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Abstract

Taxonomic text classification is the Natural Language Processing (NLP) branch that aims
at classifying text into a hierarchically organized schema. Its applications space from pure
research to industrial and commercial purposes. In this thesis, in particular, the attention
is focused on the process of developing a multilingual model for hierarchically classifying
text independently from its idiom. Comparative analysis is performed to evaluate whose
embedding techniques and feature selection methods perform better. Moreover, since in
real-life scenarios a multilingual model may be required to support new languages over
time, we implement and benchmark a set of techniques, among which are two Continual
Learning algorithms, to sequentially extend our network to an incremental number of
languages. The experiments carried out display both the solidity and criticalities of the
current model and set the basis for further research.
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Introduction

Taxonomic text classification is the Natural Language Processing (NLP) set of techniques
that aims at assigning a set of predefined labels to open-ended text, with the peculiarity
that labels are organized in a taxonomy where the top categories are broad and they branch
out into more specific ones the deeper we go in the taxonomy. It has been gaining attention
in recent years due to its commercial application in audience segmentation, in which the
Interactive Advertising Bureau (IAB) taxonomy has provided a shared nomenclature for
the segments.

Despite representing a milestone in programmatic advertising, the IAB taxonomy consents
to collect sensitive personal data of the user and to exploit them for targeted advertising,
in contrast with the General Data Protection Regulation (GDPR) European law. To
provide a starting point for a privacy-compliant targeted advertisement pipeline, in this
work we provide a customized version of the IAB taxonomy, that hides categories related
to sensitive data.

The present work deals with the implementation of a multilingual taxonomic text classi-
fication algorithm, that is able to categorize web pages in an arbitrary language as one of
the nodes in our taxonomy. We propose and implement a deep learning pipeline for mul-
tilingual taxonomic text classification, including data collection, data cleaning, features
extraction, classification and post-processing.

Moreover, as in real-life scenarios a multilingual model may need to be extended to new
languages over time, we focus on the implementation and comparison of di↵erent tech-
niques for dealing with the sequential integration of new idioms. In particular, we propose
two Continual Learning (CL) techniques as an alternative to re-training from scratch, as
its computational cost gets fast unsustainable with the number of required languages, and
to fine-tuning on new data only, as this approach dramatically su↵ers from Catastrophic
Forgetting (CF).

The main contribution of this thesis is the extension of the Elastic Weight Consolidation
CL algorithm to a taxonomic classifier, thanks to the computation of the approximated
Fisher Information matrix for multivariate distributions. Moreover, we implement the
temperature scaling algorithm for the calibration of neural networks in the case of multi-
output classifiers.

The work illustrated in this thesis originated as a collaboration between the University
of Padua and ID Ward Ltd. following the need of extending the existing taxonomic text
classifier to the multilingual case, for the goal of extrapolating user interests based on their
browsing habits, while staying privacy compliant.
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2 CHAPTER 0. INTRODUCTION

The thesis is structured as follows:

In chapter 1, we present the general task of taxonomic text classification, then we deal
with the data collection and data cleaning phase and we conclude with the analysis of the
collected data.

In chapter 2, we give an overview of the vector encoding techniques for textual data and
then we focus on modern deep learning models for contextual embeddings, such as Bidi-
rectional Encoder Representation from Transformers (BERT), that represents the feature
extraction step of our pipeline.

Going to chapter 3, we expose the metrics that will be used to evaluate our models and
the probability-based post-processing sorting algorithm, that grants that the predictions
of the network correspond to proper nodes of our taxonomy.

In chapter 4, we report the results of the preliminary experiments for the embedder and
the text slice selection, that we exploit in the implementation of our deep neural network
baseline model. After its training phase, we evaluate it, at first in the Italian and English
test dataset.

In chapter 5, we inspect the accuracy-confidence imbalance typical of modern deep neural
networks and we exploit the temperature scaling algorithm to obtain a calibrated model.

In chapter 6, we deal with the extension over time of a BERT-based multilingual classifier
to an incremental number of languages. In particular, we introduce the framework of
Continual Learning and we present two algorithms: Elastic Weight Consolidation and
a Knowledge Distillation (KD) inspired method, the Teacher-Student framework. We
compare their performance to new language data only fine-tuning and to the training
from scratch on the full dataset, taken as an upper bound.



Chapter 1

Dataset

In this chapter, after introducing the general framework of text classification, we present
our specific task of taxonomic text classification. Therefore, in section 1.2, we deal with
the concept of taxonomy and with the specific IAB taxonomy structure, that has been
the starting point for our own taxonomic categories. We then present our dataset in 1.4,
both explaining the data collection and data cleaning phases and analyzing its distribution
among the categories.

1.1 Text Classification

The Natural Language Processing (NLP) text classification task aims at mapping any form
of text, such as articles, sentences or words, to predefined labels, whose nature depends on
the application area. Then, the text classification setting can be formulated as the task
of assigning a boolean value to each pair (dj , ci) 2 D⇥C, where D is a collection of pieces
of text and C = c1, . . . , c|C| is a set of predefined categories. A value of True assigned
to (dj , ci) indicates the decision to label the document dj as belonging to the class ci,
while a value of False indicates the decision of not categorising dj as ci. In particular, if
|C| = 2 we are in the framework of binary classification, whereas if |C| > 2 our problem is
in the set multi-class text classification. The general task of text classification algorithms
is to approximate an unknown target function � : D ⇥ C �! {True,False} that sets the
ground-truth for how documents should be correctly classifies. The function �, in this
case, is called a classifier and we mark as c̃i the prediction for the input dj , that may or
may not coincide with the ground-truth labelling.

1.1.1 Multi-label and multi-output text classification

As mentioned above, text classification methods can be clustered based on the number of
categories among which the assigned one can be chosen.

Another possible distinction can be performed based on the number k of categories out
of |C| as which each article dj can be labelled. If k > 1 we are in the multi-label text
classification framework, in which we are allowing the output categories to be not mutually
exclusive.

3



4 CHAPTER 1. DATASET

Finally, in a classification problem, we can have multiple target output variables, i.e. we
treat our classifier as able to estimate a series of M target functions (f1, . . . , fM ) to predict
the corresponding k labels (c̃1, . . . , c̃M ), in which each c̃i can be a vector if k > 1.

1.1.2 Taxonomic text classification

The taxonomic text classification goal is to individuate the location of a particular piece of
text in a hierarchical schema. For example, an article dealing with an alpine skiing Olympic
competition would be labelled hierarchically as ’Sport’, ’Olympic Sports’, ’Winter Olympic
Sports’.

When it is performed by a classifier, classification can be faced in two ways: either we have
a single output multi-class network in which there is a specific label for each taxonomy
path (in a localist encoding approach) or we can have a multi-output classifier with one
distinct predicted value for each layer of the taxonomy (exploiting a distributed encoding
setting).

Given a taxonomy, the second approach allows encoding of all the possible paths with
much fewer neurons, as it allows to label a truncated path with a ’Nan’ flag in exceeding
layers and, in general, to have a unique encoding for shared children nodes. In this second
approach, the various layers’ predictions can be treated as independent or, on the contrary,
as correlated. In the first case, we do not impose any a priori hierarchical consistency
between tiers, i.e. between taxonomic layers, meaning that we could produce an overall
output that does not coincide with any path in the taxonomy. This choice requires a
post-processing phase in which coherence is enforced. On the other hand, we could choose
to impose coherence in the classifier itself, i.e. by imposing children layers’ predictions to
be consistent with their parents outcomes. This approach, anyway, is particularly prone
to error propagation issues: an error on the first layer would reflect on all the following
ones, preventing any possible correction. For this reason, the approach followed in this
work is the shallow one, letting the network learn the correlations among the tiers but
without any constrained congruity.

1.2 IAB Taxonomy

In this section, we introduce the Interactive Advertising Bureau (IAB) taxonomy, which
represented a milestone in programmatic advertising and that will be the starting point
for the shaping of our own taxonomy.

Historically, data vendors, Data Management Platforms (DMPs) and analytics providers
have used custom taxonomies to describe and segment their audiences, with little or no
standardization across vendors. This results in sometimes drastically di↵erent descrip-
tions even for similar data, where vendor A could describe a segment as “Auto-intenders”
and vendor B describes a similarly segmented audience as “In-market for cars”. Com-
parability is also made more di�cult due to the fact that in house taxonomies reflect
a wide range of audience segmentation approaches, including demographic (age, gender,
household income, etc), interest-based, purchase-intent based, psychographic, and many
more.

With the introduction of IAB Tech Lab’s Audience Taxonomy 1.0, the industry now has
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Figure 1.1: Tier 1 categories in IAB taxonomy

a common nomenclature for audience segment names to improve comparability of data
across di↵erent providers. It is a key element in IAB Tech Lab’s Data Transparency
Standard, which facilitates consistent labelling of audience data by first-party and third-
party sources. The Audience Taxonomy also provides a mechanism to make segmentation
approaches much clearer (categorically) by introducing Tier 1 level labelling that desig-
nates whether the segment describes attributes that are demographic, interest-based, or
purchase-intent based[14]. Original IAB Tier 1 categories are depicted in 1.1. For this
work, we focus on the interest sub-taxonomy, neglecting the demographic and purchase
intent pillars. From now on, we number the layers of the taxonomy taking into account
only the interest segment, which is built upon 4 hierarchical layers. Its first tier (T1) con-
sists of 29 di↵erent interests area, such as Sports, Travel, Academic interests, Shopping,
some of whose branch out into more specific nodes as we go deeper in the taxonomy. The
second tier (T2) is made up of 264 sub-categories, that give rise to the 173 tier 3 (T3)
classes. Finally, in tier 4 (T4), we find 27 nodes distributed among 3 of the 27 top layer
categories. However, it has to be noticed that some of the nodes in this taxonomy are
linked to sensitive subjects: having Medical Health or Elections would end up targeting
the user based on sensitive personal data. For this reason, we have applied a reshaping to
the taxonomy to have a model that is unable to tackle sensitive personal data.

1.3 Taxonomy customization

We obtain our own taxonomy starting from the IAB interest segment, removing the cate-
gories that are marked as ’personal sensitive data’ by the GDPR[7]:

• personal data revealing racial or ethnic origin, political opinions, religious or philo-
sophical beliefs;

• trade-union membership;

• genetic data, biometric data processed solely to identify a human being;

• health-related data;

https://iabtechlab.com/standards/data-transparency/
https://iabtechlab.com/standards/data-transparency/


6 CHAPTER 1. DATASET

• data concerning a person’s sex life or sexual orientation.

Moreover, also categories that may represent potential triggers, such as Gambling, Smok-
ing, etc. are shadowed. The removal has to be treated with care: removing from the
dataset all the articles that are labelled as one of these topics would lead to a model that
is, in fact, not able to recognize them and that would simply assign them to a random
category. In order to have a model that can discern touchy subjects, we assign to those
particular articles the label ’Other’ in all 4 tiers.

1.4 Dataset

1.4.1 Data collection

The request that our dataset should distribute following an imposed taxonomy requires an
accurate data collection phase, that permits to obtain a su�ciently large and diverse set
of articles and their related taxonomic labels. Despite the automatized classification of a
random article into a broad taxonomy remaining challenging, the task of collecting a series
of related articles for a given node is rather simple. The most straightforward method is
to enter a query consisting of the name of the category in a modern search engine such
as Google. This can be provided by various third-party services, among which we select
SERP API, which allows the retrieval of up to 100 page results for up to 10.000 queries a
month, which fits the needs of this thesis. This crawler can obtain the top Google results
for an arbitrary list of topics, that in our case consists of all the possible paths of the
taxonomy. After the crawl, we obtain, for each path, a list of raw links that we use to
retrieve the HyperText Markup Language (HTML) file. The links we actually obtain are
a subset of the retrieved ones, as the crawler will retain only those links that are included
in the initial SERP list. Therefore, the maximum number of links per category is 100.
After collecting the web pages, we need to extract the information contained in the HTML
files, which are not ready to be used for training since they contain tags and non-textual
objects, such as images and video. To retrieve the cleaned text in the page we use the
BeautifulSoup package from Python.

1.4.2 Data Cleaning

The cleaned text from an HTML page is a good starting point for the text classification
task, but it still needs to go through a data cleaning phase to ensure higher data quality.
At first, the text is lowercased, as most embedders do not distinguish between cased and
uncased words. Punctuation and special characters, such as ’\n’, ’\t’ are removed. To
bring the focus on the relevant words for the topic of the article, all the stopwords, i.e. the
most popular words in the considered languages, such as prepositions, adverbs, articles,
etc. are discarded. Finally, the text goes through lemmatization, in which inflected words
are reduced to their root form. For example, the words cooked, cooking, cooker are mapped
to the common root cook.

1.4.3 Data Overview

After the data cleaning phase, we can have an overview of the data statistics and of its
distribution among the various levels of the taxonomy. The Italian dataset is built of
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Figure 1.2: Histograms of the number of articles per category in each
tier: Tier 1 (top left), Tier 2 (top right), Tier 3 (bottom left), Tier 4
(bottom right)

23, 749 HTMLs, the English one of 21, 859, 25, 067 for Spanish and 26, 796 for Swedish.
For each sub-dataset in a specific language, we reserve its 20% for validation and another
10% for testing.

