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INTRODUCTION 

Economic science’s main purpose is the efficient allocation of limited resources, but in our era 

of instantaneous communication, along with the management of classic resources, data and 

information play a pivotal role in any economic activity. 

The exponential growth of modern computational power, and its ever increasing ease of access, 

is enabling researchers to use new approaches to statistical inference and data processing, 

without having to resort to extremely expensive mainframes. Even though statistic is always 

the best choice to convert data into information, if compared to the past, classic research and 

inference tools, such as regression models and statistical tests on datasets, have gained even 

more importance in every scientific field.  

Following that trend, the trade-off between costs and data quality have increased in importance 

as well. Regardless of how well refined a statistical inference method might be, the quantity 

and quality of data is the source of the information that is to be processed and conveyed. 

Therefore, each and every research has to deal with attenuation biases in estimators and 

sampling size problems.  

Also in recent years, as much more data for studies and researches becomes available, the topic 

of reproducibility of published results became more relevant; even without taking into 

consideration all the problem that could arise in the complex process of acquiring, preparing, 

setting up datasets and interpreting it, the simple length of the sample studied is an 

unquestionable and non-interpretable key factor.  

Even in physics publications, where the requisite in testing for null hypothesis is extremely 

high: around six-sigma, or one in a three million and half chance of false positive, such false 

positives arose in several studies from more than ten published paper in regarding the false 

discovery of pentaquarks. The successive researches that didn’t confirm the finding were 

simply featuring bigger samples. A similar case happened in astrophysics as well whereas the 

results of a nobel-prize study on supernovae stars from 1999, regarding the accelerating 

expansion of the universe, has been challenged this year by a replication of the same study with 

ten times the sample size of the original (Nielsen J.T. et al., 2015).  

The research design for the present thesis is first introduced and explained in details, illustrating 

the literature underlying the tests and the simulations. The structure of the simulation is then 

analysed and motivated. 

A brief summary about the endogeneity problem and attenuation bias is provided, with specific 

reference to the model considered, together with an overview of the literature used in the thesis. 
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The simulation’s results will be divided in two parts: the first will cover various adaptations for 

each sampling rate, featuring different levels of focus, the second will test the robustness of the 

model by altering the population condition and by parameter’s alterations.  

The last section will cover the comparison of the fixed effect model (FE), the split sample 

instrumental variable implementation (denoted as SSIV in the text and as IV on the tables), and 

the pooled ordinary least square model (POLS) 

  



8 

 

  



9 

 

 

CHAPTER 1 - THEORETICAL BACKGROUND 

1.1 Research design 

The aim of this work consists in providing a reference in choosing an effective sample size, and 

building a guideline on what kind of bias is to be expected for each given sample size and 

population conditions, when using fixed effect models methods. In particular, endogeneity 

problems in the independent variables, and attenuation bias, due to both the aforementioned 

sample size and sampling problems, will be addressed.  

The present thesis will use the framework set up in the published paper “Immigration and 

crime: evidence from victimization data” (Nunziata, 2015), to build a simulated population of 

ten million individuals distributed over one hundred regions.  

The measure of immigration is affected both by endogeneity and attenuation bias: the former 

due to the fact that the immigrants are not randomly assigned to regions; and latter is caused by 

sampling error due to specific reasons, such as the regional cell size being too small or the 

selection bias caused by the fact that immigrants might not take the survey as much as natives.  

The simulated population will then feature a proportion of immigrants, which will be subject to 

yearly changes in forms of immigration waves. Such waves will be simulated as to represent a 

dynamic shock over time: one at a population level, and one at regional level. The strength of 

the waves will change each year according to its own variance. The shocks are only positive 

and will result in an increase in the overall population. Furthermore, the intensity of the waves 

will be increased in later testing; the idea is to reproduce immigration waves similar to those 

registered during the European migrant crisis, and also compare them with weaker types of 

immigration waves. 

The studied relationship between the crime perception and the immigrant share of the 

population is be exploited to build an estimator normalized to one, as the relationship between 

the share of immigrant in the population and the perception of crime will be set accordingly to 

the findings in the paper. 

The population will be so that a marginal increase in immigration will lead to a linear increase 

of the perceived probability of being a crime victim by 20%, controlling for fixed regional and 

time effects:  

 

         (1.1)                         𝐶𝑟𝑖𝑡 =  𝑚𝑟𝑡 𝛽 +  𝜇𝑡 +  𝛾𝑡 + 𝜀𝑖𝑡 
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Where C stands for the crime perception, m for immigration share; 𝜇 and 𝛾 are regional and 

time effects accounted for in the population simulation. 

This restriction reflects the data in the paper and allows for a coefficient normalized to one. 

With this setup, any immigration coefficient in a fixed effect model, built on a sample of the 

initial population, will immediately display its own accuracy in its deviation from one. This 

framework has been implemented with the use of the STATA software package. Use of Monte 

Carlo simulation on fixed effect models has already brought several results in the literature. 

Among the last, there’s the measure of statistical power of instrumental variables in the 

presence of weak instruments (Semadeni et al, 2014), which was conducted on a simulated 

dataset of 500 observations. Population tables will list the characteristics of the different 

populations upon which the models are implemented: 

 

POPULATION A 

Initial pop. count: 10’000’000 Regions: 100 

Immigration Shocks Variance: 1x Proportion of immigrants: 0,10 

Time lenght: 4 Error term distr. : 𝑁~( 0;0,5)  

 

The work will present several variation of the initial population to simulate the results under 

different initial conditions. 

The next step consists in building fixed effect models. The choice of FE is justified by the fact 

that the nation itself and each region have time invariant unobservable factors. On top of that a 

simpler pooled OLS will be evaluated to test the strength of the fixed effects upon the end 

results. The first model will be computed to check the population true parameters, which will 

result to be normalized to one; and several others will be computed using different sampling 

rates on the population. As in the paper, the type of fixed effect models build will be with and 

without instrumental variables for each level of sampling rate. 

In short the analysed models will be: 

 

(1.2) 

FE Model -        𝐶𝑟𝑖𝑡 =  𝑚𝑟𝑡𝛽𝐹𝐸  +  𝜇𝑐 + 𝜇𝑟 +  𝜀𝑖𝑡              
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Where 𝜇 represents time invariant regional and country effects, and X is a matrix of individual 

controls. 

As for the instrumental variable model, a split sample instrumental variable one will be used by 

sampling the immigrant population variable twice, at different sampling rate. As a reference for 

the sampled variables, the work will denote variable as END (which was the European Social 

Survey in the paper) to indicate the endogenous independent measure of immigration, and INS 

(denoted as the Labour Force Survey in the paper) to indicate the instrument.  

The spilt sample instrumental variable model is built and denoted as follows 

: 

(1.3) 

IV 2nd Stage 𝐶𝑟𝑖𝑡 =  𝑚𝑟𝑡
𝐸𝑁�̃�𝛽𝐼𝑉  +  𝜇𝑐 + 𝜇𝑟 +  𝜀𝑖𝑡  

IV 1st Stage 𝑚𝑟𝑡
𝐸𝑁�̃� =  𝑚𝑟𝑡

𝐼𝑁𝑆𝛽𝐹𝑆𝐼𝑉  +  𝜂𝑖𝑡 

 

 

Each variable is sampled in a wide array of sampling rates; mainly the ones available in surveys, 

and then the model is estimated. Monte Carlo simulation are then used to randomly resample 

and recompute each model several times. Tiers of 50 and 100 hundred replications of the models 

are used, accordingly to the accuracy needed. The resulting coefficients and standard errors are 

then averaged out and presented for comparison.  

