
UNIVERSITÀ DEGLI STUDI DI
PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Dipartimento di Matematica “Tullio Levi-Civita“

Master Degree in Physics of Data

Final Dissertation

Computer Vision models for Multi-Object

visual tracking: evaluations and real-world

applications.

Thesis supervisor Candidate Name

Prof. Lamberto Ballan Andrea Nicolai

Mat. 1233407

Academic Year 2021/2022

Abstract

Within the Artificial Intelligence framework, the Multi-Object Tracking

problem lies with detecting targets from videos and reconstructing their

trajectories in space, and it is commonly exploited for surveillance tasks.

To provide a common and accepted benchmark for algorithms proposed by

the research community, MOTChallenge was proposed [1]. In this work,

after a formalization of the main concepts underlying the MOT problem,

namely how to properly define the problem and what metrics are involved,

we study and select two of the State-Of-The-Art trackers according to such

a benchmark: ByteTrack [2] and FairMOT [3]. Then, we modify ByteTrack

to account for visual cues, in a fashion similar to FairMOT, training it

on the annotated MOT17 dataset. Finally, with the network trained for

the MOT20 competition [4], we perform the tracking of players during a

football match, using as input the video recorded by a static camera placed

in the center of the field [5]. The authors also provided players’ data coming

from XYZ sensors worn by the home team. An algorithm is implemented to

preprocess the video, correct the radial distortion, and project the tracklets

from the image into pitch coordinates, finally assigning the detected players

and their tracklets to the trajectories made available by the sensor. While

the use of the re-identification feature does not seem to improve the tracker

performance, our algorithm is found to be able to assign a tracklet, on

average, to the ∼ 60% of the trajectory of sensors.

ii

iii

A mia mamma Denise,

che c’è sempre stata e sempre ci sarà.

A Marnie,

che mi ha accompagnato durante questo percorso.

A tutti quelli che credono in me e mi hanno dato fiducia.

A tutti quelli che mi vogliono bene.

iv

Contents

Introduction 1

The Multiple-Object Tracking problematic 5

1.1 Formalization of the problem . 5

1.1.1 Object detection . 7

1.1.2 Object tracking . 8

1.2 Model performance metrics . 10

1.2.1 CLEAR MOT . 12

1.2.2 IDF1 . 13

1.2.3 Mostly Tracked, Partially Tracked, Mostly Lost 14

1.3 Physics-based applications . 14

1.3.1 Social Force models . 15

Methodology: detectors, benchmarks and MOT algorithms 21

2.1 Detectors . 21

2.1.1 YOLO detectors family . 23

2.2 YOLOX . 24

2.3 The MOT challenges . 27

2.4 ByteTrack . 30

2.5 FairMOT . 33

Experiments: MOT in sport analytics 37

3.1 Dataset description . 37

3.1.1 Sensor data . 38

3.1.2 Video data . 40

3.2 Preprocessing . 41

3.3 The assignation algorithm . 55

3.4 ByteTrack with re-identification head . 60

3.5 Programming tools . 61

Results and Discussion 63

v

vi CONTENTS

4.1 ByteTrack with re-identification head . 63

4.2 Tracking and assignation algorithm . 66

Conclusions and Future Work 77

Introduction

Artificial intelligence has started to play a prominent role in the whole society,

helping industries develop their business, researchers to make new discoveries, and

administrations to better understand people’s needs, thus building smarter and safer

cities. In particular, Multi-Object tracking was mainly designed and developed to

address surveillance problems. However, MOT algorithms have also found application

in many other fields, such as biology [6], self-driving vehicles [7], and sport analytics

[8]. To help the research community by providing a fair performance evaluation and

a common benchmark of the proposed algorithms, MOTChallenge [1] was created,

together with some public datasets on which algorithms can be trained. Especially with

referral to sport analytics [8], broadcast videos, data obtained from wearable sensors,

and statistics provided by official associations have been fused to provide a deeper and

better quality inspection of athlete performance, giving advantage to teams that exploit

these techniques on those who do not. However, obtaining an insightful evaluation of

any event, whether it is a match, the performance of a player, or assessing technical and

physical skills of a player, requires a lot of data, and consequently a conspicuous budget

in terms of money and human resources and eventually large hardware capabilities.

However, it is technically possible to perform such an analysis using Artificial In-

telligence methods, thus decreasing the amount of resources needed. In fact, using a

really low budget, consisting of a fixed camera mounted on a pole recording the match,

one might be able to extract the statistics of the game or the training depending on the

application, reconstructing the trajectory of players throughout time. This is actually

different from other approaches that rely on broadcast images: as they are not readily

available for non-professional teams with limited budget.

Therefore, the goal of this work is to provide an easy but correct pipeline to address

such a problem, fusing available data from multiple sources and handling eventual

problems that one can encounter in a rigorous approach. As a first step, we proceed

to properly define and formalize the MOT problem [9], what are the observables, and

how and from what perspectives it can be solved. Later, we will introduce the common

metrics accepted and used by the research community [10] to provide an evaluation of

1

2 INTRODUCTION

MOT algorithms. We mention as examples: CLEARMOT (MOTA, MOTP), IDF1,

and the most basic one, which is the Jaccard Index [11], which takes the form of the

Intersection over Union when dealing with spatial region information. Afterwards,

some applications related to physics science are described: in particular, we mention

how people’s behavior can be modeled through a formalism that belongs to physics [12].

In such a perspective, the exploitation of visual data coming from surveillance cameras

in public places, and the following reconstruction of trajectories, can be a huge source

of data to assess the quality of such models.

Subsequently, we discuss the one-stage detector architecture, whose task is to detect

and locate objects represented in an image. After a brief overview of them and a short

presentation about the YOLO family [13], focusing in particular on the functioning

of the latest implementation YOLOX [14], we present the dataset we used to train

our network: MOT17 [15]. Then, our focus moves mainly on two different tracking

algorithms, namely ByteTrack [2] and FairMOT [3]. These two algorithms have been

chosen due to their different approaches to solving the MOT problem, moreover, the

first ranks first in MOT17 and MOT20 competitions. Then, since ByteTrack, which

performs the best, does not handle any visual information, we try to add it a head with

reidentification tasks, in such a way that also visual cues would be exploited, and we

compare two different ways to train our “hybrid” network.

Finally, with the original ByteTrack network trained for the MOT20 competition,

we start tracking players during a football match, whose videos are publicly available

together with data from a XY Z sensor [5]. With the aim of exploiting all the infor-

mation we have, we fuse the position information in pitch coordinates with the one

obtained by the tracking algorithm. The main difficulty relies on the fact that after

a player has been detected and located, its image coordinates need to be transformed

to the physical world ones. However, this can occur only after the image has been

pre-processed and the radial distortion has been corrected. Moreover, the data coming

from the sensor might need some manipulation in terms of handling timestamps and

filtering out players outside of the visibility of the camera, which obviously cannot be

detected. The last step taken consists of resampling the timestamps associated with the

video in such a way to be comparable with the sensor data, and, through the Kendall

τ correlation [16], determining whether a quantity is delayed in time with respect to

the other and, eventually, reshifting it. In addition, we check whether the use of dif-

ferent image resolution might have an impact on detector performance: we try to use

two videos at different resolutions as inputs, and see whether the count of correct and

incorrect detections change.

In the end, having reconstructed the players’ tracklets on the pitch, we implement

a simple algorithm through which one can assign them to sensor trajectories, providing

INTRODUCTION 3

a score of how long players are successfully tracked.

Thesis Organization

This thesis is divided into 5 chapters. In the first one, we provide a general overview

of what an MOT problem is and different techniques and how and what data are ma-

nipulated to solve it. We discuss the metrics according to which a tracking algorithm

is better than another, finally mentioning some physics application linked to track-

ers. In the second chapter, we discuss the tools we use, namely one-stage detectors,

especially focusing on YOLOX. Then, we introduce the MOT datasets and explain

what the core concepts of the tracking algorithms considered the State-Of-The-Art in

Multiple-Object Tracking: ByteTrack and Fairmot. In the third chapter, we focus on

the application to a more challenging problem, introducing our dataset, in particular

the video and sensor specifications. We proceed to present the whole preprocessing

made and the algorithm for assigning tracklets obtained thanks to bounding boxes to

those of the sensor. Furthermore, we explain how a head with reidentification task

is added to ByteTrack and trained, in a fashion similar to that of FairMOT. In the

fourth chapter, we compare the results between our “hybrid” model with two different

losses on MOT17 dataset, we understand whether different video resolutions have an

impact on detection performance and speed inference, and we discuss the results of our

assignation algorithms. In the fifth chapter, we conclude by discussing what could have

been done better and what could be future outcomes of this work.

4

The Multiple-Object Tracking

problematic

Among the many Artificial Intelligence challenges in Computer Vision, Multi-

Object Tracking (abbr. MOT), sometimes known as Multi-Target Tracking (abbr.

MTT), is one of the most challenging. However, if it is resolved, it can yield extremely

helpful information. In fact, the tracker output allows researchers to model behaviors

and interactions between the targets under investigation. In this context, MOT algo-

rithms have been used to successfully track pedestrians [2], animals [17], vehicles [7],

or even cells at microscopic scales [6]. However, the most well-studied targets of MOT

are pedestrians [9], especially with referrals to video surveillance tasks or scene under-

standing. Alternatively, this framework can find applications in other fields that are

more of our interest, such as sports analysis of television broadcast images [18] [19].

Let us now formalize the MOT problem following the framework used by Luo et

al. [9], and how it can be solved using different approaches. Then, we will introduce the

metrics used to provide an evaluation of these algorithms [20] [10] [21], concluding by

discussing how physics can successfully model pedestrian behavior via the social force

model [12] [22].

