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Abstract

Temporal networks are widely used nowadays to represent dynamic systems
in various contexts, from physics to biology, technology, economics and so-
ciology. A well known example are social networks: the nodes represent the
users, while the edges represent the connections between them, changing over
time depending on their interactions.
Community detection is an important analysis that can be done on the net-
work in order to understand if the nodes are organized into groups or com-
munities and how these evolve during time. This might be useful for real
life application, for instance to discover disinformation campaigns on social
networks.
We analyse the current state-of-the-art algorithms. Speciőcally we focus on
the trade-off between the stability of the algorithms over time and their abil-
ity to adapt to rapid changes in the communities structure.
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Introduction

The importance of networks has increased more and more in recent years.
Nowadays they are usefully used to represent many dynamics and systems
of various disciplines, such as physics, engineering, biology, technology, eco-
nomics and sociology. Facebook, for instance, is a large social network in
which the users are connected by links that represent their interactions.
When dealing with networks it might be interesting to discover if the network
is organized into groups or communities: they are intuitively dense subnet-
works that are well separated from each other. Discovering the community
structure of a network might be really useful for real life applications. It
allows to classify nodes, based on their role with respect to the communi-
ties they belong to. For instance we can distinguish nodes that are totally
embedded within their communities from nodes at the boundary between
communities, which could play a major role in holding the network together
and in spreading information across it. We can unveil if the network is or-
ganized into a sort of hierarchy or if some communities have more inŕuence
than others, for example if they are larger or more cohesive.
As we will see later, community detection is a very challenging problem. The
main reason behind this is that the problem is ill-deőned: there is not a uni-
versal deőnition of what is a community and there are not guidelines about
how to evaluate the performance of an algorithm or to validate its outputs.
On one hand this has brought a lot of confusion in the őeld, but on the other
hand it inspired many interesting and original approaches to the problem.
In particular we will focus on the problem of partitioning the network into
communities: we want to divide the nodes into communities, whose number
and sizes are not given a priori, so that each node belongs to exactly one
community. Moreover we will work with temporal networks, which are net-
works that change over time. The problem, then, is not only to detect the
communities on a őxed network, but also to study their evolution as time
goes by.
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This master thesis is divided into three chapters.

In Chapter 1 we will present the basic tools and notation for static and tem-
poral networks. We will deőne more precisely the problem of community
detection, with an highlight on the events that characterize the evolution of
dynamic communities. We will őnally present a widespread measure to eval-
uate the quality of a partition into communities: the modularity function.

In Chapter 2 we will make a rapid overview of the most used algorithms for
community detection on static and temporal networks. In particular we will
focus on one of the most popular and fast algorithms for static networks, the
Louvain algorithm, and on two algorithms for dynamic community detection:
the Aynaud and Guillaume’s algorithm and the ECSD algorithm. We will
present them, by explaining how they work and reporting a pseudo-code for
their implementation.

In Chapter 3 we will show the results that we obtained by testing the Aynaud
and Guillaume’s algorithm and the ECSD algorithm, presented in Chapter
2. After the description of the experimental setup, we will present the three
networks on which we tested the algorithms: the őrst one is the Sociopatterns

network, already implemented in the library tnetwork, the second one is
an artiőcial graph, that we generated using a function of the same library,
and the third one, the DBLP network, is a co-authorship network between
authors of scientiőc papers from DBLP computer science bibliography.
The two algorithms perform quite well on both the Sociopatterns and the
DBLP networks, while they behave differently and achieve worse results on
the artiőcial network, suggesting that the algorithms are more suitable for
networks that do not change dramatically over time.
After the analysis of the results, we draw some conclusions and suggest some
possible improvements.
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Chapter 1

Networks and Communities

1.1 Static networks

We denote a network with G or G = (V,E), where V represents the set of
nodes and E is the set of edges. We deőne the following quantities:

• n = |V | is the number of nodes of the network.

• m = |E| is the number of edges of the network.

• eij is the edge that connects two nodes i and j; we consider only undi-
rected graphs so eij = eji.
If there exists the edge eij, the nodes i and j are said to be adjacent

and they are the ends of the edge eij. The edge eij is said to be incident

in i and j.

• N(i) is the set of neighbours of the node i.

• In case of weighted network: W (eij), or for brevity wij, is the weight
of the edge eij, where the weight is a function W : E → R+.
In case of unweighted network: we can ignore the weight function
or simply consider it as a function that assumes values in {0, 1}, i.e.
W (eij) is 1 if the edge eij exists, 0 otherwise.

• A is the adjacency matrix. A is an n×n matrix, whose entry Aij is 1 if
the nodes i and j are adjacent, 0 otherwise. Notice that A is symmetric
since we are dealing with undirected networks.

• W is the weighted adjacency matrix. W is an n×n matrix, whose entry
Wij is wij if the nodes i and j are adjacent, 0 otherwise. Notice that
W is symmetric since we are dealing with undirected networks.
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• w is the sum of the weights of all the edges in the network. We will
call it the weight of the network and it is given by:

w =
1

2

n
∑

i,j=1

Wij. (1.1)

• ki is the degree of node i, i.e. the number of its incident edges:

ki =
n
∑

j=1

Aij. (1.2)

• Ki is the weighted degree of node i, i.e. the sum of the weights of its
incident edges:

Ki =
n
∑

j=1

Wij. (1.3)

Actually most of the authors, instead of explicitly deőning also the weighted
adjacency matrix W and the weighted degree Ki, just use the adjacency
matrix A and the node degree ki even for the weighted case, substituting
the weighted quantities in their deőnitions. In many contexts this is auto-
matic and our notation might seem redundant, but we prefer to keep the two
deőnitions separated mainly for two reasons:

1. to be more precise, since in a weighted graph all the quantities are
deőned and different;

2. for historical reasons, because in the literature a lot of algorithms
and formulas about community detection have been deőned in the
unweighted case and successively extended by other authors to the
weighted case.

In Figure 1.1 there is an example of an unweighted static network with 13
nodes. The adjacency matrix that corresponds to this network is reported
in Table 1.1. In particular, notice that the matrix is symmetric and on the
diagonal there are only 0 because the network has no loops. If we consider
the blue node number 7, its degree k7 would be:

k7 =
13
∑

i=1

Ai,7 =
13
∑

i=1

A7,i = 0+0+0+0+1+0+0+1+1+1+0+1+0 = 5,

that is precisely the number of its neighbours.
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Figure 1.1: An example of a static network.

0 1 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 1 0 1 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 1 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1 0 1 0
0 0 0 1 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0

Table 1.1: Adjacency matrix of the static network in Figure 1.1.
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In the following we will use the terms network or graph interchangeably
and we will call static a network when we want to explicitly distinguish it
from a temporal network. A static network indeed is a network őxed over
time. A temporal network instead, as we will see in the next section, is a
network that changes over time and all the previously deőned quantities will
depend on the variable t.

1.2 Temporal networks

1.2.1 Classiőcation of temporal networks

Temporal networks1 are networks that change over time.
There is not a universally accepted representation of temporal networks be-
cause the scenario becomes considerably more complicated compared to the
static case and each author adopts his or her preferable notation depending
on the purpose.

Consider for example a social network, in which the users are represented
by nodes and their friendship interactions by edges: an edge is built from
one node to another if two users become friends and it is removed if they are
not friends anymore (let us consider friendship an undirected relation).
There are mainly two different ways to represent this temporal network:

1. We can think of each user as a node and say that it "appears" in
the network when the user creates the proőle, and "disappears" when
the user deletes it. The same happens for each edge: when two users
become friends an edge appears between them and it stays as long as
they are friends.

2. We can build a static network every day, checking which users are
present, and which of them are friends with each other. Doing this
network day by day it will naturally change over time, reŕecting the
actions that happened in the real social network.

However, the second way might lose some information: if, for example, a user
creates and deletes his or her proőle during the same day, this will not be
noticed in the representation. In fact, with the second representation we can
only see changes that happened from one day to the next but not during the
same day. One can then think of reducing the window and maybe create a
snapshot every hour, or every second.

1We say equivalently dynamic/temporal graphs/networks.
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Let us now complicate the things and add another type of relation, a sort of
reaction that links two users for an instant, for example a "like" (consider it
as if it was undirected). In this way, besides having edges with a duration
that represent friendships, we also have instantaneous edges. The second
representation would not be able to catch this type of information. More
precisely, it would ignore it if it happens in an instant out of our temporal
grid, or it would notice it if it happens in an instant in the grid, but it would
be unable to distinguish it from a more stable link of the őrst type.

This basic example gives us an idea of the complexity of representing dy-
namic networks and justiőes the classiőcation of the representation of tempo-
ral networks into two different classes, similar to the ones deőned by Rossetti
and Cazabet (see [1]). The őrst one is the most accurate and will be pre-
sented in Section 1.2.2. However, it is not suitable for weighted networks and
it is difficult to handle, that is why we will use the second type of represen-
tation, described in Section 1.2.3. We will make a brief comparison between
them in Section 1.2.4.

1.2.2 Undirected and unweighted temporal networks

At őrst let us consider an undirected and unweighted network. In this sit-
uation, in a temporal network, the nodes can appear or disappear and the
same holds for the edges, with the only constraint that their end nodes must
be present when the edge is present.
We can then formulate this general and high-level deőnition of undirected
and unweighted temporal networks. It does not lose any information about
the time of existence and the relations between the elements of the graph.

Definition 1.2.1 (Undirected and unweighted temporal network). An undi-

rected and unweighted temporal network is a pair G = (V , E) where:

• V is a set of pairs of the form (i, τi): i is a node of the graph and τi is
its time of existence.
τi can be an open interval (starti, endi), a closed interval [starti, endi]
or an half open - half closed interval (starti, endi] or [starti, endi), with
starti ≤ endi ∈ R+. If starti = endi the existence τi of the node is
instantaneous.

• E is a set of triplets of the form (i, j, τij): i and j are two nodes of the
graph and they are connected by the edge eij, whose time of existence
is τij.
Again τij can be an open interval (startij, endij), a closed interval
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[startij, endij] or an half open - half closed interval (startij, endij] or
[startij, endij), with

starti, startj ≤ startij ≤ endij ≤ endi, endj

and startij, endij ∈ R+. If startij = endij the existence τij of the edge
is instantaneous.

In some articles a stricter classiőcation is made between the networks in
which the edges and the nodes have a non-zero duration, or in which they are
instantaneous (see for example [2]). Hence, in the speciőc case in which all
the edges have non-zero duration, we refer to interval networks (here again
some authors consider just closed intervals, others open, others yet half open
- half closed). In the other case in which all the edges have instantaneous
duration we refer to contact sequences or link stream networks. Here
we prefer to keep the deőnition as general as possible, allowing some of them
to be instantaneous and others not.

Deőnition 1.2.1 is very detailed and takes into account all possible tempo-
ral information but this is also its major drawback: considering the time as
a continuous variable makes the temporal network really difficult to handle
and furthermore such precision usually is not needed in real cases, at least
in the ones for which data is publicly available, for which an instantaneous
link is in any case not feasible.
What is even worse is that it is quite hard to extend it to the weighted case:
how would we regulate the changing of the edge weights during time? In the
literature there is not yet a fulőlling deőnition of weighted temporal networks
that takes into account all the temporal information, but the most popular
is the one presented in the next section.

1.2.3 Snapshot networks

For the reasons explained above we have decided to adopt another deőnition
of temporal networks, the one of snapshot networks. It will be used during
the all work, especially in the experimental section.

Definition 1.2.2 (Snapshot Network). A snapshot network G is an or-
dered sequence of static graphs, each of them associated to an instant t ∈
{t0, t1, . . . , T}. We indicate it with:

G = (Gt0 , Gt1 , . . . , GT )

where each snapshot is a static graph with its nodes and edges, Gt = (V t, Et).
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Notice that the times of the snapshots t ∈ {t0, t1, . . . , T} are left intention-
ally general. They could be integers of a sequence (t0 = 0, t1 = 1, t2 = 2, . . . ),
dates (t0 = 19th January 2022, t1 = 24th February 2022, . . . ). A commonly
used choice in datasets and experimental papers is to use POSIX time2.

If all the snapshots are unweighted graphs, the network will be an un-
weighted snapshot network. Conversely, if any of the snapshot Gt is a
weighted graph, it will be a weighted snapshot network. However, in the
following we will just say snapshot network, adding the terms unweighted or
weighted if we want to emphasize it.
Notice that at any time t a static graph Gt is well deőned, so all the notations
presented in Section 1.1 can be used for dynamic graphs just by adding the
apex with the time t. For example an element of the adjacency matrix of
snapshot t will be denoted with At

ij, and so on for all the other quantities.

As we can see, Deőnition 1.2.2 is more manageable and intuitive than
Deőnition 1.2.1 and it is very popular in the literature. This corresponds
precisely to the idea of taking a photograph, a snapshot, of the network at
a precise time. The major drawback in this scenario is that we are loosing
temporal information, because we are discretizing the time variable, but we
can certainly reőne the grid time at the desired resolution.
Deőnition 1.2.2 is more convenient for us also because we will focus on the
problem of community detection and this representation makes it more in-
tuitive, as we will see later. Moreover, the algorithms we selected in the
experimental section explicitly require a snapshot representation for their
implementation.

