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Abstract

Phonocardiograms (PCGs) are recordings of the sounds and murmurs made
by the heart detected through specialized microphones placed on a patient’s
thorax. Alongside electrocardiograms (ECGs), they are a tool used in a
medical environment to assess patients’ conditions relative to their cardiac
rhythm. Unlike the latter, in which, during each cardiac cycle, only one
main peak can be detected within the voltage-over-time graph (the so called
R wave), in PCGs two distinct peaks can be observed. These peaks are as-
sociated to the first and second heart sound (S1 and S2), generated by the
closure of specific valves within the heart. In the following we shall refer to
R waves and S1, S2 sounds as ‘cardiac events’. In order to extrapolate the
heart’s activity from ECGs or PCGs, one needs to detect all cardiac events
within the signal of choice. When it comes to ECGs, this process is rela-
tively straightforward since only one R wave ought to be identified during
each cycle. Moreover, such signals usually contain very low levels of noise,
mainly caused by powerline interference, which can be easily removed using
notch filters. On the other hand, event detection within PCGs is a quite
challenging task. Indeed, not only do we need to detect two sounds each cy-
cle, but also the signal itself is often severely contaminated by many different
types of noise, such as the patient’s movement, ambient sources, microphone
movement or other body-related murmurs. As a consequence, the analysis
of PCGs is often carried out with the aid of a synchronous ECG signal and
requires a careful denoising of the audio file through digital filtering and sig-
nal envelope estimation.
The objective of the dissertation was to develop a method of detecting car-
diac events within PCG signals that does not rely on the knowledge of ECGs.
In particular, we achieved our goal by leveraging the modelling and learning
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capabilities of Nonnegative Matrix Factorization (NMF) applied to the spec-
trogram of PCGs.

In Chapter 1, after providing a brief summary on the qualitative and quan-
titative properties of both ECGs and PCGs, we discuss how the techniques
devised in the later chapters differ from the more traditional ones employed
for cardiac event detection within PCGs.

In Chapter 2 we introduce the mathematical foundations of Nonnegative
Matrix Factorization. In particular, we present β−divergences, analyze their
main properties, and show how the most simple NMF optimization problem
can be modified to induce certain regularizing features on the factors. Sub-
sequently, we formulate algorithms to solve the NMF problem based on the
majorization-minimization framework and focus our attention towards mul-
tiplicative update rules for the factors. Lastly, we provide some convergence
results for the aforementioned algorithms.

In Chapter 3 we analyze the traditional ways of detecting cardiac events
within synchronous pairs of ECGs and PCGs. This required the introduction
of particular families of digital filters, namely notch, low-pass and zero-phase,
as well as the general structure for a Window Search algorithm. We then
start working out the preliminary details about our NMF-based approach.
In particular, we start by fitting the parameters of the backbone algorithms
to the PCG dataset. Lastly, we conduct a thorough study on the way the
NMF constructs basis functions and how the latter are affected by the noise
present in PCGs. This study led to a database-wide analysis of the time-
frequency structure of heart sounds.

In Chapter 4 we start devising a NMF-based heart rate detection algorithm
based on the information gathered in the previous chapter. In particular,
we give emphasis to PCG denoising and develop multiple routines. Among
the spectrogram-based routines, we devise the Norm Clipping (NC) and
Weighted Time Compression (WTC) algorithms. Moreover, we discuss how
a sparse variant of the NMF algorithm can help producing cleaner nonnega-
tive factors. Among the signal-based routines, on the other hand, we devise
the Localized Median Filter (LMF) and the NMF Adaptive Noise Canceler
(NMF-ANC) algorithm. The NMF-ANC, in particular, is based on Adap-
tive Noise Cancellation, and is able to denoise the PCG by exploiting the
information provided within the nonnegative factors. More precisely, from
the latter the algorithm is able to generate a reference for the noise present
within the PCG and thus uses it to eliminate all the correlated components.
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In Chapter 5 we finalize the remaining details of the detection algorithm by
describing how the previously developed routines can be used to iteratively
denoise the PCG signals.
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Chapter 1

Introduction

Continuous cardiac monitoring is a key tool employed to detect early symp-
toms of cardiovascular diseases as well as to assess the general condition of a
patient relative to their cardiac rhythm. The most widespread technique used
in a medical environment to ascertain a patient’s heart rate is the electro-
cardiogram (ECG), a recording of the heart’s electrical activity measured
through electrodes that detect changes in the muscles’ polarization following
each cardiac cycle.
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Figure 1.1: Typical electrical signal recorded during a cardiac cycle.

Without entering into the details and taking as reference Figure 1.1, during
each cardiac cycle six distinct waves can be identified in an ECG:
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• P wave: low amplitude wave that lasts around 80ms;

• Q,R and S waves: they form the QRS complex that lasts around
80-100ms and within it, the R wave usually has the largest amplitude
out of all the others;

• T wave: medium amplitude wave that lasts around 160ms;

• U wave: low amplitude (or completely absent) wave.

Given the properties of these waves, the heart rate is usually extrapolated
from an ECG by first identifying consecutive R waves and then measuring
the time elapsed between each occurrence.
Perhaps a lesser-known technique that shares the same purposes as the ECG
is the phonocardiogram (PCG), a recording of the sounds and murmurs
made by the heart detected through a specialized device, the phonocardio-
graph.
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Figure 1.2: Typical audio signal recorded by a phonocardiograph during a cardiac
cycle.

Taking as reference Figure 1.2, during each cardiac cycle four distinct heart
sounds can be identified in a PCG:

• First heart sound (S1): it is caused by the closure of the atrioven-
tricular valves at the beginning of ventricular systole and lasts around
70-150ms with a frequency content between 50-150Hz;
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• Second heart sound (S2): it is caused by the closure of the semilu-
nar valves at the beginning of ventricular diastole and lasts around
60-120ms with a frequency content between 50-200Hz;

• Third and Fourth heart sound (S3 and S4): they are rarer
sounds associated to both normal and pathologic states that last around
40-100ms with a frequency content between 50-90Hz.

As a consequence, the most common way to calculate the heart rate given
a PCG is to correctly detect consecutive same-type sounds and measure the
time elapsed between each occurrence.

From a mathematical and engineering point of view, both ECGs and PCGs
have been thoroughly studied for decades and efficient algorithms that detect
cardiac events have been developed. Most of these algorithms share the same
backbone structure: a peak-detection routine is applied to a denoised, pre-
processed input data (the latter being either an ECG voltage-over-time graph
or a PCG audio file), as we will see in more details in Chapter 3. While the
purpose of this dissertation is nothing new, namely detecting cardiac events
from a PCG, the means we intend to employ in order to achieve the former
are non-canonical. As a matter of fact we will present a Nonnegative Ma-
trix Factorization (NMF) approach that does not rely on the knowledge of a
synchronous ECG signal. In particular, we will focus our attention towards
PCG denoising and develop multiple routines specialized in addressing dif-
ferent types of noise. Most notably, we will devise a NMF-based Adaptive
Noise Canceler that fully takes advantage of the information provided within
the two nonnegative factors to generate an estimate for the noise present in
the data.
To cite a few related works, in [8] PCG signals are denoised using a NMF
approach that relies on the presence of synchronous ECGs to detect the rows
of the right factors that contain cardiac events’ activation coefficients. In [15]
the authors develop a NMF-based noise sensing procedure that requires an a
priori construction of dictionaries for both the events to be detected and the
noise present in the data. Similarly, in [4] the dictionaries for the events and
noise are used to construct time-frequency weighting masks for the nonnega-
tive input spectrogram matrix. Lastly, though with different premises, in [16]
an adaptive noise canceler similar to the one we devise in this dissertation is
used to remove ego noise from audio signals recorded by a rescue robot.
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Chapter 2

Nonnegative Matrix Factorization

Introduced in the ’90s by Paatero et al. [19] as an alternative to the estab-
lished principal component analysis, nonnegative matrix factorization has
since become known as an effective and flexible data analysis procedure. In-
deed in the 1999 paper by Lee and Seung [17] which popularized this method,
the authors highlight how the nonnegativity constraints allow the former to
both learn a set of visible variables as well as to infer the values of hidden
ones in much the same way that a neural network would: the nonnegativity
of the considered quantities is strictly related to the fact that the firing rates
of neurons cannot be negative.
In the following sections we will introduce the NMF formulation and provide
a general algorithmic scheme used to construct the nonnegative factors. Sub-
sequently we will present some specific formulations that will be employed
in the later chapters as well as mention convergence results.

2.1 General formulation

Given a nonnegative matrix X ∈ Mm×n(R+), a factorization rank r and an
error measure D(·, ·) between two matrices, the problem of computing a NMF
of X consists in solving the following constrained, nonlinear optimization
problem:

minimize D(X,WH)

subject to W ∈ Mm×r(R+)

H ∈ Mr×n(R+)

(2.1)
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In other words, we are interested in approximating X as the product of two
nonnegative matrices with respects to the chosen distance D(·, ·). Indeed, a
solution pair (W,H) of (2.1) is called approximate NMF of X since we do
not require the product WH to exactly reconstruct the given matrix.

The choice of the error measure is of crucial importance when designing a
NMF model since not only does it need to reflect known information about
the data collected in X, but also its regularity plays a significant role when
deriving optimality conditions. A similar argument can be made with re-
gards to the choice of the factorization rank. As a matter of fact, if the
factors have physical meaning then some information on r may be available
prior to the execution of numerical algorithms, otherwise one may choose the
former based on the results yielded by the latter.

2.1.1 β-divergences

As far as the error measure is concerned a noteworthy mention is the family
of β-divergences . They are a parametric family of distance measures dβ
defined on nonnegative scalars commonly used in a NMF setting as part of
the error measure:

dβ(z, y) =


z
y − log z

y − 1 if β = 0,

z log z
y − z + y if β = 1,

1
β(β−1)(z

β + (β − 1)yβ − βzyβ−1) if β ̸= 0, 1.

Dβ(·, ·) =
P
i,j

dβ(( · )ij , ( · )ij)

Some relevant properties of the β-divergences that can be inferred from Fig-
ure (2.1) below are the following:

· Convexity. The map dβ(z, y) is convex in the second argument for β ∈ [1, 2].
This implies that Dβ(X,WH) is convex in H for W fixed and vice versa,
which makes alternating optimization strategies easier to implement.

· Positive homogeneity. All β-divergences are positively homogeneous of de-
gree β, that is, they satisfy:

dβ(γz, γy) = γβdβ(z, y)
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for any γ > 0 and z, y ≥ 0. This implies that as β increases, the β-
divergences become more and more sensitive to large input values.

· Limit behaviour. For β ≤ 1 it holds limy→0 dβ(z, y) = +∞ while for y ≤ z
we notice that the β-divergences decrease as β increases. This implies that
NMF formulations with β-divergences will tend to overapproximate (resp.
underapproximate) the entries of X for β ≤ 1 (resp. β ≥ 1).
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Figure 2.1: Graphs of the β-divergences dβ(1, ·) for β ∈ {−1, 0, 1, 2, 3}.

Moreover, the following table provides the domains of dβ(z, ·) and d′β(z, ·)
depending on the values of z and β:

β ≤ 0 β ∈ (0, 1] β > 1

z = 0 ∅ R+ R+

z > 0 R++ R++ R+

β ≤ 0 β ∈ (0, 1) β ∈ [1, 2) β ≥ 2

z = 0 ∅ R++ R+ R+

z > 0 R++ R++ R++ R+

Table 2.1: Domains of dβ(z, ·) (top) and d′β(z, ·) (bottom) depending on z and β.
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From the latter we notice that the β-divergence NMF formulation for β ≤ 0
should only be used when the input matrix X is strictly positive. Simi-
larly, by choosing β ≤ 1 the resulting NMF formulation cannot approximate
strictly positive entries of X with 0, that is, if Xij > 0 then (WH)ij > 0.

Lastly, it may be useful to notice that in applications the choice of the specific
value for the parameter β often depends on the assumed statistical nature of
the data.
Indeed, given Ŵ ∈ Mm×r(R+), Ĥ ∈ Mr×n(R+) and assuming X to be an
observation of a collection of random variables eXij that depend on the de-
terministic parameters (Ŵ Ĥ)ij through the relations E[ eXij ] = (Ŵ Ĥ)ij , it is
known that an estimate on Ŵ , Ĥ can be obtained by considering the maxi-
mum likelihood estimator associated to the observation X. In this framework,
it can be proven that such estimator is the NMF solution of problem (2.1)
where D(·, ·) depends on the density distributions of eXij . More precisely ifeXij are i.i.d. and:

· eXij ∼ Gamma k, (Ŵ Ĥ)ij
k : then D = D0, also known as the Itakura-

Saito divergence;

· eXij ∼ Poisson (Ŵ Ĥ)ij : then D = D1, also known as the Kullback-
Leibler divergence;

· eXij ∼ Gaussian (Ŵ Ĥ)ij , σ : then D(·, ·) = D2(·, ·) = ∥ · − · ∥2;

· eXij ∼ Laplace (Ŵ Ĥ)ij , σ : then D(·, ·) = ∥ · − · ∥1;

· eXij ∼ Uniform (Ŵ Ĥ)ij − δ, (Ŵ Ĥ)ij + δ : then D(·, ·) = ∥ · − · ∥∞.

2.1.2 Regularization

The general NMF formulation presented in problem (2.1) is often modified in
order to impose specific regularizing properties on the factors W and H.
The reason behind the need for such additional constraints is twofold. Firstly,
the aforementioned formulation lacks identifiability: there may exist multiple
optimal solution pairs (W,H) and additional limitations on the factors could
eliminate some of them. Secondly, we may be interested in designing a NMF
model in which the factors have distinct physical or analytical interpretations:
in this case, the nonnegativity constraints might simply not suffice.
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A broader class of NMF models that is often used to address these issues is
the following:

minimize D(X,WH) + αW fW (W ) + αHfH(H)

subject to W ∈ Mm×r(R+)

H ∈ Mr×n(R+)

(2.2)

where fW , fH are regularizers that promote solutions with the desired prop-
erties and αW , αH ≥ 0 are penalty parameters. Notice however that when
only one of the two factors is regularized, i.e. αW = 0, it is good practice
to use these models with some other kind of regularization on W and vice
versa. Indeed, due to identifiability issues, if (W,H) is a solution pair then
also (γW, 1γH) is a solution pair for any γ > 0 and thus most regularizers
will actually promote the corresponding factor to approach zero while the
other will increase in norm (consider for example a regularizer fH satisfying
fH( 1γH) = O∞( 1γ )).
Let us now describe some of the major classes of regularizers:

· Sparsity-promoting. In order to promote sparse factors it is common prac-
tice to employ the sparsification properties of the 1-norm. Thus, a possible
regularizer choice is given by:

fW (W ) = ∥W∥1
fH(H) = ∥H∥1

· Smoothness-promoting. It is not uncommon in applications for the columns
of W or the rows of H to be discretizations of piecewise smooth functions.
In these cases, in order to promote such structure, one may employ the
following regularizers:

fW (W ) =
rP

k=1

m−1P
i=1

(W (i, k)−W (i+ 1, k))2

fH(H) =
rP

k=1

n−1P
i=1

(H(k, i)−H(k, i+ 1))2

· Orthogonality-promoting. To promote the columns of W or the rows of H
to overlap as little as possible, orthogonality constraints may be enforced
through the regularizers:

fW (W ) = ∥W⊤W − Ir∥22
fH(H) = ∥HH⊤ − Ir∥22
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· Minimum volume-promoting. By interpreting the columns of W as a dictio-
nary with which we are interested in reconstructing the data in the matrix
X through the convex combinations encoded in the columns of H, it makes
sense to look for factors W as close as possible to the data points. This can
be achieved by enforcing the columns of W to span small volumes. With
this in mind, one may use the regularizer:

fW (W ) = det(W⊤W )

2.2 Algorithmic approaches

The regularized NMF formulation presented in problem (2.2) in the last
section is NP-hard and, as such, all algorithms designed to tackle it follow
iterative, local optimization schemes that strive to converge to local minima
or, more generally, to stationary points.
An important class of algorithms employed in this framework is that of two-
block coordinate descent (2-BCD) methods, where the blocks of W and
H variables are optimized alternately, fixing at each iteration one of the 2
blocks. Letting F (X;W,H) be the objective function of problem (2.2), all
2-BCD methods follow the scheme presented in Algorithm (2.2) below:

Algorithm 2.2 Two-block coordinate descent scheme for problem
(2.2)
Input: A matrix X ∈ Mm×n(R+) and a factorization rank r.
Output: An approximate solution (W,H) to problem (2.2).