1.1 Formalization of the problem

In this section, we will provide a formal description of such a problem, according to

the efforts made by W. Luo et al. [9] in deriving a unified formulation from previously

existing works [23]. Due to the enormous quantities of different approaches available,

we will delve into those of interest to us while referring to the literature of interest to

others.

MOT can be regarded as a multivariable estimation problem. Given a subsequent

series of frames (e.g., a video), the aim is to estimate the state of the i-th object in

the t-th frame. We refer to this quantity as sit. By generalization, the state of all the

Mt objects at time t is: St = (s1t , s
2
t , ..., s

Mt
t). For the i-th object appearing for the

5

6 1. The Multiple-Object Tracking problematic

first time in frame is, and whose last appearance is in frame ie, its sequential state is

denoted as: sis:ie = (sis , sis+1 , ..., sie). Consequently:

S1:t = {S1,S2, ...,St} (1.1)

is the set of all sequential states of all objects starting from the first frame, whose index

is 1, through the t-th frame.

According to the paradigm of Detection-Based-Tracking (DBT) [9], which is the

most widely used and the one used in our work, the vector of Mt observations (i.e.,

detected objects) at t-th time is Ot = (o1t ,o
2
t , ...,o

Mt
t), where oit denotes the detection

of the i-th single object at time t. Similarly to before, the set of all sequential detections

of all objects starting from time t = 1 throughout time t is:

O1:t = {O1,O2, ...,Ot} (1.2)

The final goal is therefore to compute the optimal sequential states for all objects,

usually modeled by performing the Maximum a posterior (MAP) •̂ estimation from

the conditional distribution of the states given the set of observations made:

Ŝ1:t = arg max
S1:t

P (S1:t|O1:t) (1.3)

One usually exploits probabilistic inference perspective, namely, according to the

following steps:

• Predict:

P (St|O1:t−1) =

∫
P (St|St−1)P (St−1|O1:t−1)dSt−1 (1.4)

• Update:

P (St|O1:t) ∝ P (Ot|St)P (St|O1:t−1) (1.5)

where one can distinguish between Dynamic Model P (St|St−1) and Observation

Model P (Ot|St). On the contrary, one can exploit deterministic algorithms (e.g.,

Hungarian Algorithm [24] [25]) to solve such a problem to directly maximize the like-

lihood function L(O1:t|S1:t) over the observation set {Ôn
1:n}:

Ŝ1:t = arg max
S1:t

P (S1:t|O1:t) = arg max
S1:t

L(O1:t|S1:t) = arg max
S1:t

∏
n

P (Ôn
1:t|S1:t) (1.6)

The main difference between the two approaches is based on the results that can be

obtained, which are deterministic or stochastic. Using stochastic methods, the output

of the tracker is not unique, given the same output. As an example of a stochastic

method, we can mention particle filters [26], where, depending on the randomness of

1.1 Formalization of the problem 7

the way the particles are generated, the results can vary. In contrast, when the output

is constant and the algorithm is run several times, we refer to it as deterministic.

Usually, data association takes advantage of deterministic optimization methods, such

as the aforementioned Hungarian algorithm, as we will do throughout this work.

In the DBT paradigm, objects are first detected and then linked to trajectories.

Let us now discuss how the detection is performed, and different approaches used in

the last years.

1.1.1 Object detection

The first step for MOT algorithms is the actual detection of objects. Multiple

approaches to the problem are possible, and a broad classification of these is:

• Appearance based: makes use of image-processing techniques to directly rec-

ognize objects from videos. However, a possible complication arises when objects

are occluded, that is, not being visible.

• Motion based: sequences of images are used for object recognition, without any

cues or feature embedding. However, this approach may fail in detecting objects

in complex scenarios, such as noisy backgrounds or crowded scenes.

• Deep Learning based: either one or both previous approaches can be com-

bined in different ways. Such methods have been adopted by State-Of-The-Art

algorithms in recent years, thanks to the advancements in terms of computational

power and because they are found to perform the best [27].

Furthermore, tracking devices can be classified according to their initialization,

which depends mainly on how and whether detection is made. Detection-based track-

ers accept as input a sequence of frames, thus performing the detection and building of

some object hypotheses. An alternative to this approach is the so-called Detection-

free tracking: the number of objects to be tracked, and their locations, is fixed and

manually set at the first frame. Therefore, the algorithm will follow them in subse-

quent frames. However, this approach is used more rarely, as it is unable to track new

incoming objects and cannot terminate out-of-field trajectories. For these reasons, we

will adhere to the DBT paradigm. In this approach, tracking itself occurs by linking

the detection hypotheses into trajectories. However, it should be noted that the object

detector, although it may rely on a common architecture, must be trained in advance

to deal with specific targets. In other words, it is highly domain-specific (e.g., pedes-

trians, vehicles). In addition, the final performance is largely affected by the goodness

of the detector employed: clearly, if an object is not detected, it cannot be related to

any trajectory.

Depending on whether future observations are used, one can distinguish between

8 1. The Multiple-Object Tracking problematic

online and offline trackers. Online trackers are also known as casual trackers, since

they use only of past frames to predict the future state. On the contrary, Offline track-

ers can use both past and future information, pursuing global optimization throughout

the sequence. Finally, depending on the throughput of the tracker, that is, how many

frames per seconds can be handled, online trackers can be used for real-time tasks

creating trajectories on the fly.

1.1.2 Object tracking

As already stated, a MOT focuses on the detection of multiple objects in indi-

vidual frames, which means recovering identity information over time, that is, finding

trajectories. However, attention should be paid both to how to compute the similar-

ity between distinct objects and to how to assign a unique id to every instance of such

objects across frames.

Appearance Modeling

Computing the affinity between several objects might take advantage of build-

ing an appearance model. However, the task is different from Single Object Trackers

(SOT): there, a unique object needs to be clearly distinguished (i.e. detected) from

the background and consequently tracked. [28] However, in MOT, several objects that

share common visual features might appear; therefore, one would not consider appear-

ance modeling as a core component in MOT. Formally, one would like to compute the

similarity Sij between two different observations i,j:

Sij = F (oi,oj) (1.7)

where oi, oj are visual representations of different observations, while F (·, ·) is a

function that measures their similarity.

Visual representations can be grouped into local or region features. As the name

would suggest, local features refer to some peculiar croppings or segmentations of the

image that would help to recognize and subsequently track different objects. Despite

the fact that their employment may turn out to be efficient, their presence is strongly

affected by eventual occlusions. On the contrary, the region features exploit information

from a wider range, which might even be the whole picture or the bounding box that

contains an object. It can take the form of a color histogram, in the case of a direct

comparison between two pixel regions, or eventually a more elaborated analysis like the

gradient-based representation (Histogram Oriented Gradients HOG [29]) or, even more

complex, pursue a covariance matrix analysis. The former one is helpful for modeling

object shapes and can handle ”rigid” transformations, defecting, however, when the

pose changes or the object becomes occluded. In contrast, covariance matrix analysis

1.1 Formalization of the problem 9

might overcome these problems at a higher computational cost.

After having extracted the visual representations modeled above, one has to com-

pute some measure of similarity between them. Here, it is possible to either exploit

single information or alternatively fuse multiple cues by using multiple strategies (e.g.,

concatenation, summation, boosting). However, exploiting single cues, there are sev-

eral approaches to compute similarities, which could also depend on the domain. When

dealing with color histograms, it is common to exploit their Bhattacharyya distance [30]

B(·, ·), which becomes a similarity measure of the kind S(Ti,Tj) = e−B(Ti,Tj).

Another easy and eventually more natural measure to compute the similarity be-

tween two vectors of an inner product space is the cosine similarity [31]. Roughly, it

determines whether two vectors are pointing in the same direction, by measuring the

cosine of the angle between them. Due to its simplicity to calculate, being a simple

scalar product, it is widely used in Natural Language Processing and Computer Vision.

Motion Modeling

Objects can be identified across several frames by computing the similarity in-

troduced before. However, only relying on their appearance might lead to poor per-

formance for a MOT algorithm: similar-looking objects might be confused one with

another. Indeed, one shall also be able to model the dynamic behavior of objects,

providing an estimate of their future positions throughout sequential frames, thereby

reducing the search space.

A common assumption, which suffices in most cases, is the linear motion model

where the velocity is assumed to be constant (see Fig. 1.1a). There are several ways

to achieve it: however, we will mention the exploited in the tracking algorithm we are

going to use [2], which makes means of the so-called Kalman Filters [32] [33]. The

assumption of position smoothness places a direct constraint on the observed and

estimated positions: smoothness, in this case, can be modeled by fitting the estimated

position using a Gaussian distribution, having as mean the observed position p. Let

us assume that we have a set of trajectories and a time interval ∆t, and focus on a

couple of them at different time instants, namely the tail of Ti and the head of Tj .

To assess the probability of them belonging to a unique trajectory, we compute the

similarity assuming the linear motion model, that is, only considering the linear term

which is proportional to velocity:

Pm(Ti,Tj) = N

ptail
i + vF

i ∆t , phead
j ,

B∑
j

 ∗N

(
phead
j + vB

j ∆t , ptail
i ,

F∑
i

)
(1.8)

where p denotes the position, and vB, vF , respectively, the backward and forward

10 1. The Multiple-Object Tracking problematic

velocities. In other words: the displacement ∆p is fitted to a Gaussian distribution with

zero mean. However, in case such a distribution did not represent these displacements

properly, one would drop the constraint on the distribution to be Gaussian and use the

so-called Unscented Kalman filters [34].

(a) Linear motion model assumption.

(b) Non linear motion model assump-
tion, if the linear one were used, then
the motion would not be predicted
correctly.

Figure 1.1: Images taken from [9]

The natural extension to linear models is to consider also acceleration, that is, also

the non-linear terms in the Taylor expansion for the position p (see Fig. 1.1b). For a

small ∆t we have that:

p(t+∆t) ≈ p+ v∆t+
1

2
a(∆t)2 + . . . (1.9)

Such an expansion would replace the linear terms like p + v∆t in the equation (1.8),

leading to a non-linear model. This is the idea underlying the so-called Extended

Kalman filters [35].

