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INTRODUCTION 

Bankruptcy prediction studies, aimed at identifying and analysing common patterns of 

corporate default, have regained popularity among academics during the aftermath of the 2008 

great financial crisis. This is mainly due to the objectives that the bankruptcy prediction 

research field has promised since its inception: lower operational risk borne by lending 

institutions, wiser investing decision for practitioners, faster reaction to distress conditions, 

more stable financial system and in general a more efficient and, possibly, effective allocation 

of resources. In practice, predictions are carried out on the basis of companies’ financial indices 

retrieved from their public statements. 

This thesis project finds its primary concern in the development and application of statistical 

and machine learning based bankruptcy prediction models on firms headquartered in Veneto, 

region located in the north east of Italy. To pursue it a sample composed of financial statements 

from 424 firms defaulted between 2013 and 2019 and 29711 sound entities have been employed 

to train and test six prediction models, namely: Logistic regression, Support Vector Machines, 

K – Nearest Neighbour, Adaptive Boosting, Decision Tree and Extreme Gradient Boosting. 

Four relevant conclusions have been reached. First, results indicate that Extreme Gradient 

Boosting stands as the best performing model with a peaking accuracy of 93%. Further, models 

show almost no sensitivity to the level of correlation allowed among the applied financial ratios, 

where the correlation range tested comprises values from 0,3 to 0,9. In addition, Net Income to 

Total Assets has been identified as the best individual predictor among the 54 financial ratios 

considered. Finally, the reliability in predictions drop substantially moving from one to two 

years prediction time while it remains stable between two and three years forecasting period.  

The document is structured as follows: chapter 1 reviews the relevant literature developed from 

the ‘30s to the present; chapter 2 then analyses firms financial statements, describes the 

propensity score matching procedure followed to match sound firms with failing ones, describe 

the composition of all 54 financial ratios employed assessing their individual performance,  

compute the average correlation among indices and presents the logic and application of 

prediction models; chapter 3 moreover, presents results elicited from the applications of models 

on both an internal test set, composed only by Veneto based companies, and an external test 

set, grouping firms from the whole Italy; finally, chapter 4 hand conclusions out, lists possible 

future paths of research and close the document with the author comment. 
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1. REVIEW OF THE RELEVANT LITERATURE 

Historically, bankruptcy prediction – the exploration of parameters and associated patterns 

useful for forecasting the probability of corporate failure – is a topic that had concerned 

investors, lenders and practitioners alike. Indeed, the ability to distinguish companies with solid 

future perspectives from those most likely to default, is critical to set expectations on returns 

and thus develop sound strategies. The literature on bankruptcy prediction has started 

developing at the turn of the 20th century when academics introduced studies regarding ratio 

analysis (Beaver, 1966). Ratio analysis aims at answering to the need for bankruptcy prediction 

models primarily looking at accounting and financial ratios. These have, among others, the 

advantage of being comparable amid companies with divergent absolute parameters (e.g. 

different revenues, sizes, assets, etc.) and operating in unrelated industry sectors.  

In broad terms, the research on bankruptcy prediction based on ratio analysis can be divided in 

two macro periods. Up to the mid-1960s academics focused on univariate (single factor) studies 

(Bellovary et al. 2007). The most notable article of this first period is written by Beaver (1966) 

who is primarily concerned with a formal empirical verification of accounting ratios usefulness 

for prediction purposes. Thereafter, the attention shifted towards a multivariate approach 

looking to consider factors, ratios, in their interdependence. Pioneering in this second period is 

Altman’s (1968) paper, still the most popular research among academics, with the first 

implementation of a multivariate analysis. 

Deepening, the second period can be further split into two, mainly overlapping, phases: while 

the first decades are especially characterised by the implementation of more traditional 

statistical techniques (e.g. Altman (1968) adopts an MDA, Ohlson (1980) exploit a Logit 

regression), from the ‘90s more and more researches begin applying modern machine learning 

algorithms hoping to overcome previous limitations (Liang et al. 2016).  

The next paragraphs are organised as follow: first, a review of the most relevant univariate 

phase researches is presented; further, the multivariate phase is elaborated splitting between 

authors applying traditional statistical techniques and those introducing more advanced 

frameworks; third, the crucial argument of how to define bankruptcy is treated; finally, three 

minor streams linked with the bankruptcy prediction literature but with different approaches 

from most academic articles are touched (the use of corporate governance indicators, Black-

Scholes-Merton model and macroeconomic variables). 
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1.1  LITERATURE UP TO 1966 – THE UNIVARIATE PHASE 

A first noticeable work in the bankruptcy prediction field belongs to the Bureau of Business 

Research (BBR) which in 1930 published a study analysing 24 ratios from 29 industrial firms. 

The ratios were compared with their overall average to look for specific trends affecting failing 

firms. The study highlighted eight ratios as good indicators of firm weaknesses. Moreover, it 

reports that, among others, working capital to total assets seems to perform particularly well as 

predictor of failure.  

Two years later, FitzPatrick (1932) paper compares 13 ratios of 19 pairs of failed and non-failed 

firms. He concludes that net worth to debt and net profits to net worth are two crucial ratios to 

take into account while looking for defaulting patterns. He considers mainly manufacturing 

sector firms including phonographs and records manufacturers, food production and packaging 

companies, cotton and woollen factories, steel products manufacturers and adds to that the 

wholesale merchandise business.  

Forward, Smith and Winakor (1935) studied ratios of 183 defaulted firms belonging to various 

industries in a follow-up analysis to the BBR’s publication. They confirmed the importance of 

the working capital to total assets ratio as clear parameter to determine risk of financial distress.  

In 1942, Merwin published a study regarding small manufacturers. He reports that failing firms 

display signs of weakness starting as early as four or five years before failure, on average. He 

moreover suggests net working capital to total assets, current ratio (i.e. current assets to current 

liabilities) and net worth to total debt as most relevant factors in bankruptcy predictions. 

Further, Chudson (1945) looks for patterns of companies’ financial structure in order to unveil 

if any factor follows ‘normal’, repetitive, sequences. The analysis is firstly focused both on the 

interrelationship of working capital items among each other and the actual role of the current 

ratio, which was widely considered, at the time, the most powerful accounting figure for 

prediction purposes. The author concludes that there is no ‘normal’ pattern on a general level. 

However, he also acknowledges that there are indications of clustering of ratios within specific 

set of industry, size and profitability. The study is not directly related to the bankruptcy 

prediction topic but rather to the interrelation of accounting quantities across firms belonging 

to different sectors: Manufacturing, Mining, Trade, and Construction. Nonetheless, it provides 

a relevant contribution to the field. Indeed, the clustering argument indicates that prediction 

models need to take into consideration the diverging features connoting different economic 

sectors. 
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Furthermore, Jakendoff (1962) compared ratios of profitable and unprofitable firms. He reports 

that current ratio and net working capital to total assets are higher for sound firms compared to 

weaker companies. Also, debt to worth ratio display lower values in profitable firms. 

Finally, to conclude the first period relevant authors, Beaver (1966) compared the mean values 

of ratios from 79 pairs composed by failed and a non-failed firm belonging to 38 industries. 

Firms data are retrieved from the Moody's Industrial Manual and pertain to the 1954 to 1964 

period. He considers 30 ratios from six broad categories: cash flow, net income, debt to total 

assets, liquid assets to total assets, liquid assets to current debt and turnover ratios. The study is 

based on a comparison of means, a dichotomous classification test and an analysis of likelihood 

ratios. Beaver finds that ratio analysis can be useful in the prediction of failure for at least five 

years before failure. Specifically, he reports that net income to total debt had the highest 

predictive ability in the first year prior to failure, 92% accuracy, followed by net income to sales 

(91%), net income to net worth, cash flow to total debt and cash flow to total assets (90% 

accuracy).  

Interestingly, in his conclusions the author reports that there may have been many details 

preventing a measurement of the “true” predictive ability of ratios and that “There exists a 

countless number of arguments regarding the possible biases in the data” (Beaver (1966), p. 

101), an issue that affects almost all the literature. He particularly refers to a selection bias: 

given that ratios are adopted to detect the financial “illness” of a firm, there may be companies 

whose “illnesses” were detected and cured just before default. Sample including such firms as 

non-defaulted are biased for any investigation of the usefulness of ratios in detecting bankruptcy 

early signs. Indeed, a crucial information is missing from the sample related to the actual 

number of firms that were able to “heal” using ratio analysis and that are thus considered as 

non-failed firms. This fact may understate the real ability of accounting ratios in forecasting 

failure. 

Beaver also made an important contribution opening the path to the multivariate approach 

which will then be adopted by academics. In fact, in his “Suggestions for future research” he 

points out that “it is possible that a multiratio analysis, using several different ratios and/or rates 

of change in ratios over time, would predict even better than the single ratios” (Beaver (1966), 

p. 100). 

Before passing on to discuss the relevant multivariate based works thereafter, it is worth 

asserting that since Beaver (1966) there have been other researches based on the univariate 

approach. Relevant papers include Pinches et al. (1975) and Chen and Shimerda (1981). 
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Pinches et al. (1975) examined 48 ratios from 221 firms with data coming from the 

COMPUSTAT1 data tapes over the 1966-1969 timeframe. They looked for designing a 

grouping setting for the 48 ratios based on empirical evidences of correlation and 

informativeness2; determining the hierarchical relationship among these empirically based 

financial ratio groups; and proposing accounting ratios with highest predictive ability. Authors 

reported that 92% of the common variation among the 48 figures was accounted for in the 

following 7 groups: return on investment, capital turnover, inventory turnover, financial 

leverage, receivable turnover, short-term liquidity and cash position ratios. Further, they 

identified return on investment as the group including the overall most significant predictors, 

followed by capital turnover, inventory turnover and financial leverage.   

Similarly, Chen and Shimerda (1981) had a primary question related to which financial ratios, 

among the hundreds that can be computed easily from the available financial data, should be 

analysed to obtain the information for predictive purposes. They looked for rigorous analysis 

aimed at indicating sound methodologies to select the best ratios avoiding collinearity/high 

correlation issues. They conducted a principal component analysis of 39 ratios for a total of 

1,053 firms with complete data for both total assets and net sales in 1977 included in the 

COMPUSTAT tape. Authors show that high correlation levels between ratios cause results on 

predictive abilities to be sample-sensitive and possibly misleading. Moreover, they report a list 

of highly correlated ratios specifying that the actual selection of the preferable ratio has to be 

made on an ad hoc basis. 

 

1.2 FROM 1966 TO THE 1990S – THE MULTIVARIATE STATISTICAL PHASE 

The first and most famous multivariate study was published by Altman in 1968. He examines 

pairs composed of 66 corporations and 33 manufacturing firms that filed a bankruptcy petition 

under Chapter X of the US National Bankruptcy Act and an equal number of non-bankrupt 

companies. Data refer to the 1946-1965 period. Contrary to previous univariate research 

methodologies, Altman (1968) adopts the Multiple Discriminant Analysis (MDA): “a statistical 

technique used to classify an observation into one of several a priori groupings dependent upon 

 
1 Compustat is a database of financial, statistical and market information on active and inactive global 

companies throughout the world founded in 1962. Product of S&P Global Market Intelligence, which is a 

division of S&P Global 
2 their final objective was to propose a grouping framework to prevent future analysis to be based upon 

correlating and  thus non-optimal set of accounting ratios. 
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the observation’s individual characteristics” (Altman (1968), p. 590). MDA attempts to derive 

a linear combination of the characteristics (independent variables) which can best discriminate 

between the bankrupt, non-bankrupt groups of companies. It does so by computing a 

discriminant coefficient for each independent variable and subsequently combining them, 

coefficient and independent variable, into a specific score. All specific scores, attaining to all 

characteristics, are finally summed up to obtain what Altman (1968) calls “Z-score”. A z-score 

optimum cut-off threshold is then computed to discriminate between bankrupt and non-

bankrupt companies. 

𝑍 =  𝑣1𝑥1 + 𝑣2𝑥2 +  𝑣3𝑥3 + ⋯ +  𝑣𝑛𝑥𝑛 ,  

where  𝑣1, 𝑣2, 𝑣3, 𝑣𝑛  =  Discriminant coefficients and  𝑥1, 𝑥2, 𝑥3, 𝑥𝑛 = Independent variables 

The author selects five accounting ratios as independent variables: working capital to total 

assets, retained earnings to total assets, earnings before interests and taxes to total assets, market 

value of equity to book value of total debt and sales to total assets.  

He concludes that its bankruptcy prediction model is an accurate forecaster of failure up to two 

years prior to bankruptcy and that the accuracy diminishes substantially as the lead time 

increases. His methodology resulted in a 95% predictive accuracy for the initial sample one 

year prior to failure, in a substantially lower 72% accuracy for two years lead time and in only 

48% accuracy for three years prior to failure (almost comparable to a random guess). 

Since Altman’s research, the contribution to the literature has increase dramatically both in 

terms of number of publications and complexity of approaches applied. Bellovary et al. 2007 

count 28 relevant studies in the ‘70s, 53 during the ‘80s and more than 70 in the ‘90s. 

Moreover, it is worth mentioning that while during the ‘70s and ‘80s papers were concerned 

with looking for the best ‘traditional’ statistical approach, starting from the ‘90s academics 

began introducing computationally intensive advance statistical methodologies like neural 

network and machine learning. From that point onwards research focused more and more on 

the new capabilities brought by these tools and on the comparison between traditional and 

advanced approaches. 

The intention hereafter does not concern with reporting all material publications on bankruptcy 

prediction but rather to pinpoint and examine those either more influential or pioneering in the 

introduction of a novel approach or group of companies analysed. 

Meyer and Pifer (1970) selected 30 pairs of failed and non-failed banks as original sample and 

9 pairs for the hold-out sample for the accuracy testing. They considered only banks closed 
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(bankrupted) between 1948 and 1965 with at least six years of accounting data available. 

Authors run a multiple linear regression, with a dummy variable to discriminate between viable 

and less viable banks, based on 28 operating ratios and 4 balance sheet groupings. Similarly to 

Altman 1968, they find a sharp decrease in their model predictive ability with three or more 

years of lead time. They achieved between 67% to 100% accuracy in the holdout sample for 

failed banks and between 55% to 89% accuracy for non-failed banks. In other terms they were 

able to achieve low type II error rate, misclassifying failing firms as non-failing, keeping type 

I error rate, misclassifying non-defaulting for defaulting companies, significantly higher. It is 

worth adding that type I error is widely considered more dangerous for lenders (Du Jardin 

(2016)). 

Wilcox (1973) based his models on the consideration that a firm financial level (e.g. net worth) 

is regarded as existing in one (N) of a positive, infinite set of states at any given time t. Further, 

at the immediate successive time period (t+1), the firm financial level can either decrease to N-

1 or increase to N+1. From it, the author develops a binomial model applied to 52 pairs of 

bankrupted and non-bankrupted industrial firms selected from the Moody’s Industrial Manual 

with at least six years of available accounting data from 1949 to 1971. To compute the year 

level for N, he collects accounting data about Net Income (including special or extraordinary), 

cash-only Dividends, Stock issued, Cash (including marketable securities), Current assets, 

Total assets and Total liabilities. The model accuracy resulted in 94% overall accuracy (true 

bankrupt and true non-bankrupt) for one year before failure prediction and 90%, 88%, 90% and 

76% for 2, 3, 4 and 5 lead years to failure respectively.  

Bilderbeek (1977) applied a step wise discriminant framework to classify 58 Dutch companies 

with available data for the 1950 – 1974 period. Similarly to Altman 1968, he computed the Z 

score for each firm and looked for the most efficient cut-off point to predict whether the firm 

considered was headed towards failure or not. The author analysed 20 ratios and ended up 

selecting five of them all: retained earnings to total assets, added value to total assets, accounts 

payable to sales, sales to total assets and net profit to equity. Bilderbeek (1977) achieved 

accuracies ranging from 70% to 80% over the five years lead time taken into account (Altman 

(1984)). Nonetheless, his step wise discriminant model is one of the first to be adopted in 

practice by Netherland institutions. 

Martin (1977) selects the logit model to conduct a research on early signs of banks failure 

commissioned by the Federal Reserve of New York. In general terms, the logit model can be 

thought of as Pr(𝑌𝑖 = 1) = 𝐹 (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑀 , 𝑏1, 𝑏2, … ) , the probability that the final 

outcome (bank belonging to either the defaulting group or non-defaulting one) Y for firm i is 1 
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(defaulting group) is a function of 𝑥𝑖𝑗, the value of the j-th variable (accounting ratio) for the i-

th observation and of all coefficients 𝑏𝑖 related to the M explanatory variables. The assumed 

functional form F is defined, inside the logit model, by the logistic function:  

Pr(𝑦𝑖 = 1) =  
1

1+𝑒−𝑊𝑖 , i = 1,…, N , where  𝑊 =  𝑏0 +  ∑ 𝑏𝑗𝑥𝑖𝑗
𝑀
𝑗=1   is a linear combination of 

the independent variables and a set of coefficients 𝐵 =  𝑏0, 𝑏1, … , 𝑏𝑀 which are to be estimated. 

The coefficient vector B of this linear combination is not known a priori but must be inferred 

from the known values of the 𝑥𝑖𝑗 's and 𝑌𝑖 's. The estimation of coefficients in W can be applied 

through to the probit analysis provided that W is normally distributed due to the Central Limit 

Theorem. The author not only applied logit model but also compared its performances with 

those deriving from a linear discriminant analysis (LDA) and a quadratic discriminant analysis 

(QDA) (both run similarly to Altman (1968) MDA in their basic principles). 

Martin identified 58 banks as failed at some point in time between 1970 and 1976 from the FED 

databases (comprising approximately 5,700 Federal Reserve member banks). He moreover 

exploited 25 accounting ratios that can be divided in 4 classes: asset risk (e.g. loans to total 

assets), liquidity, capital adequacy and earnings. The author reported that logit models perform 

significantly better than linear discriminant analysis in various combinations of year data, lead 

years to failure and ratios (80% to 90% accuracy achieved by the logit implementation against 

60% to 80% for LDA). However, no significant improvement was elicited when comparing 

logit and MDA results. Martin 1977 also asserts that greater sample need to be considered in 

subsequent studies to both validate results more precisely and verify normality assumptions on 

data. 

Weinrich (1978), attempted to analyse risk classes, based on six risk-related accounting ratios, 

in order to predict insolvency. His sample of failed firms comprised of 44 German small and 

medium size companies, with an average sale of DM 4 million (less than $ 2 million), over the 

1969-1975 period (Altman, 1984). Weinrich considers 3 consecutive annual financial 

statements, from the second to the fourth lead year before failure, without considering the last 

operating year, closest to the default event. Not including accounting data from the last year of 

operations preceding bankruptcy represents a marked difference from most of the previous 

articles and will be deepened later on looking at the work by Ohlson (1980). The author opted 

for a non-parametric linear discriminant analysis abandoning parametric classification 

techniques due to the lack of basic assumption (normality, variance- homogeneity of groups, 

and high correlation amongst the variables). His study achieves 89% accuracy for two years 

before failure and 84% and 78% for three and four years respectively.  
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Second only to Altman (1968), the bankruptcy literature has identified Ohlson (1980) as one of 

the most influential research. In his introduction, Ohlson stresses three critical concepts that set 

apart his analysis from foregoing works. First, he highlights the uniqueness of the time period 

taken into consideration when comparing research results: academics should not assess the 

precision of their models against others when data refers to different historical periods. In other 

terms, given that the models are generally not robust to macroeconomic and time dependent 

conditions, Ohlson underlines the necessity of only comparing models with data belonging to 

the same time period. Indeed, models trained with different historical periods data may, ceteris 

paribus, display dissimilarities due to, precisely, the historical background. Secondly, in 

contrast with most of the previous relevant papers, the author avoids collecting accounting 

figures from the Moody’s Manual but rather obtains them from 10-K financial statements as 

reported at the time. The reason being the advantage of knowing at what point in time the 

statements were released to the public. Indeed, as mentioned with Weinrich (1978) just above, 

there might be a timing issue related with the first lead year to bankruptcy: if default occurs in 

essence before the release moment, then there is a chance that the statement already 

incorporates information about the default. When this is the case and said statement is included 

in the model formulation, the final prediction accuracy is seriously biased because of the timing 

issue. To account for this, Weinrich (1978) avoid the first lead year data, assuming the risk of 

losing valuable knowledge. Ohlson (1980), on the other hand, filters accounting statements to 

overcome the timing issue without ‘sacrificing’ precious information. The third introductory 

concept has to do with the definition of failure and the parameters that need to be satisfied to 

allow describing a company as bankrupt. Indeed, there might be critical differences in the 

definition of default adopted among researches that make essentially useless any comparison 

between models. For his framework, he proposes a purely legalistic definition based on whether 

the firm has filed for Chapter X or XI or some other legal notifications indicating bankruptcy 

proceedings. Such a matter will be further examined in broader terms later in the dedicated 

section. 

Ohlson (1980), in contrast to the majority of previous studies, avoids the use of MDA as 

proposed by Altman (1968) for three considerations. First, MDA requires specific statistical 

properties to the predictor’s distribution (such as normality and equal variance-covariance 

matrix for both failed and non-failed) that cannot be given for granted. Secondly, the output of 

the application of an MDA model is a score with little intuitive interpretation in light of the 

need to discriminate failing from non-filing firms. Further, if a Bayesian revision process is 

introduced, starting with the specification of prior probabilities, it will be invalid unless the 
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same assumptions of the pervious point hold (normality, etc.). Thirdly, the matching procedure 

applied by previous papers, carried out by considering for instance asset size and industry, 

seems to be arbitrary and of questionable usefulness. In this regard, Ohlson wonder if a better 

model might be achieved by directly including the matching variables into the set of predictors. 

To overcome the three issues, the author opts for the use of conditional logit analysis. His data 

sample considers only industrial firms from the 1970-1976 period, with equity traded in either 

stock exchanges or Over-the-counter markets. The final sample comprises of 105 failed 

companies and 2058 non-failed entities. Nine ratios are included as predictors: size, log(total 

assets/GNP price levels index); total liabilities to total assets; working capital to total assets; 

current liabilities to current assets; first dummy variable, 1 if total liabilities exceeds total assets, 

0 otherwise; net income to total assets; funds provided by operations to total liabilities; second 

dummy variable, 1 if net income was negative for the last two years, 0 otherwise; 
𝑁𝐼𝑡−𝑁𝐼𝑡−1

|𝑁𝐼𝑡|+|𝑁𝐼𝑡−1|
  

where 𝑁𝐼𝑡 represent net income for the most recent period t, a measure taken from McKibben 

(1972). In this setting, Ohlson model reaches 96.12% accuracy for the first lead year, 95.55% 

for the second and 92.84% for the third. Ohlson notices that great relevance was to be attributed 

at the size parameter whose value greatly affects the final predictive outcome. Logically, an 

immediate explanation for this relates with the fact that greater sized companies have more to 

deplete before actually filing for bankruptcy. However, the emphasis on the size variable given 

by the model could also be due to a third, not better known, element linked to size. In principle, 

as the author points out reporting results, said element may be connected to the belonging to 

stock exchanges or OTC markets. He thus suggests as further research to include variable like 

equity prices and their trends. 

Before continuing with the next relevant historical research, it is now compelling to look at a 

1997 paper by Begley, Ming and Watts aimed at investigating the field performances that 

Altman (1968) and Ohlson (1980) models are actually able to reach. This is of particular interest 

because many among academics and practitioners frequently adopt such models for 

determining real world companies’ financial distress and, as benchmarks, assessing other 

frameworks predictive power.  

The starting concept of their analysis explains that the original models are typically applied to 

current data without considering the measurement error that they might introduce due to time 

discrepancies and the consequent risk of biased results. To give a precise meaning to these 

discrepancies, authors discuss two main arguments: first, leverage levels play an important role 

in both Altman (1968) and Ohlson (1980) and this may have an unwanted effect on subsequent 
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data since starting from the ‘80s a relatively high corporate debt level began being legally 

accepted; second, changes of bankruptcy laws in the late ‘70s allowed for greater strategic use 

of the default event3. For both reasons, results may be deviated by changes not incorporated in 

the original models and, as a consequence, less accountable in predicting failure. To examine 

it, they apply both original models and a re-calibrated version4 of them on data from 165 

bankrupt and 3300 non-bankrupt firms belonging to the 1980-1992 period. Begley et al. (1996) 

report that for what concerns the original models blindly applied to more recent data, they 

produce higher combined error rates. Interestingly though, Ohlson original model produce a 

slightly lower (12.4% against 10.8%) type I error on the new data with respect to Ohlson (1980) 

data. Type II error however increases substantially (17.4% against 26.6%) making the plain 

original approach unsuitable. Moreover, the re-estimated models show no meaningful 

improvements compared to original models. Thus, concluding, they underpin the adoption of 

Ohlson 1980 original model for analysis on more recent data.  

One of the possible drawbacks of the Begley et al. (1996) has to do with the fact that Ohlson 

original paper might already incorporate, at least partially, “knowledge” of the economic 

conditions at work during the ‘80s and ‘90s. In other terms, Ohlson (1980), for its time 

proximity with the more recent period considered in the study, might be better performing when 

compared with a much older framework like Altman (1968). If this is true then, authors 

conclusions should be updated after considering the predictive power of Ohlson (1980) on more 

recent data (to match the time span intervened between Altman (1968) and the ‘80s, time to 

which data belongs). This consideration is left open for further proves. The main point of the 

research is nonetheless very relevant: historical dynamics may play a significant part in the 

development of models and thus they cannot be ignored for newer data. 

Getting back to the pivotal researches on failure prediction, a peculiar study was carried out by 

Zimmer (1980). Following Libby (1975), he looked at prediction accuracies achieved by loan 

officers in executing the task of making annual predictions of corporate failure based on a time 

series of ratios. Specifically, 30 subjects were selected among loan officers from two Australian 

major banks. The selection did not follow random patterns, nonetheless the author achieved 

great variety in subjects characteristics (age, experience, etc.). Each subject was individually 

provided with 42 real but disguised industrial companies listed on the Sydney Stock Exchange 

between 1961 and 1977, half of which filed for bankruptcy. Moreover, five accounting ratios 

 
3 New bankruptcy acts made failure less costly for corporations which began to strategically exploit default in 
their interests. 
4 The models are run on more recent data to look for re-estimated coefficients and cut-off values. 
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were identified to be suitable for the analysis: quick assets ratio (in general, cash and cash 

equivalents to current liabilities); earnings before interest and taxes to total assets; ordinary 

dividends to ordinary earnings; total debt to gross cash flow; and long term debt to equity. The 

task was carried out individually and independently with the notion that roughly half of the 

financial profiles to be examined belonged to defaulted companies. Zimmer (1980) remarks 

that at a 95% confidence level, loan officers would have needed to correctly indicate at least 27 

out 42 predictions for his conclusion to be significantly different from the prediction made by 

a random guess. He found that the overall accuracy is significantly higher than randomness 

would imply, with a peak of almost 90% accuracy for predicting failing firms when the loan 

officer declared to be “very confident” and a trough of 58% accuracy for non-failing firm and 

“not-very-confident” self-assessment. Though it is clear that the conclusions reported have 

powerful implications regarding valuable synergies between empirical models and 

professional’s judgment, the author himself calls for further research to verify results in a more 

realistic setting (e.g. avoiding setting prior probabilities by revealing that half of financial 

profiles belong to failing firms). Casey (1980), in a fairly similar study, concludes that in such 

more realistic scenario loan officer predictions are not significantly better than random 

selection. 