1: Initialize two matrices W (0) ∈ Mm×r(R+), H(0) ∈ Mr×n(R+).
2: for t = 1, 2, . . . do:

3: W (t) = updateW (X,W (t−1), H(t−1))

4: H(t) = updateH(X,W (t), H(t−1))

5: end for

where, in particular:

· updateW (X,W (t−1), H(t−1)) is either an approximate or exact 1-step solu-
tion to an iterative subroutine employed to solve:

minimize F (X;W,H(t−1))

subject to W ∈ Mm×r(R+)
(2.3)
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starting from the initial estimate W (t−1);

· updateH(X,W (t), H(t−1)) is either an approximate or exact 1-step solution
to an iterative subroutine employed to solve:

minimize F (X;W (t), H)

subject to H ∈ Mr×n(R+)
(2.4)

starting from the initial estimate H(t−1).

Moreover, if at each iteration both updateW and updateH are initialized
to the exact 1-step solution of their respective subroutines, the resulting
algorithm is called exact 2-BCD method.
Recalling the structure of the objective function F , it is not unusual for the
latter to satisfy some symmetric properties such as:

F (X;W,H) = F (X⊤;H⊤,W⊤) (2.5)

This is the case, for example, when F = Dβ or F = Dβ + αW fW + αHfH
with αW = αH and fW (·) = fH( ·⊤). When condition (2.5) is satisfied,
problems (2.3) and (2.4) become equivalent and therefore Algorithm (2.2)
can be simplified significantly since any update rule for W induces an update
rule for H and vice versa. Indeed, given updateW , step 4 of the algorithm
can be replaced by:

H(t) = updateW (X⊤, H(t−1)⊤ ,W (t)⊤)⊤

Ultimately, such symmetry in the objective function allows us to develop
only one update rule for either problem (2.3) or (2.4) instead of two distinct
update rules.

2.2.1 Majorization-minimization framework

Algorithm (2.2) relies on two iterative subroutines applied to problems (2.3)
and (2.4) to generate update rules for each factor. In this regard, majoriza-
tion - minimization (MM) schemes are a class of iterative algorithms that
can be applied to the following, more general optimization problem:

minimize f(x)

subject to x ∈ Ω
(2.6)
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Denoting x(k) ∈ Ω the current iterate, such schemes have the following two-
step structure:

1. Majorization step. Construct a majorizer of f at x(k), that is, a function
g(x(k); ·) satisfying:

(i) g(x(k);x) ≥ f(x) ∀x ∈ Ω;

(ii) g(x(k);x(k)) = f(x(k)).

2. Minimization step. Define x(k+1) ∈ argmin
x∈Ω

g(x(k);x).

The simple conditions satisfied by the majorizer g are enough to guarantee
a monotone decrease of the objective function. Indeed, it is trivial to check
that:

f(x(k+1)) ≤ g(x(k);x(k+1)) ≤ g(x(k);x(k)) = f(x(k))

As a consequence, the only hurdle in applying these schemes is constructing
a majorizer simple enough so that a global minimizer of g(x(k); ·) can be
computed in closed form at every iteration. One way of achieving this, for
example, is choosing g in the form:

g(x(k);x) =
X
i

gi(x
(k);xi)

where the gi’s are univariate functions. In this case computing a global min-
imizer of g is equivalent to working out global minimizers for every gi.

Problem (2.6), although more general than (2.3) and (2.4), does not take
into account that in our NMF setting the objective function depends also
on external parameters (the H(t−1) variables for problem (2.3) and the W (t)

variables for problem (2.4)). The majorization-minimization framework pre-
sented so far imposes no regularity on the majorizer with respects to those
parameters. As a consequence, it will be useful to introduce a more en-
compassing framework which we will refer to as smooth majorization -
minimization (SMM). Given a map f : X = Ω1 × · · · × Ωn → R where
Ωi ⊂ Rni and a current iterate (x

(k)
1 , . . . , x

(k)
n ) ∈ X , such schemes can be

applied to optimization problems in the form:

minimize f(x1, x
(k)
2 , . . . , x(k)n )

subject to x1 ∈ Ω1

(2.7)
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Much like in the MM framework, SMM schemes follow a similar two-step
structure:

1. Majorization step. Construct a smooth, uniform majorizer of f , that is, a
function g : Ω1 ×X → R satisfying:

(i) g(x, x1, . . . , xn) ≥ f(x, x2, . . . , xn) ∀x ∈ Ω1, ∀(x1, . . . , xn) ∈ X ;

(ii) g(x1, x1, . . . , xn) = f(x1, . . . , xn) ∀(x1, . . . , xn) ∈ X ;

(iii) g ∈ C(Ω1 ×X );

(iv) d • (∇xg(x1, x1, . . . , xn) − ∇x1f(x1, . . . , xn)) = 0 ∀(x1, . . . , xn) ∈ X
and ∀d ∈ Rn1 such that x1 + d ∈ Ω1.

2. Minimization step. Define x
(k+1)
1 ∈ argmin

x∈Ω1

g(x, x
(k)
1 , . . . , x

(k)
n ).

Simply put, SMM schemes require additional regularity on the majorizer.
Indeed, at the current parameter iterate, the chosen map g must be a ma-
jorizer and its partial derivatives must coincide with those of the objective
function. Moreover, these two properties must be satisfied uniformly for all
such iterates.

2.2.2 Multiplicative updates

With respect to Algorithm (2.2), multiplicative updates (MU) are a note-
worthy family of update rules for the factors that take form of componen-
twise matrix multiplications. More explicitly, under multiplicative update
rules steps 3 and 4 could be rewritten as:

W (t) = W (t−1) ◦GW (X,W (t−1), H(t−1))

H(t) = H(t−1) ◦GH(X,W (t), H(t−1))

where GW and GH are nonnegative matrices when all their parameters are
nonnegative as well.
Multiplicative updates are among the most popular update rules in a NMF
framework. Indeed they are easily implemented, scale well with the input
dimensions, and their first appearance was in [17], a paper that gained con-
siderable popularity over the years. Despite these advantages, multiplicative
updates suffer from a considerable drawback: the so called zero locking phe-
nomenon. As a matter of fact, these update rules are unable to modify
entries of the factors that have been set to zero. This seemingly small detail
poses major concerns about the convergence of the resulting algorithm to
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stationary points. As we will see in Section 2.2.3, first-order optimality con-
ditions include some complementary slackness restrictions from which can
be observed that setting a variable equal to zero (i.e. W (i, j) = 0) will pre-
vent the algorithm from converging to a whole family of stationary points
(i.e. satisfying W (i, j) > 0 and [∇WF (X;W,H)]ij = 0). In order to address
this issue, it is good practice to initialize the first iterates (W (0), H(0)) of Al-
gorithm 2.2 to strictly positive matrices. Furthermore, most multiplicative
updates algorithms will actually artificially maintain the entries of the new
iterates above a fixed threshold for this very reason (see Theorem (2.4) for
example).

2.2.3 Optimality conditions

In the previous pages we have presented the general structure of 2-BCD
methods and provided an algorithm that can be employed to obtain a nu-
merical solution to problem (2.2). In order to measure the quality of such
a solution, we could check whether or not the latter satisfies some kind of
optimality conditions relative to the problem at hand. Recalling that the
ultimate goal of most iterative algorithms is to converge to stationary points
of problem (2.2), assuming the objective function to be differentiable we may
consider the set of optimality constraints given by the so called Karush-
Kuhn-Tucker (KKT) conditions. Indeed if a couple (W,H) is a stationary
point, it must satisfy the following:

W ≥ 0, ∇WF (X;W,H) ≥ 0, W ◦ ∇WF (X;W,H) = 0

H ≥ 0, ∇HF (X;W,H) ≥ 0, H ◦ ∇HF (X;W,H) = 0
(2.8)

The above are first-order optimality conditions and as such they only pro-
vide a set of constraints that a stationary point must necessarily satisfy. The
converse is, in general, not true: there may exist non-stationary points satis-
fying (2.8). As a consequence, the primary application of these conditions is
gauging how far the numerical solutions are from an actual stationary point.
Nevertheless, another possible use for the latter is developing heuristic up-
date rules for the two factors. Indeed, by writing:

∇WF (X;W,H) = ∇+
WF (X;W,H)−∇−

WF (X;W,H)

where ∇+
WF (X;W,H), ∇−

WF (X;W,H) > 0, basic calculus results assert
that:

· If [∇+
WF (X;W,H)]ij > [∇−

WF (X;W,H)]ij : then a sufficiently small de-
crease of W (i, j) will decrease the objective function;
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· If [∇+
WF (X;W,H)]ij < [∇−

WF (X;W,H)]ij : then a sufficiently small in-
crease of W (i, j) will decrease the objective function.

Moreover, from the complementary slackness conditions we can observe that,
at stationarity:

· If W (i, j) > 0: then it must hold [∇+
WF (X;W,H)]ij = [∇−

WF (X;W,H)]ij ;

· If W (i, j) = 0: then it must hold [∇+
WF (X;W,H)]ij > [∇−

WF (X;W,H)]ij .

Analogous conclusions can be reached for the H variables. These remarks
can therefore support the following heuristic, multiplicative update rules for
the factors:

W (t) = W (t−1) ◦
[∇−

WF (X;W (t−1), H(t−1))]

[∇+
WF (X;W (t−1), H(t−1))]

H(t) = H(t−1) ◦
[∇−

HF (X;W (t), H(t−1))]

[∇+
HF (X;W (t), H(t−1))]

(2.9)

While the approach used to derive updates (2.9) was indubitably heuristic,
it can be proved (see [10, Section 8.2.2]) that the latter are actually the
update rules generated by applying a rescaled gradient descent method to
both problems (2.3) and (2.4).

2.3 Convergence results

In this section we will provide some convergence results for block coordinate
descent (BCD) methods, a family of algorithms that can be applied when
the variables of the considered objective function are divided into multiple
blocks1.
Given the following problem:

minimize f(x1, . . . , xn)

subject to (x1, . . . , xn) ∈ X = Ω1 × · · · × Ωn

(2.10)

all (n-)BCD methods follow the scheme presented in Algorithm (2.3) below:
1For reference, Algorithm 2.2 is a BCD method where the variables are divided into only
2 blocks.
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Algorithm 2.3 Block coordinate descent scheme for problem (2.10)

Output: An approximate solution (x1, . . . , xn) to problem (2.10).

1: Initialize a point x(0) = (x
(0)
1 , . . . , x

(0)
n ) ∈ X .

2: for t = 1, 2, . . . do:

3: for i = 1, 2, . . . , n do:

4: x
(t)
i = updatei ( x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , . . . , x

(t−1)
n )

5: end for

6: end for

where, in particular, updatei ( x
(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , . . . , x

(t−1)
n ) is either an

approximate or exact 1-step solution to an iterative subroutine employed to
solve:

minimize f( x
(t)
1 , . . . , x

(t)
i−1, xi, x

(t−1)
i+1 , . . . , x(t−1)

n )

subject to xi ∈ Ωi

(2.11)

starting from the initial estimate x
(t−1)
i .

Again, if at each iteration all updatei’s are initialized to the exact 1-step
solution of their respective subroutines, the resulting algorithm is called ex-
act BCD method.
With respect to the above notation, we are now ready to state three conver-
gence results:

Theorem 2.1. [13, Corollary 2] The limit points of the iterates of an exact
2-BCD algorithm are stationary points of problem (2.10) provided that the
following conditions hold:

1. f ∈ C1(X );

2. Ω1 and Ω2 are closed convex sets.

As far as Algorithm (2.2) is concerned, the second condition is always satisfied
since the nonnegative orthant is a closed convex set. On the other hand,
when working with β-divergences, the validity of the first condition must be
cross-checked using Table (2.1).
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Theorem 2.2. [5, 6, Proposition 2.7.1] The limit points of the iterates of
an exact BCD algorithm are stationary points of problem (2.10) provided that
the following conditions hold:

1. f ∈ C1(X );

2. Ωi is a closed convex set ∀i = 1, . . . , n;

3. Problem (2.11) admits a unique global solution independently of the
variables x1, . . . , xi−1, xi+1, . . . .xn ∈ Ω1 × · · · ×Ωi−1 ×Ωi+1 × · · · ×Ωn,
∀i = 1, . . . , n;

4. updatei must return the exact global solution ∀i = 1, . . . , n.

Theorem 2.3. [14, Theorem 2] The limit points of the iterates of an ex-
act BCD algorithm are stationary points of problem (2.10) provided that the
following conditions hold:

1. f ∈ C1(X );

2. Ωi is a closed convex set ∀i = 1, . . . , n;

3. The subroutines employed for problems (2.11) follow a SMM framework
and either one of the following is satisfied:

(i) the majorizers are quasi-convex in the first variables and their
minimum is uniquely attained;

(ii) the level set X0 = {x ∈ X : f(x) ≤ f(x(0))} is compact and at
least n− 1 of the majorizers have an uniquely attained minimum.

In particular, an exact BCD algorithm that satisfies the hypothesis of The-
orem (2.3) is part of the so called block successive upper-bound mini-
mization (BSUM) framework.

We conclude this section by providing an application of the last result to
an instance of Algorithm (2.2), in which F = Dβ and a particular family
of majorizers is constructed to tackle problems (2.3), (2.4) using a SMM
framework:

Theorem 2.4. [10, Theorem 8.9] Let ϵ > 0 and consider the multiplicative
update rule:
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W (t) = max

ϵ, W (t−1) ◦


h

W (t−1)H(t−1) ◦(β−2) ◦X H(t−1)⊤
i

h
W (t−1)H(t−1) ◦(β−1)

H(t−1)⊤
i

◦γ(β)

H(t) = max

ϵ, H(t−1) ◦


h
W (t)⊤ W (t)H(t−1) ◦(β−2) ◦X

i
h
W (t)⊤ W (t)H(t−1) ◦(β−1)

i
◦γ(β)

where:

γ(β) =



1

2− β
if β < 1,

1 if 1 ≤ β ≤ 2,

1

β − 1
if β > 2.

Then, for any initial matrices (W (0), H(0)), the limit points of the iterates
are stationary points of problem (2.2)2.