The average number of articles per category has a strong dependency on the depth of
the tier in the taxonomy: in particular, articles category are assigned via inheritance,
meaning that all documents from child nodes will count in the statistics of their parent
node. Moreover, not all parent nodes have the same number of child nodes, and this is
again reflected in the distribution of the number of articles among categories. We can see
the histogram of the number of articles per category in figure 1.2. What we observe is that
the mode of the distribution is around 103 for Tier 1, but it drops to 102 for subsequent
tiers: this is justified by the inheritance concept exposed before. Moreover, we can see that
for both Tier 3 and Tier 4 we have an outlier, represented by a single bin with particularly
high counts: this is the ’Nan’ category for the corresponding Tier, as most of the articles
have a taxonomic depth lower than Tier 3.

We display in figure 1.3 the ratio of articles per category for the specific categories of,
respectively, the first and the fourth tiers.
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Figure 1.3: Distribution of articles among specific categories for Tier 1
(top) and Tier 4 (bottom)



Chapter 2

Word Embeddings

Word Embeddings count among the techniques for numerical encoding of words, which
represents the core of feature extraction procedure in NLP. In particular, they build a vec-
tor representation of terms, in order to exploit vector algebraic operations and properties,
such as distance, that allow encoding similarities. The most naive procedure for word-
vector mapping consists of one-hot encoding each word in a RV basis vector, being |V | the
size of the vocabulary. This leads to severe sparsity and prevents the encoding from being
performed into a fixed-length vector as the vocabulary size enlarges[21]. The key property
of embedding algorithms is then the ability to map semantic similar words close to each
other[25], leading to a continuous representation in a vector space RD, being D indepen-
dent from the vocabulary size and much smaller than it. This property relies on the so-
called distributional hypothesis, claiming that words with similar surrounding words (con-
text) share the same meaning. A complete definition of word embeddings describes them
as dense, distributed, fixed-length word vectors, built using word co-occurrence statistics
as per the distributional hypothesis[1]. The most famous example of the capability of
embeddings to capture semantic analogies by algebraic operations, such as translation, is
expressed by the equation vec(0King

0)�vec(0Man
0)+vec(0Woman

0) ⇡ vec(0Queen
0)[24]. A

visual representation of these vector properties of embedded spaces is o↵ered in figure 2.1.
The notation used here implies that vec(0Word

0) is the embedded vector representation of
Word and the approximation in the equation indicates that the result of the operations is
a vector that is closer to the representation of Queen than of any other word.

Word embeddings can be clustered into two main classes, depending on the type of algo-

Figure 2.1: Word embedding vector representation

9
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rithm used to build them: prediction-based models and count-based models. Techniques
that rely upon neural networks are grouped into the prediction-based cluster since they
usually learn to try to predict the following word based on its neighbours, whereas count-
based methods exploit word-context co-occurrence statistics. Both prediction-based and
count-based algorithms belong to the unsupervised learning framework.
Among the count-based class, it is worth mentioning GloVe[31], which has been the first to
consider the ratios of co-occurrences instead of raw counts. In the prediction-based group,
some break-through models are the continuous bag-of-words (CBOW)[25] and skip-gram
designs (SG)[26], creating the Word2Vec representation, and the FastText algorithm pre-
sented in [3] and [15].

All the techniques in the list above provide non-contextual word vectors: each word is
mapped to a single vector, despite it may have di↵erent meanings in di↵erent contexts,
e.g. the word right in ’go right at the roundabout’ and ’you are always right’ would
be mapped to the same vector. To provide contextual meaning to embeddings, LSTM-
based or Attention-based architectures, like Bidirectional Encoder Representations from
Transformers (BERT), can be exploited. These architectures belong to the wider field of
Deep Learning models for text representation. In section 2.3, an overview of this kind
of techniques is given, starting from feed-forward neural networks and leading to the
explanation of state-of-the-art models.

2.1 Count-based embedders

Count-based embedders rely on word-context co-occurrence distribution to retrieve the
vector representation. In fact, word-word co-occurrence statistics are the first source of
information for any unsupervised language model. Here, we focus our interest on the
Global Vectors for model representation (GloVe) algorithm, which represented a break-
though innovation in its field via the intuition that it is the ratio of co-occurrence with a
third word to determine the strength of the relation between a word and the context (i.e.
another word in the vocabulary).

2.1.1 GloVe

Given a word-context framework, we can set a quantitative description of it by introducing
the word counts matrix X, having as entries Xij the counts of how many times the word
j appears in the context of i. As it could be inferred, the index i and j run from 1 to the
size of the vocabulary |V |. Then, it is possible to obtain the probability of the words j and
i to appear jointly as Pij = P (j|i) = Xij/Xi, in which Xi =

P
j
Xij are the cumulative

occurrences of any word j in the context of i. Having set the framework, we now show how
the ratio between the co-occurrence probabilities of i and j with a third word k reveals
the strength of their relation[31]. Let us consider an example that can give insight into
the process. In the field of information technology, we focus our attention on the words
i = signal and j = gate. If the third word considered k is smoke, that is related to i

but not to j, the ratio Pik/Pjk should be high. On the other hand, when dealing with
k = house, which shares context with gate but not with signal, the same ratio should
be much lower. Finally, when taking into account electronic, Pik/Pjk should approach
1. This allows building a shared context between a couple of words via inspecting their
co-occurrences ratio. This basic idea is then inserted in the least squares problem for a
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log-linear model setting and gives us the cost

J =

|V |X

i,j

f(Xij)
⇣
w

T

i w̃j + bi + b̃j � log(Xij)
⌘2

,

where f is a weighting function and w, w̃ are word and context vectors. Full details about
the model derivation can be found in [31].

After giving the idea behind GloVe, as a representative of count-based embedders, we deal
with the class of prediction-based embedding models.

2.2 Prediction-based embedders

Prediction-based models are neural-based embedders, that instead of exploiting global
information, such as corpus-wide co-occurrences distribution, exploit the local context of
words.

2.2.1 Word2Vec

One of the two most popular algorithms, proposed by Mikolov et al.[25], are the Con-
tinuous Bag Of Words (CBOW) and the Skip-Gram, which groups into the Word2Vec
embedding models. For both algorithms, the framework is given by a sequence of words
(w1, w2, . . . , wT ) and a single-layer neural network. In the case of CBOW, the objective
of training is to learn to guess the kth word wk in the sequence based on the surround-
ing ones (w1, . . . , wk�1, wk+1, . . . , wT ). In the other hand, Skip-Gram aims at predicting
the context, i.e. words before and after a word, given the central item. In both cases,
learning is achieved by maximizing the average log-probability of subsequent terms, that
is formulated, taking Skip-gram as an example, as[26]:

1

T

TX

t=1

0

@
cX

j=�c

log p (wt+j |wt)

1

A (2.1)

where c = c(wt) is (half) the size of the context window. An e�cient simplified represen-
tation of the two can be seen in fig mettere figura

This overall structure gave rise also to another popular model, proposed by [3] and [15],
and known as the Facebook FastText library, which will be mastered in the next section.

2.2.2 FastText

The FastText model develops starting from one of the drawbacks of the Skip-gram model:
it considers words as its atomic unit, neglecting their internal structures. This leads to
a potential loss of information, in particular for languages that make extent usage of
composed words, such as Finnish and Turkish, in which sub-parts of a single word could
help in building the representation of out-of-corpus words[1]. Morphological representation
of words is achieved by considering each word in the corpus as a bag of n� grams, i.e. as
the set of its sub-sequences of size n. In order to allow to infer morphological patterns,
such as prefixes and su�xes, two special characters, < and >, are introduced, to mark,
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respectively, words beginning and end. Taking as example the word w = stars and n = 3,
its tri-gram representation is < st, sta, tar, ar > and the full sequence < star >. Then,
its Bag Of Characters (BOC) G will be given by all its n � grams with 3  n  6. This
allows to build the full word vector as the sum of its BOC items vectors zg and to define
the scoring function s(w, c) between w and an instance c in its context, with vectorial
representation vc, as[3]:

s(w, c) =
X

g2G
zTg vc

This scoring function is exploited to build the conditional probability presented in 2.1,
from a softmax distribution

p(w|c) = e
s(w,c)

P|V |
j=1 e

s(w,j)

Via morphological analysis of seen instances, FastText models can provide a reliable rep-
resentation for rare or unseen words.

After setting a general framework for textual data embedding techniques, in the next
section we present how to exploit them for a series of tasks, such as machine translation,
question answering, part-of-speech-tagging, language generation and text classification.
Among them, we are interested in the last one, with a particular focus on the multilingual
case.

2.3 Deep Learning for Text Data

2.3.1 Feed-forward Neural Networks

Feed-forward neural networks count among the simplest algorithms for textual data han-
dling. In particular, their application is straightforward for the task of text classification.
After being fed with the vector sum or average of word vectors obtained via one of the
techniques presented in the previous paragraphs, it propagates the input through a series
of d feed-forward hidden layers, whose neurons may be activated depending on the train-
able weights W of their inputs values and on the chosen activation function �. The last
layer exploits the same computation schema to retrieve the predicted label.

x =

P
i
emb(wi)

N

h1 = �1(W1x+ b1)

hj = �j(Wjhj�1 + bj)

ŷ = �o(Wd+1hd + bd+1)

in which:

• emb(wk) 2 Rn is the embedded vector of the kth word out of N in the textual frame

• x 2 Rn is the input layer

• hj , j = 1, . . . , d is the jth hidden layer, connected with the (j � 1)th via the weights
matrix Wj and biased by bj

• �j ,�o are respectively the element-wise activations functions of the jth hidden layer
and of the output layer
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• ŷ is the predicted output label

2.3.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are directed acyclic graphs that are able to capture the
sequential structure of textual data, by exploiting its locally correlated nature. The input
is now treated like a time series instead of a static vector. Previous time step information
is retained by introducing a context layer Uh, that enriches the current input instance,
e.g. a word in a sentence, with the foregoing hidden vector. They can be described as
feed-forward neural networks thanks to their acyclic nature:

ht = �h(Whxt + Uhht�1 + bh)

yt = �y(Wyht + by)

RNNs field of application is wide, including machine translation, speech recognition, text
summarization and classification. Their main drawback is that their performance degrades
with long sequences due to the gradient vanishing problem they su↵er from. In order to
catch long-term dependencies, a more sophisticated structure is needed. In Long-Short
Term Memory (LSTM) networks, the issue is faced by building the network with cells
provided with a set of gated units.

2.3.3 Long-short term memory

Long-Short Term Memory networks (LSTMs) can detain long-term dependencies thanks
to their gated recurrent units structure that can discriminate how much past information
should be retained and how far it should be propagated.

The core element of LSTMs is the cell state Ct, which allow keeping information barely
unchanged through the chain of units, by displaying only minor linear interactions with
the gates[30]. Let us inspect how past and current information is handled by the repeating
unit, displayed in 2.2.

The set of gates counts an input gate it, a forget gate ft and an output gate ot. Each
of them can alter the cell state through a sigmoid neural net layer and multiplicative
connections. The forget gate controls which pieces of past information are to be thrown
away via a sigmoid layer having trainable weights Wf , bf and taking as input the previous
hidden state ht�1 and the current input xt:

ft = �(Wf · [ht�1, xt] + bf )

The input gate controls which values are going to be updated with new information flow,
via a sigmoid layer, and set the upgrade magnitude C̃t with a hyperbolic tangent layer:

it = �(Wi · [ht�1, xt] + bi)

C̃t = tanh(WC · [ht�1, xt] + bC)

The cell state can then be notified as:

Ct = ft ⇤ Ct�1 + it ⇤ C̃t
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Figure 2.2: Long-Short Term Memory unit cell

Finally, a new hidden state is created, which will be the input of the next cell together
with the next time step of the sequence. The cell state Ct is masked by the sigmoid layer
of the output gate and normalized by an hyperbolic tangent layer.

ot = �(Wo · [ht�1, xt] + bo)

ht = ot ⇤ tanhCt

LSTMs thanks to their capabilities to infer time series correlation structures are applied
in a series of NLP tasks, among which is text classification.

2.3.4 Bidirectional Encoder Representation from Transformers (BERT)

based architectures

Bidirectional Encoder Representation from Transformers (BERT)[6] is a pre-trained lan-
guage model, meaning that, after being trained on a general purpose large corpus, it can
be exploited as a front-end structure for various NLP tasks, by interfacing it with the
proper back-end. For the task of text classification that we are interested in, the back-end
includes at least one dense layer with neurons one-hot encoding each one of the possible
categories.

As already mentioned, the main di↵erence between BERT and the other language vectorial
representation techniques presented in 2.2 is that BERT provides contextual embedding
for words, i.e. it maps homonyms to di↵erent regions of the embedding space, depending
on their semantic field determined by their context. Due to the fact that the embeddings
are not determined a-priori for a given word, we can not just produce the vectors for each
word in the dictionary and store them in a database, neglecting the model that produced
them, but we need to include the pre-trained model for any new piece of text we want to
operate on.
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After giving a qualitative insight of how BERT works, in the next section we get a quantita-
tive explanation of how it is able to provide bidirectional context to generate embeddings.

