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Sommario

Con la nascita di nuove problematiche e nuove esigenze in ambito spaziale, le più im-

portanti riguardanti il tema della mitigazione dei detriti spaziali o dell’assistenza e

del servizio dei satelliti in orbita, lo scenario di rendez-vous autonomo tra un satellite

inseguitore e un satellite target non cooperativo sta diventando sempre più centrale,

ambizioso e accattivante. Il grande scoglio da superare, tuttavia, consiste nell’indivi-

duazione di una strategia di approccio robusta e vincente: mentre l’esecuzione di una

manovra di rendez-vous e docking o cattura con satellite cooperativo è già stata collau-

data e possiede una consolidata eredità di volo, il rendez-vous autonomo con satellite

non cooperativo ed in stato di tombolamento è uno scenario agli albori, con pochi studi

al riguardo. Lo scopo di questa tesi consiste nell’identificazione di una strategia di ap-

proccio che consideri le principali problematiche legate al tema in questione, ovvero la

non-cooperazione e le scarse informazioni sullo stato di moto del target da raggiungere.

Queste due complicazioni portano alla necessità di eseguire un moto di ispezione del

satellite target e alla considerazione di numerosi vincoli nella progettazione della tra-

iettoria di ispezione e di approccio. Un controllore adatto a trattare questo problema

complesso e multi-vincolato è il Model Predictive Controller, in forma lineare o non li-

neare, abbinato ad un filtro di Kalman. La capacità di questo controllore di previsione

e pianificazione di una traiettoria d’approccio, a partire da stime di posizione relativa

tra target e inseguitore, permette di portare a termine la manovra in modo sicuro e

robusto.
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Abstract

According to the rise of new problems and new demands in the space field, the most

important concerning the mitigation of space debris or the spacecraft on-orbit servicing

and assistance themes, the Autonomous Rendezvous scenario between a chase satellite

and a non-cooperative target satellite is becoming increasingly significant, ambitious,

and attractive. The main issue to overcome, however, consists in the identification of

a robust and successful approach strategy: while the execution of a rendezvous and

docking or capture maneuver with a cooperative satellite has already been tested and

holds a solid flight heritage, the autonomous rendezvous with a non-cooperative satel-

lite in a state of tumbling motion is a scenario in the early days, with few studies about

it and a not yet mature technology. The aim of this thesis consists in the identification

of an approach strategy that deals with the main challenges related to the considered

problem, namely non-cooperativeness and exiguous information about the target to be

reached. These two issues lead to the need of performing an inspection motion and

considering several constraints in the trajectory design. A controller suitable to handle

this complex and multi-constrained problem is the Model Predictive Controller, in a

linear or non-linear form, paired with a Kalman filter. The ability of this controller to

predict and plan an approaching trajectory, starting from estimates of the relative po-

sition between the target and the chaser, allows to complete the approaching maneuver

safely and in a robust way.
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Chapter 1

Introduction

Rendezvous and Docking or Capture is an interesting on-orbit scenario in which a chase

spacecraft arrives in the proximity of a target spacecraft and, after a few maneuvers or

operations such as fly-around, finally captures it (or is captured). All these proximity

maneuvers required to accomplish docking or capture are commonly enclosed into the

Rendezvous and Proximity Operations (RPO).

Thinking about the growing importance given to scientific explorations, it’s possible

to extend the first definition by considering a generic space object as target instead of

the more specific case of a spacecraft.

Nowadays, becoming the new space economy a reality even more, this scenario is

getting increasingly popular, especially in the case of Autonomous Rendezvous and

Docking or Capture (AR&D/C), where the need to assist and support particular on-

orbit operations is gradually replaced by the use of robust Guidance, Navigation and

Control systems and increasingly performant on-board computers.

A larger distinction can be made by considering AR&D/C maneuvers with cooperative

or non-cooperative target objects: while for operations with cooperative bodies there

is an already consolidate background and study (the major example is the ISS refur-

bishment) and a considerable flight heritage, executing a rendezvous and proximity

maneuver with an object that does not interact or cooperate with the chaser is a more

recent issue and, as one can intuit, a really challenging matter.

Non-cooperative bodies are all resident space objects, such as orbital debris, de-
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CHAPTER 1. INTRODUCTION

funct satellites, and natural objects like asteroids and comets, that are of unknown

appearance, uncooperative, and tumbling[37]. All these characteristics turn out to be

obstacles for a rendezvous: for example, the knowledge of inertial properties and the

state of motion is a crucial aspect for the conception and planning of a possible tra-

jectory of approach, or, to name another, non-cooperativeness implies that the chaser

can’t rely on transponders, reflectors, artificial markers that allow friendly response to

its sensors, but must rely on docking or grappling fixtures eventually offered by the

target. All these uncertainties lead to the consideration of robustness approaching to

the problem, besides fuel consumption and engineering constraints: the chase satellite

has to track both the time-varying desired relative positions and attitude trajectories

accurately with respect to a target spacecraft, primarily ensuring safety.

Despite AR&D/C problem with a non-cooperative target results in an undemon-

strated, risky, and challenging operation, it has attracted increasing attention in recent

years. Why does this scenario attract?

1.1 Non-cooperative AR&D/C performing motivations

As stated by Setterfield[37], there are several reasons to want visiting these resident

space objects with an inspector satellite: to deorbit or deflect dangerous debris, to

inspect and/or repair defunct satellites (on-orbit servicing) or to make scientific obser-

vations of natural objects.

1.1.1 Deorbiting or deflecting Space Debris

Space debris are all man-made objects including fragments and elements thereof, in

Earth orbit or re-entering the atmosphere, that are non-functional.

It’s possible to group them into these categories:

- Operational spacecraft;

- Defunct spacecraft;

- Spent rocket bodies;

2



CHAPTER 1. INTRODUCTION

- Mission related objects;

- Explosion fragments.

Debris orbital velocities are extremely high and range from 16 km/s in very Low Earth

Orbits (LEO) to 2 km/s in Geostationary Earth Orbits (GEO), therefore it’s clear

that collision with even small debris can largely damage a satellite, with consequences

from a “simple” component malfunctioning to the catastrophic destruction of the entire

spacecraft, which implies the obvious loss of the mission.

Large orbital debris poses a risk of colliding with other debris and aggravating the

problem, and thus are good candidates for preliminary debris removal efforts.

Figure 1.1: Space objects tracked by the US Space Surveillance Network (SSN) [19].

Recent studies have shown that, even without any new launches, the environment

has reached a point where collisions among existing debris will result in the population

to increase. This fact, called ‘Kessler syndrome’ and first predicted by Kessler and

Cour-Palais[18], attests how much this scenario is dramatically worrying.

To mitigate the space debris growth, it is imperative to reduce the release of critical-

size objects in densely populated orbit regions. The principal mitigation guidelines,

issued by various international organizations[34], are listed below:

3
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- limit the number of mission related objects released into space;

- avoid on-orbit break-up;

- limit the orbital resident time spent in space of spacecraft and rocket stages

after mission completion (non-manoeuvrable space objects post-mission lifetime

should not exceed 25 years).

The various companies and associations are slowly agreeing to these mitigations, and it

is now known the need to complement them with environment remediation measures.

This can be done by performing “Active Debris Removal” missions, that depend on the

space environment where the orbit debris is situated: in LEO the primary issue for

proximity operations is to capture and deorbit large and massive debris with a high

impact probability with operative satellites, in GEO their capture and relocation to a

graveyard orbit.

In Europe, ESA is promoting the Clean Space Program, with the aim of studying

and developing new technologies for debris mitigation as well as environment remedia-

tion, pursuing the capture and deorbit of debris using nets, simple and electrodynamic

tethers (EDTs), harpoons, and ion-beam shepherding[44].

Figure 1.2: Envisat model (courtesy of [11]).

The most striking example with regard to environment remediation is the case of

4
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the e.deorbit mission, targeting Envisat, on which the studies have focused the most.

Envisat is an 8 tons mass, ESA-owned space debris in the densely populated near-polar

region in the 600–800 km altitude range and currently represents a potential trigger

for space debris proliferation in low Earth orbit.

Even if ambitious, this project is really challenging, due to Envisat huge mass, compli-

cated capture access (due to tumbling motion), and high collision risk with debris in its

current orbit. A possible success, in addition to the prestige acquired by ESA, would

encourage and promote other missions, making the space environment increasingly

clean and sustainable.

A quite different matter regards deflection purposes, herein not developed. Only an

example, due to its recentness, is given: that is the DART (Double Asteroid Redirection

Test) mission, belonging to NASA’s AIDA (Asteroid Impact & Deflection Assessment)

program and aimed at studying a method of planetary defense against minor bodies.

It is a recent mission, launched on November 2021 aboard a Falcon 9 and directed

towards the Didymos system, a 780m asteroid with a 160m diameter moon. The probe

will act as a kinetic impactor on the small moon to slightly change its orbit. The

success or failure of the impact will be necessary for the study of models and solutions

to be applied in the event that minor bodies threaten the Earth, passing too close to

the surface or even being on a collision course.

Figure 1.3: DART mission (courtesy of [42]).
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1.1.2 On-Orbit Servicing

According to Barnhart[4], on-orbit satellite servicing (OOS) or assembling have the

potential to foster the next economic revolution in space. The ability to approach,

inspect, grasp, assembly, manipulate, repair, refuel, integrate, and build completely

new platforms and spacecraft on orbit would enable new business models, innovation,

and opportunities in space.

Beyond the operations to be performed at the end of life of a satellite for deorbiting,

just think of all the on-orbit failures: many of these could have indeed been remedied

(without losing billions of dollars) by servicing if the required systems were available.

Several space programs have been carried out as technology demonstration for servic-

ing a cooperative spacecraft, including NASA’s Demonstration for Autonomous Ren-

dezvous Technology (DART) program, JAXA’s Engineering Test Satellite-VII (ETS-

VII) project, DARPA’s Orbital Express (OE) program, and AFRL’s Experimental

Satellite System (XSS) etc. In these RVD missions, the cooperative targets are as-

sumed to move smoothly in different Keplerian orbits without rapid attitude maneuver,

making docking easier.

Although autonomous satellite servicing has not yet been carried out on an unco-

operative satellite, a few demonstration missions are shyly coming out.

• Elsa-D

According to [5], ELSA-d, which stands for End of Life Services by Astroscale,

is an in-orbit demonstration mission (launched in March 2021) for key end-of-life

technology and capabilities of future debris removal missions. In particular, it

consists of a servicer and small client launched together to demonstrate test cap-

ture, tumbling/non-tumbling capture, inspection, search & approach and deorbit.

Regarding the latter, ELSA-d represents the world’s first commercial Active De-

bris Removal (ADR) demonstration mission.

• AVANTI

The Autonomous Vision Approach Navigation and Target Identification (AVANTI)

experiment, developed and carried out by DLR in November 2016, realized the
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first fully-autonomous vision-based rendezvous to a non-cooperative target space-

craft in low Earth orbit[14].

• DEOS

This mission, developed by DLR (German Aerospace Research Institute) and

Airbus Defence and Space, is an in-flight technology demonstration to find and

evaluate procedures and techniques for rendezvous, capture and de-orbiting of an

uncontrolled satellite from its operational orbit. As reported by Reintsema[36],

the overall space segment of DEOS consists of two satellites which will perform

and demonstrate all the afore mentioned aspects. One spacecraft represents the

target to be captured, which is passive, non-cooperative and tumbling, the other

one is the active servicing chase satellite.

According to planning, as reported in [31], DEOS launch was scheduled in 2018,

but the project was cancelled after the definition phase.

• Resore-L or OSAM-1

As Vavrina[40] wrote, in the early 2020s, precisely in 2023, NASA will conduct a

robotic satellite servicing mission, autonomously capturing the aging Landsat 7

spacecraft in low-Earth orbit (LEO) to refuel and relocate it in its original orbit,

extending its mission life. This mission will be presented in more detail, having

been chosen as a case study.

(a) Elsa-d (b) Restore-L

Figure 1.4: AR&D/C mission examples (courtesy of [12], [10]).
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1.1.3 Scientific Explorations

One last possible motivation for performing autonomous rendezvous concerns scientific

explorations. In recent years, given the explosive growth of the space sector in parallel

with a more marked common interest, scientific missions for the exploration of celestial

or extra-terrestrial bodies, carried out for a scientific purpose but no less ambitious or

interesting, have also acquired greater importance.

The most glaring example is Rosetta, a ten-year expedition began in March 2004 to

visit the Jupiter family comet 67P/Churyumov-Gerasimenko. After several flybys, in

August 2014, Rosetta rendezvoused with the comet and started vision-based relative

maneuvers to gradually approach to it, finally landing on its surface to acquire data.

(a) Rosetta mission concept (b) Comet 67P/Churyumov-

Gerasimenko

Figure 1.5: Rosetta mission (courtesy of [2], [9]).

1.2 Non-cooperative AR&D/C challenges

As already specified, autonomous RVD to an uncontrolled and possibly tumbling target

has yet to be fully demonstrated in orbit, and so there is an evident lack of clear, widely

accepted technical and safety standards – regarding maneuver planning, onboard sens-

ing and control strategies - to perform RPO. According to Leomanni[20], there is a need

for RVD techniques accounting for rotational motion of the target, which optimize

meaningful performance indexes and are easy to implement onboard the chaser space-
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craft. The main challenges to perform autonomous and noncooperative rendezvous are

listed in the following:

- Necessity to conduct an inspection and rendezvous autonomously with 3D vision

sensors (optical or LIDAR), infrared or others;

- Target non-cooperativeness: lack of sensor fiducial or capture interface to facili-

tate docking or grasping operations;

- If found, the docking point or the fixture to be grasped may move over time with

the entire target, eliminating the possibility of using widely tested R-bar or V-bar

approaches, traditionally employed by cooperative rendezvous;

- Specific trajectory constraints and relative navigation limitations make the ser-

vicer vehicle design to be single fault tolerant;

- Trajectory account for a variety of competing systems considerations such as

missed/cold or hot burns, client lighting requirements and relative navigation

sensor capabilities (for example sensor accuracy and maximum operating range).

Taking all these considerations into account, four complementary and consecutive op-

erations, reasonably defined by Setterfield in its study of on-orbit inspection of a rotat-

ing object[37], or by Flores-Abad, in its review of space robotics technologies for OOS

operations[13], can be found:

1. Observation and planning: the chase satellite maintains a safe distance from the

target, acquiring information on it (through vision system or laser scan) and

planning the next steps;

2. Approach of the chase inspector, synchronously with target attitude, to the

berthing box, to dock or capture with a robotic arm;

3. Physical capture or dock of the target satellite;

4. Stabilization of captured target along with the servicing system through the

application of external torques.

9
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Figure 1.6: Overview of concept of non-cooperative proximity operations (courtesy of [37]).

As for the first phase, it is clear the need to have an estimate of the angular velocity

as well as of the inertial properties of the target.

An interesting approach is provided by Setterfield in the work mentioned above,

where an inspector equipped with a RADAR system or a 3D visual sensor, a star tracker

and an inertial measurement unit is used to estimate the target’s center trajectory,

angular velocity, acceleration, and orientation in the inertial frame. The estimates

of angular velocity and inertial properties are intimately connected: from an initial

estimate of motion, through an algorithm that determines the polhode of the target

object, it is possible to trace the orientation of the principal axes and a measurement of

the main inertia ratios. This algorithm has been tested with the SPHERES-VERTIGO

robotic platform, shown in Figure 1.7, on the International Space Station.

As regards the approach phase, many studies are being carried out. Due to the

presence of many constraints to handle, such as the maximum action that can be

delivered by actuators, velocity constraint or the collision avoidance constraint, the

controller that best suits the problem is the Model Predictive Control (MPC). Several

studies have been conducted on AR&D/C with a tumbling target through this con-

troller. Dong[8] proposed a tube-based robust output feedback model predictive control

technique; Li[21] simulated 4 scenarios demonstrating the MPC robustness; Zhou[45] pro-

posed a novel control scheme based on motion planning and pose (or attitude) tracking,

by adding a field of view constraint to ensure the target visibility; Weiss[41] and Park[32]

showed, using an MPC, that is possible to plan trajectories avoiding eventual obstacles

(debris) while approaching to the target. Park, in a further study[33] on this spacecraft

10



CHAPTER 1. INTRODUCTION

(a) Test on ISS (b) SPHERES-VERTIGO unit

Figure 1.7: SPHERES (Synchronized Position Hold Engage and Reorient Experimental

Satellite) and VERTIGO (Visual Estimation and Relative Tracking for Inspection of Generic

Objects) (courtesy of [29], [30]).

RVD problem with a rotating target platform, developed a nonlinear model predictive

control (NMPC) approach. This NMPC strategy has been implemented on an air-

bearing test bed to demonstrate the capability to perform real-time computation and

to satisfy constraints at the same time.

The last two phases of capture and stabilization will not be developed in this thesis,

although they still represent another very complex issue with regard to these missions,

which motivated the development of new space robotics technologies and several ex-

perimental demonstration missions including both manned and unmanned missions[13].

1.3 Thesis outline

This thesis is organized as follows. Chapter 2 presents translational and rotational dy-

namic models suitable for a AR&D/C scenario. In Chapter 3 the principal Autonomous

Rendezvous and Docking or Capture phases are discussed, from the delivering orbit to

the capture phase, emphasizing the main problems and the choices made. Chapter 4

presents the background theory on model predictive controllers, linear and nonlinear,

showing the reasons that led to their consideration. Alongside the controllers, Kalman

filters - linear or Extended - of the navigation system will be briefly presented, showing

11
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their close link with the control system. Chapter 5 presents the case study chosen for

the simulations and the spacecraft simulator implemented in Matlab.

Chapters 6 and 7 are dedicated to results, the first concerning the near-field proximity

operations, the second concerning the inner proximity operations. Finally, a conclusion

is provided in Chapter 8.
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Chapter 2

Spacecraft dynamic models

The case study involves a scenario in which a chase satellite follows another one (target):

it is therefore useful to conduct and develop the problem considering the relative motion

between the two bodies.

The following theory was taken from Curtis[6]. Refer to the mentioned book for a more

careful and exhaustive analysis.

2.1 Hill Clohessy-Wiltshire translational model

As illustrated in the following, by linearizing the equations of relative motion through

more than reasonable mathematical simplifications, it is possible to write them in such

a way that they can be solved analytically without making considerable errors.

Let A and B be the target and the chaser respectively and consider the Earth-Centered

Inertial frame. Consider then a second reference frame, this time non-inertial, centered

in A and with the x-axis pointed in the radial direction, the y-axis in the direction of

motion of the target and the z-axis perpendicular to the target orbital plane, to close

the triad.

Referring to Figure 2.1, let’s denote with R and r the inertial positions of bodies A

and B respectively, and let δr be the position vector of the chase vehicle relative to the

target, such that r = R+ δr. By substituting the last equation in the orbital equation

of the target:
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Figure 2.1: Relative motion: Inertial and Hill frame (green).

r̈ = −µ r

r3

and assuming
δr

r
<< 1, given the proximity between the two bodies, through mathe-

matical steps it is possible to get a well-condensed equation:

δr̈ = − µ

R3

[

δr − 3

R2
(R · δr)R

]

still expressed, however, in the inertial frame.

This expression, linearized in terms of δr, can be written in the Hill reference defined

above, considering that:

δr = δx̂i+ δŷj+ δzk̂

where î, ĵ and k̂ are the Hill versors.

By developing the term δr̈ using the acceleration decomposition formula, one can write:
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δr̈ = Ω̇× δr+Ω× (Ω× δr) + 2Ω× δvrel + δarel,

with δarel relative acceleration measured in the comoving frame and Ω = nk̂, with

n =

√

µ

R3
the mean orbit motion. By combining the expressions written above, it is

possible to get the three scalar equations below:































δẍ−
(

2µ

R3
+
h2

R4

)

δx+
2(V ·R)h

R4
δy − 2

h

R2
δẏ = 0

δÿ +

(

µ

R3
− h2

R4

)

δy − 2(V ·R)h

R4
δx+ 2

h

R2
δẋ = 0

δz̈ +
µ

R3
δz = 0

(2.1)

where h represents the orbital angular momentum of A.

These are linear second-order equations and they have to be solved to obtain the rel-

ative position coordinates. It is possible to notice how the first two expressions are

coupled with each other since δx and δy appear in each one of them. Instead, δz ap-

pears alone, and this means that the out-of-plane component is independent.

If the target’s orbit is circular or it has low ellipticity, the product V ·R is quite zero

and h =
√
µR, and Eqn 2.1 can be re-written in the following way:































δẍ− 3µ

R3
δx− 2

√

µ

R3
δẏ = 0

δÿ + 2

√

µ

R3
δẋ = 0

δz̈ +
µ

R3
δz = 0

(2.2)

These second order, linear and time invariant differential equations are called Hill

Clohessy-Wiltshire equations (HCW), here expressed in a homogeneous form.

This model is sufficiently accurate to describe the relative motion between the two

bodies in a few-kilometer range, or better, when the distance between the chaser and

the target is small compared with the radius of the target’s orbit: that is the case of

proximity maneuvers.