2Where the nonnegativity constraints are replaced by W,H ≥ ϵ in order for the β-
divergences and their derivatives to be defined everywhere.
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Chapter 3

Data processing and analysis

In this chapter we will present the conventional techniques used to analyze
both ECGs and PCGs. Moreover, we will introduce a NMF-based procedure
to analyze PCG signals and identify the characterizing properties of its two
main components.
All data used in the following sections and chapters was made publicly avail-
able by PhysioNet [1]. In particular, we will use two databases, which will
be referenced in this dissertation as:

· Database1 [12]. It contains 69 simultaneous ECG and PCG recordings,
each with a duration of either 30 seconds (8 records) or 30 minutes (61
records), acquired synchronously from a three-lead ECG and a single
PCG stethoscope. In some recordings, ambient noise picked up by the
stethoscope is present;

· Database2 [3]. It contains more than 3000 PCG recordings collected
from four different auscultation locations on the volunteers’ chests: each
of the four is meant to record the sounds produced by a particular
heart’s valve. To compensate for the absence of synchronous ECG
recordings, every PCG comes with a text file where the beginning and
end instants of S1 and S2 sounds are annotated. Ambient noise picked
up by the stethoscope is much less frequent and intrusive if compared
to Database1.

As far as the NMF is concerned, we will use the code provided by Gillis in
[11]. It is a repository containing all codes and examples present in [10], from
which we will mainly use the implementation of the multiplicative update rule
of Theorem 2.4. We shall refer to such algorithm as MU-NMF(β).
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3.1 Traditional ways of analyzing ECGs and PCGs

Let us now describe how the instantaneous heart rate can be reconstructed
from a synchronous ECG-PCG signal pair. More precisely, the scope of this
section is to present the more common techniques employed to process the
data and correctly discern both R waves as well as S1 and S2 sounds.
Before diving into a step-by-step algorithm, which will be discussed in Section
(3.1.3), it is necessary to observe that any procedure used to analyze ECGs
and PCGs will be divided into two distinct routines:

· Data filtering. First and foremost the data needs to be filtered in order
to remove as many non essential or disrupting components as possible. In
ECGs for example, where powerline interference is often present, it is com-
mon practice to apply a filter to remove any 50-60Hz component. More
generally, the data should be filtered to highlight the components of inter-
est: in our case, we will be filtering out all components not directly related
to R waves for ECGs or S1 and S2 for PCGs;

· Peak detection. Once the data has been filtered and normalized, peak
detection routines are employed to identify the sought after characteriz-
ing events. In our framework, since we are dealing with one-dimensional
signals, these routines will be in the form of adaptive window search algo-
rithms.

As a consequence of the above distinction, it will be useful to analyze in
more details both the concept of filter as well as the general scheme for an
Adaptive Window Search (AWS) algorithm.

3.1.1 Notch, low-pass and zero-phase filters

In the realm of digital signal processing a filter is a procedure that eliminates
from the input data unwanted (frequency) components. From a mathemati-
cal point of view, a filter can be described as a Discrete-time, Linear, Time-
Invariant (DLTI) system, that is, an operator T transforming discrete-time
input sequences u(:) into discrete-time output sequences y(:)

y = T [u]

which is both linear and time-invariant3. For our purposes, we should recall
that the output of a DLTI system can be expressed equivalently through
either an Auto-Regressive Moving-Average (ARMA):
3That is, T [u(: −j)](:) = T [u](: −j) ∀j ∈ Z.
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naX
i=0

aiy(k − i) =

nbX
j=0

bju(k − j) ∀k ∈ Z (3.1)

for some appropriate coefficients {ai}i=0,...,na and {bj}j=0,...,nb
(na is the order

of the filter), or as a convolution sum:

y(:) =
X
j∈Z

u(j)h(: −j) (3.2)

where h = T [δ] is the discrete impulse response and δ(:) is the discrete im-
pulse at time k = 0 (that is, δ(k) = δ0,k ∀k ∈ Z).
In particular, filters are uniquely identified by their discrete impulse response
h(:) and can be divided into two categories based on the support length of
the same. Indeed, if the latter has a finite support length (this is the case
when na = 0 and nb ̸= 0) the former is called Finite Impulse Response (FIR)
filter. Conversely, if the latter has infinite support length (this is the case
when na ̸= 0 and nb ̸= 0) the former is called Infinite Impulse Response (IIR)
filter.
In order to better understand how filters can be employed to eliminate un-
wanted frequency components from a given input u(:), one should apply the
Discrete Fourier Transform (DFT) to both sides of Equation (3.2). As a
matter of fact, letting Y(:), U(:), H(:) be the DFTs of y(:), u(:), h(:) respec-
tively and recalling that convolution sums in the time domain transform into
products in the frequency domain, we obtain:

Y(:) = U(:)H(:)

As a consequence, in the frequency domain the filter has the effect of mul-
tiplying the DFT of the input by the DFT of the discrete impulse response,
the so called frequency response H(:) of the filter. This property can there-
fore be used to put to zero specific frequency components of any input, prior
the construction of a filter with a suitable frequency response. In this brief
discussion we will not enter into the details on how filters can be designed:
Oppenheim et al. [18] and Antoniou [2] provide a more in-depth analysis.
It should also be noticed that, in general, filters introduce phase shifts in the
output due to the fact that arg(H(:)) ̸= 0. In some applications phase shifts
may hinder the data analysis, thus one way of addressing this is to construct
so called zero-phase filters. Zero-phase filters can be obtained by perform-
ing a forward-backward filtering, more precisely, the input u(:) is filtered,
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time-reversed, filtered again and finally time-reversed. Indeed, recalling that
time-reversal transforms into a complex conjugation in the frequency domain,
letting ŷ(:) be the final output of such a process and bY(:) its DFT, we get:

bY(:) = U(:)|H(:)|2

In other words, we obtain a new filter characterized by a purely real fre-
quency response |H(:)|2 with similar filtering properties to the original one
and no phase distortion.

As far as our data processing is concerned, we should introduce two dis-
tinct types of filters. The first are notch filters, whose purpose is attenuating
a specific frequency component from the input signal. As we will see in the
later sections, this is the type of filters that will be employed to remove
powerline interference from ECGs.

(a)
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(b)

Figure 3.1: Frequency response amplitude (a) and effect on the DFT of a random
signal (b) of a second order zero-phase notch filter at the 100Hz frequency.

The second are low-pass filters, which, as their name suggests, attenuate all
frequency components above a certain threshold. Together with their high-
pass counterpart, these filters will be used to highlight specific frequency
bands corresponding to R waves and heart sounds in ECGs and PCGs re-
spectively.

(a)
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(b)

Figure 3.2: Frequency response amplitude (a) and effect on the DFT of a ran-
dom signal (b) of a second order zero-phase low-pass filter with a 100Hz frequency
threshold.

3.1.2 Adaptive window search algorithms

Window search algorithms are a family of schemes that rely on a shifting
window to detect local peaks (maxima or minima) within a one-dimensional
discrete signal. More precisely, such schemes iterate over each signal sample
and construct a window centered at the latter. If the current sample value
coincides with the peak computed over all samples spanned by the window,
it is labeled as a local peak.
Clearly, the window radius plays a crucial role in the effectiveness of the
algorithm: if it’s too big, local peaks close together may not be labeled as
such, conversely, if it’s too small, the scheme may label as local peaks minor
fluctuations in the signal. Moreover, the radii need not remain fixed for all
samples. Indeed, each signal sample may be given a distinct window radius:
the resulting scheme is known as an Adaptive Window Search, which we will
include in Algorithm (3.1) below.

Recalling our main goal, in the next section we will see how, initially, all
the radii will be fixed to a constant (Fixed Window Search) related to a
rough estimate of the heart rate and then subsequently specialized to better
detect R waves as well as S1 and S2 sounds.
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Algorithm 3.1 Adaptive Window Search for local maxima

Input: A signal x = {xk}k=1,...,N and window radii r = {rk}k=1,...,N .
Output: A set of local maxima indexes I.

1: Initialize I = ∅
2: for k = 1, . . . , N do:

3: if k − rk > 0 and k + rk < N

4: W = [k − rk, . . . , k + rk]

5: elseif k − rk > 0

6: W = [N − 2rk, . . . , N ]

7: else

8: W = [1, . . . , 2rk]

9: end if

10: if max(xW ) == xk

11: I = I ∪ {k}
12: end if

13: end for

3.1.3 Heart rate detection

We are now ready to describe the step-by-step procedure used to detect
main heart events in a synchronous ECG-PCG pair. As a prerequisite, we
assume that both ECG and PCG have been decimated to the same sampling
frequency in order to be dealing with discrete signals of the same length and
therefore have a time-correspondence between the indexes. Below, the steps
labeled with "1.x" will deal with the ECG analysis while those labeled with
"2.x" will deal with the PCG. For a more concrete outlook on the procedure,
see the code provided in [12].

· Step 1.1: ECG filtering. First of all, a 50Hz second order zero-phase notch
filter is applied to the ECG in order to attenuate the influence of the
powerline interference. Second of all, a second order zero-phase low-pass
filter with a 10Hz frequency threshold is applied, followed by a second order
zero-phase high-pass filter with a 40Hz frequency threshold. The purpose
of these last two filters is to isolate the [10:40]Hz frequency band, which

29



characterizes the QRS complex.

· Step 1.2: ECG saturation. The filtered signal is then saturated above five-
sigma using a rescaled sigmoid. This step normalizes the data and provides
an upper bound for the peaks we are interested in detecting.

· Step 1.3: First round of R wave detection. Assuming a constant heart rate
with a frequency f0 = 1.4Hz (84bpm), a fixed window search algorithm with
constant radii r0 = ⌊ 1

2f0
⌋ is applied. Subsequently, any (fake) peak detected

within a distance r0 from the preceding one is eliminated. Utilizing the
local peaks index set I0 returned by the above routine, a median heart rate
frequency f1 is computed. The latter constitutes a more accurate estimate
of the heart frequency. Moreover, considering the median (instead of the
mean) allows us to take into account some of the variability that might be
present in the recording as well as to reduce the likelihood of skipping over
local peaks during future window searches.

· Step 1.4: Second round of R wave detection. Initially, a fixed window
search algorithm with constant radii r1 = ⌊ 1

2f1
⌋ is applied. From the re-

sulting peaks index set I1 a vector of instantaneous heart rate frequencies
is computed. The latter is then normalized with a 3-element moving av-
erage filter as well as with a 3-element moving-median filter. Lastly, it is
linearly interpolated over all discrete time samples to obtain a complete,
average frequency vector f2 = {f2(k)}k=1,...,N (where N is the length of
the ECG). Ultimately, a second adaptive window search algorithm with
radii r2 = {⌊ 4

5f2(k)
⌋}k=1,...,N is applied. The peaks set I2 given by this last

routine is then refined by eliminating all indexes associated to (fake) peaks
with an amplitude below 33% of the median peak amplitude. Let us call
IR = {ik}k=1,...,M this final set.

· Step 2.1: PCG filtering. A second order zero-phase low-pass filter with a
10Hz frequency threshold is applied, followed by a second order zero-phase
high-pass filter with a 100Hz frequency threshold. As for the ECG, these
filters isolate the [10:100]Hz frequency band in the PCG, which contains
most of the frequency content of both S1 and S2.

· Step 2.2: PCG normalization. The PCG is normalized by applying a
forward-backward 2-mean filter over a fixed number of samples. This pro-
cedure effectively transforms the PCG into a nonnegative signal approx-
imating the envelope of the latter. As a consequence, both main heart
sounds will be highlighted.
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· Step 2.3: S1 and S2 sound detection. Initially, a fixed window search
algorithm with sufficiently small and constant radii r3 is applied. The
output set I3 will therefore contain the indexes associated to all main heart
sounds peaks as well as, possibly, smaller amplitude peaks generated by
minor fluctuations in the signal. At this point it is of key importance to
observe that, in a heart cycle, S1 (and therefore S2) is slightly delayed
if compared to the corresponding R wave in the synchronous ECG. This
aspect can be exploited to localize both the S1 and S2 peak between two
consecutive R wave peaks. More precisely, for each consecutive pair of
indexes (ik, ik+1) in the set IR (which we recall contains the ECG R wave
indexes), the set I3 is split into smaller subsets Ik3 each containing indexes
falling between the corresponding pair, that is, I3 =

SM−1
k=1 Ik3 and ik < j <

ik+1 ∀j ∈ Ik3 . Assuming the peaks generated by S1 and S2 to have a much
bigger amplitude than those associated to minor fluctuations, the indexes
in every Ik3 are sorted by the amplitude of their peaks and only the first
two are kept. In conclusion, the sets IS1 and IS2 containing the indexes for
S1 and S2 peaks are obtained, respectively, by selecting in each Ik3 the first
and second index sorted with respect to time.

Figure 3.3: Heart rate detection algorithm applied to the synchronous pair
"ECG0005"-"PCG0005" from Database1.

3.2 NMF approach

Unlike the previous section, in which the two main heart sounds in a PCG
were exposed by peak-detection routines, we will now see how such a task
can be performed by exploiting the learning capabilities of the NMF.
Given a discrete time-sampling x of a PCG signal, one way of producing a
nonnegative matrix X to which apply the NMF is to consider the elementwise

31



squared-norm4 of the discrete Short-Time Fourier Transform (STFT) matrix
of x, which we will compactly denote with:

X = |STFT (x)|2 (3.3)

Such a matrix is more commonly known as the spectrogram of x. We recall
that the columns of X are indexed by the time intervals corresponding to the
(local) support of the window function used to compute the time-localized
Discrete Fourier Transform (DFT) of x. The rows of X on the other hand
are indexed by the discrete frequencies that can be detected by the DFT.
As a whole, the element Xij of the above matrix encodes the i-th discrete
frequency content in the time-localized DFT of x computed on the j-th time
interval. Simply put, X provides a time sensitive description of the frequency
content in the PCG sampling x.
In particular, it should be noted that:

Remark 3.1. Given the (quasi) time-periodic structure of a PCG, the above
matrix will inherit columnwise-periodic properties.

All time intervals containing sections of same-type heart sounds will cor-
respond to columns of X with similar frequency contents. Similarly, time
intervals inbetween heart sounds, in absence of (instrument) noise and other
body related murmurs, will correspond to columns in which no frequencies
are detected (or rather, in which the frequency content has negligible weight
relative to the columns containing heart sounds). As a consequence, we wish
to leverage this particular structure to facilitate the learning and modeling
abilities of the NMF. To be more precise, if the two main heart sounds were
to have sufficiently different frequency contents, we may expect the NMF to
not only identify the former within the PCG signal, but also differentiate
between the two.