1.2 Model performance metrics

We now want to introduce and discuss some of the metrics used to measure how

good a tracker is. To compute such values, one has to compare the output returned

by the detector being evaluated with the ground truth set provided. Clearly, the more

similar these results are, according to some metrics chosen, the better the detector

would perform. However, the choice of the metrics for such complex representations,

namely scoring the similarity between sets of trajectories, is a well-defined problem.

Having in mind the metrics properties and what they measure, we can determine

which detectors to be preferred over another for a particular aspect. Finally, the use of

a shared metrics allows communities to evaluate their tracking algorithms on common

ground.

Let us now introduce what is the Jaccard Index [11] and how it can be used to

measure the similarity of two generic sets, since it is fundamental to understand the

1.2 Model performance metrics 11

metrics we will discuss later. After having introduced it, we will present the three types

of metrics used and accepted by MOTChallenge [1], [15] [4].

Figure 1.2: The goodness of a detector is computed by comparing the Predicted
bounding box with the Ground-truth one. (image from [36])

Jaccard Index - IoU

Generally, the Jaccard index is the most simple measure to assess the similarity

between two generic sets. Formally, it is defined as:

Jaccard index =
|TP |

|TP |+ |FN |+ |FP |
(1.10)

where:

• TP (True Positives): the set of detections shared between the ground truth and

detection sets;

• FN (False Negatives): the set of objects which are present in the ground truth

set, but have not been detected;

• FP (False Positives): the set of objects which are not present in the ground truth

set, but are present in the detections;

For a visual representation of such a relation, one may want to look at Fig. 1.3a.

Especially in the Computer Vision domain and for detection tasks, we often refer

to the Jaccard Index index as Intersection over Union (IoU), when it denotes a

spatial overlap between regions, which can take, for example, the form of bounding

boxes (see Fig. 1.2) or masks. Therefore, a detection is considered as “missed” when

the overlapping area is less than a certain threshold. A common value for this threshold

is 0.5.

12 1. The Multiple-Object Tracking problematic

(a) Visual equation for the Jaccard Index (IOU).

(b) The closer the IoU to 1, namely the two areas
overlapping almost perfectly, the better the
detection.

Figure 1.3: Images taken and readapted from [36]

1.2.1 CLEAR MOT

Let us now provide an explanation of the CLEAR MOT [20] metrics for MOT

algorithms, which provide event-based (i.e., frame by frame) tracking assessment. They

consist basically of two different measures: Multi-Object Tracking Accuracy (MOTA)

and Multi-Object Tracking Precision (MOTP). As the name suggests, the former

measures how accurately an algorithm can track targets. A bijective mapping between

proposed and Ground Truth detections is performed for every frame: in the case of

matching, this would count as True Positive (TP). In contrast, any non-detected target

is counted as a False Negative (FN), while any detection without a corresponding

match is considered a False Positive (FP). As a common condition, if we define the

spatial overlap between the proposed bounding box and the Ground Truth one with S,

the matching would occur whenever this value exceeds a certain threshold α, that is,

S ≥ α.

A tracker, however, must also be evaluated with respect to the re-identification

task, that is, how well it can assign a unique id throughout a unique trajectory. The

quantity that measures this ability is the number of Identity Switches (IDSW). We

define that an IDSW has happened whenever a tracker wrongly swaps targets’ identities,

or whenever a lost (e.g., occluded) track for some time is reinitialised with a different id.

Using the above formalism: an Identity Switch is a True Positive which has a proposed

ID that is different from the proposed ID of the previous True Positive (i.e., that has

the same Ground Truth ID). IDSWs only measure association errors compared to the

single previous True Positive, whereas we do not consider errors when an ID Transfer

occurs, namely, when the same proposed ID swaps to a different Ground Truth ID.

1.2 Model performance metrics 13

Finally, we can show explicitly how to compute MOTA:

MOTA = 1− |FN |+ |FP |+ |IDSW |
|G.T. Detections|

(1.11)

Here, we can note that it is simply the sum of detection errors (FNs and FPs) and

the number of association errors (IDSW). Note that MOTA ∈ [0, 1]: the closer to 1,

the better the MOT algorithm. Finally, MOTA is structured similarly to the Jaccard

Index. 1.10.

Let us now introduce the other metric, which explicitly measures the so-called

localisation error. Recalling the spatial overlap S, the Multi-Object Tracking Precision

(MOTP) is:

MOTP =
1

|TP |
∑
TP

S (1.12)

That can be interpreted as the average similarity score on the set of True Positives.

Consequently, a precise tracker has MOTP close to 1, given that MOTP ∈ [0, 1]. These

metrics (1.11,1.12) can be defined either as we have shown here or, alternatively, in their

complement to 1. In such a case, the problem would become a minimization problem

with the ideal lower bound being 0. The main difference between MOTA and MOTP

is that MOTA refers to the accuracy of detection and measures how good the detector

and the assignemnt rule is, whereas MOTP measures its precision, that is, how much

the detection boxes overlap with the ground truth ones. Training might involve trying

to minimize both MOTA and MOTP simultaneously.

1.2.2 IDF1

Let us now introduce another metric used in the MOTChallenge. IDF1 [21] is

a bijective mapping at the level of trajectories, and not at the level of detections

as before. We define IDentity True Positives (IDTPs) as the number of matches on

the overlapping part (where S ≥ α) of trajectories matched together. In contrast, the

trajectories belonging to, respectively, the sets of ground truth and proposed routes

that have not been matched are named IDentity False Negatives (IDFNs) and IDentity

False Positives (IDFPs). Formally, we define the following scores:

ID-Recall =
|IDTP |

|IDTP |+ |IDFN |
(1.13)

ID-Precision =
|IDTP |

|IDTP |+ |IDFP |
(1.14)

IDF1 =
|IDTP |

|IDTP |+ 1/2|IDFN |+ 1/2|IDFP |
(1.15)

14 1. The Multiple-Object Tracking problematic

The matching of trajectories is usually performed with the Hungarian Algorithm and, if

correctly done, it concurs to maximize IDF1, that is, minimize the number of unmatched

trajectories coming from the Ground Truth (i.e., ideally tracking all the good ones), and

the Proposed Trajectories sets (i.e., we do not track more trajectories than the ones

effectively present). Note that these metrics only refer to correctly identify targets,

while localization (i.e., precision) is not involved.

1.2.3 Mostly Tracked, Partially Tracked, Mostly Lost

The last metric we discuss is used to quantify how much of a ground-truth trajectory

has been successfully tracked by the proposed tracking algorithm. This metric is not

usually employed for ranking algorithms in official competitions, but can still provide

a quick snapshot of how well a tracking system operates. By convention [37], we can

classify the tracked trajectory according to:

• MT (Mostly Tracked): the target has been tracked for at least 80% of its lifespan.

• PT (Partially Tracked): the target has been tracked between 20% and 80% of its

lifespan.

• ML (Mostly Lost): the target has been tracked less than 20% percent of its

lifespan.

1.3 Physics-based applications

Using the tracker output, one may be able to model the influence of an object on

other objects, that is, build a mutual motion model. It can be exploited, for example,

when visual information is too chaotic due to the large number of objects present in the

picture and some more abstract ”order” needs to be found. If the objects being tracked

are pedestrians, which are actually the most common targets for Multi-Object Trackers,

fluidodynamics formalism has been proved to be efficient. In fact, Henderson [38] had

success comparing equation Navier-Stokes with empirical observations of pedestrian

movements.

Being able to model the movement of the crowd, together with some hypotheses

on how people behave in emergencies and normal situations, allows architects to design

more efficient and safe escape paths in buildings. The first attempt to apply such

approaches to designing constructions dates back to 1979 [39]. Instead considering

vehicles trajectories, it is possible to build some traffic models [40], to design and build

roads that are better tailored to drivers’ needs, thus avoiding traffic jams, improving

traffic planning quality, and building smarter cities.

1.3 Physics-based applications 15

1.3.1 Social Force models

We now focus on one of these approaches, which formally describes pedestrian

motion flows in a simple way. In such models, whose name is social force models,

we consider each individual motion to be dependent on other individuals [12] plus

environmental factors. According to the behavior of other people, the pedestrian is

considered an agent that adjusts its velocity, acceleration, and path according to the

observation of other individuals: these are, in fact, observables we can extract from the

output of a tracker.

In other words, we assume that a pedestrian is subject to social forces, which

are not exerted directly by the environment and other pedestrians, but are a measure

of motivations and other internal mind processes that lead a person to move toward

a certain point [41]. They act as a response to certain environmental and sensorial

stimuli, leading to behavioral changes whose aim is to maximize some utility function.

We are going to discuss now normal situations, i.e., nonchaotic or emergential, since

reactions are well predictable and rather automatic, hence more easily predictable.

Recalling that from a tracker output one can retrieve an individual α trajectory

r⃗α(t) and velocity w⃗α(t) as a function of time, one can model pedestrian behavior

according to the equation of motion dw⃗α
dt . These “forces” that contribute to determining

the motion of a certain pedestrian α can be divided into different components.

First, an individual wants to reach its destination r⃗0α as comfortable as possible,

that is, taking the shortest path. This consists of passing through certain gates located

along the path that a pedestrian would cross if not disturbed. One of these paths

consists of a polygon whose edges are r⃗1α, r⃗
2
α...r⃗

n
α := r⃗0α. The desired direction e⃗α(t),

given the actual position at time t being r⃗α(t), will take the form:

e⃗α(t) :=
r⃗kα − r⃗α(t)

||r⃗kα − r⃗α(t)||
(1.16)

Therefore, the pedestrian will steer to the next nearest point after having passed

through a certain gate.

