d30-l0.5
prf=rm3-t10-d30-l0.3
prf=rm3-t10-d20-l0.7
prf=rm3-t10-d20-l0.5
prf=rm3-t10-d20-l0.3
prf=rm3-t10-d10-l0.7
prf=rm3-t10-d10-l0.5
prf=rm3-t10-d10-l0.3

prf=none

Coref 1 (RM3 on nDCG@3)

(d) RM3 on nDCG@3

Figure 5.13: Multcompare for Coref 1

(a) R@100 (b) nDCG@3

Figure 5.14: Coref 1 performances

CHAPTER 5. EXPERIMENTS 63

5.2.5 Coref 2

Coref 2 was tested with Dirichlet language model and RM3 pseudo relevance
feedback.

The results are shown on Table 5.9, along with the original [Mel+21]
comparison. Our implementation underperform on all metrics when using the
original settings, while it achieved a slightly better discounted cumulative gain
in our best result. Like with the previous methods, we think this difference
might be caused by different non-reported settings or by the underlying
retrieval framework.

mu RM3 AP R@100 R@200 nDCG@3
500 t20-d10-l0.3 0.130272 0.223447 0.273474 0.232829†
500 t20-d10-l0.5 0.130272 0.223447 0.273474 0.232829
500 t20-d10-l0.7 0.130272 0.223447 0.273474 0.232829
500 t20-d20-l0.3 0.130804 0.222762 0.277730 0.228096
2500 t20-d20-l0.5 0.122344 0.209496 0.266959 0.198805†

original [Mel+21]
2500 t20-d20-l0.5 0.1845 — 0.3818 0.2209

Table 5.9: Coref 2 results

Table 5.10 and Figure 5.15 show the statistical analysis for Coref 2. On
R@100, the model has a significant, thought very small effect on the results
(in accordance with Figure 5.15a), while RM3 provides a string but negative
contribution.

On nDCG@3, RM3 is not meaningful any more, Figure 5.15d even thought
it still has a positive (but very low) ω2. The model, on the other hand, keeps
providing a small-effect contribution.

Figure 5.16 shows a performance variation between different conversations
that’s even bigger compared to the other coreference method (Coref 1). We
think that’s due to the lower effectiveness of Coref 2 to correctly fill for the
context than the previous method.

CHAPTER 5. EXPERIMENTS 64

0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24

mu=c=500

mu=c=3000

mu=c=2000

mu=c=1000

mu=c=2500

mu=c=1500

Coref 2 (mu on R@100)

(a) Dirichlet µ on R@100

0.18 0.19 0.2 0.21 0.22 0.23 0.24

mu=c=500

mu=c=3000

mu=c=2000

mu=c=1000

mu=c=2500

mu=c=1500

Coref 2 (mu on nDCG@3)

(b) Dirichlet µ on nDCG@3

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t30-d30-l0.7
prf=rm3-t30-d30-l0.5
prf=rm3-t30-d30-l0.3
prf=rm3-t30-d20-l0.7
prf=rm3-t30-d20-l0.5
prf=rm3-t30-d20-l0.3
prf=rm3-t30-d10-l0.7
prf=rm3-t30-d10-l0.5
prf=rm3-t30-d10-l0.3

prf=none

Coref 3 (RM3 on R@100)

(c) RM3 on R@100

0.18 0.2 0.22 0.24 0.26

prf=rm3-t20-d30-l0.7
prf=rm3-t20-d30-l0.5
prf=rm3-t20-d30-l0.3
prf=rm3-t20-d20-l0.7
prf=rm3-t20-d20-l0.5
prf=rm3-t20-d20-l0.3
prf=rm3-t20-d10-l0.7
prf=rm3-t20-d10-l0.5
prf=rm3-t20-d10-l0.3
prf=rm3-t5-d30-l0.7
prf=rm3-t5-d30-l0.5
prf=rm3-t5-d30-l0.3
prf=rm3-t5-d20-l0.7
prf=rm3-t5-d20-l0.5
prf=rm3-t5-d20-l0.3
prf=rm3-t5-d10-l0.7
prf=rm3-t5-d10-l0.5
prf=rm3-t5-d10-l0.3

prf=rm3-t30-d30-l0.7
prf=rm3-t30-d30-l0.5
prf=rm3-t30-d30-l0.3
prf=rm3-t30-d20-l0.7
prf=rm3-t30-d20-l0.5
prf=rm3-t30-d20-l0.3
prf=rm3-t30-d10-l0.7
prf=rm3-t30-d10-l0.5
prf=rm3-t30-d10-l0.3

prf=none

Coref 2 (RM3 on nDCG@3)

(d) RM3 on nDCG@3

Figure 5.15: Multcompare for Coref 2

(a) R@100 (b) nDCG@3

Figure 5.16: Coref 2 performances

CHAPTER 5. EXPERIMENTS 65

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 35.6758 19 1.87768 1909.53 < 1e-5 0.9497
model 0.0492 5 0.00984 10 < 1e-5 0.0229
prf 1.6908 27 0.06262 63.69 < 1e-5 0.4685
Error 1.8368 1868 0.00098
Total 39.2581 1919

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 30.35 19 1.59737 506.45 < 1e-5 0.8334
model 0.2374 5 0.04749 15.06 < 1e-5 0.0353
prf 0.1411 27 0.00523 1.66 0.0183 0.0092
Error 5.8917 1868 0.00315
Total 36.612 1919

(b) nDCG@3

Table 5.10: ANOVA Tables for Coref 2

5.2.6 HQE

The results for the HQE method are presented on Table 5.11, along with the
expected value of AP from the original paper [JC19]. We tested using the
BM25 model and different values for rS, rQ and θ, but RM3 is not included in
this test as it does not improve the results. This is not surprising considering
that HQE itself adds a huge amount of keywords to the queries so, adding
even more ones will likely make the search less focused.