Before diving into the analysis we need to have a rough understanding of
what a NMF applied to X would generate. In other words, we have to
give a mathematical and physical interpretation to the following three key
components:

· Factorization rank r: it encodes the number of basis functions that will be
used to approximate the matrix X. We may think of it as the degrees of
freedom we expect the columns of X to have. Similarly, from a clustering

4Actually, we could also take X = |STFT (x)|n for n > 0, but in hindsight n = 2 produced
the best results in our NMF framework.
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standpoint, r might be seen as the number of different clusters that we need
to take into account to correctly partition the columns of X based on their
intrinsic properties. In our framework, a sensible choice for the factorization
rank is r = 2 since we know the signals we are dealing with have two main
components, namely the S1 and S2 heart sounds, which we can expect to
behave differently in the frequency domain. Notice, however, that this is
far from being the only possible choice: as we will see in Section 3.2.3 a
higher number of basis functions might help produce better nonnegative
factors;

· Left factor W : it contains the basis functions used to represent the matrix
X. The choice (construction) of the basis functions is clearly dependent
from the objective we intend to use. Nevertheless, when dealing with simple
objectives like β-divergences, the algorithms will generate basis functions
in order to better approximate columns of X that have a big weight with
respect to the selected β-divergence. Again, in our framework, we expect
the columns of X associated to heart sounds to have a much bigger weight
than the others, hence it is sensible to assume the NMF will create basis
functions directly related to the frequency contents of S1 and S2. Moreover,
as highlighted earlier, if the latter are sufficiently different, the NMF might
even generate two distinct basis functions, one for each sound;

· Right factor H: it encodes the coefficients used in the conical combinations
of basis functions to approximate the matrix X. Every row of H contains
the activation coefficients of the corresponding basis function. Similarly,
every column contains the activation coefficients for each basis function at
the corresponding time interval. As a consequence, if the NMF correctly
encoded basis functions related to heart sounds, we may use H to identify
when the latter appear during the PCG. Indeed, if a row of H corresponds
to such a basis function, we may expect the activation coefficients within it
to have a bigger norm in correspondence of the columns of H associated to
time intervals containing the heart sound in question. This property can
therefore be used to reconstruct the instantaneous heart rate.

We are now ready to start discussing more technical details and begin to
analyze the concrete output obtained by applying the above procedure to
real data.

3.2.1 STFT parameters

The first thing we need to address is the choice of the STFT parameters. In
particular, the length of the support of the window function δT is of crucial
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importance. Indeed we want the latter to be small enough to separate adja-
cent S1 and S2 sounds, but at the same time big enough to detect possible
lower frequency contents. With this in mind and recalling that the two main
heart sounds can have a duration as short as 50ms, a sensible choice would
be to consider window functions with local supports of duration δT = 25ms.
Unless otherwise specified, this is the value we will adopt.
The second parameter is the support overlap between consecutive window
functions. Much like all the other parameters that we will take into account
in this section, there are many different but equally valid choices, although
one may prefer some specific values over others based on the task at hand. For
example, if we were solely interested in detecting heart sounds and feeding
the resulting matrix X directly to a NMF algorithm, a solid choice would be
to construct the STFT with nonoverlapping local supports (that is, the sup-
port of the next window function begins right where the current one ended).
On the other hand, if we were interested in producing a more detailed repre-
sentation of the signal, we could choose to let the local supports overlap for a
certain percentage p of their length (that is, the support of the next window
function begins (1− p)δT seconds after the current one began).
We should notice that these first two parameters influence greatly the struc-
ture of X. Indeed:

Remark 3.2. The number of columns within the matrix X is a function
of δT and p. Moreover, the value of p regulates how many columns will be
allocated to each heart sound.

As a matter of fact, for p = 0 (nonoverlapping supports) we can expect, on
average, each heart sound to fall within 2 to 4 columns of X, while for p = 0.5
we can expect 3 to 7 (assuming a sound duration between 50ms to 100ms).
Another important aspect is the frequency band we are interested in observ-
ing. We know that the main frequency content for both S1 and S2 should
be located between 70Hz to 100Hz, but we could still decide to consider a
broader band.
Last but not least is the choice of the window function. For simplicity of
implementation, in this dissertation we will be using a Hamming window,
unless otherwise specified. In its continuous form, the latter will therefore be
given by:

wH(t) = α̃− (1− α̃) cos
2π

δT
t , t ∈ [0, δT ]

where α̃ is usually chosen as a decimal truncation of α =
25
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(a)

(b)

Figure 3.4: Phonocardiogram (a) and spectrogram (b) of signal "PCG0003" from
Database1 on the time interval [10:15]s with overlap p = 0 and frequency band
[50:150]Hz.

In Figure (3.4) we can clearly observe the columnwise-periodic structure of
the spectrogram. The columns corresponding to S1 and S2 have much bigger
weights than the others thus making it possible to recognize each individual
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heartbeat. Arguably, extrapolating this information from the PCG alone
would have been more difficult.

3.2.2 NMF parameters

Let us now focus on the NMF parameters. As mentioned earlier, in this
chapter we will limit ourselves to simpler algorithms, namely MU-NMF(β),
which is based on Theorem (2.4). As a consequence, the only parameter we
need to take into consideration is β itself.
First and foremost we should recall that due to the positive homogeneity
property of β-divergences (see Section 2.1.1), as β increases, the objective
function becomes more sensitive to larger values within the matrix X. Con-
sequently, MU-NMF(β) will try to prioritize the approximation of columns
containing such values. This is a double-edged sword. Indeed:

Remark 3.3. If the PCG signal has relatively low-level noise, increasing
β will in general guarantee a better overall approximation of X. If, on the
other hand, the PCG contains some time-localized noise (e.g. ambient noise
picked up by the stethoscope or other body related murmurs), increasing the
value of the parameter will have the opposite result.

The second thing we should stress is that regardless of the overall approxi-
mation, our main goal is to exploit the NMF to identify heart sounds; hence,
it may be worth trading a bigger approximation error for a better, cleaner,
representation of the frequency contents of S1 and S2.

(a)
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(b)

Figure 3.5: Power Spectral Density (a) and MU-NMF(β) approximation error
(b) for different values of β ∈ {1, 2, 3, 4, 5, 6} of signal "PCG0004" from Database1
with overlap p = 0, frequency band [50:150]Hz and factorization rank r = 2.

As evidenced by the power spectral density in Figure (3.5), the considered
signal contains multiple time-localized noise bursts. In this case, the bigger
values of β generate an overall worse approximation of the spectrogram if
compared to the smaller ones. Moreover, even for β = 2 or β = 3, the small
factorization rank does not allow the algorithm to generate enough basis
functions to lower the approximation error.

(a)
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(b)

Figure 3.6: Power Spectral Density (a) and MU-NMF(β) approximation er-
ror (b) for different values of β ∈ {1, 2, 3, 4, 5, 6} of signal "PCG85338_PV"
from Database2 on the time interval [0:14]s with overlap p = 0, frequency band
[50:150]Hz and factorization rank r = 2.

In Figure (3.6), on the other hand, we notice how a low-level noise allows the
bigger values of β to better approximate the spectrogram of the signal, even
with only two basis functions.
In light of these examples, we conclude that:

Remark 3.4. Choosing an intermediate value of β, such as β = 2, is a
sensible compromise to obtain a certain degree of noise robustness from the
MU-NMF(β) algorithm.

As a consequence, let us now fix β = 2 and see the actual nonnegative factors
generated by MU-NMF(2) applied to the spectrogram in Figure (3.4):
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(a)

(b)

Figure 3.7: Left factor W (a) and right factor H (b) generated by MU-NMF(2)
applied to the spectrogram of signal "PCG0003" from Database1 on the time interval
[10:15]s with overlap p = 0, frequency band [50:150]Hz and factorization rank r = 2.

From the figure above we can conclude that the NMF was able to correctly
detect both S1 and S2; indeed the activation coefficients in the right factor
H have bigger norm in correspondence of the time intervals that contain
these sounds. In particular, this means that both basis functions in the left
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factor W are related to the frequency contents of S1 and S2. While the top
row of H is able to precisely highlight the time intervals we are interested
in detecting, the bottom one appears to be slightly less precise. This is due
to the fact that some basis functions were activated to approximate columns
of the spectrogram associated to time intervals that did not contain heart
sounds, but had relevant weight nonetheless. Since these imperfections can
be observed in proximity of actual heart sounds, a possible explanation is
that the NMF is trying to describe the leftover murmur generated by either
S1 or S2. These minor sounds have less relative weight if compared to the
peak of their corresponding cardiac event, hence their activation coefficients
have significantly smaller norms. That being said, we should notice that
the algorithm was not able to differentiate between the two sounds, since
both basis functions are activated to describe both S1 and S2. We can
therefore assume that, in this case, the frequency contents of the two main
heart sounds were not sufficiently different to incentivize the creation of two
dedicated basis functions.

3.2.3 Presence of noise in the PCG

In the previous section we briefly analyzed the effect of noise on the perfor-
mance of MU-NMF(β). We will now further explore this subject by shifting
our attention to the nonnegative factors and, in particular, to the coefficients’
matrix H. In the figure below we include the two factors generated by MU-
NMF(2) applied to the spectrogram associated to the power spectral density
of Figure (3.5):

(a)
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(b)

Figure 3.8: Left factor W (a) and right factor H (b) generated by MU-NMF(2)
applied to the spectrogram of signal "PCG0004" from Database1 with overlap p = 0,
frequency band [50:150]Hz and factorization rank r = 2.

As we can clearly see the noise has compromised the first of the two basis
functions. Indeed the latter has a peak frequency content around 120Hz,
which cannot be tied back to neither S1 nor S2 since their peak frequencies
rarely reach over 100Hz (see Section 3.2.5 for the complete time-frequency
analysis). Supporting this interpretation is the fact that the first basis func-
tion is activated in correspondence of time intervals containing noise, as we
can conclude by comparing the first row of H with the power spectral den-
sity of Figure (3.5). As far as the second basis function is concerned, we can
reasonably assume it is related to the frequency contents of heart sounds,
since at times preceding the noise we can discern a somewhat time-periodic
activation of the latter from the second row of H, although the quality of
the representation is arguably inferior to that of the low-level noise case pre-
sented in Figure (3.7). This loss of precision is due to the fact that the NMF
has tried to represent heart sounds, which may have considerable variance in
frequency contents, using only one basis function, as the first one was entirely
allocated to describe noise. In this example, the presence of noise has almost
completely destroyed the learning and heart sound detection capabilities of
the NMF.

A possible solution to the above problem is increasing the factorization rank
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r, giving the NMF more basis functions to approximate the data. Recall-
ing the clustering interpretation provided in the previous sections, the noise
(based on its frequency contents) can be seen as extra clusters that need to be
taken into account during the modelling process. We will now analyze how
the factorization rank affects the basis functions when applying MU-NMF(2)
to the same signal.

(a)

(b)
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(c)

Figure 3.9: MU-NMF(2) approximation error (a) for different values of r ∈
{2, 3, 4, 5, 6, 7}, left factor W (b) and right factor H (c) generated by MU-NMF(2)
applied to the spectrogram of signal "PCG0004" from Database1 with overlap p = 0,
frequency band [50:150]Hz and factorization rank r = 7.

As expected, Figure (3.9) shows how the approximation error decreases as
the factorization rank r increases. As for the factors, we choose to show the
results for r = 7: just like in the previous case, the algorithm allocated some
columns of W for the description of noise (columns 2, 3 and 4), while the
others are used to model heart sounds and possibly some related murmurs
(columns 1, 5, 6 and 7). When compared to the one in Figure (3.8), some of
the rows of H associated to heart sounds show some significant improvement
in quality. Indeed, in rows 6 and 7 we can clearly recognize the time peri-
odicity related to S1 and S2, although in correspondence to time intervals
containing noise, some imperfections can be observed. Amongst the noise,
the NMF activated most of the basis functions at its disposal in order to
better approximate it and therefore reduce the error: the trade-off is a loss
of accuracy when modelling the heart sounds. This behavior suggests, in
particular, that the noise at hand and heart sounds share a significant por-
tion of their frequency contents.
Summing up what we deduced in this section:

Remark 3.5. If in presence of noise, increasing the factorization rank r
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allows the MU-NMF(2) algorithm to lower the approximation error and gen-
erate cleaner factors. Nevertheless, if the noise and heart sounds share a
portion of their frequency contents, the basis functions associated to the lat-
ter may be activated to describe the former, leading to a loss of accuracy.

3.2.4 Basis function analysis

Let us now analyze the choice of the basis functions made by the NMF in
absence of ambient noise. As we noticed in Figure (3.7), for example, the
algorithm was not separating S1 and S2, but was rather creating two basis
functions and activating both in correspondence of both sounds. In order to
study in more detail the relation between basis functions and spectrogram
columns, we shall apply the NMF to single hand-picked cardiac cycles spec-
trograms. More precisely, the cardiac cycles will begin with an S1 sound and
end right before the next; this way we will be able to observe the features of
both S1 and S2. Furthermore, we will consider the broader frequency band
[0:150]Hz in order to provide a more complete description of the frequency
contents of the heart sounds.

(a)
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(b)

Figure 3.10: Right factor H (a) and comparison between basis functions and
heart sounds (b) generated by MU-NMF(2) applied to a cardiac cycle spectrogram
of signal "PCG0003" from Database1 with overlap p = 0, frequency band [0:150]Hz
and factorization rank r = 2.

(a)
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(b)

Figure 3.11: Right factor H (a) and comparison between basis functions and
heart sounds (b) generated by MU-NMF(2) applied to a cardiac cycle spectrogram
of signal "PCG0010" from Database1 with overlap p = 0, frequency band [0:150]Hz
and factorization rank r = 2.

In Figure (3.10) we see how focusing on a single heart cycle allowed the
NMF to differentiate between S1 and S2: the first basis function was used to
describe the latter while the second one to describe the former. As a matter of
fact the two sounds appear to have very distinct frequency contents. While
S1 mainly activates frequencies in the band [0:100]Hz with a peak around
40Hz, S2 activates frequencies in the band [0:80]Hz with a peak of much
bigger weight than the former. Similarly, in Figure (3.11) the NMF was also
able to differentiate between the two, but the frequency contents now appear
to be swapped: S1 activates frequencies in the lower band [0:60]Hz while S2
in the upper band [0:100]Hz and the peaks have comparable weights.
We should stress that these heart cycles were selected from different signals.
In general:

Remark 3.6. Different PCG signals can be characterized by heart sounds
of quite contrasting frequency contents, although within a single fixed PCG
most heart sounds show comparable behavior.

That being said, even in the latter case, some variance can be observed: we
will explore this matter in the next section.
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(a)

(b)

Figure 3.12: Right factor H (a) and comparison between basis functions and
heart sounds (b) generated by MU-NMF(2) applied to a cardiac cycle spectrogram
of signal "PCG0012" from Database1 with overlap p = 0, frequency band [0:150]Hz
and factorization rank r = 2.

Lastly, in Figure (3.12) above we included a case in which the frequency
contents of the two main heart sounds were not sufficiently different for the
NMF to create dedicated basis functions. Indeed we can notice that the
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columns of the spectrogram associated to the peaks of S1 and S2 differ from
one another by a positive factor. The algorithm thus generated two basis
functions based on columns of the spectrogram with significantly different
frequency contents, and activated both to describe both heart sounds.

3.2.5 Time-frequency analysis of S1 and S2 sounds

In this section we intend to carry out an in depth time-frequency analysis
of both main heart sounds S1 and S2. The need for such an investigation
follows from the quite substantial variance that can be observed among peak
heart sounds spectrogram columns, even within the same PCG signal. In
Figure (3.13) below we provide an example of such behavior. This study, in
particular, will help us better understand the limitations of the MU-NMF(β)
algorithm and it will lay the foundations upon which to refine the latter.

(a)
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(b)

Figure 3.13: Peak S1 spectrogram columns (a) and peak S2 spectrogram columns
(b) of signal "PCG50699_AV" from Database2 with overlap p = 0 and frequency
band [0:200]Hz.