Unlike the set of equations 2.1, where the target orbit can be an ellipse, the HCW ones
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have constant coefficient so a straightforward analytical solution exists. This solution

can be found through a standard Laplace transformation or by combining homogeneous

and particular components:







































































x(t) =
(

4x0 + 2
v0
n

)

+
u0
n

sin(nt)−
(

3x0 + 2
v0
n

)

cos(nt)

y(t) =
(

y0 − 2
u0
n

)

+
(

6x0 + 4
v0
n

)

sin(nt)− 2
u0
n

cos(nt)− (6nx0 + 3v0)t

z(t) = z0 cos(nt) +
w0

n
sin(nt)

u(t) = u0 cos(nt) + (3nx0 + 2v0) sin(nt)

v(t) = (6nx0 + 4v0) cos(nt)− 2u0 sin(nt)− (6nt+ 3v0)

w(t) = −z0n sin(nt) + w0 cos(nt)

(2.3)

where n is the mean motion afore mentioned and [u, v, w] is the relative velocity vector,

so [u, v, w] = [ẋ, ẏ, ż]. The subscripted zero indicates an initial condition.

All three components of the position vector oscillate with a frequency equal to the

mean motion. Only y(t) has a secular term, −(6nx0 + 3v0)t, that grows with time: if

an average relative motion between chaser and target is not desired, it is appropriate

to set the condition v0 = −2nx0, thus compensating for the secular effect.

In addition, choosing the initial position and velocity properly, it is possible to obtain a

relative motion, suitable for a natural observation, as explained in the next paragraph.

Equations 2.3 can be organized in matrix form:





r(t)

v(t)



 =





Φrr(t) Φrv(t)

Φvr(t) Φvv(t)









r0(t)

v0(t)



 (2.4)
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with Φij(t) illustrated below:

Φrr(t) =











4− 3 cosnt 0 0

6(sinnt− nt) 1 0

0 0 cosnt











Φrv(t) =











sinnt
n

2(1−cosnt)
n

0

2(cosnt−1)
n

4 sinnt−3nt
n

0

0 0 sinnt
n











Φvr(t) =











3n sinnt 0 0

6n(cosnt− 1) 0 0

0 0 −n sinnt











Φvv(t) =











cosnt 2 sinnt 0

−2 sinnt 4 cosnt− 3 0

0 0 cosnt











To facilitate the future controller design, the Hill’s differential equations 2.2 can be

also rewritten in terms of a state space form as follows:

ẋ(t) = Ax(t) (2.5)

where x = [x, y, z, ẋ, ẏ, ż]T is the state vector and A is the state matrix given by:

AHill =





























0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0





























(2.6)

It is possible to combine the HCW model in state space form seen in Eqn 2.5 with the

6× 6 matrix in Eqn 2.4:

x(t) = Φ (t− t0)x(t0) (2.7)

where Φ is the State Transition Matrix (STM ) just mentioned:

Φ(∆t) = e(A∆t) =





Φrr(∆t) Φrv(∆t)

Φvr(∆t) Φvv(∆t)



 (2.8)

where ∆t = t− t0.
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2.1.1 LVLH frame

In addition to the Hill frame, another non-inertial and target-centered reference system

will be used in this thesis. This frame, showed in Figure 2.2, will be named as “LVLH

frame”, an acronym that stands for “Local Vertical - Local Horizontal”.

Its x-axis is pointed along the direction of motion, the z-axis is pointed to Nadir and

the y-axis is perpendicular to the orbital plane.

Figure 2.2: Hill’s and LVLH orbital frames.

Between this reference and Hill’s reference afore presented there is a simple and

constant rotation, which involves just a formal change of the HCW equations and an

adjustment of the state space matrix:

ALVLH =





























0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2n

0 −n2 0 0 0 0

0 0 3n2 −2n 0 0





























(2.9)

In the following discussion, to avoid confusion, the directions of the axes of orbiting
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systems will often be explicitly specified with the names ’Radial’, ’In-track’ and ’Cross-

track’, referring to the generic orbiting system with the ’RIC frame’ name.

2.2 Spacecraft attitude dynamics

The attitude is the orientation of a reference system, co-moving with the body-satellite,

with respect to another system, chosen as a reference to evaluate the orientation of the

satellite itself. To describe the attitude with a dynamic model, consider the definition

of angular momentum HO of a generic body of mass m, with reference to a generic

point O, as shown in Figure 2.3:

HO =

∫

C

OP × vP dm (2.10)

where vP is the translational velocity of point P .

Figure 2.3: General Body frame.

After some rearrangement, the second equation of dynamics can be written in the fol-

lowing form:

dHO

dt
= −vO ×mvG +Text

O

where vO and vG are velocities in the inertial frame of O and G (that is the center
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of mass) respectively and Text
O represents the sum of the external torques acting on

the considered body. By imposing the coincidence between O and C, the expression is

simplified into the following:

dHO

dt
= Text

O

written in the inertial reference. This equation can be written in the body reference as

follows:

Ḣ+ ω ×H = Text (2.11)

where all terms are expressed in the body frame and the additional term ω ×H rep-

resents the contribution due to the non-inertiality of the body system. Being able to

write the angular momentum in the body reference as H = Iω, where I is the inertial

body tensor, the expression 2.11 takes the following form:

Iω̇ + ω × Iω = Text (2.12)

that, if developed, represents the Euler equations set, which describes the attitude dy-

namics.

Returning to the initial definition, to describe the attitude one can use angles or a

rotation matrix between the body reference and a given system of reference. These

methods, however, keep two weaknesses: both require the use of trigonometric func-

tions, which result in non-linearity for the model and therefore complications in the

algorithms; moreover, there can be singularities that appear through precise combina-

tions that annul the determinant of the rotation matrices. Usually, therefore, a third

alternative is preferred, which coincides with the use of quaternions.

These three alternatives will be briefly shown in the following.

Euler angles and Rotation matrices

Euler angles define 3 successive rotations around the current axes resulting from them.

The order in which the rotations are carried out is arbitrary and can be chosen according

to the particular situation to be analysed.
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Figure 2.4: RPY orbital Frame.

Assuming to start from an orbiting tern (for example the RPY orbital reference

represented in Figure 2.4), through these three rotations it is possible to align this

tern with the desired body reference. One sequence to do this, typical of three-axis

stabilized satellites, is the 3-2-1 one, which indicates a succession of three rotations:

- Rotation of Ψ around the current third axis;

- Rotation of Θ around the current second axis;

- Rotation of Φ around the current first axis,

where Ψ, Θ and Φ are the Euler angles.

Knowing these three angles means knowing the attitude and allows, through the sub-

sequent multiplication of 3 rotation matrices, to identify the rotation matrix to pass

from one reference to another:

RB
O = RΦ RΘ RΨ (2.13)

where O stands for Orbital and B for Body.

The angular velocity of the body system with respect to the orbiting system, following

the sequence 3-2-1, can be written in the body reference as follows:

ωBO =











Φ̇− sin θΨ̇

Θ̇ cosΦ + Ψ̇ sinΦ cosΘ

−Θ̇ sinΦ + Ψ̇ cosΦ cosΘ











(2.14)
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This angular velocity, however, cannot be used in Euler’s equations, being referred to

an orbiting system and therefore not inertial.

By considering the relative velocity theorem, it is possible to write, in the body refer-

ence:

ωBI = ωBO + ωOI

=











Φ̇− sin θΨ̇

Θ̇ cosΦ + Ψ̇ sinΦ cosΘ

−Θ̇ sinΦ + Ψ̇ cosΦ cosΘ











+RB
O











0

−n
0











(2.15)

where ωBI is the angular velocity between body and inertial, to be used in Eqn 2.12,

ωBO is the one given above and ωOI is the inertial angular velocity of the orbiting

reference.

Thinking of a circular orbit, this last velocity can be easily written in the RPY refer-

ence shown above as follows:

ω
(O)
OI =











0

−n
0











(2.16)

and, multiplying it by the rotation matrix RB
O in Eqn 2.13, it can be written in the

body reference.

By integrating the equations of dynamics and kinematics 2.12 and 2.15, it is possible to

pass from accelerations and angular velocities to Euler angles. However, as written in

the previous paragraph, this method can lead to problems, having to invert matrices.

Quaternions or Euler’s parameters

A quaternion is a 4 parameters vector that identify the instantaneous direction of the

axis of rotation and the rotation itself around that axis. It is always possible to consider

any rigid motion as a single rotation around the axis of instantaneous rotation.

To do this it is sufficient to provide the azimuth angle A, the elevation angle E and
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Figure 2.5: Quaternion components.

the quantity θ to determine the rotation around the axis: the fourth parameter, to

complete the quadruplet, introduces the algebraic condition of normalization.

It can be demonstrated that there is a bijective correspondence between the rotation

matrix from body to orbital and the quaternion: the integration of the equations of

kinematics, therefore, can exploit this parallelism to turn into an integration of the

following term:

q̇ =
1

2
[Q] q =

1

2

















0 −ωBO,x −ωBO,y −ωBO,z

ωBO,x 0 ωBO,z −ωBO,y

ωBO,y −ωBO,z 0 ωBO,x

ωBO,z ωBO,y −ωBO,x 0

















q (2.17)

Once the integration has been carried out, it is possible to go back through simple

steps, not shown for brevity, to Euler angles, for a more immediate comprehension.
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Chapter 3

Rendezvous principal phases

Always remaining within the Autonomous Rendezvous scenario, the purpose of the

mission studied is on-orbit servicing: a servicer chase spacecraft, equipped with robotic

arms and an AR&C sensor suite, is launched and maneuvered into a target spacecraft

co-elliptical orbit. The chaser (or servicer, due to its aim) then performs RPO with

the target, culminating in the initiation of a natural o forced motion around it. After

inspecting the target (for hours or possibly for several days), the servicer begins moving

down a capture axis and then, co-moving with the tumbling target, reaches a specific

target body-fixed box next to the target, until it is able to grapple it using robotic arms.

After these latter are rigidly connected to the target structure, the chase servicer carry

out its on-orbit servicing operations. When the mission is accomplished, the servicer

vehicle releases the target and moves away safely, towards other clients to assist, until

it has only enough fuel left to safely dispose of itself.

Concerning autonomous rendezvous and proximity operations, the main issues in-

volve maneuver planning, onboard sensing and of course the actuation of control actions

calculated by the GNC system. In order to perform a more detailed analysis, it is useful

to look for a criterion of spatial and temporal subdivision of the mission in its entirety.

Keep-out volumes

To facilitate the safe design of the rendezvous trajectory and for the purposes of mission

analysis, it is useful to divide the target vicinity region into three nested keep-out
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volumes of gradually decreasing dimensions, as shown in Figure 3.1. The subdivision

is based on the navigation uncertainty and therefore on the requirements of position

and attitude, initially bland but gradually more critical getting closer to the target.

Tracking data quality and on-board filtering algorithms directly affect orientation and

size of the covariance ellipsoid of the relative position error and thus collision probability

estimation.

Figure 3.1: Keep-out ellipsoids concept.

Typically, during rendezvous with cooperative satellites, for safety purposes, the

servicer spacecraft must stay outside of the keep-out volume of consideration until the

ground provides an Authority To Proceed (ATP) command.

The instrumentation used to obtain the necessary measures cannot remain the same

in all the rendezvous phases, but must change and becomes more precise as the chaser

approaches the target. The sensors used must have measuring ranges and field of view

compatible with the functions they must perform from time to time. The main R&D/C

sensors accuracies are represented in Figure 3.2.
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Figure 3.2: Main sensors to perform a rendezvous, with accuracies (based on [43]).

A distinction must be made between absolute sensors, that provide position and

attitude with respect to an external absolute reference, and relative sensors, that give

the position/attitude with respect to the target.

In the following, the three phases of a rendezvous are presented:

1. Far-field rendezvous

These are the operations performed outside and straddling the outermost keep-

out ellipsoid, whose indicative dimensions are shown in Figure 3.1. The sensors

used by the chaser to know its position are the absolute ones, so mainly GPS,

with no direct relative state measurements yet: given the distances between the

two bodies, no struggling accuracies are required, and an uncertainty of tens of

meters is considered acceptable. The position of the target, not being cooperative

and therefore not being able to transmit information to the chaser, is estimated

by the ground RADAR system. Considering passive safety as first driver, the

far-field trajectory, being tens of kilometers behind, is designed to maintain a

safe radial buffer from the target.
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2. Near-field rendezvous

It includes those operations around a hundred meters straddling the second inner-

most ellipsoid around the target: relative position sensors such as narrow field-

of-view (NFOV) visible wavelength camera, visible wavelength stereo cameras,

long-wave infrared camera (IRCam) or Light Detection and Ranging (LIDAR)

sensor come into play.

3. Inner Proximity Operations

These are those operations performed within the innermost keep-out sphere,

where it is not possible to enter in unless certain requirements are met. The

sensors used are obviously those of relative navigation, which during the ap-

proach provide increasingly accurate information on the status of the target. In

this phase, more than others, six degrees of freedom must be guaranteed for the

motion (translation and rotation), to comply with the strictest constraints and

for an obvious safety requirement.

3.1 Far-field RPO

As done by Barbee[3] for geosynchronous orbit, it is assumed that the servicer spacecraft

has already been placed on a co-planar and co-elliptical orbit with the target space-

craft’s orbit, regardless of whether directly through the launch vehicle upper stage or

rather through maneuvers planned by ground operators following launch.

The condition of co-ellipticity means, as one can intuit, that the orbits have the

same eccentricity and aligned apse lines. The relative motion (drift, fly-around or both

combined) between the two bodies is generated by the difference in semimajor axis

between the orbits. The chaser can generally be above or below the target along its

radial axis, but the latter may be considered a safer option to begin AR&C operations,

as it allows to gradually reduce the relative distance and because the chaser does not

have to cross the target’s orbit prior to final rendezvous and proximity operations.

Having a shorter semimajor axis and then a shorter period, the servicer spacecraft

will be moving faster than the target when below it, so in-track distance can be easily
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cancelled.

Figure 3.3: Co-elliptic motion.

Generally, the servicer begins its maneuvers tens or even a few hundred kilometers

behind the target along the in-track axis (y-axis in Hill’s frame) and a few dozen kilo-

meters below it: these differences in position will be slowly cancelled through Hohmann

transfers and co-elliptic drifts (Figure 3.3).

According to Barbee[3], this multiple-step approach is advantageous for many reasons.

1. There are several parameters that can be adjusted to find the optimal solution:

by handling the choice of initial in-track and radial separations or the choice

of radial raises covered by Hohmann transfers, the duration and strategy of the

rendezvous can be controlled within the limits of orbital mechanics. For instance,

drift time between altitude raise maneuvers can be controlled and adjusted for

ensuring navigation filter convergence and accuracy.

2. This approach of consecutive drifts and altitude raises ensures passive safety

to the relative motion as regards collision avoidance: if the servicer, due to any

malfunctioning, loses the ability to maneuver at any time, or chooses to not carry

out the AR&D/C after situational awareness sensors reveal an unsafe condition in

the target proximity, the chaser will merely and safely continue to drift below the
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target, purely passing it by, without colliding or breaching predefined keep-out

volumes.

3. The Hohmann transfer is the most fuel efficient two impulse maneuver for trans-

ferring between two coplanar and co-elliptic orbits of different altitudes. In any

case, assuming that a budget delta-v is given, altitude raises can be performed

by other types of transfers, depending on mission requirements.

3.2 Near-field RPO

After the co-elliptical far-field approach, the main issue becomes the choice of the rel-

ative motion of observation to obtain information on the state of motion and inertial

properties of the target, if they are unknown. This latter is the most difficult challenge.

While approaching the target, relative sensors, such as LIDAR, optical sensors and in-

frared, come into play: despite the absolute sensors phase, it’s mandatory that the

inspector continually performs attitude maneuvers that keep the inspection sensor

pointing inward and directly at the target while the circumnavigation is performed.

It is possible to group relative motions into two broad categories: forced motions and

natural motions.

3.2.1 Natural motions

Unlike forced motions, natural motions exploit the geometry of orbits to circumnavi-

gate the target satellite.

To give an analytical description, consider the HCW equations in Eqn 2.3 once more.

With the purpose of describing natural relative motions, it is useful to bring the set

of equations back to a more intuitive one, which highlights the main parameters it is

possible to handle:
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x(t) = xmax sin(nt+ ψ0)−
2ẏc
3n

y(t) = 2xmax cos(nt+ ψ0) + ẏc
(nt+ ψ0 − π/2)

n
+∆y

z(t) = zmax sin(nt+ ϕ0)

ẋ(t) = nxmax cos(nt+ ψ0)

ẏ(t) = −2nxmax sin(nt+ ψ0) + ẏc

ż(t) = nzmax cos(nt+ ϕ0)

(3.1)

where the parameters are defined through the relative orbit initial conditions as follows:

xmax =

√

x20 +
ẋ0

2

n2
⇒ maximum radial offset

∆y = y0 − 2
ẋ0
n

⇒ initial in-track separation

zmax =

√

z20 +
ż0

2

n2
⇒ maximum cross-track offset

ψ0 = arctan(
nx0
ẋ0

) ⇒ initial in-plane phase

ϕ0 = arctan(
nz0
ż0

) ⇒ initial cross-track phase

The two main configurations that can be obtained by varying these parameters are

presented below.

The “safety” concept can be realized choosing the correct initial parameters such that

the trajectory never crosses the velocity vector of the target and such that the chaser

never enters the inner keep-out volume, even flying around it.

Flying around Safety Ellipse

As already noted in Section 2.1, if one desires to have a relative fly around motion

of the chaser without any drift from the target, the secular terms must be cancelled

through the condition v0 = −2nx0. By imposing this condition, it can demonstrated

how the two orbits of the client and the servicer have the same semi-major axis and

therefore the same period. In the case of the equations seen above, this condition sim-

ply becomes ẏc = 0, which leads to the following simplification:
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x(t) = xmax sin(nt+ ψ0)

y(t) = 2xmax cos(nt+ ψ0) + ∆y

z(t) = zmax sin(nt+ ϕ0)

ẋ(t) = nxmax cos(nt+ ψ0)

ẏ(t) = −2nxmax sin(nt+ ψ0)

ż(t) = nzmax cos(nt+ ϕ0)

(3.2)

It’s important to evidence the possibility for the center of the safety ellipse to be offset

from the target’s center of mass, along the in-track direction, by an amount ∆y.

Figure 3.4: Flying around Safety Ellipse example.

Walking Safety Ellipse

A Walking Safety Ellipse (WSE) is obtained when ẏc ≠ 0, yielding a relative motion

that spirals around the x-axis (in-track) towards or away from the target depending

on the signs of the initial in-track coordinate and ẏc. Because of this additional term,

it can be noticed how the WSEs are not exactly centered on the x-axis because they

have a radial bias proportional to ẏc.

It is useful to say something more about the phases of motion: indeed it is possible to
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find a link between the two phases ψ0 and ϕ0. Let χ = nt + ψ0 be the safety ellipse

plane motion polar angle, and let γ = nt+ ϕ0 be the cross-track phase space angle: it

can be demonstrated that:

ξ = χ− γ =
π

2
(3.3)

that can be seen as a condition on the initial difference between the in-plane and the

out-of-plane phase angles: this is the core safety ellipse criterion.

Figure 3.5: Walking Safety Ellipse example.

Note that the tubular manifold around the in-track axis can be exploited to safely

approach to the target but also to inspect it through the circumnavigation.

3.2.2 Forced motion

These types of motions imply the need to recursively perform maneuvers and use

propellant, since the difference in shape of the orbits does not provide for these scenarios

of relative motion. Some examples are provided below.

Motions along V-bar and R-bar

These approaches are typical of cooperative rendezvous, so it is not worth dwelling

too much on these strategies. A striking example for these types of motion are the

rendezvous with the International Space Station, which uncompromisingly requires the
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fulfillment of precise requirements to perform docking, thus dividing the rendezvous

into several phases interconnected by authorizations to proceed subsequently granted

by the station and ground operators.

Moving along the two main in-plane directions (R-bar or V-bar in Figure 3.6),

outside the safety ellipsoid, typically requires two-pulse radial or tangential maneuvers:

these maneuvers are designed to decrease the relative distance along the respective

directions by taking advantage as much as possible of the natural relative motion

between the two satellites.

A quite different matter, instead, is the so-called closing approach, or rather the

approach within the safety ellipsoid (or sphere): in this case, to follow an almost straight

trajectory (not fully, due to thrusters controlled in a Pulse Width Modulation mode),

there is the need of multiple delta-vs. These delta-vs are delivered to compensate

for Coriolis accelerations or any gravity gradients dictated by HCW equations in the

presence of non-natural motion.

Figure 3.6: Rendezvous with the ISS: R-bar and V-bar approaches.

As shown in Figure 3.6, the docking ports of the ISS are located in the central part

and facing Earth (radial) or along the flight direction of the station, behind it: the

choice and execution of one or the other strategy will therefore depend on the port
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chosen for the approach.

Waypoints on a octahedron

An interesting forced motion scheme can be the David E Gaylor’s one[15]: the idea is to

circumnavigate the target and perform inspection by travelling to six waypoints that

offer views of the primary from all six faces of a virtual cube centered on the target,

outside the inner keep-out sphere. A brief explanation on the latter must be provided,

given that the observation structure of the case study considered in this thesis is built

on this.