BM25 rs rq theta AP R@100 nDCG@3
0.5 15 12 30 0.154524 0.314738 0.221171
0.5 15 12 40 0.149922 0.305166 0.218332
0.3 15 12 30 0.153835 0.312551 0.217699
original paper 0.194000
chatty-goose 0.210900 0.260600

Table 5.11: HQE results

As we already discussed in a previous chapter, our implementation
underperform compared to the original tests and, more surprising, the
chatty-goose implementation on which we based our HQERewriter. Given
that the only relevant difference between HQERewriter and the chatty-goose
HQE implementation is the retrieval software used underneath (pyterrier

CHAPTER 5. EXPERIMENTS 66

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 50.188 19 2.64147 1057.06 < 1e-5 0.8479
rs 0.193 5 0.03859 15.44 < 1e-5 0.0197
rq 0.0155 5 0.0031 1.24 0.2872 —
theta 0.0006 4 0.00016 0.06 0.9923 —
Error 8.911 3566 0.0025
Total 59.3081 3599

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value
conv 37.4017 19 1.96851 1297.39 < 1e-5 0.8725
rs 0.2871 5 0.05743 37.85 < 1e-5 0.0487
rq 0.0142 5 0.00284 1.87 0.096 —
theta 0.0012 4 0.0003 0.2 0.9403 —
Error 5.4107 3566 0.00152
Total 43.1149 3599

(b) nDCG@3

Table 5.12: ANOVA Tables for HQE

in our case, pyserini in the other) it’s likely that the culprit for this poor
performance is pyterrier itself.

Observing the statistical analysis (Table 5.12 and Figure 5.17) for HQE,
we can observe that neither rQ nor θ provide a meaningful contribution to
the results. The only parameter with a (small) statistically relevant effect is
rS. Considering that rS is responsible for the identification of conversational
keywords, we can conclude that the ability to find the missing context is the
most influential for the results.

Even with HQE, we can see a wide variation of performance in different
conversations, as well as a huge variance inside single conversations (Fig-
ure 5.18).

CHAPTER 5. EXPERIMENTS 67

0.28 0.285 0.29 0.295 0.3 0.305 0.31 0.315

rs=20

rs=15

rs=12

rs=10

rs=7

rs=5

HQE (rs on R@100)

(a) rS on R@100

0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

rs=20

rs=15

rs=12

rs=10

rs=7

rs=5

HQE (rs on nDCG@3)

(b) rS on nDCG@3

0.29 0.292 0.294 0.296 0.298 0.3 0.302 0.304

rq=25

rq=20

rq=17

rq=15

rq=12

rq=10

HQE (rq on R@100)

(c) rQ on R@100

0.196 0.198 0.2 0.202 0.204 0.206 0.208 0.21

rq=25

rq=20

rq=17

rq=15

rq=12

rq=10

HQE (rq on nDCG@3)

(d) rQ on nDCG@3

0.292 0.293 0.294 0.295 0.296 0.297 0.298 0.299 0.3 0.301

theta=40

theta=35

theta=30

theta=25

theta=20

HQE (theta on R@100)

(e) θ on R@100

0.199 0.2 0.201 0.202 0.203 0.204 0.205 0.206 0.207

theta=40

theta=35

theta=30

theta=25

theta=20

HQE (theta on nDCG@3)

(f) θ on nDCG@3

Figure 5.17: Multcompare for HQE

CHAPTER 5. EXPERIMENTS 68

(a) R@100 (b) nDCG@3

Figure 5.18: HQE performances

5.2.7 DBPedia

DBPedia was tested using BM25 with different number of snippets, the two
type of frequency (on index and snippets) and a standard RM3 configuration.
The nature of this rewriting method, which needs to access rate-limited
API, make it difficult to complete large batches. Consequently, the tested
combinations are less than what we have done for the previous techniques.

The results for this method are shown on Table 5.13, along with the original
[Sam19] one. It’s clear that our implementation severely underperforms. We
are not sure why it’s the case, but considering that the original paper is really
undetailed and sometimes unclear on the performed passage, we think our
implementation is likely not on-par with the original one.

snippets freq on RM3 AP R@100 nDCG@3
10 snippets none 0.119261 0.246111 0.169905
20 snippets none 0.120076 0.249257 0.168225
10 index t20-d20-l0.5 0.120791 0.239639 0.163024

original [Sam19] 0.173 — 0.234

Table 5.13: DBPedia results

Table 5.14 and Figure 5.19 show the statistical analysis for DBPedia. As
it can be observed, no parameter provides a significant effect on the results,
except for a slight disadvantage of RM3 on R@100 (Figure 5.19e).

From Figure 5.20, we can see that this method performs poorly (with only
a few exceptions) than the previous ones. As previously stated, this is likely
something wrong with our implementation due to the unclarity of the original
algorithm description.

CHAPTER 5. EXPERIMENTS 69

0.215 0.22 0.225 0.23 0.235 0.24 0.245

snippets=20

snippets=10

snippets=5

DBPedia (snippets on R@100)

(a) #snippets on R@100

0.14 0.145 0.15 0.155 0.16 0.165 0.17

snippets=20

snippets=10

snippets=5

DBPeida (snippets on nDCG@3)

(b) #snippets on nDCG@3

0.22 0.222 0.224 0.226 0.228 0.23 0.232 0.234 0.236 0.238

freq=snippetsFreq

freq=indexFreq

DBPedia (freq on R@100)

(c) Type of frequency on R@100

0.145 0.15 0.155 0.16 0.165 0.17

freq=snippetsFreq

freq=indexFreq

DBPedia (freq in nDCG@3)

(d) Type of frequency on nDCG@3

0.215 0.22 0.225 0.23 0.235 0.24

prf=rm3-20-20-0.5

prf=none

DBPedia (RM3 on R@100)

(e) RM3 on R@100

0.146 0.148 0.15 0.152 0.154 0.156 0.158 0.16 0.162 0.164

prf=rm3-20-20-0.5

prf=none

DBPedia (RM3 on nDCG@3)

(f) RM3 on nDCG@3

Figure 5.19: Multcompare for DBPedia

CHAPTER 5. EXPERIMENTS 70

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 4.57977 19 0.24104 135.21 < 1e-5 0.9140
snippets 0.00281 2 0.00141 0.79 0.4556 —
freq 0.00116 1 0.00116 0.65 0.4201 —
prf 0.00697 1 0.00697 3.91 0.0492 0.0120
Error 0.38508 216 0.00178
Total 4.9758 239

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 1.98997 19 0.10474 32.39 < 1e-5 0.7131
snippets 0.00089 2 0.00044 0.14 0.8718 —
freq 0.00175 1 0.00175 0.54 0.4633 —
prf 0.00036 1 0.00036 0.11 0.7399 —
Error 0.69843 216 0.00323
Total 2.69139 239

(b) nDCG@3

Table 5.14: ANOVA Tables for DBPedia

(a) R@100 (b) nDCG@3

Figure 5.20: DBPedia performances

CHAPTER 5. EXPERIMENTS 71

5.2.8 Seen Filter

Seen Filter was tested using the best Context Query rewriting settings and
different values for the multiplier (m) and the maximum rank (k).