The first group of results will focus on the attenuation bias problem: several sampling rates will 

be tested and compared to map the change in the bias. The simulations will be also conducted 

swapping the instrumental variables in the split-sample instrumental variable approach. 

Robustness checks will involve modification of the above mentioned models to identify the 

most suited setup of it: changing in the length of the panel data, removal of time effects from 

the controls, and modification in the error term’s distribution. Other checks will be performed 

by introducing changes in the population, the intensity of the shocks and the proportion of 

immigrants, as to evaluate the behaviour of the bias under different circumstances. Also the 

models will be tested against their POLS versions while varying the intensity of the fixed 

effects. 
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1.2 Models overview. 

1.2.1 Fixed effect model 

In econometrics, fixed effect models (henceforth: FE) represent a viable choice to analyse and 

study panel data, whenever the focus of the research is to explain the behaviour of a variable 

over time. FE models explore the relationship between the dependent and independent variables 

within a specific level of research: individual, regional, national, and so on, controlling for the 

influence of each dependent variable. In particular, the FE model allows to remove the effect 

of unobserved time invariant independent variables, simply by exploiting the observation at 

different times and cancelling them out.   

 

(1.4)                                      𝑌𝑖𝑡 =  𝛽1𝑋𝑖𝑡 + 𝜇𝑖 + 𝑢𝑖𝑡                                     

 
𝑡 = 1, … , 𝑇 

𝑖 = 1, … , 𝑁 

 

In such a setup, FE, are able to pinpoint, over a certain time frame, the effect on a dependent 

variable, by an independent variable, within a group, while also controlling for other factors if 

needed. Time periods and groups can either be used as controlling factors, or as explanatory to 

seize their effect.  

The main point, however, consists in the fact that any unobserved factor, can be removed as 

long as it is constant over time. If the assumption holds true, then any effect on the dependent 

variable is due to non-fixed influences (Stock and Watson, 2003, p.289-290), and the “within 

transformation” can be applied to the model. 

 

(1.5)                        (𝑌𝑖𝑡 − �̅�𝑖) =  𝛽1(𝑋𝑖𝑡 − �̅�𝑖) + (𝜇𝑖 − �̅�𝑖) + (𝑢𝑖𝑡 − �̅�𝑖)                    

        (1.6)                                             �̈�𝑖𝑡 =  𝛽1�̈�𝑖𝑡 + �̈�𝑖𝑡 

 

Beta coefficients in equation (2) can then be easily estimated using Ordinary Least Squares 

(OLS) methods, which can be also denoted as a “within estimator” in this particular case 

(Wooldridge J., 2015).  Once in form as in eq (2), other several estimation methods could be 

used, but research as shown that OLS still retains the best results (Buddelmeyer et al, 2008). 
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Therefore, under the Gauss-Markov assumptions, and if the strict exogeneity conditions are 

met, the estimator for the independent variable is unbiased and consistent. As for the case of 

OLS estimation, using X to denote the matrix of the explanatory variable, the bias would be 

defined as 

 

(1.7)                                      𝐸(�̂�|𝑋)  −  𝛽 = (𝑋′𝑋)−1𝑋′𝐸(𝑢|𝑋)   

   

In the specific case of our model the key condition for estimating the immigration coefficient 

would be: 

 

(1.8)                                             𝐶𝑜𝑣(𝑚𝑟𝑡, 𝜀𝑖𝑡) = 0,  ∀ 𝑡. 

(1.9)                                    𝐶𝑟𝑖𝑡 =  𝑚𝑟𝑡𝛽𝐹𝐸  + 𝑋𝑖𝑡𝜆 + 𝜇𝑐 + 𝜇𝑟 +  𝜀𝑖𝑡                                  

 

namely that the idiosyncratic error is independent from the explanatory variable for all times in 

the model.  

In the model considered however, the immigration explanatory variable is not randomly 

assigned to region (Nunziata, 2015), and unlike random effect models, in the baseline FE model 

it is assumed that the explanatory variables in the dynamic equation are not random. Therefore, 

any correlation between them and the error term will lead to an endogeneity problem as 

condition (3) is violated. That will ultimately cause bias in the estimator.  

 

1.2.2 Split sample instrumental variable model 

As explained in the paper, one of the solution for endogeneity, and even for the attenuation bias 

would be to use split-sample instrumental variable method. 

The SSIV estimator is relatively new as it was proposed for the first time in the paper “Split 

Sample Instrumental Variable” (Angrist J.D., Krueger A.B., 1993), as a solution to IV bias 

caused by weak instruments in finite samples. 

In our case the SSIV method will feature two measure of immigration taken form two different 

surveys, ESS and LFS respectively, which are independent of each other. The setup can easily 

be reproduced by taking two different, independent samples from the population of immigrants 
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in the simulation. If m is a correct, unbiased measurement of immigration, the two survey 

measures will still differ from that by an error. So the characteristics of the two measure of 

immigration will be: 

 

(1.10)                          𝑚𝐸𝑆𝑆 −  𝑚 =  𝜀1 ;   𝑚𝐿𝐹𝑆 −  𝑚 =  𝜀2 

 

                                       𝐶𝑜𝑣(𝑚𝐿𝐹𝑆, 𝑚𝐿𝐹𝑆) ≈ 𝑚 

 

Even if condition (3) is not met due to endogeneity, the first stage estimation using split-sample 

instrumental variable, will exploit the characteristics of the two measure of immigration to 

“partial out” the errors, and keep the variance, of the unbiased common part of m, intact.  

 

(1.11)                        𝐶𝑟𝑖𝑡 =  𝑚𝑟𝑡
𝐸𝑆�̃�𝛽𝐼𝑉  + 𝑋𝑖𝑡𝜆 +  𝜇𝑐 + 𝜇𝑟 +  𝜀𝑖𝑡 

𝑚𝑟𝑡
𝐸𝑆�̃� =  𝑚𝑟𝑡

𝐿𝐹𝑆𝛽𝐹𝑆𝐼𝑉  + 𝑋𝑖𝑡𝛾 +  𝜂𝑖𝑡 

 

The use of SSIV however doesn’t solve the problem of attenuation bias when the sample size 

is too small. The following section will investigate the underlying literature to explain how and 

why the bias is formed. 
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1.3 Types of bias. 

 

1.3.1 Omitted variable bias 

While trying to identify the effect and the dynamics of the attenuation bias, caused by smaller 

sampling rates, it is useful to underline its differences with respect to the type of bias that’s the 

cause of endogeneity in many models: the omitted variable bias, and how it can affect both FE 

and SSIV’s estimations.  

Most of the econometric literature on the subject of FE models, studies how the two stage 

instrumental variable method, in the presence of endogeneity, is biased towards OLS 

estimations (Nagar, 1959; Hausman et al, 2002). Even fixed effect models with instrumental 

variable are biased towards OLS. 