Frydman, Altman and Kao (1985) were among the firsts to apply the Recursive Partitioning 

Algorithm (RPA) and to compare it to an MDA. RPA is a computerized, nonparametric 

classification technique based on pattern recognition. The model resulting from RPA is in the 

form of a binary classification tree which assigns objects into selected a priori groups and whose 

final nodes represents the final classification (Breiman et al. (1984)). Authors compared 200 

total firms, 58 bankrupt industrial companies failed during the 1971-1981 period and 142 

randomly selected manufacturing and retailing enterprises from the COMPUSTAT database. 

Further, the analysis relates on 20 accounting ratios deemed valuable by looking at previous 

researches results. To thoroughly examine the behaviour of the model, authors set a weighting 

cost function to either avoid type I error (i.e. a bankrupt firm classified as non-bankrupt, 

generally considered more dangerous in the literature) or type II error (i.e. non-bankrupt firm 

classified as bankrupt). They report that at all weights considered, RPA significantly 

outperforms MDA in its predictive ability. Interestingly, at a cost level of 50 (both errors 

considered equal) the RPA tree uses a specific cash flow to total debt level as cut-off point, 

which underlines the ratio pivotal predictive ability at classifying failing firms inside the model. 
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1.3 FROM THE 1990S TO PRESENT – THE ‘ADVANCED’ MODEL PHASE 

Thanks to the evolution and accessibility of more reliable and faster computing technologies, 

new, advanced approaches combining multiple academics fields have been more and more 

adopted for prediction purposes (Liang et al. 2016). 

In 1990 the first relevant authors adopting the Neural Network (NN) technique appeared in the 

literature. In general terms, neural network architecture can be described as biologically 

inspired, involving the intricate interconnection of many nodes (the equivalent of brain neurons) 

through which inputs are transformed into outputs. Once a specific network architecture is 

defined, the overall network is repeatedly presented with training cases from an estimation 

sample, and the connection weights between nodes are updated to bring the network outputs 

closer to the actual target output values. This training process is referred to as network learning. 

One of the best advantages of neural network modelling is the capability to capture nonlinear 

processes.  

Bell, Ribar and Verchio (1990) were interested in the comparison of a logit model and the 

prediction accuracy gained with a NN framework composed by a twelve nodes input layer, a 

six nodes hidden layer and a final output layer. They identified 28 candidate predictor variables 

using the results of prior research. Variables relate to the following features: size, loan exposure, 

capital adequacy, asset quality, operating performance, non-operating performance and 

liquidity. Authors applied logit and neural net models to an estimation sample formed by 102 

banks failed in 1985 to be added to 906 non failed (1984 annual financial statement data) and a 

separate holdout sample containing 131 banks that failed during 1986 on top of 928 non 

defaulting institutions (1985 annual financial statement data). The conclusions of the study 

highlight a 69.5% and 97.3% average accuracy in predicting failing and non-failing banks 

respectively for the logit model. Similar levels are achieved by the NN model as well. Indeed, 

Bell et al. (1990) stress the fact that the two models are essentially comparable in performances 

showed. It is however also reported that NN tends to have a significant, though not large, higher 

precision for what concerns type II error (an average 5% lower rate of error). 

Cadden (1991) follows a similar path comparing a backpropagation NN models with an MDA 

framework applied to three years, prior to failure, accounting data belonging to 59 companies 

defaulted in the ‘70s. In addition, data from 59 non-failing firm from the same time period is 

elicited. He sets up an estimation sample composed of 98 firms (49 from each group) and a 

testing sample with 10 pairs. Moreover, twelve ratios are included as predicting variables: 

current assets to current debt, net profits on net sales, net profits on tangible net worth, net 
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profits on net working capital, net sales on tangible net worth, net sales on net working capital, 

net sales to inventory, fixed assets to tangible net worth, current debt to tangible net worth, total 

debt to tangible net worth, inventory to net working capital and current debt to inventory. 

Results on the estimation sample indicate that while the first-year lead time accuracy is 

substantially comparable between MDA and NN, with the latter slightly outperforming the 

former, a significant difference is spotted in the subsequent year predictions. Indeed, if NN 

almost holds onto the same level of accuracy, MDA drastically decreases in performances going 

from a maximum of 93.9% on the first year to a minimum of 61.2% accuracy on the third. Even 

greater divergence in performance is significantly affecting the test sample results. Here in all 

the three years lead time considered, backpropagation NN overcomes MDA accuracy.  

Luoma and Laitinen (1991) apply what is known as proportional hazards (PH), in the form of 

the semi-parametric PH model defined by Cox (1972), to compare its predictive power to both 

MDA and Logit models. To understand proportional hazards, it is necessary a brief introduction 

to survival analysis (SA). Following Gepp and Kumar (2010), SA technique is a dynamic 

statistical tool used to analyse the time probability until a certain event. Thus, the SA approach 

to bankruptcy prediction is fundamentally different from the other aforementioned approaches 

(i.e. MDA, Logit, NN, etc.). While other techniques model default predictions as a classification 

stance, SA models them considering businesses’ datapoints as represented by lifetime 

distributions. Lifetime distributions can be characterised by a number of descriptor functions, 

the most common being the survival or hazard function. Survival function S(t) represents the 

probability that a business will survive past a certain time t, while hazard function h(t) 

represents the instantaneous rate of failure at a certain time t.  

Further, the basic difference between various SA models is the assumptions about the 

relationship between the hazard (or survival) function and the set of explanatory variables (X). 

Thus, the general regression formula can be written as ℎ(𝑡) = 𝑔(𝑡, 𝑋𝑇𝛽), where XT is the 

transpose of X, β is the vector of explanatory variable coefficients (the covariates), t is the time 

considered and g an arbitrary function. Traditionally, SA has been divided into two main types 

of regression models. These types are the proportional hazards (PH) and accelerated failure 

time (AFT) models, both of which have fully parametric and semiparametric versions. Due to 

its flexibility, the most prominent model applied in business failure field is the semi-parametric 

PH model defined by Cox (1972).  

In such settings, Luoma and Laitinen (1991) selected 36 failed Finnish limited companies and 

36 successful counterparts with data from the ‘80s. Their predictions are made by dividing the 

businesses into two groups based on their hazard ratios, according to the ratio of failed and non-
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failed businesses in the original sample. They report an average 68% accuracy for the PH model 

for both defaulted and successful companies. While MDA registered 64% and 76% accuracy 

for bankrupt and non-bankrupt firm respectively (essentially in line with PH performance), 

Logit model reached an overall average of 71% accuracy showing a slightly higher predictive 

power with respect to the others. Nevertheless, authors argue that the SA approach is more 

appropriate and flexible, and, thanks to its time dependent configuration, uses information more 

valuably. Also, they point out that the empirical under-performance could have been due to the 

small sample size, an issue that can be overcome with relative ease. 

 Another relevant methodology was introduced by Tam and Kiang (1992), who studied the 

impact of machine learning K - Nearest Neighbour (KNN) and Decision Trees, also known as 

Inductive Dichotomizer 3 (ID3), approaches to the field.  

On the one hand, KNN is a distribution-free, non-parametric method for classifying 

observations into one or several groups based on one or more quantitative variables. Compared 

to MDA and Logit, its main advantage lies in the possibility of both relaxing the normality 

assumption and eliminating the functional form required in MDA and logistic regression. The 

group assignment of an observation is decided by the group assignments of its first k nearest 

neighbour (hence the name). Using the nearest neighbour decision rule, an observation is 

assigned to the group to which the majority of its k nearest neighbours belong. This method has 

the merits of better approximating the sample distribution by dividing the variable space into 

any arbitrary number of decision regions, with the maximum bounded by the total number of 

observations.  

On the other, ID3 instead of generating a decision rule in the form of a discriminant function, 

it creates a decision tree that properly classifies the training sample in a recursive manner. It 

entails a nonbacktracking splitting procedure that recursively partitions a set of subsamples 

(randomly selected) into disjointed subsets. The subsets obtained are then aggregated to reach 

the final group classification.  

Tam and Kiang (1992) compare KNN and ID3 with MDA, Logit and Backpropagation neural 

network. They employ data sample consisting two years prior to failure ratios of 59 Texas banks 

that failed in the period 1985-1987. They claim to have selected only Texas banks to increase 

datapoints homogeneity. Moreover, these were matched with 59 non-failed entities on the basis 

of asset size, number of branches, age and charter status. To make sure the models could then 

be adopted by practitioners, authors selected 19 accounting ratios following CAMEL criteria 

(Capital, Asset, Management, Equity, and Liquidity) used by the FIDC (Federal Deposit 
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Insurance Corporation), a US banking system supervisor institution. Findings show that there 

is no clear best predictive model among those applied: Logit seems to have the highest average 

accuracy in predicting non-failed banks (95% in one year prior to default and 100% for two 

years) while KNN manifests the lowest accuracy for prediction concerning failed banks (59% 

and 80% for respective lead years). Overall though, authors prize the structure of the 

backpropagation NN framework because of attributes that, in their view, best fit with the needs 

and challenges that bankruptcy prediction entails and thus suggest further research in this 

direction.  

Bryant (1996) was among the first to apply Case-Based Reasoning (CBR) artificial intelligent 

methodology to bankruptcy predictions. In general terms, the basic principle underlying CBR 

refers to the fact that human experts use analogical or experiential reasoning to solve complex 

problems and to learn from problem-solving experiences. However, in searching their 

memories, human experts may suffer from primacy (remembering the first thing more vividly) 

and/or recency (remembering the last thing more vividly) effects. CBR model basically corrects 

for such biases allowing for a systematic search of a case library (memory) in order to retrieve 

cases that most closely match the problem at hand. In doing so, CBR relies on sets of 

independent decision trees. She further suggests CBR for bankruptcy prediction modelling 

because of its adaptability to articulated set of data, ease of revision/update, comparability with 

other studies and clarity in results interpretation. Bryant (1996) primary research objective is to 

verify if CBR can actually be favourably employed for prediction purposes and if so, comparing 

its performances with Ohlson (1980) nine factors model. To enhance comparability of the 

predictive accuracy of the two models, the author closely follows Ohlson’s logit model 

sampling procedures. Accordingly, the proportion of bankrupt to nonbankrupt firms roughly 

attains 1:20, and only manufacturing and industrial firms are included. A random sample 

consisting of 85 bankrupt and 2,000 nonbankrupt manufacturing and industrial firms from the 

1975-1994 period is generated. For each firm, 25 financial ratios found significant in the 

literature are calculated and included. Three (one per each first three years heading to failure) 

CBR models are derived using data from 1975-1989. The remaining data is used as holdout 

sample to validate the three models. Bryant (1996) finds that CBR behaves rather poorly on 

bankrupt firms: the estimation sample (1975 to 1989 firms) is best predicted in the first year 

with only 47.3% accuracy while the worst relates to the third year with 39.7% accuracy (lower 

than a complete random process would perform). On the contrary, CBR algorithms execute 

rather well in predicting non-bankrupt firms: the lowest accuracy level achieved among the 

three years stands at 94.8% for the third year. Similar findings connote the holdout sample 
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accuracies. The conclusion of her study is that Ohlson’s logit model have superior predictive 

accuracy than the CBR. She adds that although there is limited academic research on CBR, her 

findings cannot support claims of overall CBR superiority to other methods, such as logit. 

Specifically, in minimizing classification errors of bankrupt firms (type I errors, considered to 

be the more important than type II), logit far outperforms CBR. 

In the same year, Wallrafen, Protzel and Popp publish a work seeking to find more accurate 

prediction results by combining different models. Specifically, they adopted what is known as 

“Soft computing“(Zadeh (1994)): a combination of two or more artificial intelligence methods 

which are capable of pinpoint data patterns looking at seemingly unrelated parameters. In 

particular, authors decided to analyse the optimization role of Genetic Algorithms applied to a 

neural network model applied to the prediction task. The advantage for such a decision lies on 

the fact that neural network learning encounters problems with generalizing its results to 

unknown cases and this might be avoided by using Genetic Algorithms to pre-emptively select 

training data.  

Genetic Algorithms (GA) can generally be seen as modelling the principles of biological 

evolution through a four-step cycle: they firstly generate an initial population of potential 

solutions called individuals; then an evaluation of the fitness of each member of the population 

is carried out; further, they select promising individuals to be manipulated through genetic 

operators (mutation, crossover, selection), where a proportionate selection scheme gives 

individuals with higher fitness a larger chance of being included in the modelling cycle; finally, 

the manipulation of selected individuals through genetic operators takes place. 

Wallrafen et al. (1996) comprise of a 6667 German corporations’ dataset, including 2667 

entities as hold out sample. Moreover, they employed 73 financial ratios as predicting variable. 

These financial ratios can be subdivided into eight clusters: capital structure, liquidity, financial 

strength, profitability, current account turnover, short-term liabilities, repayment behaviour and 

miscellaneous ratios. For each company at least three data sets from different years are 

available. Companies are assigned to one of the binary classes ”solvent” or “insolvent’ based 

upon their actual historical performance, where ‘Insolvency” is defined by specific legal 

conditions under German statutes. A period of at least 18 months between the date of the last 

financial statements used for the ‘Insolvent” companies and the date insolvency actually 

occurred, ensures a meaningful time horizon for the prediction. Authors report lower-than-

expected results. The GANN methodology (Genetic Algorithms combined with Neural 

Network) reached at most a 64% predictive accuracy on the testing sample and only after a 

fairly long time: 295 generations (iterations) which required about four computing days. What 
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is more, they add that few improvements can be considered with such specific techniques and 

that further research should look at completing the framework with other more powerful 

models. 

In 1999, Dimitras, Slowinski, Susmaga and Zopounidis published a paper introducing a novel 

framework, Rough set theory, with the aim of comparing it with the more adopted MDA and 

Logit models. The rough set philosophy is anchored on the assumption that every object of a 

conceptualized universe can be associated with some information (data, knowledge). Objects 

characterized by the same information are thus to be considered indiscernible. The 

indiscernibility relation generated in this way is the mathematical basis for the rough set theory. 

Any set of all indiscernible objects, called elementary set, forms a basic element of knowledge 

about the universe. Any set of objects being a union of some elementary sets is referred to as 

crisp (precise); otherwise the set is defined as rough (imprecise, vague). Consequently, each 

rough set has limit cases, i.e. objects which cannot be classified with certainty as members of 

the contemplated set. Therefore, a rough set can be represented by a pair of crisp sets, the lower 

and the upper approximation, where the lower approximation consists of all objects which 

belong to the set with certainty whilst the upper approximation contains objects which belong 

to the set only with certain probability. From such setting, a classification can be carried out. 

Authors collected data from a large number of firms which failed in Greece during the 1986-

1990 period. From them, 40 firms belonging to 13 industries were selected and paired with non-

failing companies. The healthy firms were chosen among those of the same industry, having 

similar total assets and number of employees. Furthermore, a second, hold out, testing sample 

consisting of 19 pairs of entities was collected using a similar approach. For it, however, only 

firms failed in the 1991-1993 timeframe were considered. Five years (three for the hold-out 

sample) prior to default financial statements were collected and analysed to identify 28 

accounting ratios (mainly suggested by the previous literature). In their findings, authors report 

that the accuracies reached by the rough set framework were generally better than those 

obtained by the classical discriminant analysis and logit analysis, although the superiority over 

logit was not so distinct as that over discriminant analysis. Moreover, their conclusions stress 

that rough set accuracy measures on the testing sample drop abruptly in the second and third 

year (from 73.7% to 47.4% and 36.8% respectively) which indicates low reliability in the model 

aside from one-year lead time predictions. Nonetheless, Dimitras et al. (1999) underline the 

relevance of their model for predictive purposes asserting that many advantages can be obtain 

given the similarity between the bankruptcy prediction connotating elements and the working 

structure of rough sets models: it accepts both quantitative and qualitative attributes; it 
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contributes to the minimization of the time and cost of the decision making process; it offers 

transparency of classification decisions, allowing for clearer argumentation; and it takes into 

account background knowledge of the decision maker. 

In 2005, Min and Lee sought to introduce Support Vector Machines approach into the 

bankruptcy prediction field comparing its performances against MDA, Logit and a three-layer 

fully connected back-propagation neural networks (BPN).  

Support Vector Machines is a machine learning technique conceived by Vapnik (1998). SVM 

optimisation model is based on the transformation of a mathematical function by another 

function, called the ‘kernel’, by which it identifies the greatest distance between the most 

similar observations that are oppositely classified. It does so by means of a higher space optimal 

separating hyperplane (OSH) of some specified dimension which is specifically “constructed” 

and used for clustering purposes. SVM looks to find a special kind of OSH: the maximum 

margin hyperplane. The maximum margin hyperplane gives the maximum separation between 

decision classes. The training examples that are closest to the maximum margin hyperplane and 

thus define the minimum distance between groups identified, are called support vectors. All 

other training data is essentially irrelevant for defining class boundaries.  

Many attractive features make SVM suitable for prediction goals. First, SVM is considered to 

achieve excellent generalization performance on a wide range of settings, particularly useful 

when combining differing characteristics. Also, SVM follows the structural risk minimization 

principle, SRM, which has been shown to be superior to traditional empirical risk minimization, 

ERM, principle employed by conventional neural networks. SRM minimizes an upper bound 

of generalization error as opposed to ERM that minimizes the error on training data. Therefore, 

the solution of SVM may be closer to global optimum while other neural network models tend 

to fall into local optimal solutions. Third, the technique is broadly acknowledged as easily 

tractable under a mathematical viewpoint. Finally, overfitting seems to occur much less 

frequently than in other machine learning approaches. 

Min and Lee (2005) evaluate 1888, 944 pairs of bankrupt and non-bankrupt in random order, 

Korean’s small and medium size enterprises with data obtained from the Korea’s largest credit 

guarantee organization. 11 accounting ratios, from an initial set of 38 figures retrived from the 

literature, are then selected applying a stepwise logistic regression analysis. To fine tune the 

SVM model, authors implement and compare 4 types of kernels in the study: Linear, 

Polynomial, Radial Basis Function (RBF) and sigmoid. Among them, the best performing is 

found to be the RBF kernel with 88% average prediction accuracy in the training data and 83% 
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in the holdout sample. This results to be also the overall best predictor model. In fact, BNN 

display a slightly lower accuracy of 85% and 82% respectively, followed by the MDA approach 

with 78% and 79% accuracy and finally by the logit framework, 79% and 78%.  

Finally, it is worth mentioning a paper published by Barboza, Kimura and Altman in (2017). 

They selected and compared eight among the most relevant framework adopted in the previous 

bankruptcy prediction literature: Bagging, Boosting, Random Forest (RF), Support Vector 

Machines with both a linear kernel (SVM-Lin) and a Radial Basis Function kernel (SVM-RBF), 

Artificial Neural Networks (NN), Logistic regression and MDA.  

Bagging, whose name shortens “bootstrap aggregating” is a technique involving independent 

classifiers that uses portions of the data to then combine them through model averaging, 

providing the most efficient clustering results (Breiman, (1996)). It creates random new subsets 

of data through sampling, with replacement, from a given dataset, generating confidence-

interval estimates. The final objective of the bagging approach is to reduce class overfitting 

within the model. Their Bagging algorithm follows Breiman’s: first, a random bootstrap set, t, 

is selected from the parent dataset; second, classifiers, 𝐶𝑡, are configured on the dataset from 

step 1; further, steps 1 and 2 are repeated for t = 1, . . ., T.; finally, each classifier determines a 

vote 𝐶(𝑥) =  𝑇−1 ∑ 𝐶𝑡(𝑥)𝑇
𝑡=1  where x is the data of each element from the training set. In the 

last step, the class that receives the largest number of votes is chosen as the classifier for the 

dataset. 

Secondly, the Boosting technique consists of the repeated use of a base prediction rule or 

function on different sets of the initial set. Boosting builds on other classification schemes and 

assigns a weight to each training set, which is then incorporated into the model. The data are 

then reweighted. Boosting can apply the base classifier to find a model that better classifies the 

set, identified by a lower error rate in the training set. A derived algorithm, AdaBoost (“adaptive 

boost”) has proved powerful for classification prediction. AdaBoost initialises giving equal 

weights to all observations. Thus, the first sample is uniformly generated from the initial 

observations. After the training set, Xi, is extracted from X, a classifier Yi is trained on Xi. The 

error rate is calculated, considering the number of observations inside the training set. The new 

weight for each observation is based on the effectiveness of the classifier Yi. If the error rate is 

greater than a random guess, the test set is discarded, and another set is generated with the 

original weights. Alternatively, if the error rate is satisfactory, the weights of the observation 

are updated according to the importance of the classifier. These new weights are then used to 

generate another sample from the initial observations.  
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Further, the random forest technique (RF) is based on decision tree models, also known as 

generalised classification and regression trees’ (CART). It is particularly robust and allows for 

the presence of outliers and noise in the training set. Finally, RF identifies the importance of 

each variable in the classification results. Therefore, it provides not only the classification of 

observations but also information about the determinants of separation among groups. The RF 

technique follows an approach similar to bagging, as it repeatedly generates classification 

functions based on subsets. However, RF randomly selects a subset of characteristics from each 

node of the tree, avoiding correlation in the bootstrapped sets. The forest is built for several 

subsets that generate the same number of classification trees. The preferred class is defined by 

a majority of votes, thus providing more precise forecasts and, more importantly, avoiding data 

overfitting (Breiman, (2001)). 

Authors run the analysis on American and Canadian companies covering the 1985 to 2013 

period using Compustat. Furthermore, a subset covering 1985 to 2005 (133 bankrupt and 13300 

solvent) was extracted to provide the training set, which included information on 449 companies 

that filed for bankruptcy during this period as well as information on the same number of non-

bankruptcy firms. Insolvent firms in the training set include all companies in the database that 

filed for bankruptcy during this period and for which financial data were available three years 

prior to filing. The solvent firms were randomly chosen and were limited to companies that did 

not file for bankruptcy during the entire period and for which financial data for at least two 

consecutive years were available. They included variables following Altman (1968) and Carton 

and Hofer (2006): liquidity (X1), profitability (X2), productivity (X3), leverage (X4), and asset 

turnover (X5) (Altman, 1968); growth of assets (GA), growth in sales (GS), growth in the 

number of employees (GE), operational margin (OM), change in return on equity (CROE), and 

change in price-to-book ratio (CPB) (Carton and Hofer, 2006). As usual in the literature, two 

kind of accuracy measures are retrieved: Sensitivity, type I error, also called True Positive 

Ratio, measures the proportion of bankrupt firms correctly classified on the total number 

considered; Specificity, type II error, also known as True Negative Ratio, measures the 

proportion of solvent firms correctly classified. For lending purposes, it is firstly necessary to 

prioritize the minimization of type I error (increase sensitivity) in order to avoid losses (Ohlson 

(1980)). However, prioritizing type I error also bears the risk of limiting credit access to solid, 

creditworthy enterprises.  

Barboza et al. (2017) report a significant difference in performance between traditional 

statistical frameworks and the more advanced machine learning approaches. Specifically, 

looking at the overall accuracies registered in the training sample, it registered the superiority 
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of the Random Forest approach (87.06% accuracy) even though both boosting and bagging 

achieve very close levels (86.65% and 85.65% accuracy respectively). Logit model (76%) 

reaches the mean accuracy of SVM-Lin, SVM-RBF and NN (71.50%, 79.77% and 72.98%) 

while MDA displays quite poor results with just 52.18% average accuracy.  

To conclude the historical section, it is worth reporting Bellovary et al. (2007) conclusions, 

which, despite their relatively old date of publication, are still valid: a great amount of model 

has already been suggested and fine-tuned and high levels of accuracy with low number of 

ratios have been reached (Beaver (1966) reported 92% overall accuracy with just one variable 

employed). Thus, the challenge should not be now concerned with contrive and introducing 

new, more powerful frameworks but rather with finding the right paths to put the most 

promising models into practice.  

 

1.4 THE DEFINITION OF BANKRUPTCY 

A crucial issue for the identification of prediction models able to classify bankrupt and non-

bankrupt entities resides in the definition of bankruptcy itself. In other terms, as put by Ohlson, 

“one may ask a basic and possibly embarrassing question: why forecast bankruptcy?” (Ohlson 

(1980), p. 4). The question is all but trivial since behind it lies the need for better understanding 

what dynamics (losses, inefficiencies, non-suitable market/financial approach, etc.) should be 

avoided by lenders and practitioners alike while examining companies. Ohlson argument 

underlines that no obvious answers can be found and that, ultimately, the hurdle reflect the 

impossibility of reducing firms’ complex reality to a binary status: bankrupt and non-bankrupt. 

Alternatively said, there is not a simple and univocal way to determine exactly when a firm can 

be said to be defaulted. Most of the researches reported so far, interpret bankruptcy as the legal 

status attributable whenever some legal condition is recognised and thus processed (the 

condition being logically dependent on the jurisdiction considered). This incontrovertible legal 

status, however, can only be contemplated as the ‘lower bound’ of the bankruptcy definition. 

The real issue relates with deciding at which point, along the distance between “legally 

defaulted” and “sound”, should be set the discriminant boundary. As Ohlson asserts, empirical 

studies do not agree on what constitute “failure”, with definitions varying significantly and 

arbitrarily across studies.  

Correlated with above is the question on how to realistically interpret prediction model results. 

In this sense, Beaver (1966) posed an important argument: if accounting ratios are applied to 

detect financial “illness” of a firm, there may be many companies whose illnesses were detected 
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before failure occurred. If this is the case and an unknown proportion of them happens to be 

included in the data of the solvent entities, there may be the risk of overstating the model ability 

to predict bankruptcy. In other terms, there is again an incomprehension due to the complexity 

in determining the definition of bankruptcy. If in fact, a precise threshold for default 

classification was to be identified, Beaver’s problem would not stand because the actual 

proportion of firms saved just before irreversible complications would be known and thus a 

correct estimation of the model accuracy could be computed. Beaver decided to consider 

bankruptcy as the inability to repay interest and principal from liabilities due for both simplicity 

and need to limit as much as possible the drawback just mentioned.  