On Table 5.15 are shown the results and the comparison with the rewriter
alone (no results’ metrics are provided for this method in the original paper
[Mar19]). We can observe that the nDCG@3 value decreased. That means this
reranker wasn’t able to move the correct documents to the top. However, the
recall is slightly higher, so this method is not completely wrong. Given that
its performance is hugely dependent on the correctness of the previous queries
results, we think the inconstant effectiveness that all examined methods are
showing (Context Query included; Figure 5.12) prevent this technique to work
correctly.

m k R@100 nDCG@3
0.7 10 0.390547 0.294418
0 10 0.378536 0.292008
0.3 10 0.378536 0.292008
0.5 10 0.379155 0.292008
Context Query 0.379442 0.311693

Table 5.15: Seen Filter results

The statistical analysis is displayed onTable 5.16 and Figure 5.21. We can
observe that, on R@100, both m and k provides a significant contribution, but
only k has a big effect on the results. In fact, from Figure 5.21a, is visible
that three of the four tested values of m are statistically equivalent. On
nDCG@3 instead, m ceases to be significant, and k, while it’s still meaningful,
only provide a small contribution to the results. These observations on
the significance of m and k on nDCG@3 are likely connected to the poor
performance that we already discussed and are probably originating from the
same issues.

We can observe, from Figure 5.22, that the performance variation inside
the same conversation is wider on nDCG@3, with some conversation (e.g., 31 or
58) where all possible values are met. Given these results, we ultimately think
this method will be better suited as an intermediate step to increase the recall
on the first n << 1000 documents to feed them to a more computationally
heavy reranker.

CHAPTER 5. EXPERIMENTS 72

0.335 0.34 0.345 0.35 0.355 0.36 0.365 0.37

m=0.7

m=0.5

m=0.3

m=0

Seen Filter (m on R@100)

(a) m on R@100

0.274 0.276 0.278 0.28 0.282 0.284 0.286 0.288

m=0.7

m=0.5

m=0.3

m=0

Seen Filter (m on nDCG@3)

(b) m on nDCG@3

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

k=50

k=35

k=20

k=10

Seen Filter (k on R@100)

(c) k on R@100

0.265 0.27 0.275 0.28 0.285 0.29 0.295 0.3

k=50

k=35

k=20

k=10

Seen Filter (k on nDCG@3)

(d) k on nDCG@3

Figure 5.21: Multcompare for Seen Filter

(a) R@100 (b) nDCG@3

Figure 5.22: Seen Filter performances

CHAPTER 5. EXPERIMENTS 73

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 2.34227 19 0.12328 148.15 < 1e-5 0.8973
m 0.02128 3 0.00709 8.52 1.9e-05 0.0659
k 0.16081 3 0.0536 64.42 < 1e-5 0.3729
Error 0.24464 294 0.00083
Total 2.76899 319

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 5.47768 19 0.2883 474.24 < 1e-5 0.9656
m 0.00045 3 0.00015 0.24 0.8651 —
k 0.02229 3 0.00743 12.22 < 1e-5 0.0952
Error 0.17873 294 0.00061
Total 5.67914 319

(b) nDCG@3

Table 5.16: ANOVA Tables for Seen Filter

5.2.9 Bottom Up

Bottom Up was tested using the best Coref 1 rewriting settings and different
values for the multiplier (m) and the maximum rank (k). The choice of a
coreference method is justified by the fact that the effectiveness of Bottom Up
depends on the correctness of the documents returned by the latest utterances
in a conversation. Thus, we decided to use Coref 1 as it’s the rewriter that
has a higher probability to find the right context, even on the last queries.

Table 5.17 shows the results and the comparison with Context Query and
Coref 1 (the original paper [Mar19] uses a different set of collection/topics, so
it’s not comparable with our tests). We can see that it performs a little worse
than both on nDCG@3, and worse than Context Query, but better than Coref 1
on R@100. Like with Seen Filter, the scarce effectiveness is likely linked to
the difficulty of filling the missing context by the rewriting methods. Just
like Seen Filter, this technique might be used as an intermediate step in a
more complex pipeline.

Table 5.18 and Figure 5.23 display the statistical analysis for Bottom Up.
It’s possible to observe that, the multiplier m does not provide significant
contributions to the results, while the maximum rank k has a strong effect
on them. This is reasonable, as changing k changes the documents that are
allowed to appear in the other queries’ results. Like the previous methods,
even Bottom Up shows a wide variation between conversations and a huge
variance inside them (Figure 5.24).