Using the matrix form for the IV models (Ebbes P et al, 2009), the bias for an IV model defined 

as: 

(1.12)       {
𝑌 = 𝑋𝛽 + 𝜀
𝑋 = 𝑍𝜋 + 𝜂

 

 is quantified as follows: 

(1.13)       
𝑃𝑙𝑖𝑚 𝛽𝐼�̂�−𝛽

𝑃𝑙𝑖𝑚 𝛽𝑂𝐿�̂�−𝛽
=

𝜌𝑍,𝜀̈ 𝜌𝑋,𝜀⁄

𝜌𝑋;𝑍
 

 

The omitted variable bias committed in IV models is then generally dependent on the intensity 

of the linear relationship between the instrument and the endogenous variable, and inversely 

correlated to the linear correlation between the regressors and the error term of the second stage.  

The researchers are especially focused on two broad topics: the quality of the instruments 

(Bound J. et al, 1995), and the problem that arise in small sample sizes (Flores-Lagunes A., 

2007). 

As shown in the above bias, the explanatory power of the instrument is indirectly proportional 

to the bias, as well as the exogeneity of the instrument with respect to the first stage’s error 

terms. 

Plenty of solutions are available, including different types of estimators such as Higher 

Moments and Latent Instrumental Variable (Ebbes et al. 2009), to solve the problem; the 

downside being the heavier requirements in terms of sample size and computational power.  
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However, in spite of the similarities, SSIV (Split Sample Instrumental Variables) models are 

biased towards zero rather than OLS, if no exogenous regressors are included in the model 

(Angrist D., Krueger B. 1993). 

Provided that the instrument used meets all the requirement for exogeneity constrictions, and 

are related to the endogenous variable, SSIV doesn’t suffer from endogeneity bias and the 

expected quality of the results in the simulations will mainly depend on the quality of the 

instrument in the first stage, and the resulting explanatory power of the second stage. 

 

1.3.2 Attenuation bias 

The attenuation bias, instead, needs to be apprehended by considering more specific 

circumstances. 

The attenuation bias has been studied first by taking the contradictory conclusion of the effect 

of immigration on wages (Aydemir A., Borjas J. 2011), elaborated from two different surveys: 

one with a sampling rate of a 33% of the population and the other with a less than 10% sampling 

rate. Following their work, 𝑝𝑘will be the regressor affected by attenuation bias, and 𝜋𝑘will be 

the unbiased regressor. They will differ by an error term 𝑢𝑘: 

 

(1.14)       𝑝𝑘 = 𝜋𝑘 + 𝑢𝑘 

 

The distribution of 𝑢𝑘depends on the characteristic of the phenomenon observed. Since 

immigration is the subject of the research both for the reference paper and our case study, the 

error term is geometrically distributed. It is possible to approximate it to a binomial distribution 

without changing the characteristic of the error.  

At this point the authors define the sampling rate as 
𝑛𝑘

𝑁𝑘
= 𝜏; where n is the cell size, and N is 

the total population considered by the phenomenon. The model considered in the paper is a 

fixed effect one, akin to the one used for the simulation. 

And for such a model, the attenuation bias should be given by the equation: 

 

(1.15)                                           
𝑝𝑙𝑖𝑚 �̂�−𝛽

𝛽
= (1 − 𝜏)

�̅� (1−�̅�)/�̅�

(1−𝑅2)𝜎𝑝
2  
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from which the implication that the difference between the regressor and the unbiased regressor 

must be always smaller than that of the “purged variance” of the model (Aydemir A., Borjas J. 

2011): 

 

(1.16)       𝑢𝑘 = 𝑝𝑘 − 𝜋𝑘 <  (1 − 𝑅2)𝜎𝑝
2 

 

Based on this conclusions, and considering the elements of Eq. (1.15), the attenuation bias that 

is expected to be found in the simulations will be proportional to: the sampling rate 𝜏; the 

average cell size �̅�; the explained variance of the model used, and the variance of the affected 

regressor.  
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CHAPTER 2 – SIMULATION RESULTS 

The following sections will report the results of the fixed effect models used, before focusing 

on the tests on the attenuation bias intensity itself, and then will move on to explore the various 

changes in bias caused by different characteristics of the population. 

The total running time of the simulation is of 2304 hours, is comprised of a total of more than 

300 million individuals divided upon 2100 different models. The total amount of data generated 

is of 2,27 TB. 

All of the simulation results are expected to be explained by the relations highlighted in Eq. (4), 

therefore the relationship between the total bias and sampling rates and total population, or cell 

size, is expected to be negative: bigger cell sizes will lead to smaller biases; a larger purged 

variance should lead to smaller biases in the coefficient as well. 

The goal for this second part will be to track the behaviour of the bias across different 

populations and different models, and to interpret it as shown in the Eq. (4) grouping them by 

the type of effect that they have on the bias: a change in bias’ variance or a change in the 

numbers of cell. 
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2.1 Cell size and sampling rate 

The purpose of this section is to examine the behaviour of the sampling rate, taking into 

consideration the effect of immigration on crime rate using the models described in the first 

part and to find an ideal cell size range to minimize the bias. 

The baseline model from the reference paper will be replicated and each type of population will 

be catalogued. As previously explained the phenomenon of reference used to build the 

simulation is the effect of immigration on crime rate. The peculiarity of the framework 

implemented will then allow for a further manipulation of the population itself: by changing 

the population parameters in terms of initial size, initial proportion of immigrants, immigration 

waves, strength of fixed effects and length of time, several “population models” will be created. 

The goal is to track the behaviour of the bias as these changes occur in the population, and 

check on the performance of each model’s estimator.  

By taking into account the normalization of the coefficient at once, since the normalization was 

computed on average an effect of immigration on crime of 20%, it means that a 50% bias, or a 

coefficient of 0.5 for a beta, will register an effect of immigration on crime half as strong than 

it actually is. 

The changes performed upon the key parameters in this section will solely affect the cell size 

indirectly by modifying the number of regions in the simulation and the number of total 

individual in the population model: 
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2.2 Baseline Population 

For comparison we implemented the FE models to replicate the result from our reference paper 

(Nunziata, 2015), where the unbiased coefficient was normalized at one and in which the 

characteristic of the population were as follows: 

 

 

The baseline population parameters are a good approximation of actual parameters 

for a country in terms of average proportion of immigrants and immigration waves. 

For this baseline setup the modification in population size, number of region and 

sampling rates covered a good range of cell sizes for both models: 

 

TABLE 2.1 – POPULATION LIST BY PARAMETERS AND CELL SIZE RANGES COVERED 

 

All the modification for the baseline population do not alter the unexplained variance of the 

regressor in the denominator of Eq. (1.15) and therefore can be considered as a starting point to 

track the bias given fixed conditions.    
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2.2.1 Baseline FE model 

TABLE 2.2 – BASELINE POPULATION – FE MODEL 

 

 

Table 1 refers to the fixed effect model for the baseline population: the first row reports the 

coefficient for the population model, as expected the value is one across the whole range; a 

minor divergence happens for very small cell sizes. 