There are mainly two possible ways to tackle the analysis of such complex
signals:

· Model-driven analysis. From an anatomical point of view, it is well known
that the heart sounds S1 and S2 are generated by the closure of particular
heart valves. Such movement, combined with complex hemodynamics of
the blood on both sides of the valve, gives rise to vibrations which propa-
gate as sounds waves through the chest cavity. These sound waves, when
recorded with external instruments such as an electronic stethoscope, are
what we call heart sounds, and based on the valve that initiated the lat-
ter, we may distinguish between S1 and S2. As a consequence, in order
to analyze heart sounds, one may construct a first physical-mathematical
model to describe the vibrations, and then a second one to characterize
how the latter propagate within the thorax. With such models at hand,
it would then be possible to train them on real data and use the resulting
model-sounds to facilitate the learning process of the NMF. The difficulty
in this approach is directly correlated to the complexity of the phenomena
we are dealing with. As a matter of fact, modelling the vibrations requires
a detailed description of both the heart’s anatomy (namely the structure of
the valves and surrounding tissues, arteries’ elastic properties and volume
capacity, etc.) as well as a precise approximation of the hemodynamics that
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take place around its valves (which in turn requires to take into considera-
tion the forces applied to both sides of the valves, potential turbulent flow
of the blood within the heart’s cavities, etc.). Similarly, producing a model
that describes how the resulting sound waves propagate, must take into
account the different densities and resonance frequencies of the materials
that compose the chest walls (bones, muscles, fat and skin).

· Data-driven analysis. Without a detailed underlying model of the heart
sounds, in order to analyze the time-frequency properties of the latter, one
may employ a more statistical, data-driven approach. Indeed, given a suf-
ficiently large and varied database, the intrinsic properties of these signals
can be inferred from the data itself. The knowledge of such properties, like
average frequency-content-over-time or peak-frequency-content, which we
briefly mentioned in the previous chapters, may provide useful insights on
the hidden learning patterns of the NMF algorithms we employ. Moreover,
having at our disposal a mean behavior for these sounds, can potentially
offer a way of normalizing our data by excluding signal samples with too big
of a deviation; for example, if we knew the average peak-frequency-content
for both sounds, we would be able to recognize the presence of noise in
the data by looking at any unusual peak frequency outside the established
band.

Given our interest in exploiting the learning and generalization capabilities
of the NMF, the latter approach is the one we choose to employ.

Let us start by providing an explanation for the variation that can be ob-
served between peak heart sounds spectrogram columns. It is of key im-
portance to recall that, so far, all spectrograms have been computed with
nonoverlapping time intervals (p = 0). By combining this parametrization
choice with the fact that both S1 and S2 may have a time-dependent frequency
content, we conclude that:

Remark 3.7. The aforementioned variation derives from the relative shift
of these sounds with respect to our fixed time intervals.

Consider for example an heart sound of duration 50ms: since the length of the
window function’s local support used to compute the STFT is δT = 25ms,
the former may fall within our time sampling in an intermediate position
between the following two extremes:
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Figure 3.14: The two possible extremes in relative shift between an heart sound
of duration 50ms and STFT local supports.

While in the first case the sound will be entirely contained in only 2 spec-
trogram columns, in the second case 3 columns will be necessary. Moreover,
due to the time-dependent frequency content, all 5 of these columns will be
different from one another.
As a consequence, in order to obtain a more encompassing description in the
time-frequency domain, it will be useful to consider spectrograms computed
with overlapping supports. The bigger the overlap percentage p, the better
we will be able to analyze how the frequency content of these sounds changes
over time. In the following figure we include the spectrograms, computed
with overlap p = 0.95, of an S1 and S2 sound:

(a)
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(b)

Figure 3.15: Spectrogram of an S1 sound (a) and spectrogram of an S2 sound (b)
of signal "PCG50699_AV" from Database2 with overlap p = 0.95 and frequency
band [0:200]Hz.

As we can observe, the frequency contents of both sounds change quite sig-
nificantly during their evolution, although a distinct ’bell-shape’ containing
the characterizing peak frequency can be identified in both spectrograms. To
reiterate, the variance present in Figure (3.13), which contained columns of a
spectrogram computed with p = 0, derives from selecting different time sec-
tions from the above spectrogram computed with p = 0.95. In other words,
we can think of the latter as an (over) complete dictionary that is able to
fully encode the frequency content of the corresponding heart sound.
Moreover, from Figure (3.15) we can also notice some major differences be-
tween S1 and S2. Indeed, while S1 activates frequencies in the band [0:120]Hz
with a peak around 40Hz, S2 activates also higher frequencies, namely those
in the band [0:200]Hz, and has a slightly higher peak at around 50Hz.
These two properties, that is, S2 activating higher frequencies and being
characterized by a higher frequency peak when compared to S1, are actually
intrinsic to the heart sounds in question. A possible way to verify this as-
sertion is to exploit the large number of data contained in Database2 and
compute an average spectrogram for both S1 and S2 by adding together all
respective spectrograms for all the PCGs in the database.
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(a)

(b)

Figure 3.16: Average spectrogram of an S1 sound (a) and average spectrogram
of an S2 sound (b) from Database2 with overlap p = 0.95 and frequency band
[0:200]Hz.

Not only does Figure (3.16) support the previous assertion, but it also shows
how the variance around the bell-shaped curve present in the particular ex-
ample of Figure (3.15) vanishes. We can therefore conclude that:

Remark 3.8. Apart from minor local variations, the average frequency con-
tent of an heart sound can be described in the time-frequency domain as a
bell-shaped curve whose peak frequency and band differ between S1 and S2.
In particular, these differences can be used to identify one from the other.
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Chapter 4

NMF-based heart rate detection

The study conducted in the previous chapter on the properties and potential
obstacles of phonocardiograms, as well as on the required computational
tools, will now be brought to fruition. Indeed we shall contextualize the
use of STFT and NMF with the purpose of identifying heart sounds within
a more complete algorithmic scheme. This will be done in Section 4.1. In
particular, a substantial amount of emphasis will be given to the process of
denoising PCGs since, as seen in Section 3.2.3, the presence of noise often
hinders the identification of heart sounds by the NMF. In Section 4.2 we will
therefore explore some denoising options and develop a NMF noise canceler
based on adaptive noise cancellation.

4.1 General scheme

Let us now discuss in more details how the study carried out in the previous
chapter will allow us to design a NMF-based heart rate detection algorithm.
Starting from a PCG signal, we saw how to correctly choose the STFT pa-
rameters in order to obtain a complete time-dependent representation of the
heart sounds’ frequency contents. Subsequently, by considering the spec-
trogram, we generated a nonnegative matrix to feed into MU-NMF(β) and
argued about the optimal choice of the β parameter. The NMF then pro-
duced two factors W and H, the former containing some basis functions
related to heart sounds and the latter containing the activation coefficients
for each time interval. In order to finally detect time intervals containing
heart sounds, we can apply a Window Search routine to one of the rows of H
associated to the latter. Now, if the considered PCG is not affected by noise,
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the results obtained in the previous chapter indicate that the Window Search
routine should indeed perform as expected and only detect heart sounds. On
the other hand, if the PCG contains noise, the rows of H become less clean
and the aforementioned routine may fail its task.

PCG
x STFT

spectrogram

X

Denoising

Signal based

Spectrogram
based

NMF
regularizers

denoised
PCG and/or
spectrogram

x̂, X̂
NMF

NMF
factors

W , H

Window
Search

heart sounds
indexes

I

denoising feedback NMF feedback

Figure 4.1: State machine representation for the NMF-based heart rate detection
algorithm. All operations involving dashed lines are optional.

As a consequence, taking as reference Figure (4.1), in the following procedure
we shall focus our attention on a pivotal aspect of the detection algorithm,
namely PCG denoising:

· Step 1: STFT. Given a PCG signal x, we calculate its STFT with pa-
rameters δT = 25ms, p = 0.95 and frequency band [0:200]Hz. Indeed in
Section 3.2.5 we saw how these choices led to a more accurate represen-
tation of S1 and S2 sounds. Subsequently, we compute the spectrogram
X = |STFT (x)|2;

· Step 2: Denoising. Based on the quality of the gathered data, we can
choose to apply some denoising routines. More precisely, we may distin-
guish between three categories of denoising:

(a) Signal based. These routines are applied directly to the PCG x and
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produce a denoised signal x̂. It is therefore necessary recompute the
STFT and the associated spectrogram X̂ (denoising feedback);

(b) Spectrogram based. The signal is denoised through the manipula-
tion of its spectrogram. The output of such routines is a denoised
spectrogram matrix X̂;

(c) NMF regularizers. In our framework, an alternative way of denois-
ing the data is by choosing some regularizers with which to modify
the standard algorithm MU-NMF(β) at the next step. The idea be-
ing that certain families of regularizers may aid in producing cleaner
nonnegative factors.

· Step 3: NMF. The algorithm MU-NMF(2) (or some variant) is applied to
the resulting spectrogram of the previous step, producing two nonnegative
factors W and H. Indeed in Section 3.2.2 we saw how choosing β = 2 is a
good compromise between clean and noisy PCGs when it comes to reducing
the approximation error. As far as the factorization rank r is concerned,
again we concluded that the latter should be increased if in presence of
noise. The choice is therefore case-dependent. Moreover, as we will see
in the next section, the NMF factors can be exploited to design denoising
routines. As a consequence, we may feed the NMF output back to the
denoising stage (NMF feedback);

· Step 4: Window Search. After having selected a row of H associated to
heart sounds, we apply to it a Window Search algorithm. The output will
be a set of indexes I corresponding to the detected heart sounds.

4.2 PCG denoising

Before presenting the denoising options we developed, it should be empha-
sised how the latter differ from the one employed in the traditional heart
rate detection algorithm of Section 3.1.3. Indeed, in such algorithm, the first
step involving PCG signals requires the application of a band-pass filter to
isolate the [10:100]Hz frequency interval (see Step 2.1 ). Since we now intend
to apply NMF to the spectrogram matrix of the signal, such a process would
be counterproductive, even if we were to know the exact frequency band ac-
tivated by heart sounds in the specific PCG at hand. The reason for this is
at least twofold. First of all, band-passing the PCG reduces the modelling
options at the disposal of the NMF, since all basis functions would then
be restricted to a shorter frequency interval. Secondly, in the presence of
noise with a frequency content overlapping that of heart sounds, the NMF
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may not have enough information to distinguish between clean spectrogram
columns containing cardiac events and corrupted columns containing noise,
hence activating the same basis function for both. See Figure (4.2) for an
exemplification of this issue. As a consequence, in our framework:

Remark 4.1. Band-passing the PCG signal limits our options when it
comes to noise recognition and the subsequent denoising process.

As we will see in Section 4.2.5, all information regarding the frequency con-
tent of noise extrapolated from the NMF factors will be of key importance
for the development of a NMF-based noise canceler.

(a) (b)

(c) (d)

Figure 4.2: NMF factors generated by MU-NMF(2) applied to the spectrogram of
signal "PCG0004" from Database 1. For the top factors (a) and (b) the signal was
not band passed and we can see the different frequency contents of heart sounds
(second basis function) as well as noise (first, third and fourth). For the bottom
factors (c) and (d) the signal was first band-passed on the interval [0:100]Hz, re-
sulting in a loss of information about the noise and an overall worse representation
of both basis functions and detected cardiac events (second row of H).
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4.2.1 Norm Clipping

In a NMF spectrogram-based learning, high-energy noise impulses are among
the most disruptive types of noise that can affect the chosen dataset. Indeed,
in the time-frequency domain, such impulses are associated to spectrogram
columns with norm that overshadows that of the clean features we are in-
terested in detecting. As a consequence, in the case of PCGs, any NMF
algorithm will prioritize the creation of basis functions to describe these cor-
rupted spectrogram columns instead of the ones containing cardiac events.
A possible way of addressing this concern, is to manipulate the spectrogram
matrix and remove (clip) all such problematic columns. More precisely, given
a column-wise description of a spectrogram matrix X = {Xj}j=1,...,N and a
set of time indexes J ⊂ {1, . . . , N} associated to noisy columns, a Norm
Clipping (NC) denoising routine produces a matrix X̂ = {X̂j}j=1,...,N where:

X̂j =

 0 if j ∈ J,

Xj if j /∈ J.

In particular, assuming high-energy impulses to be characterized by large
2-norm columns within the STFT matrix of the signal, the index set J can
be obtained by thresholding the 1-norm of the spectrogram columns. As a
consequence, the complete NC denoising routine can be summarized as in
the following Algorithm (4.2.1):

Algorithm 4.2.1 Norm Clipping

Input: A spectrogram X = {Xj}j=1,...,N and threshold M .
Output: A denoised spectrogram X̂ = {X̂j}j=1,...,N .

1: Initialize X̂ = X

2: for j = 1, . . . , N do:

3: if ∥Xj∥1 > M

4: X̂j = 0

5: end if

6: end for

As highlighted in Figure (4.3), after the application of the NC routine the
columns of the spectrogram affected by impulsive noise have been removed,
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thus uncovering the clean frequency contents of cardiac events, characterized
by smaller norms. It should be noted, however, that some higher frequencies
correlated to the noise are still present.

(a)

(b) (c)

Figure 4.3: "PCG49577_MV" from Database2 (a). Surf plot for the unclipped
(b) and Norm Clipped (c) spectrogram of the signal using a threshold M = 1.35.