CHAPTER 5. EXPERIMENTS 74

m k R@100 nDCG@3
0 10 0.360641 0.284027
0.3 10 0.360988 0.284027
0.5 10 0.360988 0.284027
0.7 10 0.364185 0.284027
Context Query 0.379442 0.311693

Coref 1 0.305603 0.290831

Table 5.17: Bottom Up results

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 4.21762 19 0.22198 370.89 < 1e-5 0.9565
m 0.00372 3 0.00124 2.07 0.1042 —
k 0.07422 3 0.02474 41.33 < 1e-5 0.2744
Error 0.17596 294 0.0006
Total 4.47151 319

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 6.45545 19 0.33976 599.41 < 1e-5 0.9726
m 0.00045 3 0.00015 0.27 0.8497 —
k 0.03343 3 0.01114 19.66 < 1e-5 0.1489
Error 0.16665 294 0.00057
Total 6.65598 319

(b) nDCG@3

Table 5.18: ANOVA Tables for Seen Filter

CHAPTER 5. EXPERIMENTS 75

0.332 0.334 0.336 0.338 0.34 0.342 0.344 0.346 0.348 0.35 0.352

m=0.7

m=0.5

m=0.3

m=0

Bottom Up (m on R@100)

(a) m on R@100

0.262 0.264 0.266 0.268 0.27 0.272 0.274 0.276

m=0.7

m=0.5

m=0.3

m=0

Bottom Up (m on nDCG@3)

(b) m on nDCG@3

0.31 0.32 0.33 0.34 0.35 0.36 0.37

k=50

k=35

k=20

k=10

Bottom Up (k on R@100)

(c) k on R@100

0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29

k=50

k=35

k=20

k=10

Bottom Up (k on nDCG@3)

(d) k on nDCG@3

Figure 5.23: Multcompare for Bottom Up

(a) R@100 (b) nDCG@3

Figure 5.24: Bottom Up performances

CHAPTER 5. EXPERIMENTS 76

5.2.10 HAE

HAE was tested on top of HQE, using different values for λ. Given the
computational heaviness of the process, the number of values tested was less
than what we have done for other methods, and we fixed the cut-off k to 100
to speed up the computation. Consequently, we’re only considering nDCG@3
for this method, as the recall at 100 won’t change.

Table 5.19 shows the results for HAE, along with the HQE best one and
the original results. We can see that this method significantly increase the
discounted cumulative gain, in respect to the rewriter alone, but perform very
poorly in comparison with the original results.

λ k AP nDCG@3
1.5 100 0.158146 0.247146†
2 100 0.158030 0.246307
3 100 0.157218 0.244180
4 100 0.156882 0.244180
5 100 0.156873 0.241368†

HQE 0.139173 0.199007
TREC CAsT 0.267 0.436

Table 5.19: HAE results

Observing the statistical analysis on Table 5.20 and Figure 5.25, we can
notice that the λ parameter is only slightly significant and that there’s still a
huge variation inside and outside different conversations (Figure 5.26).

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 1.57462 19 0.08287 2077.19 < 1e-5 0.9975
lambda 0.0004 4 0.0001 2.53 0.0473 0.0577
Error 0.00303 76 0.00004
Total 1.57805 99

Table 5.20: ANOVA Table for HAE (nDCG@3)

CHAPTER 5. EXPERIMENTS 77

0.238 0.24 0.242 0.244 0.246 0.248 0.25

lambda=5

lambda=4

lambda=3

lambda=2

lambda=1.5

HAE (lambda on nDCG@3)

Figure 5.25: Multcompare HAE (nDCG@3)

Figure 5.26: HAE performance (nDCG@3)

CHAPTER 5. EXPERIMENTS 78

5.2.11 Sub Index

Sub Index is the search strategy implemented in SubIndexPipelineFactory
(Section 4.1.3). It was tested using BM25 and Dirichlet (DLM) as base-model,
Dirichlet as sub-model, different sub-index sizes, different rewriters and RM3
for both the base search and the subsequent ones.

Table 5.21 shows the results. Unfortunately, compared with Coref 1 (the
rewriter with which this technique achieved the best score), this technique
slightly underperforms.

base model index size sub model base RM3 R@100 nDCG@3
BM25 50000 DLM t20-d20-l0.5 0.299397 0.255705
BM25 50000 DLM t20-d20-l0.5 0.299397 0.255705
BM25 100000 DLM none 0.308830 0.252840
BM25 100000 DLM none 0.308830 0.252840

Coref 1 0.305603 0.290831

Table 5.21: Sub Index results

The statistical analysis (Table 5.22 and Figures 5.27 and 5.28) shows that
every parameter (except for rerunFirst) provides a significant contribution.
The biggest contribution (excluding the conversations) is given by rm3Sub
(especially on R@100), meaning that performing RM3 on the topic-focused
documents returned by the first-utterance search can refine the result signifi-
cantly better. The index size, that we had thought would have been the most
relevant, has a strong effect only on R@100 (but we think this might be fixed
using a good reranker). Figures 5.27e and 5.27f show that using a rewriter
might still be a good choice even when using a sub-index, as it gives more
stable results.

The overall performance (Figure 5.29) shows a very high variance of results
inside the conversations. This might be explained if the documents needed to
answer specific queries were left out of the sub-index, degrading the metrics.

CHAPTER 5. EXPERIMENTS 79

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 28.3203 19 1.49054 343.4 < 1e-5 0.6689
baseModel 0.6354 1 0.63536 146.38 < 1e-5 0.0432
indexSize 1.9468 4 0.48671 112.13 < 1e-5 0.1213
rerunFirst 0 1 0 0 1 —
rewriter 0.1277 2 0.06383 14.71 < 1e-5 0.0084
rm3Base 0.8283 1 0.82829 190.83 < 1e-5 0.0557
rm3Sub 2.2754 1 2.27536 524.21 < 1e-5 0.1398
Error 13.8464 3190 0.00434
Total 47.9829 3219

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 31.9899 19 1.68368 399.36 < 1e-5 0.7015
baseModel 0.0961 1 0.09612 22.8 < 1e-5 0.0067
indexSize 0.7218 4 0.18044 42.8 < 1e-5 0.0494
rerunFirst 0 1 0 0 1 —
rewriter 1.2873 2 0.64365 152.67 < 1e-5 0.0861
rm3Base 0.1735 1 0.17355 41.16 < 1e-5 0.0123
rm3Sub 1.4005 1 1.40049 332.19 < 1e-5 0.0933
Error 13.449 3190 0.00422
Total 49.1288 3219

(b) nDCG@3

Table 5.22: ANOVA Tables for Sub Index

CHAPTER 5. EXPERIMENTS 80

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24

baseModel=DLM

baseModel=BM25

Sub Index (base model on R@100)