The beta “sample” coefficient refers to coefficient from the fixed effect model. As shown in the 

paper, the FE model results biased for low levels of sampling rate and as average the cell size 

and the sampling rate increase, the bias decreases. The key parameter in tracking the 

performance of the bias is the observation per Cell: the estimator is performing very poorly 

until the cell size hits 3000 observations. In other words, below 1000 the attenuation bias is so 

severe that the effect of immigration on crime rate is halved when considering a FE model.  

 

GRAPH 2.1 -  BIAS VS CELL SIZE FOR BASELINE FE 

 

 

Graph # shows how the bias behaves across the considered cell range: for that population the 

bias becomes acceptable only when cell size is above 5000 cells per region. Considering the 
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one hundred region used, the total amount of observation needed would be of half a million. 

The cell length for the fixed effect also features a standard error but since it is below 2% on 

average, it is to be considered solely for high values of the interval. It would be equal to 200 

around a cell size of 5000.  

An interesting fact is the relationship between bias and cell size which is exponential in the 

range studied: 90% of the bias is compressed in the first quarter of the interval. Also the 

marginal effect of adding a cell will become less and less meaningful after the first thousand 

cells. 
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2.2.2 Baseline FE vs SSIV model 

 

TABLE 2.3 – BASELINE POPULATION – SSIV MODEL 

NB: Cell sizes value in the “Obs Cell” row apply to endogenous variable as well 

 

In the SSIV model table the sampling rates of the instrumental variable are in the first row, 

while the first column reports the sampling rate for the endogenous regressor. 

The 2nd stage coefficients are unbiased, even for smaller levels of sampling rate in the 

instrument. 

 A problem however lies in the coefficient for the first stage, which, affects the quality of the 

second stage estimates: the size of the standard error is smaller whenever the first stage 

estimates are higher. Raising the sampling rate of the endogenous variable does not increase 
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the quality of the first stage, which raises only after an increase in the sampling rate of the 

instrument. 

 

GRAPH 2.2 – BASELINE COMPARISON FE VS SSIV 

 

 

 

In terms of cell size to bias, the SSIV is outperforming the FE model: the bias at one hundred 

cell per region is around 25% for the former and 85% for the latter. The comparison becomes 

meaningless as the sampling rate of the endogenous variable raises since the SSIV results 

almost unbiased. 

Even if the gap in terms of performance between the two model is significant, as explained in 

chapter 1, the SSIV one needs to rely on two independent sample of the same measure, and 

therefore requires two different surveys. In the simulation the two surveys were independent as 

per construction, in real circumstances the simple fact that the surveys would come from 

different sources should be enough to guarantee their non-correlation.  

 

2.3 Properties of SSIV 

The peculiarity of SSIV consist in having two independent sample of the same endogenous 

variable. One sample is to be used as an instrument, generally the smaller one, and the other is 

to be used as a measure of the endogenous variable, as depicted in equation #.  

Due to this this property, it is possible to swap instrument and endogenous variable in the model 

to achieve the same estimates. The only requirement for the two samples is simply to be 
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independent of each other, and swapping them across the model doesn’t affect their non-

correlation in any way.  

An application of such properties is presented in Table 3#, which is estimated with the same 

parameters as Table 2, and should, at least in principle, provide the same estimations. 

 

TABLE 2.4 – SSIV INSTRUMENT AND ENDOGENOUS VARIABLE SWAP 

 

 

However, there is a slight divergence in Table 3, even though the estimates are roughly the 

same, their values differ by a small degree of precision.  

For example, the beta estimates for the sampling rate 100/100 are different across the two tables, 

but the % of bias is roughly around 30%. The differences between the two tables become 

smaller and smaller as we raise the cell size in both variables. Each increase in sampling rate, 

from 0.5 to 1, raises the precision from a decimal to a centesimal part.  

In principle, if the precision of the simulation could be infinitely high, the estimates would be 

exactly the same. They get more and more precise as the number of repetition in the Monte 

Carlo simulation raises, or whenever the bias gets smaller and smaller. 
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This property can be useful to evaluate the consistency of the estimates across the various 

simulation because cell sizes should be diagonally mirrored on a table. For example, the pair 

100 for the endogenous, 300 for the instrument and 300 for the instrument and 100 for the 

endogenous should have the same estimate or at least the same amount of bias. The only 

downside would be the time invested in actually estimating the same cell twice. Ultimately, by 

arranging the data diagonally and checking for the mirrored cells it would be possible to check 

the precision of the estimation: consistent cell ranges should be very close in terms of bias. 
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2.3 Optimal cell size 

The criterion to select an optimal cell size would be to choose a cell size that: 

reduces the bias by 90% (a pair of cell sizes in the case of SSIV) 

is consistent, namely that any higher value for the cell size has at least the same reduction 

has a t-statistic lower than 2 

The 90% reduction in bias is a good compromise for the best approximation attainable with the 

instrument at our disposal: more precision would require both longer computational times and 

bigger datasets. Even if the simulation as of now is capable to accurately estimate biases of less 

than 0.1% for larger cell sizes, the precision goes down as the cell size becomes smaller. For 

FE it is able to accurately predict up to a 1% reduction in bias due to the fact that the bias is still 

extremely high even for very large cell sizes. While for the SSIV the bias is actually sizable 

only for smaller cell sizes.    

Moreover, in the case of SSIV there are two different cell size to select: one for the endogenous 

and one for the instrumental variable, the optimal pair would be the one that reduces the bias 

by 90%, and above such range the bias should be consistently lower, while all the estimates 

should be statistically significant. The endogenous/instrumental cell size pair could be 

interchanged due to the properties of SSIV. Since SSIV is extremely good for higher level of 

cell size, to find the optimal value it is necessary to explore the lower bounds of the interval. 
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GRAPH 2.3 – LOWER CELL SIZE RANGES SSIV 

 

NB: Each line represents an Endogenous variable sampling rate 

 

Graph # represents lower cell values for the SSIV, each line corresponds to a specific 

endogenous variable sampling rate from 0.1 to 1, in terms of cell size they range from 100 to 

1000; the cell size of the instrument is on the x axis. The green area highlights a range in which 

the coefficients are more consistent: the bias is below 90% and the estimates are statistically 

significant. It corresponds roughly to the interval highlighted in table #, for which the 

coefficients are more consistent and do not assume extremely biased value for smaller cell sizes. 

The only endogenous sampling rate that remains consistent for lower levels is the one for a cell 

size of one thousand  

Table 3 itself reports a lower range of sampling rates for the endogenous variable in the SSIV 

model: from 0.0001 to 0.01. The red section highlights the optimal range value which meet the 

required criteria. 
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TABLE 2.5 – BASELINE SSIV – LOWER CELL SIZE RANGE 

 

NB: Cell sizes value in the “Obs Cell” row apply to endogenous variable as well 

 

The values of the coefficients become less and less biased as the cell size in both variable 

increases. The optimal cell range seems to be located above a value of 300 for the independent 

and 50 for the endogenous variable.  