In line with the issue faced by Beaver (1966), Laswad, Kuruppu and Oyelere (2003) looked for 

prediction model aimed at classifying going concern from non-going concern corporations 

based on the probability for the firm to be facing liquidity procedures. The assumption behind 

the article refers to the fact that too many differences are present among bankrupt firms in 

different countries and that a framework with good generalization ability need to begin from 

more objective, shared elements. Such elements cannot be found in the definition of bankruptcy 

found in previous articles. They spot a critical problem in the bankruptcy prediction literature: 

there are profound differences in the legal determination and rights/obligations granted under 

bankruptcy acts among countries in the world. For instance, in the US where the insolvency 

laws are debtor oriented, corporate bankruptcy procedures encourage companies in financial 

difficulty to continue as going concerns. Therefore, it is possible for companies that file for 

bankruptcy to reorganise and emerge from bankruptcy, or to merge with another entity as a 

going concern. This is in contrast to the insolvency procedures in creditor-oriented countries 

such as the UK, Germany, Australia and New Zealand where liquidation is the most common 

outcome of corporate insolvency. So, to overcome the problem, they propose a prediction model 

based on liquidation risk rather than bankruptcy filing (inability to repay principal and interest 

of some sort of liability). Authors examined a total of 135 from the 1987 – 1993 period using 

the logit model. They show that their model outperforms Altman (1968) Z-score procedure in 

the overall accuracy achieved and thus could have great implications in credit-oriented 

legislations as those mentioned above.  

Laswad et al. (2003) stands as an example of how hurdles pertaining the definition of 

bankruptcy may be limited pursuing alternative solutions. Nonetheless, the prediction 

inaccuracy that results from it is still to be taken into account as an unknown factor in practice. 
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1.5 OTHER RELEVANT RESEARCHES: CORP. GOVERNANCE INDICATORS 

Accounting and financial ratios are not the only type of predictive variables tested in the 

literature. Following Liang et al. (2016), corporate governance indicators (CGI) also can be 

useful parameters to predict firms’ failure. In their comprehensive examination of the 

application of prediction models combining accounting ratios and CGI, they define corporate 

governance as the set of mechanisms, processes and relations by which corporation are 

controlled and directed by the chief team. Further, these are to be intended as integrated with 

internal and external control mechanisms allowing shareholders to exercise appropriate 

oversight on the company to ensure proper profitability levels. In such defined context, many 

corporate governance indicators (CGIs) have been identified in the literature which have been 

used for enhancing bankruptcy or financial crisis management. These can be broadly classified 

into five categories including board structure (e.g. Number of seats on board, number of 

directors, number of supervisors, etc.), ownership structure (e.g. Shareholding ratio of board, 

shareholding ratio of advisor, etc.), cash flow rights (e.g. Amount of investments in other 

enterprises divided by stockholder’s equity), key person retained (e.g. Turnover of spokesman 

within a month, Turnover of CEO within a month), and others. Authors research looks to 

compare prediction accuracies on financial ratios with and without CGI on five prediction 

models, namely support vector machines (SVM), k-nearest neighbour (K-NN), naïve Bayes 

classifier (NB), classification and regression tree (CART), and multilayer perceptron (MLP). 

Feature selection, to reduce irrelevant or redundant features by selecting more representative 

features having more  discriminatory power over a given dataset, is carried out applying five 

feature selection methodologies to find the most promising predictors (financial ratios and 

CGI): stepwise  discriminant analysis (SDA); stepwise logistic regression (SLR); t-testing; 

genetic algorithm (GA); and recursive feature elimination (RFE). Data were collected from the 

Taiwan Economic Journal for the years 1999–2009. The resultant sample includes companies 

from the manufacturing industry composed of industrial and electronics companies (346 

companies), the service industry composed of shipping, tourism, and retail companies (39 

companies), and others (93 companies). Consequently, the collected dataset is composed of 239 

bankrupt and 239 nonbankrupt cases, with each company represented by 95 financial ratios and 

95 CGIs as the input variables, to be filtered with the feature selection processes. Liang et al. 

(2016) report that overall Financial ratios show higher predictive ability compared to CGI alone 

but also that indeed the financial ratios and CGIs combination enhances the predictive power 

in all models examined. Furthermore, the best performing framework, that combines SDA in 
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the feature selection process and SVM, achieves an average 81% accuracy with a 16.3% type I 

error rate.  

A similar study was conducted the subsequent year by Elshahat I., Elshahat A. and Rao who 

compared the introduction of a corporate governance index against Altman’s Z-score 

framework. They include variables such as Board of Director’s characteristics, Board 

Committees, internal control and auditing systems add to the understanding of the firms’ 

corporate governance. Interestingly, they explain that corporate governance can be used as a 

comprehensive measure for the agency problems that directly affect the firm structure and 

survival and that in these terms corporate governance indices might be a good proxy for the risk 

brought about. For a one-year prediction window, authors find no significant differences for 

bankrupt and non-bankrupt firm accuracy averages between Altman (1968) data and z-score 

applied to their data. The inclusion of the corporate governance index, however, slightly 

improves the predictability of the bankrupt firms. Nonetheless, both prediction models, with 

and without corporate governance index, achieve an overall accuracy of about 69%. This, 

compared with Altman’s original 95% maximum accuracy, seems quite irrelevant even though, 

as they continue, Altman (1968) has been criticized for inconsistency in results many times in 

the literature. Thus, it is not always clear what role is actually performed by Corporate 

governance indices in enhancing models’ predictive ability.  

 

1.6 OTHER RELEVANT RESEARCHES: BLACK – SCHOLES – MERTON  

Another material branch of the bankruptcy prediction literature has to do with the application 

of market-based measures alone as predictive variable. An example of it is the study conducted 

by Hillegeist, Keating, Cram and Lundstedt in 2003 in which they compare Altman (1968) Z-

score and Ohlson (1980) O-score with an approach based on the Black, Scholes and Merton 

(BSM) option-pricing theory. Authors assert four main advantages in adopting a market-based 

model: first, the going-concern principle implies the assumption that firms will not go bankrupt, 

thus their data might be under/overstated; also, the conservativism principle often causes asset 

values as reported in financial statements, to be understated relative to their market values; 

third, accounting-based bankruptcy prediction models fail to incorporate a measure of asset 

volatility, crucial in in capturing the likelihood that the value of a firm will decline to such an 

extent that the firm will be unable to repay its debts; finally, accounting ratios can only be 

computed at financial statements publication (few times a year), with the logic consequence of 
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risking to timely alert of distress conditions, while market-based variables can be exploited with 

greater frequency. 

BSM starts from the intuition that equity can be viewed as a call option on the value of the 

firm’s assets. Thus, following their pricing model, the equation for valuing equity as a European 

call option is given by 

 𝑉𝐸 =  𝑉𝐴𝑒−𝛿𝑇𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2) + (1 − 𝑒−𝛿𝑇)𝑉𝐴  

with 𝑑1 =  
ln[

𝑉𝐴
𝑋

]+(𝑟−𝛿+
𝜎𝐴

2

2
) 𝑇

𝜎𝐴√𝑇
  and  𝑑2 =  𝑑1 −  𝜎𝐴√𝑡 

Where 𝑉𝐸 is the current value of equity; 𝑉𝐴 is current market value of assets; X is the face value 

of debt maturing at time T; r is the continuously-compounded risk-free rate; δ is the continuous 

dividend rate expressed n terms of 𝑉𝐴; and 𝜎𝐴 is the standard deviation of assets returns. Value 

of equity equation is modified for dividends and reflects that the stream of dividends paid by 

the firm accrue to the equity holders.  

The BSM model assumes that the natural log of future asset values is distributed normally as  

𝑙𝑛𝑉𝐴(𝑡) ~ 𝑁 [𝑙𝑛𝑉𝐴 + ( 𝜇 − 𝛿 −
𝜎𝐴

2

2
) 𝑡, 𝜎𝐴

2𝑡] 

where 𝜇 is the continuously compounded expected return on assets. 

From it, and following McDonald 2002 (p. 604), authors derive the probability that 𝑉𝐴(𝑇) < 𝑋 

that is 𝐵𝑆𝑀 − 𝑝𝑟𝑜𝑏 = 𝑁(−
𝑙𝑛

𝑉𝐴
𝑋

 +( 𝜇−𝛿−
𝜎𝐴

2

2
) 𝑇 

𝜎𝐴√𝑇
) which shows that the probability of bankruptcy 

is a function of the distance between the current value of the firm’s assets and the face value of 

its liabilities 
𝑉𝐴

𝑋
 adjusted for the expected growth in assets values ( 𝜇 − 𝛿 −

𝜎𝐴
2

2
) relative to assets 

volatility 𝜎𝐴. Authors included 756 bankrupted (chapter X, XI and XII filings) industrial 

companies during the 1980 – 2000 period and about 13 500 non-failed enterprises. Data was 

elicited from Moody’s Risk Services’ Corporate Default database and is comprised of only 

publicly traded companies. They find that Ohlson (1980) framework outperforms Altman’s 

(1968) in predictive accuracy reached. However, both show significantly lower predictive 

power compared with the BSM-prob model. A Vuong test certifies that BSM-prob display 

higher accuracy at the 1% significance level. Moreover, the pseudo-𝑅2for BSM-prob (0.12) is 

20% larger than for O-score (0.10) and twice as larger compared with Z-score (0.6) confirming 

the higher propensity of BSM-prob in capturing the probability of bankruptcy. 
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Hillegeist et al. (2003) attest that higher accuracy levels may be achieved considering market-

based parameters. However, the great limit to their analysis, and of the whole market-based 

prediction branch, is represented by the fact that only publicly traded entities can be taken into 

consideration. Thus, all small and medium size firms are excluded from the BSM-prob model 

and need to be included in other frameworks.  

 

1.7 OTHER RELEVANT RESEARCHES: MACROECONOMIC PARAMETERS  

An additional research stream in the corporate default prediction literature is constituted by the 

analysis of macroeconomic variables and their relationship with companies’ risk of failure. 

Related to it, an interesting article was published in 2010 by Zhou, Lai and Yen. They 

considered two sample (S1 and S2) with data obtained from the Fundamentals Annual Dataset 

of Compustat North America regarding 962 pairs of bankrupt and non-bankrupt companies, S1, 

and 227 bankrupt and 237 non-bankrupt entities for S2. Firms belong to non-financial sectors 

like energy, materials, industrial, consumer staples, utilities, automobiles, media and others. 

Further, data pertains to the 1980-2006 period. 23 financial ratios were selected following the 

best performing in the previous literature. Moreover, four macroeconomic indicators are also 

added as proxy for the general economic cycle. These are (US) GDP, to account for the country 

level trend; Personal Income Index, to take care of any significant fluctuation in aggregate 

goods and services demand; Consumer Price Index, to include any inflationary effects that 

might affect corporate operations; and M2 index, which reflect the amount of money supplied 

to the economy. Macro variables are employed in the form of year-to-year ratios other than 

absolute values: for instance, GDP for year t is defined as the proportional increment with 

respect to t-1 level. 𝐺𝐷𝑃𝑡 =  
𝐺𝐷𝑃𝑡−𝐺𝐷𝑃𝑡−1

𝐺𝐷𝑃𝑡−1
 . Authors, along with other popular models adopted 

as benchmarks, examine the impact of a popular configuration of the Neural Network 

framework: the Multilayer Perceptron Neural Network (MLPNN). MLPNN is typically 

composed of an input layer, one or more hidden layers and an output layer, each consisting of 

several neurons. MLPNN has the advantage of being relatively easy and versatile in identifying 

inner patterns. It started to be widely adopted after Hect-Nielsen 1987 who proved that a two 

hidden layers MLPNN can represent any continuous function mapping.  

Authors report that when macroeconomic parameters are included, models in general (MDA, 

Logit, CART, etc.) perform slightly better, with a maximum overall accuracy delta of just under 

2% points for the Logit model. Moreover, the most promising model seems to be MPLNN with 

an overall accuracy of 78.61% points when including macroeconomic indices. The benefit, as 
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they stress, coming from macroeconomic figures appears to be slight enough that they 

themselves call for further research to prove whether their adoption may be cost effective in 

terms of time spent and complexity added for academics and practitioners. 

On a similar path can be traced also the work of Ptak-Chmielewska (2019), who studies the 

influence of macroeconomic variables on small and medium enterprises (SME) in Poland. He 

specifically takes into consideration 1,138 SMEs operating in the industry, trade and services 

sectors, half defaulted in the 2002-2010 period and half successful. 16 ratios considered reliable 

by the previous literature are selected and successively filtered by a clustering variables 

procedure to avoid collinearity issues. The resultant six ratios (quick ratio, capital share in 

assets, current assets turnover, operating profitability of sales, net profitability of equity and 

inventory turnover) are then applied through the Logit model. The results of the logistic 

regression are successively confronted with the exact same model enriched with three 

macroeconomic variables: GDP, inflation rate and unemployment rate. Ptak-Chmielewska 

reports that the overall classification effectiveness was improved in the model with the 

macroeconomic variables. However, the benefit is significant in type II error while type I error 

(the one considered to be more important by most of literature researches) do not show any 

decrease achieving comparable values (33.4%, 33.7%, without and with macroeconomic 

parameters). Interestingly, as he points out, the application of the macro variables in the model 

displays improvements on the average classification of non-bankrupt companies. 

Thus, again macroeconomic figures seem to only slightly improve the prediction accuracy in 

the models applied so far in the literature. 

To conclude, a table with all relevant researches presented along with a brief description for 

each one of them. Only the section about ‘definition of bankruptcy’ is not included for it does 

not add any information on studies developed on the bankruptcy prediction topic but rather 

takes a different view angle from those already reported. 

LITERATURE UP TO 1966 – THE UNIVARIATE PHASE 

FitzPatrick 

(1932)  

Analyse 24 ratios from 29 industrial firms. The ratios were compared with 

their overall average to look for specific trends affecting failing firms 

Smith and 

Winakor 

(1935)  

Studies individual ratios contribution to bankruptcy prediction on a variety of 

industry sectors 

Merwin 

(1942) 

Reports that failing firms display signs of weakness starting as early as four or 

five years before failure looking at small manufacturers 



34 
 

Chudson 

(1945) 

Looks for patterns of companies’ financial structure in order to unveil if any 

factor follows ‘normal’, repetitive and visible sequences.  

Jakendoff 

(1962)  

Compared ratios of profitable and unprofitable firms to identify ratios 

individual role on bankruptcy 

Beaver 

(1966)  

Compared the mean values of ratios from 79 pairs composed by failed and a 

non-failed firm belonging to 38 industries.  

Pinches et 

al. (1975) 

Determining the hierarchical relationship among 48 empirically based 

financial ratio and proposing those with highest predictive ability 

Chen and 

Shimerda 

(1981) 

Conduct a research on the individual best performing ratios adopting Principal 

Component Analysis. 

FROM 1966 TO THE 1990S – THE MULTIVARIATE STATISTICAL PHASE 

Altman 

(1968) 

Introduces Multivariate Discriminant Analysis. His research is considered 

pioneering in the field and is treated as comparison benchmark 

Meyer and 

Pifer (1970) 

Run a multiple linear regression, with a dummy variable to discriminate 

between viable and less viable banks, based on 28 operating ratios and 4 

balance sheet groupings 

Wilcox 

(1973) 

Develops a binomial model applied to 52 pairs of bankrupted and non-

bankrupted industrial firms selected from the Moody’s Industrial Manual  

Bilderbeek 

(1977) 

Applied a step wise discriminant framework to classify 58 Dutch companies 

Martin 

(1977) 

Selects the logit model to conduct a research on early signs of banks failure 

commissioned by the Federal Reserve of New York 

Weinrich 

(1978) 

Aanalyse risk classes, based on six risk-related accounting ratios, in order to 

predict insolvency on German SME 

Ohlson 

(1980)  

Applies Logistic regression acieving 96,12 % accuracy. After Altman (1968) 

his research is considered pioneering 

Begley et 

al. (1997) 

Investigating the field performances that Altman (1968) and Ohlson (1980) 

models are actually able to reach. They find Ohlson to be the best performer 

Zimmer 

(1980) 

Looked at prediction accuracies achieved by loan officers in executing the task 

of making annual predictions of corporate failure based on a time series of 

ratios 

Frydman 

(1985) 

Among the first to apply Recursive Partitioning Algorithm (RPA) on 

Compustat firms 



35 
 

FROM THE 1990S TO PRESENT – THE ‘ADVANCED’ MODEL PHASE 

Bell et al. 

(1990) 

Introduce Artificial Neural Network for prediction purposes 

Cadden 

(1991) 

Compares Backpropagation Neural Networks with Multivariate Discriminant 

Analysis finding the former almost always overcaming the latter 

Luoma and 

Laitinen 

(1991)  

Apply Proportional Hazards model, in the settings designed by Cox (1972), on 

Finnish entities 

Tam and 

Kiang 

(1992) 

Compare KNN and ID3 with MDA, Logit and Backpropagation neural 

network on Texas banks 

Bryant 

(1996) 

Introduce Case-Base Reasoning and compares results with Ohlson (1989) 

finding higher accuracy 

Wallrafen 

(1996) 

Employs 73 ratios as random variables on German corporations through 

Genetic Artificial Neural Network 

Dimitras 

(1999) 

Apply Rough Set Theory on Greek companies  

Min and 

Lee (2004) 

Fine tune Support Vector Machines to 1888 Korean's SME  

Barboza et 

al. (2017) 

Compare Bagging, Boosting, Random Forest, Support Vector Machines, 

Artificial Neural Networks, Logistic Regression and Multivariate 

Discriminant Analysis 

OTHER RELEVANT RESEARCHES 

Liang et al. 

(2014) 

Thoroughly analyse CGIs and build a modle to exploit their predictive power 

Elshahat 

(2014) 

Combine Altman's Z-scores with corporate governance ratios with mixed 

results 

Hillegeist et 

al. (2003) 

Show high accuracies applying Black-Scholes-Merton based approaches for 

predictions 

Zhou et al. 

(2010) 

Includes GDP based measure to predict North America firms' bankruptcy and 

reports higher accuracy through the use of macroeconomic parameters  

Ptak-

Chmielews

ka (2019) 

Analysis of SME in Poland through 16 ratios including macroeconomic 

parameters 
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2.  DATA DESCRIPTION, ASSESSEMENT AND PREDICTION MODELS 

This chapter aims at describing the application of six statistical methodologies, namely Logistic 

regression, Support Vector Machines, K-Nearest Neighbour, Adaptive Boosting (AdaBoost), 

Decision Tree and XG Boost, to companies’ financial statements in order to predict bankruptcy. 

More specifically, after computing the relevant financial indices and checking for the 

correlation among them to avoid multicollinearity issues, the above models are trained and 

tested on purposely pre-processed data to retrieve the degree of accuracy per each model.  

To describe how the project was handled and conducted a first general description of the firms 

data will be carried out along with the Propensity Score Matching procedure, through which 

data is filtered to obtain an homogeneous starting point for prediction; secondly, it will be 

detailed how financial ratios are computed, assessed and built from Italian financial statements; 

finally, the application of statistical and machine learning methodologies is shown. 

 

2.1 DATA DESCRIPTION AND PROPENSITY SCORE MATCHING 

The following section will comprise a general and statistical description of the data used 

throughout the project. Furthermore, the Propensity Score Matching (PSM) procedure that has 

refined the initial non-defaulting dataset is presented. Specifically, the following topics will be 

undertaken: first, a description of the defaulting sample is set out; following, the PSM procedure 

is explained; at last, the description of the filtered non-defaulting firms’ sample is detailed. 

2.1.1 The Defaulting Sample 

Before delving into knowing the data exploited in the project, it is worth mentioning that data 

was treated via Excel, a Microsoft Office software and, more often, with Python, an opensource 

programming language featuring ease of use and flexibility. Further, included inside the Python 

framework, Numpy, Pandas and Matplotlib, have been among the packages most frequently 

applied.  

Data comprises 29711 non-defaulting firms and 424 failing entities. All companies are based 

in the Veneto region (North-east of Italy) but they do not necessarily have their major profits 

coming from the same geographical area. Ten years of financial statements, from 2009 up to 

2018, were elicited from each company. Financial statements include balance sheet and income 

statements in the Italian form. Data was retrieved from the AIDA database, a software 

belonging to the Bureau Van Dijk, a Moody’s Analytics company. Mentioned database easily 

enables to filter data from any entity based in Italy and to operate conditional selections, e.g. 
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geographical selections. For this study, it has been of particular utility the possibility of 

selecting the definition of failure wanted and applying it as further filter on data.  

In this context the definition of failure lays in the Italian ‘Concordato preventivo’ and 

‘Procedura concorsuale liquidatoria’. To this respect, ‘Concordato preventivo’ (Arrangement 

with creditors) is defined in the Italian Civil Code (art. 2221) as an insolvency procedure 

granted by law to the commercial entrepreneur who is in a state of irreversible insolvency, but 

who, at the same time, demonstrates that he possesses certain merit requirements in order to 

escape the negative consequences of bankruptcy. It consists of a formal agreement between 

debtor and creditors regarding the methods by which all obligations must be extinguished: the 

bankrupt debtor has to arrange the full payment of the privileged creditors and the payment of 

a share of the unsecured creditors. The offer that derives from it must be approved by the 

majority of creditors involved and ratified by the court. 

On the other hand, ‘Procedura concorsuale liquidatoria’ or simply ‘Fallimento’ (Failure), is 

established by the Italian Civil Code (art. 2221) in the event of insolvency from behalf of the 

commercial entrepreneur in order to ascertain the inability of the same to honour all its debts 

and the overall debt situation towards the various creditors. Its ultimate aim is that of liquidating 

all the assets of the company and distribute it according to the criterion of par condicio 

creditorum (without prejudice to legitimate causes of pre-emption). In order to satisfy the 

largest possible number of creditors, the entrepreneur's assets can be replenished with 

appropriate actions, in particular through the bankruptcy revocation. 

Each and every company set of data, for both failing and non-failing companies, includes 2455 

datapoints spread among ten years of financial statements items and other descriptive elements 

like business name, VAT number, ATECO classification (‘ATtività ECOnomiche’, business 

activities), a six figures code to identify the company business activity, ATECO description, 

province of the headquarter and number of employees.  

Geographically, the defaulted entities are located for the majority in Vicenza, 120 firms, and 

Padova, 96, provinces while the remaining are distributed as follows: 67 from Verona, 57 from 

Venice, 16 based in Rovigo province and 10 from Belluno. Here density in population is at 

play: Rovigo and Belluno are by far the least densely populated areas in Veneto and they thus 

display lower defaults. An interesting observation comes by looking at the national levels of 

defaults. In fact, the comparison with other Italian provinces indicates a higher than average 

rate of default in Veneto region. It is particularly impressive that, overall, the 2009-2018 period 

lists Vicenza and Padova inside the top five provinces for defaulted companies. This is 
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remarkable because Padova and Vicenza cannot be placed among the most densely populated 

areas in the Italian landscape. Such interesting evidence could be due to at least two reasons: 

the first relates to the physiognomy of the typical company in the north-east area in Italy and 

the second is linked to the recent failure of two major local Banks.  

Related to the former, Venetian companies are for the majority pertaining to what is defined, 

for total annual revenues, net income, overall value and number of employees, as small and 

medium enterprises (SME). Understanding the reasons and the implications behind this fact is 

beyond the scope of this analysis; nonetheless, said enterprises configuration can already 

explain why higher than average failing rate are, ceteris paribus, affecting this area. Indeed, 

SME tends to be more subjected to adverse economic conditions and fail more rapidly in higher 

numbers. Since the argument is being analysed in absolute number of defaults per province, 

then it comes plausible that the higher occurrences are related to it. Another probable reason, 

possibly added to the previous one, has to do with the recent default of two local major banks: 

Veneto Banca and Banca Popolare di Vicenza. The two institutions started displaying 

difficulties beginning from 2015, which may explain why Padova and Vicenza are so high 

ranking in these last, ensuing years. In fact, the lack of immediate liquidity granted by the 

banking partners and, more importantly, the loss of millions of euros in savings in the local 

economy, may have been leading factors in the default of many of the 424 firms taken into 

account in the analysis. Both conclusions, however, need further exploration.  

To better understand the composition of the defaulting firms, three major parameters can be 

helpful: Total Assets, EBIT (earnings before interest and taxes), and Net Income. To plot levels 

of the three measures the year 2009 is selected.This should bring at least two advantages 

compared with other years: first, many of firms included in the sample began filing for failure 

from 2013 and 2014, so that considering 2009 limits lack of data and better represents entities 

conditions; secondly, taking values too close to failure might affect the quality of data itself 

since it may already be gravely affected from the defaulting status.  

The following two charts present a comparison between EBIT in 2009 and Net Income in 2009 

(Figure 1) and between the same measures and Total Assets in 2009 (Figure 2). Values are 

reported in thousands of Euros and grouped per deciles (x-axis). The first histogram quite 

clearly depicts a struggling condition for eight out of ten deciles of companies. Indeed, the first 

three deciles show negative EBIT and Net Income while the first eight deciles report either 

negative or almost zero profits. Only the last two deciles of firms seem to produce positive 

outcomes both in terms of EBIT and profits. However, it seems clear that even the best 

performing, among the 2009 results, cannot sustain in the long term, the total levels of Assets. 
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In fact, focusing on the second chart, it stands the constant huge difference between Assets and 

EBIT and Profits. The sustainability of assets in the long term is a crucial aspect for firms 

survival: when a company ability of profiting from its activity cannot produce enough value to 

replace/develop its assets, it will be obliged to find new way of financing or, over years, declare 

failure. 

Though, the clarity offered by the two charts seems to be sufficient to draw conclusions, it is 

nonetheless crucial taking them as only a first attempt to describe the defaulting dataset. Indeed, 

at least two external variables may play a role in hiding more subtle conclusions that cannot be 

drawn from a chart based on absolute levels. First of all, it is important to bear in mind that a 

timing element may be distorting conclusions. This has to do with the fact that many of the 

defaulted companies have filed for default only from 2015 onward. Now, given that, following 

Ohlson (1980), five years before default a company may still be considered to be sound in its 

fundamentals on average, last deciles of the distribution might positively affect the whole 

scenario. Indeed, higher values, belonging to far-from-failure entities (the last deciles), may 

overestimate the actual levels when they are not considered. Secondly, there might be an 

historical reason as well: 2009 comes right in the middle of the Great Financial Crisis aftermath 

which may have caused a decrease in all performance indices in both failing and non-failing 

corporations.  