(a) base model (R@100)

0.184 0.186 0.188 0.19 0.192 0.194 0.196 0.198 0.2 0.202

baseModel=DLM

baseModel=BM25

Sub Index (base model on nDCG@3)

(b) base model (nDCG@3)

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26

indexSize=100000

indexSize=50000

indexSize=25000

indexSize=10000

indexSize=5000

Sub Index (index size on R@100)

(c) index size (R@100)

0.17 0.18 0.19 0.2 0.21 0.22 0.23

indexSize=100000

indexSize=50000

indexSize=25000

indexSize=10000

indexSize=5000

Sub Index (index size on nDCG@3)

(d) index size (nDCG@3)

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26

rewriter=none

rewriter=Coref1

rewriter=ContextQ

Sub Index (rewriter on R@100)

(e) rewriter (R@100)

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

rewriter=none

rewriter=Coref1

rewriter=ContextQ

Sub Index (rewriter on nDCG@3)

(f) rewriter (nDCG@3)

Figure 5.27: Multcompare for Sub Index (A)

CHAPTER 5. EXPERIMENTS 81

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24

rm3Base=t20-d20-l0.5

rm3Base=none

Sub Index (base RM3 on R@100)

(a) base RM3 (R@100)

0.185 0.19 0.195 0.2

rm3Base=t20-d20-l0.5

rm3Base=none

Sub Index (base RM3 on nDCG@3)

(b) base RM3 (nDCG@3)

0.19 0.2 0.21 0.22 0.23 0.24 0.25

rm3Sub=t20-d20-l0.5

rm3Sub=none

Sub Index (sub RM3 on R@100)

(c) sub RM3 (R@100)

0.17 0.18 0.19 0.2 0.21 0.22

rm3Sub=t20-d20-l0.5

rm3Sub=none

Sub Index (sub RM3 on nDCG@3)

(d) sub RM3 (nDCG@3)

Figure 5.28: Multcompare for Sub Index

(a) R@100 (b) nDCG@3

Figure 5.29: Sub Index performances

CHAPTER 5. EXPERIMENTS 82

5.2.12 Methods Comparison

In this section, we compare the best run for every method by nDCG@3 and
the best run for every method by R@100. Table 5.23 shows the result metrics
for these runs. We can observe that the first two positions are disputed
by First Query and Context Query. Seen Filter keeps the third position in
both cases, meaning that it’s still a good middle ground. It’s interesting
to notice that the coreference methods are surpassed by simpler ones based
on concatenation, suggesting that coreference resolution techniques are still
inadequate for the task.

method nDCG@3
FirstQuery 0.327624
ContextQuery 0.311693†
SeenFilter 0.294418
Coref1 0.290831
BottomUp 0.284027
ConcatQuery 0.277390
SubIndex 0.255705†
HAE 0.247146
Coref2 0.232829
HQE 0.221171†
DBPedia 0.169905†

(a) nDCG@3

method R@100
ContextQuery 0.425602
FirstQuery 0.408919†
SeenFilter 0.390547
ConcatQuery 0.380579
Coref1 0.379368
BottomUp 0.364185
HAE 0.354257
Coref2 0.332654†
HQE 0.315918†
SubIndex 0.312226
DBPedia 0.249257†

(b) R@100

Table 5.23: Methods comparison

The statistical analysis (Table 5.24 and Figure 5.30) shows that the
majority of the tested methods are statistically similar. We think this might
depend on the difficulty of the conversational searching task itself which make
it challenging to find effective techniques.

Table 5.25 shows the nDCG@3 difference (in percent) from the original
methods’ results and our implementations’ ones. When applicable, it shows
both the difference using the (supposed) same settings of the original work
and the difference with our best results.

CHAPTER 5. EXPERIMENTS 83

Source Sum Sq. d.f. Mean Sq. F p-value ω2

conv 2.50478 19 0.13183 15.8 < 1e-5 0.5611
method 0.5104 10 0.05104 6.12 < 1e-5 0.1888
Error 1.58486 190 0.00834
Total 4.60004 219

(a) R@100
Source Sum Sq. d.f. Mean Sq. F p-value
conv 2.85233 19 0.15012 18.45 < 1e-5 0.6011
method 0.41108 10 0.04111 5.05 < 1e-5 0.1555
Error 1.54632 190 0.00814
Total 4.80972 219

(b) nDCG@3

Table 5.24: Comparison of Methods (ANOVA Tables)

method same sett. best score
First Query − 8.8% + 23.0%
Context Query + 11.5% + 34.6%
Coref 1 + 10.6% + 35.4%
Coref 2 − 10.0% + 5.4%
HQE − 15.1%
DBPedia − 27.4%
HAE − 43.3%

Table 5.25: nDCG@3 score difference

CHAPTER 5. EXPERIMENTS 84

0.2 0.25 0.3 0.35 0.4 0.45 0.5

name=SubIndex

name=HAE

name=BottomUp

name=SeenFilter

name=DBPedia

name=HQE

name=Coref2

name=Coref1

name=ContextQuery

name=FirstQuery

name=ConcatQuery

Comparison of methods (R@100)

(a) R@100

0.1 0.15 0.2 0.25 0.3 0.35 0.4

name=SubIndex

name=HAE

name=BottomUp

name=SeenFilter

name=DBPedia

name=HQE

name=Coref2

name=Coref1

name=ContextQuery

name=FirstQuery

name=ConcatQuery

Comparison of methods (nDCG@3)

(b) nDCG@3

Figure 5.30: Comparison of Methods (multcompare)

CHAPTER 5. EXPERIMENTS 85

Figure 5.31: Methods comparison (nDCG@3)

Figure 5.32: Methods comparison (R@100)

Chapter 6

Conclusion And Future Works

In this work, we explored the topic of Conversational Search, studying several
state-of-the-art algorithms, focusing on their implementability. We presented
them with a summarized but complete description, discussing the underlying
ideas and providing examples. We discussed the presence of unclear or
implementation-dependent passages and how we intended to overcome them.
We implemented said methods, providing alternative options for dubious
parts and motivating our choices.