To remember, being an uncooperative rendezvous, the position of the target space-

craft’s center of mass is unknown and must be estimated with sensors. Uncertainties

on relative position are inevitable, but can be managed by representing them by three-

dimensional Gaussian probability densities, linked to the covariance matrices. This

covariance information can be used to build the error ellipsoid, and this ellipsoid con-

stitutes the keep-out region: if the chaser remains outside this ellipsoid, the probability

of collision is less than or equal to a certain value. For the sake of simplicity, this el-

lipsoid is considered as spherical: that is the inner keep-out sphere.

Figure 3.7: Waypoints on a octahedron.

The six points, due to an optimal arrangement consideration, can be the vertices of an

octahedron or, as already stated, the centers of the six faces of a cube. The distance of
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these vertices from the center is fixed and depends, as explained above, on the safety

requirements adopted. For the sake of simplicity, the waypoints can all lie on the radial,

in-track and cross-track orbital frame axes, as shown in Figure 3.7.

The design of the circumnavigation trajectory segments includes considerations

of safety, time occurred to move from one waypoint to the next one and obviously

total delta-v required to complete the circumnavigation. The last two requirements

are variable and can be fixed in the design, while the first, on the other hand, is a

hard constraint. Another variable parameter can be the travel sequence of the six

waypoints, opting for the best choice with similar considerations on the total delta-v

but also taking into account the orientation of the error ellipsoid.

The total delta-v can simply be calculated as the sum of all the delta-vs needed at each

waypoint:

∆vtot =
N
∑

j=1

∆vj with j from 1 to N=6 (3.4)

It is emphasized that the motion, after corrections, can be forced only near the obser-

vation points, and not along the trajectory that joins them, taking advantage of the

geometry of the orbits and therefore creating an appropriate relative motion, as done

for the natural orbits in the previous paragraph.

It’s important that no trajectory segment passes through the origin or intersect the

inner KOS. The steps to select the waypoint range are usually the following ones:

- Consideration of the ellipsoid of uncertainty;

- Circumscription of the ellipsoid with a sphere;

- Circumscription of the sphere with a cube, considering an additional margin of

safety.

Further examples

There are other interesting examples that are worth mentioning. These examples have

been studied mostly by AGI, an Ansys Company founded in 1989 to plan, design, build,

and operate multi-faceted space missions[1]. Both examples are not stable trajectories,

so they require frequent delta-vs to maintain.
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• Teardrop trajectory

The chase satellite operates in the radial direction (either positive or negative),

and maintains a “tear drop” looking relative orbit to the target satellite. From

this relative position, the chaser can operate fully above or below the target

satellite. This relative orbit is very cheap regarding the propellant request, and

it’s no more risky than other forced approaches (Figure 3.8).

• Perch point

This relative orbit is one where the chase satellite “parks” at a specific relative

position with respect to the target satellite. This relative position is denoted in

the orbital target centered frame (Hill or LVLH). An example can be a single

waypoint considered in the previous strategy. It should be emphasized that not

all points require a control action to maintain the position: in particular, the

points along the in-track axis are stationary, unless differential perturbations,

and therefore are more preferable than others.

Figure 3.8: Teardrop orbit.
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3.3 Inner Proximity Operations

This is the last phase in the approach to the target, the concerned area is the one

identified by the innermost sphere with a radius of a few tens of meters. Entering

this sphere is forbidden unless precise requirements are met, mainly coinciding with

a sufficiently accurate knowledge of the target position, inertial properties and its

rotational motion.

The approach to the sphere depends on the "intentions" of the chaser, that is,

on the mission aim. As presented in the introduction, the reasons to perform an

Autonomous Rendezvous and Docking or Capture with a non-cooperative satellite can

be on-orbit servicing, scientific exploration or deflecting/deorbiting the target. Even

if the first scenario has been chosen, the key issue, regardless of the mission aim, is

largely to identify a particular point of the target to be reached to carry out the mission

operations.

The problem is extremely complex as regards control and actuation: the chaser

satellite must perform forced maneuvers to get closer to the target, chasing a precise

attitude as long as necessary to perform this maneuver.

As anticipated in the introductory chapter, trajectory planning must consider the fol-

lowing aspects:

1. Inertial properties (unless AR&D/C is performed with defunct but known satel-

lites) and target motion are known from the previous observation phase but with

some uncertainty;

2. The target, no longer being active, is no longer even controlled and will be in a

tumbling state, more or less evident depending on the environmental conditions

and depending on the occurrence of particular events at the end of the mission

(for example, consequences due its magnetic dipole moment);

3. Six degrees of freedom on the control and actuation must be guaranteed for the

motion of the chaser, which therefore must have an adequate actuation system,

suitable to pursuit any trajectories in a sufficiently accurate way, also dependent

on its mass and inertia to be moved;
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4. The target must always stay within the sensors field of view used to "look" at

the target: the attitude control must also consider this aspect;

5. The trajectories, for obvious safety reasons, must not in any way breach or inter-

sect the immediate target vicinity: another keep-out sphere, of a few meter radius

(5-m radius), should be considered to represent the target in its uncertainty.

As one might guess, these aspects are non-trivial and greatly complicate the problem.

In addition, as already noted, there are also no cases of successful missions that have

been carried out, being the AR&D/C with non-cooperative satellites a relatively recent

theme.

From the few studies carried out on rendezvous with non-cooperative targets in a

tumbling motion, however, a common line emerges, namely the idea of chasing the

capture axis, that is the axis that connects the center of gravity of the target to the

target body-fixed point concerned for the future maneuver (docking or capture) to be

performed (Figure 3.9).

Figure 3.9: Approach to a tumbling object concept.
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In this way, the chase satellite is co-moving with the target, thus largely cancelling

the relative motion, a necessary condition for the maneuvers execution.

For the sake of simplicity, this final point, thinking about a robotic arm that would

grasp any target fixture, will be named as "capture point" throughout the rest of this

description, even if the mission aim is quite different from this.

This point, seen in the orbiting reference, will have a certain translational velocity,

obviously linked to the angular velocity of the target:

ṗc(t) = vc(t)

vc(t) = ω(t)× pc(t)
(3.5)

where pc ∈ R
3 the linear position, vc ∈ R

3 is the linear velocity and ω(t) ∈ R
3 is the

instantaneous angular velocity of the target body frame relative to the orbital frame.

Once the capture axis has been identified, even on several occasions during the approach[17],

the trajectory planning follows, and this, being the target in a rotational motion, must

take into account the future evolutions of its state of motion.

It can therefore be guessed that the on-board tasks of the GNC system are computa-

tionally onerous, and that certainly not all controllers are suitable for such issues.

3.3.1 Rendezvous and Docking or Capture Constraints

As reasonably stated by Leomanni[20], in order to safely achieve the rendezvous and

capture objective, collisions must be avoided. Moreover, the servicer position must be

confined within a suitable visibility region during the final part of the maneuver. This

region commonly coincides with an approaching cone, centered in the capture axis and

therefore in a rotational motion if observed in the orbital reference (see Figure 3.9).

The AR&D/C mission can be simplified through its division into two distinct phases,

as done by Park[33]: a quite free-flying phase, aiming to reach the corridor, and a

final approaching phase within the corridor. In each phase, the desired position to be

reached by the chaser is set as an holding position.

In the free-flying phase, the holding position is considered to be along the capture

axis, or the centerline of the docking cone corridor. The transition from the free-

flying phase to the final docking approach occurs when the chaser is within a certain

40



CHAPTER 3. RENDEZVOUS PRINCIPAL PHASES

Figure 3.10: Approaching phases in body frame (in yellow the holding points HP).

distance from the holding position, named HP1 in Figure 3.10. When the second phase,

within the approaching corridor, begins, the new desired holding position, named HP2

in Figure 3.10, is translated along the centerline of the cone such that the chaser

successfully reaches the final point for grasping or docking with the target. The main

constraints for both phases are summarized below.

Collision avoidance

The collision avoidance constraint is introduced by defining a keep-out zone in a form

of an ellipsoid or sphere around the rotating target platform. For spherical keep-out

zones, it is easily expressed as follows:

∥r∥2 ≥ R2 (3.6)

where r ∈ R
3 is the position vector of the chaser in the orbital frame and R is the

keep-out sphere radius.

A collision avoidance constraint can be set for the first phase: the chaser spacecraft

reaches the first holding position within the corridor maintaining a minimum distance

from target along its trajectory. For the afore mentioned second phase, another non-

linear collision avoidance constraint guides to the second holding position for safely
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capturing and precise attitude pointing to the target fixture to be grasped. Being a

more critical phase, this last constraint must be set as harder than the first one.

A soft-docking constraint can be imposed so that the velocity of the spacecraft, once

it reaches the holding point, is close to the velocity of the platform.

Maximum acceleration

It is reasonable to assume a maximum acceleration for the chase spacecraft, given by

the union of the maximum acceleration that the spacecraft can stand (especially due to

the on-board payload) and the maximum thrust that can be delivered by the thrusters:

|uj| ≤ umax with j = xb, yb, zb, (3.7)

where xb, yb, zb are body principal axes.

Thinking of thrusters, it is clear that such a physical limit is also present for the

minimum thrust that can be delivered, being the classic thrusters built to work in a

pulsed manner (bang-bang). This point will be considered by the simulator presented

in the next chapters.

Approaching cone

This constraint must be respected during the second final phase, that is, during the

achievement of the final holding box, to ensure safety. Since the cone is centered

around the tumbling capture axis (Figures 3.9 and 3.10), it’s clear the need to predict

the motion of the capture point in order to plan an approaching corridor constrained

trajectory.

Considering a Model Predictive Control (linear or non-linear, in case these con-

straints are linearized) for example, these constraints are defined on the prediction

horizon, that represents a “look to the future”, as explained in the next chapter.

As done by the afore cited Park, the approaching cone constraints can be linearized

by constructing four hyperplanes that define the edges of the entry cone and intersect

at the capture point. When these constraints are activated, the chaser is forced to stay

within these hyperplanes until capture is achieved.
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Line of sight

Assuming a vision system to inspect and track the target motion, the chase spacecraft

must approach during both phases maintaining the target within a Line-of-Sight (LOS)

cone, that is the field of view of sensors. This is a mandatory issue: trajectory planning

must take into account future evolutions of motion, and thus the chase spacecraft can’t

give up pointing its sensors at the target. Even assuming the possibility of mounting

vision sensors on gimbal systems, in any case the set-up must take this aspect into

account and continuously orient the servicer depending on its current relative position

r from the target.

Referring to Figure 3.11, this condition can be summarized by imposing a constraint

on the angle between the position vector r and the vector s along the optical axis,

assuming for simplicity a vision sensor (this condition doesn’t change if any other

sensor, such as LIDAR, is considered):

θ = arccos

(

r · s
|r||s|

)

≤ θmax (3.8)

Figure 3.11: Line of Sight concept.
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3.3.2 Tumbling motion of defunct satellites

As regards the AR&D/C problem, as already noted, a key point consists in having

an approximate estimation of the candidate object attitude dynamics. Indeed, it is

reasonable to think that not all rotational motions can be followed by the chase satellite:

there will be a threshold angular velocity beyond which the latter will be unable to

co-move with the target.

But how does the rotational motion of an uncontrolled body evolve in orbit?

In the absence of external torques, the angular momentum is preserved and has a fixed

orientation in the inertial reference. Generally, however, in orbit there’s no torques

absence, although they are a minor entity: depending on the environment and therefore

on the shape and height of the orbit, a satellite is more or less influenced.

The main torques acting on a generic uncontrolled body are listed below:

- Gravity gradient torques;

- Magnetic torques (eddy currents or residual magnetic moment);

- Torques due to solar radiation pressure;

- Torques due to residual atmospheric pressure.

As described by Sergey Efimov et al in a study on long-term evolution of attitude

motion of defunct satellites in nearly polar orbits[35], it is generally agreed upon that

the attitude dynamics of a large debris object in LEO can be qualitatively divided

into three major stages. These stages are the transition to “flat” spin due to internal

dissipation, exponential deceleration due to eddy-current torque, and the stage of slow

chaotic motion culminating with a specific regime.

Let us assume that the defunct satellite is in a state of fast rotation, with angular

velocity values such that ω/n ≥ 10, with n the orbit mean motion. Rotations with

this magnitude order or even higher may occur as a consequence of a malfunction of

the AOCS (Attitude and Orbit Control System), that lead to the mission failure (this

is the case, for example, of Envisat). Defining as θ the angle between the axis with the

minimal moment of inertia and the angular momentum, Sergey Efimov et al conduct

simulations on its evolutions during a few years, as showed in Figure 3.12.
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Figure 3.12: Evolution of θ (courtesy of [35]).

Starting from a generic value (θ = 50◦ in their simulations), it can be stated that

after around one year, this angle is quite 90◦.

This result is not accidental but is due to precise physical explanations: during the

rotational motion there are internal dissipations that cause a decrease in the total

kinetic energy, while the angular momentum of the spacecraft remains constant. Given

the absolute value of the angular momentum, the kinetic energy of a rigid body is

minimal when the rotation axis coincides with the axis with the greatest moment of

inertia, hence internal dissipation always transforms arbitrary rotation into “flat” spin.

Transition to flat spin can be aided by other dissipative factors, such as dissipative

torque due to eddy currents or liquid sloshing, that is the interaction of the satellite

system with residual fuel. For the sake of simplicity, these factors, as the other above

listed torques, will not be considered throughout this study, and the satellite to be

captured will be found in a flat spin motion.
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Chapter 4

Control Strategies

GNC is the acronym for Guidance, Navigation and Control, three indispensable tasks

to carry out a generic maneuver. The Navigation unit allows to know, with a cer-

tain precision, the state vector of the concerned vehicle, that often includes position,

velocity, and attitude information. Guidance uses the current state to determine the

maneuver sequence to follow a real-time or pre-designed trajectory. Control refers to

the dynamics - forces, torques - to achieve in order to execute commanded maneuvers

to follow the designed trajectory. Control design must account for navigation uncer-

tainty.

In this chapter only the control system will be illustrated, describing the navigation sys-

tem – linear or non-linear, depending on the model considered – within and intimately

coupled with it.

4.1 Introduction

Still considering a continuous, linear, time-invariant model, it is possible to enlarge

Eqn 2.5 assuming the presence of control and measurement systems as follows:











ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(4.1)

where x = [x, y, z, ẋ, ẏ, ż]T ∈ R
6 is the same state vector of Eqn 2.5, u(t) ∈ R

3 is the
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input or control action vector, y(t) ∈ R
6 is the output vector, A ∈ R

6×6 is the state ma-

trix defined in Eqn 2.6, B ∈ R
6×3 is the control matrix in Eqn 4.2 and C = I6×6 ∈ R

6×6

is the output matrix.

B =





03×3

I3×3



 (4.2)

Being in a continuous form, Eqn 4.1 are not suitable for a controller, which instead

acts in a discrete way. The dynamic model, given a time step Ts for the control, must

be discretized in the following form:











x(k + 1) = Adx(k) +Bdu(k)

y(k) = Cdx(k)

(4.3)

where the subscript d stands for discretized, and Ad and Bd can be derived from their

continuous form as follows:

Ad = Φ(t)|t=Ts
(4.4)

Bd =

∫ Ts

0

Φ(t)B(t)dt (4.5)

where Φ(t) is the HCW continuous-time State Transition Matrix defined in Eqn 2.8.

The actions of the control must be provided in such a way as to pursue a trajectory,

minimizing the error with respect to this reference: to accomplish this objective, several

controllers with different features are available.

The controller chosen for the AR&D/C problem, as anticipated in the introductory

chapter, is the Model Predictive Control, for reasons that will be explained in the next

section.
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4.2 Model Predictive Control

As suggested by J. M. Maciejowski[22], the Model Predictive Control is the only ad-

vanced control technique to have had a significant and widespread impact on industrial

process control, and this is because it can deal routinely with equipment and safety

constraints.

Stemmed from the chemical processing industries, MPC was developed and used

in industry for several years before attracting much serious attention from academic

control community. Nowadays, it can be used in different levels of the process control

structure and is also able to deal with a wide variety of state and control constraints.

Furthermore, the constant increase in computing speed and power certainly makes that

a real prospect.

The basic idea of the MPC is using a process model to predict the output at future

steps: this is done by applying an on-line numerical optimization method to obtain

a sequence of control inputs that minimizes a predefined cost function over a finite

receding horizon, while subjected to any certain constraints. The idea of a receding

strategy is original: at each sampling instant tk, by using the current measurements

yk and system states xk, the entire control sequence utk|tk+p
is computed over the

prediction horizon p, that is a finite number of future steps, but only the first element

of the calculated control sequence, uk, is used to control the system. This happens

recursively: the prediction horizon window advances continuously with each step, as if

it was, in a certain sense, a look to the future, and this is an enormous potential.

Actually, it is always possible to change the behaviour of the control if the system

begins to deviate too much from its reference trajectory or if some parameters change

in the dynamics: this guarantees a greater stability than the other control methods, as

for example PID.

The other key advantage of MPC is the ability to handle constraints and make them

part of the optimization: the ability to set hard or soft ranges for output and control

variables perfectly fits the needs of a normal control problem, which has well-defined

limits and safety and optimization requirements.
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Figure 4.1: Basic idea of MPC operation.

4.2.1 Basic MPC formulation

The choice of a particular model plays a crucial role in the MPC control strategy. This

dynamic model must be chosen in such a way as to provide an adequate description

of the real plant dynamics and, at the same time, to allow an efficient numerical

simulation. In the following description it is assumed that the real plant and the

model are governed by the same equations, although this is not always acceptable.

Let us assume that the plant state space model is linear, discrete and time-invariant,

in the form of Eqn 4.3, that the cost function is quadratic and that constraints are in

the form of linear inequalities. Let’s substitute Eqn 4.3 with a simpler and slender

notation, generalizing the dimension of vectors:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(4.6)

where x in an n-dimensional state vector, u is an l-dimensional input vector and y is

an m-dimensional vector of measured outputs. Moreover, let’s assume that the state

variables are measured, so there’s no need to estimate the state.

Let’s denote u(k + i|k) a future value of the input u and x(k + i|k) and y(k + i|k) the
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predictions of variables x and y at time k+ i, made at time k, on the assumption that

some sequence of inputs u(k + j|k) (with j = 0, 1, . . . , i− 1) will have occurred.

Cost function

The purpose of the cost function is to ensure the pursuit of the future exit y in the

considered horizon, minimizing the control action. What it does, therefore, is to pe-

nalize deviations of the predicted controlled outputs y(k+ i|k) from a vector reference

trajectory r(k+ i|k), that often is a predetermined trajectory, and deviations of control

inputs u(k + i|k) from some ideal resting values uref (k + i|k), if any:

J(k) =

p
∑

i=0

∥y(k + i|k)− r(k + i|k)∥2Q(i) +
m−1
∑

i=0

∥∆u(k + i|k)∥2R(i) + (4.7)

+

p−1
∑

i=0

∥u(k + i|k)− uref∥2S(i) + ρϵϵ(k)
2

where p and m are the prediction and control horizons respectively, Q(i), R(i), S(i) are

weighting symmetric matrices of output, control rates and control errors respectively,

at index i, and ϵ is a slack variable to set the constraint relaxation. It’s to be assumed

that m ≤ p and that ∆u(k+ i|k) = 0 for m ≤ i ≤ p, so that u(k+ i|k) = u(k+m−1|k)
for all m ≤ i ≤ p.

As stated by Maciejowski[22], the prediction an control horizons p and m, the weights

Q(i), R(i) and S(i) and the reference trajectory r(k+ i) all affect the behaviour of the

closed-loop combination of the plant and MPC controller. Some of these parameters,

weights above all, reveal to be tuning parameters to be adjusted not only to give

satisfactory dynamic performance, but also to better achieve the economic objectives.

Constraints

As already noted before, constraints are a key point in favour of MPC controllers. All

real processes, more or less, are subject to constraints, due to construction, efficiency

or safety reasons. These constraints can be placed on the output variable y, on the

amplitude of the control signal u (for example actuator ranges), or on the variation of

the control signal ∆u (for example actuator slew rates).
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As already established, constraints in the form of linear inequalities will be considered,

as follows:


























umin ≤ u(k) ≤ umax

∆umin ≤ ∆u ≤ ∆umax

ymin ≤ y(k) ≤ ymax

(4.8)

These conditions can be re-arranged in a less intuitive but more general form as follows:



























E [∆u(k|k), ...,∆u(k +m− 1|k, 1)]T ≤ [0, ..., 0]m×1

F [u(k|k), ..., u(k +m− 1|k, 1)]T ≤ [0, ..., 0]m×1

G [y(k|k), ..., y(k + p|k, 1)]T ≤ [0, ..., 0]p×1

(4.9)

where E, F and G are matrices of suitable dimensions.

Problem formulation

Once the main features of this controller have been formulated, it’s possible to show

how it works. The MPC solves on-line the minimization of Eqn 4.7, subject to the

constraints in Eqn 4.9, respecting the relations between the state x, the output vector

y and the control vector u dictated by the equations of state 4.6.

The solution is the optimal control sequence:

∆U∗(k) = [∆u∗(k|k),∆u∗(k + 1|k), . . . ,∆u∗(k +m− 1|k)], (4.10)

but what interests is the first control action, calculated as:

u(k) = u(k − 1) + ∆u∗(k|k) (4.11)

Given the multiple parameters, it is possible to intervene in various ways on the per-

formance of the MPC:

- lengthening or shortening predictions and control horizons;

- loosening or tightening the constraints, with the possibility of setting them hardly

or softly;
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- weighing variables more than others.