2.3.4.1 BERT

BERT architecture is derived from Transformers, which rely on the Attention mechanism
to draw global dependencies between input and output. The main structural di↵erence is
that BERT exploits only the encoder side of Transformers, that is what is actually needed
to build a general language representation. It is designed to pre-train deep bidirectional
representations from unlabeled textual data by joint inference from left and right context.
The unidirectionality limitation is overcome by using a ’masked language model’ (MLM),
inspired by the Cloze task technique[34]. During the training procedure the 15% of the
input sentences is masked via substitution with the [MASK] token. The input text is
prepared using WordPiece embeddings with a vocabulary of 30000 tokens. Thanks to the
built-in contextual framework, the number of di↵erences to introduce in the architecture to
perform several downstream tasks, such as text classification, is minimal, with respect to
the plain embedder: as a baseline, it is enough to add Dense layers to the BERT front-end.

2.3.4.2 Transformers

As introduced before, BERT is built as a multi-layer bidirectional transformer which relies
entirely on an attention mechanism to draw global dependencies between input and output.
The transformer allows for significantly more parallelization and has reached state-of-the-
art performance on many NLP tasks. It consists of an encoder and a decoder part. Here,
the encoder maps an input sequence of symbol representations (x1, ..., xn) to a sequence
of continuous representations z = (z1, ..., zn). Given z, the decoder then generates an
output sequence (y1, ..., ym) of symbols one element at a time. At each step the model
is auto-regressive, consuming the previously generated symbols as additional input when
generating the next[36]. The Transformer follows this overall architecture using stacked
self-attention and point-wise, fully connected layers for both the encoder and decoder,
shown in the left and right halves of figure 2.3 respectively.

As we can see the attention mechanism is a very important feature of the transformer
architecture. In simple terms, the attention mechanism is the part of a neural architecture
that enables the dynamically highlighting of relevant features of the input data. An
attention function can be described as mapping a query and a set of key-value pairs to an
output, where the query, keys, values, and output are all vectors. The output is computed
as a weighted sum of the values, where the weight assigned to each value is computed by
a compatibility function of the query with the corresponding key. The original work relies
on the Scaled Dot-Product Attention. The input consists of queries and keys of dimension
dk, and values of dimension dv. The attention function is computed on a set of queries
simultaneously, packed together into a matrix Q. The keys and values are also packed
together into matrices K and V. The Attention function returns the matrix of outputs as:

Attention(Q,K, V ) = softmax

✓
QK

T

p
dk

◆
V

The transformer architecture uses a specific type of attention called multi-head attention.
The idea behind it is instead of performing a single attention function, to run multi-
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Figure 2.3: Transformer Architecture

ple lower-dimensional functions in parallel. The independent attention outputs are then
concatenated and linearly transformed into the expected dimension.

2.3.4.3 Multilingual Bert

Multilingual contextual embedders can be obtained by training a BERT architecture with
textual data in a set of languages. Tokenization is performed via a shared WordPiece vo-
cabulary. The first multilingual-BERT (m-BERT) model has been implemented by Google
and it has been trained on a dataset obtained from the concatenation of monolingual
Wikipedia corpora from 104 languages. A competitive alternative has been provided by
Facebook with Cross-Lingual-Model Roberta (XLM-Roberta), which has been pre-trained
with CommonCrawl data in 100 languages.

As the need to have general pre-trained language models grows, it would be not feasible
to train and maintain dozens of single-language embedders. Moreover, the huge variance
displayed in the amount of text available in di↵erent languages would be reflected in lower
performances for mono-lingual models for less represented languages.

This issue is overcome by the m-BERT model with the so-called cross-lingual transfer
learning, in which knowledge is observed to be transferred from one natural language to
another. The cross-lingual generalization ability of m-BERT is based on a combination of
factors: shared vocabulary items that act as anchor points, joint training across multiple
languages that spreads this e↵ect, which ultimately yields deep cross-lingual representa-
tions that generalize across languages and tasks[2].

In figure 2.4, we can see the 2D t-SNE (see 8 for more details) projection of the embedded
vectors produced from our Italian and English text samples by the fine-tuned multi-qa-
MiniLM-L6-cos-v1 embedder.

It is interesting to inspect the spatial distribution of data belonging to the same class.
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Figure 2.4: Embedded space 2D projection via t-SNE algorithm

We can spot two di↵erent behaviours. For some classes, the embedded data items form a
proper cluster, being concentrated in a specific region of the 2D space. This is the case
for example of Automotive, Music and Audio, Real Estate and Video Gaming, that are
categories related to a specific topic each. Other classes are spread over wide regions of the
t-SNE latent space: this happens for Academic Interests, Hobbies & Interests and Other,
whose articles spread over various semantic fields.
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Chapter 3

Post-processing and evaluation

3.1 Metrics

In this section both general and taxonomy-specific metrics will be introduced, in order to
set a quantitative comparison between models.

3.1.1 General metrics

To evaluate models, several well-known supervised learning metrics have been exploited,
such as:

• Accuracy: accuracy represents the ratio of correct predictions out of the total
number of samples

ACC(y, ỹ) =
1

n

nX

i=1

1 (ỹi = yi)

• Binary classification metrics

– True Positives (TP): number of samples that belong to the positive class and
are correctly classified as positive

– True Negatives (TN): number of samples that belong to the negative class and
are correctly classified as negative

– False Positive (FP): number of samples that belong to the negative class and
are incorrectly classified as positive

– False Negatives (FN): number of samples that belong to the positive class and
are incorrectly classified as negative

• Precision: precision is the ratio of instances that are correctly classified as belonging
to the positive class out of all the ones that are predicted to be positive

PR =
TP

TP + FP

19
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• Recall: recall is the ratio of instances that are correctly classified as belonging to
the positive class out of all the actually positive ones.

REC =
TP

TP + FN

• Mean Average Precision: gives the average of numerical approximation of the
area under the precision-recall curve

MAP =
1

n

nX

i=1

AP (k)

having defined AP (k) = (RECk �RECk�1)PRk

As the considered models are multi-output due to the hierarchical nature of the data,
these metrics would be evaluated for each tier. Then, these metrics, despite being able
to give a general evaluation of the network performance, are not able to encode funda-
mental properties of a multi-tier classifier, such as hierarchical consistency and full-branch
accuracy.

3.1.2 Taxonomy-specific metrics

• Average First Diversion Ratio: First Diversion Ratio (FDR) is the number of
correctly classified tiers in a multi-output hierarchical prediction, normalized over
the taxonomy depth. Then, given an L-layers taxonomy, considering a piece of text
classified as ỹ = (ỹ1, . . . , ỹL) while having y = (y1, . . . ,yL) as true label, FDR is
computed as

FDR(y, ỹ) =

argmin
i

(yi 6= ỹi)

L

Its averaged version is obtained by considering the mean over a n-sized set

AFDR =
1

n

nX

j=1

FDR(yj , ỹj)

• Average Full Branch Accuracy: Average Full Branch Accuracy indicates the
ratio of samples that are fully correctly classified, from the first to the last tier.

AFBA =
1

n

nX

j=1

FBA(yj , ỹj)

having defined

FBA(yi, ỹi) =

(
1 if yi = ỹi 8i 2 1, . . . , L

0 otherwise

• Average Full Tier Accuracy: Average Full Tier Accuracy (AFTA) indicates
the ratio of samples being correctly classified up to, at least, a certain tier. As
an example, considering tier T, with T  L, its AFTA is obtained by the ratio of
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samples for which the produced labels, for tiers going from the 1-st to the T-th,
correspond to the true ones

AFTAT =
1

n

nX

j=1

FTAT (yj , ỹj),

FTAT (yi, ỹi) =

(
1 if yi = ỹi 8i 2 1, . . . , T

0 otherwise

Clearly, for the last tier of the taxonomy, i.e. T = L, this metric just reduces to
AFBA.

All these metrics are then computed also in the top-K version, meaning that, e.g.
when considering top-K AFBA, the prediction is marked as correct when the true
label y coincides with one among the first (ordered by joint probability) K full branch
prediction ỹ.

3.2 Probabilistic Correction

When dealing with taxonomic classification, it has always to be kept in mind that data
are labelled following a strict hierarchical structure, meaning that, for a given sample,
each single-tier prediction must be consistent with the subsequent ones. Our network,
despite being able to learn inter-tier correlations, has no strict coherence constraint. This
means that it could assign a tier 2 category that is not compatible with the predicted tier
1, e.g. the network, after being fed with an article, could have marked it as ’Sport’ for
the first level and as ’Language Learning’ for the second one. Clearly, this kind of output
is completely nonsense. Therefore, a reasonable way to produce consistent labelling out
of the network predictions must be found. It has to be independent of the ground-truth
labels since they are not available when facing real-life scenarios.

A first approach could be the one based on majority voting: having multiple hierarchical
outputs for the same article, we could exploit just plain statistics and use compatibility
between the majority of tiers to individuate a coherent path. The problem with this
approach is that it shows useful in a negligible number of cases: as the precision of 53%
of items in the test set is up to tier 2, we dispose only of tier 1 and tier 2 to determine
the right labelling, that are clearly not enough for majority voting. Another approach
could arise from the following observation: as a strong correlation is observed between
the network returning a low softmax probability even for the most probable prediction
and it being wrong, we could set a probability threshold under which we assume that for
that tier the network is mistaken and we rely on the subsequent tier for re-labelling it.
Again, this could work fine if the one we assume to be correct is the category assigned
to tier 2, as it would be straightforward to identify the unique corresponding tier 1 label.
On the other hand, it is not possible to correct the 2nd level by exploiting only tier 1
prediction, as many tier 2 labels correspond to a single tier 1 category. Moreover, this
method introduces an empiric threshold, that may strongly depend on the dataset.

All this considered, the chosen approach is based on the joint probability evaluation for
all the possible paths in the taxonomy. The framework is the following: given an input
sample x, our network D returns as output D(x) = (ỹ, p̃), in which ỹ = (ỹ1, . . . , ỹL),
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p̃ = (p̃1, . . . , p̃L), having ỹi = (ỹ1, . . . ỹni
) as the vector one-hot encoding the ni categories

for the ith tier and p̃i = (p̃i(ỹ1|x), . . . , p̃i(ỹni
|x)) as the vector of their softmax-produced

probabilities.

Given a taxonomy admitted path (T1, T2, T3, T4), it is then possible to compute the
joint probability of this set as

p̃(T1, T2, T3, T4|x) = p̃1(T1|x)p̃2(T2|x)p̃3(T3|x)p̃4(T4|x),

under the strong assumption of independence of each tier prediction. For each test sample
x, it is then possible to sort all the branches based on this joint probability, obtaining the
top-K predictions as the K paths associated with the highest joint probabilities.

This algorithm, beyond solving the inconsistency problem between di↵erent tiers predic-
tions, is able to find the overall most likely prediction, resulting in an observed increase
of both the general and taxonomic metrics.



Chapter 4

Experiments

In this chapter, we expose the experiments that lead to our baseline multilingual classifier.
All the models presented in this work have been trained on an NVIDIA®T4 Tensor Core
Graphics Processing Unit provided by the CloudVeneto platform. We expose the result
obtained from a single run of each experiment due to hardware limitations. However, we
are conscious that since the training of a neural network is a stochastic process, it should
be repeated to accumulate statistics.

The text classification task consists of two crucial components: features extraction and
model selection. At first, we deal with the task of features extraction, that for our case
coincide with the choice of the embedder.

4.1 Word embeddings comparison

This first set of experiments has the goal to select the multilingual embedding layer that
will constitute the front-end of our classifier. The pre-trained models we compare are the
following:

• multi-qa-MiniLM-L6-cos-v1, with 6 layers that maps sentences to 384 dimensional
dense vectors,

• paraphrase-multilingual-MiniLM-L12-v2, having 12 layers producing 384-dimensional
embeddings,

• universal-sentence-encoder-multilingual, mapping text to a 512D vector space.

The first two trained models are made available by the HuggingFace library and are
BERT-based, whereas the second is o↵ered by TensorflowHub and has a convolutional
structure.

The overall network for each tested model is constituted by the embedding layer followed
by the classification back-end, that for this set of experiments is made up of a Batch
Normalization layer followed by 4 Dense layers, whose return the predicted category for
each tier.

The training process is the following: at first, we freeze the embedding layer weights and
we train the classification back-end layers only. The Cross-Entropy loss is minimized with
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the ADAMW[19] optimizer with an initial learning rate set to 10�3. The number of epochs
is set to 25 with EarlyStopping with patience 1. The batch size is set to 32. We then
proceed with the next training step involving the whole architecture, in which we fine-
tune the pre-trained embedder for our downstream task. In this case, the initial learning
rate for ADAMW is set to 105. All other training hyper-parameters are the same as the
previous step.

For all the experiments in this section, we feed the network with the title of a given article,
as the encoders we test are supposed to work with sentences rather than with long pieces
of text. In the following section, we will study how to slice an article to retain the most
information from it.

In figures 4.1, 4.2, 4.3, 4.4 we report the training curves displaying the validation accuracy
for the 4 tiers over epochs for the three embedders.