We conducted extensive tests with different parametrizations to compare
the techniques’ performances against the original works and the other methods.
We used a combination of performance metrics, charts and statistical analysis
to provide a sensible comparison and discuss the influence of the various
parameters on the overall results. We analysed the influence of commonly used
techniques, like RM3 Pseudo Relevance Feedback or Coreference Resolution,
on a conversational context, justifying their effectiveness with reproducible
result data. We discussed the success and failure of our implementations,
supporting them with data and motivating the results, drawing a connection
with their implementability.

We developed a conversational retrieval framework based on pyterrier,
focused on modularity, extensibility, and reproducibility, that includes said
algorithms’ implementations and allows others to remake our tests. We
discussed our framework architecture, its relation with the underlying retrieval
system, and the integration with the implemented algorithms.

Future Works

Future works might more deeply research the reason for the underperforming
algorithms and try to replicate the results with another retrieval system.
Furthermore, it would be interesting to test more complex pipelines employing

86

CHAPTER 6. CONCLUSION AND FUTURE WORKS 87

different combinations of algorithms. Exploring more methodology, especially
on the reranking side, or more generally, expanding the methods’ library would
be beneficial and would allow achieving more comprehensive comparison. The
framework might be extended, providing additional ways to combine methods
or alternative search strategies.

Bibliography

[Bus45] Vannevar Bush. “As We May Think”. In: Atlantic Monthly 176
(July 1945), pp. 101–108.

[Luh57] H. P. Luhn. “A Statistical Approach to Mechanized Encoding and
Searching of Literary Information”. In: IBM Journal of Research
and Development 1.4 (1957), pp. 309–317. doi: 10.1147/rd.14.
0309.

[Fai58] R. A. Fairthorne. “Automatic Retrieval of Recorded Information”.
In: The Computer Journal 1.1 (Jan. 1958), pp. 36–41. issn: 0010-
4620. doi: 10.1093/comjnl/1.1.36. eprint: https://academic.
oup.com/comjnl/article-pdf/1/1/36/1063042/010036.pdf.
url: https://doi.org/10.1093/comjnl/1.1.36.

[MK60] M. E. Maron and J. L. Kuhns. “On Relevance, Probabilistic
Indexing and Information Retrieval”. In: J. ACM 7.3 (July 1960),
pp. 216–244. issn: 0004-5411. doi: 10.1145/321033.321035.
url: https://doi.org/10.1145/321033.321035.

[SWY75] Gerard Salton, A. Wong, and Chung-Shu Yang. “A vector space
model for automatic indexing”. In: Commun. ACM 18 (1975),
pp. 613–620.

[Rob77] Stephen Robertson. “The Probability Ranking Principle in IR”.
In: Journal of Documentation 33 (Dec. 1977), pp. 294–304. doi:
10.1108/eb026647.

[Bel80] Nicholas J Belkin. “Anomalous states of knowledge as a basis
for information retrieval”. In: Canadian journal of information
science 5.1 (1980), pp. 133–143.

[CT87] W. B. Croft and R. H. Thompson. “I3R: A new approach to the
design of document retrieval systems”. In: Journal of the American
Society for Information Science 38.6 (1987), pp. 389–404. doi:
https://doi.org/10.1002/(SICI)1097-4571(198711)38:
6<389::AID-ASI1>3.0.CO;2-4.

88

https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1093/comjnl/1.1.36
https://academic.oup.com/comjnl/article-pdf/1/1/36/1063042/010036.pdf
https://academic.oup.com/comjnl/article-pdf/1/1/36/1063042/010036.pdf
https://doi.org/10.1093/comjnl/1.1.36
https://doi.org/10.1145/321033.321035
https://doi.org/10.1145/321033.321035
https://doi.org/10.1108/eb026647
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(198711)38:6<389::AID-ASI1>3.0.CO;2-4
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(198711)38:6<389::AID-ASI1>3.0.CO;2-4

BIBLIOGRAPHY 89

[Bat89] Marcia J. Bates. “The design of browsing and berrypicking tech-
niques for the online search interface”. In: Online Review 13(5)
(1989), pp. 407–424.

[TC90] Howard R. Turtle and W. Bruce Croft. “Inference Networks for
Document Retrieval”. In: SIGIR. 1990, pp. 1–24. url: https:
//doi.org/10.1145/96749.98006.

[Bel+95] Nicholas J Belkin, Colleen Cool, Adelheit Stein, and Ulrich Thiel.
“Cases, scripts, and information-seeking strategies: On the design
of interactive information retrieval systems”. In: Expert systems
with applications 9.3 (1995), pp. 379–395.

[AGH99] J.E. Allen, Curry Guinn, and E. Horvtz. “Mixed-initiative inter-
action”. In: Intelligent Systems and their Applications, IEEE 14
(Oct. 1999), pp. 14–23. doi: 10.1109/5254.796083.

[Nor99] Ragnar Nordlie. ““User Revealment”—a Comparison of Initial
Queries and Ensuing Question Development in Online Searching
and in Human Reference Interactions”. In: Proceedings of the
22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’99. Berkeley,
California, USA: Association for Computing Machinery, 1999,
pp. 11–18. isbn: 1581130961. doi: 10.1145/312624.312618.
url: https://doi.org/10.1145/312624.312618.

[SG01] Amit Singhal and I. Google. “Modern Information Retrieval: A
Brief Overview”. In: IEEE Data Engineering Bulletin 24 (Jan.
2001).

[Jal+04] Nasreen Jaleel, James Allan, W. Croft, Fernando Diaz, Leah
Larkey, Xiaoyan Li, Mark Smucker, and Courtney Wade. “UMass
at TREC 2004: Novelty and hard”. In: Jan. 2004.

[CRH16] Konstantina Christakopoulou, Filip Radlinski, and Katja Hof-
mann. “Towards Conversational Recommender Systems”. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’16. San Fran-
cisco, California, USA: Association for Computing Machinery,
2016, pp. 815–824. isbn: 9781450342322. doi: 10.1145/2939672.
2939746. url: https://doi.org/10.1145/2939672.2939746.