As one can intuit, lengthening the values of prediction and control horizons is possible

up to a certain extent: actually, the advantage of prediction can turn into a disadvan-

tage if one thinks of the computational load required. There is another possible reason

for not lengthening the prediction horizon too much: if the real dynamics of the system

is slightly different from that of the model, the prediction provided by this latter on

future system evolution, starting from an estimate of the current state, accumulates

errors for very long prediction horizons. The solution, therefore, depends on the model

accuracy and is a trade-off between obtaining better performance and consuming on

board resources in terms of computing power.

4.2.2 Formulation as a QP problem

Due to its form, it is useful to formulate the optimization problem seen above in a

Quadratic Programming problem. A general QP problem can be expressed as follows:











min
θ

1

2
θTΦθ + ϕT θ (Φ = ΦT ≥ 0)

Ωθ ≤ ω

(4.12)

In the following, the steps needed to lead the problem presented in the previous section

back to the general formulation in Eqn 4.12 are presented. It’s possible to rewrite the

cost function in Eqn 4.7 as

J(k) = ∥Z(k)− T (k)∥2Q + ∥∆U(k)∥2R + ∥U(k)− Uref (k)∥2S + ρϵϵ(k)
2 (4.13)

with vectors defined as follows:
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Z(k) = [y(k|k)T , ..., y(k + p|k)T ]T

T (k) = [r(k|k)T , ..., r(k + p|k)T ]T

U(k) = [u(k|k)T , ..., u(k + p− 1|k)T ]T

Uref (k) = [uref (k|k)T , ..., uref (k + p− 1|k)T ]T

∆U(k) = [∆u(k|k)T , ...,∆u(k +m− 1|k)T ]T

(4.14)

and where Q, R, S are larger diagonal weighting matrices built by setting Qj, Rj, Sj

as diagonal terms. Neglecting mathematical steps[22], it is possible to rewrite the first

equation of Eqn 4.6 as follows:

Z(k) = Ψx(k) + Υu(k − 1) + Θ∆U(k) (4.15)

where

Ψ =





























CA
...

CAm−1

CAm

...

CAp





























; Υ =





























CB
...

∑m−1
i=0 CAiB

∑m
i=0CA

iB
...

∑p−1
i=0 CA

iB





























; Θ =



































CB · · · 0

CAB + CB · · · 0
...

. . .
...

∑m−1
i=0 CAiB · · · CB

∑m
i=0CA

iB · · · CAB + CB
...

...
...

∑m
i=0CA

iB · · · ∑p−m
i=0 CAiB



































;

and to define the ’tracking error’, or the response that will occur over the prediction

horizon if no input changes were made (∆U(k) = 0), as:

E = T (k)−Ψx(k)−Υu(k − 1) (4.16)

It is then possible to write U(k)− Uref (k) of Eqn 4.13 as a function of ∆U(k):

U(k)− Uref (k) = Λ∆U(k) + Iu(k − 1)− Uref (k) = Λ∆U(k) + µ(k) (4.17)
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where Λ is the simple matrix (made of identity matrices) that maps U(k) to ∆U(k).
Due to these consideration, it is possible to reformulate Eqn 4.13 as follows:

J(k) = ∥Θ∆U(k)− E(k)∥2Q + ∥∆U(k)∥2R + ∥Uref (k)− U(k)∥2S + ρϵϵ(k)
2

=
[

∆U(k)TΘT − E(k)T
]

Q [∆U(k)Θ− E(k)] + ∆U(k)TR∆U(k) +

[Λ∆U + µ(k))]T S [Λ∆U + µ(k))] + ρϵϵ(k)
2

= E(k)TQE(k)− 2∆U(k)TΘTQE(k) + 2∆U(k)TΛTSµ(k) +

∆U(k)T
[

ΘTQΘ+ ΛTSΛ +R
]

∆U(k) + const

But this has the form

J(k) = ∆U(k)TH∆U(k)−∆U(k)TG + const, (4.18)

where G = 2ΘTQE(k) and H = ΘTQΘ+ ΛTSΛ +R.

As can be noted, Eqn 4.18 is analogue to the first equation of Eqn 4.12.

Consider now the second part of QP general form, namely the constraints. The con-

secutive steps, here reported, necessary to get to the final form, are those listed in the

aforementioned book of Maciejowski[22]. Eqn 4.9 can be recalled in the form:

E





∆U(k)
1



 ≤ 0 (4.19)

F





U(k)
1



 ≤ 0 (4.20)

G





Z(k)

1



 ≤ 0 (4.21)

These have to be expressed as constraints on ∆U(k). Consider Eqn 4.20 as first, and
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suppose F has the form:

F = [F1, F2, . . . , Fp, f ]

where Fi is a q ×m matrix, and f has the size q × 1, Eqn 4.20 can be written as:

p
∑

i=1

Fiû(k + i− 1|k) + f ≤ 0

Since

û(k + i− 1|k) = u(k − 1) +
i−1
∑

j=0

∆û(k + j|k)

the previous equation can be written as:

p
∑

j=1

Fj∆û(k|k) +
p

∑

j=2

Fj∆û(k+1|k) + · · ·+Fp∆û(k+ p− 1|k) +
p

∑

j=1

Fju(k− 1)+ f ≤ 0

Finally, defining Fi =
∑p

j=i Fj and F = [F1, . . . , Fp], Eqn 4.20 can be rewritten as:

F∆U(k) ≤ −F1u(k − 1)− f (4.22)

with the right-hand side vector known at time k.

As can be noted, Eqn 4.22 is now expressed as a linear inequality constraint on ∆U(k).
A similar thing can be done for Eqn 4.21: assuming full state measurements, by using

Eqn 4.15, it’s possible to write it as:

G





Ψx(k) + Υu(k − 1) + Θ∆U(k)
1



 ≤ 0

Now letting G = [Γ, g], where g is the last column of G, and after some rearrangement,

this is the same as:

ΓΘ∆U(k) ≤ −Γ[Ψx(k) + Υu(k − 1)]− g (4.23)

which is in the required form.

Finally, what remains is putting the inequality Eqn 4.19 into the form:

W∆U(k) ≤ w (4.24)
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Then it is possible to assemble inequalities in Eqn 4.22, 4.23 and 4.24 into the following

single inequality:











F

ΓΘ

W











∆U(k) ≤











−F1u(k − 1)− f

−Γ[Ψx(k) + Υu(k − 1)]− g

w











(4.25)

As can bee seen, Eqn 4.25 is in the form Ωθ ≤ w, and with Eqn 4.18 completes the

Quadratic Programming problem definition presented at the beginning of this section.

4.2.3 Observer-based MPC

The assumption that all state variables can be always measured directly is quite ideal:

what one has is rather an estimate x̂(k|k) of the state x(k), basing on measurements

of y(k) up to time k and on previous control actions.

Figure 4.2: General structure of a state observer.

To obtain this estimate of the state vector, an observer must be used. Also in this

case, the theory here reported has as reference the Maciejowski’s book. The general
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structure of a state observer is shown in Figure 4.2, for a plant described by the

following equations:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(4.26)

These are the same equations of the plant ones in Eqn 4.6, but, looking at Figure 4.2,

with feedback from the measured plant output, through the gain matrix L, to correct

the state estimate x̂.

Starting from these equations, the observer can be defined through the following:

x̂(k|k) = x̂(k|k − 1) + L′[y(k)− ŷ(k|k − 1)] (4.27)

x̂(k + 1|k) = Ax̂(k|k) + Bu(k) (4.28)

ŷ(k|k − 1) = Cx̂(k|k − 1) (4.29)

Substituting Eqn 4.29 into Eqn 4.27, and eliminating x̂(k|k), it can be written:

x̂(k + 1|k) = A(I − L′C)x̂(k|k − 1) + Bu(k) + AL′y(k) (4.30)

= (A− LC)x̂(k|k − 1) + Bu(k) + Ly(k)

where L = AL′. This is a stable system if the eigenvalues of A−LC lie inside the unit

disk. Furthermore, defining the state estimation error as e(k) = x(k)− x̂(k|k− 1), and

then using Eqn 4.26, this final expression can be given:

e(k + 1) = (A− LC)e(k) (4.31)

Eqn 4.31 clearly shows that the state estimation error converges to zero if the observer

is stable, at a rate determined by the eigenvalues of A− LC.

As Maciejowski[22] stated, if the pair (A,C) is observable, then given an arbitrary

set of locations in the complex plane, a gain matrix L exists which places the observer

eigenvalues at these locations. The problem of finding L is equivalent to the state-

feedback pole-placement problem, and can be solved using the same algorithm.

Assuming that the state and output equations of the plant are subjected to white noise

disturbances with known covariance matrices, then L can be chosen in such a way to

minimize the mean square state estimation error. The observer is then known as a

Kalman Filter.
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Kalman filter

Let’s assume that the measurements are affected by a random error, called v(k), and

that there is a random error in the process, called w(k), that is, an error or an un-

certainty in the mathematical model. This latter sentence means that A is not known

exactly, and therefore it’s more difficult to control how quickly the error in Eqn 4.31

will vanish, or how faster the estimated state x̂ converge to the true state x.

Eqn 4.26 can then be rewritten considering these errors as follows:

x(k + 1) = Ax(k) + Bu(k) +Ww(k)

y(k) = Cx(k) + V v(k)
(4.32)

where W and V are state and measurement noise matrices.

Although these errors are random, it is possible to give a description of their mean

properties using probability theory. Let us assume that the noises have Gaussian dis-

tribution, centered at the origin, with matrices of covariance Rk for measurement noise

and Qk for process noise:











v(k) ∼ N (0, Rk)

w(k) ∼ N (0, Qk)

(4.33)

Kalman filters combine the measurements and the prediction state estimate to find the

optimal estimate of the state, in presence of process and measurement noise. This is

done by multiplying the two probability functions together, thrusting more measure-

ments or the prediction state estimate depending on the noise they are affected by.

The resulting curve is also a Gaussian function with a smaller variance, arose from the

interaction of the previous two. The multiplication of these two probability density

functions relates to the discrete Kalman filter equation that follows:

x̂k = Ax̂k−1 +Buk + Lk(yk − C(Ax̂k−1 +Buk)) (4.34)

where indices k and k−1 are subscripted for compactness. This equation is very similar

to Eqn 4.30 of the general state observer: while this latter deals with deterministic
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systems, the Kalman filter one deals with stochastic systems.

The first part of the equation predicts the current state through the state estimate from

the previous time step and the current input. This can be called a priori estimate, and

is calculated before the current measurement is taken:

x̂−k = Ax̂k−1 +Buk (4.35)

The second part of the equation uses the measurement yk to update the a priori estimate

in x̂+k , called a posteriori estimate. Eqn 4.34 can be rewritten as:

x̂+k = x̂−k + Lk(yk − Cx̂−k ) (4.36)

The Kalman filter algorithm is initialized by providing the initial estimates x̂−0 and P−
0 ,

which is the state estimate error covariance, built considering the process noise and

the propagation of the uncertain x̂−k−1.

It is then possible to identify two major steps in the Kalman filter process.

1. State correction through measurements updated

Firstly the Kalman gain matrix is calculated:

Kk =
P−
k C

T

CP−
k C

T + V RkV T
(4.37)

The Kalman gain Kk (that is Lk in Eqn 4.34) is calculated such that it mini-

mizes the a posteriori error covariance: as mentioned before, it is possible to rely

more on measurements than on estimate states or vice versa, depending on the

respective covariance matrix and trying to minimize the combination of these.

Secondly, this matrix is used to update the state estimate and the state estimate

error covariance










x̂+k = x̂−k +Kk(yk − Cx̂−k )

P+
k = (I −KkC)P

−
k

(4.38)

2. Prediction step

Having now x̂+k and P+
k , it’s possible to predict the next state estimate and the
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covariance matrix:










x̂−k+1 = Ax̂k +Buk

P−
k+1 = APkA

T +WQkW
T

(4.39)

Once the prediction step is over, the a posteriori estimates are used to predict the new

a priori estimates of the next step, and so on.

This algorithm can also be performed by using multiple sensors: actually, the Kalman

filter acts as a sensor fusion algorithm, mixing the different information from multiple

sensors and weighing them depending on their reliability to provide a more accurate

estimate. In this case, the equations are unaltered, what changes is only the size of

matrices, which increases as the number of sensors increases.

4.3 Nonlinear Model Predictive Control

A linear time-invariant MPC can be used if system and constraints are linear and the

cost function is quadratic: an MPC problem with these properties gives rise to a convex

optimization problem where the cost function has a single global optimum, and the aim

of the optimization is to find this optimum.

If the plant exhibits soft nonlinearities, linear MPC can still be used and one can

benefit from the nice properties of the convex optimization problem. However, classic

MPC can no longer be used and there’s the need of other MPC formulations. These

are, for example, the Adaptive and Gain-scheduled MPCs [26], whose base principle is

to linearize the nonlinear system around consequent operating points and to use the

latest linear model as the internal model at each step. The linearized model is not

necessarily updated at each step, but may be left unchanged as long as the plant is in

the vicinity of a particular operating condition. This results in a QP problem to be

solved at each step, although the model changes from time to time.

In the Adaptive MPC a linear model is computed on-line as the operation conditions

change, but the number of states and constraints must be unaltered along the prediction

horizon. In the Gain-scheduled MPC this last condition is guaranteed by using multiple
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MPCs for different operating conditions, but in a off-line mode, thus demanding a

larger memory. Further details of their working principles are neglected, since these

controllers have not been used in this thesis.

If the plant exhibits severe nonlinearities and constraints and cost function are not

linear too, the usefulness of predictive control based on a linearized model is limited

and the obvious solution is to use a nonlinear model and then a nonlinear MPC.

On one hand, this method is the most powerful one as it uses a nonlinear plant model,

thus more representative of the real dynamics: the predictions made by the controller

are more accurate, and this leads to better performances. On the other hand, it is

also the most challenging one to solve in real-time, because when there are nonlinear

constraints and a nonlinear cost function, convexity of the optimization is then lost:

the problem becomes nonconvex. Therefore, the cost function may have multiple local

optima and finding the global optimum may be hard, especially for on-line applications.

In reality, as stated by J.M. Maciejowski[22], the disadvantage is not so much that

the global optimum may not be found, since the use of a linearized model only gives

the illusion of finding a global optimum – one finds the global optimum of the wrong

problem. The real disadvantage for on-line use is that one has very little idea of how

long each optimization step will take to complete, whether it will ever terminate, what

to do if a feasible solution cannot be found, and so on.

Due to significant nonlinearities, a time-varying linear model which varies during the

prediction horizon must be used: at each point in the horizon one uses the linearization

corresponding to the state at which one expects to be at that time.

The efficiency of solving a nonconvex optimization problem that requires a large number

of computations depends on the nonlinear solver available.

Sequential Quadratic Programming

If a nonlinear internal model is used, then several optimization algorithms are avail-

able. The one which is closest to the algorithms presented for MPC is the Sequential

Quadratic Programming, SQP, that essentially is Newton’s method of optimization

with constraints added through Lagrange multipliers. To give an approximative idea
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of its working principle, some steps from the Maciejowski’s book will follow.

Suppose that a general constrained optimization problem is to be solved, in the follow-

ing form:

min
θ

{V (θ) : H(θ) = 0,Ωj(θ) ≤ 0} (4.40)

where Hi(.) and Ωj(.) are sets of nonlinear functions, and that an iterate θk has been

obtained. The SQP algorithm makes a quadratic approximation of V (θk):

qk(d) =
1

2
dT∇2

θθL(θk, λk)d+∇V (θk)
Td (4.41)

where L(θ, λ) = V (θ) +
∑

i λiHi(θ) +
∑

j λjΩj(θ) is the Lagrangian. The next iterate,

θk+1, is given by

θk+1 = θk + dkd (4.42)

where dk is found by solving the QP problem which results from minimizing qk(d),

subject to local linear approximations of the constraints:

min
θ

{

qk(d) : Hi(θk) +∇Hi(θk)
T = 0,Ωj(θk) +∇Ωj(θk)

Td ≤ 0
}

(4.43)

This is the basic idea of the SQP algorithm, even if there are several variations: an

example is the feasible SQP, a strategy that, ensuring to satisfy the nonlinear con-

straints, allows the iterates to converge even if there is insufficient time and the best

iterate must be found in any case.

4.3.1 Observer-based nonlinear MPC

Another problem which becomes very prominent with nonlinear MPC is the state

estimation: since the model is nonlinear, obtaining an estimate x̂(k|k) of the true

state x(k) becomes a non-trivial issue. As mentioned before, the standard way of

estimating the state of a dynamic system from input-output measurements is to use

a state observer. As regards linear models, there is a solid background theory, and,

if statistical information is available about measurement noise and disturbances, a

Kalman filter can be used to obtain optimal estimates.

Concerning nonlinear models, instead, there is some observer theory, but it is much

less complete. Even if optimal state estimation problems can still be defined, they usu-

ally cannot be solved exactly, and one must necessarily make ad-hoc approximations.

63



CHAPTER 4. CONTROL STRATEGIES

When the model is no longer linear, the state transition function and measurement

function also become non-linear.

State equations in Eqn 4.32 should be turned on the following form:

xk+1 = f(xk, uk) +Wwk

yk = g(xk) + V vk

(4.44)

where f , g are nonlinear functions and, for simplicity, process and measurement noises

are still additive terms. If this were not the case, the latter should be incorporated

respectively into the state and measurement functions, thus getting a more general

form, as reported in [24]:

xk+1 = f(xk, wk, u
s
k)

yk = h(xk, vk, u
m
k )

v(k) ∼ N (0, Rk)

w(k) ∼ N (0, Qk)

(4.45)

where usk and urk are additional input arguments and the other terms have already been

defined in the previous section.

Unfortunately, the Kalman filter works and converges only with linear systems: consid-

ering the probabilistic theory of Gaussian functions, the linearity of the model does not

lead to a change in the shape of the probability density curve, which, on the contrary,

happens in the case of nonlinear models.

Since the normal Kalman filter does not work, another filter form should be considered:

the Extended Kalman filter (or EKF).

Extended Kalman Filter

In broad terms, an EKF behaves as the nonlinear MPC does with nonlinear systems: it

linearizes the nonlinear function around the mean value of the current state estimate.

In this case, however, not only the state function, but also the measurement function

requires linearization. Through corrections of the predicted states and predictions of

the future states, generated knowing the state function and therefore the model, it is

possible, also in this case, to converge with this filter.

64



CHAPTER 4. CONTROL STRATEGIES

At each time step, the linearization is performed locally, and the resulting Jacobian

matrices are then used in the prediction update states of the Kalman filter algorithms.

Following what reported in [24], the general approach is given:

1. Given Eqn 4.45, the filter must be initialized with initial values of the estimated

state x̂k|k−1 and state estimation error covariance matrix Pk|k−1;

2. Given a measurement of the state y, the estimated state and matrix P must be

updated. To perform this point, Jacobians of the measurement function must be

calculated:

Ck =
∂h

∂x

∣

∣

∣

∣

x̂(k|k−1)

Sk =
∂h

∂v

∣

∣

∣

∣

x̂(k|k−1)

(4.46)

and then, with K the Kalman gain, the update can be carried out:

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k + SkRkS

T
k )

−1

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1, 0, u
m
k ))

P̂k|k = Pk|k−1 −KkCkPk|k−1

(4.47)

3. After correcting the state estimation with measurements, then the prediction of

the state and state estimation error covariance for the next step is necessary. To

do this, Jacobians of the state function must be calculated:

Ak =
∂f

∂x

∣

∣

∣

∣

x̂(k|k)

Gk =
∂f

∂w

∣

∣

∣

∣

x̂(k|k)

(4.48)

Given these two matrices, the prediction step can be performed:

Pk+1,k = AkPk|kA
T
k +GkQkG

T
k

x̂k+1|k = f(x̂k|k, 0, u
s
k))

(4.49)

Using the EKF, the calculation of Jacobians can be difficult and reveal to be a high

computational cost demanding problem, especially when the system is highly non-

linear. In this case, an unscented Kalman filter, here not developed for brevity, is

recommended[24].
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Chapter 5

AR&D/C scenario definition

In this chapter the AR&D/C problem with a non-cooperative target will be presented

and applied to a real space mission. Specifically, the most critical issues of this ren-

dezvous scenario and the tools used to solve them will be illustrated and discussed.

As already mentioned, only the last two phases of the three presented in Chapter

3 will be analysed, to focus mainly on proximity operations rather than phasing and

far-field approach maneuvers, already widely tested and with a wide flight heritage (co-

operative RVD). Furthermore, for simplicity, any missed burns, unfavourable lighting

conditions or additional disturbance actions were not considered in the computation of

the approaching trajectories.

As for the near-field rendezvous phase, the trajectories generated will be purely

translational, with 3 degrees of freedom, since the attitude evolution is not of particular

relevance given the high distance between the chaser and the target in this phase. As

for the inner proximity operations phase, instead, attitude will also be managed by the

control law and the actuators, as will be explained in the appropriate chapter.