4.2.2 Weighted Time Compression

Cardiac events are often followed or preceded by low-energy murmurs with
which they share most of their frequency content. These minor disturbances
cause NMF algorithms to activate clean basis functions during time intervals
not containing the main events we are interested in detecting, thus produc-
ing contaminated right nonnegative factors. In the following pages we will
present a spectrogram-based denoising technique that aims at reducing the
influence of such murmurs and, at the same time, highlighting the columns
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containing cardiac events.
In Section 3.2.5 we remarked how the spectrograms of S1 and S2 sounds
appear as bell-shaped curves and, in particular, how taking the average over
multiple sounds produced spectrograms without any local fluctuation. This
study supports the idea that by applying a Weighted Time Compression
(WTC) to the columns of a spectrogram we would be able to both normal-
ize the latter, aiding the creation of appropriate basis functions in the NMF
phase of the detection algorithm, as well as remove any unwanted minor fluc-
tuation, hence creating cleaner right nonnegative factors. More concretely,
given a column-wise description of a spectrogram matrix X = {Xj}j=1,...,N

and a compression factor of c columns, the output of the WTC is a spectro-
gram X̂ = {X̂j}j=1,...,⌊N

c ⌋ given by:

X̂j =
1

wj

X
i ∈ Ij

Xi

wj =

|Ej| if Ej ̸= ∅,

c if Ej = ∅.

where Ej ⊂ Ij = {(j− 1)c+1, . . . , jc} is a set of the time indexes associated
to columns containing cardiac events within the j-th interval of compression
Ij . Clearly Ej cannot be known a priori, so in order to develop an algorithm
for the WTC, we need a way to estimate how many indexes in Ij are actually
related to cardiac events. One possible approach, recalling that our NMF al-
gorithm of choice will be MU-NMF(2), is to threshold the 2-norm-squared of
the columns to be compressed by a value M . In particular, this value should
be chosen in such a way that only columns associated to the peaks of S1 and
S2 sounds will pass the threshold.
With this in mind, let us consider a clean spectrogram Xcyc = {Xcyc

j }j=1,...,n

of a single cardiac cycle, computed, as usual, with an overlap of p = 0.95 and
define M1, M2 as the 2-norm-squared of peak S1, S2 sound columns respec-
tively. From Figure (3.16) we know that, on average, S2 sounds are char-
acterized by a bell-shaped curve with a slightly lower peak than S1 sounds.
As a consequence, our threshold M should be fixed to the 2-norm-squared of
peak S2 sound columns, that is:

M = M2 (4.1)

Furthermore, from the same Figure, we can observe that the ratio r between
S1 and S2 peaks can be approximated, on average, as r = 9

7 . In particular,
this allows us to estimate the 2-norm-squared of peak S1 sound columns:
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M1 = r2M2 (4.2)

Now, since peak cardiac sounds both have a duration of around 5% that of
the cycle, letting q = 1

20 we can expect qn columns of Xcyc to be allocated to
each main sound, while the remaining ones will have negligible 2-norm. By
defining the 2-norm-squared mean of the cycle:

mcyc =
1

n

nX
j=1

∥Xcyc
j ∥22 (4.3)

we can approximate the same quantity as:

mcyc ≈ 1

n
(qnM1 + qnM2) (4.4)

Expanding (4.4) using (4.1) and (4.2) yields:

mcyc ≈ q(r2 + 1)M = αM (4.5)

where α = 13
98 . Equivalently, given mcyc, we get the threshold:

M ≈ 1

α
mcyc (4.6)

In conclusion, since we can reasonably assume the 2-norm-squared mean to
be independent from the number of considered cardiac cycles by the quasi-
periodic nature of a PCG’s complete spectrogram X = {Xj}j=1,...,N , we may
obtain the sought after threshold through the following relations:

M ≈ 1

α
m

m =
1

N

NX
j=1

∥Xj∥22
(4.7)

The estimated set of time indexes Êj will therefore be defined as:

Êj = {i ∈ Ij : ∥Xi∥22 > M} (4.8)

The following Algorithm (4.2.2) contains a schematic representation of the
WTC denoising routine:
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Algorithm 4.2.2 Weighted Time Compression

Input: A spectrogram X = {Xj}j=1,...,N and compression factor c.
Output: A denoised spectrogram X̂ = {X̂j}j=1,...,⌊N

c ⌋.

1: M = 98
13N

NP
j=1

∥Xj∥22

2: for j = 1, . . . , N
c do:

3: Xtemp = 0

4: wtemp = 0

5: check = false

6: for i = 1, . . . , c do:

7: Xcurr = X(j−1)c+i

8: Xtemp = Xtemp +Xcurr

9: if ∥Xcurr∥22 > M

10: wtemp = wtemp + 1

11: check = true

12: end if

13: end for

14: if check
15: w = wtemp

16: else

17: w = c

18: end if

19: X̂j =
1
wX

temp

20: end for

The effect of the WTC routine on a PCG containing low-energy murmurs
can be appreciated in Figure (4.4). The murmurs affecting the second and
third heart beat within the provided zoom-in of Figure (4.4a) have been
successfully attenuated, as evidenced by the absence of imperfections within
the activation coefficients’ matrix of Figure (4.4e).
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(a)

(b) (c)

(d) (e)

Figure 4.4: Zoom-in on low-energy murmurs within "PCG85315_PV" from
Database2 (a). Zoom-in on the affected columns of the uncompressed (b) and
Weighted Time Compressed (d) spectrogram of the signal using a compression fac-
tor c = 10. Zoom-in on the affected coefficients of the right factors generated by
MU-NMF(2) applied to the uncompressed (c) and Weighted Time Compressed (e)
spectrogram.
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Before moving on to the following denoising routine, it should be emphasized
that the choice of the compression factor c should be done taking into account
the overlap percentage p with which the spectrogram is computed. Indeed,
as we remarked in Section 3.2.1, the latter controls how many columns of
the spectrogram will be allocated to each cardiac sound, hence the role of
the former is reducing such quantity. Furthermore, since our end goal is
detecting cardiac events from the rows of H, in that regard, applying a time-
wise compression to the spectrogram corresponds to a loss of precision. As a
consequence, should the desired results require a high-level of precision, the
compression factor must be chosen as small as possible to attenuate most
murmurs and at the same time not compromise the outcome.

4.2.3 Sparse NMF

As we will now discuss, a possible way of dealing with the influence of low-
energy murmurs on the quality of the right nonnegative factors generated
by the NMF, is to modify the algorithm MU-NMF(2) itself. As a matter
of fact, such disturbances appear within the matrix H as minor activation
coefficients corresponding to time intervals not containing any cardiac event.
The difference in relative weight between these coefficients and the ones actu-
ally identifying cardiac events is often quite noticeable, and it suggests that
a sparse version of the algorithm applied so far could yield decent results. To
clarify, with sparse version we intend an algorithm derived from the modified
objective:

F (X;W,H) = D2(X,WH) + λ∥H∥1 (4.9)

which adds a 1-norm regularizer on the right factor H through a penalty
(see Section 2.1.2 on NMF regularization). By an appropriate choice of the
penalty parameter λ > 0, we would then be able to incentivize the algorithm
to not activate any basis function during time intervals containing murmurs,
since putting to zero such coefficients produces a bigger decrease of the ob-
jective if compared to the decrease followed by better approximating the
corresponding columns of the spectrogram X.
As shown in the work by Févotte et al. [9], from (4.9) one may derive a
closed-form multiplicative update rule, similar to the one presented in The-
orem (2.4), for the values β /∈ (1, 2). Omitting the careful thresholding
required to maintain the following quantities strictly positive, the general
update rule for β ≥ 2 is given by:
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W (t) = W (t−1) ◦


h

W (t−1)H(t−1) ◦(β−2) ◦X H(t−1)⊤
i

h
W (t−1)H(t−1) ◦(β−1)

H(t−1)⊤
i

◦γ(β)

H(t) = H(t−1) ◦


h
W (t)⊤ W (t)H(t−1) ◦(β−2) ◦X − λO

i
h
W (t)⊤ W (t)H(t−1) ◦(β−1)

i
◦γ(β)

(4.10)

where γ(β) is defined as in Theorem (2.4) and O ∈ Mr×n(R+), O(i, j) ≡ 1.
In particular, as remarked in Section 2.1.2, since the objective was modi-
fied by adding a regularizer for H, to prevent the convergence to degenerate
stationary points the above update rule must be implemented alongside a
normalization on the columns of W at each iteration.
Let us now analyze an ideal case to better understand the relation between
the penalty parameter λ and the sparsification property of the 1-norm reg-
ularizer in the case β = 2. More precisely, let’s consider a column-wise
description of a spectrogram X = {Xj}j=1,...,N and, in particular, focus on
one of its columns Xj . To simplify the computations, suppose the dictio-
nary W = {Wk}k=1,...,r to be fixed and, furthermore, its first column to be
precisely Xj , hence W1 = Xj . In this framework, when it comes to ap-
proximating the j-th column of X, we can restrict ourselves to the following
objective:

f(Xj ;W1, H(1, j)) = D2(Xj ,W1H(1, j)) + λH(1, j) (4.11)

since activating any other coefficient H(k, j) for k ̸= 1 would result in a worse
approximation. Omitting the dependence of f from all quantities except
H(1, j) = x and recalling that W1 = Xj , we get the following cost function:

f(x) =
1

2
∥Xj −Xjx∥22 + λx =

1

2
∥Xj∥22x2 + (λ− ∥Xj∥22)x+

1

2
∥Xj∥22 (4.12)

The global minimum is therefore attained at:

x̄λ = 1− λ

∥Xj∥22
(4.13)

From this relation we notice, unsurprisingly, that the unsparsified algorithm
(λ = 0) will activate the first basis function with a coefficient of precisely
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x̄0 = 1. On the other hand, by adding the penalty term, such coefficient
will be set to smaller and smaller values as λ increases. In particular, for all
values λ ≥ ∥Xj∥22, the activation coefficient will be x̄λ = 0 (recall the positive
thresholding5) and the maximal sparsity on the j-th column of H is reached.
In this ideal case, if we assume Xj to be a column containing some murmur
we want to attenuate, we can fix a small δ > 0 and set λ to any value in the
interval:

∥Xj∥22(1− δ), ∥Xj∥22
in order to obtain an activation coefficient x̄λ no greater than δ itself. To
conclude, we should remark that all the above computations can also be
derived, even in more generality, from the update rule for the H factor in
Equation (4.10).
Going back to the denoising implications of the sparsified NMF algorithm,
which we shall hereon define as MU-SNMF (Multiplicative Update Sparse
NMF), in the following Figure (4.5) we can compare the factors generated
by MU-NMF(2) and MU-SNMF(2) applied to the same spectrogram as the
previous section, which, as already seen, contains some low-energy murmurs.

(a) (b)

(c)

5To be more precise, it would be set to x̄λ = ϵ for a sufficiently small value of ϵ > 0.
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(d) (e)

(f)

Figure 4.5: Nonnegative factors generated by MU-NMF(2) (a)-(c) and
MU-SNMF(2) (d)-(f) with penalty λ = 10 applied to the spectrogram of
"PCG85315_PV" from Database2. Zoom-in on cardiac sound activation coeffi-
cients within the unsparsified (b) and sparsified (e) left factor.

Interestingly enough, the choice of the penalty parameter in this particular
example allowed MU-SNMF(2) to converge to a stationary point in which
one of the two basis functions is never activated. We can therefore conclude
that activating any basis function different from the second one contained in
Figure (4.5d) would result in an increase of the objective. Moreover, as we
can see from Figure (4.5b) and Figure (4.5e), the activation coefficients within
the right factors appear sparser and more concentrated around the peak of
the corresponding cardiac event when the sparse variant of the algorithm is
involved.

4.2.4 Localized Median Filter

Similar to the aforementioned Norm Clipping technique, another signal-based
denoising routine that can be used to attenuate high-energy noise impulses
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relies on the application of a Median Filter. The latter is more commonly
employed in a digital image processing environment to reconstruct the value
of isolated corrupted pixels from the clean, neighboring ones. In its most
simple form, the Median Filter applies a moving window to the signal, com-
puting the median over all samples spanned by the former. More precisely,
given a one-dimensional discrete signal x = {xk}k=1,...,N and a window length
of L samples, the filter produces a signal x̂ = {x̂k}k=1,...,N−L+1 where:

x̂k = median(xk, . . . , xk+L−1)

As a consequence, as long as the corrupted samples are sufficiently isolated
or time-localized, the moving median window will also span clean samples,
thus attenuating the former’s influence.

We should remark that applying a Median Filter to audio signals, such as
PCGs, is usually not as straightforward as one might think, especially if
we are interested in preserving the key features within the clean signal sam-
ples. As for our dataset, in which the PCGs are down-sampled to a frequency
fs = 1kHz, even short noise impulses with a duration in the tenths of seconds
will corrupt hundreds of consecutive samples. Under these circumstances, we
would then be required to fix the window length L to the same order of mag-
nitude in order to effectively denoise the signal; on the other hand, such a
wide window would also have undesired effects on the clean sections of the
PCG. In Figure (4.6) below we notice how the high-energy impulses were cor-
rectly attenuated by the filter using a window of L = 31 samples, although
upon closer inspection, the clean sections containing exclusively heart sounds
have been severely modified. This is particularly problematic in our frame-
work, since maintaining the clean frequency contents of PCGs unaltered is
of crucial importance for a NMF spectrogram-based learning.

(a) (b)
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(c) (d)

Figure 4.6: Unfiltered (a) and median filtered (c) "PCG49577_MV" from
Database2 using a L = 31 sample window. Zoom-in on four clean heart beats
within the unfiltered (b) and median filtered (d) signal. The window length was
chosen based on the duration of the high-energy impulses that can be observed at
times t = 0s, t = 16.2s, t = 17.2s, t = 33.7s and t = 34.5s.

In order to address these issues, the method we propose, which we shall
hereon refer to as Localized Median Filter (LMF), applies the filter exclu-
sively to the windows centered at samples corrupted by high-energy impulses.
In other words, given a set of indexes I ⊂ {1, . . . , N} associated to corrupted
samples and a radius r, the LMF produces a signal x̂ = {x̂k}k=1,...,N where:

x̂k =

 median(xk−r, . . . , xk+r) if k ∈ I,

xk if k /∈ I.

Moreover, much like in the Norm Clipping routine, assuming the high-energy
impulses to be characterized by high amplitudes within the signal, the index
set I can be obtained by thresholding the absolute value of the PCG samples.
We can therefore summarize the LMF denoising routine in the following
Algorithm (4.2.4):

Algorithm 4.2.4 Localized Median Filter

Input: A signal x = {xk}k=1,...,N , window radius r and threshold M .

Output: A denoised signal x̂ = {x̂k}k=1,...,N .

1: Initialize x̂ = x
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2: for k = 1, . . . , N do:

3: if |xk| > M

4: l = max(k − r, 1)

5: u = min(k + r,N)

6: x̂k = median(xl, . . . , xu)

7: end if

8: end for

In Figure (4.7) we chose to apply the above denoising routine to the same
PCG signal as before with radius r = 15 and threshold M = 0.02. In partic-
ular, the value for M was chosen based on the amplitude of the clean signal
sections. As we can observe, the high-energy impulses were removed and
in the spectrogram of the filtered signal the columns associated to cardiac
events now have significant weight. This last remark is of pivotal importance
if we recall the analysis carried out is Section 3.2.3 regarding the presence of
noise in PCGs and the construction of basis functions by the NMF. Indeed,
if we were to apply MU-NMF(2) to the noisy spectrogram, the nonnegative
factors would be modelled to describe the noise rather than cardiac events,
thus hindering the foundations of our NMF-based learning. Moreover, com-
paring the spectrograms of Figure (4.7d) and Figure (4.3c) produced by NC,
we notice how the LMF was also able to attenuate the high-frequency content
of the impulsive noise.

(a) (b)

70



(c) (d)

Figure 4.7: Unfiltered (a) and Localized Median Filtered (c) "PCG49577_MV"
from Database2 using a radius r = 15 and threshold M = 0.02. Spectrogram surf
plot for the unfiltered (b) and Localized Median Filtered (d) signal.

4.2.5 NMF Adaptive Noise Canceler

In the previous sections we have developed several denoising techniques whose
purpose was dealing with signals affected by either high-energy noise impulses
or low-energy murmurs. We will now shift our attention towards noise bursts,
that is, medium-to-high-energy disturbances characterized by a longer dura-
tion (see, for example, Figure (3.5a)). Due to the prolonged duration of this
type of noise, the aforementioned techniques are often ineffective at providing
a sufficiently clean signal or spectrogram for the subsequent NMF applica-
tion. In the following pages we will therefore devise a NMF-based Noise
Canceler that heavily relies on the information provided by the nonnegative
factors to produce cleaner PCGs.
As we will now briefly introduce, the mathematical foundations for this kind
of denoiser lie in the theory of Adaptive Filtering [7]. In the particular
case of Adaptive Noise Cancellation, let us then consider a noisy random
signal y = {y(t)}t ∈ T decomposed additively as the sum of a clean signal
s = {s(t)}t ∈ T and noise n = {n(t)}t ∈ T :

y(t) = s(t) + n(t) (4.14)

In particular, in our notation we are assuming t to be a discrete time index.
The fundamental premise for the arguments to follow is that we suppose to be
known a reference noise signal r = {r(t)}t ∈ T correlated to the actual noise
n present in y. In this framework, we model the noise n by assuming the

71



latter to depend linearly from the reference through some unknown (time-
dependent) coefficients. More precisely, we consider the model:

n(t) =

Nh−1X
i=0

hi(t)r(t− i) = h(t)T r(t) (4.15)

where:

· Nh ∈ N∗ is the model order;

· h = {h(t)}t ∈ T , h(t) = [h0(t), . . . , hNh−1(t)]
T are the coefficients to be

estimated6;

· r(t) = [r(t), . . . , r(t−Nh + 1)]T are the components of the reference we
assume to be correlated to n(t).