[RC17] Filip Radlinski and Nick Craswell. “A Theoretical Framework for
Conversational Search”. In: Proceedings of the 2017 Conference
on Conference Human Information Interaction and Retrieval.
CHIIR ’17. Oslo, Norway: Association for Computing Machinery,

https://doi.org/10.1145/96749.98006
https://doi.org/10.1145/96749.98006
https://doi.org/10.1109/5254.796083
https://doi.org/10.1145/312624.312618
https://doi.org/10.1145/312624.312618
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.1145/2939672.2939746

BIBLIOGRAPHY 90

2017, pp. 117–126. isbn: 9781450346771. doi: 10.1145/3020165.
3020183. url: https://doi.org/10.1145/3020165.3020183.

[Vty+17] Alexandra Vtyurina, Denis Savenkov, Eugene Agichtein, and
Charles L. A. Clarke. “Exploring Conversational Search With Hu-
mans, Assistants, and Wizards”. In: Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing
Systems. CHI EA ’17. Denver, Colorado, USA: Association for
Computing Machinery, 2017, pp. 2187–2193. isbn: 9781450346566.
doi: 10.1145/3027063.3053175. url: https://doi.org/10.
1145/3027063.3053175.

[Dev+18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[Die+18] Laura Dietz, Ben Gamari, Jeff Dalton, and Nick Craswell. “Trec
complex answer retrieval overview”. In: Proceedings of Text RE-
trieval Conference (TREC) (2018).

[Gar+18] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep
Dasigi, Nelson Liu, Matthew Peters, Michael Schmitz, and Luke
Zettlemoyer. AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. 2018. arXiv: 1803.07640 [cs.CL].

[LHZ18] Kenton Lee, Luheng He, and Luke Zettlemoyer. “Higher-Order
Coreference Resolution with Coarse-to-Fine Inference”. In: NAACL.
2018.

[QCJ18] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach.
“Sequence-Aware Recommender Systems”. In: ACM Comput. Surv.
51.4 (July 2018). issn: 0360-0300. doi: 10.1145/3190616. url:
https://doi.org/10.1145/3190616.

[Cla+19] Leigh Clark, Philip Doyle, Diego Garaialde, Emer Gilmartin,
Stephan Schlögl, Jens Edlund, Matthew Aylett, João Cabral,
Cosmin Munteanu, Justin Edwards, and Benjamin R Cowan.
“The State of Speech in HCI: Trends, Themes and Challenges”.
In: Interacting with Computers 31.4 (June 2019), pp. 349–371.
issn: 1873-7951. doi: 10.1093/iwc/iwz016. url: http://dx.
doi.org/10.1093/iwc/iwz016.

[Cla19] Charles L. A. Clarke. “WaterlooClarke at the TREC 2019 Conver-
sational Assistant Track”. In: Proceedings of the Twenty-Eighth
Text REtrieval Conference, TREC 2019, Gaithersburg, Maryland,

https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3027063.3053175
https://doi.org/10.1145/3027063.3053175
https://doi.org/10.1145/3027063.3053175
https://arxiv.org/abs/1803.07640
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3190616
https://doi.org/10.1093/iwc/iwz016
http://dx.doi.org/10.1093/iwc/iwz016
http://dx.doi.org/10.1093/iwc/iwz016

BIBLIOGRAPHY 91

USA, November 13-15, 2019. Ed. by Ellen M. Voorhees and An-
gela Ellis. Vol. 1250. NIST Special Publication. National Institute
of Standards and Technology (NIST), 2019. url: https://trec.
nist.gov/pubs/trec28/papers/WaterlooClarke.C.pdf.

[GAS19] Ana Valeria Gonzalez, Isabelle Augenstein, and Anders Søgaard.
“Retrieval-based goal-oriented dialogue generation”. In: arXiv
preprint arXiv:1909.13717 (2019).

[JC19] Sheng-Chieh Lin Jheng-Hong Yang and Ming-Feng Tsai Chuan-Ju
Wang Jimmy Lin. Query and Answer Expansion from Conversa-
tion History. 2019.

[KC19] Vaibhav Kumar and Jamie Callan. “A Step towards Context
Identification for Conversational Search.” In: TREC. 2019.

[Mar19] Mahsa S. Shahshahani Jaap Kamps Maarten Marx. University of
Amsterdam at the TREC 2019 Complex Answer Retrieval Track.
2019.

[Rís+19] Esteban Andrés Ríssola, Manajit Chakraborty, Fabio A. Crestani,
and Mohammad Aliannejadi. “Predicting Relevant Conversa-
tion Turns for Improved Retrieval in Multi-Turn Conversational
Search”. In: TREC. 2019.

[Sam19] Andrew Yates Samarth Mehrotra. Incoporating Query Context
into a BERT Re-ranker. 2019.

[Tri19] Johanne Trippas. “Spoken conversational search: audio-only in-
teractive information retrieval”. In: ACM SIGIR Forum 53 (Dec.
2019), pp. 106–107. doi: 10.1145/3458553.3458570.

[Tri+19] Johanne R. Trippas, Damiano Spina, Paul Thomas, Mark Sander-
son, Hideo Joho, and Lawrence Cavedon. Towards a Model for
Spoken Conversational Search. 2019. arXiv: 1910.13166 [cs.IR].

[WY19a] Wei Wu and Rui Yan. “Deep Chit-Chat: Deep Learning for Chat-
bots”. In: Companion Proceedings of The 2019 World Wide Web
Conference. WWW ’19. San Francisco, USA: Association for
Computing Machinery, 2019, p. 1329. isbn: 9781450366755. doi:
10.1145/3308560.3320084. url: https://doi.org/10.1145/
3308560.3320084.

https://trec.nist.gov/pubs/trec28/papers/WaterlooClarke.C.pdf
https://trec.nist.gov/pubs/trec28/papers/WaterlooClarke.C.pdf
https://doi.org/10.1145/3458553.3458570
https://arxiv.org/abs/1910.13166
https://doi.org/10.1145/3308560.3320084
https://doi.org/10.1145/3308560.3320084
https://doi.org/10.1145/3308560.3320084

BIBLIOGRAPHY 92

[WY19b] Wei Wu and Rui Yan. “Deep Chit-Chat: Deep Learning for Chat-
bots”. In: Proceedings of the 42nd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval.
SIGIR’19. Paris, France: Association for Computing Machin-
ery, 2019, pp. 1413–1414. isbn: 9781450361729. doi: 10.1145/
3331184.3331388. url: https://doi.org/10.1145/3331184.
3331388.