We assume, moreover, that there exists a certain desired velocity v0α that can be

subjected to deviation due to the necessary deceleration or acceleration processes to

avoid other people or a change in the state of the environment. We define the relaxation

time to reach such a velocity as τα. Finally, one can model this acceleration term as

follows:

F⃗ 0
α(v⃗α, v

0
αe⃗α) :=

1

τα
(v0αe⃗α − v⃗α) (1.17)

Second, clearly the motion of a pedestrian α is affected by other pedestrians, in

particular by the desired speed and the pedestrian density. Therefore, we introduce the

16 1. The Multiple-Object Tracking problematic

private sphere of an invidividual: if two individuals get closer than such a distance,

they feel uncomfortable. From a psychological approach, this can be interpreted as a

territorial effect. Such an effect can be modeled as a repulsive potential originating

from other pedestrians β:

f⃗αβ(r⃗αβ) := ∇r⃗αβ
Vαβ[b(r⃗αβ)] (1.18)

It is reasonable to assume that such a repulsive potential Vαβ(b) is a monotonic de-

creasing function of b, having equipotential lines of ellipsoidal shape, whose major axis

is parallel to the pedestrian’s direction of motion. In fact, a walker would need more

space along its desired direction. Let us define b the semi-minor axis of the ellipse

2b :=
√

(||r⃗αβ||+ ||r⃗αβ − vβ∆t e⃗β||)2 − (vβ∆t)2 (1.19)

where r⃗αβ := r⃗α − r⃗β. Moreover, we assume that a step taken by β: sβ = vβ∆t is of

the order of a step width.

It is observed that people tend to keep distance from borders of buildings, walls,

streets, sidewalks, etc. This effect of a generic border B can be modeled by a repulsive

effect that can be described by:

F⃗αB(r⃗αB) := −∆r⃗αB
UαB(||r⃗αB||) (1.20)

where r⃗αB, that is, the shortest distance between the pedestrian position and the closest

point of the border, and we introduce a repulsive and monotonically decreasing potential

UαB(||r⃗αB||).

As a third contribution, one may want to consider the effect of attractions made

by other people on a certain individual. These attractive effects f⃗αi at places r⃗i are

modeled by attractive, monotonically increasing potentials Wαi(||r⃗αi||, t) dependent on
time 1:

f⃗αi(||r⃗αi||, t) := −∆r⃗αi
Wαi(||r⃗αi||, t) (1.21)

We shall consider, in addition, that all the contributions introduced above hold only

for situations that are perceived by the pedestrian along its direction e⃗α(t) of motion:

in other words, all that occurs located behind it is assumed to have a weaker influence

quantified by a factor c ∈ [0, 1]. Hence, we introduce the effective angle of sight 2ϕ to

module direction-dependent weights:

w(e⃗, f⃗) :=

1 if e⃗ · f⃗ ≥ ||f⃗ ||cosϕ

c otherwise
(1.22)

1a possible source of interest can be, as an example, street musicians, whose interest eventually
vanishes over time

1.3 Physics-based applications 17

Taking into account such weights, the repulsive and attractive forces are given by:

F⃗αβ(e⃗α, r⃗α − r⃗β) := w(e⃗α,−f⃗αβ)f⃗αβ(r⃗α − r⃗β) (1.23)

F⃗αi(e⃗α, r⃗α − r⃗i, t) := w(e⃗α,−f⃗αi)f⃗αi(r⃗α − r⃗i, t) (1.24)

One can construct the equation for the total motivation of a pedestrian. Moreover,

all the forces we have discussed so far act on a certain individual α at the same time

instant t: it is reasonable to assume, then, that their total effect will be simply the sum

of all their effects:

F⃗α(t) := F⃗ 0
α(t)(v⃗α, v

0
αe⃗α)+

∑
β

F⃗αβ(e⃗α, r⃗α−r⃗β)+
∑
B

F⃗αB(r⃗α−r⃗αB)+
∑
i

F⃗αi(e⃗α, r⃗α−r⃗i, t)

(1.25)

So, the non-linearly coupled Langevin equations for the social force model are:

dw⃗α

dt
:= F⃗α(t) + fluctuations (1.26)

Where the fluctuation term is a stochastic term derived from ambiguous situations

leading to different behavioral alternatives, such as avoiding an obstacle either on the

left or on the right with no difference in the utility function. Alternatively, these

fluctuations might be accidental or deliberate deviations from the expected behavior in

a given situation.

Finally, to complete the model, we need to define a relation between the actual

velocity v⃗α(t) and the desired velocity w⃗α(t). We assume that there exists a maximal

acceptable speed vmax
α for every pedestrian α, therefore, the motion occurs as:

dr⃗α
dt

= v⃗α(t) := w⃗α(t)g

(
vmax
α

||w⃗α||

)
(1.27)

where:

g

(
vmax
α

||w⃗α||

)
:=

1 if ||w⃗α|| ≤ vmax
α

vmax
α /||w⃗α|| otherwise

(1.28)

Let us now briefly mention and discuss some interesting results of macroscopical

behaviors found by [12] who actually run the simulation. It is assumed that desired

speeds v0 are distributed as Gaussian (< v0 >= 1.34;σv0 = 0.26) [m/s], and the maxi-

mum speed is set to vmax
α = 1.3v0α. Repulsive potentials are assumed to be decreasing

exponentially:

Vαβ(b) = V 0
αβe

−b/σ U0
αβ(||rαB||) = U0

αBe
−||r⃗αB ||/R (1.29)

18 1. The Multiple-Object Tracking problematic

with V 0
αβ = 2.1m2/s−2, σ = 0.3 and U0

αB = 10m2s−2 and R = 0.2m. For simplicity,

attractive potentials were not considered. Finally, setting ∆t = 0.5, and the relaxation

time τα = 0.5s, while the field of view is 2ϕ = 200◦ and influence c = 0.5.

(a) After a certain density, one can ob-
serve the emergence of macroscopic
patterns, such as the formation of
lanes with people going towards the
same direction. (b) If a narrow path is present, once

a pedestrian has passed through, a
queue of people following it will form.

Figure 1.4: The radius of a circle is proportional to the pedestrian’s actual velocity,
and the color refers to what side is located the individual’s destination.
Images taken from [12].

One can observe from Fig. 1.4a, that people going towards the same direction

appear to organize in lanes having individuals sharing the same destinations: different

colors refer to different directions. On the other hand, if there is a narrow door and two

groups of people need to go through it (see Fig. 1.4b), when an individual has reached

the other side, the other pedestrians intending to move in the same direction will be

able to follow it. However, this flow may be stopped by the pressure of the incoming

and opposing groups after some time, and again, once an individual has passed through

the door, he will eventually be followed by others.

Headed Social Force Model

Another further improvement of such a model is the so-called Headed Social

Force Model [22]. In such a model, the force f⃗i acting on an individual i according

to the original Social Force Model is the contribution of two terms:

f⃗i = f⃗0
i + f⃗e

i (1.30)

Where the first model f⃗0
i describes long-term objectives, such as the reach of the de-

sired destination, while the second model takes into account temporal and short-term

corrections originated by the interactions between the individual and other people or

the individual and the environment. However, unlike the SFM, the motion is generated

by three main distinct terms. (see Fig. 1.5)

With reference to Figure 1.5, the first terms u⃗fi and u⃗0i are the ones driving the

1.3 Physics-based applications 19

Figure 1.5: Decomposition of forces for the Headed Social Force Model. (image
from [22])

translational dynamics, and essentially they are the projection of, respectively, f⃗0
i and

f⃗e
i along the direction of motion. Moreover, another term introduced is torque driving

rotational dynamics, proportional to the projection of the term f⃗0
i perpendicularly with

respect to the direction of motion. A final and additional term is introduced to ensure

group cohesion, which is present when some people are moving together.

This model can be used to simulate people’s behavior in different daily situations,

such as when the metro train doors open and individuals need to give pace to others

to get on or off the wagon. A similar result to the one shown in Fig. 1.4b is obtained.

Another possible scenario that one would like to simulate is the one depicted in Fig.

1.6: where we are interested in understanding how a group behaves during a visit to

the museum, depending on the presence of an attractive force between individuals of

the same group (i.e., friends visiting the same museum).

This result, practically, would help in designing museum spaces in such situations

where large gatherings of people have to be avoided, or in creating museums tailored

to visitors’ needs by achieving a realistic modeling of their behavior. The data used

can be taken from surveillance cameras, thus tracking individuals and creating their

trajectory. Another possible goal might be scene understanding, that is, figuring out

whether people are behaving ”normally” or if some emergency situation is happening.

20 1. The Multiple-Object Tracking problematic

(a) If a social attractive force is not considered,
the group will be more disperse.

(b) If a social attraction force is included, as if
one was visiting the museum with friends, the
group would be more cohesive.

Figure 1.6: Scenario of a journey at the museum: people need to reach and see
all the artworks that are located in different rooms, accessible through
narrow doors. Images taken from [22]

Methodology: detectors,

benchmarks and MOT algorithms

After we have introduced and discussed the MOT problem, and discussed several

ways to solve it, in this chapter, we will focus on the most common networks used

to perform detections, which is a fundamental step of the Detection-Based-Tracker

paradigm. We will present an overview of the functioning of a one-stage detector

prototype, namely the latest implementation of YOLOX [14] of the YOLO series [13]

[42] [43] [43] [44]. Then, we will discuss how and according to what benchmark platforms

different trackers can be compared [15], focusing particularly on ByteTrack [2]: the

State-of-the-Art for trackers as of January 2022, according to the MOT benchmark [1]

[15] [4]. Finally, another MOT algorithm is presented: Fairmot [3], which implements

a head devoted to re-identification tasks and introduces a new “fair” approach for

multitask training.