1.2.4 Conversion between different classes

As said before, the main difference that distinguishes the two classes is that
in the őrst one time is considered as a continuous variable, while in the sec-
ond one as a discrete variable.
Another important difference between the two representations, especially in
the experimental section, consists in the way we access network information:
the snapshot representation is more convenient if we want to know the situ-
ation at a given time, the interval representation instead is better when we

2POSIX time (also known as Unix time or Epoch time) is a system for describing
instants in time, defined as the number of seconds that have elapsed since 00:00:00 Coor-
dinated Universal Time (UTC), Thursday, 1st January 1970, not counting leap seconds.
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want to access the information of an element without having to search for it
among all the snapshots.

If we are dealing with closed interval networks or with contact sequences
the two representations might be considered interchangeable. In fact it will be
sufficient to discretize the time with a őne enough grid, or vice versa to extend
discrete times to intervals. A key point for the choice of the grid is to look
for the atomic changes that happened during the evolution of the network:
they are those modiőcations in the graph (creation of a node, removal of
an isolated node, creation of an edge, removal of an edge, weight increase
and weight decrease) that cannot be subdivided into smaller changes. They
are well explained in [3], but we will not dwell further on them nor on the
conversion between the classes. We will adopt the snapshot representation
for the rest of the work and especially in the experimental part.

1.3 Communities

1.3.1 Motivation

When looking at the layout of a static network, sometimes we notice that the
nodes are grouped into communities3: they are intuitively dense subgraphs
that are well separated from each other.
Figure 1.2 gives us an example of a graph and its communities. However, it
is seldom possible to represent the network and visualize such an intuitive
partition into communities: the network might be huge or in other cases the
visualization may not intuitively suggest a community structure if the nodes
are badly disposed on the plane.

The organization of the network into communities is natural for a lot of
real networks: for example we can think of a co-authorship network in which
each node represents an author and an edge is built between two authors if
they publish a paper together. The authors are grouped into clusters that
roughly represent the area of their research, and the size of the clusters might
vary a lot from a popular topic to a less known one. We used a co-authorship
network in the experimental part of Section 3.4. Similarly, it is useful to se-
lect groups in a social context, for example to regulate the spreading of a
pandemic or to control the diffusion of certain opinions in social networks.
In particular, the authors Weber and Neumann made a very interesting re-
search about the ampliőcation of political news on Twitter (see [5] and [6]).

3Also called clusters or modules.
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Figure 1.2: A partition into three communities of the static network in Figure
1.1.

They collected various political tweets from the platform, organized the data
into temporal networks, by inferring links between the users, and subse-
quently used community detection algorithms to discover groups of accounts
engaging in coordinated behaviours, that might become damaging and mis-
informative.

Knowing the partition of the network into communities might be very
useful to know also the function that a precise node or person plays in the
network. There are nodes that are fully embedded in a cluster, so all their
neighbours belong to the same cluster, and they represent the core of the
group. There are nodes though that lie at the boundary of the cluster, mean-
ing that they have neighbours that belong to other communities. They play
an important role as "gatekeepers" between different parts of the network
and they are important for the spreading of the information in the whole
network. These concepts are related to the belonging degree of a node to a
certain community, see Deőnition 1.5.2.

Identifying the communities is an ill-deőned problem. Indeed there is not
a universal deőnition of community and consequently there are not clear
guidelines on how to assess the performance of different algorithms nor how
to compare them. On one hand such ambiguity has generated a lot of noise
and confusion in the őeld. On the other hand it leaves a lot of freedom to
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propose diverse approaches to the problem, which often depend on the aim
of the research.
For example one can think of őnding the best community in the surroundings
of a certain node. In this case we usually speak of local community detection,
underlying the fact that we are focused on a local part of the graph (see [16]).
In other situations one might look for the best balanced partition of the net-
work into a given number of groups, useful especially for parallel computing
tasks (see [7]).
We will speak about covering with communities when we want all our nodes
to be assigned to at least one community and the communities might be
overlapping, i.e. share some nodes (see [15]).

In particular we will focus on the problem of network partitioning into

non-overlapping communities. We want to assign every node to exactly one
community, but we have no constraints about the number of communities
or their sizes. This is also connected to the topic of data clustering, i.e.
grouping data elements into clusters based on some notion of similarity, such
that elements in the same cluster are more similar to each other than they
are to elements of different clusters. Often the tools for data clustering might
be used for community detection on networks (see the survey [8]), but we
will follow another direction.
Actually the problem is even more complicated for us because we are not
dealing only with community detection on static networks, but we will have
to discuss it in a time varying scenario. So, besides assigning each node to
a community at the őrst snapshot, we will have to track the communities
evolution, trying to understand how they change with the passing of time.
This will be explained in Section 1.4.2.
First, let us start with the static case, giving some deőnitions and notation.

1.3.2 Deőnition of community

As we said above there is not a universally accepted deőnition of network
community and it varies a lot depending on the aim of the researcher (see
[9]). Nevertheless, ideal communities should have:

1. high cohesion, i.e. many internal links;

2. high separation, i.e. few links between them.

Classical deőnitions of community structure are based on cohesion4, separa-
tion or a trade-off between them. We will adopt the deőnitions of Fortunato

4Like cliques.
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et al. because they reŕect very well our intuition (see [4]).

Definition 1.3.1 (Strong and weak communities). Let us consider a network
G = (V,E) and a subset of the nodes C ⊆ V . We identify C with its node
induced subgraph of G, that is (C,E(C)). We say that:

• C is a strong community if the internal degree of each node in C

exceeds its external degree.

• C is a weak community if the sum of the internal degrees of all the
nodes in C exceeds the sum of their external degrees.

Remark. The internal degree of a node is the number of neighbours that
belong to its own community:

kint
i =

∑

j∈C

Aij, (1.4)

while the external degree is the number of neighbours that belong to the rest
of the network:

kext
i =

∑

j∈V \C

Aij. (1.5)

Notice that the sum of the internal and the external degrees is equal to the
degree of the node:

kint
i + kext

i =
∑

j∈V

Aij = ki.

A drawback of Deőnition 1.3.1 is that it separates the subgraph at study
from the rest of the network, which is considered as a single object. But also
the rest of the network might be divided into communities, so it makes more
sense to say that the nodes in C are more attached to C than to the other
communities, instead of considering all the rest of the network as a whole.
This idea has inspired the following deőnition.

Definition 1.3.2 (Strong and weak communities in a partition). Let us
consider a network G = (V,E) and a partition C = (C1, C2, . . . , Cp) of the
nodes into p sets, i.e.

⋃p

h=1 Ch = V and Ch ∩ Cl = ∅ for h ̸= l. Each set Ch

can be identiőed with its nodes-induced subnetwork of G, that is (Ch, E(Ch)).

• Ch ∈ C is a strong community if the internal degree of each node in
Ch exceeds its external degree to any other community Cl ∈ C, l ̸= h.

• Ch ∈ C is a weak community if the sum of the internal degrees of
the nodes in Ch exceeds the sum of their external degrees to any other
community Cl ∈ C, l ̸= h.
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Remark. In case of a weighted network, in Deőnition 1.3.1 and 1.3.2 we just
replace the degree of a node with its weighted degree.

Deőning the communities beforehand is a useful starting point to under-
stand the topic. However, Deőnitions 1.3.1 and 1.3.2 are quite hard to use
in practice, because partitions into communities are quite hard to detect.
Almost all the techniques to detect a partition into communities in networks
do not require a deőnition of community. The authors usually suggest an al-
gorithm that works on a speciőc class of networks (like weighted/unweighted,
directed/undirected, simple, etc.) and they call communities the output of
their algorithm, regardless of whether or not the partition produced by the
algorithm satisőes any precise deőnition (see [18], [19], [20]). Only later they
check "how good" are the communities found, namely how they correspond
to our intuitive idea of being dense and separated from each other. To eval-
uate the quality of the communities found one could check, community by
community, if they satisfy Deőnition 1.3.2, but it is generally more conve-
nient to use an evaluation function that takes as input the entire partition of
the graph into communities and returns a numerical value, as we will show
later in Section 1.5.2.
In this work we follow the same approach: we will say that any partition of
the network is a partition into communities, and we will evaluate at a later
stage the quality of the partition we found.

1.3.3 Notation

We denote with C = (C1, C2, . . . , Cp) a partition or clustering of the nodes
into p sets. In particular

⋃p

h=1 Ch = V and Ch ∩ Cl = ∅ for h ̸= l, so each
node of the network belongs to exactly one community.
Each set Ch, or sometimes just C, will be called community or cluster. With
a little abuse of notation, we will denote with the lowercase letter ci the
community of the node i.
A clustering is trivial if either p = 1, i.e. there is only one cluster that
contains all the nodes, or p = n, so each cluster is composed only by one
node, i.e. the clusters are the singletons.
We identify a community Ch with its node-induced subgraph of G, which is
G(Ch, E(Ch)).
We will indicate with P the set of all the possible partitions of the nodes
into communities. The cardinality of P is the Bell number. It is denoted by
Bn, where n is the number of nodes, and it is recursively5 calculated with

5Remember that 0! = 1.
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the formula:

B0 =B1 = 1,

Bn =
n
∑

k=0

(

n

k

)

Bk.

Remark. The Bell number is huge and it grows faster than en: for example,
in a graph of 15 nodes we have 1, 382, 958, 545 possible partitions.

When dealing with temporal networks we will just add the apex t relative
to the time step, as we did before, and we deőne a dynamic partition of a
snapshot network as follows.

Definition 1.3.3 (Dynamic partition). Given a snapshot network G, we will
say that a dynamic partition is a sequence, whose elements correspond to
the partitions of the snapshots of the network.
More precisely, we denote a dynamic partition of G = (G1, . . . , GT ) with:

C = (C1, . . . , CT ), (1.6)

where the t-th element of the sequence is a partition of the t-th snapshot Gt:

Ct = (Ct
1, C

t
2, . . . , C

t
pt). (1.7)

Notice that in this case even the number of communities pt depends on the
time step t.

1.4 Evolution of communities

1.4.1 Partition similarity

In this section we deal with the problem of measuring the similarity between
two partitions. It might be useful in particular in two cases in the őeld
of community detection. Firstly, if we know the ground truth communities
of the network and we want to compare them with the partition obtained
with a given algorithm. Secondly, when we want to track the evolution of
communities across time steps, as we will see in Section 1.4.2.
Suppose we have a network G = (V,E) and two different partitions C =
(C1, C2, . . . , Cp) and D = (D1, D2, . . . , Dq). How can we quantify how much
they are similar or different from each other? Several measures have been
proposed to quantify the similarity of two partitions and they can be broadly
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classiőed into node-structural measures, which depend only on the partition
of the nodes in V , and graph-structural measures, that take into account
the edge structure of the graph. These categories can be further divided into
measures relying on pair-counting, cluster overlap or entropy (for an overview
and further references see [13]).
We will focus on two well known measures: the Rand index and the Jaccard
index. They are based on pair-counting and we will use the node-structural
formulation even if it is possible to formulate a graph-structural variant. To
deőne the indices we need the following quantities:

V11 ={i, j ∈ V |ci = cj and di = dj}

V10 ={i, j ∈ V |ci = cj and di ̸= dj}

V01 ={i, j ∈ V |ci ̸= cj and di = dj}

V00 ={i, j ∈ V |ci ̸= cj and di ̸= dj}

and:

n11 =|V11|

n10 =|V10|

n01 =|V01|

n00 =|V00|.

In other words, n11 indicates the number of pair of nodes that are classiőed
in the same community in both partitions, n10 + n01 the number of pair of
nodes that are classiőed into the same community in one partition but not in
the other one and őnally n00 the number of pair of nodes that are classiőed
in different communities in both partitions.
These values are needed to deőne the Rand and Jaccard indices for the node-
structural formulation. If one deőnes the previous values using edges instead
of nodes, their would obtain the graph-structural variant of the two indices.

Remark. When we compare two partitions of different snapshots usually V t ̸=
V t+1 so the previous indices are not well deőned. It is not completely obvious
how the partition similarity on two different snapshots (or more generally on
two different static graphs) should be deőned. A canonical solution (see [14])
is to consider the intersection of the two graphs and calculate the indices
using only the nodes that belong to V = V t ∩ V t+1.

Definition 1.4.1 (Rand index). Given a network G = (V,E) and two par-
titions C and D, we deőne the Rand index as:

R(C,D) =
n11 + n00

n11 + n10 + n01 + n00

. (1.8)
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Figure 1.3: Tracking the communities across three time steps.

Definition 1.4.2 (Jaccard index). Given a network G = (V,E) and two
partitions C and D, we deőne the Jaccard index as:

J(C,D) =
n11

n11 + n10 + n01

. (1.9)

Remark. Both of them take values in [0, 1] where 1 indicates that they are
the same partitions and 0 that they differ a lot from each other. Indeed,
if C and D coincide, we would have that n01 = n10 = 0 because it will not
happen that two nodes are classiőed in the same cluster in the őrst partition
and in different clusters in the second one. So R(C,D) = n11+n00

n11+n00

= 1 and
J(C,D) = n11

n11

= 1.
Usually, due to the dominance of the term n00, the Rand index takes values
very close to 1, whereas the Jaccard index usually assumes a broader range
of values.