Since the problems are widely distinct, even the controllers and the navigation

system are different: for the first part, in fact, being both the HCW equations and the

constraints linear, a Model Predictive Control, paired with a linear Kalman filter, will

be sufficient to perform the trajectory tracking; for the last part, on the other hand,

the attitude control (clearly nonlinear) and the presence of nonlinear constraints also

for the translational part lead to the implementation and development of a nonlinear
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Model Predictive Control, coupled with an extended formulation of the Kalman filter.

A first part regarding the presentation of the mission chosen as a case study will be

followed by a section on the implemented simulator and its working principles.

5.1 Case study: mission OSAM-1

The case study considered for the simulations is OSAM-1, an on-orbit servicing mission

to restore Landsat-7, scheduled to launch in 2023. Some specifications regarding this

mission will be presented in the following, after an overview of the target to be rescued.

LandSat7

As reported in eoPortal Directory [7], the Landsat-7 satellite (Figure 5.1) is part of

NASA’s ESE (Earth Science Enterprise) program, a joint venture of NASA and USGS

(United States Geological Survey). The overall mission objective is to extend and

improve upon the long-term record of medium-resolution multispectral imagery of the

Earth’s continental surfaces provided by the earlier Landsat satellites.

Figure 5.1: LandSat 7 model.

Operating since 1999, Landsat7 weighs 2200 kg, is 4.3 m long and 2.8 m in diameter,

and lies on an orbit with the specifics listed in Table 5.1:
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Orbital parameters

Regime sun-synchronous orbit

Altitude 705 km

Inclination 98.21◦

Period 98.83 minutes

Repeat interval 16 days

Table 5.1: Landsat7 orbital parameters

Despite a 5-year life planned, Landsat7 remained on-station much longer than ex-

pected, fulfilling its science mission until September 2021, when Landsat9 was success-

fully launched to take its place in the standard orbit altitude, which, combining with

the Landsat8 one, still operating, allows data to be collected every eight days over

every location on Earth. As reported in [39], Landsat7 is now exiting the constellation

and lower its orbit by 8 km to prepare for servicing by NASA’s On-Orbit Servicing,

Assembly, and Manufacturing-1 (OSAM-1) mission. This mission will provide Land-

sat7 with the needed fuel for a successful decommissioning, as described in the next

paragraph.

According with [7], further ideas from NASA concern the possibility of turning the

satellite into a transfer radiometer, acting as a calibration instrument for Landsats 8

and 9, and perhaps even extend its scientific utility. The first possibility, in any case,

is materializing, being OSAM-1 under construction.

5.1.1 OSAM-1 overview

NASA’s On-Orbit Servicing Assembly and Manufacturing (OSAM-1) mission (Figure

5.2), formerly called Restore-L, after passing the Critical Design Review (CDR) in

April 2021, is now entering the mechanical building phase of the spacecraft.

This is an innovative mission, the first of its kind in low Earth orbit, and, according

with [28], the success of this demonstration would spur a new era in sustainable space

operations essential for the science, national security and space operations.
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Figure 5.2: OSAM-1 mission concept (courtesy of [12]).

At the Maxar Technologies facility in Palo Alto, California, mounted on the Maxar’s

decades-proven 1300 class spacecraft platform, the propulsion system was completed,

including pipes and their large propellant and oxidant tanks, which are inserted into

the central cylindrical structure; the thrusters, visible in Figure 5.3 in both the up-

per and lower decks of the spacecraft, and the two spherical silver tanks filled with

monopropellant fuel intended for the satellite to be supplied. The latter are units from

the Space Shuttles, on which they powered the Auxiliary Power Units (APUs) that

provided hydraulic power during launch and re-entry.

As written in Maxar website [28], the propulsion system will allow the spacecraft to

maneuver with six degrees of freedom (translation and rotation). That means OSAM-1

will have a unique three-axis translational maneuver capability, including the ability to

execute “back away” maneuvers. This feature ensures safety during the approach and

rendezvous with a non-cooperative satellite such as Landsat7.

According to Shoemaker[38], OSAM-1 has a planned wet mass at launch of around
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6500 kg. Prior to shipping the spacecraft to NASA’s Goddard Spaceflight Center in

Greenbelt (Maryland), all OSAM-1 subsystems are now being tested.

Figure 5.3: The basic structure of OSAM-1 being assembled (courtesy of [28]).

5.1.2 Servicing Technologies

Three robotic arms are planned for the OSAM-1 mission, two of which will be used to

refuel Landsat7. These will grab a ring encircling the base of Landsat 7, then will guide

Landsat 7 into so-called “berthing posts,” where it will be secured to its rescue satellite,

and finally, after cutting away the insulation blanket and opening the fill/drain valves,

will transfer propellant to it (Figure 5.4, a).

The other robotic arm, named “SPIDER” (Space Infrastructure Dexterous Robot), will

be used to demonstrate in-space assembly and manufacturing for sustainable space

exploration. “We’re going to send a [radio] signal through that antenna to ground

stations, and then we’re going to disassemble the antenna and assemble it again to

show it’s a repeatable task” said Brent Robertson, the OSAM-1 Project Manager.

To accomplish all its tasks, OSAM 1 will be provided with essential tools and adequate

techniques and technologies, as shown in [12].

• Autonomous, real-time relative navigation system

Being a quite totally autonomous mission, OSAM-1 needs a relative navigation
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(a) Lights-out grapple testing of OSAM-1’s Robotic Servicing Arm

(b) Concept of demonstration of in-space assembly (SPIDER)

Figure 5.4: OSAM-1 issues (courtesy of [12]).

system composed by cameras, sensors, computers, algorithms and avionics that

join forces to independently track the target satellite at different ranges, all in

real time.

Once this system visually locks into the target, it can safely "guide and drive"

the chase OSAM-1 satellite through precise rendezvous maneuvers around and

then towards Landsat 7. On OSAM-1 will be mounted RAVEN, a NExIS (Nasa’s

Exploration & In-Space Services) project that fulfills the afore mentioned issue,

already used on the ISS in 2016 to test key elements of the autonomous relative

navigation system. Raven box, showed in Figure 5.5, contains a carefully curated

and highly-performing system that includes visible, infrared and lidar sensors, a
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high-speed processor and advanced algorithms.

• Servicing avionics

In addition to ingesting and crunching sensor data, these elements control OSAM-

1’s rendezvous and robotic tasks.

• Dexterous robotic arms

These are Robotic Servicing arms, three seven-degree-of-freedom manoeuvrable

robot arms to accomplish the two OSAM-1 issues, on-orbit servicing and on-orbit

assembling.

• Advanced tool drive and tools

Sophisticated, multifunction tools are manufactured to execute each servicing

task, such as removing the caps and wires on the target satellite fuel valves.

• Propellant transfer system

This system delivers measured amounts of fuel to the client at the right temper-

ature, pressure and rate.

(a) Raven module (b) Robotic Servicing Arm

Figure 5.5: Servicing Technologies (courtesy of [12]).
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5.2 Spacecraft Simulator

The programming software used in this thesis is Matlab, which, through specific tool-

box, reveals to be an ideal environment for the study of a scenario such as rendezvous

and docking or capture, either for the trajectory planning or for the control task.

In particular, the toolbox used are listed in the following.

• Model Predictive Control Toolbox, used to design and simulate linear or nonlin-

ear model predictive controllers. It’s possible to specify plant and disturbance

models, horizons, constraints, and weights, to evaluate controller performance.

• Global Optimization Toolbox, that provides functions that search for global solu-

tions to problems that contain multiple maxima or minima. In particular, genetic

algorithms will be used to plan the observation trajectories.

• Optimization Toolbox, employed to solve linear, quadratic, conic, integer, and

nonlinear optimization problems. According to [27], it provides functions for

finding parameters that minimize or maximize objectives while satisfying con-

straints. This toolbox includes many solvers for linear or nonlinear programming,

least squares or equations.

• System identification toolbox used to create linear and nonlinear dynamic sys-

tem models from measured input-output data. The Extended Kalman filter tool

belongs to this latter.

Since the study of the motion of a satellite – and the satellite itself – is complex and

articulated, the simulator is organized through classes, which, describing only a single

aspect of the general problem, allow greater clarity and streamline the global structure.

Each class contains the functions used to set some parameters and update its variables

during the simulation. All the classes converge in a single plant, which represents the

general model for the study of the problem, including, of course, dynamics.

As regards the proximity operations within the inner keep-out sphere, the plants cre-

ated and simultaneously developed will be two, one for the target and one for the

chaser.
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Since the target is not controlled, its created plant will be extremely simplified, actually

incorporating only the propagation of the attitude dynamics, being the translational

dynamics null due to the reference system taken. For these reasons, only the chase

plant will be developed in the following.

Figure 5.6: Chase spacecraft simulator scheme.

The main classes handle geometries and inertia, the propulsion system and the

simulation parameters necessary to set the methods to solve differential equations of

dynamics. Control and navigation do not affect the plant directly, but deal with the

control input and the output measurement, as shown in Figure 5.6.

5.2.1 Dynamic propagator

Geometries and Inertia

For simplicity, both the chaser, OSAM-1, and the target satellite, Landsat 7, will be

represented as parallelepipeds of appropriate size and with uniform density. Intuitively,

the body system considered will be the principal one, with principal axes perpendicular

to body faces, as shown in Figures 5.7 and 5.8, where d stands for depth, w for width

and h for height.
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For a parallelepiped, given a principal axis i, the inertia around this axis can be written

as follows:

Iii =
1

12
m(l2j + l2k) (5.1)

where lj and lk are the sides of the rectangular face perpendicular to axis i. The inertia

tensor can be then written as a diagonal matrix: I = diag[Ixx, Iyy, Izz].

Inertial properties

mass 2200 kg

width 2.5 m

depth 2.5 m

height 4.2 m

Ixx 4379.8 kgm2

Iyy 4379.8 kgm2

Izz 2291.7 kgm2

Figure 5.7: Target model.

Inertial properties

mass 6500 kg

width 4.4 m

depth 2.7 m

height 2.7 m

Ixx 7897.5 kgm2

Iyy 14435.4 kgm2

Izz 14435.4 kgm2

Figure 5.8: Chaser model.
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Equation of motion

The integration of the equations of dynamics constitutes the engine of the simula-

tor. These equations, decoupled and divided into attitude equations and translational

equations, are integrated through the Matlab ode45 function, a nonstiff differential

equations solver that implements a Runge-Kutta method and which is designed to

solve problems in the form:

dx

dt
= f(t,x), x(t0) = x0 (5.2)

where x is a vector of variables dependent on time t, the independent variable, and

f(t,x) is a function of t and x.

The equations of translational dynamics implied are the HCW equations 2.2, as al-

ready mentioned. The reference system used here, however, will be the LVLH orbital

one presented in Chapter 2. Considering x as a vector containing position and velocity,

x = [x, y, z, vx, vy, vz]
T , and adding the control action, they can be rewritten as follows:







































dx(1 : 3) = x(4 : 6);

dx(4) = ucomm,x + 2nx(6) + (Fdist,x − ṁx(4))/m;

dx(5) = ucomm,y − n2x(2) + (Fdist,y − ṁx(5))/m;

dx(6) = ucomm,z + 3n2x(3)− 2nx(4) + (Fdist,z − ṁx(6))/m;

(5.3)

where n is the target mean motion, Fdist are possible disturbances (here set to zero)

and ṁ is the mass flow, set to zero in these equations, given the exiguous mass varia-

tion.

The equations of attitude dynamics are the Euler equations, written in the body ref-

erence, as in Eqn 2.12. The vector x now contains the angular velocity ωBI between

inertial and body frames, written in body, and the quaternion, describing the body

attitude referred to the orbital frame.

x = [ωBI,x, ωBI,y, ωBI,z, q1, q2, q3, q4]
T

The first three components are known through the simple integration of Euler’s equa-

tions:
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dx(1 : 3) = αcomm +
τdist − İx(1 : 3)

I
+ x(1 : 3)× Ix(1 : 3) (5.4)

where αcomm is the control input vector and τdist are possible disturbances (here set to

zero). As explained in Chapter 2, body-inertial and body-orbital angular velocities are

intimately related, so by assuming the first as known it’s possible to derive the second

one and to integrate the quaternion dynamics:

dx(4 : 7) =
1

2
[Q] x(4 : 7) (5.5)

where [Q] is the matrix shown in Eqn 2.17.

5.2.2 Actuator system: Thrusters

Due to the huge masses involved and the complicated maneuvers to be performed,

especially in the last phase when the chaser has to co-move with the target, the choice

of the propulsion system is not an easy task.

The chaser must be able to perform considerable thrusts, but without exceeding

a certain acceleration value, and follow a well-defined thrust profile deriving from the

control and navigation system. As reported by Leomanni[20], a range of reasonable val-

ues of maximum acceleration for the problem at hand is from 10−3 m/s2 to 10−1 m/s2,

on a rough estimate.

Although during the proximity approach the attitude is a function of the position,

the translational and rotational control actions remain distinct: the thrusters, there-

fore, have also been chosen separately, based on the thrust profile to chase the studied

trajectories. In particular, for the translational part, twelve 200 N thrusters were cho-

sen, two for each of the six faces normal of the parallelepiped. The main features, given

by [16], are shown in Figure 5.9. As regards the attitude control, being less thrust de-

manding, four 10 N thrusters for each principal axis are used. The characteristics for

these engines are shown in Figure 5.10, still given by [16].
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Properties

Thrust Nominal 216N ± 10 N

Specific Impulse > 270 s

Flow rate nominal 78 g/s

Minimum on time 28 ms

Mass 1.9 kg

Throat Diameter 12 mm

Nozzle End Diameter 95 mm

Fuel MMH/UDMH

Oxidizer MON-3/N2O4

Figure 5.9: 200 N bi-propellant thrusters, courtesy of [16].

Properties

Thrust Nominal 10 N

Specific Impulse 292 s

Flow rate nominal 3.5 g/s

Minimum on time* 10 ms

Mass 0.65 kg

Throat Diameter 2.85 mm

Nozzle End Diameter 35 mm

Fuel MMH

Oxidizer MON-1/MON-3/N2O4

Figure 5.10: 10 N bi-propellant thrusters, courtesy of [16] (assumed*).

Both engines work in a Pulse Width Modulation mode: this means that under a

certain value, that is correlated to the simulation time-step and the minimum on time

value listed above, a control action cannot be given (Figure 5.11):

FB
calc ≥ Fmin =

Fmax τ

dtsimul
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where B stands for Body and τ is the minimum on time. The upper limit, on the other

hand, is implicitly imposed by the maximum thrust value that thrusters can provide.

Figure 5.11: Pulse Width Modulation concept (in blue the calculated force, in purple the

equivalent commanded force).

Anyway, the translational control actions ucomm = [ux, uy, uz]
T showed in Eqn 5.3

are provided in the LVLH orbiting frame: upper and lower limits, reasonably defined

in the body frame, cannot be imposed directly on these values to find the commanded

actions ucomm and then the forces Fcomm. Given the peculiarity of predictive controllers,

it is possible to set a limit on the maximum acceleration calculated for each direction

of the orbiting reference:

umax =
Fmax

m
√
3

(5.6)

Dividing Fmax by
√
3 is a precaution that solves the problem: this factor ensures

that, even in the case of an unfavourable relative orientation between the body and

orbital references, the control action can be faithfully reproduced in the body reference,

without any simplifications. This is decisive in the near-field RVD study, where the

attitude is not provided; in proximity operations, on the other hand, these control

actions ucalc, multiplied by mass, are transformed into forces and, through the rotation
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matrix from orbital to current body RB
O, these forces are provided in the body reference,

where upper and lower limits can finally be imposed to find the commanded forces:

|FB
calc| ≤ Fmax

|FB
calc| ≥ τFmax

dtsimul

Also regarding the attitude control actions, a maximum limit is set:

αmax =
τmax

I

Here dividing by
√
3 is useless: torques are given in the body reference, so it is not

necessary.

To simulate the non-repeatability of the thrusters and therefore the errors at each

impulse, a random error was added to the commanded thrust value, with a standard

deviation given on a percentage basis:

Fact = (1 + σthrusta)Fcomm

with σthrust = 1% and a a random value.

To calculate the propellant mass used for translational motion two methods are avail-

able:

• Calculation through forces:

mprop =
ṁ dtSimul

Fmax

N
∑

k=0

|Fx,k|+ |Fy,k|+ |Fz,k|

where N is the total number of steps and ṁ the constant mass flow;

• Calculation through Tsiolkovsky equation:

mprop = min

(

1− e−∆Vtot/(g Isp)
)

where Isp is the Specific Impulse, already given for both thrusters.

The latter equation takes into consideration the loss of mass, neglected instead in

the simulated dynamics due to its exiguity, so results will be found through the first

equation, even if there is a very slight difference between the two results.
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To calculate the propellant mass used for the attitude control, the following equation

has been employed:

mprop =
ṁ dtSimul

2 b F att
max

N
∑

k=0

|τx,k|+ |τy,k|+ |τz,k|

where b is the arm (here set to 1m) from the center of the satellite to the position of

a generic attitude thruster, and all τ are torques referred to the chase body frame.

5.2.3 Control system

The purpose of the control system is to generate a command given the information

coming from the navigation system and considering the reference trajectory to be

followed. As already announced, Model Predictive controllers, whose working principle

is shown in the previous chapter, are implemented in the control system.

Model Predictive Control

As mentioned at the beginning of this chapter, a simple MPC will be used where the

model is linear, that is in the near field RVD phase, having to be handled only the

translational part with the linear HCW equations.

Concerning its implementation, Matlab, through the Model Predictive Control toolbox,

provides a series of commands to set up and manage an MPC. Using the predicted plant

outputs, the controller solves a quadratic programming optimization problem (or QP

problem) to determine the control action. The main steps (Figure 5.12) are listed in

the following.

1. Set the principal parameters

Control horizon, prediction horizon and duration of control action are here set

in order to achieve the best performance possible. These are chosen taking into

account all the considerations done in the previous chapter on lengthening or

shortening the horizons.

2. State space model creation

The HCW equations are re-proposed in the form of Eqn 4.1, with the matrices
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A, B, C already defined, and then a state space model is created. Using the

command of Matlab c2d, through the zero-order hold method, the state space

model is then discretized.

3. Controllability and observability tests

Having state-space systems, controllability and observability tests are recom-

mended. To do this, Matlab gives two commands:

• obsv, that computes the observability matrix Ψ showed in Eqn 4.15 for

state-space systems; the model is observable if this matrix has full rank;

• ctrb, that computes the controllability matrix of state-space systems; as

the previous one, the system is controllable if the matrix has full rank.

4. Weights definition

After providing the model with the number of state variables and the number of

output measured variables through the function setmpcsignals, cost function

matrices must be defined. To control the evolution of the latter and therefore the

tracking performance, it is necessary to set the correct weights on the controlled

variables and on the output variables.

5. MPC model creation and constraints definition

The command mpc creates a model predictive controller object based on the

discrete-time prediction model plant, enclosing all the values previously set.

After the model is created, one can impose constraints on manipulated variables

(i.e. control actions) and output variables, specifying the degree of hardness in

the constraint imposition.

Once the controller is set, the Matlab command acting in the dynamic propagation

loop is mpcmove, which requests as input the object created with the mpc command,

the current state, the measured state (if one wants to employ the Kalman filter model

created by default with the mpc command) and the reference used in the prediction

horizon, and returns the control action ucalc.
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Figure 5.12: MPC definition steps.

Nonlinear MPC

When the problem ceases to be linear, that is for the use of attitude equations (Euler)

or the management of nonlinear constraints, the tool to be used is the nonlinear MPC.

Also in this case, Matlab provides a set of commands and tools, always belonging to

the Model Predictive Control toolbox, to manage this controller.

As reported in the Matlab webpage[25], the key differences with a simple MPC are:

• The prediction model can be nonlinear and include time-varying parameters;

• The equality and inequality constraints can be nonlinear;

• The scalar cost function to be minimized can be a nonquadratic function of the

decision variables.

Being this problem no longer totally quadratic, alternate optimization techniques, or

other solvers, are needed. In this thesis the nonlinear MPC controller is set to solve a

nonlinear programming problem using the fmincon function, in which the Sequential

Quadratic Programming algorithm is implemented. This latter requires the Optimiza-

tion Toolbox of Matlab.

The main steps required to implement the controller are presented below (Figure 5.13).

1. Set the principal parameters

As for MPC, control horizon, prediction horizon and duration of control action are

here set in order to achieve the best performance possible. All the considerations
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made in the linear case, for these parameters, are here equally applied.

Through the command nlmpc, the nonlinear MPC controller is created. Next

steps will enter this object as properties.

2. State and output functions

Since the matrices to express the equations of the model in a state-space form can

no longer be found, a state function must be directly provided. This function,

describing the model, if provided in a continuous-time form, is automatically dis-

cretized using the implicit trapezoidal rule.

The equations implemented in the function are the same as those of the dy-

namic propagator, but this time gathered: the overall state vector, therefore, will

contain 13 variables:

x = [x, y, z, vx, vy, vz, ωBI,x, ωBI,y, ωBI,z, q1, q2, q3, q4]
T

Jacobians used in the linearization are directly calculated inside the tool and not

provided externally.