The 4 graphs show that the ’paraphrase-multilingual-MiniLM-L12-v2’ embedder gains the
best performance over all 4 taxonomic layers. However, it has to be considered that the
fine-tuning of the embedding layers will be involved in all the experiments conducted in
this thesis. Then, due to the limited hardware resources at our disposal, we have to
consider the trade-o↵ between accuracy and complexity, i.e. the total number of trainable
parameters, for each of the considered embedders. The accuracy-complexity trade-o↵ can
be visually inspected in figure 4.5. The metric we consider to determine the performance
of an embedder is the AFBA, as it encodes accuracy over the full branch of the taxonomy.
From this graph, the limitations of ’paraphrase-multilingual-MiniLM-L12-v2’ emerge: it
grants the best performance at the cost of high complexity. For this reason, our choice falls
on the ’multi-qa-MiniLM-L6-cos-v1’ pre-trained model, as it allows reasonable metrics at
the lowest complexity value.

4.2 Encoded pieces of text comparison

We now study which slicing procedure retains the most information from an article.

We do so by comparing the performance of the architecture proposed in the previous sec-
tion, with ’multi-qa-MiniLM-L6-cos-v1’ as embedder, over di↵erent pieces of text extracted
from an article, in particular:

• its title,

• its title followed by the first sentence,

• its title followed by a random sentence from the article,

• just its first sentence

• just the random sentence.

This particular slicing has been chosen for the following reason: it is a widespread pick to
make the title contain the keywords related to the article topic, so it is the natural choice
when looking for a meaningful piece of an article. However, sometimes the title may be
deceiving as it is planned to be catchy. This is the reason why we include also the first
sentence, as the first paragraph should o↵er a resume of the full article content. As this
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Figure 4.1: Learning curves for the validation accuracy over Tier 1 for
experiments on the embedder type

Figure 4.2: Learning curves for the validation accuracy over Tier 2 for
experiments on the embedder type
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Figure 4.3: Learning curves for the validation accuracy over Tier 3 for
experiments on the embedder type

Figure 4.4: Learning curves for the validation accuracy over Tier 4 for
experiments on the embedder type
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Figure 4.5: Accuracy-complexity plot

might not be true for all articles and our choice would be gratuitous, we perform the same
test but adding now a random sentence from the article.

From the learning curves in figures 4.6, 4.7, 4.8, 4.9 we can see how the model fed with the
title only and the model fed with the title stacked with the first sentence are pretty close
in performance but the absolute best accuracy is always reached by the second one. When
adding a random sentence to the title, we face the opposite behaviour: performances get
slightly worse. This could be linked to the fact that not all the sentences in an article,
when taken by themselves, are easily linked to the main topic and that may deceive the
classifier. In fact, when comparing the results obtained with only the first or a random
sentence, we see a huge gap in accuracy, with the first sentence-fed classifier dominating.

All this considered, we select the title followed by the first sentence as the input feature
for our classifier.

Now, we can build our multilingual classifier, which will constitute the baseline for the
Continual Learning techniques implemented in chapter 6.

4.3 Our baseline: Italian and English specific classifier

At this point, we introduce our multilingual baseline model.

Its overall structure can be inspected in figure 4.10. The model takes in input the tokens
and attention masks produced by the Bert Tokenizer provided by the HuggingFace library,
that will be fed to the embedding layer (tf bert model in 4.10). The embedder is followed
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Figure 4.6: Learning curves for the validation accuracy over Tier 1 for
experiments on articles slices

Figure 4.7: Learning curves for the validation accuracy over Tier 2 for
experiments on articles slices
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Figure 4.8: Learning curves for the validation accuracy over Tier 3 for
experiments on articles slices

Figure 4.9: Learning curves for the validation accuracy over Tier 4 for
experiments on articles slices
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by the actual classification layers, in particular, we have 3 hidden stacks, each one made
of a Batch Normalization layer followed by a Dense layer with 477 units and Leaky ReLU
activation function (see equation 4.1), with a = 0.3.

Leaky ReLU(x) =

(
x if x > 0

ax if  0
(4.1)

Finally, we have 4 output layers, with respectively 27, 261, 171 and 18 neurons, respectively
encoding a category in each layer of the taxonomy. Their activation function is linear, but
the most probable predicted category for each tier is retrieved via softmax mapping.

4.3.1 The training phase

The model is trained on Italian and English labelled data samples. The training process
involves two phases: at first, we freeze the pre-trained embedding layer and we train the
task-specific back-end and afterwards we fine-tune the whole architecture. In both cases,
the loss function is the Cross Entropy loss computed between the network predictions and
the ground-truth labels.

In the first step, the optimization algorithm is Adam, with an adaptive learning rate
depending on the epoch number lr(epoch) = 10�3

/(1 + 0.001 ⇤ epoch). The maximum
number of epochs is set to 25, with Early Stopping option controlling the validation
accuracy with the patience parameter set to 5. The batch size is set to 16 and we have
870, 339 trainable parameters. The training process reaches convergence after 22 epochs.

We now proceed with the fine-tuning phase, which includes 23, 583, 555 trainable param-
eters. The optimizer is again Adam, with a much lower initial learning rate lr(epoch) =
10�5

/(1+ 0.05 ⇤ epoch) Now the maximum number of epochs is set to 30 and convergence
in accuracy is reached in 19 epochs. The batch size is set to 16.

The learning curves for the loss and the accuracy over the 4 Tiers are displayed respectively
in figures 4.11, 4.12, 4.13, 4.14, 4.15. We can observe a steep change in all of them in
correspondence to the 22nd epoch: this is due to the increase in the number of trainable
parameters, that allows the model to reach a lower minimum in the loss manifold.

4.3.2 Evaluation on the full test dataset

In this section, we report both plain and taxonomic metrics for our model on the full test
dataset, containing pieces of text in both Italian and English. To have its first evaluation,
we compute them before the probability-based sorting phase. Then, in order to be consis-
tent with the taxonomic structure, we repeat the calculations after the probability-based
sorting phase.

4.3.2.1 Metrics before probability-based sorting

At first, as the most straightforward standard approach to benchmark a classifier, we
evaluate the accuracy. As mentioned, it is simply computed as the true positive per
cent ratio for each tier softmax logits. As it has no particular meaning for a taxonomic
classifier, we report it for the sake of completeness, but future evaluations will be based
on taxonomic metrics only.
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input_token InputLayer

tf_bert_model TFBertModel

masked_token InputLayer

batch_normalization BatchNormalization

dense Dense

batch_normalization_1 BatchNormalization

dense_1 Dense

batch_normalization_2 BatchNormalization

dense_2 Dense

dense_3 Dense dense_4 Dense dense_5 Dense dense_6 Dense

Figure 4.10: Baseline model structure
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Figure 4.11: Learning curve for train and validation loss

Figure 4.12: Learning curve for train and validation accuracy on Tier 1
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Figure 4.13: Learning curve for train and validation accuracy on Tier 2

Figure 4.14: Learning curve for train and validation accuracy on Tier 3
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Figure 4.15: Learning curve for train and validation accuracy on Tier 4

The results are reported in table 4.1 It shows that the model has its worst performance
on Tier 2 predictions and its best one on Tier 4 predictions: both results can be justified
by the distribution of articles among the categories in these two layers. In fact, Tier 2 is
the taxonomic level with the highest number of distinct categories, whereas in Tier 4 90%
of articles belong to the Nan class.

Tier-by-tier accuracy
T1 T2 T3 T4
89.0 83.5 88.0 97.6

Table 4.1: Tier-by-tier accuracy before probability-based sorting on full
test dataset

A deeper perspective can be o↵ered by specific taxonomic metrics, explained in table 4.2.
Here, we can infer that most mistakes happen at Tier 2 level by looking at the accuracy
gap in AFTA between subsequent levels: we have the biggest performance drop when
going from T1 to T2, whereas it is basically negligible when proceeding from T3 to T4.

AFTA
T1 T2 T3 T4
89.0 81.1 77.2 77.0

AFDR AFBA
81.1 77.0

Table 4.2: Taxonomic metrics before probability-based sorting on full
test dataset
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4.3.2.2 Metrics after probability-based sorting

We now apply the probability-based sorting algorithm to retrieve the most overall likely
prediction and to impose consistency between Tiers.

The new taxonomic metrics after the post-processing phase are reported in table 4.3. What
emerges is that after the taxonomy alignment of results all the metrics have improved.

The joint-probability-based ordering algorithm allows to easily get the top-K taxonomic
metrics, that we report for K = 3 in table 4.4: after post-processing, we get the full-depth
correct result among the most probable 3 predictions almost 90% of the time.

AFTA
T1 T2 T3 T4
89.3 83.2 79.6 79.3

AFDR AFBA
82.9 79.3

Table 4.3: Taxonomic metrics after probability-based sorting on full test
dataset

Top-3 AFTA
T1 T2 T3 T4
93.8 91.3 89.1 88.7

Top-3 AFDR Top-3 AFBA
90.7 88.7

Table 4.4: Top-3 taxonomic metrics after probability-based sorting on
full test dataset

4.3.2.3 Confusion matrices

To inspect how the classifier performs over a specific class, we take advantage of the
confusion matrix visualization tool.

For categories in Tier 1, its application is straightforward (see figure 4.16), having the
rows representing the actual labels and the columns representing the predicted labels for
each class. When considering the hierarchical structure, i.e. tiers that are subsequent to
the first, the representation becomes more tricky due to the high number of categories
present in Tier 2 (figure 4.17) and in Tier 3 (figure 4.18. What we represent for these two
levels is, then, a clustered confusion matrix, in which we collapse sub-hierarchies into their
root node as proposed in [9]. For example, for Tier 2, we mark as True Positives all the
samples for which the T2 predictions correspond to a category that belongs to the same
parent node of their true label in T1.

Overall, we observe a good rate of True Positives for all the layers of the taxonomy.
There is a particularly high rate of False Negatives for the T1 Education cluster that are
predicted as Academic Interests. This is also related to an ill-definition in the taxonomy:
the Tier 2 category Language Learning is present as a children node for both these two
categories. The symmetric error is not observed as, in the training set, the articles labelled
as Academic Interests are 8 times more present than the ones belonging to the Education
class.

Another inter-cluster error that has an occurrence rate of more than 10% regard Personal
Finance articles that are wrongly classified as Business and Finance. The mistake is
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Figure 4.16: Accuracy matrix for Tier 1 predictions after probability-
based sorting

made reasonable by the fact that the two topics are pretty similar and share many of
their keywords. Again, the symmetric error is not observed for a simple statistical reason:
Business and Finance articles are 10 times more present than Personal Finance one, so
the network is keener on classifying into the first cluster.

As far as the confusion matrix for the fourth tier is concerned, there is no need to perform
any hierarchical clustering since it includes only 18 possible categories (see figure 4.19).
Its classes belong either to the Financial cluster or to the Healthy Living topic and what
we can notice is that there are no inter-clusters mistakes but only among topics related
to the same root node. We can observe a high number of False Positives mapped to the
Nan class, which is again imputable to class imbalance in the training set: over 90% of
its articles have Nan T4 ground-truth, pushing the network to classify mostly as that, at
the cost of producing False Positives.
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Figure 4.17: Clustered accuracy matrix for Tier 2 predictions after
probability-based sorting
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Figure 4.18: Clustered accuracy matrix for Tier 3 predictions after
probability-based sorting
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Figure 4.19: Accuracy matrix for Tier 4 predictions after probability-
based sorting
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After having a full inspection of the model performance on the full test dataset, we study
its behaviour on Italian and English separately.

4.3.3 Evaluation on the Italian only test dataset

We start our analysis on the Italian-only test dataset, by computing the raw taxonomic
metrics on it. What we notice from 4.5 is that on one hand, the overall trend is the same,
observing the biggest AFTA drop in correspondence of T2, whereas, on the other hand,
the actual performance is lower than on the complete dataset. We will dive deeper into
this phenomenon in 4.3.3.1.

Again, after the probability-based post-processing, all the computed metrics increase, as
shown in 4.6.

4.3.3.1 Metrics before probability-based sorting

AFTA
T1 T2 T3 T4
86.6 77.8 73.6 73.3

AFDR AFBA
77.8 73.3

Table 4.5: Taxonomic metrics before probability-based sorting on Italian
test dataset

4.3.3.2 Metrics after probability-based sorting

AFTA
T1 T2 T3 T4
87.1 80.3 76.5 76.3

AFDR AFBA
80.0 76.3

Table 4.6: Taxonomic metrics after probability-based sorting on Italian
test dataset

4.3.4 Evaluation on the English-only test dataset

4.3.4.1 Metrics before probability-based sorting

The focus is now on metrics on the English-only sub-dataset. As it could be expected from
its behaviour on Italian data, we see an overall better performance than the average in the
two languages. This di↵erence observed between Italian and English articles is probably
imputable to the embedder pre-training.

AFTA
T1 T2 T3 T4
91.9 85.3 82.0 81.8

AFDR AFBA
85.2 81.8

Table 4.7: Taxonomic metrics before probability-based sorting on En-
glish test dataset
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4.3.4.2 Metrics after probability-based sorting

The sorting phase turns out to bring, also in this case, both the advantage of producing
reasonable taxonomic predictions and enhancing accuracy: as a reference, for the AFBA

metric it is observed a rise of 1.5. We can conclude this evaluation phase by asserting that

AFTA
T1 T2 T3 T4
92.2 86.9 83.6 83.3

AFDR AFBA
86.5 83.3

Table 4.8: Taxonomic metrics after probability-based sorting on English
test dataset

we have observed a pretty accurate model, that also when making wrong predictions, still
keeps them reasonable in most cases.