1.4.2 Tracking the communities across time steps

As we noticed in Section 1.3.1, the problem of community detection is ill-
posed and the situation is even more complicated in the temporal scenario.
Indeed, besides having to őnd good communities at each snapshot, it is rea-
sonable to track them across different time step, giving rise to a dynamic

community.
In Figure 1.3 we show a three-snapshot network (up-left). We őrstly detect

19



the best communities independently from the snapshots, marking them with
different colours (up-right). But this is meaningless since we are interested in
the evolution of the communities across time, treating the network as a whole
temporal object and not as a collection of static networks that have nothing
to do with each other. That is why it is reasonable look at the communities
at time t1 and try to understand which communities at time t1 might be the
evolution of which existing communities at time t0, and mark them with the
same colour (bottom-left). We do the same between the communities at time
t2 and the ones at time t1 (bottom-right). Thanks to this matching operation
we obtain two dynamic communities, represented in red and blue.
The earliest algorithms for community detection on snapshot networks used
to operate in the same way of the example above: őrstly, they detected the
best communities at each snapshot and only afterwards they tracked them
across the different snapshots (see the survey in [11]).
This solution has evolved over time and now most of the best known al-
gorithms use the partition at the previous time steps to őnd the partitions
at the following ones. In this way the temporal information is taken into
account during the whole process: this improves the quality of the dynamic
communities and the performance of the algorithm. In the experimental part
we used two algorithms that operate in this way.

The problem of tracking the communities is connected with the concept
of smoothness of the algorithm. In fact, suppose that we have a snapshot
network and let us focus on two consecutive time steps t and t + 1. Once
we found the partitions Ct and Ct+1, we want to know how much they are
similar, meaning how much the transition of the communities from time step
t to time step t+ 1 is smooth.
Suppose that we have two identical snapshots: then a valid algorithm would
for sure assign the nodes to the same communities obtaining the maximum
smoothness and keeping high-quality communities.
Suppose now that the two snapshots have the same nodes but the links
between them changed considerably. If we force our algorithm to be as
smooth as possible, by assigning again the nodes into the same communities,
our partition at time step t + 1 would for sure be smooth, but it would be
poor in terms of quality of the communities.
It is important for a valid algorithm to achieve a good trade-off between
quality and smoothness. In the experimental part we took care of this aspect
and, for each algorithm we used, we calculated the quality of the partition
at each snapshot (using the function modularity of Section 1.5.2) and the
smoothness of the transition respect to the previous step (using the Rand
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and Jaccard indices).
Maintaining high values for both quality and smoothness is hard for common
algorithms but it is always desiderable.

1.4.3 Community events

Connected with the topic of tracking the communities there is the one of
life-cycle of a dynamic community. It aims at outlining the complete history
of each community, starting from its őrst appearance and following all the
chain of events it has been subject to.
Surprisingly in the literature there seem to be a broad consensus about the
events that characterize the life of a community even though also in this case
some authors consider some events that others ignore. We will follow the
article by Greene et al. ([12]) and identify the following events, illustrated in
Figure 1.4.

• Birth. It occurs when we őnd at time t+ 1 a community C for which
there is no corresponding dynamic community at the previous time
step.

• Death. It occurs when a community dissolves, so when it was present
at time t but not anymore at time t+ 1.

• Grow. It occurs when the community at time step t + 1 has a larger
number of nodes with respect to the previous time step.
It might be useful to establish a parameter to decide when the com-
munity is signiőcantly bigger (for example if it has at least 10% nodes
more than previously).

• Shrink. It occurs when the community at time step t+ 1 has a lower
number of nodes with respect to the previous time step.
It might be useful to establish a parameter to decide when the com-
munity is signiőcantly smaller (for example if it has at least 10% nodes
less than previously).

• Merge. It occurs when two or more different communities of time step
t merge in a unique community at time step t+ 1.

• Split. It occurs when a community at time step t is divided into two
or more communities at time step t+ 1.

Rossetti and Cazabet (in the survey [1]) include also the events "continue",
that means that a community remains the same in the following time step (or
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Figure 1.4: Community events.

grows/shrinks less than the threshold), and "resurgence" that occurs when
a community dies and then births again after some time.
We explained the previous events to give an insight into how a network
generator may work. Indeed in the experimental part in Section 3.3 we used
an artiőcial network that was generated with a function (provided by the
library we used) that makes use of the above events by randomly building a
scenario with evolving communities.

1.5 Evaluating the quality of a partition

1.5.1 Quality measures

Consider a network G = (V,E) and a partition C = (C1, C2 . . . , Cp) into p

communities. We are interested in knowing how good is the quality of our
partition, namely how cohesive the communities are and how well they are
separated from each other.
In this section we will write all the formulas in the case of a weighted network.
In case of an unweighted network it suffices to replace the weighted adjacency
matrix W with the adjacency matrix A (see Section 1.1).
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First of all it would be interesting to know the sum of the weights of all the
links inside each community C. We will call it the weight of the community

C and is given by:

w(C) =
1

2

∑

i,j∈C

Wij, (1.10)

recalling that Wij is the weight of the edge eij.
We used this notation in analogy with the weight of the network, w (see Eq. (1.1)).
Indeed w(C) is equal to the weight of the subnetwork of G induced by the
community C.
The sum of the weights of internal edges of the partition (i.e. that connect
nodes both belonging to the same community) is given by the sum of the
weights of each community. More precisely:

w(C) =

p
∑

h=1

w(Ch) =
1

2

n
∑

i,j=1

Wij · δ(ci, cj), (1.11)

where δ(ci, cj) is equal to 1 if the nodes i and j lie in the same community
(i.e. if ci = cj), to 0 otherwise. In this way an edge is considered in the
summation if and only if its nodes belong to the same community.

The sum of the weights of edges that join a node in the community h with
a node in the community l will be denoted with:

s(Ch, Cl) =
∑

i∈Ch

∑

j∈Cl

Wij =
n
∑

i,j=1

Wij · δ(ci, Ch)δ(cj, Cl). (1.12)

Notice that s(Ch, Ch) = 2w(Ch).
The sum of the weights of the separation edges in the partition (i.e. the
edges that connect nodes belonging to different communities) is given by the
sum over all the communities of the weights of links separating each pair of
them. More precisely:

s(C) =
1

2

p
∑

h,l=1

s(Ch, Cl) =
1

2

p
∑

h,l=1

n
∑

i,j=1

Wij · δ(ci, h)δ(cj, l). (1.13)

Now, using Eq. (1.11), we can calculate the ratio between the sum of the
weights of inter-community links and the weight of the network. This corre-
sponds to the notion of coverage.
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Definition 1.5.1 (Coverage). Given a weighted network G = (V,E) and a
partition into communities C = (C1, C2 . . . , Cp), the coverage of the partition
is given by:

COV (C) =
w(C)

w
=

∑n

i,j=1 Wi,j · δ(ci, cj)
∑n

i,j=1 Wij

(1.14)

recalling that w = 1
2

∑n

i,j=1 Wij is the weight of the network.

Coverage is a simple quality index but has a major drawback: if we want
to maximize the coverage, the best partition would be the trivial one with
all the nodes into one same community. As we can imagine this result is
not usable in most cases and that is why we will discard this measure to
introduce a more reliable one: the modularity (Section 1.5.2).

Besides coverage a lot of quality measures have been proposed in the lit-
erature to evaluate the quality of a partition, for example conductance (one
of the most used), expansion, maximum out degree function, average out
degree function, performance etc. (see [3] and [17]). Among all the most
popular and widespread one is certainly the modularity. Despite some draw-
backs, such as non local effects possibly leading to counter intuitive results,
modularity indeed agrees with human intuition in various ways.
Before proceeding with the explanation of the modularity function, we will
deőne another important quantity that reveals the degree to which a node
belongs to a community.

Definition 1.5.2 (Belonging degree). Given a node i and a community C,
the belonging degree of the node i to the community C is:

BD(i, C) =

∑

j∈C Wij

Ki

, (1.15)

where Wij is the weight of the edge eij and Ki =
∑

j∈V Wij is the weighted
degree of node i.

Remark. Notice that BD(i, C) takes values in [0, 1] and it is equal to 1 if all
the neighbours of i belong to C, independently from the fact that i belongs
to C or not.

The index of belonging degree will be needed for the ECSD algorithm
that we will present in Section 2.2.3.
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1.5.2 Modularity

Modularity is a function that evaluates the quality of the partition of a graph
in communities. It is a function Q that takes values in [−1, 1] and is higher
if the partition into the communities of C is valuable for the network G.
It measures the difference between the given division of the network into
communities compared to a randomized version of the same network that is
supposed not to exhibit any particular community structure.
Modularity was őrstly introduced in an article by Newman and Girvan in
2004 ([18]) and it is based on a similar measure previously deőned by Newman
(see [21]). It has been widely used in the literature and some modiőcations
have been proposed during years.
We now deőne more precisely the modularity in a unweighted graph and
then extend it to the weighted case. For this őrst part we will refer mainly
to Clauset, Newman and Girvan’s paper (see [19]).

Consider a network G = (V,E) and a partition C = (C1, C2, . . . Cp). A
good community structure corresponds to a high fraction of within commu-
nity edges, because it reveals that the edges connecting members of the same
community are much more than the edges connecting different communi-
ties. Recall that this number corresponds to the coverage of the partition
(Eq. (1.14)) but, as noticed before, it is not enough trying to maximize the
coverage, otherwise we would put all the nodes in one community obtaining
that this fraction is equal to 1 without getting any particular information
about the community structure.
We consider then a randomized version of our network: more precisely sup-
pose that the connections are made at random respecting the nodes degree.
In this scenario the probability that between nodes i and j there exists an
edge would be

ki·kj
2m

. In this randomized network the fraction of edges within
communities would be:

COVrand(C) =
1

2m

n
∑

i,j=1

ki · kj
2m

· δ(ci, cj). (1.16)

We now deőne the modularity as the difference between the actual fraction
of within communities edges (Eq. (1.14)) and the same quantity in the
randomized version (Eq. (1.16)):

Definition 1.5.3 (Unweighted modularity). The modularity of an unweighted
network G = (V,E) partitioned into C = (C1, C2, . . . , Cp) communities, is
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given by:

Q(G, C) =
1

2m

n
∑

i,j=1

[

Aij −
ki · kj
2m

]

· δ(ci, cj). (1.17)

recalling that m = 1
2

∑n

i,j=1 Aij is number of edges of the network, Aij are
the terms of the adjacency matrix A and ki =

∑n

j=1 Aij is the degree of the
node i.

We will immediately extend this deőnition to weighted graphs as done in
[22]:

Definition 1.5.4 (Weighted modularity). The modularity of a weighted net-
work G = (V,E) partitioned into C = (C1, C2, . . . , Cp) communities, is given
by:

Q(G, C) =
1

2w

n
∑

i,j=1

[

Wij −
Ki ·Kj

2w

]

· δ(ci, cj). (1.18)

recalling that w = 1
2

∑n

i,j=1 Wij is the weight of the network, Wij are the terms
of the weighted adjacency matrix W and Ki =

∑n

j=1 Wij is the weighted
degree of the node i.

Remark. As said before, the value of modularity ranges from −1 to 1. It is
worth noting that, if we consider all nodes belonging to a unique community
the modularity is 0. Indeed δ(ci, cj) is always 1, so:

Q(G, C) =
1

∑n

i,j=1 Wij

·
n
∑

i,j=1

(

Wij −
(
∑n

j=1 Wij) · (
∑n

i=1 Wij)
∑n

i,j=1 Wij

)

=

=
1

∑

ij Wij

·
∑

ij

Wij −

∑

ij((
∑

j Wij) · (
∑

i Wij))

(
∑

ij Wij)2
=

=1−
(
∑

i

∑

j Wij) · (
∑

j

∑

i Wij)

(
∑

ij Wij)2
= 1− 1 = 0.

In the case in which we have no loops and the communities are singletons,
the modularity will be negative. Indeed δ(ci, cj) = 0 for i ̸= j so:

Q(G, C) =
1

2w

n
∑

i=1

[

0−
(Ki)

2

2w

]

= −
n
∑

i=1

K2
i

4w2
.

Similarly to Deőnition 1.18, we can deőne the modularity of a single
cluster, by considering only the nodes inside it.
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Definition 1.5.5 (Modularity of a single cluster). Given a weighted network
G = (V,E) partitioned into C = (C1, C2, . . . , Cp) communities, the modular-
ity of each cluster Ch ∈ C is given by:

Q(G,Ch) =
1

2w

∑

i,j∈Ch

[

Wij −
Ki ·Kj

2w

]

. (1.19)

where w is the weight of the whole network.

We can rewrite the previous formula in a more convenient way. Recall
that w(C) indicates the weight of a cluster C (Eq. (1.10)) and consider the
sum of the degrees of all the nodes in C, that is given by:

K(C) =
∑

i∈C

Ki. (1.20)

Then the modularity of a single cluster (Eq. (1.19)) is equal to:

Q(G,C) =
1

2w

∑

i,j∈C

[

Wij −
Ki ·Kj

2w

]

=

=
1

2w

[

∑

i,j∈C

Wij −

∑

i,j∈C Ki ·Kj

2w

]

=

=
1

2w

[

2 · w(C)−
K(C)2

2w

]

.

(1.21)

Remark. The sum of Q(G,C) for all the communities of the clustering returns
exactly the modularity of the partition, i.e.:

Q(G, C) =

p
∑

h=1

Q(G,Ch). (1.22)

Modularity Drawbacks

A typical problem connected with the modularity is the so called resolution

limit. Basically it says that the modularity depends on the number of edges
of the network and prevents the detection of small communities that are often
merged into bigger ones (see [24]). Furthermore the modularity tends to be
larger on larger networks, so that comparing values of modularities in general
might be unreliable. A consequence is that computing the modularity of a
partition is quite meaningless if not compared to other partitions of the same
graph. Finally also partitions of random networks might reach high values
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of modularity.
Despite the problems exposed we decided to adopt this quality measure be-
cause it is agrees with human intuition on many instances and it requires a
low computing time to be calculated for a partition.