 

Figure 2.1 Comparison between EBIT 2009 and Net Income 2009, default dataset 
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Figure 2.2 Comparison: Total Assets 2009, EBIT 2009 and Net Income 2009, default dataset 

 

The first issue can be tackled by looking at the year-of-default distribution over all defaulted 

companies. The following table (table 1) display the year of default and the number of defaulted 

companies for said years.   

Table 2.1 Years of default and frequency in the default dataset 

2013 2014 2015 2016 2017 2018 2019 

102 97 67 25 20 38 77 

 

From Table 1 it can be appreciated that 37.5% (160) of defaulted companies filed for 

bankruptcy in or after 2016. These should be considered as sound companies in 2009 values for 

the reason explained before. 31.3% of the reported 37.5% (50 entities) belongs to the last three 

deciles in Figure 1, indicating that firms defaulting after 2016 seem to be evenly spread through 

all deciles in their 2009 data. However, if one looks at the mean per decile, related to the last 

three deciles of companies defaulted between 2016 and 2019 only, the timing issue starts being 

revealed. Indeed, the mean retrieved for the last decile of 2016-2019 firms reaches for EBIT, 

5086,3 (thousands of euros), almost one thousand points above the overall mean of the last 

decile alone (visible in chart 1). Similarly, the average Net Income stands at 2154,62 (thousands 

of euros) if computed in the same subsample, almost 400 thousand euros higher than the overall 

mean. Conversely, the eighth and seventh deciles exhibit a different behaviour: here the average 

contribution of 2016 onwards defaulted companies is very much in line with the mean value 

calculated with all defaulted companies. From such evidences on the last three deciles, it can 
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be concluded that the timing issue affects materially only the nineth decile of the distribution 

and thus chart 1 overestimates both EBIT and Net Income only in the last decile. Said 

overestimation is, again, result of choosing 2009 datapoints to describe the sample of the 

defaulting companies. 

On the other hand, the historical reason, linked to understanding whether charts 1 and 2 are 

effectively representing defaulting companies on average or, on the contrary, macroeconomic 

factors from the 2009 GFC are at play in the data, can only be resolved by comparing the charts 

with  non-defaulted companies data. This, for sake of simplicity will be carried out after the 

section related to the Propensity Score Matching procedure through which all 29711 non-

defaulting corporations have been filtered to better match the defaulting dataset.  

Lastly, to grasp the composition of the defaulting dataset it is worth examining the composition 

in terms of field of activity. To do so we can rely on the ATECO code which precisely bears 

the role of defining the sector to which a firm activity belongs to for fiscal purposes. ATECO 

is commonly composed by six figures that identify a specific industry sector by the following 

procedure: the first two figures pertain to the division, the third identifies the group, the fourth 

figure tells the class which is followed by the category and finally (sixth figure) by the 

subcategory5. Each subdivision deepens the specification of the economic sector to which the 

entity belongs to. For the purposes of this study, only the first figure is considered which provide 

an indication of the macroeconomic sector of membership. The following table (Table 2) 

reports the frequency per each ATECO first figure. 

Table 2.2 Frequency per each ATECO first figure 

0 1 2 3 4 5 6 7 8 9 

3 56 83 27 156 4 67 15 6 0 

 

ATECO 0 is composed by agriculture committed firms; ATECO 1 is mainly concerned with 

the textile, painting and packaging industries; the third macro group is then related to chemical 

and plastic-linked sectors; ATECO 3 counts a majority of furniture factories; then, the most 

numerous macro group has to do mainly with real estate related activities; ATECO 5 revolves 

to editorial communication and logistics; the seventh section is composed by enterprises mainly 

 
5 To complete the picture there must be mentioned that before any numeric subdivision there is an alfa 
division, the section, aimed at declaring the macro economic sector in which thee firm operates. The section 
same information, however, can be found in the first two figure, those considered in the study. These and 
other details can be found at www.codiceateco.it. 



42 
 

dependent on constructions; ATECO 7 comprises engineering and scientific activities;  ATECO 

8 includes goods exchanging commercial companies while, finally, ATECO 9, which does not 

belong to any of the 426 defaulting companies in the dataset, refers to entertainment firms.  

2.1.2 The Propensity Score Matching procedure 

Following Rosenbaum and Rubin (1983) in their examination on propensity scores in 

observational studies for causal effects, there is a key difference between randomized and non-

randomized experiments. If in randomized experiments, the results in the two treatment groups 

may often be directly compared because their units are likely to be similar, in nonrandomized 

experiments, such direct comparisons may be misleading because the units exposed to one 

treatment generally differ systematically from the units exposed to the other treatment. In other 

terms, any procedure applied to non-randomizable data carries the risk of being inconsistent, 

biased, due to the precise effect that the impossibility to randomize the sample builds into the 

model. To avoid this risk it can be helpful computing balancing scores to build a new, pseudo-

randomized initial sample. These can be described as functions, b(x), of the observed covariates 

x such that the conditional distribution of x given b(x) is the same for treated (z = 1) and control 

(z = 0) units. In this setting, the most trivial balancing score is b(x) = x, what actually happens 

in randomized experiments. Further, Rosenbaum and Rubin (1983) call the coarsest among the 

possible balancing score functions ‘propensity score’ and adduce five theorems whose 

conclusions may be summarized as follows: (i) The propensity score is a balancing score; (ii) 

Any score that is 'finer' than the propensity score is a balancing score; moreover, x is the finest 

balancing score and the propensity score is the coarsest one; (iii) If treatment assignment is 

strongly ignorable given x, then it is strongly ignorable given any balancing score; (iv) At any 

value of a balancing score, the difference between the treatment and control means is an 

unbiased estimate of the average treatment effect at that value of the balancing score if treatment 

assignment is strongly ignorable. Consequently, with strongly ignorable treatment assignment, 

pair matching on a balancing score, subclassification on a balancing score and covariance 

adjustment on a balancing score can all produce unbiased estimates of treatment effects; (v) 

Using sample estimates of balancing scores can produce sample balance on x. 

In this analysis, the propensity score concept conveniently suggests a procedure to filter the 

non-defaulting dataset making it more aligned with the defaulting sample6. Indeed, matching 

 
6 Rosenbaum and Rubin (1983) were primarily concerned with causal effects in observational studies, a topic 
not directly link with this thesis. Nonetheless, propensity score matching represents a valuable procedure to 
identify meaningful matches for defaulting firm on the basis of selected covariates and improve final results. 
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defaulting and non-defaulting firms on the basis of selected covariates should result in more 

comparable data sample and thus more reliable prediction results.  

To carry out the procedure, there was implemented the PyMatch Python package which deploys 

a specific instance called Matcher7. Matcher makes use of the logistic regression to compute 

the propensity scores. In general terms, Matcher follows this procedure: it splits defaulting and 

non-defaulting companies assigning binary values; runs a logistic regression on the basis of the 

given covariates; it then fine-tunes the relevant threshold from which scores are computed in a 

random fashion; compute all scores, for both types of firms; and finally, after ranking the 

obtained scores, search for the closest n non-defaulting matches looping over all defaulted 

entities. Python code related to this section is available in the appendix 1.  

For this project two covariates have been selected: Sales and Equity to total Assets. Sales was 

reported from the Italian “Ricavi vendite e prestazioni” while Equity to total Assets was 

computed as the ratio between “Totale Patrimonio Netto” and “Totale Attivo”. Such voices 

have been selected for their relevancy: Sales represents the overall dimension in operations a 

company is capable of reaching; Equity to total Assets, on the contrary, features the solidity in 

ownership that connotes a firm (it should indeed be intended as a sort of opposite index of 

leverage). Ultimately, choosing Sales and Equity to total Assets as covariates, determines 

matches operated on volume and ownership solidity dimensions. Here any match on the 

performance in profitability is purposely avoided for its high level of year by year variance and, 

more importantly, to let its implications and drivers be directly embedded in prediction models. 

As it can be seen from the code in appendix 1, only 2009 to 2015 data was loaded to be exploited 

with PyMatch. This fact relates with the choice of considering only the fifth year prior to default 

for all defaulted entities. The logic behind such choice looks at implementing the matching 

procedure avoiding data already affected by a failing condition. On average, as reported above, 

it is safe considering about five years before default to prevent it. Indeed, matching still-sound 

firm data brings the advantage of improving the capability of subsequently identifying those 

parameters that better describe a failing dynamics compared with a successful one. In other 

terms, examining the historical path followed by companies with similar fundamentals while 

still both in good shape, should simplify the recognition of the drivers towards default. 

 
7 PyMatch and its Matcher instance are open source resources available at github.com/benmiroglio/pymatch 
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Aside from the year-level distinction, only datapoints from the same year could be matched 

together, an additional subdivision, based on the ATECO code8, was put in place. For this 

purpose, ten sub classes were created based on the first figure of the code to give more 

importance to the business sector in which each firm operates. In this regard, matches could not 

fall outside the subgroup. At least one disadvantage and one advantage are brought about from 

this decision. The main disadvantage relates with the low overall number of companies included 

in the defaulting sample. Indeed, only considering the Veneto region does not guarantee enough 

datapoints to cover all subgroups. To understand the implication of this disadvantage it is 

sufficient looking at Table 2. From it, it is immediately clear that subgroup 9, the last reported, 

has no companies at all. This, in turn, prevents any subgroup 9 non-defaulting firm from been 

selected in the matching procedure and thus, no final prediction can be truly representative of 

it. Nonetheless, splitting on the base of the ATECO code increases similarities between the two 

types and thus refine the final prediction. This happens because increasing similarities, 

examining only similar sector companies in this case, permits a higher level of precision in the 

identification of the hidden drivers toward default for a specific enterprise. In other terms, 

further increasing similarities improves predictions by enhancing the predictive model training 

procedure. 

It is finally worth adding that a number of five non-defaulting entities were decided to be 

matched with every defaulted firm. Moreover, since companies defaulting years range between 

2009 and 2015, it is important to notice that the same non-defaulting entity can be selected for 

more than one defaulting company not just in the same year, because perhaps it represents the 

closest score of multiple defaulting datapoints, but also over multiple years. 

Before describing the results from the Propensity Score Matching procedure, it is needed to be 

pointed out that not all of the 426 failing companies were matched through the Matching 

instance. In fact, only for 395 could be computed propensity scores, while the remaining 31 

could not, with the subsequent impossibility of being matched. The reason behind is to be 

searched among the implications caused by the subdivision implied by the ATECO code 

summed to the year to year split: where the number of firms per group was not higher than two, 

the logistic regression could not figure out how to assign scores. To overcome such limitation 

a final piece of code was supplemented after the Matcher. The ‘Manual Matching’, as it was 

titled, proceeds as follows: first a python Data Frame with all the left-out defaulting firms is 

 
8 As already specified, ATECO first figure does not represent a specific macro business sector per se. Though, 
the so formed subdivision represents a practical methodology to increase feature similarities among matches. 
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created; it is then computed a scaling factor (
𝑆𝑎𝑙𝑒𝑠

𝐸𝑞𝑢𝑖𝑡𝑦 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
) to account for the scale 

difference between sales and equity to total assets data; after, the distance between the level of 

defaulting and non-defaulting firms covariates is computed, per each of the two covariates, for 

all non-defaulting companies; then, the sum of the distance registered from Sales and the scaled 

distance coming from Equity to Total Assets is carry out per each non-defaulting firm and a 

rank is established; finally, the five ‘closest’ non-failing entities, those showing at the top of the 

rank, are chosen as matches. Of the 31 left-outs however, only 10 found matches with the 

Manual Matching, all the remaining were discarded for low quality of data reported (they 

disclosed either zeros or missing values in great proportions).  

Thus, a total of 405 failing entities were matched with five non-failing firms for a total of 2430 

firms considered for prediction purposes.  

To check for the validity of the matches obtained, an Ordinary Least Square regression is run 

to determine whether a significant difference between the defaulting and non-defaulting groups 

is in place over the two considered covariates, Sales and Equity to total Assets. To do so, the 

OLS is configured so that as dependent variable was selected one covariate at the time while as 

independent variable was selected the dummy constituted by a vector of reflecting the failing, 

non-failing status of the two groups. If the dummy is determined to be statistically significant 

at 5% level, then a new OLS regression was run introducing a constant term, and keeping the 

dummy variable, to control for it. Results indicates that the failing/non-failing dummy is indeed 

significant at 5% level for Sales, without constant term (Figure 3), p-value at 0,1%, but becomes 

not statistically significant when the constant term is added, p-value at 6%. Since the p-value 

concerning the constant term is > 0,001 it can be concluded that it is statistically significant at 

the 5% level and it is thus appropriate preferring this model to the previous. On the other hand, 

when running the same OLS regression on Equity to total Assets, both options deliver a not 

statistically significant dummy with p-values of 12,3% without constant (Figure 4) term and 

9,4% with constant term respectively. In this case also the constant term is not statistically 

significant, p-value at 51,4%.  

In either cases, the dummy results to be not statistically significant, which implies that the two 

groups, failing and non-failing, do not display any difference with respect to either covariate: 

the Propensity Score Matching procedure has successfully combined data on the basis of the 

covariates. 
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Figure 2.3 The result from OLS regression on Sales with and without constant term (‘Default’ 

represents the dummy variable, ‘const’ the constant term). 

 

Figure 2.4 The result from OLS regression on Equity to total Assets with and without constant 

term 

 

2.1.3 The non-defaulting sample 

Since the analysis of the defaulting firms has already been conducted, it is now worth examining 

general features connotating the non-defaulting sample. Following the same approach applied 

above, a chart comparing 2009 mean levels of EBIT and Net Income distributed over deciles 

(Figure 5) and another adding total Assets to the picture (Figure 6), are reported.  

After just a quick look, it already become evident an interesting similarity between Figure 5 

and Figure 1. Indeed, after a first decile exhibiting high average loss levels in terms of both 

EBIT and Net Income, the subsequent deciles appear to remain at relatively constant low levels 

before an upsurge starting from the 9th deciles and boosted in the last percentiles. Curiously 

though, if the absolute values for EBIT are almost identical between defaulting (Figure 1) and 

non-defaulting (Figure 5) entities, with physiological differences that can be easily expected, 

what attract the attention should be the divergence in the levels of Net Income. In fact, almost 

every decile shows lower profits for the defaulting sample. Moreover, shifting the focus toward 

the comparison with the average total Assets quantities, again it can be concluded that the 

condition of the two samples remains almost indistinguishable, not just in terms of trend over 

deciles but also accounting for absolute values. Strikingly, it actually seems even slightly higher 

the level of total assets for defaulting companies, on average, than for non-defaulting ones.  

These two last considerations, fairly similar EBIT and total Assets and slightly lower levels of 

profits in a context of similar trend, can be the basis to try formulating an answer to the second 

issue raised above on the historical role of the GFC and its influence in the data. Observing the 

four graph, it can be concluded that though it is surely possible that the overall peculiar pattern 
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affecting all three variables and common to both samples may be resulting from the historical 

context, the difference in mean Net Income values indicates a clear delta in performance 

independent from the context per se. Rather, it signals a deterioration in the ability to generate 

profits of companies inside the defaulting sample with respect to their counterparts, on average, 

within the historical context of the GFC. 

It is finally worth adding a further consideration to the frame. Firstly, Figure 5 first two deciles 

depict the condition of those firms able to re-establish a flourishing activity and avoid default. 

It should be noted that these are precisely those companies whose ‘sickness’ was detected and 

cured before failure occurs, as in Beaver (1966), with the consequence of making harder the 

identification of distress drivers and thus carrying the risk of overstating the prediction model 

reliability.  

Figure 2.5 Comparison between EBIT 2009 and Net Income 2009, non-defaulting dataset 
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Figure 2.6 Comparison between Total Assets 2009, EBIT 2009 and Net Income 2009, non-

defaulting dataset 

 

Two additional features might be examined to deepen the analysis on data from both samples: 

a comparison of the geographical location of firms and the analysis of the average number of 

employees. To accomplish the geographical comparison, it is sufficient to integrate to the 

defaulting entities locations already set out the provinces where non-defaulting firms are 

headquartered. Table 3 shows the number of firms based in each province for both samples, 

resulted from the PSM procedure. 

Table 2.3 Headquarters of Propensity Score Matched firms by province in Veneto 

Province Belluno Padova Vicenza Venezia Rovigo Verona Treviso 

Failing 10 94 113 55 14 63 56 

Non-fail. 38 420 478 230 52 431 377 

Table 3 underlines that the vast majority of non-failing enterprises is located inside the 

provinces of Vicenza, Verona and Padova respectively, followed, not far behind, by Treviso. 

Except form Verona and Treviso, the results are in line with the failing firms’ geographical 

distribution. Covering all provinces is critical for prediction purposes. Indeed, training models 

while including all possible conditions, geographical in this case, ensure higher reliability in 

results when testing predictions on hold-out companies’ data. In particular, the presence of 

enterprises based and operating in more marginal locations like Rovigo and Belluno, guarantees 

specific parameters related to location of activities, to be indirectly included in the trained 

model, thus making it more reliable. Nonetheless, questions may arise on the actual number of 
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firms’ data effectively needed to avoid any form of overfitting towards more represented areas. 

This issue is however not further explored in this study due to the fact that the final frequency 

per province is not a primary concern when looking for predictions on the Veneto region as 

whole, given that all provinces are, in any case, represented. In other words, here is not critical 

a province balanced sample because all Veneto firms are actually assumed to share common 

basic feature (culture, management style, relation among firms, etc.) regardless from the 

province of origin. 

Secondarily, looking at the average number of employees might better contextualize the data 

that are going to be used to perform predictions afterward. To analyse it, the 5th year prior to 

default is taken into consideration for what concerns defaulting firms. The same rule is applied 

also to non-defaulting companies as follows: for each failing entity, the five Propensity Score 

Matched sound firms are selected and only the average number of employees belonging to the 

matching year, is considered (remark that the 5th year is precisely the one exploited in the PSM 

procedure). Therefore, eventually, only years from 2009 up to 2015 are reported (Figure 7). 

The chart shows average values for failing, non-failing and all companies together. As expected, 

blue bars always stand between the orange and the grey ones but closer to the latter given the 

higher number of occurrences between failing and non-failing entities (1 vs 5). Except for 2010, 

with lowest levels registered, and 2014, the highest on record, all other years exhibit a fairly 

similar level of average employment over the enterprises included in this study. Interestingly, 

the failing sample always display lower number of employees. This may indicate that on the 5th 

year prior to default, some sign of distress is already at play, which perhaps forces the 

management to cut costs, and substantially contradicts the belief, true to most of the relevant 

literature, of firms sounding fundamentals five years before default. However, some other, and 

possibly more subtle, process might determine the delta employees delineated in Figure 7. 

Indeed, if a deeper focus is pointed toward the dimension of companies considered, usually 

SMEs, it comes logically that bigger dimensions companies may misrepresent the average 

population of failing entities. Larger corporations can in fact be more resilient in hard times 

with respect to smaller ones due to more capital (assets, liquidity, etc.) to exploit before filing 

for bankruptcy. This fact may indicate that relatively big firms may endure more than five years 

before bankruptcy and that are thus to be considered above average inside the framework of the 

five years rule. Implication of this is that if on the one hand it can still be true that, on average, 

the 5th year prior to default bears no distress signs, on the other, above average entities may 

actually be already suffering. Now, given that usually, larger corporations hire more employees, 

it comes naturally that outliers, bigger than average companies, may be the reason behind the 
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smaller orange bars. To check for this possibility, Table 4 reports the weight of the last decile 

on the overall distribution of number of employees for those years reporting higher difference 

between failing and non-failing entities (2011, 2013, 2014 and 2015). Moreover, it also shows, 

in ‘Delta (absolute)’ denominated row, the absolute delta between the average in the last decile 

and the average computed on all other deciles (in brackets is also present the 1st nine deciles 

average). Two major observations can be drawn from it. first it is clear that the last decile plays 

a pivotal role in the determination of the final average number of employees. In this sense, it 

can be argued that for all four years, the last deciles represent a sort of aggregated outlier, which 

vastly affects the final outcome: a decrease in the last decile more than proportionally decreases 

the mean of the whole distribution. Secondly, it should be underlined that the weight seems to 

be directly correlated with the distance between the orange and grey bars. In fact, where the 

difference is larger in absolute terms (2014), the weight of the last decile is relatively heavier, 

whilst it is lighter for closer values (2015). Table 4 cannot be interpreted as a conclusive proof, 

nonetheless it concisely suggests that few companies may have a determinant role in explaining 

Figure 7 results. This, in turn, rejects the hypothesis of unreliability over the five years prior to 

default rule, confirming the literature argument.  

Figure 2.7 Number of employees on the 5th year prior to failure 

 

Table 2.4 Weight of last decile on years with greater difference in the number of employees 
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2.2 FINANCIAL RATIOS 

The following section is dedicated to the description of how financial ratios have been built 

from Italian statements and the successive assessment of their individual quality level. First, the 

structure of each ratio is described; then, the results from the univariate logistic regression are 

reported; third, Binning categorization, Weight of Evidence and Information Values valuation 

are carried out; finally, the examination of ratios interrelations is considered through correlation 

analysis. 

2.2.1 Financial Indices Composition 

The first crucial step to apply any prediction model has to do with the selection of the parameters 

that will then be useful for running prediction models. For the purposes of this study, said 

parameters ought to be found among the various financial indices that can be elicited from 

financial statements. 54 different ratios have been included, all retrieved from components of 

either Balance Sheet or Income Statement for each company. Table 5 reports all ratios 

employed (left-hand side of the table) along with their components (right-hand side). The first 

45 have been collected directly from Bellovary et al. 2007 summary research while the last 9 

from other authors analysed in the literature dedicated chapter. The table is conceived as 

follows: each element reported in Italian inside the ‘DESCRIPTION’ column features the actual 

quantity elicited from financial statements; when it happens to be marked by an asterisk (*) it 

is further defined in the bottom attached table. All components find their ultimate definition in 

Italian financial statements quantities. Moreover, the only difference between upper-cased and 

lower-cased components is referred to whether the component is an aggregate item (upper-case) 

in the statement or not (lower-case). For sake of clarity upper- and lower-cased items have been 

integrally transcribed. Python code tailored for the formation of indices can be found in 

appendix 2. 

Table 2.5 List of ratios employed and their components 

RATIO DESCRIPTION 

Net Income/Total Assets UTILE/PERDITA DI ESERCIZIO / TOTALE ATTIVO 

Total Debt/Total Assets TOTALE DEBITI / TOTALE ATTIVO 

Net Income/Equity Utile/perdita di esercizio / TOTALE PATRIMONIO NETTO 

Total Liabilities/Total Assets Total Liabilities* / TOTALE ATTIVO  

Inventory/Sales Var. rimanenze prodotti / Ricavi vendite e prestazioni 

Operating Income/Total Assets RISULTATO OPERATIVO / TOTALE ATTIVO 

Net Income/Sales Utile/perdita di esercizio / Ricavi vendite e prestazioni 

Long-term debt/Total Assets Totale debiti oltre l'esercizio / TOTALE ATTIVO 

Total liabilities/Equity Total Liabilities* / TOTALE PATRIMONIO NETTO 
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Operating expenses/Operating income COSTI DELLA PRODUZIONE / RISULTATO OPERATIVO 

Current Ratio Current Assets* / Current Liabilities* 

Working Capital/Total Assets Net Working Capital * / TOTALE ATTIVO 

Retained earnings/Total assets Utile/perdita a nuovo / TOTALE ATTIVO 

Current Assets/Total Assets Current Assets* / TOTALE ATTIVO 

Current Liabilities/Total Assets Current Liabilities* / TOTALE ATTIVO 

Current Assets/Sales Current Assets* / Ricavi vendite e prestazioni 

Working Capital/Equity Net Working Capital * / TOTALE PATRIMONIO NETTO 

quick ratio (quick ass/current liabilities) Quick Assets* / Current Liabilities* 

Sales/Total assets Ricavi vendite e prestazioni / TOTALE ATTIVO 

quick assets/Total assets Quick Assets* / TOTALE ATTIVO 

quick assets/Sales Quick Assets* / Ricavi vendite e prestazioni 

EBIT/Total assets RISULTATO OPERATIVO / TOTALE ATTIVO 

EBIT/Interest 
RISULTATO OPERATIVO / TOTALE PROVENTI E ONERI 
FINANZIARI 

Working capital/Sales Net Working Capital * / Ricavi vendite e prestazioni 

CFO/Total assets Cash Flow from Operations* / TOTALE ATTIVO 

CFO/Total debt Cash Flow from Operations* / TOTALE DEBITI 

CFO/Sales 
Cash Flow from Operations* / Ricavi vendite e 
prestazioni 

CFO/Current Liabilities Cash Flow from Operations* / Current Liabilities* 

CFO/Total liabilities Cash Flow from Operations* / Total Liabilities* 

Cash/Total Assets TOT. DISPON. LIQUIDE / TOTALE ATTIVO 

Equity/Total Assets TOTALE PATRIMONIO NETTO / TOTALE ATTIVO 

Total Debt/Equity TOTALE DEBITI / TOTALE PATRIMONIO NETTO 

Cash/Current Liabilities TOT. DISPON. LIQUIDE / Current Liabilities* 

Equity/Total liabilities TOTALE PATRIMONIO NETTO / Total Liabilities* 

no-credit interval (Current Ass/Daily 
Operating expenses) 

Current Assets* / (COSTI DELLA PRODUZIONE/365) 

Asset Turnover 
Ricavi vendite e prestazioni / [(TOTALE ATTIVO (t-1) + 
TOTALE ATTIVO (t)) /2] 

Return on Total Asset RISULTATO OPERATIVO / TOTALE ATTIVO 

Ebitda/EBIT EBITDA* / RISULTATO OPERATIVO 

CFO/EBIT Cash Flow from Operations* / RISULTATO OPERATIVO 

Tax Expenses/EBIT 
Totale Imposte sul reddito correnti, differite e anticipate 
/ RISULTATO OPERATIVO 

Other Revenues/Total Produced Value  Altri ricavi / TOT. VAL. DELLA PRODUZIONE 

Cash Flow ratio Cash Flow from Operations* / Current Liabilities* 

Interest Coverage EBTDA* / TOTALE PROVENTI E ONERI FINANZIARI 

Cash Flow from Operations Cash Flow from Operations* 

log(Total Assets) Log (TOTALE ATTIVO) 

Turnover Payables 
Cost of Good Sold* x 1,22 / (Fornitori entro + Fornitori 
oltre) 

Turnover Receivables 
Cost of Good Sold* x 1,22 /  (Cred. vs Clienti entro + Cred. 
vs Clienti oltre) 

Turnover Inventory 
(COSTI DELLA PRODUZIONE - Incrementi di immob.) / 
TOTALE RIMANENZE 
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Acid Ratio 
(ATTIVO CIRCOLANTE - TOTALE RIMANENZE) / Current 
Liabilities 

Net sales/Cash from sales Ricavi vendite e prestazioni / Cash from Sales* 

Sales/Net Account Receivables 
Ricavi vendite e prestazioni / Total Customer 
Receivables* - Svalut. crediti 

CFO/Financial Debt 
Cash Flow from Operations* / (Banche entro + Banche a 
lungo + Altri finanziatori entro + Altri finanziatori oltre) 

Fixed Charges Cash Coverage 
(Delta Principal* + Totale Oneri finanziari + Cash Flow 
from Operations*)  / Current Liabilities* 

Fixed Charges EBIT Coverage 
(Delta Principal* + Totale Oneri finanziari + RISULTATO 
OPERATIVO) / Current Liabilities* 

*** *** 

* Total Liabilities TOTALE PASSIVO - TOTALE PATRIMONIO NETTO 

* Current Assets 
TOT. DISPON. LIQUIDE + Crediti a breve + CREDITI FIN. A 
BREVE + TOTALE RIMANENZE 

* Current Liabilities 
DEBITI A BREVE + Obblig.ni entro + Obblig.ni convert. 
entro 

* Net Working Capital Current Assets - Current Liabilities 

* Quick Assets Current Assets - TOTALE RIMANENZE 

* Cash Flow from Operations EBITDA* - Delta Net Working Capital* 

* EBITDA RISULTATO OPERATIVO + TOT Ammortamenti e svalut. 