Below 100 the coefficients are extremely unreliable in some cases: for the cell 100 and 10 the 

value of the coefficient has a 1600% bias; for the cell 10 and 30 instead, even if the coefficient 

itself has a low bias, the standard error is exceedingly large. The former doesn’t meet the 

required criteria directly; the latter doesn’t meet it in due to the inconsistency of its standard 

error.  
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TABLE 2.6 – BASELINE SSIV – COEFFICIENT BIAS BY EXTENDED CELL SIZE RANGE 

 

*Inconsistent range 

**T-stat < 2 

NB: Optimal cell sizes are highlighted in green. Orange cell sizes are borderline values 

 

Table # reports a much wider range for SSIV model, in which it is possible to identify the 

optimal range. The estimated coefficients for the second stage of SSIV can be classified in three 

categories: highly biased, borderline and optimal range. The ones in the first two columns and 

rows belong to the lowest ranges of cell sizes, the values are generally extremely biased or have 

a wide standard error. Some values have less bias but belong to an inconsistent range.  

An explanation to justify the inconsistent behaviour of low range estimates can be found in how 

the Monte Carlo simulation operates.  Picking up random samples in a larger population, that 

is by construction normally distributed, there is a chance that the sampling upon which that 

specific coefficient has been computed have very few extreme values and that a very small 

sample resembles the population distribution more than a bigger one. The problem is ultimately 

tied to the lack of precision due to the limited number of repeated sampling done during the 
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Monte Carlo simulation. A higher number of repeated sampling operation should highlight how 

all the values in the lower cell ranges from ten to fifty are actually biased. 

A second tier of estimates is the borderline one: between 150 and 200 for both variables. This 

group features a bias below 15% on average, is fairly consistent in terms of bias reduction by 

increase in cell size but it doesn’t show a consistent diagonal symmetry: same cell values 

repeated can yield different estimates. For example, the cell 200/100 and 100/200 diverge by a 

6%; the cells 200/150 and 150/200 instead diverge by 9%.  

The estimates tend to become more consistent around the diagonal, for a cell size of 200/200. 

This group comprehends the ranges 50/300-1000 and 300-1000/50. Even if the values are fairly 

consistent for these cell size and the bias is low, the very short sample of 50 in one the two 

variable, especially as seen in the 50/1000 cell, may be biased for higher level of precision of 

the simulation.  

The last group above the 300/100 range, meets all the criteria for the optimal cell range: the 

bias reduction is way above 90-95%, it’s consistent in terms of bias reduction by cell size 

increase, doesn’t feature abnormal values, and it’s mirrored up to a decimal precision. The 

biggest divergence, around 5%, is located around the limits of the cell range.  

To measure the improvement of the alternate modification, the set of coordinates (bias, 

endogenous variable cell size, instrument cell size) has been fitted to a non-linear regression in 

table 2.7. The volume below the curved plane and inside the boundaries (0.5000) for X and 

(0.1000) for Y, will be used to compare the increase or decrease in bias w.r.t. the alternative 

populations. 
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TABLE 2.7 – SSIV BASELINE POPULATION – 

BIAS VS ENDOGENOUS/ INSTRUMENT CELL SIZE 

NON-LINEAR REGRESSION 
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CHAPTER 3 – ALTERNATIVE POPULATIONS 

In this third section we'll use the methodology developed in chapter two to study how the 

attenuation bias behaves whenever the condition in the initial population change. 

In this way, it would be possible not only to select an optimal cell size to build a fixed effect 

model of migration, but also to adjust the cell size to make it fit the population’s condition more 

realistically.  

Moreover, it would be interesting to understand which factor do affect the attenuation bias and 

how strong such effect is. 

Table # reports the full list of all the changes and modifications done to the initial population, 

in order to track the bias’s behaviour. 

 

TABLE 3.1  – ALTERNATIVE POPULATION LIST BY PARAMETERS AND CELL SIZE RANGES  

 

 

The key parameters are chosen to simulate actual circumstances. The modifications will affect: 

initial average proportion of immigrants, the variability of immigration's shocks across time, 

and the length of time for the model. 

The average initial proportion of immigrants was set at 10%. Which is around the average for 

western European countries. Whereas values such as 5% would represent the situation in eastern 

European countries. Bigger values, up to 30% can be used to replicate the condition of countries 

with a strong population of immigrants such as Australia and New Zealand (United Nations 

database, 2015). 
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The second parameter is immigration waves. It’s measured by how much it affects the total 

increase in the final population after the observation period. For example, a 4%, which is the 

baseline parameter, would indicate an increase in population due to immigration of 0.5% per 

each year. As an upper limit, a 10% increase has been chosen, which corresponds to a 1.25% 

increase per year, and 2% as a lower limit, which corresponds to a 0.25% yearly increase in 

total population due to immigration.  

For comparison, Germany’s yearly immigration causes approximately an increase of 1% in the 

population, while the Italian immigration causes an increase of approximately 0.33% (Hawkins 

O, 2017). That’ll make so that the variant with the lower bound parameter would be better to 

describe the bias on fixed effect models that use Italian data, meanwhile the upper bound variant 

would be better suited to track the bias of fixed effect models on German data.  

The time length modification is performed to check the consistency of the time frame chosen 

and the effect of its alteration upon the bias. It is to be noted that the time unit used in the 

simulation corresponds to two years, since it is measured upon the bi-yearly release of Labour 

Force Survey data.  

The following sections will then cover a brief explanation on the expectation of such 

modification, with a reminder of the theoretical basis; an in-depth look to the effects of the 

modification on each model, with the identification of optimal cell sizes for each modification. 

In addition, to compare all the model across the different modification, each and every model 

has been fit with a non-linear regression. The functions used to fit the models are: 

 

(3.1)                                               𝑓(𝑥) = 𝛼1𝑒𝛾1𝑥 + 𝛼2𝑒𝛾2𝑥 

For FE, where the dependent variable is the bias and x is the cell size. 

(3.2)                                 𝑓(𝑋, 𝑌) = 𝛼 + 𝛾1𝑋 + 𝛾2𝑌 + 𝛾3𝑋2 + 𝛾4𝑋𝑌  

For SSIV, where the dependent variable is the bias as well and X and Y are the cell sizes used 

for the instrument and the endogenous variable. The same framework has been applied to all 

models. 
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3.1 Unexplained variance  

The modifications in this section will not only affect the key parameter of cell size in Eq. (7), 

they will also have an effect on the denominator in the equation that defines the bias. 

That is due to the reduction of unexplained variance in the regressor, or, in other words, to how 

migration becomes “better” at explaining the variance in crime rate. A stronger correlation 

between the regressor and the dependent variable leads to a smaller denominator for Eq. (7) and 

in return it means a smaller bias. 

To test the relation directly in the simulation, the error term in the construction of the simulated 

dependent variable has been changed.  

When the “crime rate” variable is simulated in the program, a normally distributed error with 

zero mean and 0.5 variance is included to its variability. By replacing that error with a smaller 

one that is lognormally distributed, and only has 0.1 variance, the explained variance of the 

regressor on the dependent variable should become bigger. It should be a consequence of the 

reduced “random” part of the crime rate variable.  

The hypothesis is tested on both FE and SSIV models. The results for SSIV are on graph #, 

while table # displays the full range of results for both models: 

 

GRAPH 3.1 –  SSIV COEFFICIENT VALUES BY ERROR TERM  

 

 

  



38 

 

TABLE 3.2 – REDUCED ERROR TERM IN THE REGRESSAND   

 

 

In graph #, the estimated SSIV coefficients reported on table # are compared together with the 

ones on table #. The sampling rate, and consequently the cell size used for both endogenous 

variable and the instrument is the same in both groups. 