1.5.3 Modularity-driven approaches

Since modularity measures in some way the goodness of a partition, ideally
it is natural to look for the partition with the highest modularity. However,
exploring all the partition and successively picking the best one is infeasible
since, as said in Section 1.3, the number of possible partition is excessively
large. More formally it was proved by Brandes et al. in [23] that maximiz-
ing modularity is an NP-complete problem6. This means that there is no
chance of őnding an efficient (polynomial-time) algorithm that computes a
maximum modularity partition on all problem instances. As a consequence
this justiőes the use of heuristics for modularity optimization.
As we will see in Chapter 2.1 some efficient and widely used algorithms pro-
ceed in building the communities by merging nodes in a greedy manner and
they make use of modularity as a decision criteria to stop the merging of
nodes when modularity cannot be improved (with the drawback of stopping
often just in local maxima).

6NP-complete: "nondeterministic polynomial-time complete".
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Chapter 2

Community Detection Algorithms

2.1 Community detection on static networks

2.1.1 Related works - static case

As we said in Section 1.3.1, we will focus on the problem of network parti-
tioning into non-overlapping communities: we have to assign each node of
the graph to exactly one community.
There are many community detection methods and they are often classiőed
into categories based on the strategy used to identify the clusters. In most
applications, however, just a few popular algorithms are employed. Some
examples of the most adopted strategies are:

• Optimization-based methods. The goal of these algorithms is to őnd
the maximum reached by a function that evaluates the quality of the
partition, like modularity (see Deőnition 1.5.4). As we said previously
in Section 1.5.3, őnding the optimal value of modularity is an NP-
complete problem, so these algorithms are heuristics that usually őnd
just an approximation of the optimal solution. An example is the CNM
method1 in which, starting with the nodes into singleton communities,
we repeatedly merge the two communities whose amalgamation pro-
duces the largest increase in modularity (see [19]). Another example is
the Louvain algorithm, that we will explain in Section 2.1.2.

• Paths-based methods. We grouped into this category two types of
algorithms.

1. The őrst type is based on random walks: the idea is that, since
clusters have high internal edge density and are well separated

1Named after the developers Clauset, Newman and Moore.
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from each other, a random walker would be trapped in each clus-
ter for quite some time before őnding a way out and migrating
to another cluster. Algorithms based on random walks are for
example Walktrap (see [25]) and Infomap (see [26]).

2. The second type is based on shortest paths: the idea is that, if
two communities are joined by only a few inter-community edges,
then all the shortest paths from nodes in the őrst community to
nodes of the second one must run through one of those few edges.
This is the idea behind the algorithm of Girvan and Newman. It
starts by placing all the nodes into the same community and by
calculating the "betweenness" of each edge of the graph, that is
a measure that basically counts how many shortest paths of the
graph pass through that edge. They repeatedly remove the edges
with the highest betweenness and update the betweenness of the
remaining edges ([18]).

• Spectral methods. They typically detect the communities by using
the eigenvalue spectrum or other spectral properties of the adjacency
matrix (see [27]).

For further information about community detection methods one can refer
to many surveys (see for example [9], [10], [28] and [29]). In the next section
we will focus on a very fast and widespread algorithm based on modularity
optimization: the Louvain algorithm.

2.1.2 Louvain algorithm

It was őrst published in the paper Fast unfolding of communities in large

networks, written by Blondel, Guillaume, Lambiotte and Lefebvre in 2008
(see [31]). It was named Louvain algorithm because it was devised at the
University of Louvain. It is a fast heuristic method to detect communities in
static networks, based on modularity optimization.

It operates in two phases that are repeated iteratively. The idea is that in
the őrst phase we őnd small communities by optimizing modularity locally
around all the nodes, while in the second phase we build a new network by
grouping each community into a unique node and then restart with phase
one. Let us analyse these two phases in detail.
Given a network G = (V,E), we start by assigning each node of the network
to a different community, obtaining a partition I = {{i}|i ∈ V }.
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1. Take a node i ∈ V . Consider all its neighbours j ∈ N(i) and evaluate
the changing in modularity ∆Q(i → cj) that would occur if we place
the node i into the community cj. After evaluating ∆Q(i → cj) for
each j we denote with l the neighbouring node for which the gain in
modularity ∆Q(i → cl) is maximum (in case of a tie use a breaking
rule). Now:

• if ∆Q(i → cl) > ϵ, where ϵ is a threshold set at the beginning2,
we move node i into the community cl;

• if ∆Q(i → cl) ≤ ϵ, we leave the node i were it was. Notice that
in this case the variation of modularity ∆Q(i → ci) is 0 because
nothing changed.

We then take another node j and repeat the same operation, and so
on for all the nodes of the graph.
After considering all the nodes one time, we repeat the round until
no improvement is possible, i.e. until for every node i we have that
∆Q(i → cj) ≤ ϵ, ∀j ∈ N(i). At the end of this phase we will get a
partition C = (C1, C2, . . . , Cp) of the network.

Remark. Notice that the output of the algorithm depends on the order
in which the nodes are considered in this őrst phase. The authors
stated that preliminary results on several test cases seem to indicate
that the ordering of the nodes does not have a signiőcant inŕuence on
the modularity but it may affect the computation time. The role played
by the ordering though has still to be studied further.

2. We build a new network starting from the partition C = (C1, C2, . . . , Cp)
we just found, with:

• a node for each community Ch, h ∈ {1, . . . , p};

• a loop with weight 2w(Ch) attached to the node that represents
the community Ch, recalling that w(Ch) is the weight of the com-
munity Ch (see Eq. (1.10));

• an edge between the node that represents Ch and the one that
represents Cl with weight s(Ch, Cl), recalling that s(Ch, Cl) is the
weight of the links separating Ch from Cl (see Eq. (1.12)).

We then put each node into a singleton community and go back to
phase 1.

2We take ϵ ≥ 0. As ϵ increases, the overall running time of the algorithm decreases.
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Figure 2.1: Louvain algorithm.

We repeat these phases until there are no more changes, i.e. until we start
phase 1 and we end phase 1 without any modiőcation of the communities.
At this point the algorithm stops.
The result of the algorithm are the so called meta-nodes, each one represent-
ing a different community of the nodes of the previous phase. This algorithm
naturally incorporates a hierarchy, each level of the hierarchy corresponding
to an iteration of the combination phase1-phase2. To discover the partition
of the original graph G = (V,E) we have to unveil these meta-nodes and
assign each node of the original graph to the community represented by the
őnal meta-nodes. A clarifying example is shown in Figure 2.1.

Remark. Notice that the variation of modularity ∆Q(i → cj) that occurs if
we move node i into the community of node j can easily be computed and
this is one of the main advantages of the algorithm.
Let us focus on the calculations. Recall that the modularity of a partition is
equal to the sum of the modularity of each cluster of the partition (see Eq.
(1.22)). If we move node i into the community of node j, the only clusters
that change are the one of i and the one of j. Let us indicate with C the
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community of i and with D the community of j. The variation of modularity,
if we remove i from C and place it into D, is given by:

∆Q(i → D) = Q(D ∪ {i}) +Q(C \ {i})−Q(D)−Q(C). (2.1)

Lemma 1. Notice that in general, given a cluster B and a node i, we have:

Q(B ∪ {i}) =
1

2w

∑

a,b∈B∪{i}

[

Wab −
KaKb

2w

]

=
1

2w

∑

a,b∈B

[

Wab −
KaKb

2w

]

+

+
1

2w

∑

a∈B

2

[

Wai −
KaKi

2w

]

+
1

2w

[

Wii −
K2

i

2w

]

=

=Q(B) +
1

2w

∑

a∈B

2

[

Wai −
KaKi

2w

]

+
1

2w

[

Wii −
K2

i

2w

]

.

By letting B = C \ {i}, we obtain that:

Q(C) =Q(C \ {i} ∪ {i}) =

=Q(C \ {i}) +
1

2w

∑

a∈C\{i}

2

[

Wai −
KaKi

2w

]

+
1

2w

[

Wii −
K2

i

2w

]

.

Now, if we put everything together in Eq. (2.1), we obtain that:

∆Q(i → D) = Q(D ∪ {i}) +Q(C \ {i})−Q(D)−Q(C) =

=Q(D) +
1

2w

∑

a∈D

2

[

Wai −
KaKi

2w

]

+
1

2w

[

Wii −
K2

i

2w

]

+

+Q(C)−
1

2w

∑

a∈C\{i}

2

[

Wai −
KaKi

2w

]

−
1

2w

[

Wii −
K2

i

2w

]

−

−Q(D)−Q(C) =

=
1

2w

∑

a∈D

2

[

Wai −
KaKi

2w

]

−
1

2w

∑

a∈C\{i}

2

[

Wai −
KaKi

2w

]

=

=
1

w

∑

a∈D

[

Wai −
KaKi

2w

]

−
1

w

∑

a∈C\{i}

[

Wai −
KaKi

2w

]

.

In conclusion, when we consider a node i and look for the neighbour j for
which the gain in modularity is maximum, we just have to maximize:

∑

a∈cj

[

Wai −
KaKi

2w

]

, (2.2)