2.1 Detectors

In the context of MOT algorithms, object detectors play a particular role, as they

have the task to locate and classify objects in images by highlighting the (possibly)

rectangular-shaped bounding boxes containing them. In second place, after the bound-

ing boxes have been detected, a classification label is assigned to them, together with

a confidence score between 0 and 1: the closer to 1, the more confident the detector is

about the output.

There are mainly two types of detectors: one-stage and two-stage, depending on

how the object detection task is performed. Two-stage detectors follow the traditional

pipeline of first locating objects (i.e., region proposal) and, in the second stage, clas-

sify them: this approach is, however, slower compared to their one-stage counterparts.

Instead, one-stage detectors when fed with an image directly predict the bounding

boxes over the input: the direct consequence is that the detection speed results in-

creased. In fact according to [23], the YOLOv1 network, which is a one-stage detector,

has an inference time of 45fps without batch processing using a Titan X GPU. Under

21

22 2. Methodology: detectors, benchmarks and MOT algorithms

Figure 2.7: The basic architecture of a one-stage detector, which relies of a Back-
bone performing downsampling and the head, devoted to bounding box
regression and classification. (image from [27]).

the same conditions and on the same GPU, the two-stage detectors Fast RCNN and

Faster RCNN, respectively, have a processing time of 0.5 fps and 5 fps. The basic ar-

chitecture of such detectors is depicted in Fig. 2.7. Since we want to take into account

the velocity of our algorithm, we will now focus on one-stage detectors, in particular

those belonging to the YOLO family.

Given the bounding box and the classification label outputs, one might want to

train these networks in such a way that the absolute L1 distance between the center

of the proposed bounding box, and the bounding box dimensions2 (x, y, w, h) are as

close as possible to the ground truth bounding box. The overlap between the two

can be computed through the Jaccard index, which for this case takes the form of

the IoU distance of equation (1.10) (see Fig. 1.3a). The loss function that considers,

respectively, the maximization IoU and the minimization of L1 is known as focal

loss [45]. Finally, the total loss function is obtained by adding the one resulting from

the classification task, weighted for the regularization terms λi that balance the trade-

off between the different loss terms:

Ltot = λclsLcls + λL1LL1 + λIoULIoU (2.31)

It is common to divide the network into two sub-networks, the backbone and

the head, which have two completely different tasks. The backbone usually takes

the input image and performs feature extractions, which, in turn, will be fed to the

head detector. Often, it is common to use already trained backbones on datasets such

as Microsoft COCO [46], to efficiently perform the downsampling of input images for

2A bounding box is uniquely defined by its top left (x, y) coordinates and its height h and width
w. Alternatively, depending on the formalism, one can also use the coordinates of the top left (x, y)
and bottom right (x′, y′) point coordinates.

2.1 Detectors 23

Figure 2.8: Performances in terms of precision and speed inference of the YOLOv5
detector. The amount of parameters follows the order of the list of
networks in the legend in an incrememental order (e.g., m has more
parameters than n, but less than x). (image from [49]).

different classes of objects. For example, well-known backbones that can be employed in

previous detectors are AlexNet [47] or ResNet [48]. Usually, the number of parameters

plays a discriminant role in whether a detector can be used in a mobile application due

to the limited space: for this reason, several versions of the networks are available as

full or light models. Clearly, according to the benchmarks (e.g., see Fig. 2.8) the fewer

the parameters, the lower the accuracy performance, but the faster the inference speed.

2.1.1 YOLO detectors family

Among the class of one-stage detectors, perhaps the most famous and important is

the family of YOLO detectors (You Only Look Once). Historically, the first one was

proposed by Redmon et al. [13] after Faster-RCNN [50]. The main reason why YOLO

has become popular is that it allowed the community to detect objects in images in

real time, for example using video streams produced by webcams, thus enlarging its

possible fields of use.

Advancements in both training methodology and network designs, led to the evo-

lution and growth of YOLO as a simple algorithm, generating an entire class of algo-

rithms. For example, YOLOv2 [42] added batch normalization during training thanks

to a layer before each of the convolution layers. Furthermore, it increased the input im-

age resolution allowed (448× 448), which was doubled from the first generation YOLO

(224 × 224) by modifying the backbone. In addition, it created a reference bounding

box for every groups of bounding boxes related to the same object, as a result of their

convolution. Another improvement is to cluster the bounding boxes size and aspect

24 2. Methodology: detectors, benchmarks and MOT algorithms

(a) Visual processing of the functioning of a
YOLO detector. Image from [51].

(b) Architecture of a YOLO detector:
Image from [52].

Figure 2.9: Images depicting the functioning and of a YOLO detector. The input
image is divided into a S × S grid: concurrently, for every grid cell, a
bounding box regression and a classification tasks are performed and the
results combined according to a certain threshold.

ratio by means of the k-means clustering method, to obtain a better prior. Moreover,

the training approach changed: the network is re-trained starting from YOLOv1 using

both higher and lower resolution features, by stacking adjacent features into different

channels. In order to make the network robust to images of various sizes, every ten

randomly selected batches it was fed with a new image of dimensions different from the

usual input (448× 448). According to the ablation study, all of these steps were shown

to produce an improvement in the mean Accuracy Precision (mAP). The next model,

that isYOLOv3 [43], used as backbone Deep CNN Darknet 53 to extract features from

images. To cope with more complex scenarios, it introduced multi-label classification

with overlapping patterns. Finally, the three training feature maps that have different

scales were used to predict the boundary box, allowing the detection of small objects.

Latest advancements in training techniques, architecture design, different loss func-

tions, exploitation of different backbones and data processing in recent years have led

to different generations of detectors of the YOLO family, such as YOLOv4 [53] or An-

alytics YOLOv5 [49] (whose accuracy and inference speed are presented as an example

in Fig. 2.8). However, in the following section, we will discuss the State of the Art in

detection tasks in 2021 introducing YOLOX [14], which, while taking inspiration from

the third generation of YOLO, implements new training and architecture features.

2.2 YOLOX

Let us now focus on the detector employed by the algorithm we used for our work,

namely YOLOX, which was first proposed by Zheng et al. [14] in 2021.

The results obtained (see Fig. 2.10) allow us to consider it as the State-of-the-Art

detector both in terms of accuracy and speed for real-time tasks, as for late 2021, and

2.2 YOLOX 25

its code is publicly available at [54]. The design of YOLOX, which uses as backbone

Figure 2.10: Results in terms of Speed-Accuracy (left) for a visual comparison of
YOLOX with other detectors. The higher the Average Precision (AP)
and the less the 1-batch Latency, the better performances. On the
right it is shown the Size-Accuracy curve for lite models, that can be
mounted on mobile devices due to the less memory needed for storing
parameters. (image from [14]).

CSPDarkNet [55], takes inspiration from that of YOLOv3, which is still one of the most

widely used one-stage detectors due to the limited amount of resources needed: since

2018 the research community has been able to create some industrial software support

and apps that make use of YOLOv3.

With referral to YOLOX, the main improvements in detector design mainly deal

with its architecture and training process. In particular, the conflict between classi-

fication and the regression tasks is addressed by decoupling the two heads devoted

to classification and regression of the bounding boxes. We refer to head as the fi-

nal part of the network, which takes as input the feature extracted by the backbone

(and eventually a feature pyramid) and returns the bounding box, its labeling, and the

confidence score. This decoupling affects the training convergence speed, which occurs

faster, and is essential for the end-to-end version of YOLO.

Furthermore, YOLOX is designed to be a anchor-free detector, that is, the num-

ber of bounding boxes predicted for each location passes from 3 to 1: the head directly

predicts the four parameters that uniquely define the bounding box, namely the coordi-

nates on the top left and its width and height (see Fig. 2.11). This relieves the burden of

conducting clustering analysis in advance to determine what anchor-boxes are the most

important for the task, which is said to be highly domain specific. Moreover, heads

not implementing the anchor-boxes mechanism show less complexity, thus reducing the

number of parameters to be optimized: other design hyperparameters are also avoided

to be heuristically tuned (e.g., the ones related to clustering). Other strategies em-

ployed in the YOLOX detector are related to training and augmentation techniques:

26 2. Methodology: detectors, benchmarks and MOT algorithms

Figure 2.11: The heads, namely the parts of the detector devoted to classification
and regressions are decoupled in YOLOX, while are not in other YOLO
implementations starting from v3. Moreover, YOLOX produces as out-
put ”unique” detection boxes, defined by their top left coordinates,
width and height. (image from [14]).

Mosaic, i.e., a mosaic is created by stitching different images from the training set,

and MixUp, that is, weighted combinations of random image pairs from the training

data (see Fig. 2.12a) are generated. The detector, due to the strong augmentation

techniques, is decided to be trained from scratch: it is not more beneficial to make use

of the pretraining on ImageNet to specialize the network to the image domain.

Another technique implemented is to consider as positive samples not only the

centers of the object-related bounding boxes, but also the adjacent cell grids, in such a

way that a grid 3×3 is considered a positive sample. The authors refer to this approach

as Multiple Positive (see Fig. 2.12b).

The last important advancement in object detection concerns the development of an

advanced label assignment technique, namely SimOTA. Usually, anchor-free methods

directly relate the center of the bounding box region of any ground-truth object to the

corresponding positives. To take advantage of all the properties of the object for positive

and negative assignment, dynamic assignment methods have been implemented, such

as SimOTA: it first calculates the degree of pairwise matching for every prediction-

ground truth pair. As an example, this cost cij between the ground truth gti and the

prediction pj can be calculated as:

cij = Lcls
ij + λLreg

ij (2.32)

2.3 The MOT challenges 27

(a) Data augmentation techniques. Images from [56]
and [57].