In addition to the state function, an output function must be set, that is, it must

be specified which part of the state is then supplied at the output. Having to

provide the reference to the nlmpc object in all the variables of the vector output

but being the reference trajectory provided only in position, only [x, y, z] will be

provided at the output. To manage the measurement and prediction part there

will be an external Extended Kalman filter.

3. Cost function

Even the cost function, no longer being quadratic but in a general user-provided

form, is to be specified, customizing it in order to accomplish all the require-

ments. Alongside this, anyway, a standard quadratic MPC cost function can be

preserved: the final optimization will result in a combination between the cus-

tom optimization function and this latter, managed through weight tuning. The

cost function used will be presented in the chapter of inner proximity operations

study.

4. Constraint function
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Regarding constraints too, a special function must be specified in the prediction

horizon, in the form of equality or inequality. As for the latter, an inequality

constraint is satisfied when the corresponding output is less than or equal to 0.

Again, the function used will be presented in the final chapter.

5. Nlmpc object validation

When the nlmpc model is completely defined, a control on what has been set is

needed. To do this, a specific command, validateFcns, is given. It requires, as

input, the nlmpc object created, all the parameters used and the initial state to

test the entire configuration of the nonlinear MPC controller for potential prob-

lems such as whether information is missing, whether input and output arguments

of any user custom functions are incompatible with object settings.

As for the linear MPC, there is a Matlab command acting in the dynamic propagation

loop, nlmpcmove, which requests as input the object created with the nlmpc command,

the current state, the measured state (or a part of it) and the reference used in the

prediction horizon and returns the control action ucalc.

Figure 5.13: NLMPC definition steps.

5.2.4 Navigation system

To better estimate the state of the system by exploiting the measurements coming from

the sensors and the knowledge of the model, a filter is required.
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Kalman filter

As regards the linear translational model, a Kalman filter is coupled with the MPC.

No particular functions were exploited to implement the KF, just used the equations

in Section 4.2.3. It’s recommended to refer to the afore mentioned section to have a

complete view of its working principle.

Extended Kalman filter

As regards instead the nonlinear model, an Extended Kalman filter is needed, pairing

with the nonlinear MPC, to estimate the states.

Through the command extendedKalmanFilter an EKF object is created. A state

transition function and a measurement function must be provided as input: the first

one is the same state function of the nonlinear MPC (that is the union of HCW and

Euler equations), but discretized with a trapezoidal rule, the second one specifies which

state variables are to be measured. In this case, only the position and the attitude

(quaternions or Euler angles) will be measured.

Once the object is created and the initial state and measure are defined, it’s possible

to specify the process and the measurement noise covariances and create two matrices,

specified in Subsection 4.3.1 as R and Q.

The way the filter acts has already been presented in Subsection 4.3.1: to implement

the steps reported, Matlab[23] provides the commands correct, to correct the state and

state estimation error covariance at time step k using measured data at time step k,

and predict, to predict the state and state estimation error covariance at time the

next time step. A further command, residual, return the difference between the

actual and predicted measurements, then giving the possibility to know how the filter

is performing.

5.2.5 Sensors

Since not any real measurements are available, to simulate the presence and action of

a sensor system some possible dispersions of values have been defined.

Given that the satellite will mount visible, infrared and LIDAR sensors, it is reasonable
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to think that a measure of the relative position [x, y, z] between the two satellites can

be provided. As for the attitude of the chaser, where present, to be measured will be

the angles of Euler.

As explained, these measurements will be used by Kalman filters to correct predictions

previously made by relying on the model. Although the handling of errors is the same,

they are given differently in the two areas studied.

• Near-field RVD : the standard deviations of measurement noise, regarding relative

position, is the same in the three orbital frame directions.

• Inner Proximity Operations : the standard deviations of the relative position

and attitude measurement noises vary linearly during the approach, as shown in

Figure 5.14.

Figure 5.14: Linear variation of standard deviations.

To simulate as realistically as possible the results of an observation motion, how-

ever, standard deviations on a percentage basis were added on the estimated

angular velocity and inertia, gradually reduced as the chaser approaches the tar-

get. These last errors, however, only affect the reference along the prediction

horizon, created by the controller at each control step to compute the action

ucalc, hence they constitute an error on the prediction of the motion rather than

an error on the dynamics of the chaser.

Due to this reason, they are not managed by the filter, and this is the reason
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why, with refer to Figure 5.6, navigation and reference blocks are not linked.

5.2.6 Reference

The reference is also managed differently in the two phases. As regards the first one,

i.e. the near field rendezvous, the trajectory is calculated at the head of simulation,

without changes in itinere. As regards the second one, the inner proximity rendezvous,

as explained in the previous section, the reference is created at each control step based

on the current estimates of the target inertia and angular velocity.

Further details will be provided in the following chapters, where the two phases will

be analysed separately.
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Chapter 6

Near-field Rendezvous Study

As already mentioned, the study of the rendezvous maneuver considered in this thesis

begins from an initial distance of a few kilometers, thus taking for granted the method

of approach for large initial distances. As an example, however, a simple Hohmann

maneuver and subsequent propagation on a co-elliptical orbit will be shown. Relative

motion, for these two propagations, is realized as a simple difference of absolute poses,

so the HCW model is not used.

Concerning the observation maneuvers, which represent the core of this chapter,

the HCW equations presented in Chapter 2 were used, being the considered distances

between the chaser and the target of a few hundred meters.

The creation of the reference trajectories and therefore the implementation of the obser-

vation motions already presented was performed using genetic algorithms, simplifying

the maneuvers, where present, in impulsive maneuvers, and conceiving the trajectories

between one delta-v and the next one as simple propagations dictated by the HCW

equations of relative motion.

Genetic algorithms are heuristic algorithms, used to attempt to solve optimization

problems by exploiting the analogy with Darwinian principles of natural selection and

biological evolution. In summary, these algorithms allow to evaluate different starting

solutions (as if they were different biological individuals), which, recombining them

(similarly to biological reproduction) and introducing elements of disorder (similarly to

random genetic mutations), produce new solutions (new individuals) that are evaluated
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by choosing the best (environmental selection) in an attempt to converge towards

"excellent" solutions.

In Matlab, their implementation is possible through the ga function, which requires in

input the so-called ’fitness function’ to be minimized and the constraints to be respected

during the search for the minimum, expressed in the form of equalities or inequalities.

These two specifications will be provided for each observation motion studied.

The ellipsoid-shaped macro regions identified and used to analyse the approach have

the dimensions illustrated in Figure 6.1.

Figure 6.1: Keep-Out Ellipsoids (KOE).

After showing, as promised, a first example of a Hohmann maneuver followed by a

co-elliptic propagation, the observation motions will be presented. These are thought as

a first phase ("Phase A") of natural approach through a Walking Safety Ellipse, strad-

dling the middle ellipsoid, and a second phase of observation ("Phase B") – through

another WSE, an ellipse or a structure of waypoints – within this. As reported in the

previous chapter, only translational motion will be analysed.
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6.1 Hohmann and Phasing approach

The orbital parameters of both chase and target satellites considered in the studied

scenario are shown in Figure 6.2.

Target Chaser

h 697km 694km

e 0 0

i 98◦ 98◦

Ω 0◦ 0◦

ω 0◦ 0◦

θ 0.1◦ 0◦

T 98m 38.84s 98m 42.61s

Figure 6.2: Orbital Parameters of the target and the chaser.

At the initial time, an impulsive delta-v is performed to enter a Hohmann trajectory

and, after a propagation for half a target period, another impulsive delta-v is carried

out to enter the co-elliptical orbit with respect to the target one, therefore circular,

with a radius equal to the altitude of the apogee of the Hohmann trajectory.

The propagation in the co-elliptical orbit is a fraction of the target orbital period,

chosen to approach along the in-track line and get closer to the target for subsequent

maneuvers.

The main parameters are listed in Table 6.1 and referred to Figure 6.3.

It is possible to transform the trajectory into a relative trajectory, computed as a

simple difference of absolute poses regarding position and dictated by the relative

velocity theorem with regard to velocity. This trajectory, when expressed in the Hill’s

reference, appears as shown in Figure 6.4.
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Perigee altitude 694km

Apogee altitude 696.1km

THOH 0.5 Ttarg

TCOELL 0.3 Ttarg

∆V1 0.5572m/s

∆V2 0.5572m/s

X1,Hill [−3010.77,−12343.20, 0] m

X2,Hill [−900.71,−3159.51, 0] m

X3,Hill [−900.03,−615.23, 0] m

Table 6.1: Main Parameters of the Hohmann maneuver and the co-elliptic propagation.

Figure 6.3: Hohmann transfer and Co-ellipse concept.

6.2 Phase A: Walking Safety Ellipse approach

The HCW model was used from the last point, named as X3,Hill in Table 6.1, once the

propagation on the phasing orbit is done. Being the chaser still hundreds of meters far

from the target, a good solution, shown here, is to approach through a natural orbit,
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Figure 6.4: Hohmann and Phasing approach in Hill frame (in meters).

namely a Walking Safety Ellipse, already presented in Chapter 3.

As already mentioned at the beginning of the chapter, genetic algorithms were used

to find the optimal impulsive delta-v and transfer trajectory, together with the WSE

geometric parameters.

6.2.1 Genetic Algorithms for WSE

What must be provided to the algorithm is a function to be minimized, namely the

fitness function, and some constraints (thinking about the construction of a WSE) that

the trajectory must respect.

Limits

The parameters needed to define a WSE are the following: xmax, yc, ∆y, zmax, ψ0,

ϕ0, with the meanings already provided in Chapter 3. In addition to these geometric

parameters, it is possible to add a temporal one, ∆tTransf , or the time the chaser takes

to go from the starting point to the entry point of the WSE.

Remembering that the semi axes of the middle ellipsoid are [130, 700, 130] m (Figure

6.1), the limits for these parameters are presented in Table 6.2.
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xmax [140÷ 160] m

ẏc [−0.005÷ 0.005] m/s

∆y [−200÷ 200] m

zmax [140÷ 160] m

ψ0 [0÷ 2π]

ϕ0 [0÷ 2π]

∆tTransf [0÷ Ttarg]

Table 6.2: First WSE ranges for Genetic Algorithm.

Fitness function

This is the function to be minimized and can be set to direct the construction of the

trajectory towards the desired one by adding additional costs to the function:

FitnessV alue = ∆Vtot + C1 + C2

where the three contributions have the following meaning:

• ∆Vtot: sum of the two delta-v, the first one to take the transfer trajectory, the

second one to enter the WSE;

• C1: cost on discord of the signs of ∆y and ẏc, to ensure the approach to the

target;

• C2: cost on the minimum distance from the target, dmin, during the transfer to

the WSE, imposed in the following way:

C2 = eγRKOS−dmin − 1

where RKOS is the keep-out sphere radius and γ is a safety factor equal to 1.2.

6.2.2 Example of WSE

Since genetic algorithms are not repeatable, the solution found, even respecting the

limits imposed, can change running the code several times, so what follows is only an

96



CHAPTER 6. NEAR-FIELD RENDEZVOUS STUDY

example of a possible WSE. The afore cited geometric parameters are listed in Table

6.3, while the main results are presented in Table 6.4. The propagation on the WSE

is done in order to cover 1.5 times the initial in-track distance. A 3D plot of the

spiral-shaped trajectory is given in Figure 6.5.

xmax 160 m

ẏc −0.0046 m/s

∆y 200 m

zmax 140 m

ψ0 1.0566

ϕ0 5.9172

∆tTransf 0.411 Ttarg

Table 6.3: WSE parameters.

xto transf1 [−900.03,−615.23, 0] m

xWSE,inserction [142.18, 359.61,−50.10] m

∆Vto transf1 0.4338 m/s

∆VWSE,inserction 0.2575 m/s

∆tWSE 18h 11m 30.20s

Table 6.4: Main parameters of the trajectory to WSE.

6.3 Phase B: Observation Phase

Once the distance has been reduced considerably, the second phase, that is the obser-

vation motion, can be initialized. The observation, this time, is performed inside the

middle ellipsoid, while maintaining an appropriate safety distance from the target.

In the following, three strategies, all suitable and possible, will be presented: firstly an

observation from a safety ellipse, then a walking safety ellipse and finally an observa-

tion performed from waypoints placed on an octahedron, as presented in Chapter 3. As
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Figure 6.5: WSE Example in Hill frame (in meters).

done for the first WSE, the main parameters and costs used in the genetic algorithm

will be shown for each alternative. The keep-out distance considered is 60 m, that is

the inner KOS radius multiplied by a safety factor equal to 1.2.

6.3.1 Safety Ellipse

This is a natural fly-around motion which, ideally, does not require any intervention of

the actuator system to be performed. It is therefore a very simple motion, suitable for

observing or waiting, without any drift.

Genetic Algorithms for Safety Ellipse

The ellipse, projected on the radial-in-track plane, has a proportion of 1:2: any eventual

condition can be placed only on one of the two variables, being interdependent.

The parameters to describe the ellipse are the same as those already shown for the

WSE, with ẏc, however, placed at zero.
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Figure 6.6: Ellipse limits.

Referring to Figure 6.6, the following conditions must be met:











ρy ∈ [y∗min, y
∗
max]

∆y ∈ [−∆y∗,∆y∗]

where ∆y∗ =
y∗max − y∗min

2
. Choosing y∗min = 60 m and y∗max = 120 m, ranges can be

listed in Table 6.5:

xmax [30÷ 60] m

∆y [−90÷ 90] m

zmax [0÷ 80] m

ψ0 [0÷ 2π]

ϕ0 [0÷ 2π]

∆tTransf [0÷ 0.5 Ttarg]

Table 6.5: Safety Ellipse ranges.

As regards the fitness function, the form is the same of the previous one but with more
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contributes:

FitnessV alue = ∆Vtot + E1 + E2 + E3 + E4

where the additive terms are explained in the following:

• ∆Vtot: sum of the two delta-v, the first one to take the second transfer trajectory,

the second one to enter the Safety Ellipse;

• E1, E2: costs to assure the conditions below











ρy − |∆y| < y∗min

ρy + |∆y| > y∗max

Writing k1 = ρy − (|∆y|+ y∗min) and k2 = y∗max − |∆y| − ρy, the costs E1 and E2

can be written as follows:










E1 = 10 + e−k1 − 1

E2 = 10 + e−k2 − 1

• E3: cost on minimum safe relative trajectory distance, imposed to be greater

than RKOS:

b =

√

x2max + z2max −
√

x4max + z4max + 2x2maxz
2
max cos(2ψ0 − 2ϕ0)

2
≥ 1.2 RKOS

Writing k3 = b− 1.2 RKOS, E3 can be written as follows:

E3 = 10 + e−k3 − 1

• E4: cost on the minimum distance dmin of the transfer trajectory from the target,

calculated in the same way of C2 for WSE.
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Example of Safety Ellipse

An example of Safety Ellipse is given, showing the results starting after the WSE is

performed. The geometric parameters are listed in Table 6.6, while the main results

are presented in Table 6.7. The propagation on the Safety Ellipse is done the time it

takes to completely and accurately observe the target. 3D plots are given in Figures

6.7 and 6.8.

xmax 60 m

∆y −0.0545 m

zmax 80 m

ψ0 6.0574

ϕ0 4.4918

∆tTransf 0.423 Ttarg

Table 6.6: Safety Ellipse parameters.

xto transf2 [161.03,−49.34,−0.515] m

xSE,inserction [−49.67,−67.26, 44.48] m

∆Vto transf2 0.1390 m/s

∆VSE,inserction 0.0976 m/s

∆tSE kTtarg, k ∈ R

Table 6.7: Main parameters of the trajectory to Safety Ellipse.
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Figure 6.7: Safety Ellipse Example in Hill frame (in meters).

Figure 6.8: Safety Ellipse Example: Radial - Cross-track plane (in meters).

There is a particular combination of parameters such that the safety Ellipse has a

circular shape (Figure 6.9): maintaining a constant distance may turn out to be an
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advantage and a convenience. This trajectory is realized by imposing the conditions

ϕ0 = ψ0, zmax =
√
3xmax and cancelling the quantity ∆y to make the center of the

ellipse coincide with the real position of the target: the number of variables to be

checked by the algorithm, therefore, is reduced. A peculiar feature of these orbits is

the angle of 60◦ between the radial direction and the projection of the orbit on the

radial - cross-track plane, as visible in Figure 6.10.

Figure 6.9: Circular Safety Ellipse Example in Hill frame (in meters).

Figure 6.10: Circular Safety Ellipse Example: Radial - Cross-track plane (in meters).
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6.3.2 Walking Safety Ellipse

To observe the target exploiting a natural motion, it is possible to use another WSE

that is closer to the target with respect to the previous one. For this second case

the same considerations of the first one apply, and only the ranges of parameters will

be different: these will be set to ensure smaller dimensions to the spiraling motion

and thus allowing a closer observation, as one can see looking at Table 6.8. The cost

function, containing the same contributions as the first case, will not be reported.

xmax [60÷ 70] m

ẏc [−0.003÷ 0.003] m/s

∆y [30÷ 60] m

zmax [0÷ 60] m

ψ0 [0÷ 2π]

ϕ0 [0÷ 2π]

∆tTransf [0÷ 0.5 Ttarg]

Table 6.8: Inner Walking Safety Ellipse ranges.

Example of an inner Walking Safety Ellipse

As done for the previous subsection, an example is given in the following. The geometric

parameters are listed in Table 6.9.

xmax 69.99 m

ẏc −0.003m/s

∆y 30.03 m

zmax 59.97 m

ψ0 4.9140

ϕ0 3.3371

∆tTransf 0.4117 Ttarg

Table 6.9: Inner Walking Safety Ellipse parameters.
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The main results are presented in Table 6.10. The propagation on the WSE is done in

such a way to cover 2 times the initial in-track distance along the in-track axis.

xto transf2 [143.21,−252.10, 87.25] m

xWSE,inserction [−66.72, 48.75,−11.65] m

∆Vto transf2 0.1222 m/s

∆VWSE,inserction 0.1565 m/s

∆tWSE 5h 38m 45.02s

Table 6.10: Main parameters of the trajectory to the inner WSE.

Figure 6.11: Inner WSE Example in Hill frame (in meters).

6.3.3 Waypoints

The last observation method analysed, unlike the others already presented, requires

a higher cost in terms of propellant: maintaining a fixed position with respect to the

target, if outside the in-track line (or V-bar), implies the use of the propulsion system,

as explained in Chapter 3.

On the other hand, this method has the advantage of moving in the vicinity of the
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target as needed, allowing an observation from multiple angles through a vision system

and therefore improving the quality of information acquired on it. Among the forced

motions mentioned in Chapter 3, only the observation from waypoint, arranged in an

octahedron, considered more interesting and complete, will be analysed.

The waypoints are the vertices of an octahedron, rotated in such a way that each

point lies on the axes of the Hill’s frame, as shown in Figure 3.7. The distance of these

waypoints from the target is equal to the radius of the KOS multiplied by the usual

safety margin of 1.2 and by
√
2, to ensure that the KOS is entirely contained in the

volume of the octahedron.

Genetic Algorithms for Waypoints

The algorithm is used 6 times, that is, before arriving to each of the 6 waypoints. As

for the implementation, limits are placed only on the transfer time needed to reach the

next waypoint:

∆tTransf ∈ [300s÷ 0.7 Ttarg]

The cost function, as in other cases, is imposed as follows:

FitnessV alue = ∆Vtot +W1 +W2

where the additive terms are explained in the following:

• ∆Vtot: sum of two delta-v, the first one to take the transfer trajectory between

consequent waypoints, the second one to stop at the next waypoint;

• W1: cost on the minimum distance from the target, dmin, during the transfer

trajectory between waypoints, imposed in the following way:

W1 = eγRKOS−dmin − 1

where parameters have the same meaning of previous examples;

• W2: cost on the maximum distance from the target, dmax, during the transfer

trajectory between waypoints, to guarantee that the chaser is kept in the target

vicinity. W2 is imposed in the following way:

W2 = edmax−D − 1, with D = 75m
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D is set equal to half the X-semiaxe of the medium Keep-Out Ellipse.

Example of an Octahedron structure

Before showing the results, the following aspect must be emphasized: the optimal

sequence of waypoints used was found by attempts, imposing the passage through a

given point a single time.

The time spent on each waypoint was set as a reasonable fraction of the period, to

ensure sufficient time for the vision system to acquire information.

Main results are given in Tables 6.11, 6.13 and 6.12.

xto WP1 [−117.54, 108.74,−65.00] m

xWP1 [−84.85, 0, 0] m

xWP2 [0, 84.85, 0] m

xWP3 [84.85, 0, 0] m

xWP4 [0, 0, 84.85] m

xWP5 [0,−84.85, 0] m

xWP6 [0, 0,−84.85] m

Table 6.11: Waypoints trajectory: principal points.

∆tto WP1 0h 42m 7.61s

∆tWP1−WP2 0h 34m 47.69s

∆tWP2−WP3 0h 34m 47.69s

∆tWP3−WP4 0h 25m 29.49s

∆tWP4−WP5 0h 28m 6.69s

∆tWP5−WP6 0h 28m 6.69s

∆tkeep 1/10 Ttarg

Table 6.12: Waypoints trajectory: propagation times.
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∆Vto WP1 0.1047 m/s

∆Vstop at WP1 0.2565 m/s

∆Vto WP2 0.1586 m/s

∆Vstop at WP2 0.0290 m/s

∆Vto WP3 0.0290 m/s

∆Vstop at WP3 0.1586 m/s

∆Vto WP4 0.1891 m/s

∆Vstop at WP4 0.0579 m/s

∆Vto WP5 0.0562 m/s

∆Vstop at WP5 0.1061 m/s

∆Vto WP6 0.1061 m/s

∆Vstop at WP6 0.0562 m/s

∆VTOT 1.3081 m/s

Table 6.13: Waypoints trajectory: Delta-v.