because all the other quantities do not depend on j.
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Remark. This algorithm has many advantages. First of all, the steps are
intuitive and easy to implement. Moreover, the algorithm is very fast. This
is due to the fact that the gain in modularity is fast to compute, as we
explained in the remark above. In addition, the number of communities
decreases drastically after just a few iterations, so that most of the running
time is concentrated on the őrst iteration.
One drawback of the algorithm is that it tends to produce large communities
that contain a large fraction of nodes, even in cases in which we intuitively
expect smaller communities. Thanks to the intrinsic multi-level nature of the
algorithm though, this problem seems to be circumvented. Indeed we could
just stop the iteration at any intermediate step and unveil the communities
of the original graph basing on that step. Looking at Figure 2.1 for example,
we could just stop at the őrst iteration and return the graph partitioned into
four communities. This suggests us that the intermediate solutions found by
the algorithm may also be meaningful.
In Listing 2.1 we report a pseudocode of the Louvain algorithm.
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Listing 2.1: Pseudocode of Louvain algorithm.

~~~~~~~ PSEUDOCODE OF LOUVAIN ALGORITHM ~~~~~~~

INPUT: A static network G = (V,E),
a threshold ϵ ≥ 0.

OUTPUT: A partition C = (C1, C2, . . . , Cp) of V.

Initial Partition: I = {{i}|i ∈ V }.

Repeat:

PHASE 1.

Repeat:

for i ∈ V :

l = argmaxj∈N(i)∆Q(i → cj)
if ∆Q(i → cl) > ϵ:

move i → cl
Until no more changes.

PHASE 2.

Build a network with:

� V = {C1, C2, . . . , Cp} found at phase 1;

� wii = 2w(Ci) ∀i ∈ {1, . . . , p};
� wij = s(Ci, Cj) ∀i < j ∈ {1, . . . , p}.
Place the nodes into singleton communities.

Until no more changes.

Return: a partition C of the nodes of the

initial graph (by repeatedly breaking up

the meta-nodes of the built networks).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2.2 Community detection on temporal networks

2.2.1 Related works - temporal case

The literature on community detection on temporal networks is very vast and
not yet uniőed. Many algorithms have been proposed and some attempts
have been made to classify them, while regarding on their comparison the
literature is still scarce (see the surveys [1], [32], [33], [34], [30]).

We present a classiőcation into three classes, similar to the ones deőned
by Rossetti and Cazabet (see [1]).

1. Instant-Optimal. The idea of these algorithms is to apply at each snap-
shot a static algorithm for community discovery. Then they match the
communities at the current time step with the ones found at the previ-
ous time steps to track the evolution of the communities. Usually this
type of approach produces less smooth communities but with higher
quality.
An example is the algorithm of Green et al. (see [12]).

2. Temporal Trade-Off. The algorithms of this class take into account the
communities or the network of the previous time steps to identify the
communities in the current one. This can be done in different ways:

(a) Update by Global Optimization. Methods in this subcategory
use the partition found at time step t − 1 to initialize a static
algorithm at time t. An example is the algorithm of Bansal (see
[35]). It is based on the CNM algorithm (see Section 2.1.1) and
the idea is that, given a modiőed edge eij at time t, we replicate
the combination steps of time step t − 1 until node i or j are
encountered. Then we switch back to the CNM algorithm and
continue as in the static case. Another famous example is the
algorithm of Aynaud and Guillaume, that at time step t initializes
the Louvain algorithm using the communities found at time step
t− 1. We will explain it in Section 2.2.2.

(b) Update by a Set of Rules. Methods in this subcategory consider
the list of network changes that occurred between the previous
step and the current one, and deőne a list of rules that determine
how networks changes lead to communities update (see [14]).

(c) Informed by Multi-Objective Optimization. This approach opti-
mizes a quality function of the form: c = αCS + (1−α)CT , with
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CS the cost associated with current snapshot (i.e. how well the
community structure őts the graph at time t), and CT is the cost
associated to the smoothness with respect to the past history (i.e.
how different is the actual community structure with respect to
the one at time t− 1) and α ∈ [0, 1] is a trade-off parameter.

(d) Informed by Network Smoothing. Methods in this subcategory
look for communities at t by running a static community detection
algorithm, not on the graph as it is at t, but on a version of it
that is smoothed according to the past evolution of the network,
for instance by adding weights to keep track of edges’ age. An
example is the ECSD algorithm, that we will explain in Section
2.2.3.

3. Cross-Time. In this case dynamic community detection is done in a
single process, considering simultaneously all states of the network, for
example by creating a cumulative graph built by overlapping all the
snapshots.

In the following sections we will analyse in detail two algorithms that
belong to the second class, so they automatically look for a trade-off between
smoothness and quality. They are the algorithm of Aynaud and Guillaume,
see Section 2.2.2, and the ECSD algorithm, see Section 2.2.3. They are two
fast algorithms that work on weighted snapshot networks.

2.2.2 Aynaud and Guillaume’s algorithm

It was őrst published in the paper Static community detection algorithms for

evolving networks, written by Aynaud and Guillaume in 2010 (see [36]).
It is a fast algorithm to detect evolving communities on a snapshot network
and it is based on the Louvain algorithm (notice that the author Guillaume
is also one of the authors of the Louvain algorithm).
Given a snapshot network G = (G1, . . . , GT ), the idea of the algorithm is to
apply the Louvain algorithm at each snapshot but, instead of initializing the
algorithm by placing the nodes into singleton communities, we initialize it
by placing each node in the communities of the previous time step. Let us
analyse in detail this process and its variants.

The őrst version of their algorithm, that they named static Louvain, con-
sists in simply applying the Louvain algorithm to each snapshot of the net-
work, and successively tracking the evolution of the communities across time
steps, as we explained in Section 1.4.2.
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They tested the algorithm on an artiőcial network that was built by taking
a static network with ca. 9000 nodes and 24000 edges and by removing one
node (and its incident edges) at each time step, until the network had just
one node.
They noticed that this algorithm is very unstable, in the sense that the com-
munities found at time step t−1 and the ones found at time step t were very
different, even if the network did not change much between the two time
steps.

This suggested to the author the idea that the communities at time step t

can not be searched from scratch at each time step but have, in some way, to
take advantage of the previously found communities. Hence, they developed
a new algorithm, the fully stabilized Louvain. After the communities at time
step t − 1 have been found, we apply the Louvain algorithm at time step t

but, instead of placing each node into a singleton community, we place the
nodes into their belonging communities of time step t − 1. More precisely
(recalling the notation of Deőnition 1.3.3):

• any node v ∈ V t \ V t−1 is placed into a singleton community {v};

• any node v ∈ V t ∩ V t−1 is placed into the community Ct−1
h to which it

belonged in the partition Ct−1.

Remark. After the nodes are placed into their starting community, the Lou-
vain algorithm is applied: we consider one node at a time and evaluate if it
is more convenient to move it from its belonging community into a neigh-
bouring one. We do this operation repeatedly for all the nodes until no more
nodes are moved and then we start phase 2 and proceed with the standard
algorithm. So the differences between this stabilized version and the original
algorithm happen just in the very őrst step of the Louvain algorithm.

The communities detected by the fully stabilized Louvain are far more
stable than the ones detected by static Louvain, so we can say that the fully
stabilized Louvain algorithm is very smooth. However, smoothness is not our
only target: as we have said previously, we are interested in a good trade-off
between smoothness and quality. The problem is that, if we look at the last
snapshots of the network, the modularity of the partitions detected by the
fully stabilized Louvain might be considerably lower than the modularity of
the partitions detected from scratch by the static Louvain algorithm.
To overcome this issue the authors introduced a parameter α ∈ [0, 1] that
balances the trade-off between smoothness and quality. This parameter limits
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the constraint of the initial partition built by the fully stabilized Louvain
algorithm in this way:

• any node v ∈ V t \ V t−1 is placed into a singleton community {v};

• α·|V t∩V t−1| nodes3 in V t∩V t−1 are placed into a singleton community;

• any other node v ∈ V t ∩ V t−1 is placed into the community Ct−1
h to

which it belonged in the partition Ct−1.

Remark. Notice that this version also includes the previous ones: indeed with
α = 1 we have the static Louvain and with α = 0 the fully stabilized Louvain.
The parameter α has to be chosen depending on the context, but the authors
show that even a small value, like α = 0.2, seems a good compromise between
smoothness and modularity and it achieves quite better results in terms of
modularity than using α = 0.

In the following we denote this general version of the algorithm the Aynaud

and Guillaume’s algorithm. We write a pseudocode of the algorithm in List-
ing 2.2.

3We automatically approximate it to the integer part of the number instead of writing
explicitely ⌊α · |V t ∩ V t−1|⌋.
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Listing 2.2: Pseudocode of Aynaud and Guillaume’s algorithm.

~ PSEUDOCODE of AYNAUD & GUILLAUME′s ALGORITHM ~

INPUT: A temporal network G = (G1, G2, . . . , T ),
a threshold ϵ ≥ 0,
a parameter α ∈ [0, 1].

OUTPUT: A dynamic partition C = (Ct, . . . , CT ).

G1 = (V 1, E1)
Apply Louvain to G1 (threshold ϵ) and obtain C1.

for t = 2, . . . , T:
Gt = (V t, Et)
It Initial Partition given by:

� a singleton community ∀i ∈ V t \ V t−1;

� a community Ct
i = Ct−1

i ∩ V t, ∀i ∈ {1, . . . , pt−1}
� randomly take α · |V t−1 ∩ V t| nodes and

assign them to a singleton community.

Apply Louvain to Gt (threshold ϵ),

Initial Partition It

and obtain final partition Ct.

Return: a dynamic partition C = (C1, . . . , CT ).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2.2.3 ECSD algorithm

It was őrst published in the paper Evolutionary community structure discov-

ery in dynamic weighted network, written by Guo, Wang and Zhang in 2014
(see [37]).
It is an algorithm to detect evolving communities on a weighted snapshot
network and the name ECSD, assigned by the authors, stands for "Evolu-
tionary Community Structure Discovery".
Before proceeding with the explanation of the algorithm we have to deőne
some useful quantities.

The input matrix U t. The input matrix U t is a matrix that takes into ac-
count the network at snapshot t, described by the weighted adjacency matrix
W t, and the communities found at the previous time steps. In particular:

U t
ij =

{

W t
ij if t = 1

(1− α)W t
ij + αU t−1

ij δ(ct−1
i , ct−1

j ) if t ≥ 2.
(2.3)

where W t
ij is the weighted adjacency matrix, cti is the community to which

node i belongs4 at time t and α ∈ [0, 1].
The ECSD algorithm indeed, unlike the Aynaud and Guillaume’s algorithm
that used only the weighted adjacency matrix W and took into account the
previous community by construction of the algorithm, őnds its compromise
between quality and smoothness by introducing the new matrix U . The pa-
rameter α is the parameter to balance this trade-off: the higher α the more
importance is given to the previous communities, the lower α more impor-
tance is given to őnd the best partition according to the current network.
Notice also that, by construction, with the increase of t the inŕuence of
community structure at previous time steps becomes weaker and weaker.

Variation of modularity. It is useful to calculate the variation of modu-
larity that occurs:

1. when we move a node i from its belonging community C into another
community D;

2. when we merge two communities C and D.

To compute these quantities we will use the input matrix U . Now, for brevity,
we do not write the apex t that indicates the time step and we will just write

4If the node i is not present at time t we assume that δ(cti, c
t
j) = 0.
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Uij to indicate each element of the input matrix, at a non-speciőed time. The
weight of the graph, with respect to the input matrix U , will be denoted by
u:

u =
1

2

∑

i,j∈V

Uij,

while the weighted degree of the node i will still be denoted by Ki:

Ki =
∑

j∈V

Uij.

Remark. Actually, in the deőnition of modularity reported in the paper, the
authors exclude from the summation the indices i = j, using Q(G, C) =
1
2w

∑n

i,j=1,i ̸=j

[

Wij −
Ki·Kj

2w

]

· δ(ci, cj). We believe that this is a typo because

it is not in line with the statements made consequently.

We now compute the variations of modularity we said above.
We already calculated the őrst quantity in the remark of Section 2.1.2:

∆Q(i → D) =
1

u

∑

a∈D

[

Uai −
KaKi

2u

]

−
1

u

∑

a∈C\{i}

[

Uai −
KaKi

2u

]

. (2.4)

Let us focus on the variation of modularity that occurs if two communities
C and D are merged.
Recalling that the modularity of a partition is equal to the sum of the mod-
ularity of each cluster of the partition (see Eq. (1.22)) we have that:

∆Q(C ∪D) = Q(C ∪D)−Q(C)−Q(D). (2.5)

In particular:

Q(C ∪D) =
1

2u

∑

i,j∈C∪D

[

Uij −
KiKj

2u

]

=
1

2u

∑

i,j∈C

[

Uij −
KiKj

2u

]

+

+
1

2u

∑

i,j∈D

[

Uij −
KiKj

2u

]

+ 2
1

2u

∑

i∈C

∑

j∈D

[

Uij −
KiKj

2u

]

.

So the difference in Eq. (2.5) becomes:

∆Q(C ∪D) =
1

u

∑

i∈C

∑

j∈D

[

Uij −
KiKj

2u

]

. (2.6)
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Belonging degree. The belonging degree of node i to community C (recall
Deőnition 1.5.2) with respect to the input matrix U is:

BD(i, C) =

∑

j∈C Uij

Ki

, (2.7)

where Ki =
∑

j∈V Uij is the weighted degree of node i with respect to the
input matrix.

The algorithm

Now we can move on and describe how the ECSD algorithm works. It is quite
complicated and it is based mainly on three steps. We will őrstly report a
pseudocode of the ECSD algorithm in Listing 2.3 and then explain each step.

Listing 2.3: Pseudocode of ECSD algorithm.

~~~~~~~~ PSEUDOCODE of ECSD ALGORITHM ~~~~~~~~~

INPUT: A temporal network G = (G1, G2, . . . , T ).
OUTPUT: A dynamic partition C = (C1, . . . , CT ).

for t = 1, . . . , T:

Calculate the input matrix U t.

Repeat:

1. Discover the initial community.

2. Expand the community.

Until every node is assigned to a community.

3. Merge the communities.

Return: a dynamic partition C = (C1, . . . , CT ).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1. Discover the initial community. The basic idea is that we take a
node with high degree, place its neighbours into its community and clean
the community by removing the nodes with low belonging degree (the idea
is similar to the algorithm presented in [38]). A pseudocode is presented in
Listing 2.4.

Listing 2.4: Pseudocode of "discover the initial community".

~~~~~~~ Discover the initial community ~~~~~~~

INPUT: An input matrix U, a threshold θ.

OUTPUT: The initial community C.

Calculate Ki for all the nodes which are

unassigned to a community.

Sort the nodes based on Ki and take i with

the largest Ki.

Find all the neighbours of i from the

unassigned nodes with Uij > 0.

These nodes compose an initial community C.

Repeat:

for all j ∈ C:

calculate BD(j, C)
if BD(j, C) < θ:

remove j from C

Until BD(j, C) ≥ θ, ∀j ∈ C.

Return: the community C.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

More precisely, we calculate the weighted degree Ki for all the nodes
which are unassigned to a community and then sort the nodes based on Ki

and take the node i with the largest degree. At the very őrst iteration all
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the nodes are unassigned, but, as the number of iterations grows, the nodes
will be assigned to communities, so we have to consider only the unassigned
ones.
We then őnd the neighbours of the selected node, looking only among all
the unassigned nodes with Uij > 0. Notice that Uij = 0 only if i and j

are not connected at the current time step and never belonged to the same
community in the previous time steps. These nodes (i and the selected
neighbours) compose an initial community C.
Finally, we calculate the belonging degree of each node in C and remove the
nodes for which the belonging degree is less than a chosen threshold θ. We
repeat this operation until all the nodes in C have a belonging degree greater
or equal to θ. Notice that it is necessary to repeat this operation since, after
the removal of some nodes, the belonging degrees of the already considered
nodes might change.

2. Expand the community. The basic idea is that we take the initial
community and try to expand it: we look in its neighbourhood and add the
nodes with a sufficiently high belonging degree. A pseudocode is presented
in Listing 2.5.

Listing 2.5: Pseudocode of "expand the initial community".

~~~~~~~~~ Expand the initial community ~~~~~~~~

INPUT: The initial community C, a threshold γ.

OUTPUT: The expanded community C.

Repeat:

for all j ∈
⋃

i∈C N(i) \ C:
calculate BD(j, C)
if BD(j, C) > γ:

calculate ∆Q(j → C)
if ∆Q(j → C) > 0:

move j into C

Until no more changes.

Return: the expanded community C.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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More precisely, we take a community C and őnd all the neighbours in the
rest of the network. So we consider all the nodes in N =

⋃

i∈C N(i)\C. Now,
for any node j ∈ A we calculate the belonging degree of j to the community
C. If it is sufficiently large, i.e. it is higher than a őxed threshold γ, we
calculate the variation in modularity ∆(j → C) that would occur if we add
it into the community C, thanks to Eq. (2.4). If this variation is positive5,
we move the node j into C.
We repeat this process until there are no changes in the community C. Notice
indeed that, after a node is added to C, the neighbourhood of the community
changed, so it is necessary to repeat the iteration again. When the iteration
does not produce any change in the community C, the phase stops and the
expanded community C is returned.

3. Merge the communities. The basic idea is that we start with a
partition of the network. We take all the "small" communities and then
merge two of them if this increases the modularity. A pseudocode is presented
in Listing 2.6.