The resulting graph shows how the estimated coefficient for the smaller error term, the one 

distributed as a lognormal with zero mean and 0.1 variance are closer to the population 

coefficient, for each level of sampling rate, meanwhile the coefficient simulated with the larger 

error are way lower and therefore way more biased. 

The same results are to be expected from any modification that would reduce the unexplained 

variance of the regressor if the cell size remains unchanged.  
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3.2 Initial proportion of immigrants 

As introduced before, the matter of reducing “the unexplained variability” in the regressor, will 

be covered in this section by simulating scenarios that will, ultimately, change the regressor’s 

explanatory power. Each modification will be runned by both models 

The “initial proportion of immigrants” represents the percentage of immigrants already 

included in the population before the immigration waves.  

The different scenarios are compared in the table below: 

 

TABLE 3.3 – FE BIAS W.R.T. CHANGE IN INITIAL PROPORTION OF IMMIGRANTS  

 

 

The green represents the region in which the bias is reduced by 90 percentage points. The 

proportion of immigrants is listed in the column.  

As the proportion is the reduced the bias becomes higher for the same cell size, meanwhile a 

bigger initial proportion of immigrants causes the bias to be reduced for the same cell size range.  

The ideal range in which the optimal criteria are met are way above 5000, exactly at 6250, for 

the lowest range of initial proportion of immigrants, 5000 for 0.1, and down to 3000 for 0.3. 

The graph 3.2 shows a direct comparison. 
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GRAPH 3.2 – FE BIAS VS CELL SIZE BY INITIAL PROPORTION OF IMMIGRANTS 

 

 

 

TABLE 3.4 –FE BIAS VS CELL SIZE BY INITIAL PROPORTION OF IMMIGRANTS  

 NON-LINEAR REGRESSION MODEL - FITTED VALUES 
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The overall improvement in Table 3.3 directly compares the area underneath the baseline’s 

graph, with the areas of the other modifications. The function is obtained by a non-linear 

regression on the set of coordinates made up by bias in percentage points and cell size, and the 

area has been computed by calculating the definite integral of the function in the range (0, 

5000). 

Ultimately, a reduction of 0.05 in the initial proportion of immigrants leads to an increase of 

33% in bias with respect to the bias of the baseline model. Instead, when the initial proportion 

of immigrant is at 0.3 or 0.5, the reduction in bias w.r.t. the baseline model is respectively 46% 

and 44%. 

For SSIV we need to introduce another variable to measure the cell size of the instrument. The 

bias in percentage point is summed up in the following tables, one for the reduction and the 

other one for the increment: 

 

TABLE 3.5 - SSIV BIAS W.R.T. INITIAL PROPORTION OF IMMIGRANTS( 0.05) 

 

The optimal cell size when the initial proportion of immigrants is reduced to 0.05 percent of the 

total population is located at 500 cells for the endogenous variable and 300 cells for the 

instrument. With respect to the baseline population the inconsistent values are more frequent 

for lower cell size ranges. 
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TABLE 3.6 - SSIV BIAS W.R.T. INITIAL PROPORTION OF IMMIGRANTS  ( 0.3) 

 

Table 3.6 reports of bias in percentage point, in case of an increase in initial proportion of 

immigrants for both endogenous and instrument in an SSIV model.  

The results show how the ideal range is located at 300 cells for the endogenous and 50 for the 

instrument. The 100/50 range shows a bias lower than 10, but the borderline result at 100/100 

is an indicator of low consistency for this range. The green area instead is perfectly consistent 

in reducing the bias below 10 percentage points. 

The same method for comparing the two models’ improvement has been applied, this time in 

three dimensions. The results of the non-linear regression are as reported in table 3.4 
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TABLE 3.7 – SSIV BIAS VS CELL SIZE BY INITIAL PROPORTION OF IMMIGRANTS  

 NON-LINEAR REGRESSION MODEL - FITTED VALUES 

 

The non-linear model has been used to compute the volume below the functions, which would 

indicate the level of bias, and it has been compared to the volume of the baseline population in 

table 2.7. The result indicates that the lower level of initial proportion of immigrants causes a 

1037% increase in bias w.r.t the baseline population, meanwhile the higher level causes a 

decrease of 77% in bias.  
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3.3 Immigration shock’s intensity  

Immigration shock ‘s intensity refers to the strength of the immigration waves in the simulation. 

Their utility consists in showing how the bias fares whenever there’s a period of peak 

immigration. As previously explained they do affect the explained variability of the migration 

regressor on the dependent variable. 

 

TABLE 3.8 – FE BIAS W.R.T. CHANGE IN IMMIGRATION SHOCK’S INTENSITY 

 

NB: Immigration shock’s intensity is measured as percentage of yearly increase in total 

population  

 

Change in Immigration shock’s intensity seems to cause a substantial increase or decrease in 

bias for FE models. The reduction of the shock down to 0.5% increase per year, causes the 

optimal cell size to ramp up to 15000 cells. An increase up to 2.5% drops the cell size, required 

to reduce the bias by almost completely, down to 5000. It is to be noted that at around 1000 

cells the bias is already reduced by 85 percentage points.  

The biggest reduction is obtained by increasing the yearly shock to a 6.75% yearly: the optimal 

cell size will be obtained with only 300 cells. Such a result is comparable to the performance 

of a SSIV model. 
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GRAPH 3.3 – FE BIAS VS CELL SIZE BY INCREASE IN IMM. SHOCK INTENSITY 

 

 

The average improvement by change in intensity shock is computed by comparing the area 

below each graph with the baseline population: the 0.5% reduction causes a 200% increase in 

bias, while increasing the intensity to 2.5% and 6.75% cause a decrease in bias by 64% and 

87% respectively.  

Table 3.9 and 3.10 report the result for the SSIV model. The reduction in immigration shock’s 

intensity causes the optimal cell size to rise up to 1000 cell for the endogenous variable and 300 

for the instrument.   

TABLE 3.9 - SSIV BIAS W.R.T. CHANGE IN IMMIGRATION SHOCK’S INTENSITY ( 0.05) 
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A raise in immigration shock intensity, up to 2.5% increase in total population per year, causes 

the optimal cell size to drop down to 50 cells for both variables. This scenario brings the best 

results so far in terms of reduction in attenuation bias.  

TABLE 3.10 - SSIV BIAS W.R.T. CHANGE IN IMMIGRATION SHOCK’S INTENSITY (2.5) 

 

Table 3.11 shows the fitted values for non-linear regression on the SSIV models regarding the 

change in immigration shock. The change on average with respect to the baseline simulation is 

of an increase of 1214% of the bias, in the case of the weaker shock, and a reduction up to 97% 

of the bias when the more intense shock occurs.  

 

TABLE 3.11 – SSIV BIAS VS CELL SIZE BY CHANGE IN IMMIGRATION SHOCK’S INTENSITY  

 NON-LINEAR REGRESSION MODEL - FITTED VALUES 
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3.3.1 SSIV First stage quality 

The modification regarding shock’s intensity has been used as a test to track the behaviour of 

the first stage in the SSIV model. The literature regarding instrumental variable is often focused 

on the quality of the first stage, especially on the explanatory power that comes from choosing 

a good instrument (Bound J. et al., 1995). Even if the SSIV builds the instrument using a 

different approach, as shown in section 1.2.2, it is still worth to examine the relationship 

between the first stage estimate and the resulting bias in the coefficient for the second stage.  