Note that ∆VTOT in Table 6.13 only takes into account the contributions to ar-

rive/start from a given waypoint: station-keeping delta-vs, even if small, are not in-

cluded nor calculated, since this phase only focuses on the computation of the reference

trajectory. In the next section, however, this aspect will be analysed using an MPC.

As done for the previous cases, 3D plots are provided to visualize this strategy (Figures

6.12, 6.13 and 6.14).

Figure 6.12: Octahedron structure Example: In-track - Cross-track plane (in meters).
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Figure 6.13: Octahedron structure Example in Hill frame (in meters).

Figure 6.14: Octahedron structure Example: Particular (in meters).

109



CHAPTER 6. NEAR-FIELD RENDEZVOUS STUDY

6.4 Control on Observation Trajectories

In this section the tracking of the trajectories previously created, performed by the

spacecraft simulator presented in Chapter 5, will be shown, at least in some details.

Since these are mostly natural trajectories with some impulsive delta-v, what is in-

teresting is the area straddling a delta-v, or, eventually, how the system behaves at a

waypoint. With regard to the natural propagations between one delta-v and the next

one, therefore, only some final considerations will be made.

6.4.1 Set of Simulator subsystems

Before presenting what promised, however, it is necessary to give some details of the

simulator settings to successively perform the simulations.

Simulation Parameters

As first, the simulation parameters used are set in Table 6.14.

dTsimul 1 s

Relative tolerance (ode45) 10−7

Absolute tolerance (ode45) 10−7

Table 6.14: Simulation parameters.

Given the time required for the observation phase, a simulation time step of 1s

allows a sufficiently accurate description. The initial and final times will be discussed

and provided in the results subsection.

Thrusters

Since the maneuvers to be performed are not onerous, the propulsion system explained

in Subsection 5.2.2 is not used entirely: the maximum translational thrust set along

any body direction is 200N , so half of the total deliverable.

Since small values of the control force are required, smaller than the minimum provided

by the 200N engine, that is (Fmax τ)/dtsimul = (200 0.028)/1 = 5.6N , the simulator is
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set in such a way to switch thrusters under a certain thrust value, using two attitude

control thrusters instead of the larger engine.

To sum up, this is the range of thrusts that can be delivered:

FB
calc ∈ [0.2, 200]N

As already explained, not having the matrix RB
O, it would not be possible to directly

impose these body constraints on the forces calculated by the control system, being

instead in the LVLH frame: for simplicity, therefore, it is assumed that the body

system is always aligned with the orbital system. In addition to this, as explained

in Subsection 5.2.2, a maximum control action has been defined in order to protect

against any problems (Table 6.16).

MPC controller

The main parameters of the Model Predictive Controller, resulting from tuning, are

listed in Table 6.15. The control action is calculated and delivered every simulation

time-step. Constraints are presented in Table 6.16. The value of 0.0178 m/s2 for the

acceleration is found through the condition in Eqn 5.6, already discussed. Finally, the

weights are presented in Table 6.17, where n = 0.00106088 rad/s2 is the orbital mean

motion. Only the diagonal of R, S and Q matrices presented in Chapter 4 is given.

Sample Time Ts 1 s

Control Horizon m 15

Prediction Horizon p 65

Table 6.15: MPC parameters.

umax 0.0178 [1, 1, 1] m/s2

umin −0.0178 [1, 1, 1] m/s2

∆umax 0.0178 [1, 1, 1] m/s2

∆umin −0.0178 [1, 1, 1] m/s2

Table 6.16: MPC constraints.
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diag[Q] [1, 1, 1, 1, 1, 1]

diag[R] 1e−9/n2 [1, 1, 1]

diag[S] 5e−4/n2 [1, 1, 1]

Table 6.17: MPC weights.

Noise and Kalman Filter

As already mentioned in the previous chapter, the state vector contains relative position

and velocity, but only the position is measured. The errors of the sensors, not being

present, were simulated by adding a random normal distribution on the real values:

ỹk = Cx̂−k−1 + [σxa1, σya2, σza3]

where a1, a2, a3 are random values with normal distribution and σ = σx = σy = σz =

0.7m is the standard deviation, reasonably assumed considering sensors accuracies and

distances from the target involved.

As explained in Subsection 4.2.3, this measure, ỹk, then contributes to update the state

estimate that leads to the prediction step in the Kalman filter.

To initialize the Kalman filter, the initial estimate x̂−0 and the state estimate error

covariance matrix P−
0 must be provided. Assuming Gaussian distribution, also the

matrices of covariance RKF for measurement noise and QKF for process noise have

to be defined, tuning them to make the filter converge. Table 6.18 groups all these

matrices, while the initial estimate will be provided in the following, when the initial

state will be already defined.

P−
0 diag [[4[1, 1, 1], 10−3[1, 1, 1]]]

QKF diag [10−7 [1, 1, 1, 1, 1, 1]]

RKF diag [30σ2 [1, 1, 1]]

Table 6.18: Kalman filter specifics.

Note that the matrix of covariance RKF of measurement noise is built using σ, as

it should be.
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6.4.2 Control on the Observation trajectory

As specified at the beginning of the section, it will not be shown how the simulator

performs along the entire trajectory, but only in some specific cases, that is, straddling

an impulsive delta-v or on a waypoint.

Behaviour at any ∆V

The maneuver examined is that of insertion in the Safety Ellipse, highlighted in Figure

6.15. The simulation time interval has not only to include the impulsive delta-v, but

Figure 6.15: Safety Ellipse insertion point (in meters).

the beginning of this interval has to be chosen according to two factors: the prediction

horizon and the time it takes the Kalman filter to converge. As for the first, to test

the peculiarity and bounty of the Model Predictive Controller correctly, the impulsive

delta-v must be "seen" at the end of the prediction horizon, or starting even before,

outside of it. In particular, considering the parameters of the Table 6.15, it will be

enough to start at least 65 s before the impulsive delta-v is actuated and simulate

the execution of the maneuver up to a final time far enough from the instant of the

impulsive delta-v itself. In any case, in order to clearly distinguish the control actions
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due to the delta-v and those due to the settling of the filter, it was chosen to start

almost 5 prediction horizons before.

Table 6.19 shows the main parameters to initialize the simulation:

x0 [[−56.568,−113.358, 68.3947] m, [0.0014, 0.1584,−0.0693] m/s]

x̂−
0 [[−56.473,−113.026, 68.093] m, [0.0013, 0.1582,−0.0692] m/s]

∆Tsimul 449 s

Table 6.19: Main parameters for delta-v to the Safety Ellipse.

Main results are presented and discussed in the following. A comparison with the

case of perfect measurements (that is, there’s no need of the Kalman filter) is given.

Looking at Figure 6.17, it’s clear that the filter is acting: the curves are smooth, with

no rapid oscillations. After some initial, large fluctuations due to the filter convergence,

the shapes of the real curve and the curve with no measurement errors become similar.

This fact can be seen also for velocities or forces, especially with regard to the latter,

as one can see in Figure 6.20.

It is emphasized, however, that the reference trajectory is ideal and cannot be

followed perfectly by a real system, being imposed an instantaneous change of velocity

along a continuous position profile.
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Figure 6.16: Delta-v to Ellipse: relative position.

Figure 6.17: Delta-v to Ellipse: errors on relative position.
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Figure 6.18: Delta-v to Ellipse: relative velocity.

Figure 6.19: Delta-v to Ellipse: errors on relative velocity.
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Figure 6.20: Delta-v to Ellipse: forces in Hill frame.

Especially in Figure 6.18, it is possible to appreciate how the controller begins to

act well before the instant of the impulsive ∆V , confirming the main feature of the

MPC, namely the ability to provide control actions calibrated on a time horizon that

includes several control time-steps.

With regard to the actuated forces, given in Hill’s frame (which, by assumption,

coincides with the body reference), it is necessary to specify that the initial forces,

which are irregular due to the initialization of the filter, and the forces due to the

maneuver are comparable due to the exiguity of the latter, as visible in Table 6.20.

Figures 6.21 and 6.22 prove the convergence of the filter: the difference between the

estimated value and the real one, both for the position and for the velocity, is always

confined within the 3σ dispersion and shows a slight decrease over time.
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Figure 6.21: Delta-v to Ellipse: Kalman filter on relative position [m].

Figure 6.22: Delta-v to Ellipse: Kalman filter on relative velocity [m/s].

Finally, differences in consumption are listed in Table 6.20.
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∆Vimpulse 0.0976 m/s

∆Vperfect meas 0.1691 m/s

∆Vreal 0.2877 m/s

mprop 0.8384 kg

Table 6.20: ∆Vtot comparison for Ellipse insertion.

Consider that ∆Vreal takes into account the initial phase of filter settling, so the

difference between this value and the one without measurement errors is mainly due

to this fact.

Behaviour at waypoint

Another interesting example is the relative position-keeping at a waypoint, with no

relative velocity. Considering Figure 6.13, the waypoint examined is the first one. The

calculated impulsive maneuvers are two, the first one to stop at the waypoint and the

second one to get away from it. In the middle, as already specified, the motion will be

forced, so the system will have to compensate for the gravity gradients dictated by the

HCW equations.

The considerations made for the previous case regarding the prediction horizon and

the convergence of the filter also apply to this scenario, so the simulation will start

sufficiently before reaching the waypoint.

Table 6.21 shows the main parameters to initialize the simulation.

x0 [[−35.5889,−15.6675,−46.2954] m, [−0.1472, 0.0009, 0.1473] m/s]

x̂−
0 [[−35.4977,−15.6137,−46.2628] m, [−0.1466, 0.0009, 0.1466] m/s]

∆Tsimul 1000 s

Table 6.21: Main parameters for delta-v to the first waypoint.

The main results of kinematics and dynamics are presented in figures from 6.23

to 6.27, while the graphs concerning the convergence of the filter are omitted due
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to redundancy, being very similar to those of the previous case. The two impulsive

maneuvers are marked with vertical dotted lines.

Since the simulation time is longer and delta-vs are greater than that of the ellipse

insertion, it is possible to notice, more than in the previous case, how the oscillations

due to the convergence of the filter are less visible and occupy a quite limited initial

time range.

Figure 6.23: Delta-v at waypoint: relative position.
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Figure 6.24: Delta-v at waypoint: errors on relative position.

Figure 6.25: Delta-v at waypoint: relative velocity.
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Figure 6.26: Delta-v at waypoint: errors on relative velocity.

Figure 6.27: Delta-v at waypoint: forces in Hill frame.

As visible in the first graph of Figure 6.27 between the two impulsive maneuvers,

having the waypoint only a radial offset, it is comprehensible, considering the HCW

122



CHAPTER 6. NEAR-FIELD RENDEZVOUS STUDY

equations of dynamics (Eqn 2.2), that the control action is delivered mainly in the

radial direction to compensate for the gradient.

As for the previous case, a comparison between impulsive, perfect measurements and

real consumptions are listed in Table 6.22. ∆Vimpulse considers both the maneuver

contributes.

∆Vimpulse 0.4151 m/s

∆Vperfect meas 0.8518 m/s

∆Vreal 1.0083 m/s

mprop 2.9390 kg

Table 6.22: ∆Vtot comparison for waypoint.

Further considerations

Regarding natural evolutions along the global trajectory, for example along the walking

safety ellipse, the control strategy to be used must be different. To take advantage of

the naturalness of the orbit, what should be done is to loosen the position constraints

for the tracking of the trajectory and perform sporadic and impulsive delta-vs. If this

were not the case, the continuous correction supplied by actuators, even just trying to

compensate the measurement noise, would lead to a consumption of propellant even

where it could be saved, making the use of planned natural trajectories useless.

This case, however, was not developed in this thesis.
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Chapter 7

Inner Proximity Rendezvous Study

Once the observation has been carried out, the last phase of approaching within

the inner keep-out volume can be initialized. This is the most complicated, energy-

demanding and most challenging phase for the GNC system, for the reasons already

discussed in Chapter 3. The strategy adopted is the one described in the same chapter:

the maneuver is divided into two minor phases, a first free-flying phase to get within

the cone of approach, and a second constrained phase to reach the last holding point

moving within the same cone.

Remember that, unlike the previous phase, as explained in Chapter 5, to manage

the attitude and several non-linear constraints, the controller used is the NLMPC and

the filter is an EKF: their specifications will be provided for both phases.

Before analysing the two phases separately, it is useful to provide some global informa-

tion, valid for both maneuvers.

Main geometric parameters

Figure 7.1 shows the dimensions of the main geometric structures within the 50m radius

sphere. The presence of an intermediate 25m sphere represents the collision avoidance

constraint for the first free-flying phase. The dimensions of the boxes at the holding

points are reasonably set regarding the position uncertainties, which depend on the

involved distances from the target.

The approaching cone half-angle and the size of the final shrinkage have been chosen
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in agreement with studies in the literature and considering the size of the chaser.

Figure 7.1: Principal dimensions of geometric structures.

Target

The grasping point identified on the target is well defined and coincides with a ring

encircling the base of Landsat7 (Figure 5.4). Even if the grasping phase has not been

simulated, it is necessary to identify the position of the capture point, with an offset

of a few meters along the capture body axis, assuming the action of robotic arms.

According to this last consideration, the chosen point lies on the smaller sphere of 5m

radius centered in the target.

Figure 7.2: Capture Point.
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Remember that the model of the two satellites involved has been simplified representing

them as parallelepipeds (Figure 7.2), as reported in Chapter 5.

Another aspect to be specified, with regard to the target, is its tumbling motion, as

stated at the end of Chapter 3: it is assumed that Landsat7 is already found in a state

of flat spin, or a rotation around the axis of greater inertia, without contemplating any

disturbing actions, considering them as negligible also because of the total duration of

the maneuver (a few minutes).

Figure 7.3: Tumbling motion of the target satellite: flat spin.

Being the target parallelepiped square based, the axes with greater inertia coincide

with the two body principal axes xB and yB. Being indifferent which of the two axes

is chosen, in the simulations the angular velocity of the target will be aligned with the

yB axis. As regards the magnitude of the angular velocity modulus, the rendezvous

maneuvers will be studied for three target angular velocities, as reported in Table 7.1:

ω
(B)
BI,1 [0, 0.5, 0] ◦/s

ω
(B)
BI,2 [0, 1.0, 0] ◦/s

ω
(B)
BI,3 [0, 1.5, 0] ◦/s

Table 7.1: Considered angular velocities between body and inertial frames.
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These values were chosen based on the typical motion of end-of-life satellites, ex-

cluding very low (below 0.1◦/s) and very high angular velocities (4−5◦/s), these latter

caused by failed three-axis stabilization.

Chaser

The side used to look at the target is the one indicated in Figure 7.4: the condition of

visibility of the target is implemented through the versor xB, considered for simplicity

as the center axis of the hypothetical vision sensor.

Figure 7.4: Field of View of the chaser.

Thrusters

As for the actuation system, in this final phase the use of thrusters is not reduced: there

are one or two 200N thrusters for translational control along each body direction, and

two or four 10N thrusters for attitude control around each main body axis.

Knowing the current attitude, and therefore the matrix RB
O, it is possible to impose

limits on the forces (commanded in the LVLH reference) without making assumptions.

To sum up, the following is the range of thrusts that can be actuated:

Translation : FB
calc ∈ [5.6, 400]N

Attitude : FB
calc ∈ [0.2, 40]N
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where the minimum values are calculated considering the minimum opening time of

the valves in PWM. As regards attitude torques, a common distance of 1m between

the center of mass and the position of a generic attitude thruster is considered.

7.1 First free-flying phase

The first phase, as already pointed out, coincides with the achievement of the first

holding point within the approaching cone, starting outside the 50m radius sphere.

The position of this point to be reached, in the body frame, is:

posHP1 = [0, 0, 25]T m

The reference trajectory coincides with the motion of the holding point in the orbiting

reference, and this is created online at each control step, propagating the estimate of

the current position of this point throughout the prediction horizon, with the current

information about inertia and angular velocity of the target.

To study the behaviour of the NLMPC controller, for each angular velocity of the

target, six simulations were performed, each with a different initial position. These

positions, listed in Table 7.2, coincide with the face centers of a hypothetical cube

centered in the target, similarly to the octahedron concept already studied. A common

starting distance of 55m have been chosen.

Position 1 [−55, 0, 0, 0, 0, 0] m

Position 2 [55, 0, 0, 0, 0, 0] m

Position 3 [0,−55, 0, 0, 0, 0] m

Position 4 [0, 55, 0, 0, 0, 0] m

Position 5 [0, 0,−55, 0, 0, 0] m

Position 6 [0, 0, 55, 0, 0, 0] m

Table 7.2: Starting positions in LVLH frame.

As for the initial attitudes, it is assumed that the chaser starts from an orientation

that allows it to perfectly point the chaser with a face, condition that coincides with
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θ = 0◦, while for the target the initial attitude position, unaltered for all simulations,

is provided in Euler angles:

[roll, pitch, yaw] = [20, 20, 20]◦

This orientation is random: in any case, starting from different positions, it will still be

possible to distinguish favourable and unfavourable relative initial conditions looking

at the performance of the controller.

7.1.1 Set of Simulator subsystems

Before showing the main results for each angular velocity, it is necessary to provide

additional details of the simulator, as done for the near-field RVD study.

Simulation Parameters

As first, the simulation parameters used are set in Table 7.3.

dTsimul 1 s

Final time 200 s

Relative tolerance (ode45) 10−7

Absolute tolerance (ode45) 10−7

Table 7.3: Simulation parameters.

The time step simulation is the same of the previous phase: although the total

maneuvering time is indeed shorter when compared to the observation motions one, it

was preferred to keep dTsimul unchanged, due to the high computational cost required

if this parameter is lowered.

Nonlinear MPC controller

The main parameters of the nonlinear Model Predictive Controller, resulting from

tuning, are listed in Table 7.4. The control sample time is twice the simulation one:

the control action is calculated and delivered every two simulation time-steps.
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ωBI = 1.5◦/s ωBI = 1.0◦/s ωBI = 0.5◦/s

Sample Time Ts 2 s

Control Horizon m 4 4 3

Prediction Horizon p 24 24 20

Table 7.4: Nonlinear MPC parameters.

As can be noted, m and p are shorter than the MPC ones in the near-field RVD

study: the computational cost, compared to linear MPC, is considerably higher. De-

spite this, these values proved to be suitable for accomplishing the mission. For the

case of the lowest angular velocity, these values have even been slightly lowered, since

a too long predictive horizon was not necessary.

As for the cost function (and therefore weights) and the constraints, the matter is a

bit more delicate than the case with linear MPC, as explained in Chapter 5: functions

must be provided.

Cost function

Keeping in mind that the state vector has increased, although the translation and atti-

tude equations are decoupled, the cost function over the prediction horizon is common.

Beside the classical standard quadratic MPC cost function, used to weigh the relative

position error, the control action u and the control action rate ∆u (for these latter the

weights are quite zero for all simulations), another customized function can be pro-

vided. This latter is set in order to control the attitude dynamics: as already stated,

the angle between the relative position vector and the line of sight θ defined in Eqn 3.8

must be small, thinking of a vision or LIDAR system that point at the target. This

additional cost is made with the following function:

JLOS = WLOS |θ|2 (7.1)

where WLOS is another weight to be tuned. All weigh parameters are defined separately

for each angular velocity.
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Constraints

Constraints can be both linear or nonlinear. Linear constraints are imposed on control

inputs and their variation. Considering the input vector as the union of the three an-

gular accelerations αx, αy and αz and the three translational acceleration ux, uy and

uz commanded, the linear constraints on the control inputs are provided in Table 7.5.

umax

[

[0.0051, 0.0028, 0.0028] rad/s2, 0.0355 [1, 1, 1] m/s2
]

umin −
[

[0.0051, 0.0028, 0.0028] rad/s2, 0.0355 [1, 1, 1] m/s2
]

∆umax

[

[ ] , 0.0355 [1, 1, 1] m/s2
]

∆umin −
[

[ ] , 0.0355 [1, 1, 1] m/s2
]

Table 7.5: NMPC linear constraints.

Nonlinear constraints over the prediction horizon must be specified with a function,

in the form of inequalities:











x2 + y2 + z2 ≥ R2

√

v2x + v2y + v2z ≤ Vmax

As for the first one, R is set to 24.8m: a margin of 20cm is kept to allow eventual

oscillations when the holding point has been reached, in the box within the corridor.

As for the second one, Vmax is the translational velocity of the holding point to be

reached, calculated through Eqn 3.5, multiplied by a factor greater than one, to ensure

the capability to follow the reference.

For both these nonlinear constraints, a slack variable of 0.2 is set, in order to slightly

relax them, not being in the immediate proximity of the target yet.