Listing 2.6: Pseudocode of "merge the small communities".

~~~~~~~~~ Merge the small communities ~~~~~~~~~

INPUT: A partition C, a threshold µ.

OUTPUT: A modified partition C ′.

Repeat:

for all C ∈ C with |C| < µ:

C ′ = argmaxD∈C,|D|<µ∆Q(C ∪ C ′)
if ∆Q(C ∪ C ′) > 0:

merge C and C ′

Until ∀C ∈ C : |C| > µ or

∀C,D ∈ C, |C|, |D| ≤ µ : ∆Q(C ∪D) ≤ 0.

Return: the modified partition C ′.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5We suggest that we can introduce a parameter ϵ, as done in the Louvain algorithm,
to reduce the computing time of the algorithm.
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More precisely, we start with a partition C = (C1, . . . , Cp) of the graph.
We őnd all the communities in C whose number of nodes is less than a
threshold µ; let us call S the subset of the selected communities. We then
take a community C ∈ S and calculate the variation of modularity ∆Q(C∪D)
that would occur if we merge it with any other community D ∈ S, thanks
to Eq. (2.5). We call C ′ the community for which the gain in modularity
is maximum. If it is positive6, i.e. if ∆Q(C ∪ C ′) > 0, we merge the two
communities.
We repeat these operations until all the communities in C are sufficiently
large, i.e. until ∀C ∈ C, |C| > µ, or until for any pair of small communities
the variation in modularity that would occur if we merged them is negative,
i.e. until ∀C and D ∈ C, with |C|, |D| ≤ µ,∆Q(C ∪D) < 0.

6Again we suggest that we can introduce a parameter ϵ, as done in the Louvain algo-
rithm, to reduce the computing time of the algorithm.
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Chapter 3

Experimental Evaluation

3.1 Experimental setup

In this chapter we present the experimental testing of the Aynaud and Guil-
laume’s algorithm1 and the ECSD algorithm, which we explained in Section
2.2. To test the algorithms we wrote a code with Python. It is organized
into four steps:

1. Build the network.

2. Detect the communities with Aynaud’s and with ECSD algorithms.

3. Analyse the modularity of the communities detected in step 2.

4. Analyse the smoothness of the communities detected in step 2.

In the following sections we will explain each step of the code, presenting the
fundamental tools that are needed. We report the code in the Appendix A.
We then applied the code to three networks: the Sociopatterns network,
an artiőcial network and the DBLP network. We will describe the three
networks and the results obtained on them in the rest of the chapter.

Libraries

We wrote the code in Python and we used mainly four libraries:

• networkx. It is a widespread library to handle static networks (see
[39]). In the library there are many useful functions to access and plot
the networks and some algorithms for community detection.

1In this chapter for brevity we will call it Aynaud’s algorithm.
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• tnetwork. It is a library to handle temporal networks, written mainly
by Remy Cazabet (see [40]). It can handle different representations of
temporal networks, access the graph at different time steps and there
are some algorithms for community detection.

• statistics. It is a library to compute relevant statistical quantities,
like mean value, median, variance and many others (see [41]). We will
use it mainly for the analysis of modularity.

• matplotlib. It is a very popular library for creating visualization
in Python (see [42]). It is used also by the libraries networkx and
tnetwork to plot the networks. In particular we used it to plot the
modularity and smoothness vectors in order to better analyse the re-
sults.

3.1.1 Building the network

The library tnetwork provides many functions to build a temporal network
and it can handle different types of representations. In particular we used
the snapshot representation and we used three different methods to build the
three networks:

1. Load example graph to build the Sociopatterns network (Section 3.2).

2. Generate random graph to build the artiőcial network (Section 3.3).

3. Reading graph from text őle to build the DBLP network (Section 3.4).

For more details about the building functions see the code in Appendix A.
After building the network we can access its main properties. Notice that
at each time step the network is treated as a networkx-object, so all the
methods of the library networkx can be used as well. In particular for each
network we calculated:

• The total number of snapshots.

• The őrst and last time steps.

• The mean number of nodes per time step and the minimum and max-
imum values obtained.

• The mean number of edges per time step and the minimum and maxi-
mum values obtained.
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3.1.2 Detecting the communities

After building the network, we can detect the communities. In the library
tnetwork there are already implemented some algorithms for dynamic com-
munity detection. In particular we used the functions smoothed_louvain,
which is an implementation of the Aynaud’s algorithm, and smoothed_graph,
which is an implementation of the ECSD algorithm.
By applying these algorithms we obtained two different objects:

1. comm_ayn (relative to the Aynaud’s algorithm);

2. comm_ecsd (relative to ECSD algorithm).

They are tnetwork-objects that belong to the class DynGraphSN.
We can manipulate the communities with various methods. In particular we
used the function DynGraphSN.communities(t) to access to the com-
munities at time step t. In this way we obtained the number of communities
at each snapshot and the size of each community at each snapshot. In this
thesis we decided to report just the following quantities:

• We plotted the number of communities at each snapshot and we com-
puted the mean value among all the snapshots.

• We computed the mean size (i.e. the mean number of nodes) among
all the communities among all the snapshots.

• The maximum and minimum sizes reached by a community among all
the snapshots.

3.1.3 Modularity analysis

In this Section we will explain how we analysed the results of modularity
using tools from statistics.
For each temporal network we obtained two different modularity vectors,
using the function quality_at_each_step of the library tnetwork:

1. mod_ayn (relative to the Aynaud’s algorithm);

2. mod_ecsd (relative to ECSD algorithm).

Each entry of mod_ayn represents the time step and the relative value is
the modularity (see Eq. (1.18)) of the communities obtained at that time
by the Aynaud’s algorithm, and analogously for mod_ecsd and the ECSD
algorithm.
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To analyse the vectors we used the library statistics. In particular
for each modularity vector V = (v1, v2, . . . , vT ), where T is the number of
snapshots of the network, we calculated:

• The mean value:

M(V ) =
1

T

T
∑

t=1

vt. (3.1)

This is an average over all the time steps of the values of modularity
obtained at each time step. However, as noted in Section 1.5.2, the
values of modularity should be compared on the same static network
and it might become misleading to compare them or averaging them
between graphs of different sizes.

• The weighted mean value:

WM(V ) =
1

∑T

t=1 n
(t)

T
∑

t=1

vt · n
(t). (3.2)

As suggested in the library tnetwork, we computed a weighted aver-
age of the modularity across time steps, where the weight is given by
the number of nodes n(t) of the network at time step t.

• The variance:

var(V ) =
1

T

T
∑

t=1

(vt −M(V ))2 =

(

1

T

T
∑

t=1

v2t

)

−M(V )2. (3.3)

This gives us information about the dispersion of the obtained values
of modularity with respect to the mean value.

Remark. We can infer a correlation between variance and instability
of the algorithm: we can reasonably suppose that if the variance is
high, meaning that the values of modularity can be very different from
the mean value, the algorithm is having trouble in keeping a good
performance in terms of quality of the partition.

• The standard deviation:

SD(V ) =
√

var(V ) =

√

√

√

√

1

T

T
∑

t=1

(vt −M(V ))2. (3.4)

Together with the variance, the standard deviation gives us information
about the dispersion of the values around the mean value.
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• The median, median(V ), is the value that separates the higher half
of values from the lower half, i.e. if we order the values is the "middle"
one (or the average of the two in the middle if the number of values is
even).

• The maximum, max(V ). We already know that the maximum value
that modularity can reach is 1, but it may be interesting to know if it
actually reaches it or not.

• The minimum, min(V ). The modularity can be negative, but it is
interesting to notice if negative values are really taken, knowing that it
is always possible to put all the nodes in a unique community getting
a modularity of 0.

Moreover we plotted the values of modularity in two different forms:

• Histogram: on the x-axis there are the values that modularity as-
sumes (from 0 to 1, divided in intervals of length 0.05) and on the
y-axes the number of time steps in which modularity actually takes a
value in that interval.

• Line Plot: on the x-axis there are the time steps and on the y-axes
a line that connects the values that modularity assumes at each time
step.

After doing the analysis of the two vectors of modularity mod_ayn and
mod_ecsd separatedly, we compared the values obtained by plotting them
into a single őgure.
Finally we calculated the distance between them using the inőnity norm,
which, for two generic vectors U = (u1, . . . , uT ) and V = (v1, . . . , vT ), is
deőned as:

||V −W ||∞ = max
i=1,...,T

|vi − wi|. (3.5)

3.1.4 Smoothness analysis

After the modularity analysis, which expresses the quality of the partitions,
we focused on the analysis of smoothness. Precisely, for each snapshot, we
want to compare how the previous partition is similar to the current one,
using the Jaccard index (see Eq. (1.9)) and the Rand index (see Eq. (1.8)).
For each temporal network we obtained four different vectors:

• smo_jac_ayn (relative to Aynaud’s algorithm and Jaccard index);

• smo_ran_ayn (relative to Aynaud’s algorithm and Rand index);
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• smo_jac_ecsd (relative to ECSD algorithm and Jaccard index);

• smo_ran_ecsd (relative to ECSD algorithm and Rand index).

Each entry of smo_jac_ayn represents the time step (from 1 to T − 1)
and the relative value is the Jaccard index between the partitions found by
Aynaud in that snapshot and the communities found by Aynaud in the next
snapshot. Analogously for the other vectors smo_ran_ayn, smo_jac_ecsd
and smo_ran_ecsd.
For each of the vectors we computed:

• The mean value (see Eq. (3.1)).

• The weighted mean value, with weights the number of nodes per snap-
shot (see Eq. (3.2)).

• The variance (see Eq. (3.3)).

Finally we plotted in a őrst őgure smo_jac_ayn and smo_jac_ecsd to
compare the smoothness of the two algorithms with Jaccard index and in sec-
ond őgure smo_ran_ayn and smo_ran_ecsd to compare the smoothness
of the two algorithms with Jaccard index.

Remark. To compute these values we had to build two functions ad hoc.
Indeed in the library tnetwork the smoothness between two consecutive
partitions is computed using the function similarity_at_each_step

that, instead of Jaccard or Rand indices, uses another similarity measure:
the normalized mutual information. For this reason we built two new func-
tions, myjaccard and myrand, that we used as new input of the function
similarity_at_each_step. Our functions, given two partitions of the
nodes of two consecutive snapshots (or more generally two partitions of two
static graphs), automatically őnd the nodes that belong to both of them and
compute the Jaccard and the Rand indices on this set of nodes. To build
them we exploit the jaccard_score and the rand_score of the library
sklearn. See the code in the Appendix A for more details.

54



Sociopatterns network S1
Number of snapshots 87

First time step 1353301200

Last time step 1354032000

Mean number of nodes per time steps 65

Max number of nodes 123

Min number of nodes 2

Mean number of edges per time steps 81

Max number of edges 244

Min number of edges 1

Table 3.1: Description of the Sociopatterns network S1.

3.2 Sociopatterns network

3.2.1 Description of Sociopatterns network

The library tnetwork includes a few dynamic graphs that can be loaded
with one command in the chosen format. We downloaded the "sociopat-
terns2012" network in the format of snapshot network.
Sociopatterns is an interdisciplinary research collaboration that adopts a
data-driven methodology to study social dynamics and human activity (see
[43]). The "sociopatterns2012" dataset contains the contacts between the
students of 5 classes in a high school in France during one week of November
2012. The original graph has 11273 snapshots but, as shown in the library, it
is possible to study dynamic network with a lesser temporal granularity than
the original data, thus yielding snapshots covering larger periods. We decided
to aggregate the snapshots using the function aggregate_time_period

provided by the library and we obtained a network with 87 snapshots, one
every hour. The őrst snapshot is taken at POSIX time 1353301200, which
corresponds to the 19th November 2012, while the last snapshot at POSIX
time 1354032000, which corresponds to the 27th November 2012.
The main characteristics of the Sociopatterns network, for brevity S1, are
shown in Table 3.1.

3.2.2 Results on Sociopatterns network

In Table 3.2 and Figures 3.1-3.6 we present the results we obtained on the
Sociopatterns network.
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Notice that the mean number of communities detected by Aynaud is higher
than the number of communities detected by ECSD. Consequently, the aver-
age size of communities per time step of Aynaud’s communities is lower than
the one of ECSD’s communities.
From Figure 3.4 and from the mean and weighted mean values it seems that
the modularity obtained by Aynaud’s algorithm is a bit higher than with
ECSD algorithm and it is visible from the histograms in Figures 3.2 and 3.3
how the values are distributed among the time steps. The inőnity norm of
the difference is approximately 0.2, as reported in Table 3.2.
Concerning smoothness, we notice that the values obtained with Rand in-