In the next chapter, we deal with the common problem of accuracy-confidence inconsis-
tency in modern deep learning models and how to deal with that.
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Chapter 5

Network calibration

Modern Deep Neural Networks (DNNs) can reach astonishing accuracy over several tasks,
sometimes out-performing human capability[11]. However, in real-life scenarios, like au-
tonomous driving or medical health applications, accuracy estimation should be coupled
with an unbiased confidence measure, revealing at which level of trust we should rely
on the network prediction. Usually, the available confidence measure is the output of a
softmax layer, which is interpreted as the probability of the output label being correct.
Shallow Neural Networks are usually well-calibrated, meaning that the softmax proba-
bility associated with the network-produced label reflects the ground-truth correctness
likelihood. Instead, this is not true for most DNNs. It is observed that an increase in
network complexity is highly linked with getting over-confident[10]. In the case of a cali-
brated network, the prediction-linked confidence value is close to the expected accuracy.
When dealing with an over-confident network, the likelihood indicator overcomes, on av-
erage, the network accuracy. This accuracy-confidence imbalance can often be linked to a
Negative Likelihood Loss over-fitting trend, which allows to decrease the 0/1 loss, which
corresponds to a lower classification error, at the price of increasing NLL loss, which en-
codes the probabilistic error. In this framework, network calibration methods arise as
a technique that aims at reducing the miscalibration error by decreasing the confidence
of misclassified samples while leaving barely untouched the confidence of correct predic-
tions[28]. The two main categories of calibration methods are probabilistic approaches
and measure-based approaches. The second ones are usually the go-to choice since they
include various post-processing algorithms which prevent re-training the network. Among
them, the Temperature Scaling (TS) algorithm can be found, representing the state-of-the-
art measure-based approach. It o↵ers both an extremely low computational complexity,
having a single optimization parameter T, called temperature, together with appreciable
e↵ectiveness, out-performing several other methods on a set of tasks[10].

A quantitative set-up, including definitions, calibration measures and algorithm, is built
in the following sections.

5.1 Definitions

In the framework of supervised multi-class classification, the training set is constituted of
couples (X,Y ), with X 2 X, being the input and Y 2 Y = {1, . . . ,K} being the label.

43
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Both of them are random variables following a joint distribution ⇡ (X,Y ) = ⇡ (Y |X)⇡ (X).
Given a classifier D, in our case a neural network, the returned output, when fed with X, is
D(X) = (Ŷ , P̂ ), being Ŷ the network-predicted label and P̂ its associated probability. As
mentioned before, most often P̂ = S

Y=Ŷ
(X) is the softmax probability computed from the

logit layer [h1, . . . , hK ] as SY = exp (hY ) /
P

K

i=1 exp (hj). The model is calibrated if the

confidence P̂ can be interpreted as a probability in a frequentist approach, meaning that
it gives the likelihood that the sample has been correctly classified. This last definition
resembles the one of accuracy, with it being the ratio between correctly classified samples
and observed ones. Then, what we are asking for is, in the case of a set of samples having
P̂ = 0.95, its accuracy should be 95%.
Formally, calibration is defined in [10] as

P(Ŷ = Y |P̂ = p) = p, 8p 2 [0, 1]

where p is the probability over ⇡ (X,Y ). Clearly, perfect calibration can not be achieved in
real-life settings, since P̂ is a continuous random variable, that can not be computed by a
finite number of samples. Then, empirical measures of calibration that allow to inspecting
of practical settings are defined in the following section.

5.2 Measures

The two most common tools used to inspect network calibration are NLL and Expected
Calibration Error (ECE) measures, along with reliability diagrams for visualization.

5.2.1 Negative log likelihood

Negative log-likelihood, also referred to as cross entropy loss in Deep Learning, is a stan-
dard measure of similarity between probability distributions. In particular, NLL in su-
pervised DL is minimized when the classifier-produced distribution ⇡̂ (Y |X) = SY (X)
is exactly the ground truth distribution ⇡ (Y |X), as it should be when the network is
perfectly calibrated. Then, having n samples (xi, yi) ⇠ ⇡ (Y |X), NLL definition is:

NLL = �
nX

i=1

log (Syi(xi))

From this definition, it is possible to explain why NLL overfitting still benefits accuracy.
In fact, in several deep architectures, it can be observed that the network starts to overfit
NLL loss while it keeps decreasing 0/1 loss, i.e. to increase accuracy. The same behaviour
is shown in our architecture, as displayed in 5.1. That means that the network, that is able
to decrease training NLL by increasing output probability, is learning better classification
sacrificing a well-modelled probability distribution[10].

5.2.2 Expected Calibration Error (ECE)

As mentioned before, miscalibration is the inconsistency between confidence and accuracy.
Then, it can be simply expressed by the expectation of the absolute di↵erence between
these two quantities:

E
P̂

h
|P
⇣
Ŷ = Y |P̂ = p

⌘
� p|

i
(5.1)
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Figure 5.1: Learning curves for the fine-tuning phase for loss and accu-
racy on Tier 1

To obtain the corresponding empirical quantity, an approximate distribution of miscali-
bration is needed. This is obtained by binning samples, depending on their confidence,
into M equally-spaced bins. Then, the m-th bin contains the set Bm of samples having
confidence in the range Rm =

�
m�1
M

,
m

M

⇤
. Its average confidence is

conf(Bm) =
1

|Bm|
X

i2Bm

p̂i,

where p̂i denotes the confidence assigned to the ith instance in Bm. The accuracy for the
set Bm is simply defined as the percentage of its correctly classified elements

acc(Bm) =
1

|Bm|
X

i2Bm

1 (ŷi = yi) ,

having set ŷi as the predicted class label for sample i. Then, considering 5.1, the corre-
sponding empirical quantity is the Empirical Classification Error, as defined in [29]:

ECE =
MX

m1

|Bm|
n

|acc (Bm)� conf (Bm)|

This summary statistic is strictly linked to reliability diagrams as a visualisation tool, that
allows the inspection of bin-by-bin calibration measure.

5.2.3 Reliability diagrams

Reliability diagrams allow us to visually inspect the calibration status of a model by
plotting the average bin accuracy as a function of confidence in a bar plot. The binning
process is the same as the one illustrated in the previous section. Therefore, since for a
perfectly calibrated model we would expect acc(Bm) = conf(Bm), i.e. the graph should
display the identity function, the miscalibration magnitude can be inferred by looking at
the calibration gap, given by the di↵erence between average accuracy and confidence of a
certain bin.
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5.3 Temperature scaling

The state-of-the-art approach among measure-based calibration methods is temperature
scaling, a post-processing parametric algorithm relying on a single scalar parameter T > 0,
called temperature. It acts by scaling the logit layer of the network, with the result of
softening the output of the softmax layer:

Sy=yi (xi, T ) = exp

✓
h
yi
i
(x)

T

◆
/

KX

j=1

exp

 
h
j

i
(x)

T

!

This operation does not a↵ect the argmax of the softmax distribution, leaving each pre-
dicted label, and then the accuracy, unchanged. The optimal value T

⇤ is computed via
minimization of NLL loss on a hold-out validation set, that in practice will be the same
used for hyper-parameters selection.

T
⇤ = argmin

T

 
�

nX

i=1

log (Sy=yi (xi, T ))

!

Looking for zeros of the derivative w.r.t T of this scaled NLL loss function results in:

nX

i=1

h
yi
i
=

nX

i=1

KX

k=1

h
k

i Sy=k(xi, T
⇤)

from which it arises that the optimal T ⇤ value is obtained by the trade-o↵ between the
low temperature required by correctly classified samples, for which k = yi, and the trend
of T ! 1 imposed by mistaken samples (k 6= yi). This means that confidence will
be increased for correct predictions and lowered for the wrong ones so that accuracy-
confidence consistency is boosted.

5.3.1 Single temperature parameter

We now apply the temperature scaling algorithm to our multi-tier classifier. As a first
lowest-complexity approach, we admit a single temperature parameter T, which will be
the same among the 4 outputs.

The calibration metrics we are considering take the following values before calibration:
ECE= 0.23, NLL= 4.30

The optimal parameter T
⇤ is found minimizing the total NLL loss on the validation set

via the L-BFGS optimization algorithm with a learning rate magnitude of 10�4 over 105

iterations.

The optimal value for T
⇤ is 1.7 and the calibration metrics report ECE = 0.089, NLL=

2.24 after scaling. We report in table 5.1 the total and tier-by-tier NLL and ECE loss
before and after temperature scaling.

Since the temperature scaling algorithm does not a↵ect the likelihood ordering of output
nodes for a single tier and since the scaling parameter is shared among tiers, all the metrics
are left untouched by this calibration procedure, for whose we remand at table 4.3



5.3. TEMPERATURE SCALING 47

ECE T1 T2 T3 T4 TOT
before calibration 0.05 0.11 0.05 0.01 0.23
after calibration 0.02 0.03 0.03 0.01 0.09

NLL T1 T2 T3 T4 TOT
before calibration 0.47 1.87 0.54 1.42 4.31
after calibration 0.40 1.28 0.47 0.08 2.24

Table 5.1: ECE and NLL metrics before and after temperature scaling
algorithm with single temperature parameter

ECE T1 T2 T3 T4 TOT
before calibration 0.05 0.11 0.05 0.01 0.23
after calibration 0.01 0.01 0.01 0.003 0.04

NLL T1 T2 T3 T4 TOT
before calibration 0.47 1.87 0.54 1.42 4.31
after calibration 0.40 1.23 0.46 0.08 2.17

Table 5.2: ECE and NLL metrics before and after temperature scaling
algorithm with multiple temperature parameter

5.3.2 Tier-specific temperature parameter

We now increase the complexity of the algorithm by allowing each tier to have its own
independent temperature parameter. The notation used implies that Tti is the temperature
parameter for the ith tier and T

⇤
ti
is its optimal value.

The optimal parameters T
⇤
t1
, T ⇤

t2
, T ⇤

t3
, T ⇤

t4
are found minimizing the total NLL loss on

the validation set via the L-BFGS optimization algorithm with learning rate magnitude
of 10�4 over 105 iterations.

The optimal values are T
⇤
t1

= 1.53, T ⇤
t2

= 1.90, T ⇤
t3

= 1.52, T ⇤
t4

= 1.55 and the calibration
metrics report ECE = 0.038, NLL= 2.24 after scaling. We report in table 5.2 the total
and tier-by-tier NLL and ECE loss before and after temperature scaling.

We resume here the total NLL and ECE metrics before and after scaling, with both the
shared and the tier-specific temperature parameters, in order to compare the two scaling
methods.

ECE NLL
before calibration 0.23 4.31
single T calibration 0.09 2.24

multiple T calibration 0.04 2.17

Table 5.3: Shared vs tier-specific temperature parameter

It is straightforward to notice that the 4 degrees of freedom algorithm performs better
than its single parameter counterpart.

From now on, then, the tier-specific temperature calibrated model will be our reference
classifier for Italian and English text and it will be used as a starting point for continual
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Figure 5.2: Reliability diagram for Tier 1, before (left) and after (right)
temperature scaling calibration

Figure 5.3: Reliability diagram for Tier 2, before (left) and after (right)
temperature scaling calibration

learning techniques for incrementing the number of languages.

Finally, in Figures 5.2, 5.3, 5.4, 5.5 we report the reliability diagrams for, respectively,
T1, T2, T3 and T4. For each tier, the diagrams before any calibration step and after the
tier-specific temperature scaling procedure are shown: the blue bars report the average
accuracy for prediction in a certain confidence interval, whereas the red bars indicate the
accuracy-confidence gap within a specific bin softmax outputs. We observe an overall
significant gaps reduction after calibration, as a reflection of the ECE loss reduction via
temperature scaling.
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Figure 5.4: Reliability diagram for Tier 3, before (left) and after (right)
temperature scaling calibration

Figure 5.5: Reliability diagram for Tier 4, before (left) and after (right)
temperature scaling calibration
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Chapter 6

Extending multilingual models to

an incremental number of

languages

In real-life scenarios, it is common that a Multilingual classifier, trained on a set of lan-
guages, is required to be extended to new languages over time. Whereas the most straight-
forward approaches would be plain transfer learning (straightforward application of the
old model to the new task) or re-training from scratch with the full extended dataset, both
strategies present non-negligible drawbacks in their application to concrete problems. This
need to allow Neural Networks to learn tasks in a sequential way is satisfied by Continual
Learning (CL), of which we are giving a general setting in the following section. Later on,
we deal with its application to our specific problem of sequential support of new languages
for a m-BERT-based classifier.

6.1 Continual Learning

Although in recent years, machine learning models have been able to outperform humans
on individual tasks, these impressive results have been obtained with static models, that
need to reface the entire training process from scratch anytime new data comes out. In
real-world set-ups, this practice is most often not exploitable, due to the streaming nature
of data, storage limitations or privacy issues. Therefore, we would like Neural models to be
able to learn incrementally, that is, to learn to solve a certain number (ideally infinite) of
tasks by being exposed sequentially to each one of them. However, this strategy is observed
to su↵er from Catastrophic Forgetting (CF): the performance on previously acquainted
domains usually significantly degrades when observing new data. This issue is named
the stability-plasticity dilemma, which encodes the trade-o↵ observed in the ability to
integrate the latest observed distribution and the capability of retaining the previously
observed ones[5].