 

TABLE 3.12 – SSIV – FIRST STAGE ESTIMATES BY SHOCK’S INTENSITY 

 

Table 3.12 reports the coefficients for the first stage. As expected the first stage estimates 

approach one as the sampling rate for the instrument increases. Another expected consequence 

of this is the reduction of the bias in the second stage. 
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3.4 Panel data length  

TABLE 3.13 – FE BIAS BY PANEL DATA LENGTH 

 

 

The last population modification examined regards the change in panel’s data length. Table 

3.13 reports the bias of FE coefficients by level of panel data length. The lower level and the 

baseline offer almost the same level of unbiasedness for 5000 observations, within a close 2 

percentage point margin. The resulting average improvement (refer to appendix [table] for non-

linear regression estimates) is of a 28% reduction in bias with respect to the baseline population. 

In this case however the 28% value is not a good indication due to the fact that both level have 

similar estimates. As shown in graph 3.5 the confidence intervals do overlap for several 

intervals in the range considered. 

The estimates appear less biased for the lower level of panel length due to the results of cell 10, 

50 and 100. In graph 3.4 it is shown how the line are overlapping for the lower cells, as a 

consequence the area below the graph for low and baseline level is approximately the same. 

The notable result, however, if found when raising the panel data length up to 8. The optimal 

cell size for the FE model is already obtained around 500 cells. The resulting overall 

improvement with respect to the baseline population is of 63%. The lower ranges of the 

simulation still have high level of bias. 
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GRAPH 3.4 – FE BIAS BY PANEL DATA LENGTH  

 

 

GRAPH 3.5 - FE ESTIMATES BY PANEL DATA LENGTH WITH CONFIDENCE INTERVALS 
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The SSIV results show less similarities with the FE ones in this case. When reducing the panel 

length data down to 2 the estimates are more biased: the optimal cell size is located at 500 cells 

for the endogenous variable and 1000 cells for the instrument. The 100 range, in the first row 

and first column, appears to be biased even for higher values of the instrument as in 100/3000.  

With respect to the baseline SSIV, in the cell ranges considered, there’s an increase in bias of 

564% on average. 

 

TABLE 3.14 – SSIV BIAS BY PANEL DATA LENGTH (T = 2) 

 

 

Raising the panel data length up to 8 lowers the bias almost to zero as shown in table 3.15. The 

decrease in bias is almost of 100% with respect to the baseline model. This result is the best 

scenario possible for a SSIV model. 

TABLE 3.15 – SSIV BIAS BY PANEL DATA LENGTH (T = 2) 
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CHAPTER 4 – Pooled OLS 

4.1 Model outline 

The last part will analyse how the conclusion reached so far for SSIV and FE can be applied to 

other models such as pooled ordinary least square (henceforth: POLS).  

To test the behaviour of the attenuation bias, and its effect on a POLS model, the fixed effects 

have been removed from equation 1.4. The POLS model is then computed to estimate the 

coefficient of the baseline population from equation 1.1. 

The same model is then used again on the population from 1.1 when the fixed effects for the 

population are removed  

 

TABLE 4.1 – POLS ON POPULATION WITH FIXED EFFECTS 

 

As described in table 4.1 the POLS is extremely biased whenever the population contains fixed 

effects as in the original baseline model. The numbers of observed cell by region have been 

changed a little to cover a wider range. An interesting consideration can be made by checking 

the fitted model of the regressor on the bias: the usual inverse exponential function has an 

extremely high sum of residual squares and as a result doesn’t fit the data quite as well.  
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TABLE 4.2 – POLS ON POPULATION WITHOUT FIXED EFFECTS 

 

 

Table 4.2 presents the result whenever we remove fixed effects in the population. As a 

consequence, the POLS is less biased than in table 4.1 and the results are a better fit for the 

usual function that correlates bias and number of cells.   

 

4.1 POLS comparison 

GRAPH 4.1 – POLS COMPARISON (WITH AND WITHOUT POPULATION FIXED EFFECT) 

 

 

Graph 4.1 presents the bias in percentage points versus the cell size of for baseline FE model, 

and the POLS model from tables 4.1 and 4.2. 

POLS model, even in presence of time invariant effects in the population, has a performance 

similar to that of FE. It is to be noted that POLS remains however more biased than FE. On a 

side note, POLS model, by averaging out all the observation across times, often fail to predict 
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the actual effect of a regressor for a single time unit, but since the bias on migration can only 

be positive there is much less room for error. 

 

TABLE 4.4 – POLS COMPARISON (WITH AND WITHOUT POPULATION FIXED EFFECT) 

 

 

Table 4.4 quantifies the bias per cell size and also identifies the optimal cell size for each model. 

The green area shows how the POLS without fixed effect in the population is much less biased, 

and the optimal cell size per region is 300. Meanwhile, for the POLS with fixed effect on the 

population model the optimal cell size rises up to at least 5000 per region. The performance is 

however close to the FE model. The improvement obtained by removing the fixed effect in the 

population and then computing the POLS is of a 350% reduction in bias w.r.t. the bias in POLS 

with FE, namely the POLS with no FE performs 4,5 times better due to the lack of bias from 

fixed effects in the population.      

  



55 

 

  



56 

 

 

 

CONCLUSIONS 

A solution to the estimation of the attenuation bias, as it has been presented in chapter one, has 

been elaborated by using the theoretical framework that identifies the characteristics of the bias 

itself in FE models. 

Exploiting those characteristics, summed up in equation 1.15, the MCS simulation framework 

has been used to define and explore the relationship between attenuation bias and cell size in 

FE models. The SSIV application of the model has been considered as well. 

The population model used as a reference for the simulation examines the effect of regional 

migration on crime rate. Since the final objective is to determine the optimal cell size for each 

FE model, any pair of regressor and regressand pair is viable, as long as the theoretical 

framework can be applied to the regressor.  

The baseline population model simulated a population of ten million individuals with 

characteristics of immigration comparable to those of western Europe in terms of average initial 

proportion of migrants and yearly immigration shock equal to a 1% increase in total population. 

The optimal cell size to achieve a 90% reduction in attenuation bias for such a population is of 

5000 observations per region if a FE model is used. 

A SSIV model only requires 300 observations per region for the second stage regressor and 100 

observations per region for the instrument. 

Alteration of the baseline population parameter have been considered to study how the bias 

behaves whenever there’s change in the regressor’s information happens. 

A raise in the initial proportion of migrants from 0.1 to 0.3 percent of total population causes 

in the optimal cell size to 3000 observations per region for FE models, and 300 and 50 for 

SSIV’s second stage regressor and instrument. A reduction down to 0.05 for the initial 

proportion of immigrants in the population will lead to an increase in the optimal cell size to 

6650 observations per region for FE models, and 500 and 300 for SSIV’s second stage regressor 

and instrument. 