dex are quite high, while the mean value for the smoothness computed with
Jaccard index is very low, even if it reaches some spikes of almost 0.7. We
suppose that these behaviours might be originated from the fact that the set
on which the indices are computed is very small. In this way, as we noted
in the Remark of Section 1.4.1, when computing the Rand indices (see Eq.
(1.8)) it prevails the number n00, i.e. the number of pair of nodes that are
classiőed into distinct communities at time t− 1 and at time t.
The Aynaud’s algorithm seems more smooth than the ECSD with respect
to the Jaccard index, see Figure 3.5 and Table 3.2. It is the opposite with
respect to the Rand index, because the ECSD algorithm reaches some spikes
of smoothness and has a mean value higher than Aynaud’s algorithm, see
Figure 3.6 and Table 3.2.
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SOCIOPATTERNS S1 Aynaud ECSD

Mean number of communities per time step 12 9

Mean size of communities per time step 5 7

Max size of communities 28 36

Min size of communities 2 2

Mean value modularity 0.73478 0.68495

Weighted mean value modularity 0.76829 0.70792

Variance modularity 0.01645 0.01565

St. Dev. modularity 0.12826 0.12511

Median modularity 0.76389 0.70287

Min modularity 0.0 0.0

Max modularity 0.89587 0.87023

Inőnity norm of the difference of modularities 0.23345
Mean value smoothness (Jac. index) 0.06672 0.07263

Weighted mean value smoothness (Jac. index) 0.04561 0.04914

Variance smoothness (Jac. index) 0.01247 0.01515

Mean value smoothness (Rand index) 0.83007 0.78373

Weighted mean value smoothness (Rand index) 0.8673 0.81468

Variance smoothness (Rand index) 0.03067 0.02883

Table 3.2: Results for the Sociopatterns network S1.
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Figure 3.1: Number of communities on S1.
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Figure 3.2: Aynaud modularity on S1.
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Figure 3.3: ECSD modularity on S1.
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Figure 3.4: Comparison between Aynaud and ECSD modularity on S1.
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Figure 3.5: Comparison between Aynaud and ECSD smoothness (Jaccard
index) on S1.
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Figure 3.6: Comparison between Aynaud and ECSD smoothness (Rand in-
dex) on S1.
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3.3 Artificial random generated network

3.3.1 Description of the artiőcial network

With the function generate_simple_random_graph provided by the
library tnetwork it is possible to generate a random graph, by specifying
the following parameters:

• nb_com = number of initial communities;

• min_size = size below which communities cannot be split;

• max_size = size above which community split;

• operations = number of operations to execute;

• mu = parameter to set how well deőned is the community structure
(with mu=0 we have cliques, as mu increases the density of the edges
inside each communities decreases);

• mu_noise = parameter to set the fraction of edges randomly rewired
at each snapshot.

Notice that the operations that the generator executes are the events de-
scribed in Section 1.4.3. The generator automatically build a temporal net-
works with interval representation. With the function to_DynGraphSN it
is possible to convert it to a snapshot network, and we can specify in input
the sliding window (we used (slices=3)). For more details about the gen-
erator refer to the documentation of the library (see [40]).
In particular we generated several random networks using different values for
the parameters. In this thesis we report the results we obtained with:

• nb_com = 9;

• min_size = 3;

• max_size = 35;

• operations = 15;

• mu = 0.04;

• mu_noise = 0.03;

The main characteristics of the generated network, for brevity G1, are shown
in Table 3.3.
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Generated network G1
Number of snapshots 4094

First time step 0

Last time step 12279

Mean number of nodes per time steps 151

Max number of nodes 151

Min number of nodes 151

Mean number of edges per time steps 4110

Max number of edges 5840

Min number of edges 1816

Table 3.3: Description of the Generated network G1.

3.3.2 Results on the artiőcial network

As we can see the results in Table 3.4 are quite low in absolute terms and
they are similar between the two algorithms. However, from Figures 3.7-3.11
we see that the algorithms behave in a strange way, even if the mean values
of modularity and smoothness obtained are almost the same.
In particular, from Figure 3.10 we can see that the curve of modularity
changes rapidly at some timestamps and in most of them the two algorithms
assume different values. The same happens for the curve of smoothness
(with Rand index) of Figure 3.11. We can infer that this happens when the
network is changing; remember that the number of events that took place,
determined by the parameter operations, is 15. So we can suppose that
when the network is quite stable the algorithms behave similarly, whereas
when the network is changing they behave differently and adapt differently
to the change.
In particular, from Figures 3.10 and 3.11, we notice that the ECSD algorithm
seems to be better both in terms of modularity and smoothness. We suppose
that this might be due to the fact that placing the nodes into the previous
partition for the Aynaud’s algorithm might be a too strong constraint for the
nodes and the algorithm is not able to rapidly catch the changes that hap-
pened, while the ECSD algorithm performs better. Both of them, however,
are not optimal for this kind of network.
Finally notice from Table 3.4 that the smoothness computed with Jaccard
index assumes a constant value of about 0.007, so we omit its plot.
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GENERATED G1 Aynaud ECSD

Mean number of communities per time step 2 3

Mean size of communities per time step 71 53

Max size of communities 112 112

Min size of communities 13 4

Mean value modularity 0.32016 0.36325

Weighted mean value modularity 0.32016 0.36325

Variance modularity 0.01783 0.01732

St. Dev. modularity 0.13353 0.13159

Median modularity 0.35849 0.42071

Min modularity 0.11532 0.11533

Max modularity 0.60847 0.60847

Inőnity norm of the difference of modularities 0.2131
Mean value smoothness (Jac. index) 0.00662 0.00662

Weighted mean value smoothness (Jac. index) 0.00662 0.00662

Variance smoothness (Jac. index) 0.0 0.0

Mean value smoothness (Rand index) 0.49248 0.60422

Weighted mean value smoothness (Rand index) 0.49248 0.60422

Variance smoothness (Rand index) 0.0077 0.0089

Table 3.4: Results for the generated network G1.
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Figure 3.7: Number of communities on G1.
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Figure 3.8: Aynaud modularity on G1.
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Figure 3.9: ECSD modularity on G1.
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Figure 3.10: Comparison between Aynaud and ECSD modularity on G1.
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Figure 3.11: Comparison between Aynaud and ECSD smoothness (Rand
index) on G1.
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DBLP network D1
Number of snapshots 30

First time step 61

Last time step 915148861

Mean number of nodes per time steps 22143

Max number of nodes 115478

Min number of nodes 1137

Mean number of edges per time steps 30412

Max number of edges 122747

Min number of edges 1016

Table 3.5: Description of the DBLP network D1.

3.4 DBLP network

3.4.1 Description of the DBLP network

The DBLP network is the collaboration graph of authors of scientiőc papers
from DBLP computer science bibliography. Each node represents an author
and an edge appears between two nodes when they publish a paper together.
We found the data to build the network on the platform KONECT, which
is a project in the area of network science with the goal to collect network
datasets, analyse them, and make available all analyses online (see [44]). We
downloaded the data, ordered them by the time stamps and then we used
the function read_interactions of the library tnetwork to construct
the network, by reading the őrst million lines of the data. With this function
each snapshot contains the interactions at that moment without storing in
memory the interactions of previous time steps.
The main characteristics of the DBLP network, for brevity D1, are shown in
Table 3.5. Notice that the number of edges is very low with respect to the
number of nodes, i.e. the network is very sparse.

3.4.2 Results on the DBLP network

The results on the DBLP network are shown in Table 3.6 and Figures 3.13-
3.17.
The number of communities detected by the two algorithms is similar as
shown in Figure 3.12. Since the number of edges is very low compared to
the number of nodes, we suppose that the communities detected are very

72



small subnetworks disconnected from each other. This is conőrmed knowing
that the mean number of nodes per community per snapshot is 4 or 5, that
is reasonable if we assume that each community is a group of authors that
published a paper together.
Notice that the values of modularity obtained by the two algorithms are very
high. From Figure 3.15 it is visible that the Aynaud’s algorithm achieves
better scores in terms of modularity, while the ECSD algorithm is loosing
performance, even if both of them are really valid and get a mean value near
to 1.
A strange behaviours instead is noted in terms of smoothness: both of them
have a smoothness value, with respect to the Jaccard index, that is almost
null, while the same quantity with respect to the Rand index is almost opti-
mal. We suppose that the reason of this behaviour is again the fact that the
two indices are computed only on a very limited set of nodes, compared to
the huge number of nodes present in each snapshot. In this way if the set is
very restricted and the nodes are placed into different communities the Rand
index (see Eq. (1.8)) will be almost certainly 1 due to the dominance of n00,
while the Jaccard index (see Eq. (1.9)) will be almost certainly 0 because
the term n11 is almost 0.
Notice that the Aynaud’s algorithm on this network performs a little bit
better than the ECSD one, both in terms of modularity and smoothness.
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DBLP D1 Aynaud ECSD

Mean number of communities per time step 5253 4401

Mean size of communities per time step 4 5

Max size of communities 2935 2536

Min size of communities 2 2

Mean value modularity 0.98764 0.94581

Weighted mean value modularity 0.9811 0.9036

Variance modularity 0.00005 0.00203

St. Dev. modularity 0.00741 0.04501

Median modularity 0.99042 0.96082

Min modularity 0.96845 0.85278

Max modularity 0.99623 0.99314

Inőnity norm of the difference of modularities 0.12129
Mean value smoothness (Jac. index) 0.00306 0.00176

Weighted mean value smoothness (Jac. index) 0.00046 0.00039

Variance smoothness (Jac. index) 0.00005 0.00005

Mean value smoothness (Rand index) 0.99136 0.97942

Weighted mean value smoothness (Rand index) 0.9899 0.97774

Variance smoothness (Rand index) 0.00005 0.00015

Table 3.6: Results for the DBLP network D1.
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Figure 3.12: Number of communities on D1.
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Figure 3.13: Aynaud modularity on D1.
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Figure 3.14: ECSD modularity on D1.
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Figure 3.15: Comparison between Aynaud and ECSD modularity on D1.
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Figure 3.16: Comparison between Aynaud and ECSD smoothness (Jaccard
index) on D1.
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Figure 3.17: Comparison between Aynaud and ECSD smoothness (Rand
index) on D1.
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Conclusions and future work

As we said Chapters 1 and 2, the őeld of community detection is very vast.
In the literature a huge variety of algorithms to detect communities has
been proposed, whereas with respect to their comparison or classiőcation the
literature is still scarce.

In this thesis we decided to analyse two algorithms, the Aynaud and Guil-
laume’s algorithm and the ECSD algorithm and we compared them on three
different networks. The problem of validation and comparison of this kind of
algorithms is really hard. One of the main reasons is the lack of datasets with
ground truth communities, that could conőrm if the communities detected
by the algorithms are the real ones or not.
In order to overcome this issue we decided to base our comparison on two
aspects: the modularity and the Jaccard/Rand smoothness. With respect to
the computational time, the two algorithms are analogous for the networks
we used.

We tested the two algorithms on three networks that are different in nature
and size: the Sociopatterns network, an artiőcial random generated network
and the DBLP co-authorship network.
According to our experiments presented in Chapter 3, we can conclude that
both the algorithms are valid on networks that do not change dramatically
from one time step to the next one.
We underline that in some cases, like in the artiőcial network, the ECSD
algorithm seems to get better results. We think that this happens mainly
when the communities split from one time step to the next one, supposing
that the constraint of the Aynaud’s algorithm to start the iteration of the
Louvain algorithm by placing the nodes in the communities found previously
might be too strict.
On other cases instead, like in the DBLP network, the algorithm of Aynaud
seems to be more performant both in terms of modularity and smoothness.
Moreover, in the case of the DBLP network, we noticed that both the algo-
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rithms achieve very high values of modularity and we assume that the reason
for this is that the network is very sparse and the communities are easily
detected by taking each disconnected component of the network. Further
studies and comparisons with more dense and connected network have still
to be done.
Notice then that in other cases yet, like in the Sociopatterns network, the