[DXC20] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. TREC CAsT
2019: The Conversational Assistance Track Overview. 2020. arXiv:
2003.13624 [cs.IR].

[JMB20] Dietmar Jannach, Bamshad Mobasher, and Shlomo Berkovsky.
“Research directions in session-based and sequential recommen-
dation”. In: User Modeling and User-Adapted Interaction 30.4
(2020), pp. 609–616. doi: 10.1007/s11257-020-09274-4.

[KRW20] Magdalena Kaiser, Rishiraj Saha Roy, and Gerhard Weikum.
CROWN: Conversational Passage Ranking by Reasoning over
Word Networks. 2020. arXiv: 1911.02850 [cs.IR].

[Suk+20] Rhea Sukthanker, Soujanya Poria, Erik Cambria, and Ramku-
mar Thirunavukarasu. “Anaphora and coreference resolution: A
review”. In: Information Fusion 59 (2020), pp. 139–162. issn: 1566-
2535. doi: https://doi.org/10.1016/j.inffus.2020.01.010.
url: https://www.sciencedirect.com/science/article/
pii/S1566253519303677.

[Tav20] Leila Tavakoli. “Generating Clarifying Questions in Conversa-
tional Search Systems”. In: Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge Manage-
ment. CIKM ’20. Virtual Event, Ireland: Association for Comput-
ing Machinery, 2020, pp. 3253–3256. isbn: 9781450368599. doi:
10.1145/3340531.3418513. url: https://doi.org/10.1145/
3340531.3418513.

[Tri+20] Johanne Trippas, Damiano Spina, Paul Thomas, Mark Sanderson,
Hideo Joho, and Lawrence Cavedon. “Towards a model for spoken
conversational search”. In: Information Processing & Management
57 (Mar. 2020), p. 102162. doi: 10.1016/j.ipm.2019.102162.

[Mel+21] Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini, Raf-
faele Perego, Nicola Tonellotto, and Ophir Frieder. “Adaptive
utterance rewriting for conversational search”. In: Information
Processing & Management 58.6 (2021), p. 102682. issn: 0306-
4573. doi: https://doi.org/10.1016/j.ipm.2021.102682.

https://doi.org/10.1145/3331184.3331388
https://doi.org/10.1145/3331184.3331388
https://doi.org/10.1145/3331184.3331388
https://doi.org/10.1145/3331184.3331388
https://arxiv.org/abs/2003.13624
https://doi.org/10.1007/s11257-020-09274-4
https://arxiv.org/abs/1911.02850
https://doi.org/https://doi.org/10.1016/j.inffus.2020.01.010
https://www.sciencedirect.com/science/article/pii/S1566253519303677
https://www.sciencedirect.com/science/article/pii/S1566253519303677
https://doi.org/10.1145/3340531.3418513
https://doi.org/10.1145/3340531.3418513
https://doi.org/10.1145/3340531.3418513
https://doi.org/10.1016/j.ipm.2019.102162
https://doi.org/https://doi.org/10.1016/j.ipm.2021.102682

BIBLIOGRAPHY 93

url: https://www.sciencedirect.com/science/article/
pii/S0306457321001679.

[Ren+21] Pengjie Ren, Zhumin Chen, Zhaochun Ren, Evangelos Kanoulas,
Christof Monz, and Maarten de Rijke. Conversations with Search
Engines: SERP-based Conversational Response Generation. 2021.
arXiv: 2004.14162 [cs.IR].

[Jan+22] Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and Li Chen.
“A Survey on Conversational Recommender Systems”. In: ACM
Computing Surveys 54.5 (June 2022), pp. 1–36. issn: 1557-7341.
doi: 10.1145/3453154. url: http://dx.doi.org/10.1145/
3453154.

[Zam+22] Hamed Zamani, Johanne R. Trippas, Jeff Dalton, and Filip
Radlinski. Conversational Information Seeking. 2022. arXiv: 2201.
08808 [cs.IR].

https://www.sciencedirect.com/science/article/pii/S0306457321001679
https://www.sciencedirect.com/science/article/pii/S0306457321001679
https://arxiv.org/abs/2004.14162
https://doi.org/10.1145/3453154
http://dx.doi.org/10.1145/3453154
http://dx.doi.org/10.1145/3453154
https://arxiv.org/abs/2201.08808
https://arxiv.org/abs/2201.08808

	Introduction
	Background
	Related Works
	Traditional IR
	Conversational Search
	Existing Methods for Conversational Search

	Tools for Statistical Analysis
	Analysis of Variance
	Multiple Comparison
	Partial Omega Squared

	Implemented Algorithms
	Structure and Notation
	Rewriting Algorithms
	Concat Query
	First Query
	Context Query
	Coref 1
	Coref 2
	Historical Query Expansion
	DBpedia & ConceptNet Query Expansion

	Reranking Algorithms
	Seen Filter
	Bottom Up
	Historical Answer Expansion

	Implementation
	Structure
	Step
	Pipeline
	PipelineFactory

	Methods
	Concat Query Rewriter
	First Query Rewriter
	Context Query Rewriter
	Coref 1 Rewriter
	Coref 2 Rewriter
	Historical Query Rewriter
	DBpedia Rewriter
	Seen Filter Reranker
	Bottom Up Reranker
	Historical Answer Reranker

	Pipelines
	Technical Details

	Experiments
	Experimental setup
	Topics
	Collection

	Results
	Concat Query
	First Query
	Context Query
	Coref 1
	Coref 2
	HQE
	DBPedia
	Seen Filter
	Bottom Up
	HAE
	Sub Index
	Methods Comparison

	Conclusion And Future Works
	Bibliography