* Delta Net Working Capital Net Working Capital (t) - Net Working Capital (t-1) 

* Cost of Good Sold 
Materie prime e consumo + Servizi + Godimento beni di 
terzi 

* Cash from Sales 
Ricavi vendite e prestazioni - Delta Customer 
Receivables* 

* Delta Customer Receivables 
Total Customer Receivables* (t) - Total Customer 
Receivables* (t-1) 

* Total Customer Receivables Cred. vs Clienti entro + Cred. vs Clienti oltre 

* Delta Principal Principal* (t) - Principal * (t-1) 

* Principal 

Obblig.ni entro + Obblig.ni oltre + Soci per Finanziamenti 
entro + Soci per Finanziamenti oltre + Banche entro + 
Banche a lungo + Altri finanziatori entro + Altri 
finanziatori oltre + Titoli di credito entro + Titoli di credito 
oltre 

 

In general, the most important characteristic of financial indices concerns with the high level 

of comparability between different companies that they allow. Indeed, the primary reason why 

they can be adopted for prediction goals, as in this research, is precisely linked to the possibility 

of uniformly treat all datapoints regardless of the underling dissimilarities (firm structure, 

indices components absolute levels, etc.). Further, since each single ratio expresses only a 

specific feature of the data being analysed, it logically follows that the combination and use of 

multiple indices could be a reliable way to look at multiple characteristics on all companies’ 

data altogether. In other words, the adoption of indices is key for the employment of 
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multivariate models, able to combine numerous ratios and thus aggregate the (comparable) 

knowledge they carry. Nevertheless, before applying any multivariate technique, it is essential 

conducting an examination of both the quality and interconnectedness of ratios. This would 

bring two main benefits: first, the identification of ratios individual ability to predict bankruptcy 

can already indicate which items is best to include in the multivariate approach as well as set a 

minimum level of accuracy that needs to be overcome by multivariate techniques; second, the 

determination of the correlation level of each financial ratio with all others can clarify the need 

to select some items against their correlated counterparties to avoid multicollinearity9 issues. 

To achieve them, three analysis are pursued: a univariate logistic regression, to look for the 

individual performance in prediction; a binning categorization followed by the computation of 

each bin weight of evidence and information value, to further explore each index ability to 

perform predictions; and an average correlation classification, to, again, prevent any 

multicollinearities due to indices carrying similar information. 

2.2.2 Univariate Logistic Regression analysis 

For the univariate logistic regression, the average index value of four years prior to default were 

considered. For non-defaulting firms, the identification of the four years is accomplished by 

considering as reference year the defaulting year for the matched bankrupt entity. To clarify, 

the five non-failing enterprises matched with the same failing firm through the Propensity Score 

procedure, take as reference year the defaulting year of the failing firm. From the reference 

year, the average value of the index is computed including the previous four years data. 

Whenever four years were not available10, only three years were taken into account. Average 

values, collected in a matrix composed by as many rows as companies and columns as ratios, 

are then employed to run the univariate logistic regression.  

 
9 To understand the issue related with multicollinearity few lines from M. P. Allen, 1997, Understanding 
Regression Analysis, are reported: ‘Other things being equal, an independent variable that is very highly 
correlated with one or more other independent variables will have a relatively large standard error. (…) 
Multicollinearity exists whenever an independent variable is highly correlated with one or more of the other 
independent variables in a multiple regression equation. Multicollinearity is a problem because it undermines 
the statistical significance of an independent variable. Other things being equal, the larger the standard error of 
a regression coefficient, the less likely it is that this coefficient will be statistically significant.’ (p. 176, M. P. 
Allen, 1997, Understanding Regression Analysis, published by: Springer, Boston, MA). 
10 The unavailability of all four years occurred only to those indices computed through the use of delta 
components and only for companies with 2013 as reference year. Delta components are those items resulting 
from the difference between the value of the index at time t and the same index at time t-1. Example of this 
class of indices can be Cash Flow from Operations which results from EBITDA - Delta Net Working Capital, 
where the latter, a delta component, is precisely defined as Net Working Capital (t) - Net Working Capital (t-1).  
These indices lack from the 2009 values because delta components cannot be computed for 2009 (t) since no 
records are available for 2008, (t-1). 
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The model entails three steps to be undertaken: data pre-processing; the selection of the relevant 

parameters (solver function, proportion of train and test sets, etc.); and the definition of the 

measures of performance. 

Data pre-processing, the procedure that takes care of the arrangement of data to ensure model 

efficiency and reliability in results, has been conducted on outliers and missing values (also 

known as NaN values inside the Python framework). In practice, pre-processing was handled 

as follows: first, outliers have been spotted by standardizing all values from the 4 years averages 

matrix, index by index, through the relation 𝑧 =  
𝑥−𝑚

𝑠𝑑
 (where z is the standardized value, x the 

initial value, m the mean of all values and sd the standard deviation) and looking for |𝑧|  > 3; 

secondly, all spotted outliers are converted into NaN values and the matrix is restored to the 

initial values; and finally, all missing values are filled with the mean of all other values in the 

same column (where each column is related to a specific financial index). 

Afterwards, the selection of the relevant parameters was performed. In this case, two parameters 

have been modified from the default settings11. First, the ‘solver’ of the Logistic Regression 

Class has been set to ‘lbfgs’ in accordance with the best performing solver for the available 

samples. Solver is the name of the algorithm portion assigned to carry out the computational 

task involved with the application of the logistic regression. Lbfgs refers to the limited-memory 

version of the BFGS, the iterative method for solving unconstrained nonlinear optimization 

problems based on the work of Broyden, Fletcher, Goldfarb and Shanno12. Secondly, the test 

size proportion was changed to 0.25 to result in a division of 75% of items randomly selected 

for the training set and 25% kept as hold-out testing sample. 

Finally, five measures of performance are considered: a confusion matrix reporting the number 

of True Negatives, non-defaulting companies correctly predicted, False Negatives, non-

defaulting companies predicted as failing, True Positives, failing firms correctly spotted, and 

False Positives, defaulting companies predicted as non-defaulting (Figure 8 shows the 

conventional format for confusion matrices); the Recall measure (also known as sensitivity or 

true positive rate) or the ability of a model to find all the relevant cases within a dataset, is 

defined as the number of True Positives over the total occurrences of Positives (True Positives 

+ False Negatives); the Precision measure (also known as positive predicted value), or the 

 
11 The settings in question relates to those provided by Sklearn.linear_model.LogisticRegression, an opensource 
python based statistical package that can be recovered from https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
12 More on this topic can be found on Saputroa and Widyaningsih (2017) paper available at 
https://aip.scitation.org/doi/pdf/10.1063/1.4995124 
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ability of a classification model to identify only the relevant data points, is defined as the 

number of True Positives to the total number of predicted Positives (True Positives + False 

Positives); the Accuracy measure, entailing the aggregate performance of the model in 

prediction, is defined as the sum of True Positives and True Negatives to the sum of all Positives 

and all Negatives (TP + FP + TN + FN), which, in other words, refers to the frequency of the 

correct predictions; and the Receiving Operating Characteristics Area Under Curve (ROC 

AUC), equal to the probability that a classifier will rank a randomly chosen positive instance 

higher than a randomly chosen negative one (assuming 'positive' ranks higher than 'negative').  

 Figure 2.8 the Confusion Matrix conventional format 

 

 

 

 

For sake of clarity, only two among the 54 financial ratios will here be presented in their results. 

All results can however be explored in appendix 3. Also, Python code referred to the univariate 

examination of indices can be found in the same appendix, right after results. For the univariate 

logistic regression sklearn opensource package was employed. 

The two selected ratios are Net Income to Total Assets (NI-TA) and Working Capital to 

Equity13 (WC-NW). The former resulted to be among the best individual performers while the 

latter displayed lower than average achievements. This difference should be helpful in marking 

pros and cons of the measures of performance considered.  

First of all, both confusion matrices are transcribed (Table 6). Divergencies are immediately 

visible: if, on the one hand, NI-TA shows 430 True Negatives and 90 True Positives, with a 

total of 520 correct predictions; WC-NW, on the other only stands at 121 correct predictions 

with 117 True Positives and only 4 True Negatives. Moreover, although WC-NW seems to 

perform better than NI-TA in terms of False Negatives (0 against 27 respectively), the opposite 

situation occurs for the False Positives but at higher order of magnitude (a staggering 487 for 

WC-NW versus 61 for NI-TA). Overall, the two confusion matrices, who both total 608 cases 

(the number of cases grouped inside the test set), suggest a situation in which False Negatives 

are more easily handled while False Positives are missed at much higher frequency by the logit 

 
13 From now on Equity will be reported as ‘Net Worth’. From it ‘WC-NW’. 
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model. In addition, they already convey the intuition of a better performing NI-TA against WC-

NW. 

Table 2.6 Confusion Matrices for univariate NI-TA and WC-NW. 

WC-NW 

4 487 

0 117 

 

The second performance measure is Recall (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
). NI-TA reaches 

0.822497 (82%) as result of the 27 incorrectly predicted False Negatives. WC-NW, on the other 

hand, overcomes it achieving 100% recall. Logically, zero errors in terms of False Negatives, 

come at the cost of increasing the rate of False Positives.  

Further on, Precision (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
) is reported. Here, a reversed scenario is 

depicted: NI-TA records 0.768473 (77%) while WC-NW only generates a precision of 

0,2402464 (24%).  

From Recall and Precision measures, again, it can be pointed out that the logit model performs 

better on the identification of False Negatives than False Positives, which is why Recall 

outperforms Precision in both indices. 

The fourth and most comprehensive measure of performance is Accuracy 

(
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑠

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
). As expected, NI-TA accuracy, at 0.855263 (86%) outruns WC-NW’s, 

at 0.199013 (20%), due to mainly WC-NW inability to correctly classify False Positive cases. 

Finally, the last measure of performance is given by the area under curve, where the curve in 

question is the receiving operating characteristics curve. It charts the False Positive Rate 

(
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) against the True Positive Rate (the Recall measure). Moreover, a 

dotted line representing the diagonal is visualized to compare the curve against its halfway 

level14. The comparison against Figure 8 and Figure 9 confirms the conclusion obtained through 

the accuracy measure. First, the curve for NI-TA increases faster than WC-NW toward high 

level of TPR while keeping low the FPR. Secondly, NI-TA AUC (0.88) more than doubles WC-

NW’s, confirming the higher reliability on the logit model applied with NI-TA. 

 
14 Indeed, a ROC curve precisely lays on the diagonal would imply an AUC of 0.5. 

NI-TA 

430 61 

27 90 
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Figure 2.8 ROC AUC for Net Income 

to Total Assets 

 

 

 

 

 

 

 

Figure 2.9 ROC AUC for Working 

Capital to Net Worh 

 

 

 

 

 

 

2.2.3 Binning, Weight of Evidence and Information Value 

In general, binning can be defined as a categorization process aimed at transforming a 

continuous variable into a small set of groups (also known as bins). It usually serves the purpose 

of reducing the scale of data being used to better examine the prediction ability of a variable (a 

financial ratio) inside a model15, prior to the application of the model itself. Usually, in presence 

of multiple potential parameters to be included in a multivariate prediction model (as this case 

 
15 More on binning can be found in Zeng (2014), A Necessary Condition for a Good Binning 
Algorithm in Credit Scoring, available at 
https://www.researchgate.net/profile/Guoping_Zeng/publication/264455896_A_Necessary_Condition_for_a_
Good_Binning_Algorithm_in_Credit_Scoring/links/5675770908aebcdda0e46b34.pdf 
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entails), binning introduces the sequence of procedures to eventually compute the Information 

Value through which operate a selection among all variables available16.  

After the creation of bins to summarize the distribution of a specific parameter, the Weight of 

Evidence (WoE) for each bin can be computed. WoE is defined as ln (
% 𝑜𝑓 𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡𝑠

% 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
), where 

the numerator indicates the frequency of non-occurrences of the considered bin against all non-

occurrences related to the observed variable (
𝑛 𝑜𝑓 𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖

∑(𝑛 𝑜𝑓 𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖) 
) and the denominator 

refers to the frequency of occurrences against all occurrences of the variable 

(
𝑛 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖

∑(𝑛 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖) 
). Specifically, non-occurrences are to be assigned to the number of non-

defaulting firms while occurrences to defaulting ones. The natural logarithm establishes how 

WoE results should be read: if WoE < 0, then the percentage of default occurrences exceeds the 

percentage of non-defaults, else the opposite holds17.  

Finally, with the availability of frequency of non-events and events and WoEs, the Information 

Value (IV) for each bin can be calculated. IV is defined as  

∑(% 𝑛𝑜𝑛 − 𝑒𝑣𝑒𝑛𝑡𝑠𝑖  −  % 𝑒𝑣𝑒𝑛𝑡𝑠𝑖) ∗ 𝑊𝑂𝐸𝑖 and represents an aggregate measure of the 

quality of a certain variable for prediction objectives. 

Similarly to the univariate section above, to illustrate binning, WoE and IV only three ratios 

have been selected: Net Income to Net Worth (NI-NW), CFO to Current Liabilities (CF-CL) 

and EBIT to Total Assets (EB-TA). Again, all other ratios results, along with Python code 

applied can be found in appendix 4.  

As a first step, binning is applied. In this case bins have been made corresponding to the deciles 

of the distribution of both indices. Following, for every decile it has been calculated the 

frequency of failing and non-failing companies and results have been charted in Figure 10, 11 

and 12. Charts report on the y-axis the proportion of failing companies and on x-axis the 

sequence of deciles. What is more, a red dotted line is added as to show the best fitting line for 

all ten points.  

The graphs already represent an initial proxy to assess the quality of the ratio for predictive 

purposes. Indeed, it can logically be assumed that ratios displaying higher concentration of 

default events in the first (last) deciles and lower in the last (first) ones, convey the knowledge 

 
16 In this project, the procedure adopted cannot be technically reminded to the binning concept since no 
continuous variable is considered. Nonetheless, given the similarity with the binning process, it will continue to 
be referred to as binning. 
17 Where the rare result of ln(1), is considered to be not interesting. 
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of higher risk of default for ratio values belonging to the initial (final) part of the distribution. 

In principle, the bigger the gap between the higher defaults zone and the lower default zone, 

the more precisely the prediction should result. Instead, whenever the ratio distribution of 

default frequencies deviates from describe pattern, the prediction model becomes either more 

complex or less reliable.  

In Figure 10, EB-TA does in fact show a behaviour pretty close to the ideal: a high concentration 

of defaulting cases appears only on the first three deciles while from the fourth onward, a clear 

decrement in bankruptcy events occur. CF-CL instead, seems to follow a much less linear 

pattern: firstly, the scale of difference between the high and low frequency zones is much 

smaller than EB-TA; moreover, the overall trends appears to be more chaotic and thus less 

interpretable and reliable in prediction. Finally, Figure 12 reports the distribution pattern 

followed by NI-NW. Although at first glance the model does not seem to follow the ideal 

pattern, the overall accuracy it registers reaches 75,8%, one of the highest of all recorded via 

the univariate logit. The reason of it has to be looked for in Figure 12: tough there is not only a 

single high frequency of default zone, the two displayed are pretty concentrated in the first and 

last deciles. What is more, the gap between the high frequency zones and the low one is 

material. In this case it can be concluded that the variable can be highly performing in 

predictions even though the predictive model cannot follow a linear approach. Accuracies 

confirm the reasoning: EB-TA, 83,8%; CF-CL, 28,9%; NI-NW, 75,8%. 

 

Figure 2.10 Binning chart for EB-TA 
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Figure 2.11 Binning chart for CF-

CL 

 

 

 

 

 

 

Figure 2.12 Binning chart for NI-

NW 

 

 

 

 

 

 

From the charts is also clear the role of the line of best fit (dotted red): its slope absolute level 

can be interpreted as a proxy for eliciting whether the ratio is either linearly reliable or not. In 

other terms, it signals whether the index can be a ‘good’ candidate for linear prediction 

approaches (high absolute slope) or ‘bad’ one (low absolute slope), where ‘bad’ indicates either 

low quality or higher level of complexity for it to elicit valuable knowledge.  

After the binning procedure is applied, WoE values are computed and the overall IV is 

generated. To illustrate it, Table 7 shows the results obtained per each decile considering EB-

TA.  
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Table 2.7 WoE and IV computation procedure results for EB-TA 

Decile # of non-events # of events % of non-events % of events WoE IV 

1 83 160 4,10% 39,51% -2,266 0,802 

2 132 111 6,52% 27,41% -1,436 0,300 

3 196 47 9,68% 11,60% -0,181 0,003 

4 215 28 10,62% 6,91% 0,429 0,016 

5 222 21 10,96% 5,19% 0,749 0,043 

6 221 22 10,91% 5,43% 0,698 0,038 

7 232 11 11,46% 2,72% 1,439 0,126 

8 242 1 11,95% 0,25% 3,879 0,454 

9 242 1 11,95% 0,25% 3,879 0,454 

10 240 3 11,85% 0,74% 2,773 0,308 

Total 2025 405    2,416 

 

After the computation of all financial indices IVs an important issue is to understand how to 

interpret them. If on the one hand, the benefit brought by IVs can be easily recognized when 

comparing ratios predictive quality, on the other, it is not immediately comprehensible how to 

evaluate IV in absolute terms (or, better, relatively to other studies comparable results). Indeed, 

as pointed out above, the higher the IV score the more performing the index should be. This 

principle allows for ranking all ratios and run prediction trials on different numbers of ratios 

always including the best performers. Nonetheless, without any other comparable data, also 

retrieved outside of this study, nothing can be said by IVs per se18. 

It can be however useful to look at the sorted distribution of the obtained IVs to shed light on 

its boundaries and relevant thresholds. To do so, Table 8 exhibit the decile of IVs distribution. 

Table 2.8 Deciles from the sorted distribution of all financial ratios IVs 

1 2 3 4 5 6 7 8 9 10 

0,0619 0,1018 0,1227 0,16560 0,2395 0,44846 0,68317 0,83129 1,73791 2,81963 

 

2.2.4 Correlations among financial indices 

The third and final examination undertaken is related with the observation of all interrelations 

each ratio demonstrates with all others. This is of particular importance to avoid including in 

 
18 Siddiqi (2006) is one of the few authors found to report thresholds to interpret IVs in the credit scoring field. 
His results however, cannot be applied to this context for the differences between the treated topics  
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the predictive model, indices carrying the same fundamental information. In other terms, 

whenever two or more ratios, belonging to the same firm, exhibit a fairly similar behaviour over 

time, it logically follows that the knowledge they bear, shares some affinity. Further, such 

affinity increases with the level of correlation. Then, if a certain correlation threshold is 

overcome the issue known as multicollinearity might appear, along with the consequences 

discussed above.  

In practice, all correlations have been computed with the Pearson method through the ‘.corr()’ 

instance available in the Pandas package19. Pearson correlation coefficient for a population is 

defined as 𝜌(𝑋, 𝑌) =  
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
, where the numerator corresponds to the covariance between X 

and Y variables and the denominator normalizes the numerator through X and Y standard 

deviations.  

All Python code created to compute correlations is available in appendix 5.  

To achieve a matrix with all average correlations among indices, the following steps have been 

executed: first, to ensure a reliable measure, only non-defaulting companies are included in the 

computation, thus all bankrupt companies’ ratios are discarded20; second, to account for those 

indices derived by ‘delta components’ (explained above), only the period between 2010 and 

2018, extremes included, is taken into account; third, a correlation matrix is computed for all 

remaining firms through the .corr() instance; finally, a comprehensive correlation matrix is built 

by averaging out all single firms matrices. The comprehensive matrix is thus the average of all 

correlations computed for each and every company considered.  

To complete the picture, it is worth mentioning how missing values and ‘inf’ values, deriving 

from ratios with null denominator, were handled during the steps. ‘Inf’ values have been 

considered as missing value altogether because of evidences in the initial data. As example of 

this, ‘Inventory/Sales’ suffers by the presence of inf values in the ratios belonging to multiple 

companies and, per each firm, over multiple years. This results from Sales (the Italian ‘Ricavi 

vendite e prestazioni’) being null inside financial statements. Now, null Sales over multiple 

years can either indicate that the company is not set to engage with any kind of customer, 

typically useful for legal purposes only, or that the values comes from some form of simplified 

financial statement, usually granted to firms within certain produced values. In both cases it is 

 
19 More on the .corr() instance can be found inside the Pandas documentation available at 
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html 
20 Discarding all defaulting entities’ ratios give more reliability to the final correlations since the failing 
condition may affect the relationship among ratios in ways not dependent to the underline, true relationship. 
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fair considering null values on sales as a missing value. Missing values, on the other hand, have 

been simply discarded in every step of the process to limit any effect deriving, for example, 

from filling their values with means or medians from the distribution of each ratio. 

To show the results obtained from the correlation Table 9 and Figure 13 report the average 

correlations and their graphical representation, respectively.  

Table 2.9 Average correlation among five selected financial ratios 

 

 

Figure 2.13 Graphical representation of five selected financial ratios average correlation 
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The chart shows the graphical representation of the ten selected financial ratios average 

correlation with each other (indices have been limited to five only for allowing a clearer 

representation). Whilst the diagonal, which should report  𝜌(𝑋, 𝑋) =  
𝑐𝑜𝑣(𝑋,𝑋)

𝜎𝑋𝜎𝑋
 = 1, given that 

both numerator and denominator equal to the variance of X, shows the distribution of the index, 

all other cells display the direction of covariance between X and Y. 
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2.3 PREDICTION MODELS 

This section explains the procedure aimed at applying multivariate prediction models. It 

comprises three main steps: the creation of ‘priority lists’; their refinement through the 

‘correlation funnel’; and the actual application of six prediction models (Logit, Support Vector 

Machines, K Nearest Neighbour, AdaBoost, Decision Tree and XG Boost). Figure 14 

schematizes the steps followed to carry out predictions.  

Figure 2.14 Steps toward the application of multivariate prediction models 

 

2.3.1 Priority Lists 

The first step concerns the creation of priority lists. These are lists resulting from ranking all 

available indices on the basis of a common parameter. In total, six parameters have been 

selected: the accuracy measure elicited from the univariate logistic regression, to account for 

ratios’ individual overall ability to predict bankruptcy/non-bankruptcy occurrences; the 

precision parameter, still from Logit, to include the individual qualification in avoiding 

mispredictions; recall, again from the univariate Logit, to prioritize those ratios that best 

recognize defaulted firms; the slope of the line of best fit, obtained through the first step of the 

binning procedure, to give more importance to those ratios that reveals to be linearly powerful, 

thus subordinating messy and ‘complex’21 ratios; the Information Values resulting from the 

 
21 Complex here is used to define those ratios which, in the binning procedure, appear to resemble good 
predictors only if applied by prediction models able to handle higher dimension than the simplest, linear 
approach. 

 XGBoost 
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Weights of Evidence; and a final list based on the most used and appreciated ratios in the 

relevant literature observed22. 

In other terms, each list contains the same 54 financial ratios permuted in differing orders. The 

importance of ranking all ratios in different lists prioritizing them on the basis of one of the six 

parameters will become clear only after the ‘correlation funnel’ section and is here introduced. 

Given the risk of multicollinearity, a selection between over correlating ratios is needed before 

the application of any multivariate prediction model. It is however not clear a priori what 

reasoning should be put into practice to implement such selection. To this end, priority lists 

offer a logical answer to the matter.  

In relation to this, it can be argued that setting up only one priority list might restrict the final 

prediction due to the ranking of ratios. Further, expanding the argument, even all six lists may 

still be insufficient to represent a sufficient number of outcomes, thus limiting the analysis on 

the final prediction results. Maximizing the scope of analysis to all possible permutations, a 

total of 2,3 𝑥 1072 priority lists should be considered. Such vast number of possibilities, 

however, is too costly in terms of computational power required to run compute and analyse all 

possible predictions. Moreover, said analysis would out fall the purpose of this study, which is 

primarily related with the examination of feasible ways to apply prediction models on financial 

statements belonging to Veneto region enterprises, rather with the observation of theoretically 

sound models. For these reasons, only the six described priority lists will be considered. All 

other permutations are left for further study. 

Before proceeding, it is worth mentioning one interesting detail: Net Income to Total Assets 

always ranks first in all lists. This confirms the literature preference for such an item, which is 

individually able to reach about 85% of accuracy in the univariate logit. 

For sake of clarity, all priority lists are reported in appendix 6 along with the code written to 

build them. 

2.3.2 Correlation funnel 

After priority lists are set up, ratios can be filtered by the ‘correlation funnel’. It represents the 

step concerning with the selection of ratios on the premise of priority lists, to prevent 

multicollinearity issues.  