An increase in yearly intensity of migration’s shocks, up to a 2.5% yearly increase in total 

population, will cause the optimal cell size per region to be reduced down to a 1000 for FE 

models and 50 for both SSIV’s second stage regressor and instrument. A decrease in the same 

parameter, down to 0.5% will lead to an increase for the optimal regional cell size up to 15000 

for FE and 1000 and 300 for SSIV’s second stage regressor and instrument. 
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The last test conducted on the length of the panel data shows how an increase in the unit of time 

observed up to 8 will lead to a decrease in terms of optimal cell size down to 500 cells per 

region for FE and 50 for both SSIV’s second stage regressor and instrument. A decrease in the 

same parameter will lead to an increase in optimal regional cell size up to 5000 for FE and 300 

for both SSIV’s second stage regressor and instrument. 

The simulation has been repeated for a POLS model using two different populations: one with 

time invariant characteristics and one without. The POLS estimates resulted less susceptible to 

attenuation bias than FE, and its estimate are more reliable if there are no time invariant 

characteristics in the population. That results renders the optimal cell sizes, for the reduction of 

attenuation bias, found for FE viable for POLS as well, if there are no fixed effect to account 

for in a population model.  

The tests show how the information, added to the regressor by the shock’s intensity over time, 

is stronger than the information added by the initial proportion of migrants. That might be 

explained by the dynamic nature of the shock, which adds information during each time unit 

rather than providing it at the beginning of the observed period. The conclusion seems to be 

consistent with the increase in panel data length, which by providing more comparisons over 

time for the “within estimator” to be computed, adds enough information to the regressor to 

reduce the attenuation bias down to a negligible size 
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DATA SPEC – TECHNICAL SHEET 

Simulation Stats 
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Model and Population list of parameters mods 

1. Population model ( “Mcrime” Line 142) - 2x Variance in random increase in population model 

2. Population model ( “Mcrime” Line 249 & 254) - Pdf of probcrimevictim variable switched from 

uniform to lognormal  

3. Population model ( “Mcrime” Line 142) -  0.5x Variance in random increase in population model 

4. Population, IV and FE model (“Mcrime” Line 45, “FE” Line 32, “IV” Line 31) – Year count Y 

raised from 4 to 8 

5. Population, IV and FE model (“Mcrime” Line 45, “FE” Line 32, “IV” Line 31) – Year count Y 

reduced from 4 to 2 

6. IV Model ( “IV” from Line 56 to 89) Change in ESS Sampling rate from [0.1; 0.3; 0.5; 1] to [0.05; 

0.20; 0.40; 0.80] 

7. IV Model ( “IV” from Line 56 to 89) Change in ESS Sampling rate from [0.1; 0.3; 0.5; 1] to 

[0.001; 0.01; 0.03; 0.07] 

8. IV Model ( “IV” from Line 56 to 89) Change in ESS Sampling rate from [0.1; 0.3; 0.5; 1] to [0.15; 

0.25; 0.35; 0.45] 

9. IV Model ( “IV” from Line 149 to 191) Swapping instrumented and instrumental variable for each 

ESS sampling rate 

10. Population Model (“Mcrime” from Line 232 ) Removing time effects by setting them from 0.01 to 

0.00 

11. IV Model ( “IV” from Line 56 to 89)- 2xVar Pop - Change in ESS Sampling rate from [0.1; 0.3; 

0.5; 1] to [0.05; 0.1; 0.3; 0.5] 

12. IV Model ( “IV” from Line 56 to 89)- 2xVar Pop - Change in ESS Sampling rate from [0.1; 0.3; 

0.5; 1] to [1; 3; 5; 10] 

13. Population model ( “Mcrime” Line 142) - 4x Variance in random increase in population model 

14. 1x Var - ESS(end) SR [0.05;0.1;0.3;0.5] 100 Reps 

15. 1x Var - ESS (end) SR [1;3;5;10] 100 Reps 

16. 1x Var - ESS(Instr. swap) SR [0.05;0.1;0.3;0.5] 100 Reps 

17. 1x Var - ESS(Instr. swap) SR [1;3;5;10] 100 Reps 

18. Change in prop. of immigrants (0.30) – Pop Model Line 52 

19. Change in prop. of immigrants (0.50) – Pop Model Line 52 

20. Population, IV model (“Mcrime” Line 45, “IV” Line 31) – Year count Y = 1 

21. Population 2xVar, IV model  (“Mcrime” Line 45, “IV” Line 31) – Year count Y = 1  

22. Population reduction – ( down to 1 000 000)  - Pop Model Line 57 

23. Region reduction – ( down to 50)  - Pop Model Line 41 

24. POLS – Var pop 1x (50) – FE included (0.01), mu (0.01) ***mu = regional FE 

25. POLS – Var pop 0.02x (1) – FE excluded (0.00), mu (0.01) 

26. POLS - Var pop 1x (50) – FE excluded (0.00), mu (0.01) 

27. POLS – Var pop 1x (50) – FE included (0.01), mu (0.01) 

28. POLS – Var pop 1x (50)  - FE excluded (0.00), mu (0.00) 

29. POLS – Var pop 1x (50)- FE included (0.1), mu (0.1) 

30. Pop reduction – (down to 500 000) – SR [0.3 – 0.5 – 1 – 3 – 5 -10 – 20 ] 

31. Pop reduction – (down to 100 000) -  SR [0.3 – 0.5 – 1 – 3 – 5 -10 – 20 ] 
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Baseline Population – 100 Reps 
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 Immigration Shocks on population  
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NB: 2xVar = 2.5% yearly increase. 0.5xVar = 0.5% yearly increase. 4xVar = 27% yearly 

increase 

 

Alternative error component for the population model 
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Panel data length tables 

NB: Value for years are doubled 
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ESS Sampling rate – Baseline   

NB: ESS = second stage regressor’s sampling rate  
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Instrument and instrumented variable swap  
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Alternative Population – Raise in shock’s intensity by ESS Sampling rate –    
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Alternate Population - Raise in Initial proportion of immigrants 

 



80 

 

 

  



81 

 

Population size 

 

 

 

 

 

 

Immigration Shock graphs 

TABLE A1: ESTIMATION VS SAMPLING RATE BY IMMIGRATION SHOCK’S INTENSITY 
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TABLE A2: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES – 

GROUP 1 

 

 

 

TABLE A3: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES 

– GROUP 2 
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TABLE A4: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES 

– GROUP 3 

 

TABLE A5: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES 

– GROUP 4 
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TABLE A5B: SSIV ESTIMATION VS SAMPLING RATE BY CELL SIZE – GROUP 5 

 

Alternative error terms for population graphs 

 TABLE A6: FE COEFFICIENT BY REGRESSAND’S ERROR PROBABILITY DISTRIBUTION FUNCTION 
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TABLE A7: FSIV COEFFICIENT BY REGRESSAND’S ERROR PROBABILITY DISTRIBUTION FUNCTION 

 

 

Panel data length graphs 

TABLE A8: FE COEFFICIENT BY PANEL DATA LENGTH. Y = 2 YEAR 
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Population size graphs 

TABLE A9: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE 

 

 

TABLE A10: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE 

 

TABLE A11: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE – GROUP 

1 
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TABLE A12: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE – GROUP 

2 

 

 

TABLE A13: FIRST STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE  
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