Noise and Extended Kalman Filter

As already mentioned in Chapter 5, the state vector contains relative position and

velocity, the angular velocity between body and inertial and the quaternion, but only

the position and quaternion (through Euler angles) are measured. Also in this case, the

errors of the sensors, not being present, were simulated by adding a random normal
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distribution on the true values. The standard deviations, especially as regards the

relative position, become smaller as the chaser gets closer to the target, as it should

be. Instead, as regards the attitude sensors, this improvement is not linked to the

relative position, so the standard deviation remains quite constant.

distance from the target 55m 25m

σpos 0.1m 0.07m

σang 0.06◦ 0.05◦

Table 7.6: Standard deviations for relative positions and Euler angles.

Table 7.6 gives the standard deviations adopted at the initial and final distances:

for intermediate distances, the standard deviation varies linearly between the indicated

values, as explained in Subsection 5.2.5.

To manage these measures, in combination with the estimates of the states, an

Extended Kalman filter is used. For its initialization, the matrices Q and R must be

provided (Table 7.7), basing on process and measurement noise covariances respectively.

QEKF diag
[

10−3 [1, 1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
]

REKF diag
[

σ2
pos @55m [1, 1, 1], 10−3 [1, 1, 1, 1]

]

Table 7.7: Extended Kalman filter specifics.

Note that, while the measurement noises are provided on Euler angles, the quater-

nions are part of the measuring vector y = [x, y, z, q1, q2, q3, q4]: at each step dTsimul,

to simulate the measurement, the quaternions are transformed into Euler angles in

order to add the measurement errors, and then transformed back into quaternions to

be managed by the filter.

Alongside the EKF action, as explained in Subsection 5.2.5, some measurement

errors are imposed on the initial estimate of the holding point coordinates (with the

same uncertainty given for measures of relative position) and on the current target

angular velocity and inertia information, to simulate the real uncertainties concerning
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their knowledge. These errors are given on a percentage basis (see Table 7.8), in the

form of standard deviations:

ωreal = (1 + σω,%a) ωperfect

where a is a random value. As regard the inertia, an initial estimate is given through

an expression similar to the previous one, and this estimate is converged towards the

real value as the chaser approaches the target.

distance from the target 55m 25m

σω,% 5 1

σIn,% 0.2 0.15

Table 7.8: Standard deviations on target motion estimate.

σIn,% is very low due to this mission case: Landsat7 properties are well-known. Also

in this case, there is a linear variation between initial and final points.

7.1.2 Simulation results for the first phase

The cases are ordered according to angular velocities, in descending order. For the first

case, the one with maximum angular velocity, the weights have been kept constant to

see the behaviour of the controller only by changing the initial starting position. For

the other two cases, however, the weights have been arranged in order to arrive and

stay within the box and within the chosen final time of 200s.

Case A: 1.5◦/s

Weights used for this first case are given in Table 7.9.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

Wpos 2500 [1]3×1 2500 [1]3×1 2500 [1]3×1 2500 [1]3×1 2500 [1]3×1 2500 [1]3×1

Wu 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1

WLOS 1200 1200 1200 1200 1200 1200

Table 7.9: NLMPC weights for case A: target angular velocity of 1.5◦/s.
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As regards the maximum relative velocity, this is set as 2 times the translational

velocity of the holding point (Eqn 3.5), in the orbital reference:

Vmax = 2 × 0.6791 m/s = 1.3581 m/s

Main results are presented in figures from 7.5 to 7.10.

Figure 7.5: 3D trajectories in LVLH frame, starting from 6 different points. The yellow

cone represents the sensor FOV, the green cone is the corridor approach. The nested KOS,

starting from the outermost one, have a radius of 50m, 25m and 5m respectively. The dotted

line on the 25m radius sphere represents the trajectory of the first holding point inside the

approaching corridor.
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Figure 7.6: Relative positions and holding point reference trajectory in LVLH frame

Figure 7.7: Angle θ between LOS and relative position vector.

As can be seen in Figure 7.8, simulation 4 does not end inside the box, unlike

the others: this combination of weights, due to the angular velocity, is therefore not

136



CHAPTER 7. INNER PROXIMITY RENDEZVOUS STUDY

Figure 7.8: Distances from the holding point.

suitable to meet the requirements.

It is possible to see in Figure 7.7 an initially high value of θ for the sixth simulation:

given the initial relative position, the chaser accelerates to cancel the relative distance,

thus reaching such velocities as to imply difficulties with regard to the attitude control.

Table 7.10 summarizes the main results. Tbox represents the time it takes to stably

enter the box, with reference to Figure 7.8.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

Tbox [s] 145 130 105 − 104 97

∆vtransl [m/s] 11.7315 8.2821 9.6815 11.0378 9.0155 9.6123

mtransl
prop [kg] 34.19 24.14 28.22 32.17 26.28 28.01

matt
prop [kg] 2.39 2.64 3.66 3.11 1.52 3.66

mTOT
prop [kg] 36.58 26.78 31.88 35.28 27.79 31.67

Table 7.10: Principal results for case A: target angular velocity of 1.5◦/s.

Before considering the second case, two considerations about how the constraints

and the EKF filter work are given: in Figure 7.9, as one can see, the collision avoidance
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requirement is met, while in Figure 7.10 a slight decrease in the difference between

estimates and measures, proving the convergence of the filter, can be noted.

Figure 7.9: Distances from the target.

Figure 7.10: EKF on position: differences between estimated and measured values.
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Case B: 1.0◦/s

Weights used are given in Table 7.11.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

Wpos 2500 [1]3×1 2800 [1]3×1 1500 [1]3×1 2500 [1]3×1 1500 [1]3×1 800 [1]3×1

Wu 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1 2600 [1]6×1

WLOS 1200 2000 1500 1200 1600 1500

Table 7.11: NLMPC weights for case B: target angular velocity of 1.0◦/s.

As specified, in this second case the weights have been adapted to ensure the per-

manence inside the box (Figure 7.14). As for the maximum relative velocity, this is set

as 2 times the translational velocity of the holding point (Eqn 3.5):

Vmax = 2 × 0.4609 m/s = 0.9219 m/s

Main results are presented in figures from 7.11 to 7.14.

Figure 7.11: 3D trajectories in LVLH frame (see Figure 7.5 for a complete description).
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Figure 7.12: Relative positions and holding point reference trajectory in LVLH frame.

Figure 7.13: Angle θ between LOS and relative position vector.
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Figure 7.14: Distances from the holding point.

Looking at Figure 7.13, the same considerations made before for the sixth simula-

tion can be made now for the fifth: an excessive chaser translational speed results in

higher θ, and therefore a greater use of attitude thrusters (see matt
prop in Table 7.12).

As for translational delta-vs, in general, it is possible to notice a decrease compared to

the first case with higher angular velocity, as it should be.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

Tbox [s] 128 61 114 78 123 90

∆vtransl [m/s] 9.1405 6.6406 7.1345 6.5385 8.4718 4.9823

mtransl
prop [kg] 26.64 19.35 20.79 19.06 24.69 14.52

matt
prop [kg] 2.43 3.11 2.99 2.15 3.96 2.02

mTOT
prop [kg] 29.07 22.47 23.79 21.21 28.65 16.54

Table 7.12: Principal results for case B: target angular velocity of 1.0◦/s.
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Case C: 0.5◦/s

Weights used for the last case are given in Table 7.13.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

Wpos 1500 [1]3×1 400 [1]3×1 1500 [1]3×1 1500 [1]3×1 400 [1]3×1 1500 [1]3×1

Wu 2600 [1]6×1 2600 [1]6×1 2500 [1]6×1 2500 [1]6×1 2600 [1]6×1 2600 [1]6×1

WLOS 2000 1300 2000 2000 1600 2000

Table 7.13: NLMPC weights for case C: target angular velocity of 0.5◦/s.

As regards the maximum relative velocity, this is set as 3 times the translational

velocity of the holding point (Eqn 3.5). A lower maximum speed would not have allowed

to appreciate the decline in the translational delta-v required with this minor angular

velocity: the time to reach the holding point would have lengthened considerably.

Vmax = 3 × 0.2429 m/s = 0.7286 m/s

Main results are presented in figures from 7.15 to 7.18.

Figure 7.15: 3D trajectories in LVLH frame (see Figure 7.5 for a complete description).
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Figure 7.16: Relative positions and holding point reference trajectory in LVLH frame.

Figure 7.17: Angle θ between LOS and relative position vector.
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Figure 7.18: Distances from the holding point.

Finally, principal results are given in Table 7.14. What mostly influences this latter

case is the limit on the maximum achievable translational velocity: for simulation 1,

which starts from the most unfavourable point, the final time imposed is borderline.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

Tbox [s] 160 126 129 97 115 109

∆vtransl [m/s] 6.8518 5.1372 6.3837 4.7336 4.9853 5.1002

mtransl
prop [kg] 19.97 14.97 18.61 13.80 14.53 14.86

matt
prop [kg] 2.58 2.53 3.26 1.92 2.48 2.78

mTOT
prop [kg] 22.55 17.50 21.87 15.72 17.01 17.64

Table 7.14: Principal results for case C: target angular velocity of 0.5◦/s.
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Final considerations

Summing up, the following considerations can be made about this first phase.

• As the angular velocity of the target decreases, the overall maneuver becomes less

onerous in terms of propellant consumption and therefore easier to be tracked by

the system.

• Concerning the attitude control, before reaching the holding point, there is little

dependence on the angular velocity of the target, since the amount of propellant

used has only slightly decreased overall. What most influences, instead, is the

combination of the weights adopted.

• Generally, different initial positions must correspond to different weights, based

not only on the initial position, but also on the target initial attitude and the

motion – favourable or unfavourable – of the final point to be reached. The

following simulations, in any case, were performed to study the behaviour of the

controller: in reality, in fact, it is possible to wait for the best condition to start

the maneuver.
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7.2 Final constrained phase

The second and last phase coincides with the achievement of the final holding point

on the 5m radius sphere, always remaining within the approaching cone and starting

from the first box at a distance of 25m. The coordinates of the final point in the target

body reference are the following:

posHP2 = [0, 0, 5]T m

Starting from a position inside the cone, with a relative translational speed equal to

that of the first holding point, the initial orientation of the target in the LVLH frame

is quite indifferent. In any case, the same initial orientation of the previous phase was

chosen:

[roll, pitch, yaw] = [20, 20, 20]◦

As previously, the reference trajectory coincides with the motion of the 5m - holding

point in the orbiting reference, created online at each control step propagating the

estimate of the current position of this point throughout the prediction horizon and

with the current information about inertia and angular velocity of the target.

7.2.1 Set of Simulator subsystems

As for the first phase, it is necessary to define some details of the simulator.

Simulation Parameters

The simulation parameters used are listed in Table 7.15.

dTsimul 1 s

Final time 150 s

Relative tolerance (ode45) 10−7

Absolute tolerance (ode45) 10−7

Table 7.15: Simulation parameters.

146



CHAPTER 7. INNER PROXIMITY RENDEZVOUS STUDY

The simulation time step is the same of the previous phase, but the final time is

lower, being the distance to be covered shorter.

Nonlinear MPC controller

The main parameters of the nonlinear Model Predictive Controller, resulting from

tuning, are listed in Table 7.16. The values have been used for all three analysed

cases of angular velocity of the target. The control time interval is now equal to the

simulation one, to control the execution of the maneuver more accurately.

Sample Time Ts 1 s

Control Horizon m 3

Prediction Horizon p 15

Table 7.16: Nonlinear MPC parameters.

As can be noted, m and p are shorter than the ones of the previous case: the com-

putational cost, due to the additional constraints, is higher than before. Despite this,

the selected values have led to satisfactory results.

Cost function

This time, the components added to the quadratic cost function, which controls the

relative position error and the control action u, are two. Beside the condition of the

line of sight regarding the attitude, already expressed in the previous phase, an ad-

ditional weight has been included on the distance from the capture axis during the

approach: by calling ϵ the 3× 1 error-vector between the current relative position and

its respective projection on the capture axis, the cost term can be written as follows:

JCA = ϵT diag(WCA) ϵ

where diag(WCA) is a 3 × 3 diagonal weight matrix. This term allows the chaser

to approach along the capture axis, helping to comply with the constraint on the

approaching cone. All the weights used are given below, being unchanged for the three

simulations.
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Wpos

200 [1]3×1 for d ≥ 7m

800 [1]3×1 for d < 7m

Wu 3000 [1]6×1

WLOS 800

WCA

Linear variation:

5000[1]3×1 at d = 25m→ 800[1]3×1 at d = 5m

Table 7.17: NLMPC weights for the last phase. d represents the distance from the target.

Constraints

The linear constraints on the input vector are the same as in the first phase, expressed

in Table 7.5. Beside the nonlinear constraints already presented, another one, namely

the constraint for the chaser to remain inside the approaching corridor, is implemented.

All the nonlinear constraints are listed below.







































































x2 + y2 + z2 ≥ R2

√

v2x + v2y + v2z ≤ Vmax






































xB − xoff −m(zB − 5) ≤ 0

−xB − xoff −m(zB − 5) ≤ 0

yB − yoff −m(zB − 5) ≤ 0

−yB − yoff −m(zB − 5) ≤ 0

R is set to 4.9m: as done for the previous case, a margin of 10cm is kept to allow

eventual oscillations when the final holding point has been reached.

As for the second constraint, Vmax is calculated as the translational velocity of the final

holding point to be reached, using Eqn 3.5, multiplied by a factor that varies linearly

from 5 at a relative distance d = 25m to 2 at d = 5m, to control the approach to the

target. This constraint, as regards the case with ωBI = 0.5◦/s, is set as the case with

ωBI = 1.0◦/s: limiting the translational speed too much would not have allowed to

reach the holding point in the required time (150s) and, above all, the delta-v would

have been greater.
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As for the last group of constraints, m = tan 15◦ and xoff = yoff = 1.5m is half the

side of the cone shrinkage shown in Figure 7.1. These conditions are nonlinear because

they are referred to the body frame, thus implying a rotation during the calculations.

All these nonlinear constraints are set as hard constraints.

Noise and Extended Kalman Filter

All the considerations made for the previous phase also apply in this second phase:

therefore, the standard deviations with regard to the measurements of relative position

and attitude are directly provided (Table 7.18).

distance from the target 25m 5m

σpos 0.07m 0.01m

σang 0.05◦ 0.05◦

Table 7.18: Standard deviations for relative positions and Euler angles.

As for the Extended Kalman filter, instead, the matrices Q and R provided in Table

7.19.

QEKF diag
[

10−2 [1, 1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
]

REKF diag
[

σ2
pos @25m [1, 1, 1], 10−3 [1, 1, 1, 1]

]

Table 7.19: Extended Kalman filter specifics.

Approaching the target, the measurements provide a better estimation of the rel-

ative pose: it is recommended, therefore, to rely more on the measuring system than

the process (the values of the Q matrix have increased by an order of magnitude).

Finally, as regards the estimation of the motion of the target, the values reported in

Table 7.20 were used, always according to a linear variation.
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distance from the target 25m 5m

σω,% 1 0.5

σIn,% 0.15 0.10

Table 7.20: Standard deviations on target motion estimate.

7.2.2 Simulation results for the final phase

This section provides results for all three angular velocities. Before showing the compar-

ison between the three cases, to give a global view of the problem, two three-dimensional

plots, in the orbiting system and in the body system, are provided in Figure 7.19 and

7.20 respectively. These plots are referred to the case with maximum angular velocity.

Figure 7.21, for the same case, demonstrates the action of the EKF, showing how the

difference between estimates and measures, with regard to relative position, decreases

over time.

Figure 7.19: 3D plot of the approaching trajectory followed by the chaser for ωBI = 1.5◦,

in LVLH frame.
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Figure 7.20: 3D plot of the approaching trajectory followed by the chaser for ωBI = 1.5◦,

in body frame.

Figure 7.21: EKF on position: differences between estimated and measured values.
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A comparison between the three cases is given. Figures 7.22, 7.23 and 7.24 show

the approaching trajectory in the body frame.

Figure 7.22: Approaching trajectories: xB-yB plane.

Figure 7.23: Approaching trajectories: zB-xB plane.
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Figure 7.24: Approaching trajectories: zB-yB plane.

The collision avoidance constraint, here set as hard, is respected during the approach,

as Figure 7.25 shows.

Figure 7.25: Distances from the target.
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Figure 7.26: Distances from the holding point.

Figure 7.27: Angle θ between LOS and relative position vector.
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Figure 7.28: Translational velocities referred to the body frame.

Finally, the main results are listed in Table 7.21. It is possible to notice, as the

rotation velocity of the target decreases, a reduction in the energy required, for both

translation and rotation. For the latter, in particular, it is possible to notice how the

weights found allow a very satisfactory control, looking at the profiles of the angle θ in

Figure 7.27.

As for the velocities, it is possible to notice in Figure 7.28 and in Table 7.21 how at

the entrance of the box the approaching velocity Vbox is around 0.05m/s for all cases,

in accordance with the typical values for this RVD problem[43], considering the very

close distance from the target.

Since the constraints on the translational velocity are the same for 0.5◦/s and 1.0◦/s,

it is clear that the time required to reach the box is shorter for the slower angular veloc-

ity case. The constraints on translational velocities, therefore, mainly dictate this time

Tbox. In any case, as shown in Figure 7.26, all the three simulations lead stably within

the final region, where the capture phase through a robotic arm can be initialized.
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ωBI = 1.5◦/s ωBI = 1.0◦/s ωBI = 0.5◦/s

Tbox [s] 105 120 83

Vbox [m/s] 0.0606 0.0568 0.0544

∆vtransl [m/s] 2.5693 2.0634 1.4134

mtransl
prop [kg] 7.49 6.01 4.12

matt
prop [kg] 0.82 0.76 0.68

mTOT
prop [kg] 8.31 6.77 4.80

Table 7.21: Results for the constrained phase.
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Conclusions

The aim of this thesis consists in the identification of an approach strategy for an

Autonomous Rendezvous with a non-cooperative satellite, with trajectory planning

and subsequent control. Even if the case study considered belongs to the on-orbit

servicing theme and leads to a final capture with a robotic arm, the strategy identified

does not preclude its application on other AR&D/C missions with different purposes

or methods of capture. Since the approach is wide-ranging and thus multifaceted, the

decision was to divide the trajectory into three phases, identifying three nested keep-

out volumes around the target of gradually decreasing dimensions. Focusing mainly

on Rendezvous and Proximity Operations, only the last two phases closer to the target

have been analysed. The main achievements of the study are summarized below, with

some considerations.

1. In the observation phase of the target, the typical relative motions, natural or

forced, have been identified to conduct an inspection of the target exploiting the

geometry of the orbits (HCW equations), minimizing the total delta-v required

through genetic algorithms. In addition to this requirement on delta-v, two

further constraints have been considered inside these algorithms: the execution

time of the maneuver and safety, through the imposition of keep-out zones.

2. Assuming to chase the trajectory with a spacecraft simulator, the crucial points

of the reference trajectory have been studied: an impulsive maneuver and a

maintenance of an unnatural relative position. The Model Predictive Controller,
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coupled with a Kalman filter, has proven to be a suitable and efficient tool,

especially thanks to its predictive and constraint handling capabilities: the delta-

v obtained do not differ particularly from the case of impulsive and ideal delta-v.

3. Regarding the inner proximity RVD phase, breaching the last KOS, a method

of approach with a non-cooperative and tumbling target has been identified, by

using another Model Predictive Controller, this time nonlinear. Taking advantage

from the possibility of creating a reference trajectory from the current estimates

of the target poses and managing the presence of multiple and even nonlinear

constraints, the predictive controller, paired with an Extended Kalman filter,

allowed to come up with a solution of the problem and to complete the rendezvous

maneuver inside the final berthing box, with very good performance in terms of

total delta-v consumption (around 10m/s for the worst case of target angular

velocity) and maneuvering time (5/6 minutes starting from a distance of 55m

from the target).

The computational cost that a nonlinear MPC requires is higher when compared to

traditional control methods, especially when it needs to handle several nonlinear or

time-varing constraints. The use of the proposed controller requires an on-board com-

puter that lives up to these calculations. However, the key properties of handling the

constraints, also related to the safety of the maneuver, and managing the behaviour

of the system over a sufficiently wide predictive horizon made it preferable to other

control methods.

Beyond the results obtained, which confirmed the validity and robustness of the

proposed approaches, it is necessary to denote some possible improvements to the

performed study. Some of these are listed below.

• Employment of a more accurate simulation environment: non-circular target or-

bits, orbital perturbations due to the Earth’s gravitational field or to the residual

air (even if irrelevant), or torques due to the magnetic field or gravitational gra-

dient.

• Study of the control method for pursuing natural relative trajectories, such as
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the Walking Safety Ellipse (briefly mentioned at the end of Subsection 6.4.2).

• Prediction and study of collision avoidance maneuvers, following a possible on-

board malfunctioning or any missed burns, and consideration of the lighting

requirement, with the presence of eclipses, to carry out the rendezvous.

• Use of real data regarding relative sensors, coming from an online or real (thinking

of a laboratory test) simulation of an approach maneuver to a rotating object.

Finally, a possible final development consists in the implementation and testing of the

adopted control strategy using two satellite mock-ups that move on a frictionless testing

table, recreating in a simplified but representative way the rendezvous environment

between a controlled chaser and a non-cooperative satellite.
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