 
22 The Literature priority list is based on the review published by Bellovary et al. (2007). 
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The code executing the filtering process is structured as follows: first, a correlation threshold is 

establish; secondly, from the threshold, all combinations of ratios whose absolute value of 

correlation exceeding it are pinpointed; third, all correlating pairs are looped over as inputs of 

the prioritizing function which has the role of determining the ‘winner’ and ‘loser’ ratios per 

each pair, on the basis of the rank established in the considered priority list; further, all indices 

not belonging to any correlating pair are added in order at the bottom of the list of winners. This 

procedure is looped over all six priority lists. 

To meaningfully expand the scope of the analysis, the procedure described above is repeated 

considering multiple correlation values. Specifically, all values in the range from 0.3 to 0.9 with 

interval of 0.1 are applied as correlation thresholds23. This ensures a finer look into the role of 

the correlation threshold and its effects onto prediction results. 

The core of the correlation funnel, once the average correlation matrix is available, is 

represented by the prioritizing function. The function takes as inputs the set correlation 

threshold, the average correlation matrix and the six priority lists arranged, while returns as 

output six lists, one per priority, containing only the ratios to be applied inside prediction 

models. It does so by executing two main body of code: it first determines ‘winners’ and ‘losers’ 

of each identified over correlating pair, through a series of if-else statements; secondly, it 

composes the final ready-to-use lists, keeping winners and non-paired and discarding losers, 

checking the appropriateness of it.  

The first section, after setting up the loop over the six priority lists and pinpointing those pair 

of ratios with absolute correlation higher than the threshold, makes use of nine if-else 

statements. Initially, eight of them check whether the ratios contained in the pair under 

examination have already been assigned. The logic governing these eight statements is as 

follow: if any index is found to be losing in any of the pairs it might be belonging to, it is 

directed to the ‘losers’ list with no changing option; else, if the index is found to be winning in 

its correlating pair, then it is provisory directed to the ‘winners’ list; if, further, a previously 

winning index is found to be loosing in a second pair, then the first if statement described is 

executed. The underlying logic is to consider ‘victory’ provisory, it only holds in the time 

during which no better ranking index is paired, and ‘defeat’ permanent. Finally, the nineth if 

statement, simply regulates the occurrences in which both ratios have not already been directed, 

chasing the same logic. The second section instead, is undertakes the role of constituting the 

 
23 Here only positive values of correlation are considered since the prioritizing function identifies the over 
correlating pairs on the basis of the absolute value of their correlation. 
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final list that will then passed on to the prediction models. In doing so it also checks and rectify 

for any mistakes committed in the previous section.  

All the describe Python code, along with some examples of ready-to-use lists are reported in 

the appendix. 

2.3.3 Multivariate Prediction Models 

This section relates with the illustration of pre-processing procedure applied to the data before 

running any prediction and of the models being used to predict defaulting and non-defaulting 

entities. 

Data Pre-processing 

The relevant data for predictions is computed, similarly to the univariate Logit, as the average 

of four years prior to default, per financial index, per each company selected by the PSM. The 

number of averaging years prior to default decreases to three for those indices without an 

available 2009 value, only for companies with 2013 as relevant defaulting year24. In other terms, 

from each subgroup created in through the PSM procedure (1 defaulting and 5 non-defaulting 

firms) is taken the average of four years prior to the defaulting year of the bankrupt firm inside.  

The decision of taking the four years prior to default average bears at least two consequences: 

first, any model thus trained will be performing optimally on a new, hold-out, firm only with a 

similar data structure as input; what is more, the prediction outputted should be considered 

effective for a time span of one year. To overcome these limitations, other structures have been 

implemented and will be described directly looking at prediction results in the next chapter. 

Before applying it, the resulting data is pre-processed to comply with the requirements needed 

to run all six statistical methods. Data pre-processing involves three main steps: handling 

outliers, filling missing values and scaling variables. The first two steps closely follow the 

symmetric procedure adopted for the univariate logistic regression. Outliers are initially spotted 

by standardizing all values (i.e. retrieving 𝑧 =  
𝑥−𝑚

𝑠𝑑
, where z is the standardised value, x the 

initial value, m the mean of the distribution and sd its standard deviation) and searching for 

|𝑧| > 3. They are then replaced with NaN values (also known as missing values) and the rest 

of values is brought back to the initial amount. Then, all the missing values resulting are filled 

with the mean of the newly formed distribution. It is referred to as ‘new’ distribution since 

outliers are not anymore included. Finally, in addition to that, feature scaling is carried out. It 

 
24 As for the univariate logit, for relevant defaulting year is intended either the actual defaulting year, for 
bankrupt firms or the defaulting year of the matched bankrupt firm, for non-bankrupt companies. 
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is performed to avoid any issue related with the differences in the absolute levels of the ratios. 

Indeed, the output from it is a value between 0 and 1: this smooths out the previous possible 

greater disparities between indices merely deriving from the underlying components and/or 

structure of indices themselves. Feature scaling is executed through the default version of 

MinMaxScaler sub package which pertains to the sklearn.preprocessing opensource module25. 

Prediction models 

A total of six prediction models were adopted: Logistic regression, Support Vector Machines, 

K – Nearest Neighbour, AdaBoost, Decision Tree and XGBoost.  

Logistic Regression 

Following Peng, J. (2002), the central mathematical concept that underlies logistic regression 

(LR) is the logit, the natural logarithm of an odds ratio, where the odds are usually referred to 

dichotomous cases. Indeed, LR is generally well suited for describing and testing hypotheses 

about relationships between a categorical outcome variable and one or more categorical or 

continuous predictor variables. LR is able to handle dichotomous dependent variables better 

than, for instance, Ordinary Least Squares regressions transforming y, the dependent variable 

through the logit function. From this, it occurs that the LR can be described, in its simplest 

form, by  

ln(
𝜋

1−𝜋
) =  𝛼 +  𝛽𝑋, where 𝜋 is the probability of y happening, 𝛼 and 𝛽 are coefficients of the 

regression and X is the independent variable (or group of variables, in the multivariate case).  

For the purposes of this study, it was adopted the LogisticRegression sub module from the 

opensource sklearn.linear_model package26. As for the univariate section, little has been fine 

tuned with respect to the default setting of the module. The solver selected is ‘lbfgs’, previously 

explained and the proportion between train and test (hold-out) samples is set to 25%. Moreover, 

to correct for the defaulting threshold of 50%, through which the testing values are declared 

bankrupt or non-bankrupt, a new, better threshold is evaluated. Figure 15 reports the code for 

the new threshold. For it, True Positive Rates and False Positive Rates are computed from the 

confusion matrix resulting from the 50% limit; their difference is initiated (‘J’ in Figure 15) and 

maximised through the argmax function; the new threshold is then identified among all 

 
25 More information on MinMaxScaler default version can be consulted at https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html 
26 More can be found at https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
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potential ones; finally, it is applied the old set of dependent variables (Y_pred[‘new_thrsld’] in 

Figure 15). 

Figure 2.15. Code to retrieve the optimize threshold 

 

Support Vector Machines 

From Cervantes et al. (2019), Support Vector Machines (SVM) was introduced by Vapnik as a 

kernel-based machine learning model for both classification and regression task. Due to its good 

theoretical foundations and good generalization capacity, however, in recent years, SVMs have 

become one of the most used classification methods. In particular, its generalization capacity 

stands out against other classification models. By generalization is intended the ability of the 

classifier, the model, to recognise the relevant patterns useful for organizing data into the correct 

groups. When the model, as an example, is too fit for the training data, the model begins to 

memorize training data rather than learning to generalize, degrading the generalization ability 

of the classifier.  

SVM carry out classifications through the determination of the ‘optimal separation hyperplane’. 

This is the only separation hyperplane with maximum margin, the distance between the 

hyperplane and the support vectors. Support vectors, in turn, are those hyperplanes, parallel to 

the optimal one, identified by the closest datapoints standing at the margin distance.  

A key element of the SVM theory is the kernel, critical if the training data are not linearly 

separable. Indeed, the basic idea in designing non-linear SVMs is to transform the input vectors 

into vectors of a higher dimensional feature space. The function adopted for the transformation 

is, precisely, the kernel. There is no unanimous conclusion about which kernel is better or worse 

for specific applications. For purposes of the study a polynomial kernel has been applied. In 

general, the polynomial kernel follows: 𝐾(𝑥𝑖 , 𝑥𝑗) =  (𝑥𝑖. 𝑥𝑗 + 1)𝑝 , where p is the polynomial 

degree, following from Mercer’s condition for function to be implemented as kernels. 

To implement SVM in the analysis, the SVC module of the sklearn.svm package has been 

selected27. For it a C parameter of 150 is set and, as mentioned a polynomial kernel selected. C 

 
27 More on it is available at https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html 
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refers to the Regularization parameter that defines the amount of misclassification allowed by 

the model. Too high C determines overfitting problems, too low C diminishes the quality of the 

final classification. C equalling 150 has been appointed as the best performing level.  

K – Nearest Neighbour 

The intuition underlying Nearest Neighbour Classification is quite straightforward: examples 

are classified based on the class of their nearest neighbours. In particular, after selecting k, the 

number of nearest neighbours that will be taken into consideration, the classification is made 

on the basis of the number of neighbours obtained per each class. As then pointed out in 

Cunningham, P. and Delany, S. J. (2007), starting from this basic frame the model can be fine 

tuned to the data being used: the definition of distance may be adjusted, differing weights can 

be given to classes when determining the classification, etc.  

Similarly to above, sklearn.neighbors.KNeighborsClassifier module has been implemented in 

the study28. K is set to 12 given that it showed higher than average performances. All other 

parameters have been kept in default settings. 

AdaBoost 

AdaBoost comes from ‘Adaptive Boosting’ and refers to one of the first practical declinations 

of the boosting methodology. In general, boosting is an ensamble approach to machine learning 

based on the idea of creating a highly accurate prediction rule by combining many relatively 

weak and inaccurate rules. Following Schapire, R. E. in his Explaining AdaBoost review, the 

pseudo code for the AdaBoost algorithm can be summarized as:  

Given: (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) where 𝑥𝑖 ∈  𝑋 , 𝑦𝑖 ∈  {−1, +1} 

Initialize: 𝐷1(𝑖)  =  1/𝑚 for 𝑖 =  1, . . . , 𝑚. 

For 𝑡 =  1, . . . , 𝑇 : • Train weak learner using distribution Dt;  

• Get weak hypothesis ℎ𝑡 ∶  𝑋 → {−1, +1}. 

• Aim: select ℎ𝑡 with low weighted error: 휀𝑡 =  𝑃𝑟𝑖∼𝐷𝑡 [ℎ𝑡(𝑥𝑖) 6 ≠  𝑦𝑖 ]. 

• Choose 𝛼𝑡 =  
1

2
ln (

1− 𝑡

𝑡
)  

 
28 More at https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html 
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• Update, for 𝑖 =  1, . . . , 𝑚: 𝐷𝑡 + 1(𝑖)  =  
𝐷𝑡(𝑖) 𝑒𝑥𝑝(−𝛼𝑡 𝑦𝑖 ℎ𝑡(𝑥𝑖))

𝑍𝑡
, where 𝑍𝑡 is a normalization 

factor (chosen so that 𝐷𝑡 + 1 will be a distribution). 

Output the final hypothesis: 𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑎𝑡 ℎ𝑡(𝑥)) 

Here we are given m labelled training examples (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) where the 𝑥𝑖’s belong 

to some domain X , and the labels 𝑦𝑖 ∈  {−1, +1}. On each round 𝑡 =  1, . . . , 𝑇, a distribution 

Dt is computed over the m training examples, and a given weak learner is applied to find a weak 

hypothesis ℎ𝑡 : 𝑋 →  {−1, +1}, where the aim of the weak learner is to find a weak hypothesis 

with low weighted error 휀𝑡 relative to 𝐷𝑡. The final, combined hypothesis H computes the sign 

of a weighted combination of weak hypotheses. 

Cleared the general functioning of the algorithm, it is critical to deepen the basic feature of the 

weak learner adopted. Usually, AdaBoost makes use of Decision Stumps (DS). These are the 

simplest form of decision trees and are only able to carry out classifications entailing one, single 

independent variable. They are call weak learners because the accuracy deriving from DS would 

already be optimal if they guessed whichever answer, 1 or 0, is most common in the data. If, 

for instance, 60% of the examples are 1s, then the model will obtain 60% accuracy just by 

predicting 1 every time. The main advantage of weak learners like DS is their adaptability to 

different scenario: their lower than average results are pretty stable over differing datasets and 

independent variables, even though individually poor. The power of AdaBoost precisely comes 

from leveraging DS adaptability and does so combining multiple DS results to reach high 

degrees of accuracy for complex classification tasks. 

For purposes of the research, sklearn.ensemble.AdaBoostClassifier module has been applied 

setting a number of weak learning estimators to 15029. This has been selected on the basis of 

performances. 

Decision Tree 

Following Maimon and Rokach (2005) a decision tree is a classifier expressed as a recursive 

partition of the instance space. It consists of nodes that form a rooted tree, meaning that it is a 

directed tree with a node called ‘root’ that has no incoming edges. All other nodes have exactly 

one incoming edge. A node with outgoing edges is called an internal or test node. All other 

nodes are called leaves (also known as terminal or decision nodes). In a decision tree, each 

internal node splits the instance space into two or more sub-spaces according to a certain 

 
29 More on the sklearn algorithm can be found at https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html 
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discrete function of the input attributes values. In the simplest and most frequent case, as already 

seen for Decision Stamps above, each test considers a single attribute, such that the instance 

space is partitioned according to the attribute’s value. In the case of numeric attributes, the 

condition refers to a range. The process followed by decision trees dealing with multiple 

predictors can be generally described as follows: First, the root node predictor is chosen by 

selecting the one displaying lower overall impurity; secondly, all other nodes are linked to the 

remaining predictors looking at the lowest impurity classification; finally, classification is 

carried out through the constituted tree. Impurity generally refers to the degree of 

misclassification reached by a single predictor. Usually, the impurity measure applied is the 

Gini index, which can be defined as 𝐺 = 1 − (Pr 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 1) 2 − (Pr 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 0) 2 for 

binary classifications30.  For instance, to determine the predictor at the root node are executed 

these steps: a confusion matrix is initially generated (on the testing sample) taking as single 

independent variable each one of the 54 financial ratios31; then the Gini impurity index is 

computed to all 54 generated confusion matrices; finally the lowest Gini index ratio is selected 

as root node. These steps are then repeated for all nodes of the tree to establish ratios order 

among them. Eventually, the constituted tree model is run. 

For the implementation of Decision Tree model, the sklearn.tree.DecisionTreeClassifier 

module is chosen in its default settings32. 

XGBoost 

XGboost was developed by Chen and Guestrin in 2016 and stands for “Extreme Gradient 

Boosting”. It belongs to the supervised learning gradient boosted trees family. As with the other 

ensemble methods, the idea of XGBoost is to combine weak learners such as decision trees into 

a strong learner. A series of decision trees, of usually constant shape and depth, is created which 

together form a single predictive model. New learners are trained on the errors, the residuals, 

of the previous learners so to increase the final predictive power. Put differently, the idea of 

tree boosting is to add a new tree to the ensemble fit to the residual of the predictions from 

earlier trees. The residual is typically defined in terms of derivative of the loss function. 

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient 

and flexible especially for large datasets. XGBoost supports various objective functions 

 
30 The probabilities are easily retrieved from the confusion matrix generated. 
31 The example considers all 54 financial ratios. In the study however the actual number of ratios included in 
the model varies according to the correlation threshold and the relative winner and loser lists. 
32 Any further information can be consulted at https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
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including regression, classification and ranking. It recently gained much popularity and 

attention both among academics and practitioners for its features. 

To run it in this project the XGBoost python package was selected, which differently from 

above, does not belong to sklearn framework33. All settings have been kept at their default state: 

number of estimators at 100 and a binary and logistic objective function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
33 More can be found at https://xgboost.readthedocs.io/en/latest/python/python_intro.html 
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3. RESULTS 

This chapter aims at illustrating the results collected from the application of the six prediction 

models. Specifically, two sets of results will be outlined: first, the measures of performance 

retrieved from the testing, hold-out sample (25% randomly selected datapoints from the whole 

initial sample) and, secondly, the outcomes from applying the same prediction models (i.e. 

trained on the same training sample as in the previous point implies) on data belonging to 

companies external to the Veneto region. While the first sets of results logically follow the path 

already delineated, the second set will be especially useful for examining how the models 

behave with comparable but not identical samples. This should, for instance, shed light onto the 

risk of overfitting the models might be exposed to. 

As explained in the previous chapter, the starting point to carry out any prediction in this 

analysis is the average ratios matrix. This, as illustrated in Figure 3.1, is composed by rows 

referring to each of the companies selected from the Propensity Score Matching procedure and 

columns representing the 54 financial ratios previously computed. Each cell carries the value 

of the column ratio and row firm that has been chosen from all firm ratios available in the initial 

sample. In this case, such value is determined as the average resulting from four years of the 

specified firm-ratio selected on the basis of the chosen distance from the relevant year34. As for 

example, assuming as chosen distance one year, then for each firm will be associated values of 

ratios equal to the average of four years starting from one year prior to the relevant year. If 2014 

happens to be the relevant year for the examined firm_1, then its ratio_54 value will be equal 

to the average of the firm_1’s ratio_54 in 2013, 2012, 2010 and 2009.  

Figure 3.1 Matrix of ratio averages for each firm with stylized computations of ratios averages 

(the chosen distance from the relevant year is one year). 

 Ratio_1 … Ratio_54 Relevant 

year 

Firm_1 

1

4
 * F_1-R_1 

(2009+2010+2011+2012) 

 1

4
 * F_1-R_54 

(2009+2010+2011+2012) 
2014 

…     

Firm_2430 

1

4
 * F_2430-R_1 

(2014+2015+2016+2017) 

 1

4
 * F_2430-R_54 

(2014+2015+2016+2017) 
2018 

 
34 As in the previous chapter, by ‘relevant year’ is intended the year of default for defaulting companies and the 
year of default of their Propensity Scores Matched defaulting firms for non-defaulting companies (remark that 
each defaulting firm has been matched with five non-defaulting) 
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Whenever a ratio is not available in a specific year, perhaps because the four years average 

dates back to 2008 values which have not been found available in AIDA database, the average 

is simply computed on the remaining, available years. This is shown in Figure 3.2 when, 

considering 2014 as relevant year and three years as chosen distance, the average only includes 

2009, 2010 and 2011 ratios (yellow segment).  

Figure 3.2 Three chosen distances, the four years average and the unavailable 2008 ratio 

 

As Figure 3.2 illustrates, to look for the robustness of prediction models in both sets of results 

-testing sample internal to the Veneto region and external to it- over time, three distances from 

the relevant year are chosen and observed: one, two and three years. These, in the example 

depicted above, corresponds to the brown line (averaging from 2010 to 2013), the green one 

(from 2009 to 2012) and to the yellow segment (from 2009 to 2011, excluding 2008).   

3.1 TESTING SAMPLE RESULTS OF VENETO FIRMS 

In this section it will be deepened the results reached by the six prediction models on average 

ratios computed with all three chosen distances from relevant years. In particular, two main 

assessments will be carried out for each of the three cases: first, an analysis of the accuracy 

levels reached by every prediction model on all six priority lists created over several correlation 

thresholds35 will be accomplished; second, three target correlation thresholds, namely 0,3, 0,6 

and 0,9, are compared examining accuracy, recall, precision and ROC AUC for each prediction 

model and priority list. As to conclude, along with their individual analysis, the three scenarios 

(i.e. brown, green and yellow segments in Figure 3.2) will be submitted to a concise 

comparison. 

 
35 As pointed out in the previous chapter, the creation of a ready-to-use priority list entails first the ranking of 
all 54 financial ratios on the basis of a common parameter (e.g. the ratio individual accuracy in the univariate 
Logistic regression); secondly, the setting of a correlation threshold (e.g. 0,7); third, the isolation of those pairs 
of indices whose absolute level of correlation exceeds the thresholds (where pairs are identified on the basis of 
the average correlation matrix, still described in chapter 2); finally, the selection of the best ranking indices 
among over correlating pairs and rejection of the low ranking ones. The ready-to-use priority list is thus the 
sum of best ranking indices and those ratios not over correlating with any other. The ready-to-use priority list 
determines which ratios will be applied to the prediction model. 

2008 2009 2010 2011 2013 2012 2014 

Relevant  

year 
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3.1.1 One-year distance from the relevant year 

The first of the three cases entails the construction of the matrix of ratio averages considering 

one year as the distance between the four years average and the relevant year. Logically, since 

this scenario is the closest to the relevant year, one should expect it to outperform the two others 

in terms of overall accuracy in prediction. On the other side, however, its practical employment 

seems to be limited with respect to the other scenarios. Indeed, being able to predict failure/non-

failure one year before it should actually happen, is certainly less useful than forecasting it with 

two or even three years in advance, ceteris paribus.  

That said, the first analysis relates to the examination of prediction models’ accuracy charts 

built to compare all six priority lists over multiple correlation level. Specifically, the correlation 

thresholds taken into account belongs to the 0,3 to 0,9 range with inner interval of 0,01 (i.e. 

0,30, 0,31, …, 0,89, 0,90). Moreover, the six priority lists are, again, structured on the basis of: 

ratio individual accuracy, precision and recall deriving from the univariate Logistic regression; 

complexity36 and Information Value retrieved from the Binning and Weight of Evidence 

procedures; and finally, from the literature most frequent financial ratios37. All Python code 

written for these results is available in appendix 8.  

At each correlation level, a final ready-to-use list of ratios is created for every priority list 

through the correlation funnel procedure detailed in chapter 2. Then, all six ready-to-use lists 

are applied in each prediction model, namely Multivariate Logistic regression, Support Vector 

Machines, K-Nearest Neighbour, AdaBoost, Decision Tree and XGBoost. To run the prediction 

models, the sample data is split into a 75% randomly selected training set and 25% test set. The 

random composition of both sets should guarantee unbiasedness of outcomes.  

Following, six charts showing the accuracy levels reached by each model one year before 

failure, are reported. On the y-axis can be found the accuracy in prediction while the x-axis 

constitutes the correlation threshold applied. In the lower left, the legend indicates which curve 

belong to which priority list. In this case, by priority list is, of course, intended as the ready-to-

use list of ratios determined at each correlation level. 

 
36 Complexity is proxied by the slope of the line of best fit in the binning curve described in chapter 2. 
37 The Literature priority list is based on the review published by Bellovary et al. (2008) 
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Figure 3.3 Accuracy levels 

achieved by the Logistic 

regression model on the six 

ready-to-use lists of financial 

ratios 

 

 

 

 

Figure 3.3 describes the performance in terms of overall accuracy gained by the Logit model. 

The highest level is reached around a correlation threshold of 0.8 by the priority list based on 

the individual accuracy of each ratio. Moreover, precision and recall lists appear to behave 

especially well for relatively lower levels of correlation thresholds. Overall, there does not seem 

to be a best performer among priority lists while IV almost always displays as least performer. 

On average Logistic regression stands between 60% and 80% of accuracy at one year before 

default, in line with the relevant literature. 

Figure 3.4 Accuracy levels 

achieved by the SVM model on 

the six ready-to-use lists of 

financial ratios 

 

 

 

 

Further, Figure 3.4 describes the accuracy levels achieved by the SVM model. Three facts are 

immediately clear from it: first, the average accuracy level is significantly higher than the 

Logistic regression model; second, the interval in accuracy (y-axis) is substantially narrower 

than Logit’s; third, unlike previously, there seems to be a relative constant difference among 

priority lists in general, with the literature list steadily outperforming all others. One conclusion 

can already be drawn from chart 3.4: SVM performs significantly better than Logistic 

regression at one year before default on Veneto region firms. Also, the highest results, over 
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90% accuracy, are achieved by applying the literature most frequent financial ratios and 

filtering them up at relatively low correlation thresholds (i.e. admitting low degrees of 

correlation among indices). Again, lists retrieved from binning complexity proxy and IV exhibit 

lower than average accuracy. 

Figure 3.5 Accuracy levels 

achieved by the KNN model on 

the six ready-to-use lists of 

financial ratios 

 

 

 

 

Figure 3.5 illustrates the accuracy levels from the KNN classification model over multiple 

correlation thresholds. Interestingly, the first immediate feature that can be noticed is the 

difference between accuracy gained before and after 0,6 as threshold. In fact, there appears to 

be a sharp decrease in performance at said correlation boundary and, furthermore, it is clear the 

strong negative relationship between accuracy and threshold applied: the higher the correlation 

allowed among ratios, the lower the accuracy. The reason for this peculiar behaviour should be 

searched in the KNN execution algorithm. In general, KNN builds a classification on the basis 

of the distance between each datapoint and kth neighbours: the closest neighbours belong to the 

same group. When a relatively high level of correlation is allowed, datapoints distance between 

each other is affected by the trends introduced by correlating ratios, resulting in higher numbers 

of overlapping neighbours. This, in turn, increases the frequency of misclassifications. To 

conclude the argument, it needs to be added that, though this behaviour is clearly occurring, its 

effect has only slight implication since the loss in prediction entails only few percentage points 

overall (5% to 6% points at most). 

Other than that, Figure 3.5 indicates that KNN performs better than Logistic regression but 

worse than SVM on average. Finally, Binning and IV curves display, contrarily to the previous 

models, highest average performances against the other lists, especially within low correlation 

thresholds. 
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The previous conclusion can now be updated: SVM model outperforms both Logit and KNN 

in terms of overall accuracy, with KNN achieving significantly higher performances than Logit 

in the testing sample. 

Figure 3.6 Accuracy levels 

achieved by the AdaBoost model 

on the six ready-to-use lists of 

financial ratios  

 

 

 

 

Figure 3.6 depicts AdaBoost accuracy performance over all correlation thresholds identified. 

The chart brings about three main considerations: first, the accuracy levels obtained are 

contained in a relatively narrow interval (from 90% to 92% accuracy if the marginal 0,3 to 0,4 

correlation thresholds are not taken into account); also, AdaBoost appears to be the best average 

performer with slightly higher values than SVM; as last, priority lists are constantly overlapping 

without a clear best performer. 

An interesting observation can be suggested from the first consideration: so far there seems to 

be a quite clear relationship between best performing models and length of the accuracy 

interval. In other words, the most accurate models also exhibit narrow intervals of prediction 

accuracy over correlation thresholds, which may indicate that the best models are also less 

sensitive to changes in correlation boundaries. 