(b) Instead of considering as positive sample
only the center location for each object, a
larger grid (3×3) is considered as positive
sample.

with λ balancing the two terms and Lcls
ij Lreg

ij being, respectively, the classification and

regression losses. Finally, for every gti, the top k predictions with the lowest cost within

a fixed center region are considered positive samples, whereas the other grid predictions

are negatives. The value of k varies for different ground truths and is automatically

returned by the SimOTA algorithm itself. We have now shown how, starting from a

well-known architecture, namely YOLOv3, the new State-of-the-Art one-stage detector

for the YOLO family has been implemented. It employs many of the advancements

developed by the research community in the last years, such as anchor-free paradigm

or the use of decoupled heads for accomplishing the two different tasks of classification

and bounding box regression.

2.3 The MOT challenges

After having presented the detector we are going to use in our work, let us now

show according to what metrics and benchmarks we will consider ByteTrack, the State

of the Art among Multi-Object Tracker algorithms. In the recent past, it is worth

noting that the Computer Vision community relied on several centralized benchmarks

for many tasks, including object detection, pedestrian detection, 3D reconstruction,

optical flow, short-term tracking of single objects, and stereo estimation. Providing a

common method to evaluate newly proposed techniques, they have proven to be ex-

tremely helpful in advance of State of the Art research in the respective research fields.

However, there used to be a lack of a shared benchmark technique accepted by the

research community, except for the well-known PETS [58] (Performance Evaluation of

Tracking and Surveillance) which primarily addressed surveillance applications. Typi-

cally, the proposed methods were specifically tuned for this dataset, which resulted in

overfitting in real-world tasks.

28 2. Methodology: detectors, benchmarks and MOT algorithms

Furthermore, being able to properly evaluate single-camera MOT results is not

trivial: there may be little confusion in the definition of the ground truth, such as

how to handle partially occluded/cropped/reflected objects and how to properly define

their bounding boxes. Additionally, before the first version of MOTChallenge, there

was no commonly accepted and non-parametric metric to evaluate the goodness of a

MOT algorithm. Finally, it was difficult due to the lack of predefined test and training

data, making it difficult to fairly compare the proposed methods.

To address all these issues, in 2014, the first MOTChallenge [1] benchmark

was released, which showed the following three main components. It consisted of a

recollection of publicly available new datasets, a centralized evaluation method, and,

last, an infrastructure that allowed the community to present new datasets, propose

evaluation metrics, and share new annotations to improve ground truth quality. Due to

the propulsion provided by the research community, the consistency of the annotations

over the sequences was improved by computing the degree of occlusion and cropping

of bounding boxes, resulting in the release of MOT17Challenge [15]. Moreover, in the

latter, three sets of public detections of three different object detectors are provided:

participants in the competition are required to evaluate their proposed tracker on all

these detection sets, hence taking the overall average. A good tracker is robust, that

is, it should not (ideally) depend on quality of detections.

The latest of these challenges is the MOT20Challenge, which shows some differ-

ences, especially in the labeling of ground truth boxes: they denote whether a given

target is a standing/sitting pedestrian or any other object (e.g., a vehicle, a bike, etc.),

although during the evaluation part only the moving objects and pedestrian class

are considered. This is done since some trackers might rely on motion cues; therefore,

one does not want to penalize it if not tracking a sitting pedestrian, or if following a

bike-vehicle trajectory, which might not be the task the detector had been trained for.

Generally, together with the release of new MOTChallenges, the complexity of the sce-

narios shown by the training and evaluation datasets has increased. More specifically,

the crowd density in the sequences has become larger, several viewpoints were consid-

ered, different frame rates, and light conditions were tested (e.g., some video sequences

at night). Typical frames from the data set are shown in Fig. 2.13

The training and evaluation datasets consist of sequences recorded by single static

cameras: the images are converted to JPEG format. Detection and annotation files are

simple CSV (Comma Separated Value) files. A general detection (DET) and a ground

truth (GT) annotations files exhibit the following structure as shown in Table 2.1.

It is worth mentioning that, following the MOTChallenge approach and idea, new

standardized benchmarks were released to tackle image segmentation (e.g., MOTS),

the tracking of any object (e.g., TAO), autonomous driving related tasks (e.g., KITTI),

2.3 The MOT challenges 29

Figure 2.13: Frames coming from a typical MOT17Challenge dataset. (image from
[15]).

Position Name Description

1 Frame number Number denoting the frame at which the target is present

2 Target id number
DET: fixed to -1.
GT: Unique ID for pedestrian trajectories.

3 Bounding Box left X-axis coordinate of the top-left corner of the bounding box.

4 Bounding Box top Y-axis coordinate of the top-left corner of the bounding box.

5 Bounding Box width Width in pixels of the bounding box.

6 Bounding Box height Height in pixels of the bounding box.

7 Confidence Score

DET: the confidence of the detector for the target
being a pedestrian
GT: ’1’ if entry has to be considered, ’0’ otherwise.
It acts as a flag.

8 Class
GT: denotes the type of object annotated.
(’1’ for pedestrians)

9 Visibility GT: visibility ratio due to cropping or partial occlusion.

Table 2.1: Typical annotations file structure for MOTChallenge.

30 2. Methodology: detectors, benchmarks and MOT algorithms

Figure 2.14: An example of associating every detection boxes. (a) Output of a
detectors, namely detection boxes and their confidence scores. (b) As-
sociation only of detection boxes above a certain threshold (i.e., 0.5).
Same colors represent the same identity. (c) Association of detection
boxes provided by ByteTrack algorithm. Dashed boxes represent the
predicted boxes thanks to the Kalman Filter. The remaining two score
detection boxes are matched to the past tracklets. (image readapted
from [2]).

vehicle tracking (e.g., DETRAC), etc.

2.4 ByteTrack

According to the results claimed by Zhang et al. [2] in late 2021, the new Byte-

Track has become the state-of-the-art tracker algorithm when provided with additional

training data. It relies on the Tracking-by-Detection paradigm, that is, in a first

step perform the detection of objects for subsequent frames and, secondly, perform

their association into a tracklet. Therefore, the part of the network devoted to detec-

tion is fundamental and requires high performance: for this reason, the latest YOLOX,

presented in the previous pages, has been used.

The main idea behind ByteTrack is that also the low confidence detection boxes are

important; therefore, they should not be eliminated. In fact, they sometimes might

indicate the existence of a partially occluded object or an object confused with the

background, leading to poor tracking performance in terms of missing detections and

fragmented trajectories. This is what is represented in Fig. 2.14: when an occlusion

occurs, the confidence of the bounding box decreases, thus being thresholded out from

detector output and losing the tracklet. On the contrary, exploiting low score detection

boxes allows to assign them to tracklets using, for example, the position and motion

information. However, visual information can also be exploited in such a way as to

favor long-term recovers.

Once the detection boxes have been proposed by the detector, the tracker needs

to compute the similarity between tracklets and these boxes, finally matching them

according to some similarity metrics. Some useful cues for association are location,

motion, and appearance. Depending on the algorithm, this information can be com-

2.4 ByteTrack 31

bined in different ways. For example, ByteTrack relies only on location and motion,

completely neglecting the appearance. Having computed the similarity, one has to

perform the matching according to the similarity score. This can be done, for example,

with the mean of the Hungarian Algorithm.

ByteTrack, after performing the detection, divides the bounding boxes according

to a high and low score threshold, thus obtaining two different sets. Initially, the high

score detection boxes will be matched to tracklets. However, some tracklets will

remain unmatched due to some changes in detection box size or eventual occlusions.

Finally, the remaining detection boxes (low score) and these unmatched tracklets are

associated: using such an approach, we can recover objects with low score detection

confidence, hence filtering out the background.

Let us now present the algorithm in pseudocode (see Algorithm 1) implemented

by ByteTrack. It accepts as inputs a sequence of frames V, an object detector DET ,

the Kalman Filter KF to predict the future position of detection boxes, and three

parameters: respectively τhigh, τlow being the detection thresholds, while ϵ being the

tracking threshold. For a matter of space, in the pseudocode the track rebirth, which

is devoted to preserve the identity of the tracks in case of long range associations, is

not listed: if a tracklet remains unmatched after the two associations, it is put in the

set of lost trajectories Tlost. For every frame, detection boxes are tried to be assigned

to these tracks, however, if a given trajectory exists in such a set for a certain number

of frames (usually 30), it is definitely removed. Detection thresholds are those that

define the values according to which detection boxes can be assigned to the high or low

score sets. On the contrary, the tracking threshold is the minimal value for which two

consecutive and unmatched high score detection boxes are assigned to a new trajectory.

Note that, as a similarity metric, it is not mandatory to use IoU , but others can also

be employed that, for example, account for visual cues also. However, it is reasonable

to not use appearance information, since low-score detection boxes usually contain

severe occlusions, the image is blurred, or simply are detections that incorrectly refer

to background.

The state-of-the-art performance for ByteTrack is obtained by equipping it with

YOLOX as detector, whose initial weights have been pre-trained on the MS-COCO

dataset. The default values for, respectively, τhigh, τlow, and ϵ are 0.6, 0.1, and 0.7.

The matching is rejected if IoU is less than 0.2, and the buffer size for the lost tracklets

is 30 frames. Some visual results of ByteTrack in the MOT-17 dataset are shown in

Fig. 2.15.