If we then measure the quality of the approximated noise, at each time in-
stant, through the error:

e(t) = y(t)− h(t)T r(t) (4.16)

we may consider the following time-dependent objective to be minimized:

F (t;h(t)) = E e(t)2 (4.17)

where t is to be considered fixed. In particular, since ∇h(t)e(t) = −r(t), the
gradient with respects to the h(t) variables of the former is given by:

∇h(t)F (t;h(t)) = −2E [y(t)r(t)] + 2E r(t)r(t)T h(t) (4.18)

More compactly, we shall write:

∇h(t)F (t;h(t)) = −2Ryr(t) + 2Rrr(t)h(t) (4.19)

As a consequence, by applying a first order method to find stationary points
of (4.17), from the above computations it follows that the desired estimated
coefficients ĥ(t) will satisfy the linear system:

Rrr(t)ĥ(t) = Ryr(t) (4.20)

6Unlike y, s, n and r, the coefficients h are not random signals, despite the time depen-
dence.
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Letting n̂(t) = ĥ(t)T r(t) be the estimated noise at time t, we can then re-
construct the clean, denoised signal:

ŝ(t) = y(t)− n̂(t) (4.21)

Evidently, from a computational point of view, we cannot work with the ran-
dom signals y and r, since, in most cases, they are unknown. As a matter of
fact, in practical applications we only have at our disposal some realizations
ȳ = {ȳk}k=1,...,N and r̄ = {r̄k}k=1,...,N of the signals, recorded for a finite
number of discrete time samples. As a consequence, we will now briefly dis-
cuss how the above mathematical foundations for an Adaptive Noise Canceler
(ANC) can be modified to accomodate our limited knowledge of the signals
at hand. Let us distinguish between two cases:

Stationarity. In the case where the random signals y and r can be consid-
ered (jointly) stationary, Equation (4.20) loses its time dependence. Indeed,
the coefficients of the system matrix Rrr(t) and right-hand-side Ryr(t) are
expected values in the form E [y(t)r(t− k)] or E [r(t− k1)r(t− k2)] for some
appropriate nonnegative time shifts k, k1, k2 ≥ 0. Under stationarity hypoth-
esis, such quantities depend exclusively on the relative shifts k and |k1− k2|,
hence Rrr(t) = Rrr, Ryr(t) = Ryr and therefore the coefficients ĥ(t) = ĥ now
become independent of time as well. As a consequence, in order to obtain
ĥ, it suffices to construct an estimate for the system matrix and right-hand-
side using the realizations ȳ and r̄ at our disposal. In particular, this can
be done by recalling that given two (ergodic and stationary) random sig-
nals a = {a(t)}t ∈ T , b = {b(t)}t ∈ T and two realizations ā = {āk}k=1,...,N ,
b̄ = {b̄k}k=1,...,N , an estimate R̂ab(k) for the quantity Rab(k) = E [a(t)b(t− k)]
is given by:

R̂ab(k) =
1

N − k − 1

NX
t=k+1

ātb̄t−k (4.22)

The following Algorithm (4.2.5) summarizes how the Stationary Adaptive
Noise Canceler (SANC) can be implemented:

Algorithm 4.2.5 Stationary Adaptive Noise Canceler

Input: A signal y = {yk}k=1,...,N , noise reference r = {rk}k=1,...,N and
model order Nh.

Output: A denoised signal ŷ = {ŷk}k=1,...,N .
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1: for i = 0, . . . , Nh − 1 do:

2: Ryr(i) = R̂yr(i)

3: for j = 0, . . . , Nh − 1 do:

4: Rrr(i, j) = R̂rr(|i− j|)
5: end for

6: end for

7: ĥ = R−1
rr Ryr

8: for k = 1, . . . , N do:

9: rk = [rk, . . . , rk−Nh+1]
T

10: n̂k = ĥT rk

11: ŷk = yk − n̂k

12: end for

Nonstationarity. If the random signals y and r cannot be considered
stationary, the model’s coefficients ĥ(t) are actually time dependent, but
unlike the previous case, estimating the system matrix and right-hand-side
from a single realization ȳ and r̄ would no longer produce accurate results.
As a consequence, following the work of Candy [7], one possible approach
to obtain the estimates ĥ(t) is to apply a gradient descent method to the
objective (4.17) and approximate its gradient with its instantaneous version7:

∇h(t)F (t;h(t)) ≈ ∇̂h(t)F (t;h(t)) = −2e(t)r(t) (4.23)

Fixing a descent step δi
2 we can therefore consider the updates:

ĥ(i+1)(t) = ĥ(i)(t) + δie
(i)(t)r(t) (4.24)

where e(i)(t) = y(t)−ĥ(i)(t)T r(t). We should remark that, in this framework,
the coefficients actually become random variables. In particular, (4.24) pro-
vides an iterative scheme that depends on the time index t and iteration
counter i, but there is little correlation between the coefficients’ estimate at
time t and time t+ 1. As a consequence, the two indexes are merged into a
single time index, thus yielding the following update rule:
7The instantaneous gradient is obtained by dropping the expected value operator.
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ĥ(t+ 1) = ĥ(t) + δte(t)r(t) (4.25)

Moreover, as remarked by the same author, choosing δt as:

δt =
α

∥r(t)∥22 + β
(4.26)

for some fixed coefficients α ∈ (0, 2) and β > 0, is enough to guarantee the
convergence of the scheme in a mean-squared sense.
In conclusion, since (4.25) does not contain any expected values, we can
obtain an estimate of the coefficients by replacing the random variables y,
r with their respective realizations ȳ, r̄. The following Algorithm (4.2.6)
describes how the Nonstationary Adaptive Noise Canceler (NSANC) can
be implemented. For clarity, we should remark that the latter approxi-
mates the value ∥r(t)∥22, present in the descent step, using a forgetting-factor
approach on the estimated autocorrelation sequence {V̂k}k=1,...,N given by
V̂k+1 = γV̂k + (1− γ)r̄2k for γ ∈ (0, 1).

Algorithm 4.2.6 Nonstationary Adaptive Noise Canceler

Input: A signal y = {yk}k=1,...,N , noise reference r = {rk}k=1,...,N and
model order Nh.

Output: A denoised signal ŷ = {ŷk}k=1,...,N .

1: Initialize ĥ(0), V̂0 > 0, α ∈ (0, 2), β > 0, γ ∈ (0, 1).

2: for k = 1, . . . , N do:

3: rk = [rk, . . . , rk−Nh+1]
T

4: n̂k = ĥ(k − 1)T rk

5: ŷk = yk − n̂k

6: V̂k = γV̂k−1 + (1− γ)r2k

7: δk = α
V̂k+β

8: ĥ(k) = ĥ(k − 1) + δkŷkrk

9: end for

Let us now go back to the main objective for this section, namely, developing
a NMF-based Noise Canceler.
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Given a signal x = {xk}k=1,...,N affected by noise bursts, we would like
to apply the aforementioned Adaptive Noise Cancellation routines to de-
noise the former. Nevertheless, in order to do so, a noise reference signal
r = {rk}k=1,...,N must be available. What we will now show, is how to ex-
ploit the modelling capabilities of the NMF to obtain such reference.
From the analysis carried out in Section 3.2.3 we know that MU-NMF(2),
if applied to the spectrogram X of the signal, will allocate one (or more)
of the basis functions at its disposal to model the noise. As a consequence,
while one column of the left factor W will be used to describe the prominent
frequency content of the noise, the corresponding row of H will dictate when
such frequencies are detected. In short, the method we propose extrapolates
the reference directly from the signal x by windowing a band-passed version
of itself. Let us now describe each step of the procedure in more detail:

Step 0: Column and row selection. Initially, we compute the spectrogram
X of the signal and apply MU-NMF(2) (or one of its variants) to generate
the two nonnegative factors8 W = {Wk}k=1,...,r and H = {Hk}k=1,...,r. Sub-
sequently, we identify the column of W whose frequency content is (most)
correlated to the noise and thus select the corresponding row of H as well. In
the case where the noise can be distinctly recognized and time-localized from
the signal x itself, this process can be completed by selecting the row of H
(and consequently, the corresponding column of W ) whose activation coeffi-
cients are most time-wise correlated to the former. Without loss of generality,
let’s assume of having selected the first column-row pair (W1, H

1).

Step 1: Band-pass filter application. From W1 we extract a frequency band
[fl, fh] containing the peak that characterizes the noise. This process can
be either carried out by hand in a supervised framework, or automated by
detecting the peak and constructing both a (adaptable) left and right radius.
We then band-pass x on the extracted frequency interval (using, for example,
low-pass and high-pass zero-phase filters with cutoff frequencies fh and fl
respectively, see Section 3.1.1) to obtain a filtered signal xbp = {xbpk }k=1,...,N .
So far we have frequency-localized the noise; the next step is to time-localize
it.

Step 2: Weight decompression. Let us now focus on H1, which we shall
hereon refer to as a ‘window’. Denoting H1 = W = {wj}j=1,...,M the ‘weights’
of the window, the first thing we need to observe is that W cannot be imme-
diately used to window xbp since M < N . Indeed, if the signal x is sampled
at a frequency fs and the STFT was computed using parameters δT and p,
8Here Wk and Hk are, respectively, the k-th column of W and row of H.
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one can check that:

M =
N − Lw

δw
+ 1

where Lw = ⌊fsδT ⌋ and δw = Lw − ⌊Lwp⌋. This is due to the fact that
each time frame of the STFT matrix is computed using exactly Lw sam-
ples of x. As a consequence, we need to devise a way of decompressing W
into a signal of length N . By noticing that the j-th compressed time index
of the STFT depends exclusively on the uncompressed time index interval
[1 + (j − 1)δw, Lw + (j − 1)δw] of x, the following Algorithm (4.2.7) accom-
plishes our goal. Let us denote Ŵ = {ŵk}k=1,...,N such decompressed weights
window.

Algorithm 4.2.7 Weight Decompresser

Input: A compressed signal W = {wj}j=1,...,M related to a length N
signal in a STFT-like manner with parameters fs, δT and p.

Output: A decompressed signal Ŵ = {ŵk}k=1,...,N

1: Initialize Ŵ = {ŵk}k=1,...,N = 0, Γ = {γk}k=1,...,N = 0

2: Lw = ⌊fsδT ⌋
3: δw = Lw − ⌊Lwp⌋
4: for j = 1, . . . , M do:

5: for k = 1 + (j − 1)δw, . . . , Lw + (j − 1)δw do:

6: ŵk = ŵk + wj

7: γk = γk + 1

8: end for

9: end for

10: for k = Lw + (M − 1)δw + 1, . . . , N do:

11: γk = 1

12: end for

13: for k = 1, . . . , N do:

14: ŵk = ŵk

γk

15: end for
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Step 3: Reference creation. Now that we have both frequency and time-
localized the noise, the last step is to create the reference r = {rk}k=1,...,N .
In this regard, we propose to define the latter as the bandpassed signal xbp
windowed with the decompressed weights Ŵ, that is:

rk = xbpk ŵk ∀k = 1, . . . , N (4.27)

With respect to Figure (4.1), which contains the state machine representation
of the NMF-based heart rate detection algorithm, we should remark that Step
0 of the above procedure can be considered to be part of the NMF feedback,
hence an a priori step preceding the actual denoising routine. With this
in mind, the following Algorithm (4.2.8) summarizes all the steps described
so far within the general scheme for what we shall hereon refer to as NMF
Adaptive Noise Canceler (NMF-ANC):

Algorithm 4.2.8 NMF Adaptive Noise Canceler

Input: A signal x = {xk}k=1,...,N , a column-row pair (Wk, H
k) extracted

from the NMF of its spectrogram X and a model order Nh.

Output: A denoised signal x̂ = {x̂k}k=1,...,N

1: Extract from W k a frequency band [fl, fh]

2: Compute xbp = {xbpk }k=1,...,N by band-passing x on the fre-
quency interval [fl, fh]

3: Compute Ŵ = {ŵk}k=1,...,N from Hk by calling Algorithm (4.2.7)

4: Define r = {xbpk ŵk}k=1,...,N

5: Compute x̂ = {x̂k}k=1,...,N from x, r and Nh by calling Algo-
rithm (4.2.5) or Algorithm (4.2.6)

Before providing the results yielded from applying the above denoising rou-
tine to concrete PCG signals, there are some key aspects of the latter that
need to be discussed.
First and foremost we should highlight some possible complications regarding
the extraction of the noisy frequency band [fl, fh]. As a matter of fact, while
this process can be completely automated, one must keep in mind that:

Remark 4.2. In the case where the noise and the clean signal features
share a significant portion of their frequency content, it may be worthwhile
reducing the diameter of the interval to keep the clean frequencies out of the
noise reference.
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Of course, this aspect becomes more and more noteworthy as the time-
correlation between the noise and the clean signal features increases.
Secondly, the choice of the model order Nh should be made based on the
type and duration of the noise at hand:
Remark 4.3. For noise bursts of prolonged duration, opting for a higher
value of the order may aid the modelling of a more fitting noise estimate.
Similarly, if the noise is more localized, reducing such parameter could help
preserving the quality of the clean signal sections.
Lastly, one must decide whether to utilize the Stationary or Nonstationary
version of the Adaptive Noise Canceler based on the intrinsic properties of
the noise. For example:
Remark 4.4. If the noise at hand appears to be characterized by a smaller
frequency window and is present throughout the signal, a sensible conclusion
would be to opt for the stationary version of the algorithm. On the other hand,
if the noise only affects isolated portions of the signal, the nonstationary
variant could potentially offer a more accurate noise estimation.
To conclude this section, in Figure (4.8) below we report the effects of the
NMF-ANC on a PCG containing four distinct noise bursts.

(a)

(b) (c)
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(d) (e)

Figure 4.8: Comparison (a) between noisy (blue) and NMF Adaptive Noise Can-
celled (red) "PCG0004" from Database1 with noise reference constructed from the
fourth column-row pair of (b) and (c), frequency band [60:180]Hz and model order
Nh = 1000 for the NSANC. Nonegative factors generated by MU-NMF(2) applied
to the spectrogram of the noisy (b)-(c) and NMF Adaptive Noise Cancelled (d)-(e)
signal.