Figure 3.7 Accuracy levels 

achieved by the Decision Tree 

model on the six ready-to-use lists 

of financial ratios   
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Figure 3.7 represent the one year to bankruptcy accuracy levels in prediction of Decision Tree 

model. The average accuracy, among all lists, seems to perform just better than KNN and worse 

than SVM. Moreover, literature ready-to-use list of indices appears to be the best overall 

performer peaking above 90% of accuracy between 0,4 and 0,5 as correlation thresholds. Again, 

the suggestion previously made about the relationship between the average level of accuracy 

and the length of the accuracy interval appears to be here confirmed. Indeed, Decision Tree 

shows narrower accuracy range than both Logit and KNN, which are, on average, less optimal, 

but wider than SVM and AdaBoost. Finally, given the steady mean trend of the six curves, it 

does seem that Decision Tree is only weakly affected, if none at all affected, by the correlation 

level allowed in the sample.  

Figure 3.8 Accuracy levels 

achieved by the XGBoost model 

on the six ready-to-use lists of 

financial ratios 

 

 

 

 

The final chart, Figure 3.8, presents the accuracy trend over correlation thresholds achieved by 

XGBoost. This results to be the overall best performers with average accuracy slightly but 

significantly higher than AdaBoost. Again, the model does not seem to particularly ‘prefer’ any 

of the six priority lists even though Recall does exhibit a steadily higher than average accuracy. 

More importantly, XGBoost further corroborates the suggestion over the relationship between 

narrow interval and high average accuracy (indeed this ensemble method shows the narrowest 

interval of all). Finally, XGBoost does not appear to be affected by the level of correlation 

allowed: the only observation at this regard indicates, very weakly, that the higher the 

correlation threshold, the narrower the accuracy interval and thus more precise the final 

prediction. 

To summarize, Table 3.1 summarizes the rank on the basis of the average accuracy, of which 

is reported an indicative range. 
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Table 3.1 Ranking of the best predicting models (left to right) with accuracy intervals (in %) 

MODEL XGBoost AdaBoost SVM Decision T KNN Logistic 

RANGE 90,5 - 93 88 - 92 87 - 90 85,5 - 90 81 - 88 60 - 80 

 

Table 3.1 confirms once more the relationship between higher accuracy and narrower interval 

in results. Indeed, with the sole exception of AdaBoost, whose interval features wider range of 

accuracy levels compared with SVM which follows in the ranking38, all other ranges are 

perfectly in line with the average accuracy ranking. This bring to the conclusion that better 

performing models are also those less affected by different levels of correlation allowed inside 

the sample.  

A second analysis that comes at help for the interpretation of results is the examination of the 

Area Under the Receiving Operating Characteristic Curve (ROC AUC) per each prediction 

model. ROC AUC measures the entire two-dimensional area underneath the entire ROC curve 

and provides an aggregate measure of performance across all possible prediction frameworks. 

It is plotted through a True Positive Rate (y-axis) and False Positive Rate (x-axis) chart, where 

the 𝑇𝑃𝑅 =  
𝑇𝑃

𝑃
=  

𝑇𝑃

𝑇𝑃+𝐹𝑁
 , is the ratio between the correctly predicted defaulting firms and all 

defaulting, and 𝐹𝑃𝑅 =  
𝐹𝑃

𝑁
=  

𝐹𝑃

𝐹𝑃+𝑇𝑁
 , is the ratio between the incorrectly predicted non-failing 

companies and all non-defaulting. The AUC is built so to fall in the range between 0, poorest 

results, and 1, maximum achievable. 

To report ROC AUCs and compare their values under different parameters, three correlation 

levels have been identified: 0,3, 0,6 and 0,9. These three have been chosen for they allow to 

clarify the behaviour of prediction models in a correlation range that do not discards too many 

financial indices from the initial group of 5439, which is crucial to study the combined ratios 

behaviour in multivariate methodologies, while also showing outcomes with relatively high risk 

of multicollinearity issues. Further, to deepen the research on the predictions elicited, each ROC 

AUC chart will be joint by a table showing three features: the accuracy in prediction, the 

 
38 It should also be noted that AdaBoost regains its second position also accounting for the length of its interval 
when the first correlation levels from 0,3 to 0,4, marginal to the overall picture, are disregarded from the 
examination. 
39 Indeed, through the correlation funnel described in chapter 2, ratios figuring into over correlating pairs are 
always discarded or kept on the basis of the ranking defined by the order inside the priority list at use. 
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precision in prediction and the recall measure for every model. Finally, to complete the picture, 

the list of financial ratios effectively implemented in the models is detailed. 

For sake of clarity, only metrics concerning the Accuracy priority list, at every correlation level, 

have been reported, whilst all other priority lists charts can be found in appendix 9. 

Figure 3.9 graphs models’ ROC curves at 0,3 correlation boundary against the diagonal, dotted 

red, indicating a hypothetical model with a performance, measured by the AUC, of 1/2. 

 Figure 3.9 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios 

at a 0,3 maximum correlation 

threshold 

 

 

 

 

 

 

  

 

Confirming the previous analysis, Figure 3.9 suggests XGBoost as best performing predictor, 

with an assessment as high as 0.93, followed by AdaBoost, 0.91, SVM, 0.90, KNN, 0.80, 

Decision Tree, 0.78, and eventually Logistic regression, 0.74. It is moreover straightforward 

that the models can basically be split into two main groups of performance: XGBoost, 

AdaBoost and SVM belongs to the first, best performing, while the other three to the least 

performing. Inside the two groups, the differences are significant but fairly small.  

Attached to the chart, a table showing accuracy, precision and recall is reported. The table draws 

a different picture with respect to what can be elicited from the chart. Here, the difference 

among models toward Logistic regression is exacerbated in essentially all three dimensions, 

with the only exception of the recall measure for KNN. Interestingly, recall is higher than 
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accuracy and precision only for Logistic regression, with KNN and SVM being the most 

exposed to weaknesses under it. This marks that the percentage of correctly predicted failing 

firms on the total sample of defaulting entities is relatively lower for the higher accuracy models 

than the overall weaker Logistic regression. This, in turn, indicates a certain exposition of 

models to type I error, the misprediction of defaulting companies, the error bearing higher risks 

for lenders. Though Logit has a relatively higher recall performance, its absolute percentage 

remains lower than all other prediction models with the sole exception, again, of KNN. 

At 0,3 threshold and under the ranking established by the accuracy priority list, models apply 

only 9 of the 54 ratios: Net Income/Total Assets, Net sales/Cash from sales, Cash Flow from 

Operations, Inventory/Sales, Operating expenses/Operating income, Sales/NAR, Cash/Total 

Assets, Other Revenues/Total Produced Value and log(Total Assets). 

Figure 3.10 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios 

at a 0,6 maximum correlation 

threshold   

 

 

 

 

 

 

 

 

An intermediate set of results is then represented in Figure 3.10 which report the same metrics 

setting the correlation threshold at 0,6. The graph shows how the overall picture remains similar 

to the previous set of results. XGBoost still appears to be the best performing model with 

AdaBoost and SVM respectively, although totalling lower AUCs, chasing right after. 

Interestingly though, KNN drastically lowers its AUC, -0,07, ranking last after Decision Tree, 

also lowering its overall performance and Logistic regression which is slightly improved. 
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Modifications also occur on the three dimensions in the attached table. Again, KNN reveals 

lower accuracy while Logit materially increases its own. KNN behaviour should not be 

surprising since, as illustrated by Figure 3.5, all priority lists accuracy levels decrease 

substantially at the 0.6 correlation threshold. Further, recall records confirm the intuition on the 

general weakness in prediction of defaulting firms with even lower recall outcomes.  

At 0,6 correlation boundary and under the ranking established by the accuracy priority list, 

models apply 20 of the 54 initial ratios. Other than those already applied for 0,3 correlation, 

other 11 are added: Total Debt/Total Assets, Working capital/Sales, Retained earnings/Total 

assets, EBIT/Interest, CFO/EBIT, Tax Expenses/EBIT, Current Assets/Total Assets, Current 

Assets/Sales, Long-term debt/Total Assets, Turnover Payables, Turnover Inventory. 

As last assessment, Figure 3.11 illustrates the ROC AUC and the accuracy, precision and recall 

table under 0,9 correlation threshold and accuracy priority list.  

  

Figure 3.11 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios 

at a 0,9 maximum correlation 

threshold   

 

 

 

 

 

 

 

Here, a much similar evaluation to the 0,6 correlation can be carried out. The first observation 

concerns with the fact that both ensemble methods, XGBoost and AdaBoost benefit from the 

higher level of interconnection allowed among ratios: both models increase their AUC by 0.01. 

On the contrary, SVM seems to be slightly disadvantaged with a loss of 0.01. Finally, while 
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Decision Tree improves its score, KNN and Logit end the ranking at par, 0.75 AUC each. What 

is more, the table attached does not appear to exhibit drastic changes from the previous version.  

At 0,9 threshold 35 of the 54 ratios have been applied. From the 0,6 correlation list, other 15 

are added: Operating Income/Total Assets, Fixed Charges EBIT Coverage, Net Income/Sales, 

Net Income/Net Worth, Total liabilities/net worth, Working Capital/Total Assets, Current 

Liabilities/Total Assets, Acid Ratio, quick assets/Sales, no-credit interval (Current Assets/Daily 

OPEX), Asset Turnover, CFO/Financial Debt, quick assets/Total assets, EBITDA/EBIT and 

Working Capital/Net worth. 

3.1.2 Two- and three-year distances from the relevant year 

In this section the same metrics of outcomes considered in the precedent paragraph are 

examined. This time, however, results relate to four years average ratio values taken both two 

and three years before the relevant year of default. In other terms, this section studies prediction 

model performances when asked to predict with a forecasting timespan of two and three years. 

Here, two- and three-years distances from the relevant year results are condensed for sake of 

brevity.  

Similarly to above, first, accuracy levels over multiple correlation thresholds will be displayed 

while ROC AUC and attached table of features will be left as conclusion. 

 

Figure 3.12 Accuracy levels 

achieved by the Logistic 

regression model on the six 

ready-to-use lists of financial 

ratios  

 

 

 

Starting from two-years distance, Figure 3.12 plots the accuracy levels per each priority list 

reached by Logistic regression on the test set over different correlation thresholds. Three main 

arguments are immediately clear from it: first, as for the one-year distance, accuracies span over 

a relatively wide range of levels which, in this case, is significantly lower than the one-year 

distance outcome; also, the accuracy shaped priority list appears to be the least performing 
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except for the very last thresholds while there is no clear best performer, though literature 

ranking display an above average behaviour overall; higher correlation thresholds seem to 

benefit worse performers without materially impacting high accuracy gainers on average. Thus 

in general, Figure 3.12 describes a scenario with essentially the same features chart 3.3 holds 

but at an all lower range of accuracy. 

Proceeding on, Figure 3.13 accomplishes the same task as Figure 3.12 but for Support Vector 

Machines.  Here again the first main observation relates with the lower range of accuracy 

achieved. Interestingly, the width of the accuracy range almost perfectly resembles the parallel 

range in Figure 3.4 at the one-year distance. Moreover, a similar trend as for Logit is exhibited: 

while accuracy priority list performs rather poorly compared with other lists, except for the last 

thresholds, literature outperforms others in much of the chart. Finally, there seems to be a slight 

tendency in higher accuracies the higher the correlation allowed among financial indices.  

Figure 3.13 Accuracy levels 

achieved by the SVM model on 

the six ready-to-use lists of 

financial ratios   

 

 

 

 

 

Chart 3.14, then, illustrates the trends followed under the KNN framework. Its behaviour quite 

surprisingly leads the accuracy range at being significantly narrower than in Figure 3.5 and at 

the exact same level of the accuracies elicited from 0,6 to 0,9 range of correlation thresholds. 

Further, there is no sign of the negative relationship between correlation allowed and level of 

accuracy which has been discussed for one-year distance outcomes. Here in fact, KNN do not 

show any meaningful and visible dependence to the level of correlation allowed. The only 

traceable observation in this sense links to the fact that higher thresholds bring to much narrow 

accuracy range. Again, as for Logit and SVM before, the accuracy ready-to-use priority list 

performs below average except for the very final thresholds. On the other hand, there does not 

seem to be an individual best performer with basically all other priority lists gravitating around 

the same mean. Finally, a comparison among the three first model presented brings interesting 
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conclusions. If on one side, Logistic regression is clearly the least performer overall, on the 

other, there is no clear-cut way to establish which model shows superiority in results. What 

should be underlined, in any case, is that KNN shows so far, the highest robustness in terms of 

distance from relevant year of default. 

Figure 3.14 Accuracy levels 

achieved by the KNN model on 

the six ready-to-use lists of 

financial ratios   

 

 

 

 

Afterward, Figure 3.15, depicts the evolution of the six priority lists under the AdaBoost 

ensemble model. AdaBoost shows a 10% average accuracy loss from the previous scenario of 

one-year distance. Excluding Logistic regression for its wider than average accuracy ranges, 

such loss is the deepest so far encountered and signals AdaBoost relative weakness as the 

prediction time increases. Moreover, in contrast with the first three models presented, accuracy 

priority list does not underperform the others. Indeed, here there does not seem to appear either 

a clear ‘winner’ or ‘loser’.  

Figure 3.15 Accuracy levels 

achieved by the AdaBoost 

model on the six ready-to-use 

lists of financial ratios   

 

 

 

 

 

Moving over, Figure 3.16, instantiates Decision Tree model reached accuracy levels over 

multiple correlation boundaries. Again, the chart suggests an overall loss of accuracy with the 
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greater time distance, though not as deep as AdaBoost shows. Also, the accuracy priority list 

ranks again at the bottom, on average, in terms of performance with a trough between 0.4 and 

0.5 thresholds. Finally, different levels of covariance allowed among ratios do not appear to 

affect the mean accuracy unless marginally. 

Figure 3.16 Accuracy levels 

achieved by the Decision Tree 

model on the six ready-to-use 

lists of financial ratios  

 

 

 

 

The last graph, picture 3.17, reports XGBoost model accuracy outcomes. Interestingly, as with 

the only other ensemble model, also XGBoost presents a loss of about 10% in its average 

accuracy. However, it is hard to conclude that ensemble methods suffer more than others a 

greater timespan of prediction. Indeed, both AdaBoost and XGBoost, also share the highest 

prediction performances in the one-year distance scenario. To shed more light on this it will be 

helpful looking at the behaviour at a three-years distance from the relevant defaulting year. 

A second observation for Figure 3.17, is represented by the fact that it looks to be a weak but 

significant negative relationship between the correlation allowed and the overall level of 

accuracy reached. This contrast with the very weak or absent relationship in Figure 3.8. 

Figure 3.17 Accuracy levels 

achieved by the XGBoost 

model on the six ready-to-use 

lists of financial ratios 

 

 

 

 

To conclude, table 3.2 ranks prediction models (left to right) and reports their ranges. 
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Table 3.2 Ranking of the best predicting models (left to right) with accuracy intervals (in %) 

MODEL XGBoost SVM KNN AdaBoost Decision T Logistic 

RANGE 80 - 84 80 - 84 80 - 84 78 - 83 75 - 82 50 - 70 

 

From Table 3.2 an interesting conclusion can be drawn: adding one year to the final prediction 

period, levels prediction models accuracies to the point that there is not anymore a best 

performer. This is of course true excluding Logistic regression which confirms a certain poorer 

than average ability to predict companies’ status. 

To spot even more clearly the differences of performance due to increased prediction time, the 

curves entailing three-year distance accuracy levels over multiple correlation thresholds are 

plotted.  

To this end, Figure 3.18 charts Logistic regression results. Remarkably, the model does not 

worsen its outcomes in the new scenario, the bottom boundary is still limited to 50% accuracy, 

but rather exhibit a slight enhancement as the upper bound rises to 75% with the accuracy 

priority list. Though, the arguably more surprising fact relates with the increased performance 

of the accuracy priority list which was found as poorest performer in the two-years case. Finally, 

literature list results appear to be almost perfectly in line with the precedent chart, Figure 3.13.   

Figure 3.18 Accuracy levels 

achieved by the Logistic 

regression model on the six 

ready-to-use lists of financial 

ratios  

 

 

 

 

Further, Figure 3.19 also describes an intriguing occurrence. Contrary to the logical reasoning 

through which the loss generated from two- to three-years prediction timespan should resemble 

the previous loss generated from one- to two- years distance, SVM seems to be suffering less 

than the one- to two-years change. Indeed, the average accuracy deviation stands at just 3,5% 

points for the upper bound and near to nothing for the lower bound. In other words, the average 
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loss in accuracy does not translate into a general shift of the range over the y-axis, but rather in 

only a decrease of the upper bound level. This may already suggest, at a practical stage, that it 

is more valuable following SVM predictions at a three years horizon rather than two since the 

cost in terms of efficiency is so little that the benefit coming from one more year of ‘knowledge’ 

might be greater.  

Figure 3.19 Accuracy levels 

achieved by the SVM model on 

the six ready-to-use lists of 

financial ratios  

 

 

 

 

Going forward, Figure 3.20 plots KNN outcomes. Here the same dynamic as with SVM is 

detected: there is only a loss in average accuracy due to the thinning of the accuracy range. 

Furthermore, as for the two-years distance from the relevant year, there appears to be no strict 

relationship between the correlation threshold and the average level of accuracy. 

Figure 3.20 Accuracy levels 

achieved by the KNN model on 

the six ready-to-use lists of 

financial ratios  

 

 

 

 

 

Unlike the previous cases, Figure 3.21, showing AdaBoost results over multiple correlations, 

illustrate that the model lowers both upper and lower bounds. Indeed, the chart exhibit a small 

but relevant shift in the y-axis, of about 1,5% points. The shift, however, confirms once more 

that the loss from increasing the prediction time between one and two years and from two and 
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three years has differing magnitude. Further, as manifested by the one- and two-years distance 

charts, there seems to be no clear interrelation between the set correlation threshold and the 

average level of accuracy in the model. 

Figure 3.21 Accuracy levels 

achieved by the AdaBoost model 

on the six ready-to-use lists of 

financial ratios 

 

 

 

 

 

Finally, Figure 3.22 and 3.23, reports Decision Tree and XGBoost accuracy achievements under 

a three-years distance timespan scenario respectively. Both plots follow AdaBoost findings in 

that their accuracy intervals shift of few percentage points on the y-axis, 1% for Decision Tree 

and just less than one for XGBoost. In both, moreover, there does not appears to be a best 

performer nor a worst one. The only observation in this sense is linked to the accuracy priority 

list trend which overperforms its peers in up to 0,6 correlation threshold and only under 

XGBoost prediction frame. 

What is more, both graphs do not exhibit any definitive relationship between accuracy levels 

and correlation thresholds. The only, rather weak, connection can be evidenced for XGBoost 

which, similarly to the one-year distance time, shows a narrower range of accuracy records at 

higher correlation thresholds. 

Figure 3.22 Accuracy levels 

achieved by the Decision Tree 

model on the six ready-to-use 

lists of financial ratios  
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Figure 3.23 Accuracy levels 

achieved by the XGBoost 

model on the six ready-to-use 

lists of financial ratios  

 

 

 

 

To conclude, table 3.3 ranks prediction models (left to right) and reports their ranges for the 

three-years distance from the relevant defaulting time. 

Table 3.3 Ranking of the best predicting models (left to right) with accuracy intervals (in %) 

MODEL XGBoost SVM KNN AdaBoost Decision T Logistic 

RANGE 79 - 83 80 - 81 79 - 82 77 - 81 74 - 80 50 - 75 

 

The second step of the analysis, entailing the examination of ROC AUC for specific correlation 

boundaries is here limited to the observation of the 0,6 threshold scenario and only for the 

individual accuracy based priority list. This will pursue two objectives: first, it allows to conduct 

a relevant comparison between the three years distance cases on the most critical, for practical 

applications, correlation threshold; second, it will keep the analysis straightforward since the 

differences from 0,3, 0,6 and 0,9 do not appear substantial, as verified in the previous section 

dedicated to the one-year distance case. Nonetheless, results related to 0,3 and 0,9 thresholds 

for both two- and three-years distances can be consulted in appendix 10. 

Figure 3.24 represents the ROC AUC for all six prediction models under the 0,6 correlation 

threshold and two-years distance scenario. Although the final ranking it suggests very much 

resembles Figure 3.10’s, it depicts an interesting situation. The primary observation that can be 

spotted, relates to the closedness in AUC results. Indeed, contrary to the one-year case all AUC 

measures, except for AdaBoost and XGBoost, appear to be close to each other. This may be 

explained by the average loss of predictive ability that the increase prediction time has brought 

to the picture. Also, from AUC AdaBoost is solidly performing as second best predicting model 

which is in neat contrast to the ranking based on accuracy only. Further, XGBoost performance 
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reveals a relative high robustness to the increased prediction time since its AUC mark is the 

least damaged among the top three in the one-year case (SVM, AdaBoost and XGBoost). 

Overall then, AUC prizes the ensemble models significantly more than the accuracy measure.  

The least performing model is Decision Tree which, except for Logistic Regression, is in line 

with the accuracy findings. Finally, at a general level, SVM appears to suffer the most from the 

change in prediction timespan. 

Attached to the chart a table presents accuracy, precision and recall measures at the 0,6 

correlation threshold. It, as already pointed out, present a different situation than the one elicited 

from AUC data. Although it is evident a loss in performance affecting all six models, the 

accuracy dimension clearly identifies Logit as the worst predictor. Moreover, the gap in 

performance between AdaBoost and XGBoost seems here replenished: they appear to achieve 

the same level. Also, in line with the observation for the one-year distance case, the recall 

dimension shows poor results, when compared with precision and accuracy for all models 

except Logistic regression. 

Figure 3.24 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios 

at a 0,6 maximum correlation 

threshold 

 

  

 

 

 

 

 

 

Figure 3.25 plots ROCs and reports AUC values for 0,6 correlation thresholds and three-years 

distance to the relevant defaulting time. The first impactful information the chart conveys 
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relates to AUC outcomes for Logistic regression, SVM and KNN. These are in fact labelled as 

performing better on a three years timespan than on, the more reasonable, two years. This fact, 

given that the difference is by no means substantial, indicates again that the loss in performance, 

on average, suffered between two years and three years cases is only marginal compared to the 

loss experienced in moving from the one-year to the two-years distance. The other three 

prediction models, namely AdaBoost, Decision Tree and XGBoost, instead follow an expected 

behaviour and decrease their overall valuation. Interestingly, the three years scenario features 

the lowest total gap among models. The actual ranking, however, appears to remain unchanged 

from the previous cases.  

The attached table confirms the findings with several models that slightly improve their 

outcomes instead of decreasing them. Interesting is in particular the accuracy recorded for the 

Logit analysis since it drastically improves, by 10% points, against Figure 3.24 attached table. 

This behaviour is reflected in the already seen unexpected trend of the accuracy priority list 

followed in chart 3.18 (blue line). Finally, recall measures display a behaviour essentially in 

line with the preceding findings. 

Figure 3.25 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios at 

a 0,6 maximum correlation 

threshold 

 

 

 

 

 

 

 

 

The list of ratios applied at 0,6 correlation threshold is the same adopted for the one-year case 

and is thus not reported. 
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3.2 TESTING SAMPLE RESULTS OF EXTERNAL FIRMS 

This section aims at examining the six prediction models’ performance on a test set composed 

of 3482 companies headquartered in Italy. The analysis compares Veneto only models’ 

accuracy measures and ROC AUCs with the new test sample to look for model ability to 

generalize predictions. All companies’ data are taken from the AIDA database as already 

described for Veneto only firms. Moreover, entities only belong to a selected list of ATECO 

subclasses as they are object of analysis in a parallel study looking to identify the best prediction 

models for Italian firms with specific features. 

All 3482 are employed as test for the prediction models trained on the previous described 

training set. That is to say that the training set is only composed by Veneto companies while 

this test set includes also, and in majority, external companies. Such train and test sets 

composition bring about an appreciable drawback: results on the test set might be distorted due 

to specific characteristics affecting companies outside Veneto region. In other terms, training 

the models on data related to a restricted area, Veneto in this case, may result in biased 

performance metrics from external firms since the peculiarities, the features, through which 

models determine their key parameters and thresholds might be insufficient to truly represent 

companies headquartered outside Veneto. The analysis here proposed is nonetheless relevant 

and reliable. This because of  two reasons: first, the main characteristics connoting firms in 

Veneto can be extended to all Italian companies as proxy of their activity with limited degree 

of misrepresentation; secondly, since all ATECO classes have been included in the training set, 

models are to be considered able to handle them also for larger samples40. It is also true, 

however, that the issue aforementioned should be bore in mind when interpreting results.  

3.2.1 One-year distance results  

Table 3.4 Veneto test set accuracy results (already introduced) per model and priority list

 

 
40 As explained in chapter 2, ATECO first figure 9 is not included in the sample for lack of data. This however do 
not hinder the analysis since no external company belongs to the 9th class. 
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Table 3.5 External test set accuracy results per model and priority list 

 

The first set of results assessed relates to the one-year distance from the relevant defaulting 

year. looking at it, only the 0,6 correlation threshold and accuracy based priority list are taken 

into account. This allow a thorough comparison between the external test set and the Veneto 

one, while keeping only informative metrics. All results concerning to 0,6 threshold and other 

priority lists, not illustrated here, are reported in appendix 11.  

Table 3.4 and 3.5 present the accuracies achieved by all six prediction models on the various 

priority lists in the Veneto test set and the external test set respectively. Row numbers represent 

a specific priority list, namely: 0 for accuracy, 1 for Literature, 2 for precision, 3 for recall, 4 

for binning and 5 for IV based list of ratios.  

The comparison between the two table elicits interesting results. As first, looking the three least 

performers for Veneto only test set, logistic regression and KNN appears to be behave equally 

well under the two test sets. On the contrary, Decision Tree suffers from the change operated. 

Specifically, Decision Tree exhibit low results for the binning based priority list where it 

reaches only 31% overall accuracy. Since this is an isolated result, in the sense that 31% 

represents an outlier with respect to the other accuracies achieved, this may well be attributed 

to the changing features of the external test set. In other words, it can be assumed that given 

31% is the lowest recorded performance, far from the other recorded measures, the thresholds 

set by Decision Tree under binning priority list during the training process can be assumed as 

different from those that would have been set if the training set included a significant number 

of external firm data. A comparable argument can be applied to Decision Tree results on the 

literature list, reaching 44% accuracy. 

A second observation considers the top three performers in Veneto only test set: SVM, 

AdaBoost and XGBoost. While the two former show in-line performances with an expected 

small decrease in accuracies, XGBoost reports fairly poor results. Indeed, if SVM and 

AdaBoost only loose few percentage points, with the only exception represented by the latter 
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applied to IV based priority list, XGBoost always looses more than 50% accuracy with the sole 

exception represented by the literature priority list. Its poor results might be symptom of 

overfitting. Overfitting occurs whenever a model does not show a sufficient ability to generalize 

the performances obtained on a limited test set on o broader number of tests. Here in fact, 

XGBoost shows poor ability in extending to the new, broader test set, the achievements reached 

under the Veneto only test set. Even discounting for the presence of the external factors, that 

brings in any case to essentially comparable results in the other models, it cannot be explained 

the lower than average results related with XGBoost. For this reasoning it can be concluded 

that XGBoost might suffer from overfitting.  