32 2. Methodology: detectors, benchmarks and MOT algorithms

Algorithm 1 ByteTrack pseudocode. Track rebirth, which stores a buffer of untracked
tracklets for some instants, is not shown for simplicity. (taken from [2])

Input: Video sequence V,Detector DET,Kalman Filter KF, detection score threshold
τhigh, τlow, and tracking score ϵ threshold

Output: Tracks T of subsequent bounding boxes D with fixed id.
1: INITIALIZATION: T ← ∅
2: for frame fk in V do
3: Dk ← DET(fk)
4: Dhigh, Dlow ← ∅
5: for d in Dk do
6: /* Find detection boxes and their score */
7: if d.score > τhigh then
8: Dhigh ← Dhigh ∪ {d}
9: end if

10: if d.score > τlow then
11: Dlow ← Dlow ∪ {d}
12: end if
13: end for
14:

15: /* Predict the new position of detBoxes */
16: for t in T do
17: t← KF (t)
18: end for
19:

20: /* High score detBoxes associations*/
21: Associate T and Dhigh using IoU distance
22: Dremain ← not matched boxes in Dhigh

23: Tremain ← not matched tracks in T

24:

25: /* Low score detBoxes associations*/
26: Associate Tremain and Dlow using IoU distance
27: Tremain′ ← not matched tracks in Tremain

28:

29: /* delete unmatched tracks */
30: T ← T Tremain′

31:

32: /* Initialize new tracks */
33: for d in Dremain do
34: if d.score d > ϵ then
35: T ← T ∪ {d}
36: end if
37: end for
38:

39: end for
40: Return T

2.5 FairMOT 33

Figure 2.15: Visualization results of ByteTrack coming from MOT17 validation set.
Note as also in case of occlusion or motion blur the algorithm behaves
correctly. Yellow triangles denotes high score detection boxes, whereas
red triangles low score and boxes with the same color refer to a unique
trajectory. (image from [2]).

2.5 FairMOT

In the following section, we discuss the main ideas behind another MOT algorithm

released in 2020: FairMOT. According to Zhang et al. [3], Multi-Object Tracking can

be formulated as a multi-task learning of object detection and re-ID in a single

network, thus allowing joint optimization of the two assignments. However, it is found

that, if not trained properly, the two heads (see Fig. 2.17) devoted to these differ-

ent tasks tend to compete, leading to biased and poor results. Before the release of

FairMOT, the detection of objects through bounding boxes and re-identification

(abbr. ReID), namely their association to trajectories while extracting features from

the image regions corresponding to each bounding box, were treated as two different

tasks. This produced inaccurate results. An advantage of treating them separately is

that different and specifically tailored models can be implemented for these two tasks

without making any compromise. However, the processing turns out to be very slow

and not useful for real-time applications.

There are three main reasons why one-shot trackers get degraded association per-

formance:

• Anchors: they were originally designed for object detection but are not suitable

for extracting reID features. Indeed, anchor-based one-shot trackers overlook

the reidentification task: when the detections are not correct, it turns out to be

useless to extract reID features from the bounding box. This results in favoring

the detection task at the expense of the reID. Moreover, if several detection boxes

34 2. Methodology: detectors, benchmarks and MOT algorithms

Figure 2.16: (a) TrackRCNN and JDE are anchor-based detectors, namely they pro-
pose more than one bounding boxes (in red), while the correct one being
the green one. The feature extraction process occurs at a second stage,
at might occur using a whole region (TrackRCNN), using several points
(JDE) or a single point in the center (FairMOT). (b) The red anchor
contains two different instances (i.e., people) of the same class (i.e.,
person). When extracting ReID features, they refer to two conflicting
istances. (c) Three red anchors referring to different image patches
predict the same identity. (d) FairMOT extracts reID features only at
the center of the two objects (image from [3]).

are proposed (as in anchor-based detectors), they might refer to a single identity,

and a single anchor might refer to multiple identities, especially in crowded scenes.

(see Fig. 2.16)

• Feature sharing between detection and reID: since they are two different

tasks, they need different features. In fact, the reID task needs more low-level

features to discriminate between instances of the same class, while the detection

features need to be similar for different instances to provide a proper classifica-

tion.

• Feature dimension: it is found empirically that learning low-dimensional reID

features for joint detection and reID allows better results to be achieved in terms

of tracking accuracy and efficiency.

To address these issues, detection and reID tasks are treated at the same level, thus

avoiding the past paradigm of ”detection first, reID secondary”. The proposed solution

is the one depicted in Fig. 2.17, which consists of two homogeneous branches devoted

to detection and reID feature extraction tasks, and which are trained at the same

time. In particular, the detection branch relies on anchor-free styles, which estimate the

objects’ center and sizes, represented as position-aware measurement maps. Whereas

the reID branch attempts to extract pixel features to characterize the object in a single

2.5 FairMOT 35

Figure 2.17: FairMOT network architecture. The input image is fed to an encoder-
decoder network to extract its features at different levels of abstraction
(stride = 4). Then, two heads are added, whose tasks are to detect
objects and to extract re-ID features. The features at the center of the
objects are the ones exploited for tracking. (image from [3]).

point (i.e., its center), therefore FairMOT can perform long-range association thanks

to appearance features, thus proposing a new way to handle occlusion cases.

Let us now discuss how we can effectively balance the losses of two different tasks

that in our case are detection and reID features extraction. We denote the detection loss

by Ldet and the Re-ID loss by LReID. Given the center (c̃ix, c̃
i
y) of the i-th bounding box,

the re-ID feature vector is Ec̃ix,c̃
i
y
. This is mapped using the softmax operation to a class

distribution vector P = {p(k), k ∈ [1,K]}. Let Li(k) be the one-hot representation

of the ground-truth labels class, with K being the total number of identities in the

training data. Finally, we can define re-ID loss as:

LreID = −
N∑
i=1

K∑
k=1

Li(k) log(p(k)) (2.33)

In order to train jointly the two branches devoted to detection and re-ID, the approach

proposed by Kendall et al. [59] is used: uncertainty loss is introduced to automatically

balance the losses for the two tasks:

Ltotal =
1

2

(
1

ew1
Ldet +

1

ew2
LreID + w1 + w2

)
(2.34)

where w1, w2 are learnable parameters to achieve such a balance. Thanks to this

approach, FairMOT is considered a valid tool to perform the MOT task and ranks

among the top 5 in both the MOT20 and MOT17 challenges.

36

Experiments: MOT in sport

analytics

Let us now discuss a particular application for the algorithms we have just pre-

sented, which is different from the usual surveillance tasks. In fact, we want to build

a tracker that is capable of detecting soccer players on the field and reconstructing

their trajectories in space, given some videos recorded by a single static camera. The

dataset we are going to use is an open dataset made openly available by Pettersen et

al. [5] It consists of elite soccer player movements captured by an XYZ sensor and the

corresponding videos.

In this chapter, we will show how pre-processing has been performed to reduce the

radial distortion of the image according to [60], the tools used to accomplish this task,

and how we design the algorithm to associate the tracklets in the pitch coordinates

found by the homography [29], with the players’ trajectories. These trajectories are

provided by XYZ sensors worn by players and, via a simple transformation, can mapped

into pitch coordinates. Considering the data of the sensors as ground-truth, we can

obtain a hint of the goodness of our tracking and assignation algorithm.

3.1 Dataset description

There are several open datasets related to Multi-Object Tracking, but they

treat mainly as targets pedestrians or vehicles [58] [7] [15]. We are interested in finding

an application different from the usual ones, that is, track players on the football

pitch, in such a way that using a single fixed camera we are able to retrieve players’

trajectories in the real world. In this case, we will treat the data coming from sensors

as our ground truth.

The dataset we will use consists of body sensor traces and the corresponding videos

from several professional soccer games captured in late 2013 at the Alfheim Stadium

in Tromsø, Norway. In particular, we consider the videos coming from a single game,

namely, the one played on November 3rd, 2013 between Tromsø IL and Strømsgodset

37

38 3. Experiments: MOT in sport analytics

IF (Norway).

3.1.1 Sensor data

Camera Basler acA1300-30gc Basler acA2000-50gc

Resolution 1280 × 960 1920 × 1080

Frame rate 30 fps 25 fps

Lens model 3.5 mm Kowa-LM4NCL 8 mm Azure-0814M5M

Use
single wide-angle videos

(1280 × 960)
stitched panoramic video

(4450 × 2000)

Table 3.2: Cameras technical specifications for the videos available in the dataset [5].
We will use the camera whose technical specifications are written in the
first column.

The sensor data we will use are recorded using the ZXY system and are obtained

by sensor belts worn by players on their lower torso for the entire duration of the match.

The signal is received by 11 stationary radios mounted on poles or on the tribune roof

surrounding the stadium. Every receiver has approximately 90◦ field of view, in such a

way as to avoid occlusions and/or signal blocking, since the pitch presents overlapping

zones. The belt is furnished with an accelerometer in ZYX directions, as well as

a gyroscope, a heart-rate sensor and a compass. Due to privacy concerns, heart rate

estimation is not provided, and players are anonymized: the tag denoting every sensor

is unique, but different from the actual shirt number. The authors claim that every

attempt to recognize players is forbidden; therefore, we will only reconstruct their

trajectories on the ground.

The data provided by the sensor are sampled at a frequency of 20Hz, and are

available in several CSV (Comma Separate Values) files; we are going to use the ones

with interpolated timestamps, that is, the one that has already been preprocessed by

the authors of the dataset. Their pre-processing has mainly involved resampling the

entries according to a common timestamp, while keeping the sensor resolution of 20Hz,

to simplify the operation of queries. A sample of such a dataset is that in Fig. 3.20.

The logs that we will handle consist of the following information3:

• timestamp (string): local Central European Time (CET) time encoded as ISO-

8601 format string;

• tag id (int): the unique identifier for the sensor;

• x pos (float) [m]: x-direction player’s relative position in the field. Valid values

are such that 0 < x < 105. The authors claim a precision of 1 meter for the

sensor;

3specifically for x pos and y pos, one the origin is the one in Fig. 3.18a

3.1 Dataset description 39

(a) Location of the cam-
era array in the
pitch XYZ coordi-
nates.

(b) The view from the three cameras array. In this work we will use the
central one, since we want to track what happens in the middle of the
pitch.

Figure 3.18: Images from [5].