Then, CL aims at restricting CF while having limited or restricted access to previous task
data. The setting in which it operates is this: for each task t, data (X(t)

,Y(t)) are randomly
drawn from a distribution D

(t), in which X(t) are the instances and Y(t) the corresponding
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ground-truth labels. The goal is then to control the statistical risk of all seen tasks up to
the current one T

⌧X

t=1

E(X(t),Y(t))

h
l(ft(X

(t)
, ✓),Y(t))

i

having l as loss function, ⌧ as the number of tasks seen until now, parameters ✓ and ft as
the network function for the tth task. For T, the statistical risk can be approximated by
the empirical risk

1

NT

NTX

i=1

l

⇣
f(xTi ; ✓), y

T
i

⌘
,

where {(xT
i
, y

T
i
), i = 1, . . . , NT} is the set of NT examples at our disposal for T.

In our case, each task in the sequential schema is the ability to perform classification
on an additional language, while retaining the most possible taxonomic accuracy on the
previously seen ones.

In the next section, we introduce, from a theoretical point of view, a series of approaches
that can be applied to tackle this problem. For each of them, the results of the related
experiments are presented in 6.4

6.2 Extending a m-BERT-based classifier

Our setting consists of a multilingual BERT-based model MLA , that, at each step, after
being already finetuned for the downstream task of classification on a set of languages
LA, included in the set of languages LP on which the m-BERT embedder has already
been trained on, is being exploited for the same task on a new language lnew 2 LP . The
approaches that we deal with are plain transfer learning, new-language-only fine-tuning, a
Teacher-Student framework and retraining on a dataset containing annotated examples for
all the languages. These methods are listed in increasing computational time and resource
usage.

6.2.1 Näıve transfer learning

The Näıve transfer learning setting operates in the most straightforward way: it exploits
the model that has been trained on LA without any fine-tuning on lnew data. This option
is suggested by the fact that lnew 2 LP , so the embedding model has already faced data
in the lnew language during the pre-training stage. However, the performances in this
framework are usually too poor for real-world applications and any form of fine-tuning on
the new language is required.

6.2.2 New-language-only fine-tuning

The most naive approach to CL consists of fine-tuning MLA on supervised data Slnew

in the new language only. Despite this method being cheap and able to achieve a good
performance on the last step task lnew, it is the most subject to CF. In fact, since the
network is exposed to the new distribution only, it tends to adapt its weights to fit it, at
the cost of degrading its accuracy on the previously seen languages.
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We need then to introduce some more solid CL techniques that, while still staying com-
petitive at the computational level with respect to retraining from scratch with the full
dataset, allow to retain previously acquired knowledge. A greedy solution is proposed
by [32] as self-training: the model itself MLA is used to annotate some samples in the
pre-learnt languages set LA, so that this pseudo-labelled dataset S̃LA is used jointly with
Slnew in the lnew fine-tuning step. Despite this method’s capability to reduce CF, it has
been shown that it may also reinforce the errors of MLA [13]. This is solved by the de-
velopment of some more refined approaches in the context of CL, such as Elastic Weight
Consolidation (EWC) and Knowledge Distillation (KD).

6.2.3 Elastic Weight Consolidation

When dealing with the most competitive methods in CL, Elastic Weight Consolidation
(EWC) is sure worth mentioning[16]. CF is controlled by considering in the loss function
a regularization term that penalizes variations on the model’s weights that are decisive for
the tasks learnt so far.

This algorithm takes inspiration from how knowledge is retained in the mammalian neo-
cortex, via the so-called task-specific synaptic consolidation: knowledge about how to
perform a previously acquired task is durably encoded in a subset of synapses that are
made less plastic over time. The equivalent for an artificial neural network is to regu-
late learning sharpness based on weights’ importance to previously seen tasks, so that
determinant parameters stay close to their old values.

We can intuitively expect to find a solution for task B in an optimal region for A since
when training with interleaving data the parameters of the networks are jointly optimized
for both tasks.

From a theoretical point of view, we can rely on the result that many configurations of the
parameters ✓ return the same architecture performance [35], [12]. Over-parametrization
makes it likely that the optimal solution for B, ✓⇤

B
, will be close to the optimal solution

for A, ✓⇤
A
. Then, the optimization problem is constrained via a quadratic penalty, that

acting as a spring anchored to ✓
⇤
A
, gives the name elastic to the algorithm. The sti↵ness

of this spring should be proportional to the contribution to the performance on task A,
which is easily inferred in a probabilistic perspective

In fact, optimizing the parameters with respect to the statistical risk is equivalent to
finding their most probable estimation given some data D, so the maximum of log p(✓|D),
than can be obtained by using Bayes’ theorem

log p(✓|D) = logp(D|✓) + log p(✓)� log p(D), (6.1)

in which log p(D|✓ is just the negative of the loss function �L(✓). When splitting our
dataset in two slices, DA, DB, we obtain a reformulation of 6.1 that depends only on the
loss on task B:

log p(✓|D) = log p(D|✓) = log p(DB|✓) + log p(✓|DA)� log p(DB)

Then, all the information encoded by the parameters about task A must be retained in the
posterior distribution p(✓|DA). Due to the intractability of the true posterior, it can be
approximated as a Gaussian distribution with mean ✓

⇤
A
and diagonal covariance given by
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Figure 6.1: Training trajectories, with starting point ✓⇤A, determined by
the minimization of the loss on task B in a schematic parameter space

the Fisher information matrix F. The most important property of F is that it is equivalent
to the second derivative of the loss near a minimum. Then, the optimization problem can
be reframed as the minimization w.r.t. ✓ of

L(✓) = LB(✓) +
�

2

X

i

Fi(✓i � ✓
⇤
A,i)

2
, (6.2)

in which � sets the trade-o↵ between loss on the old and new task and i labels the network
parameters.

6.2.3.1 Computing the Fisher Information matrix for a taxonomic classifier

One of the properties of F is the capability of approximating the Hessian while still being
able to be computed from first-order derivatives only. In particular, it can be computed
as:

F (✓) =
1

N

NX

i=1

r✓ log p(xi|✓)r✓ log p(xi|✓)T (6.3)

In the EWC setting, F is evaluated at ✓
⇤
A
, in order to constrain the most meaningful

parameters for the previous task A.

In the taxonomic classification framework, p(xi, ✓) represents the joint distribution over
the 4 tiers p(xi|✓) = p(xi, (T1, T2, T3, T4)|✓).

As done throughout all this thesis, we make the (rather strong) assumption that the
predictions of our network over the 4 tiers are independent, so that

p(xi, (T1, T2, T3, T4)|✓) = p(xi, T1|✓) · p(xi, T2|✓) · p(xi, T3|✓) · p(xi, T4|✓)

This permits to express the gradient of the joint probability distribution in 6.3 as the sum
of the gradients over the weights of the single-tier probabilities.

6.2.4 Teacher-Student framework

Another competitive field is represented by the Knowledge Distillation[13] framework,
in which our teacher-student model arises. KD application for CF preventing is mainly
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exploited in Computer Vision, whereas in NLP it is more popular for model compression,
having the DistilBert model as an example[33]. However, recently KD has been applied
also to NLP tasks, at first for CL in Named Entity Recognition[27], then also for the task
of mitigating CF in multilingual transformer-based models for semantic processing tasks
[4]. This last exposed paper sets the basis for our study.

In this framework, the existing model, MLA , acts as a teacher, imparting its knowledge
about the languages it knows to a student model, that it is in the meanwhile trained on
the new language. In our case, the student model is a clone of the teacher MLA and it is
fine-tuned using a multi-loss function

LCL = ↵ · LT + (1� ↵) · LKD (6.4)

The first contribution to the loss LT is the task-specific loss, that we probably used also to
train MLA , as in our case, in which this term is given by the Cross-Entropy Loss function,
computed on labelled Slnew samples. The key point of this technique is the presence of
the distillation loss LKD, computed on the prediction of, respectively, the teacher and the
student, on a set of unlabeled examples from the previous languages. So while LT gets the
student to learn how to solve the text classification task on lnew, LKD helps the student
maintaining a consistent performance on LA, via teacher imitation. The trade-o↵ between
the two contributions is controlled by the ↵ parameter. We exploit the LKD version
proposed in [13]. At first, we need to define zi(x) as the output logits of the model’s last
layer when fed with the sample x. Then, the temperature-softmax converts the logits into
a class-probability distribution:

yi(x) =
exp (zi/T )P
j
exp (zj/T )

.

T is the temperature hyper-parameter, that controls how much the distribution is softened
w.r.t. plain softmax. Finally, LKD is computed as the cross-entropy loss between the
teacher and student smoothed distributions yt

i
(x), ys

i
(x):

LKD = �T
2
X

i

y
t

i(x) log y
s

i (x),

where the T
2 is made necessary to compensate the 1/T 2 factor provided by the smoothed

softmax derivation. The key di↵erence between self-training and this Student-Teacher
model resides in the Temperature smoothing, which allows preserving of uncertainty on
the teacher predictions. In fact, there is no control over the correctness of the teacher’s
prediction and this shows in the so-called genetic errors, i.e. errors that show in both the
teacher and the student that learnt from it.

6.3 Training from scratch

Finally, we proceed to train our model with the complete dataset, containing annotated
samples in all languages of interest. In this method, being just the traditional o✏ine
machine learning procedure, the loss minimization over the whole dataset pushes the
weights of the network in a joint optimal region for all the languages considered.
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AFTA

T1 T2 T3 T4
Spanish 58.0 45.2 34.9 34.3
Swedish 40.6 26.6 20.9 20.8

AFDR AFBA

Spanish 43.1 34.3
Swedish 27.2 20.8

Table 6.1: Taxonomic metrics for näıve transfer learning approach after
probability-based sorting on Spanish and Swedish test dataset

6.4 Experimental results

6.4.1 Näıve transfer learning

As a first approach, we evaluate our calibrated baseline on Spanish and Swedish reserved
test datasets. The model has not been trained with samples on any of the two languages,
then this approach reveals how keen it is on transferring knowledge to unseen data. Taxo-
nomic metrics obtained from the evaluation on Spanish and Swedish articles are shown in
table 6.1. We start our inspection with results in Spanish. Taking AFBA as a reference,
we see that it degrades from 79.3, when computed for the languages it has been trained
on, to 34.3 for Spanish.

The performance loss for Swedish is even higher, with AFBA = 20.8. The performance
gap displayed between Spanish and Swedish evaluations can be easily justified by the
strong syntactic and semantic similarity of the Spanish language with the Italian one,
both belonging to the family of romance languages. Despite Swedish and English both
belonging to the Germanic linguistic group, their di↵erence is due to the influence that
Latin has had on English only. This makes Swedish an outlier in our set of languages.

6.4.2 New-language-only fine-tuning

In this section, we display the results of the experiments drawn with the fine-tuning
technique. As already explained, it enlarges the set of languages known by a model by
performing an additional training phase with data in lnew language only. Since we want
to study how each of the following techniques performs when exposed to an incremental
number of languages, the experiments will be performed sequentially. This means, in the
fine-tuning case, that we have two distinguished models, both derived from the calibrated
baseline. The first will be fine-tuned on Spanish data first, and once this language is
acquired, Swedish will be added via fine-tuning too. The second will face the same process
but with new languages learning in reversed order: the fine-tuning phase is performed on
Swedish first and on Spanish afterwards. Then, to assess how each CL technique performs,
we will consider its performance as the average of the metrics on these two models: this will
remove any eventual dependency on language order in the sequential learning approach.
All the training phases in this set of experiments are performed minimizing the Cross
Entropy loss using Adam as an optimizer, with adaptive learning rate depending on epoch

as lr = 10�5
/(1+0.05⇤epoch). The maximum number of training epochs is set to 30, with

Early Stopping monitoring the validation accuracy on Tier 3, with the patience parameter
set to 5. The batch size is set to 16.
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k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 84.8 76.8 72.1 71.8 77.6 66.2 59.5 58.9

Spanish 58.0 45.2 34.9 34.3 90.0 85.6 82.0 81.7 78.5 67.7 60.6 60.0
Swedish 40.6 26.6 20.9 20.8 39.1 26.0 20.6 20.4 84.0 76.5 71.9 71.8

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 76.3 71.8 65.6 58.9
Spanish 43.1 34.3 84.8 81.7 66.7 60.0
Swedish 27.2 20.8 26.5 20.4 76.0 71.8

Table 6.2: Taxonomic metrics on the model obtained fine-tuning the
baseline on Spanish first, and on Swedish at the following step

6.4.2.1 Fine-tuning on Spanish first

Here we expose the results of the first of the two subsets of experiments for the fine-
tuning technique. As mentioned just above, we integrate Spanish at first, and Swedish
sequentially. The results are exposed as follows: in order to study the capability of the
algorithm for an incremental number of language extension, we individuate the following
training phases, marked with an index k. For k = 1, we are just evaluating the baseline
trained on Italian and English data only. When k = 2, we are evaluating the model
after acquiring Spanish, that becomes our starting point for incorporating also Swedish
knowledge, at the k = 3 step. Results are shown in table 6.2. For k = 1, we simply retrieve
the already known metrics for the baseline, which we now compare with their equivalent at
k = 2. At this second step, the e↵ect of fine-tuning on Spanish is evident: AFBA evaluated
on Spanish escalates from 34.3 to 81.7 and we observe an overall important raise in all
the considered metrics. On the other hand, we observed a decrease in performance in
the previously acquired languages, i.e. Italian and English. This behaviour reveals that,
as expected, fine-tuning forces the distribution of the weights towards the one that has
been seen as last, at the cost of deforming the previous one. The metrics on Swedish face
a slight reduction, which may be due to the network reinforcement in spotting typical
features of romance languages. Finally, for k = 3, we obtain a Swedish specialized model:
it outperforms all other languages, despite the huge gap in metrics at previous steps.
Clearly, this comes at the cost of a further downgrading in Italian and English samples
and of partial forgetting of Spanish too.