As a further step in the analysis, the ROC AUC curve plot is examined.  

Figure 3.26 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios 

at a 0,6 maximum correlation 

threshold 

 

 

 

 

 

 

 

 

Figure 3.26, reporting the ROC AUC values for the six prediction models under 0,6 correlation 

threshold and for the accuracy based priority list, depicts quite a different scenario from what 

just seen from the accuracy metrics. The chart indeed, presents Logistic regression as the best 

absolute model, confirming the generalization ability of the model. Then, AdaBoost and 

XGBoost follow. If the former could be expected from Table 3.5 to be ranked as second best 

performing, the same cannot be stated for the latter. To understand it, it is sufficient to look at 

the table attached in Figure 3.26. From it can be elicited that whilst XGBoost accuracy, as 
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previously seen, is lower than average, its recall ability stands as second best, 61% recall. 

Through this fact it can be assumed that is accuracy drops significantly, other measures of 

performance show different outcomes so to determine an AUC value seemingly reversed in 

results. To conclude, KNN, AUC of 0,64, is chased by SVM, 0,56, and Decision Tree, 0,50.  

3.2.1 Two-years distance results 

Moving on, the two-years distance from relevant defaulting year scenario is analysed. Table 3.6 

and 3.7 report the accuracy over all models and for all priority lists for Veneto only and external 

test sets respectively. In the first table it is possible to recognize the loss in accuracy risen from 

the increased prediction timespan discuss in chapter 3.1 and visible with respect to Table 3.4. 

From the comparison between the two tables is then possible to see the change in performance 

brought from the new test set. The first, main consideration that can be adduced from such 

comparison regards the difference between the relative modifications in the increase prediction 

period with the different test sets. Indeed, when focusing on the passage from Table 3.4 to Table 

3.6 and from Table 3.5 to Table 3.7 the deltas that can be spotted appear to differ in magnitude 

from model to model.  

Table 3.6 Veneto test set accuracy results (already introduced) per model and priority list 

 

Table 3.7 External test set accuracy results per model and priority list 
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That is to say, all prediction models exhibit a higher decrease in overall accuracy for the new 

test set rather than Veneto only sample. The only exception being XGBoost, which seems to 

regain one of the first position in the accuracy ranking, and, slightly, Decision Tree, which does 

not decrease its average accuracy more than the decrease experienced under the smaller test set 

case. The worst achiever results to be SVM which, in line with the precedent reasoning on 

XGBoost might reveal signs of overfitting in this phase. Further, Logistic regression again show 

certain degree of generalization ability with accuracies essentially comparable among 

scenarios. Finally, also AdaBoost and KNN remarks their compatibility with the new test set 

with values equal, or approximately equal, in the two tables.  

As for the second assessment step, Figure 3.27 plots the ROC AUC of the six prediction models 

undergoing the same conditions of correlation threshold and priority list. The chart describes a 

situation basically dominated by two groups of results. On the one hand the group of models 

totalling more than 0,5 in AUC and those below the red dotted line with lower than 0,5 AUC. 

Confirming the findings from Figure 3.26, Logistic regression leads in pair with AdaBoost and 

strictly followed by XGBoost, 0,69 and 0,68 respectively. Then, still higher than 0,5, KNN 

reaches 0,61 while SVM and Decision Tree confirms to be the least performers with just 0,46 

and 0,45. 

 

Figure 3.27 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios 

at a 0,6 maximum correlation 

threshold 
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Finally, from the attached table it can be elicited both that precision and recall measures reach 

quite low outcomes for all models and once more recall for logistic regression corroborates the 

model generalization ability. 

3.2.1 Three-years distance results 

The third and last scenario considered refers to the three-years distance from the relevant 

defaulting year under the 0,6 correlation threshold and accuracy based priority list conditions. 

To complete it, Table 3.8 and 3.9 report accuracy levels for all six prediction models over all 

six priority lists for Veneto and external test sets.  

A first consideration relates with the level of SVM which appears to achieve higher results than 

under the two-years case. This fact might indicate that the probable overfitting condition is 

limited to the two-year status. All other models reach results essentially in line to what expected 

from the previous analysed tables. Here KNN and AdaBoost rank as best performers, followed 

by XGBoost, SVM and logistic regression in average values. The fact that XGBoost both in 

two- and three-years scenarios achieves over average accuracy outcomes and that it exhibits 

AUC values that almost always stand in the top positions, strengthen the possibility that Table 

3.5 records truly reflect an overfitting condition. The final, least performing framework is 

represented by Decision Tree with 24% as lowest point.  

Table 3.8 Veneto test set 

accuracy results (already 

introduced) per model and 

priority list  

 

 

Table 3.9 External test set 

accuracy results per model 

and priority list 
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Figure 3.27 ROC AUC for all 

six prediction models and 

related to the results obtained 

with the accuracy list of ratios 

at a 0,6 maximum correlation 

threshold 

 

 

 

 

 

 

 

 

From Figure 3.27 moreover, an interesting result can be observed: not only logistic regression 

is confirmed as the overall best prediction model but it also increases, though only slightly, its 

AUC value. Other than Logit, also KNN slightly increases its AUC performance while all the 

others lower their outcomes for few points. The exception to this is objectified by Decision Tree 

which drastically worsen its condition, reaching only 0,36. The fact that all prediction models, 

except Decision Tree, display similar outcomes to the two-years distance scenario confirms the 

tendency first spotted in the previous analysis, of steady results between the two- and three-

years distances. In other words, it is once more clear that the gap in performances created when 

moving from one- to two-years of prediction timespan finds almost no comparison with the 

subsequent time change generated gap.  

To conclude, the attached table presents a situation very much alike to the one depicted by the 

AUC measures. The least performers are SVM and Decision Tree which reaches the lowest 

recall at 36%. Also, logistic regression outperforms all others in the recall statistics while it is 

joint and slightly overcome by AdaBoost under the precision parameter. 
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4. CONCLUSIONS 

The following section recaps the main steps undertaken throughout the research, outlines the 

conclusions reached, suggests new direction of research and ends with the author personal 

comment. 

To begin with a brief recap, this study aims at developing and applying sound bankruptcy 

prediction frameworks on datasets composed by companies headquartered inside Veneto region 

in Italy. To do so, six prediction models ranging from more traditional statistical concepts to 

newer machine learning based algorithms, have been employed, namely: Logistic regression, 

Support Vector Machines, K - Nearest Neighbour, AdaBoost, Decision Tree and XGBoost.  

Deepening, the whole process can be split into 6 steps: 

-At first, an analysis of the data available have been carried out. Data, ten years of financial 

statements drawn from Bureau Van Dijk’s AIDA database (a Moody’s analytics company), 

refers to 424 companies defaulted between 2013 and 2019 and 29711 non-defaulting firms. 

‘Default’ entails here the Italian legal discipline of ‘Concordato preventivo’ and ‘Procedura 

concorsuale liquidatoria’. Firms are for the majority small and medium enterprises mainly 

based in Vicenza and Padova provinces with high defaulting occurrences between 2014 and 

2017. 

-Secondly, all non-defaulting entities have been filtered through the Propensity Score Maching 

procedure. This has been applied to both reduce the imbalance in datapoints availability 

between the two groups and to optimally match sound companies to failing ones. Five non-

defaulting firms have been associated with each defaulting on the basis of Sales, to account for 

the size of the business run, and Equity to total Assets, to include features pertaining to the 

balance sheet solidity (e.g. leverage) to which firms are exposed to. A total of 2430 firms’ data, 

405 failing and 2025 non-failing, results from the procedure. 

-Further, 54 financial indices have been computed for each enterprise. Indices refers to the most 

used ratios in the relevant literature and are mostly chosen from Bellovary et al. (2007) review.  

-As fourth step, an individual analysis of each financial index has been executed. It comprised 

undertaking an univariate logistic regression, from which measures of ROC AUC, accuracy, 

precision and recall have been elicited, and the binning procedure. Binning is performed by 

charting the number of defaults per decile inside the specific ratio distribution to look for the 

average ability in prediction as well as generally determining the complexity associated with it; 
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calculating Weight of Evidence values per every decile; and finally compute the overall 

Information Value granted by the ratio. 

-Forward, from results obtained in the fourth step, six rankings of ratios have been established. 

These, called ‘priority lists’, defines best and worst financial ratios on the basis of their 

individual assessment and are based upon: accuracy, precision, recall measures from the 

univariate logistic regression analysis, the slope of the best fitting line from the binning charts 

(which accounts for either inability or complexity in interpretation of the single ratio), the 

individual Information Value scored and the frequency of adoption in relevant past researches 

on bankruptcy prediction. 

-Moreover, correlations among all financial indices have been computed. These, contained in 

the average correlation matrix, refers to the average correlation found over ratios in each 

company dataset. From the correlation matrix it has been then possible to select a maximum 

correlation threshold to determine the maximum degree of interrelation accepted. After setting 

it, those ratios found to be over correlating have been judged on the premise of priority lists: 

identified the over correlating pair, the ‘loosing’ ratio is discarded. 

-Finally, all surviving datapoints, after a pre-processing phase to take care of outliers and 

missing data, have undergone the six multivariate prediction models. Three main scenarios have 

been tested: one, two and three years of prediction time (i.e. the timespan between the prediction 

and the predicted moments). Models have been proved on both hold-out Veneto firms and 

Italian companies test sets. 

4.1 Resulting remarks 

A first relevant conclusion concerns Net Income to total Assets and Working Capital to Equity 

(or Net Worth) ratios.  

Indeed, looking at appendix 6 reporting all six individual assessment-based priority lists, Net 

Income to total Assets always appears in the top position. This already tells that in line with the 

relevant literature, as implicitly stated by the literature based list, such financial ratio exhibits 

the highest individual level of performance for prediction purposes. In other words, in order to 

conduct a basilar and simple evaluation of companies in which just one parameter is considered, 

the most useful indicators is Net Income to total Assets for firm headquartered in Veneto region. 

Further, confirming the main theory on bankruptcy prediction, this conclusion can be extended 

to point out that whenever only a single parameter has to be involved in the assessment, then 

applying Net Income to total Assets should maximise results reliability.  
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On the contrary, at bottom positions of the majority of priority lists figures Working Capital to 

Equity (or Net Worth). This fact indicates that, under analysis conducted through the univariate 

logistic regression, it should not be preferred to any of the other 53 financial ratio considered.  

It is however needless to set out that already these first observation should be taken as only 

applicable in contexts similar to the one set up in this study. For instance, it is possible that a 

revision might occur if a different individual assessment model was to be selected. Moreover, 

following the same reasoning it is hard to establish a conclusive and objective ranking of ratios 

individual predictive ability. This is due to the fact that weights can be assigned to priority lists 

to reflect the variety of needs that come in practice, making essentially subjective the final score 

given to each ratio. Here, however, Net Income to total Assets and Working Capital to Equity 

(or Net Worth) are the only two clearly positioned, leaving small or no room for subjective 

modifications. 

A second straight conclusion comes from the comparison of the three prediction time scenarios 

considered. In fact, results suggest that the drop in performance observable from one year to 

two years dwarfs the parallel drop occurring when moving from two years to three years 

prediction period. This, in turn, implies that at a practical level choosing two years as prediction 

time to predict bankruptcy for Veneto companies with the model fine-tuned in this analysis, is 

essentially useless. In other words, since the performances elicited from two years and three 

years scenarios are almost comparable, it should always be more productive selecting the latter 

to have longer time predictions. The critical trade-off is thus between the single year scenario 

and the three years one whose performances differ significantly in favour of the one year setting. 

What is more, looking at chapter 3 presenting the results, the metrics of performance achieved 

are in line with the literature except for the mentioned fairly limited drop in performance 

operated from two to three years. This outcome is in fact quite rare in other studies. 

A third deduction relates to the fact that there do not seem to be an optimal level of correlation 

overall. This is particularly true looking at all prediction models’ charts showing accuracy levels 

over multiple correlation thresholds for all six priority lists under all three prediction times 

scenarios. From them all is indeed clear that the level of maximum correlation allowed among 

financial ratios only slightly affect accuracy outcomes. In addition, ROC AUC charts for the 

three selected thresholds (i.e. 0,3; 0,6; 0,9) confirm the intuition. That is to say that inside the 

examined 0,3 to 0,9 range of thresholds, no one appears to display substantially better outcomes 

than the others. The sole exception is represented by Figure 3.5 illustrating the accuracy levels 

for KNN model over multiple correlation thresholds for one year prediction time and Veneto 
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only test set. In this case the level of interrelations does affect the average level of accuracy. 

Nonetheless, the same behaviour disappears under any other scenarios (e.g. increased 

prediction time span or different test set) and the actual change in average accuracy only 

accounts to six percentage points. 

Furthermore, a fourth conclusion can be gained examining results from the external test set, 

which comprises companies headquartered in all Italy. From them, Logistic regression and 

KNN show the highest generalization ability. In other terms, they demonstrate the ability to 

reach accuracy and ROC AUC outcomes comparable to those achieved under the Veneto only 

test set. At an intermediate level of reliability figures then AdaBoost which seems to suffer only 

under particular combination of ratios and in the minority of results. The other three models on 

the contrary, show a rather significant inability in generalization. Specifically, while Decision 

Tree appears to score low but stable metrics on all three prediction times scenarios, XGBoost 

and SVM exhibit drastic decrease in accuracy and ROC AUC for only one specific time period: 

one-year and two-years prediction period respectively. These latter may be considered to overfit 

training datapoints for the two mentioned scenarios. However, the overfitting argument, as 

deepened in the previous chapter, cannot be conclusive since the inability in generalization 

shown could be due to radical differences in the characteristics connoting the external test set 

with respect to the internal, Veneto only, sample test. Nonetheless, it appears as an evidence 

the different behaviour in generalization between ensemble, tree-based prediction models (i.e. 

XGBoost, AdaBoost and Decision Tree) with SVM and Logistic regression with KNN. 

A final, perhaps most interesting in practice, conclusion has to do with the definition of a 

general ranking of the six prediction models in the context analysed (i.e. for companies 

headquartered in Veneto). Carrying out this task is however quite a challenging operation due 

to mainly two reasons: first, looking to Veneto only results lowers the impact of the 

generalization argument which has not been proved except for a relatively small test set, set at 

25% of the overall initial sample; further, the absence of an optimal correlation threshold 

implies a ranking based on intervals of results rather than straight and clean outcomes thresholds 

with the issue represented by overlapping section among intervals.  

That being cleared, metrics of performance from the Veneto only test set, univocally indicate 

XGBoost as the most accurate and reliable prediction model. This is constantly confirmed by 

both metrics such as accuracy (e.g. it reaches a maximum accuracy of 93%), precision and recall 

and ROC AUC values at multiple correlation thresholds, under all three prediction times 

scenarios and for every priority list built. Following AdaBoost shows slightly higher degree of 

reliability with respect to SVM. Both models achieve just below 90% accuracy in their best 
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conditions and scenarios. Although the two models appear to suffer particularly the change 

from one- to two- and three-years distance from the relevant defaulting year, they always 

exhibit performances only limitedly poorer than XGBoost. Following, KNN stands as 

intermediate framework. Its metrics of performance, along with its shown generalization ability 

make it preferable to Logistic regression and Decision Tree. An important but secondary 

comment on KNN concerns its easy to interpret outcomes. Indeed, for its simplicity in 

execution, KNN represents a solid methodology with relevant results: 88% maximum accuracy 

under one-year prediction time scenario. To conclude, even though their performance metrics 

are many times overlapping each other, it can be said that Logistic regression is a more reliable 

prediction model than Decision Tree. The former indeed shows higher metrics of performance 

in both two and three years of prediction time scenarios to which it should be added that these 

are constant over prediction time while Decision Tree’s outcomes drop drastically moving from 

one scenario to another, making them less predictable. Moreover, Logistic regression appears 

to embed a fairly higher generalization ability, to which Decision Tree demonstrate poor 

capability. 

Again, it should be noted that the ranking so far detailed is only worth inside a context featuring 

equal setting and characteristics as those developed all over the analysis. 

4.2 Further research directions  

Along with the conclusions so far delineated, the author of this thesis is convinced that 

significant importance should be put on the suggestion of future research paths to pursue. 

Indeed, though conclusive and employable for practical use, the results listed above only 

represent a narrow and first attempt toward a general application of the bankruptcy prediction 

knowledge in Veneto and, more ambitiously in Italy. In other words, lots can be done to expand 

and deepen the efficacy of the six prediction models here included, let alone introducing 

altogether new prediction models or approaches.  

Specifically, four main directions have been identified as valuable future streams of research: 

financial indices’ structure and dynamic time composition, integration of parameters from 

additional fields, model integration with human intuition and prediction models combination. 

The first suggestion refers to both the exploration of new financial indices structures and their 

time relevant composition. On the one hand, by ‘exploration of new financial indices structures’ 

is intended the possibility of considering new form of indices previously unseen. In fact, so far, 

the literature has been concerned with the exploitation of financial indices introduced from 

either practitioner intuition or the necessity some firm faced in its internal accounting processes. 
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In other terms, up to now the source of indices structure has historically been identified in 

figures (firms, academics, practitioners, etc.) aiming to solve some kind of measurement issue. 

On the contrary, all those non-practical, and perhaps more subtle, indices have not been 

adequately explored. The suggestion thus relates to a more rigorous exploration of all, or many 

more, kinds of financial ratios to look for less human-friendly parameters achieving high 

individual assessments. The reasoning underpinning this proposal starts exactly from 

recognizing that there may be some machine-friendly financial ratios, some hidden knowledge, 

that could be exploited in team with the traditional, more understandable indices to achieve 

higher prediction performances and reliability.  

On the other hand, for ‘time relevant composition’ is considered the computation of the average 

financial ratio then applied to prediction models. In this research four years mean has been used 

as conclusive parameters. It would be undoubtedly useful looking for other combination of year 

ratios as a two, three, five or six average values to look for the most efficient and efficacious 

overall. Moreover, and more importantly, new, less trivial form of averages could be 

considered. As an example, a more dynamic average could result from a moving average with 

the advantage of incorporating some degree of knowledge from parameters past levels. In such 

a case the ‘amount of knowledge’ from the past could be fine-tuned assigning weights during 

the average computation. 

Another path of research that could be sought concerns the inclusion of parameters measuring 

different set of dimensions related to firms and their failure. As mention at the end of chapter 

1, macroeconomic and corporate governance indicators could be beneficial for predictions due 

to the measurement of relevant factors, able to significantly affect the performances of a 

company, that financial ratios do not capture. This would lead to a clearer background of the 

specific area being scrutinized (e.g. Veneto region in this study) and consequently to more 

reliable and accurate outcomes. Another quite known example in this sense entails the use of 

market based ratios (e.g. prices, trends, etc.). Though undoubtedly useful and valid when 

applicable, market based parameters carry the critical problem of being essentially useless for 

any non-quoted enterprise. This should evidently taken into consideration since the vast 

majority of companies is usually not quoted to exchanges and thus models developed in such a 

way could find little adoption for small firms.  

As last suggestion, prediction frameworks should integrate the formal financial statement 

analysis, as described in this study, with an overall judgement reached by expert analysts. As a 

matter of facts this suggestion could be considered as an extension of the previous point. Indeed, 

it could be well said that a significant portion of soft information that can easily be identified 
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as crucial to predict bankruptcy remains hidden behind the rigorousness of financial statements. 

By soft information it is here referred to all knowledge describing non-quantifiable, or hardly 

and costly so, dimensions that can find examples in type of relationships of intercurrent among 

employees, or the responsibility and intrinsic ability of the management to find proportionate 

solution to their companies hurdles, etc. These and similar dimensions are in fact hard to 

measure but nonetheless crucial and determinant for company success. In this context, the 

suggestion relates to seeking methodologies to fruitfully integrate and exploit machine and 

human prediction abilities41. This would have the advantage on one side, of filling the gap of 

soft information parameters with the human ability to recognize at least general behavioural 

patterns inside companies, while, on the other, to limit human biasedness in assessments, 

plentifully examined and proved by, as first, Kahneman and Tversky famous Prospect theory 

(1979).  

4.3 Conclusive comments 

In this last section a conclusive comment by the author of the study is proposed. The need for 

it comes from Ohlson (1980) nipping question on the reasons that should underpin the search 

for more and more performing prediction models. In part, the reasons adduced in the 

introduction of this document, already answer said need of reasons. To recap, the main whys 

driving researches on bankruptcy prediction relates to the need to decrease lending institutions 

operating risk while increasing their overall profits, define sound provisions to guarantee the 

stability of the modern credit-based financial systems, look for enhanced ways to allocate 

resources more wisely to productive activities with higher likelihood to succeed, etc. 

Cleared the perspective chased by bankruptcy prediction researches, the matter that is here 

introduced questions whether the approach so far presented and followed is the right one: the 

one capable to reach the objectives just listed. The approach under assessment, the one applied 

also in this study, starts from the assumption that with a substantial amount of data, financial 

data, there could be drawn a picture precise enough to even propose forecasts on newly 

considered entities. This is carried out in practice by observing large amount of financial 

statements records, training prediction models and applying those trained models to the new 

entity being scrutinized. In other words, can this procedure, for how complete and sophisticated 

a future prediction model might become, find answers to at least one of the goals listed above? 

 
41 Human prediction abilities are tested and claimed by Zimmer (1980) who, as explained in chapter 1, looked 
at prediction accuracies achieved by loan officers in executing the task of making annual predictions of 
corporate failure based on a time series of ratios 
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I am convinced that this approach can, and will, only partially represent those answers.  

The reasons for it is to be sought in the fact that by its own nature statistical models guarantee 

a level of quality and reliability proportional to the quality of data being deployed. Machine 

learning practitioners slang it as GIGO, which stands for ‘garbage in, garbage out’. In the 

context of bankruptcy prediction, data employed does not resemble ‘garbage’, though is not 

always clear whether some financial statement aggregate results from real world quantities or 

rather the company own interest. Nonetheless, a question arises as to what amount of data, both 

in terms of absolute number of records available and viewpoints covered42, should be 

considered sufficient to ascertain the reliability of results. In the case of bankruptcy prediction, 

the amount of data needed for models to achieve higher and higher performances needs to be 

set in accordance with every aspect of a firm life. Thus, in this sense, it is already clear the 

limitation of the statistical approach so far applied: an important amount of critical data cannot 

be collected and employed.  

It can be pointed out that it is in any case useful have a prediction with the data that can be 

retrieved, so to reach at least a viewpoint. I disagree with statements of this sort. The reason for 

it can be found in the brilliant description that professor Taleb depicts in his bestseller The Black 

Swan where he introduces two fictitious countries: Mediocristan and Extremistan. Mediocristan 

is to be considered as the place where everything averages out, a ‘boring’ place where outliers 

do not appear. On the contrary, Extremistan is the country of outliers, where all distributions 

depart from the Gaussian description of the world. Then, in our picture, prediction models are 

dealing with some kind of Extremistan. In other terms, the determination of the binary ‘failure’ 

‘non-failure’ is so dependent to events whose occurrence is inherently not predictable that a 

prediction based on the average patterns followed by a company resembling, in terms of data 

points, the one under assessment might even be cause of distortion of more naïve forecasts. 

These events are related to the business of the company, the macroeconomic and socio-political 

context surrounding it, the intricate set of human interconnections and abilities, etc. that 

dominate the life of a firm.  

To summarize, the very same presence of black swans affecting companies’ life makes the 

bankruptcy prediction research so far conducted only partially effective to materially achieve a 

decrease in lending risk, more stable financial markets and an effective allocation of resources. 

 
42 By viewpoints are here intended the fields, relevant for the model to meaningfully operate, the data belongs 
to. As an example, financial data only covers the aspect of financial results that firms are subjected to, leaving 
vacant any information on the management team, employees loyalty, etc. which are all relevant factors to 
predict the firm future. 
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APPENDIX 1. Python code for Propensity Score Matching procedure 

Loading and arrangement section 
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PyMatch application section 

 

 

Manual Matching section 
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APPENDIX 2. Python code for retrieving financial indices 

 

  

Computing components for ratios
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Computing all 54 financial ratios: The majority of them is initialised in the next three lists: 

name_ratio, containing the final name given to ratios; First_comp, the list containing the 

numerator components; Second_comp, the list including all denominators. 
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The computation structure and the other, more complex indices (from ‘inserting “single” ratios’)
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APPENDIX 3. Univariate logistic regression results 

First are reported ROC AUC and confusion matrices; then, Recall, Precision and Accuracy; Finally, 

python code is transcribed. 
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Data Pre-processing and univariate logistic regression code 
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APPENDIX 4. Binning and Information Values results 

All financial indices charts for binning categorization are reported along with the final IV 

computed. For sake of brevity Weight of Evidence results are computed through the code but 

not showed. Each chart is anticipated by the IV of the ratio it belongs to. 
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Long-term debt/Total Assets, Retained Earnings/Total Assets and Inventory/Sales could not 

being displayed since their distribution reported a too high occurrences of 0s. This has 

prevented the code from finding the right end of each decile. For this reason, the following 

error message is printed on Python Console, for each of them: 

Inventory/Sales distribution has too many equal values (0.0).  

Binning cannot be carried out: python does not know how to create decil

es 

 

 

 

 



141 
 

Python code for Binning, WoE and IVs 
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APPENDIX 5. Code for retrieving correlations 
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APPENDIX 6. Priority lists and the code to build them 
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Code for Binning and IV priority lists 

 

Code for Accuracy, Precision and Recall priority lists 

 

The priority list built on the relevant Literature has been created manually. 
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APPENDIX 7. Data pre-processing and correlation funnel for prediction models 

Prioritizing function 
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Pre-processing section 

 

Embedding Prioritizing into Correlation funnel 
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APPENDIX 8. Multivariate prediction models complete code (with testing section)
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Code to test for hold-out sample 
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APPENDIX 9 ROC AUCs retrieved from prediction models for one-year distance  
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APPENDIX 10 ROC AUCs retrieved from prediction models for two- and three-years cases 

 Two-years distance from the 

relevant defaulting year 
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Three-years distance from the 

relevant defaulting year  
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APPENDIX 11 ROC AUCs retrieved from testing, external sample  

One-year distance from the 

relevant defaulting year 
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Two-years distance from 

the relevant defaulting year 
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Three-years distance from 

the relevant defaulting year  
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