modularity and smoothness vectors present various oscillation. We do not
know if they are due to an instability of the algorithms or if they are their
attempts to adjust to the changes that happened.

Finally, regarding the smoothness, we noticed that the Rand and Jaccard
indices might not be indicative when the set of the nodes that belong to two
consecutive snapshots is too small. Indeed in this case, if the number of pair of
nodes that are placed into different communities at the two snapshots is high,
the Rand index is almost optimal and the Jaccard index is almost null, but
this gives not much information about the smoothness of the algorithms. In
fact it does not make much sense to compare the similarity of two partitions
if they are relative to widely different set of nodes but this, more than a
drawback of the algorithms, is an issue of the data we are working with.
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Appendix A

In the following pages we report the code that we used for the experimental
evaluation of Chapter 3.
Notice that in the code we are using the Sociopatterns network S1. If one
wants to use an artiőcial generated random network G1 or a network D1 that
is built by reading the interactions of a text őle, it is sufficient to:

• uncomment the part relative to G1 or D1 in the step 1 "Building the
network";

• comment the Sociopatterns lines;

• replace the name S1 with the name of the new network.

We can visualize the evolution of communities also by plotting the graph
at some snapshots. By calling the function plot_as_graph with several
time steps we can plot the network at that time steps ensuring that the po-
sitions of the nodes remain the same between snapshot and that different
colours are used for different communities. We used it for the Sociopatterns
network but, since it was time consuming and the images were not clear, we
did not use it for bigger datasets.
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#Import what we need.
import networkx as nx
import tnetwork as tn
import matplotlib.pyplot as plt
import statistics
import math
import numpy as np
import sklearn
path = "Where we want to save the results"
resultsS1 = open(path + "results_S1.txt", "w")
 
#______________________________________________________________________________
 
#1 BUILDING THE NETWORK.
 
#Sociopatterns network.
sociopatterns = tn.graph_socioPatterns2012(tn.DynGraphSN)
S1 = sociopatterns.aggregate_time_period("hour")
#Artificial network.
#(gen_net, gen_comm) = tn.generate_simple_random_graph(nb_com=5,min_size=3,
# max_size=20,operations=8,mu=0.03,mu_noise=0.08)
#G1 = gen_net.to_DynGraphSN(slices=2)
#DBLP network.
#D1 = tn.read_interactions(path + "filewithinteractions.txt",
format=tn.DynGraphSN, time_first_column=False, sep='\t')
 
timesteps = S1.snapshots_timesteps()
resultsS1.write("\nThe network S1 has " + str(len(timesteps)) + "
snapshots.")
first_time = S1.start()
last_time = S1.end()
resultsS1.write("\nThe first snapshot is at time " + str(first_time))
resultsS1.write("\nThe last snapshot is at time " + str(last_time))
nn = []
mm = []
for i in timesteps:
      g = S1.graph_at_time(i)
      n = g.number_of_nodes()
      m = g.number_of_edges()
      nn.append(n)
      mm.append(m)
resultsS1.write("\nThe mean number of nodes per timestep is " + 
                str(round(sum(nn)/len(nn),5)))
resultsS1.write("\nThe max number of nodes at timestep is " + str(max(nn)))
resultsS1.write("\nThe min number of nodes at timestep is " + str(min(nn)))
resultsS1.write("\nThe mean number of edges per timestep is " + 
                str(round(sum(mm)/len(mm),5)))
resultsS1.write("\nThe max number of edges at timestep is " + str(max(mm)))
resultsS1.write("\nThe min number of edges at timestep is " + str(min(mm)))
 
#______________________________________________________________________________
 
#2 DETECTING THE COMMUNITIES.
 
#Aynaud's algorithm.
comm_ayn_S1 = tn.DCD.smoothed_louvain(S1)
n_comm_ayn_S1 = []
mean_sizes_ayn = []
max_sizes_ayn = []
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min_sizes_ayn = []
for t in timesteps:
      n = len(comm_ayn_S1.communities(t))
      n_comm_ayn_S1.append(n)
      sizes = []
      for i in comm_ayn_S1.communities(t).keys():
            sizes.append(len(comm_ayn_S1.communities(t)[i]))
      mean_sizes_ayn.append(round(sum(sizes)/n,5))
      max_sizes_ayn.append(max(sizes))
      min_sizes_ayn.append(min(sizes))
resultsS1.write("\n\nSizes Aynaud Communities")
resultsS1.write("\nThe mean number of communities per timestep is " +
str(round(sum(n_comm_ayn_S1)/len(timesteps),5)))
resultsS1.write("\nThe mean size per community per timestep is " +
str(round(sum(mean_sizes_ayn)/len(timesteps),5)))
resultsS1.write("\nThe max size of a community among all time steps is " +
str(max(max_sizes_ayn)))
resultsS1.write("\nThe min size of a community among all time steps is " +
str(min(min_sizes_ayn)))
 
#ECSD algorithm.
comm_ecsd_S1 = tn.DCD.smoothed_graph(S1)
n_comm_ecsd_S1 = []
mean_sizes_ecsd = []
max_sizes_ecsd = []
min_sizes_ecsd = []
for t in timesteps:
      n = len(comm_ecsd_S1.communities(t))
      n_comm_ecsd_S1.append(n)
      sizes = []
      for i in comm_ecsd_S1.communities(t).keys():
            sizes.append(len(comm_ecsd_S1.communities(t)[i]))
      mean_sizes_ecsd.append(round(sum(sizes)/n,5))
      max_sizes_ecsd.append(max(sizes))
      min_sizes_ecsd.append(min(sizes))
resultsS1.write("\n\nSizes ECSD Communities")
resultsS1.write("\nThe mean number of communities per timestep is " +
str(round(sum(n_comm_ecsd_S1)/len(timesteps),5)))
resultsS1.write("\nThe mean size per community per timestep is " +
str(round(sum(mean_sizes_ecsd)/len(timesteps),5)))
resultsS1.write("\nThe max size of a community among all time steps is " +
str(max(max_sizes_ecsd)))
resultsS1.write("\nThe min size of a community among all time steps is " +
str(min(min_sizes_ecsd)))
 
#Plotting some charachteristics of the communities detected.
step = int(len(timesteps)/3)
times_to_plot = [first_time,timesteps[step],timesteps[step*2],last_time]
plt.figure(figsize=(9,9))
plt.title("Aynaud's communities of S1.")
tn.plot_as_graph(S1, comm_ayn_S1, ts=times_to_plot, width=500, height=500)
plt.savefig(path + "comm_ayn_S1.png")
plt.close()
 
plt.figure(figsize=(9,9))
plt.title("ECSD communities of S1.")
tn.plot_as_graph(S1, comm_ecsd_S1, ts=times_to_plot, width=500, height=500)
plt.savefig(path + "comm_ecsd_S1.png")
plt.close()
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plt.figure(figsize=(9,9))
plt.title("Mean sizes of the communities found by Aynaud and ECSD on S1.",
fontsize='13')
plt.plot(mean_sizes_ayn, linestyle='--', linewidth=0.7, color ='navy',
label='sizes Aynaud')
plt.plot(mean_sizes_ecsd, linewidth=0.7, color='green', label='sizes ECSD')
plt.legend(fontsize='11')
plt.xlabel("Time steps.", fontsize='11')
plt.ylabel("Mean size of the communities.", fontsize='11')
plt.savefig(path + "comparison_sizes_AynEcsd_S1.pdf", bbox_inches='tight')
plt.close()
 
plt.figure(figsize=(9,9))
plt.title("Number of communities found by Aynaud and ECSD on S1.",
fontsize='13')
plt.plot(n_comm_ayn_S1, linestyle='--', linewidth=0.7, color ='navy',
label='n comm Aynaud')
plt.plot(n_comm_ecsd_S1, linewidth=0.7, color='green', label='n comm ECSD')
plt.legend(fontsize='11')
plt.xlabel("Time steps.", fontsize='11')
plt.ylabel("Number of communities.", fontsize='11')
plt.savefig(path + "n_comm_comparison_AynEcsd_S1.pdf", bbox_inches='tight')
plt.close()
 
#______________________________________________________________________________
 
#3 MODULARITY ANALYSIS.
 
def mystatistical(vector, sizes):
      resultsS1.write("\nmean = " + str(round(statistics.mean(vector),5)))
      resultsS1.write("\nweighted mean = " + str(round(np.average(vector,
weights=sizes),5)))
      resultsS1.write("\nvariance = " +
str(round(statistics.variance(vector),5)))
      resultsS1.write("\nstdev = " + str(round(statistics.stdev(vector),‐
5)))
      resultsS1.write("\nmedian = " + str(round(statistics.median(vector),‐
5)))
      resultsS1.write("\nmin = " + str(round(min(vector),5)))
      resultsS1.write("\nmax = " + str(round(max(vector),5)))
 
resultsS1.write("\n\n~~Modularity with Aynaud and Guillaume's
algorithm.~~")
mod_ayn_S1, size_mod_ayn_S1 = tn.DCD.quality_at_each_step(comm_ayn_S1, S1)
mystatistical(mod_ayn_S1, size_mod_ayn_S1)
 
resultsS1.write("\n\n~~Modularity with ECSD algorithm.~~")
mod_ecsd_S1, size_mod_ecsd_S1 = tn.DCD.quality_at_each_step(comm_ecsd_S1,
S1)
mystatistical(mod_ecsd_S1, size_mod_ecsd_S1)
 
#Plotting mod_ayn_S1.
plt.figure(figsize=(11,9))
plt.subplot(121)
plt.title("Histogram of Aynaud modularity on S1.", fontsize='13')
plt.hist(mod_ayn_S1, color='navy', bins=20, range=(0,1))
plt.xlabel("Values of modularity.", fontsize='11')
plt.ylabel("Number of time steps of occurrance of the values.", 
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fontsize='11')
plt.subplot(122)
plt.title("Line-plot of Aynaud modularity on S1.", fontsize='13')
plt.plot(mod_ayn_S1, linewidth=0.7, color='navy')
plt.xlabel("Time steps.", fontsize='11')
plt.ylabel("Value of modularity.", fontsize='11')
plt.savefig(path + "mod_ayn_S1.pdf", bbox_inches='tight')
plt.close()
 
#Plotting mod_ecsd_S1.
plt.figure(figsize=(11,9))
plt.subplot(121)
plt.title("Histogram of ECSD modularity on S1.", fontsize='13')
plt.hist(mod_ecsd_S1, color='green', bins=20, range=(0,1))
plt.xlabel("Values of modularity.", fontsize='11')
plt.ylabel("Number of time steps of occurrance of the values.",
fontsize='11')
plt.subplot(122)
plt.title("Line-plot of ECSD modularity on S1.", fontsize='13')
plt.plot(mod_ecsd_S1, linewidth=0.8, color='green')
plt.xlabel("Time steps.", fontsize='11')
plt.ylabel("Value of modularity.", fontsize='11')
plt.savefig(path + "mod_ecsd_S1.pdf", bbox_inches='tight')
plt.close()
 
#Comparing modularities of the two algorithms.
plt.figure(figsize=(9,9))
plt.title("Comparison of Aynaud and ECSD modularities on S1.",
fontsize='13')
plt.plot(mod_ayn_S1, linestyle='--', linewidth=0.7, color ='navy',
label='mod Aynaud')
plt.plot(mod_ecsd_S1, linewidth=0.7, color='green', label='mod ECSD')
plt.legend(fontsize='11')
plt.xlabel("Time steps.", fontsize='11')
plt.ylabel("Value of modularity.", fontsize='11')
plt.savefig(path + "mod_comparison_AynEcsd_S1.pdf", bbox_inches='tight')
plt.close()
 
#Infinity norm of the difference.
d = []
for i in range(len(mod_ayn_S1)):
      d.append(abs(mod_ayn_S1[i]-mod_ecsd_S1[i]))
infnorm = max(d)
resultsS1.write("\nThe infnorm of the difference between Aynaud and ecsd
modularity vectors is " + str(round(infnorm,5)))
 
#______________________________________________________________________________
 
#4 SMOOTHNESS ANALYSIS.
 
def mystatistical_smo(vector, sizes):
      resultsS1.write("\nmean = " + str(round(statistics.mean(vector),5)))
      resultsS1.write("\nweighted mean = " + str(round(np.average(vector,
weights=sizes),5)))
      resultsS1.write("\nvariance = " +
str(round(statistics.variance(vector),5)))
    
def myjaccard(x,y):
    setx = set()
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    for i in x:
        setx = setx.union(i)
    sety = set()
    for i in y:
        sety = sety.union(i)
    I = set.intersection(setx,sety)
    lx = []
    ly = []
    labelx = 0
    for i in x:
        i = i.intersection(I)
        for n in range(len(i)):
            lx.append(labelx)
        labelx += 1
    labely = 0
    for i in y:
        i = i.intersection(I)
        for n in range(len(i)):
            ly.append(labely)
            labely += 1
    if lx == [] or ly == []:
        return 0
    else:
        return sklearn.metrics.jaccard_score(lx,ly,average='weighted')
 
def myrand(x,y):
    setx = set()
    for i in x:
        setx = setx.union(i)
    sety = set()
    for i in y:
        sety = sety.union(i)
    I = set.intersection(setx,sety)
    lx = []
    ly = []
    labelx = 0
    for i in x:
        i = i.intersection(I)
        for n in range(len(i)):
            lx.append(labelx)
        labelx += 1
    labely = 0
    for i in y:
        i = i.intersection(I)
        for n in range(len(i)):
            ly.append(labely)
            labely += 1
    if lx == [] or ly == []:
        return 0
    else:
        return sklearn.metrics.rand_score(lx,ly)
 
myscorejaccard = lambda x,y : myjaccard(x,y)
myscorerand = lambda x,y : myrand(x,y)
 
smo_jac_ayn_S1, size_smo_jac_ayn_S1 =
tn.DCD.consecutive_sn_similarity(comm_ayn_S1, score=myscorejaccard)
smo_ran_ayn_S1, size_smo_ran_ayn_S1 =
tn.DCD.consecutive_sn_similarity(comm_ayn_S1, score=myscorerand)
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smo_jac_ecsd_S1, size_smo_jac_ecsd_S1 =
tn.DCD.consecutive_sn_similarity(comm_ecsd_S1, score=myscorejaccard)
smo_ran_ecsd_S1, size_smo_ran_ecsd_S1 =
tn.DCD.consecutive_sn_similarity(comm_ecsd_S1, score=myscorerand)
 
resultsS1.write("\n\n~~Aynaud smoothness (Jaccard-coefficient).~~")
mystatistical_smo(smo_jac_ayn_S1,size_smo_jac_ayn_S1)
resultsS1.write("\n\n~~Aynaud smoothness (Rand-coefficient).~~")
mystatistical_smo(smo_ran_ayn_S1,size_smo_ran_ayn_S1)
resultsS1.write("\n\n~~ECSD smoothness (Jaccard-coefficient).~~")
mystatistical_smo(smo_jac_ecsd_S1,size_smo_jac_ecsd_S1)
resultsS1.write("\n\n~~ECSD smoothness (Rand-coefficient).~~")
mystatistical_smo(smo_ran_ecsd_S1,size_smo_ran_ecsd_S1)
 
#Comparing smoothness of the two algorithms.
plt.figure(figsize=(9,9))
plt.title("Comparison of Aynaud and ECSD smoothness on S1 (Jac. index).",
fontsize='13')
plt.plot(smo_jac_ayn_S1, linestyle='--', linewidth=0.7, color ='navy',
label='smo Aynaud')
plt.plot(smo_jac_ecsd_S1, linewidth=0.7, color='green', label='mod ECSD')
plt.legend(fontsize='11')
plt.xlabel("Time steps.", fontsize='11')
plt.ylabel("Value of smoothness.", fontsize='11')
plt.savefig(path + "smoJac_comparison_AynEcsd_S1.pdf", bbox_inches='tight')
plt.close()
 
plt.figure(figsize=(9,9))
plt.title("Comparison of Aynaud and ECSD smoothness on S1 (Rand index).",
fontsize='13')
plt.plot(smo_ran_ayn_S1, linestyle='--', linewidth=0.7, color ='navy',
label='smo Aynaud')
plt.plot(smo_ran_ecsd_S1, linewidth=0.7, color='green', label='mod ECSD')
plt.legend(fontsize='11')
plt.xlabel("Time steps.", fontsize='11')
plt.ylabel("Value of smoothness.", fontsize='11')
plt.savefig(path + "smoRan_comparison_AynEcsd_S1.pdf", bbox_inches='tight')
plt.close()
 
resultsS1.close()
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