The noise reference was created from the fourth column-row pair of Fig-
ure (4.8b) and Figure (4.8c). In particular, we selected the frequency band
[60, 180]Hz and chose the Nonstationary ANC routine with an order Nh =
1000 based on the duration and relative time-isolation of the noise. As we
can observe, the noise bursts affecting the top nonnegative factors are com-
pletely absent in the bottom ones. When it comes to the detection of cardiac
events, in Figure (4.8c) the dedicated row of H is the first, while in Figure
(4.8e) it is the second. In particular, from the latter essentially all cardiac
events can be easily and clearly identified. The same cannot be said for the
former, since most cardiac events time-correlated to the noise bursts have
been corrupted and are thus difficult to spot.
Remarkably, we also tested the effectiveness of the Stationary ANC routine
on the same signal and reference, but in contrast with the Nonstationary
one, multiple denoising applications were needed to obtain comparable re-
sults. The choice of using NSANC based on the noise properties was therefore
well founded.
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Chapter 5

Detection algorithm

The denoising routines developed in the previous chapter were the final build-
ing blocks required to complete our proposed NMF-based heart rate detection
algorithm. With respect to Figure (4.1), the last major aspect that needs to
be discussed is the interaction between these routines and the signal’s quality
assessment within the denoising step of the procedure. More precisely, in the
following sections we will expand on the state machine representation of the
algorithm by describing in detail when each denoiser should be applied based
on the signal’s condition and other available data.

5.1 PCG quality assessment

Before providing a state machine denoising flow for the signals in our dataset,
we need a way to categorize PCGs based on their quality, that is, the type of
noise they contain as well as on the effort required to identify cardiac events
within them. In particular, this data quality assessment should be carried
out by taking advantage of all available information, namely, the (current)
signal x itself, its spectrogram X and the nonnegative factors W , H. Recall,
as a matter of fact, that the data present within W and H can be utilized in
the denoising process through the NMF feedback component of the detection
algorithm. Let us point out that this categorization of PCGs should not be
interpreted as a medically accurate way of differentiating these signals based
on their physiological features. Rather, the purpose of the latter is to estab-
lish a more precise, albeit intuitive, procedure to justify the denoising choices
we will present.
Based on the analysis of the databases at our disposal, we therefore pro-
pose the following four categories, which we shall denote in short as ‘Q-’ (as
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in quality) followed by ‘A’-‘D’, listed in increasing order of disruptiveness
associated to the noise contained in the data:

Q-A: Clean or mostly clean. In this category fall PCG signals characterized
by either low-level or no noise at all. Cardiac events should be easily identified
by examining the signal x or its spectrogram X. Alternatively, at least one
column of W should be unequivocally related to the frequency content of
heart sounds, and the corresponding row of H must provide a clear time
localization of cardiac events with little to no detectable interference.

(a)

(b)

Figure 5.1: Example of a PCG belonging to Q-A. Zoom-in on "PCG50115_PV"
from Database2 (a) and zoom-in on one of the rows of the right factor H (b).

Q-B: Minor murmurs. The PCGs in this category are affected by low-energy
murmurs that do not compromise the clean signal features. Most cardiac
events should be recognizable both in x, X and within at least one column-
row pair of W , H. In the worst case, it may be difficult to differentiate
between murmurs and particularly low-energy cardiac events.

(a)
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(b)

Figure 5.2: Example of a PCG belonging to Q-B. Zoom-in on "PCG85315_PV"
from Database2 (a) and zoom-in on one of the rows of the right factor H (b).

Q-C: Burst or widespread noise. In this category, the PCGs are affected by
medium-to-high-energy noise bursts characterized by a prolonged duration.
Cardiac events time-correlated to such bursts should be difficult to be identi-
fied. In the worst case, no section of the signal is left uncompromised by the
noise, but some cardiac event-related pattern can still be spotted within the
rows of H. Alternatively, at least one column of W should be unequivocally
related to the frequency content of the noise, and the corresponding row of
H must provide a general time localization of the latter.

(a)

(b)

Figure 5.3: Example of a PCG belonging to Q-C. Zoom-in on "ECGPCG0004"
from Database1 (a) and zoom-in on one of the rows of the right factor H (b).

Q-D: Impulsive noise. To this category belong PCGs containing disruptive
high-energy noise impulses. Although greatly time-localized, thus leaving
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some unaltered, clean sections, the noise should be clearly recognizable from
both x and X. Moreover, in the worst case, the latter corrupted most if not
all basis functions, hence rendering the nonnegative factors unusable for both
cardiac event detection and denoising.

(a)

(b)

Figure 5.4: Example of a PCG belonging to Q-D. Zoom-in on "PCG49577_MV"
from Database2 (a) and zoom-in on one of the rows of the right factor H (b).

We should remark that these categories are by no means disjoint: some PCGs
in the considered dataset may be affected by multiple types of noise, hence
belonging to more than one category. In particular, this aspect will reflect
in the following state machine denoising flow, since a single PCG signal can
undergo the application of multiple denoising routines.

Remark 5.1. In the remainder of this chapter, given a PCG signal x be-
longing to a category Q-X, we shall write x ∈ Q-X.

5.2 State machine denoising flow

Let us now describe the denoising flow in our proposed algorithm. As men-
tioned earlier, since the four quality categories are not disjoint, the former
is characterized by an iterative structure: during each iteration a denoising
routine is proposed based on the current signal quality assessment and result
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requirements, such as detection precision. In a supervised environment, one
can decide not to apply the proposed routine. This is the case, for exam-
ple, when one of rows of the right factor has already reached a satisfactory
level of cardiac event detection precision despite the persistence of noise. As
a consequence, from an algorithmic point of view, if none of the proposed
routines are accepted we simply stop the denoising process. This will be
modelled by the boolean variable none_accepted. Moreover, since some de-
noising routines require the choice of thresholds or penalty parameters, we
allow a ‘roll-back’ of the last operation in case a faulty assignment during the
latter compromised the signal quality (e.g. fixing the penalty parameter for
the MU-SNMF variant to an exceedingly large value). The choice of undoing
the last operation will we modelled using the boolean variable undo_last.
As far as the denoising order is concerned, the proposed routines should first
address the more disruptive types of noise in order to open up the subsequent
iterations to more denoising options. Notice, for example, that in most cases
a PCG belonging to Q-D cannot be denoised using the NMF-ANC or the
WTC.
In conclusion, the following Algorithm (5.2) provides a state machine repre-
sentation of the denoising flow:

Algorithm 5.2 Denoising flow

Input: A PCG signal x.

Output: A denoised PCG signal x̂

1: Initialize x̂(0) = x

2: for k = 0, 1, . . . do:

3: Assess the quality of x̂(k) as in Section 5.1

4: if undo_last

5: x̂(k+1) = x̂(k−1)

6: elseif x̂(k) ∈ Q-A

7: x̂ = x̂(k)

8: break

9: elseif x̂(k) ∈ Q-D

10: if signal_thresholding_possible

11: propose computing x̂(k+1) from x̂(k) by apply-
ing the LMF algorithm (Section 4.2.4)
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12: else

13: propose computing x̂(k+1) from x̂(k) by apply-
ing the NC algorithm (Section 4.2.1)

14: end if

15: elseif x̂(k) ∈ Q-C

16: propose computing x̂(k+1) from x̂(k) by applying
the NMF-ANC algorithm (Section 4.2.5)

17: elseif x̂(k) ∈ Q-B

18: if detection_precision_required

19: propose computing x̂(k+1) from x̂(k) by apply-
ing the MU-SNMF variant (Section 4.2.3)

20: else

21: propose computing x̂(k+1) from x̂(k) by apply-
ing the WTC algorithm (Section 4.2.2)

22: end if

23: end if

24: if none_accepted

25: x̂ = x̂k

26: break

27: end if

28: end for

Before closing this section, we provide an application of the above denoising
process to the PCG signal "PCG49577_MV" from Database2.

First iteration. As we can see from Figure (5.5) below, the considered
PCG is affected by multiple disruptive noise impulses, as evidenced by the
two nonnegative factors. As a matter of fact, no basis function is associated
to the frequency contents of heart sounds, thus the right factor cannot be
used for cardiac event detection. Moreover, in the time instants preceding
and following the impulses, some slightly more prolonged disturbances can
be observed. Recalling our earlier PCG categorization, during this first iter-
ation the signal is assessed as belonging to both Q-D and Q-C. At this time,
although reasonable, we cannot conclude that the PCG contains murmurs.
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(a)

(b) (c)

Figure 5.5: "PCG49577_MV" from Database2 (a). Left nonnegative factor W (b)
and right nonnegative factor H.

Since the noise impulses can be easily identified from the PCG signal and
separated from the clean sections, we choose to apply the LMF algorithm
with a threshold M = 0.04. Such value allows us to mitigate the effects
of noise on the NMF factors while leaving unaltered the remaining clean
segments.

Second iteration. Judging by the NMF factors in Figure (5.6), the pre-
vious iteration was successful in addressing the noise impulses. As we can
clearly see, now both the first and third basis functions are used to describe
cardiac events. The remaining second and fourth are activated to approx-
imate the noise bursts we saw in concomitance of the impulses during the
last iteration. In particular, while the second one activates higher frequen-
cies in the interval [90, 200]Hz, the fourth activates lower frequencies, around
[0, 60]Hz. Additionally, by zooming in on the cardiac event-related rows of
the right factor, we can also notice the presence of murmurs. The signal is
therefore assessed as belonging to both Q-C and Q-B.
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(a)

(b) (c)

Figure 5.6: Localized Median Filtered signal from Figure (5.5a) (a) with a threshold
M = 0.04. Left nonnegative factor W (b) and right nonnegative factor H.

Given the presence of a column-row pair associated to noise bursts, we apply
the NMF-ANC algorithm in its nonstationary form using the second pair,
frequency interval [90, 200]Hz and model order Nh = 500. The latter was
chosen based on the noise duration, while the nonstationarity follows from
the relative time-isolation of the main noise bursts.

Third iteration. From Figure (5.7) we notice that the high-frequency
noise burst has been correctly attenuated. While the first basis function is
now allocated to describe cardiac events, the second and third one appear
to be describing some localized, leftover higher-frequency component par-
tially related to heart sounds. The remaining fourth basis function plays the
same role it did in the previous iteration, namely, approximating the low-
frequencies of the noise burst. Given the permanence of minor murmurs, we
conclude that the signal still belongs to Q-C and Q-B.
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(a)

(b) (c)

Figure 5.7: NMF Adaptive Noise Cancelled signal from Figure (5.6a) (a) with noise
reference constructed from the second column-row pair of (5.6b), (5.6c), frequency
interval [90, 200]Hz and model order Nh = 500 for the NSANC. Left nonnegative
factor W (b) and right nonnegative factor H.

The presence of the fourth column-row pair associated to noise allows us
to apply NMF-ANC a second time. In particular, we select the frequency
interval [0, 60]Hz and model order Nh = 800, the latter being higher than in
the previous iteration since the noise appears to be more widespread.

Fourth iteration. Similarly to the previous iteration, the NMF-ANC has
successfully attenuated the lower-frequency component of the noise burst.
Figure (5.8) shows that the second and fourth basis functions are associated
to cardiac events. The first and third, on the other hand, are again activated
in correspondence of higher-frequency components partially related to heart
sounds given the time-periodic activation of the relative coefficients. Since
the cardiac event-related rows are still affected by the presence of minor
murmurs, the signal belongs to Q-C and Q-B.
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(a)

(b) (c)

Figure 5.8: NMF Adaptive Noise Cancelled signal from Figure (5.7a) (a) with noise
reference constructed from the fourth column-row pair of (5.7b), (5.7c), frequency
interval [0, 60]Hz and model order Nh = 800 for the NSANC. Left nonnegative
factor W (b) and right nonnegative factor H.

In this iteration we address the higher-frequency disturbances by applying
NMF-ANC one last time. In particular, we choose the third column-row pair,
frequency interval [100, 200]Hz and model order Nh = 300.

Fifth iteration. The three previous NMF-ANC applications have removed
quite a considerable amount of burst noise and other disturbances affecting
the original signal. During this process, the rows of the right factor associated
to heart sounds got increasingly cleaner and most cardiac events can now
be easily detected. Apart from some minor imperfections caused by noise
sharing a significant portion of the frequency content characterizing heart
sounds, from Figure (5.8) we can observe that the last thing we need to
address in order to further improve the detection quality of such rows, are
murmurs. The current signal therefore belongs to Q-B.
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(a)

(b) (c)

Figure 5.9: NMF Adaptive Noise Cancelled signal from Figure (5.8a) (a) with noise
reference constructed from the third column-row pair of (5.8b), (5.8c), frequency
interval [100, 200]Hz and model order Nh = 300 for the NSANC. Left nonnegative
factor W (b) and right nonnegative factor H.

As the conclusive step in the denoising process we choose to apply a WTC
algorithm with a compression factor of c = 6.

Sixth iteration. The effects on the two nonnegative factors by the previ-
ous iteration can be appreciated in Figure (5.10) below. In particular, some
of the murmurs have been correctly attenuated in exchange for a loss of de-
tection precision. The second and fourth basis functions are used to describe
cardiac events while the remaining ones are activated in correspondence of
some leftover noise. Again, due to the presence of minor imperfections, the
signal cannot be placed in Q-A. Nevertheless, we decide to stop here the de-
noising process since a sufficiently accurate representation of cardiac events
can be extrapolated from the fourth row of the right factor.
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(a) (b)

Figure 5.10: Weighted Time Compression applied to the spectrogram of signal
shown in Figure (5.9a) with a compression factor c = 6. Left nonnegative factor
W (b) and right nonnegative factor H.

From a total of 61 heart beats, only one S1 sound and four S2 sounds cannot
be detected from the aforementioned row. It should be noted, however, that
such undetected S1 as well as three of the four S2 sounds were contained
in the section of the original signal most affected by both noise impulses
and noise bursts. The following Figure (5.11) shows the missing activation
coefficients as well as the corresponding section of the denoised PCG.

(a)

(b)

Figure 5.11: Zoom-in on the denoised PCG (a) and fourth row of the right factor
(b) containing the undetected cardiac events.
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5.3 Conclusion and further work

As mentioned in the earlier chapters, event detection within PCG signals is a
quite challenging task, especially if no additional information is supposed to
be given. The wide variety of noises that can affect these audio signals as well
as the great variance in contents, often originates the need to develop mul-
tiple different techniques to somehow regularize the data before extracting
the desired information. While the first aspect was addressed by developing
various denoising routines, some more intricate than others, the latter was
taken care of by the modelling abilities of the NMF.
In conclusion, the goal we set for ourselves at the very beginning can be
considered met, although there are a few facets that still need attention, es-
pecially with regard to the proposed NMF-ANC algorithm. The latter, as
a matter of fact, expands on the denoising possibilities of the NMF by ex-
ploiting the Adaptive Noise Cancelling algorithm in a quite unconventional
way. Indeed, in traditional applications the noise reference fed to the ANC
is generated independently of the noisy signal. This is the case, for exam-
ple, for most noise cancelling earbuds, where the noise reference is recorded
from the surrounding ambient noise. In our work, on the other hand, we
extrapolate the reference directly from the noisy signal. To our knowledge,
this procedure, which in real applications would require the installation of
just one microphone instead of multiple ones, hence cutting hardware costs,
is still mostly unexplored. As remarked in previous sections, such denois-
ing process, though particularly interesting from both a mathematical and
signal processing point of view, has its weaknesses. The most evident being
how to distinguish between noise and clean signal in the case when the two
share similar properties. This observation is related to Remark (4.2). Other
aspects that will need further investigating are touched by Remark (4.3) and
Remark (4.4), namely, how to optimally choose both the ANC model order
and stationary/nonstationary form with respect to the noise features. Lastly,
it should be noted that the NMF-ANC algorithm can be applied to a much
broader class of signals than that of PCGs. As a consequence, ironing out
these technical details is of pivotal importance for developing a more general
and encompassing denoising algorithm.
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