6.4.2.2 Fine-tuning on Swedish first

In this section, we deal with the same framework exposed in the previous paragraph but
with fine-tuning steps facing Swedish at first and Spanish afterwards. For k = 2, all the
metrics reveal the network adjustment to Swedish data distribution: we observe a jump
in AFBA from a value of 20.8 to 72.3, with a consequent drop in performance in Spanish,
Italian and English. An interesting fact can be noticed by considering the e↵ect of adding
Spanish or Swedish first on the other: when adding Spanish, AFBA on Swedish worse
by just 2%, whereas when adding Swedish first, AFBA on Spanish drops by 22%. The
second case is also characterized by a more severe fall in Italian and English metrics with
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k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 79.6 69.2 63.3 62.7 83.2 74.4 69.7 69.5

Swedish 40.6 26.6 20.9 20.8 84.2 76.7 72.7 72.3 76.9 68.4 63.2 63.1
Spanish 58.0 45.2 34.9 34.3 51.1 36.4 27.2 26.3 89.0 82.5 78.6 78.2

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 68.7 62.7 74.2 69.5
Swedish 27.2 20.8 76.5 72.3 67.9 63.1
Spanish 43.1 34.3 35.3 26.3 82.1 78.2

Table 6.3: Taxonomic metrics on the model obtained fine-tuning the
baseline on Swedish first, and on Spanish at the following step

respect to the first, revealing how the network needs to face stronger reshaping to adapt
to Swedish. Moving to k = 3, the model faces fine-tuning on Spanish. What is definitely
worth to be mentioned is that this step reveals to favour Italian and English too. In
fact, all taxonomic metrics face a non-negligible rise when the model learns Spanish after
specializing on Swedish, ending in higher metrics at step k = 3 for the reverse ordering on
training languages in the previous section. This highlights again the similarity between
Spanish, Italian at first and English, which is displayed in a correlation in performance
trends. However, this adaptation hinders, reasonably, the performance on Swedish.

Giving an overall picture of the sequential fine-tuning method, it shows promising in the
language learnt at current step, at the cost of forgetting previously acquired information.

6.4.3 EWC

In this section, we display the results of the experiments drawn in the context of EWC,
which dampens CF by including a regularization term in the loss that freezes the most
significant weights for previous tasks. Again, to have a fair sequential learning process
evaluation, we perform two lines of experiments, distinguished by the order of new lan-
guages integration. Each of the two sub-processes will face two training phases: the first is
exposed to Spanish initially and to Swedish later on, and the second absorbs Swedish first.
All the training phases in this set of experiments are performed minimizing the loss func-
tion proposed in 6.1, with the Cross Entropy as the loss-specific task, using Adam as an
optimizer, with adaptive learning rate depending on epoch as lr = 10�5

/(1+0.05⇤epoch).
The maximum number of training epochs is set to 25, with Early Stopping monitoring the
validation accuracy on Tier 3, with the patience parameter set to 5. The batch size is set
to 16. The regularization parameter � is set to 0.5 as we assign the same importance to
old and new tasks.

6.4.3.1 Adding Spanish first

In this approach, we want our model to learn Spanish at first while retaining the most
knowledge possible on previously acquired languages. In this case, then, the approximated
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k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 87.8 81.0 77.4 77.1 85.3 77.4 72.5 72.1

Spanish 58.0 45.2 34.9 34.3 88.6 82.5 78.5 78.1 83.4 73.4 67.5 67.0
Swedish 40.6 26.6 20.9 20.8 41.3 28.2 22.6 22.5 82.1 72.9 67.4 67.1

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 80.8 77.1 76.8 72.1
Spanish 43.1 34.3 81.9 78.1 72.8 67.0
Swedish 27.2 20.8 28.7 22.5 72.4 67.1

Table 6.4: Taxonomic metrics on the model obtained with EWC con-
tinual learning algorithm adding Spanish first, and on Swedish at the
following step

Fisher matrix is computed with 5000 samples from the Italian and English validation
dataset. Moving to the next step, marked with k = 3 in table 6.4, we now have a model that
knows Italian, English and Spanish and is being trained on Swedish. The approximated
Fisher matrix is now obtained via processing 5000 examples sampled from the Italian,
English and Spanish validation dataset. We now deal with the results of this subset of
experiments. Considering the behaviour on Italian and English dataset, we observe that,
despite the performance loss still being present, its magnitude is smaller with respect to
the fine-tuning framework, revealing the e↵ectiveness of the implemented constraint. The
same behaviour is shown by Spanish metrics when adding Swedish at k = 3, which again
outperforms the fine-tuned model at same step and for same procedure, as it can be seen
in the last column of table 6.2. The metrics on the last added language, however, are
slightly lower than the corresponding ones for the fine-tuned model. For example, in the
EWC approach, AFBA for Spanish at k = 2 reaches 71.8, whereas in the fine-tuning
experiment it touches 81.7, at the cost of stronger CF.

6.4.3.2 Adding Swedish first

In this setting, the technique is the same as the one discussed in the previous paragraph,
but with reversed languages exposition. At k = 2, still, the approximated Fisher informa-
tion matrix is computed with 5000 validation samples from Italian and English articles,
whereas at step k = 3, the 5000 examples include also items in Swedish. Outcomes can be
inspected from table 6.5 Again, we overall observe a better retaining of past information
than plain fine-tuning, at the price of slightly more restrained performances on last step
language.

6.4.4 Teacher-Student framework

The teacher-student setting exploits a Knowledge Distillation setting for CL. When the
learning is performed sequentially, the trained student at step k becomes the teacher
at step k + 1. In our case, at step k = 2, the teacher is the calibrated baseline and
the student acquires either Spanish or Swedish from the corresponding training data.
At k = 3, the 3 language-speaking student will now be the teacher to its clone, which
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k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 86.9 79.2 75.0 74.7 86.2 78.9 75.0 74.6

Swedish 40.6 26.6 20.9 20.8 82.7 73.8 69.1 68.8 78.1 68.2 63.1 62.7
Spanish 58.0 45.2 34.9 34.3 55.7 41.9 32.9 32.0 88.0 80.9 76.3 75.9

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 78.9 74.7 78.7 74.6
Swedish 27.2 20.8 73.6 68.8 68.0 62.7
Spanish 43.1 34.3 40.6 32.0 80.2 75.9

Table 6.5: Taxonomic metrics on the model obtained with EWC con-
tinual learning algorithm adding Swedish first, and on Swedish at the
following step

will be fed with either Swedish or Spanish training samples. All the training phases in
this set of experiments are performed by minimizing the multi-loss function proposed in
6.4, with both the task-specific loss and the distillation loss functions being the Cross
Entropy. The chosen optimizer is Adam, with adaptive learning rate depending on epoch

as lr = 10�5
/(1+0.05⇤epoch). The maximum number of training epochs is set to 25, with

Early Stopping monitoring the validation loss of the student network, with the patience
parameter set to 5. The batch size is set to 16. The trade-o↵ parameter ↵ is set to 0.5
At each training step, a batch of training items from the old languages is sampled from
a uniform distribution on the corresponding dataset. Their ground-truth label can be
neglected, if available, as the student learns from the teacher-produced logits.

6.4.4.1 Learning Spanish first with baseline as teacher

In this paragraph, we inspect the results of this CL method when exposed to Spanish first.
For k = 2, the student has learnt Spanish, while being reminded of Italian and English
distributions by the calibrated baseline, acting as its teacher. This first step is performed
both for T = 1, in which the logits are exploited as they are, and for T = 3, in which
the reduced logits result in a smoother softmax output. When looking at table 6.6, we
can notice how this method, along with granting an optimal performance on the student’s
freshly learnt language, is able to strengthen the knowledge of the past observed ones.
This phenomenon is known as cross-language transfer and can be spotted by observing
that all metrics in Italian and English increase from k = 1 to k = 2 and then from k = 2
to k = 3. It is interesting to notice that integrating Spanish turns out to favour also
Swedish, raising AFBA from 20.8 to 23.5. A major increase is then noticed when Swedish
data actually faces training, with AFBA reaching 67.6. A slight increase is also faced by
Spanish-related metrics and, as already mentioned, by Italian and English ones.

We now study the e↵ect of raising the temperature parameter in the distillation loss,
setting it to T = 3. However, this model under-performs the non-smoothed one: at k = 2,
AFBA = 75.1, while reaching 79.7 for T = 1. The reinforcement e↵ect is still observed
both in the previously seen and in the not seen languages.
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k=1 k=2 k=3

T=1
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 89.6 83.5 80.2 79.8 89.7 83.6 80.3 80.0

Spanish 58.0 45.2 34.9 34.3 89.4 83.7 80.1 79.7 89.6 83.6 80.1 79.8
Swedish 40.6 26.6 20.9 20.8 43.1 29.4 23.7 23.5 81.7 73.0 67.8 67.6

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 83.3 79.8 83.4 80.0
Spanish 43.1 34.3 83.2 79.7 83.3 79.8
Swedish 27.2 20.8 29.9 23.5 72.5 67.6

Table 6.6: Taxonomic metrics on student, learning at first Spanish, and
Swedish at the following step, for T=1

k=1 k=2 k=3

T=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 89.5 83.4 80.0 79.7 89.5 83.5 80.0 79.7

Spanish 58.0 45.2 34.9 34.3 87.5 80.4 75.5 75.1 88.0 80.6 75.5 74.9
Swedish 40.6 26.6 20.9 20.8 43.8 30.5 24.4 24.0 80.3 70.6 65.0 64.9

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 83.2 79.7 83.2 79.7
Spanish 43.1 34.3 79.6 75.1 79.8 74.9
Swedish 27.2 20.8 30.7 24.0 70.2 64.9

Table 6.7: Taxonomic metrics on student, learning Spanish from the
baseline, for T=3
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k=1 k=2 k=3

T=1
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 89.6 83.6 80.4 80.1 89.6 83.7 80.5 80.2

Swedish 40.6 26.6 20.9 20.8 83.0 74.5 69.9 69.7 82.7 74.5 70.1 69.8
Spanish 58.0 45.2 34.9 34.3 58.0 45.2 36.3 35.7 87.6 80.1 75.0 74.5

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 83.4 80.1 83.4 80.2
Swedish 27.2 20.8 74.2 69.7 74.3 69.8
Spanish 43.1 34.3 43.8 35.7 79.3 74.5

Table 6.8: Taxonomic metrics on student, learning at first Swedish, and
Spanish at the following step, for T=1

k=1 k=2 k=3

T=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 89.5 83.2 79.9 79.7 89.5 83.6 80.2 79.9

Swedish 40.6 26.6 20.9 20.8 80.2 70.5 65.5 65.0 80.5 70.5 65.7 65.1
Spanish 58.0 45.2 34.9 34.3 59.0 46.9 38.2 37.5 85.3 76.1 69.8 69.3

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 83.1 79.7 83.3 79.9
Swedish 27.2 20.8 70.3 65.0 70.5 65.1
Spanish 43.1 34.3 45.4 37.5 75.1 69.3

Table 6.9: Taxonomic metrics on student, learning at first Swedish, and
Spanish at the following step, for T=3

6.4.4.2 Learning Swedish first with baseline as teacher

The process now still starts with the calibrated baseline acting as the teacher, but now
the student is fed with the Swedish training articles. At first, we set T = 1, letting the
student learn from the plain teacher logits. The behaviour is the same as in the reversed
order experiment, exposed in the previous paragraph: adding a new language strengthens,
or at worse, leave untouched, the network capability on the already acquired ones.

Now, we raise the temperature in our experiment in order to evaluate the e↵ect of smoothed
predictions. Again, while it still allows retaining the knowledge on the languages seen up
to the point, it displays lower performances on the language to be learnt.

6.4.5 Re-training from scratch

Finally, we report the results for a non-CL strategy, in which the model is trained from
scratch on all the languages of interest, just as plain o✏ine machine learning. This ap-
proach represents a sort of upper bound to CL methods, as it allows the optimizer to look
for the optimal parameters configuration on the whole dataset. We make our experiments
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k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 90.0 84.0 80.6 80.3 89.9 83.9 80.6 80.3

Spanish 58.0 45.2 34.9 34.3 90.1 84.3 80.9 80.6 90.0 84.8 81.3 81.1
Swedish 40.6 26.6 20.9 20.8 40.5 27.1 21.8 21.7 83.3 75.5 71.3 71.2

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 83.7 80.3 83.7 80.3
Spanish 43.1 34.3 84.8 80.6 84.3 81.1
Swedish 27.2 20.8 27.7 21.7 75.3 71.2

Table 6.10: Taxonomic metrics on the model trained from scratch adding
Spanish first to the baseline, and Swedish too at the following step

k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Italian+English 89.3 83.2 79.6 79.4 89.5 83.9 80.6 80.3 89.9 83.9 80.6 80.3

Swedish 40.6 26.6 20.9 20.8 84.2 76.6 72.6 72.3 83.3 75.5 71.3 71.2
Spanish 58.0 45.2 34.9 34.3 59.8 45.6 37.1 36.4 90.0 84.8 81.3 81.1

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Italian+English 82.9 79.4 83.6 80.3 83.7 80.3
Swedish 27.2 20.8 76.4 72.3 75.3 71.2
Spanish 43.1 34.3 44.7 36.4 84.3 81.1

Table 6.11: Taxonomic metrics on the model trained from scratch adding
Swedish first to the baseline, and Spanish too at the following step

ordering-proof by performing two parallel training processes.

6.4.5.1 Adding Spanish First

The first training process includes Italian, English and Spanish for k = 2, granting good
results in all the languages exploited during training. The last step is interested by a
training phase including all 4 languages and it is e↵ectively the best performing model
among the ones proposed.

6.4.5.2 Adding Swedish First

In this case for k = 2, the training dataset is built with the articles in Italian, English and
Swedish. It is worth noticing that with respect to the model at step 3, which has learnt
also Spanish, it reaches higher performance in Swedish: this is probably due to the fact
that the absence of Spanish data allows the network to shape its weights following better
Swedish distribution.
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k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Fine-tuning 89.3 83.2 79.6 79.4 87.1 81.2 77.4 77.0 86.5 79.5 75.3 75.0

EWC 89.3 83.2 79.6 79.4 85.7 78.2 73.8 73.5 85.1 76.9 71.9 71.5
Teacher-student 89.3 83.2 79.6 79.4 86.3 79.1 75.0 74.7 84.7 76.6 71.4 71.1
Full training 89.3 83.2 79.6 79.4 86.4 79.1 75.0 74.7 85.7 80.2 76.3 76.2

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Fine-tuning 82.9 79.4 75.3 77.0 79.1 75.0
EWC 82.9 79.4 77.8 73.5 76.3 71.5

Teacher-student 82.9 79.4 78.7 74.7 75.9 71.1
Full training 82.9 79.4 78.8 74.7 79.8 76.2

Table 6.12: Taxonomic metrics for the languages learnt at the current
step.

6.4.6 Methods Comparison

In order to have a fair comparison between the various methods exposed in this chapter, we
now analyze their performances on the languages they have been trained on at the current
step, on the languages it has faced in previous steps, on the ones seen up to the current
step, and finally on the languages it has not been trained on yet. For each of the listed
cases above, we obtain a general performance indicator by averaging the metrics obtained
for the two independent experimental paths, that have been trained on data, respectively,
at first in Spanish and in Swedish later on, and in Swedish first and in Spanish afterwards.

6.4.6.1 Average performance for the languages learnt at the current step

We now compare the average performance obtained for the languages on whose the model
has been trained at the current step.

For both models, the observed languages at k = 1 are English and Italian. For k = 2, the
first model is trained on Spanish and the second on Swedish. For k = 3, the second model
is trained on Swedish and the second on Spanish.

Average results are reported in table 6.12 and can be visualized in figure 6.2 We observe
an overall decreasing trend at step k = 2. This is mainly due to the inclusion of Swedish
in the training data, on which metrics are always worse than on the other languages at our
disposal. This e↵ect is probably justified by both the fact that Swedish lacks the Latin
influence that other languages share and by structural limitations of the embedder derived
from an uneven distribution among languages of the data it has been trained on. At step
k = 3, the best performance is achieved by the full training from scratch procedure, as
we could expect, followed by the fine-tuning technique. This result is straightforward to
be understood since during fine-tuning the network weights are shaped on the new task
distribution. On the other hand, proper CL methods, i.e. EWC and the Teacher-student
framework, turn out to be integrating the least amount of knowledge from the last observed
dataset.
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Figure 6.2: Average performances on the languages learnt at the current
step.
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k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Fine-tuning - - - - 82.2 73.0 67.7 67.3 79.5 69.5 63.7 63.3

EWC - - - - 87.4 80.1 76.2 75.9 84.1 75.6 70.8 70.5
Teacher-student - - - - 89.6 83.6 80.3 80.0 88.4 82.0 78.5 78.3
Full training - - - - 88.5 81.6 77.8 77.5 88.8 82.6 79.2 78.9

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Fine-tuning - - 76.8 67.3 69.0 63.3
EWC - - 79.9 75.9 75.3 70.5

Teacher-student - - 83.4 80.0 81.8 78.3
Full training - - 81.3 77.5 82.4 78.9

Table 6.13: Taxonomic metrics for the languages learnt at previous steps.

6.4.6.2 Average performance for the languages learnt at previous steps

Now we focus our inspection on the performance of the proposed algorithms on previously
learnt languages.

Clearly, this evaluation can not be performed for the first step. For k = 2, metrics are
evaluated on Italian and English, whereas for k = 3 they are evaluated, respectively,
on Swedish and on Spanish. Finally, the average on sub-experiments, distinguished by
training order, is performed. Again, the upper-bound AFBA is gained by the non-CL
approach, in which all the languages seen up to step k are included in the training. How-
ever, the KD-based approach, i.e. the teacher-student algorithm, displays a negative gap
in AFBA of just 0.6, whereas this gap is of 8.4 and 15.6 for EWC and fine-tuning, respec-
tively. Quantitative results can be found in table 6.13, whereas figure 6.3 o↵ers a visual
inspection of AFBA. The behaviour we observe is exactly the expected one: the non-CL
approach of fine-tuning tends to modify its weights to adapt to the last-seen distribu-
tion, while sequentially losing previously acquired skills. On the other hand, EWC o↵ers
a better retention of past information, but it can not compete with the teacher-student
framework. The di↵erence between these two CL approaches can be justified by the dis-
tinct routines used by the two to encode past information: while EWC just retains the
previous distribution in the approximated Fisher Information matrix, the Teacher-Student
algorithm keeps being trained on batches of unlabelled data belonging to the previous task.
The second approach clearly allows a much higher complexity for the information retain
goal.

6.4.6.3 Average performance for the languages learnt up to the current step

Now, we deal with the comparison of average performances on all the languages that have
been included in training up to now. These indicators reveal which approach dominates
for the totality of tasks that we are interested in, up to a certain time.

Full taxonomic metrics are shown in table 6.14, whereas AFBA trend over step k is
exposed in figure 6.4 to o↵er an immediate understanding. Again, the time-consuming
full training proved to be successful, with AFBA = 78.1 for k = 3. However, the Student
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Figure 6.3: Average performances on the languages learnt at previous
steps.



68 CHAPTER 6. INCREMENTAL NUMBER OF LANGUAGES

k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Fine-tuning 89.3 83.2 79.6 79.4 83.9 75.8 71.0 70.6 84.3 75.4 70.0 69.4

EWC 89.3 83.2 79.6 79.4 86.8 79.3 75.4 75.0 84.3 75.9 71.0 70.7
Teacher-student 89.3 83.2 79.6 79.4 88.4 82.0 78.4 78.1 87.4 80.6 76.7 76.4
Full training 89.3 83.2 79.6 79.4 87.7 80.6 76.8 76.5 88.2 82.0 78.4 78.1

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Fine-tuning 82.9 79.4 75.3 70.6 74.8 69.4
EWC 82.9 79.4 79.1 75.0 75.5 70.7

Teacher-student 82.9 79.4 81.7 78.1 80.3 76.4
Full training 82.9 79.4 80.4 76.5 81.6 78.1

Table 6.14: Taxonomic metrics for the languages learnt up to the current
step.

network in the KD approach competes with AFBA = 76.4, which comes at a much
lower computational cost. EWC and fine-tuning retrieve less interesting results, with
AFBA = 70.7 and AFBA = 69.4

6.4.6.4 Average performance for the languages that have not been learnt yet

Finally, we study how sensitive each approach is to the phenomenon of cross-lingual trans-
fer by inspecting its performance on the languages that it has never been trained on.

We can inspect results from table 6.15 in figure 6.5. What we see is that the Teacher-
student method o↵ers a much higher performance on the languages it has not faced yet,
with AFBA raising to 29.6 at step k = 2, from a starting point of 27.3. EWC and the
full training procedure are keener to keep it stable, with respectively AFBA = 27.3 and
26.9. Finally, fine-tuning displays the lowest observed cross-lingual transfer, as it shows
AFBA = 23.4.
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Figure 6.4: Average performances on the languages learnt up to the
current step.

k=1 k=2 k=3
AFTA AFTA AFTA

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
Fine-tuning 49.0 35.6 27.7 27.3 45.1 31.2 23.9 23.4 - - - -

EWC 49.0 35.6 27.7 27.3 48.5 35.1 27.8 27.3 - - - -
Teacher-student 49.0 35.6 27.7 27.3 50.6 37.3 30.0 29.6 - - - -
Full training 49.0 35.6 27.7 27.3 48.1 34.5 27.4 26.9 - - - -

k=1 k=2 k=3
AFDR AFBA AFDR AFBA AFDR AFBA

Fine-tuning 34.9 27.3 30.9 23.4 - -
EWC 34.9 27.3 34.7 27.3 - -

Teacher-student 34.9 27.3 36.9 29.6 - -
Full training 34.9 27.3 34.2 26.9 - -

Table 6.15: Taxonomic metrics for the languages that have not been
learnt yet.



70 CHAPTER 6. INCREMENTAL NUMBER OF LANGUAGES

Figure 6.5: Average performances on the languages that have not been
learnt yet.



Chapter 7

Conclusion

In this thesis, we have been dealing with the implementation of a taxonomic multilingual
text classifier and with its progressive extension to an incremental number of languages.

We use a multilingual deep BERT embedder for the features extraction task and we
interface it with a stack of dense layers for the downstream task of classification.

Our model does not impose any a priori taxonomic consistency between predicted tiers,
which is retrieved during the post-processing phase via a joint probability-based sorting
algorithm.

After obtaining our multilingual baseline, which has been trained on Italian and English
article slices obtained from HTML files, we correct its tendency of being over-confident
via the temperature scaling calibration algorithm. The extension of this algorithm to the
multi-output case is one of the main contributions of this thesis.

The calibrated baseline has been the starting point for the comparison of various methods
for obtaining a model that can solve the taxonomic classification task in an incremental
number of languages. The näıve application of this model to unseen languages turns
out to be too inaccurate for real-life applications. A possible approach would be the
o✏ine machine learning technique of training the model from scratch on the full dataset
containing all the languages of interest. Despite representing the upper-bound method,
this procedure comes at the highest computational cost and it may not be applicable, as
it relies on the full availability of labelled training data.

A cheaper approach for sequential learning could be the fine-tuning of the baseline on new
language data only. This method reaches optimal performance on the last acquired task
but it is particularly subject to catastrophic forgetting.

We then move to the Continual Learning framework, in which we test two algorithms: the
Knowledge-Distillation inspired Teacher-Student setting and the Elastic Weight Consoli-
dation method. The extension of the EWC algorithm to a multivariate output distribution
counts among the main contributions of this work. Both these CL approaches achieve bet-
ter performance with respect to the plain fine-tuning on previously seen languages while
being much computationally cheaper than training from scratch. Among the two, the
Teacher-Student framework o↵ers an overall better performance on tasks seen up to the
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current one and it represents a competitive alternative to traditional o✏ine machine learn-
ing.

This work represents a starting point for further research in taxonomic multilingual text
classification. In particular, a deeper inspection of the sequential learning behaviour for a
higher number of languages should be carried out for the di↵erent algorithms. Moreover,
another improvement could be obtained with the compensation of the high class imbalance,
either via an up-sampling phase or by the usage of specific loss functions, such as the focal
loss[18].



Chapter 8

Appendix

The t-SNE algorithm belongs to the class of Stochastic Neighbour Embedding (SNE) meth-
ods. It operates via associating a Gaussian probability distribution pij to xxxj 2 Rp belong-
ing to the neighbourhood of xxxi, based on their Euclidean distance:

pij =
exp(�kxxxi � xxxjk2)/2�2

iP
k 6=i

exp(�kxxxi � xxxkk2)/2�2
i

The tuning of the �i parameter is achieved by fixing the local entropy H(pi):

H(pi) ⌘ �
X

j

pji log2(pji)

to the same constant across all data points X = {xxxi} via user-constraining the perplexity
⌃ = 2H(pi). The perplexity can be interpreted as a measure of the e↵ective number of
neighbours and its typical value ranges between 5 and 50 [20], [22]. This strategy identifies
�i 8i, assigning a lower value in higher-density regions.
T-SNE carries out the dimensionality reduction task through the construction of a neigh-
bourhood probability distribution qij for the latent coordinates Y = {yyyi} where yyyi 2 Rp

0
,

with p
0
< p

qij =
(1 + kyyyi � yyyjk2)�1

P
k 6=i

(1 + kyyyi � yyykk2)�1

The qij distribution is chosen to be long-tailed to represent the similarity between closer
data while solving the problem of exponentially vanishing contributions for outliers [23].
The latent coordinates are found through the minimisation of the Kullback-Leibler diver-
gence of qij and pij

DKL(p||q) =
X

ij

pij log

✓
pij

qij

◆
,

that measures the dissimilarity between the two distributions. This course of action pre-
serves the distance-related information: close points in the original space are mapped to
close-by points in the latent space, even though the actual distance is not preserved and
the scale is deformed.
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