Figure 3.19: High-Quality cylindrical panorama video available in the dataset. Cam-
era specs for this video are available in the Table 3.2, second column.
We will not use this video for our analysis, due to its strong radial dis-
tortion and the presence of the audience, which may disturb the MOT
algorithm if we want to track players on the field. (image from [5]).

Figure 3.20: Some typical entries for the sensor dataset we will use and that are
provided by [5]. Sensors are worn by players on their lower torso for
the entire duration of the match. For every timestamp, there is a unique
row corresponding to a player identified by a sensor with a given tag
(tag id).

40 3. Experiments: MOT in sport analytics

• y pos (float) [m]: y-direction player’s relative position in the field. Valid values

are such that 0 < y < 68. The authors claim a precision of 1 meter for the sensor;

• heading (float) [rad]: orientation of the player’s head with respect to the y-axis,

where 0 is the y-axis;

• direction (float) [rad]: orientation of player’s movement with respect to the

y-axis, where 0 is the y-axis;

• energy (float) [undefined]: estimated energy consumption since last sample.

The value is based on the step frequency as measured by the on-board accelerom-

eter. There is no unit for it, since it might vary from player to player.

• speed (float) [m/s]: player’s speed;

• total distance (float) [m]: cumulative distance traveled by a given player.

However, we will focus only on the first four of them, namely, timestamp, tag id, x pos

and y pos. In addition, for this dataset the index is set to be the timestamp. As can

be seen in the figure 3.18a, the pitch measures (68× 108) meters.

3.1.2 Video data

The camera array is positioned in the center of the field, as shown in Fig. 3.18a,

and its view is the one of Fig. 3.18b. It is reasonable to have more player density

and, therefore, more targets to track in the middle of the field: hence, we chose to

use only the camera pointed to that direction, namely with referral to Fig. 3.18b,

the one in the middle. In the dataset, such a camera is called camera 1, and its

technical specifications can be found in Table 3.2. Despite the presence of a High-

Quality cylindrical panorama video that actually frames the whole pitch, it includes a

strong radial distortion and the audience is visible, which might disturb the tracking

algorithm. For these reasons (see Fig. 3.19), this video is not used, although the camera

specs are present in the second column of 3.2. The videos coming from three different

cameras are shutter synchronized, therefore allowing to compare, merge, and analyze

the information obtained by simultaneous images belonging to different views. Note

that the cameras actually frame the entire soccer field.

All the videos captured are stored using the same codec with the same parameters,

except for the resolution and frames per second (fps). For every camera, the entire video

has been divided into 3-second fragments, which have been encoded in H.264 using

libx264 (see table 3.3). Therefore, a single fragment contains exactly nframes = 3 · fps
which, in our case, will be a total of 90 frames. The file name is written in such a way

that it contains a timestamp of the first frame in the fragment, with an accuracy of

nanoseconds. This permits the synchronization of the videos with the data of the XYZ

3.2 Preprocessing 41

profile high

preset ultrafast

tune zerolatency

Colorspace YUV 420 planar

GOP 30 x fps

Files xxxx YYYY-MM-DD hh:mm:ss.000000000.h264

Table 3.3: Parameters that the authors of the dataset [5] have used, in the H264
encoding, to create the 3-second video fragments of the football match.

sensor detailed in Section 3.1.1.

3.2 Preprocessing

Let us now discuss how the preprocessing has been made, namely, the steps taken

to be able to track players’ trajectory to the pitch coordinates starting from the image

ones. Then, we will show that, despite the authors claim to have completely deleted

the radial distortion, a little is still present when making the homography and therefore

will be corrected. Finally, we will describe how the sensor data and the returned sensor

coordinates have been transformed into pitch coordinates. The last step we take is to

re-sampling the timestamps every 50 ms.

Homography

In Computer Vision field, usually, when dealing with two images of the same planar

surface in space, one may want to compute a transform linking the two figures: the

planar homography (see Fig. 3.21b). It is common to not have access to the depth

coordinates of pixels in a photographic image, making it not possible to reconstruct

the z-depth in the real-world coordinates. This is the reason why we can reasonably

assume that all points lie on the same surface n̂0 ·p+ c0. We can compute the mapping

equation from the points of one image to another with different perspectives:

x̃1 = H̃10x̃0 (3.35)

Where H̃10 is a general homography 3 × 3 matrix, and x̃1 and x̃1 are now 2-dim

homogeneous coordinates (that is, 3-dim vectors). In this matrix, h33 = 1, and there

are 8 degrees of freedom. To find their best estimates at least 4 point correspondences

suffice for the task.

Using the formalism described above, we want to find the transformation that

relates the trajectories in the space of camera-pixel coordinates to those of the

image represented in Fig. 3.21a. It is clear that, with reference to equation (3.35), all

points lie on the same surface, that is, the football field. To address this problem, it is

42 3. Experiments: MOT in sport analytics

(a) Image of a generic football pitch,
onto which we want to project the
trajectory of a player in the real
world.

(b) The coordinates in the images x̃0, x̃1

of point p lying on a plane, are linked
through a planar homography trans-
formation H10. Image taken from
[29].

Figure 3.21

(a) A broadcast image of a
soccer game. Source
points to be mapped to the
pitch are visible. Frame
from [62].

(b) The pitch with the colored
target points visible.

(c) The result of the source
image after applying the
homography transform.

Figure 3.22: Pipeline to be followed when we want to apply the homography. In
the source image we select some significant source points, while in the
target image we select their correspondent ones. The same color denotes
a source-target pair.

common [19] to find some points of interest that can be uniquely defined and recognized

on a football pitch. As a first step, we extract a sample frame from a Youtube video

showing the target area of the field and highlight the source points of which we want

to find the transformation. The frame showing these points is that in Fig. 3.22a.

The second step is to find the correspondent target points in Fig. 3.22b, finally using

the Python wrapper library openCV2 [61] to find such a transformation matrix. The

output image after we have applied such a transformation can be seen in Fig. 3.22c.

Note that we have used a generic broadcast image, which we expect to be as high

quality as possible, to assess the correctness of the homography approach.

Instead,let us apply the same method to a frame from our dataset. We will show, as

before, the source image highlighting our point of interest and their correspondence on

the football pitch. Finally, the output image is the one visible in Fig. 3.23. The result

we obtain is sufficiently satisfactory, and the image from the video can be mapped to

the pitch coordinates. Therefore, one can expect to be able, once the players in the

3.2 Preprocessing 43

(a) The first frame of the video
we have analyzed through-
out our work. Source
points to be mapped to the
pitch are visible.

(b) The pitch with the colored
target points visible.

(c) The result of the source
image after applying the
homography transform. A
little radial distortion is
visible.

Figure 3.23: Pictures showing the pipeline followed by the homography procedure.
We select several source points, which are visible in different colors, and
we map them to their corresponding target points. The pairs source-
target are distinguishable since they are colored in the same way. The
frames are taken from [5].

field have been tracked and we have made some hypotheses to provide an estimate their

position, to plot their trajectory on the pitch. However, a little radial distortion is

present, especially in the upper left and upper right corners of the image, which we

want to further correct.

Radial Distortion

Ideal imaging models assume that cameras obey a linear projection, where straight

lines in the world result in straight lines in images. Many wide-angle lenses exhibit a ra-

dial distortion, whose noticeable effect is a curvature in the projection of straight lines.

In the warped Fig. 3.23c , we see that its coordinates are displaced away from image

center by an amount that is proportional to their radial distance (barrel distortion).

The usual and simplest models deal with this problem using low order polynomials,

however, since we have not been able to compute the calibration parameters useful for

undistorting the image, we follow the approach proposed by Devernay et Faugeras [60].

They essentially propose a method to perform the calibration automatically, with-

out relying on camera specifications. Using their approach, any camera can be con-

sidered a pinhole camera after applying the inverse of the distortion function to the

features of the image. We will use their distortion model designed for fish-eye lenses,

based on the way images are actually produced. In fact, the distance between every

point in the image and the principal point is roughly proportional to the angle between

the point in the real world, the optical center, and the optical axis. The angular reso-

lution is circa proportional to the image resolution along an image radius: the farther

we are from the center, the wider and more distorted the image, and visually speaking,

the fewer details are clear. The proposed model FOV accounts for only one parameter

44 3. Experiments: MOT in sport analytics

ω, which is the field-of-view of the corresponding ideal fish eye lens. This angle might

not correspond to the real camera field-of-view, since the fish-eye optics might follow

some other models. Formally, the corresponding distortion and its inverse functions

are, respectively:

rd =
1

ω
arctan

(
2ru tan

ω

2

)
(3.36)

ru =
tan(rdω)

2 tan (ω/2)
(3.37)

The correspondent code to compute the mapping between the distorted and the undis-

torted image coordinates is the one of 3.1.

1 import numpy as np

2 import pandas as pd

3

4 def dist(x,y):

5 return np.sqrt(x**2 + y**2)

6

7 def correct_fisheye(src_size , dest_size , dx , dy , factor):

8 # convert dx ,dy to relative coordinates

9 rx , ry = dx -(dest_size [0]/2) , dy -(dest_size [1]/2)

10 # calc theta

11 r = dist(rx ,ry)/(dist(src_size [0], src_size [1])/factor)

12 if 0==r:

13 theta = 1.0

14 else:

15 theta = np.arctan(r)/r

16 # back to absolute coordinates

17 sx , sy = (src_size [0]/2)+theta*rx , (src_size [1]/2)+theta*ry

18 # done

19 return (int(round(sx)),int(round(sy)))

Listing 3.1: Code to compute (sx sy) namely the coordinates of the distorted images

corresponding to a given (dx dy) of the distorted source and the sizes

of the source and target images. Code from [63]

We want now to have a hint of how much pixels are distorted for a fixed value of

the unique parameter ω (see Fig. 3.24). It is observed that, as expected, the farther

we are from the center of the image, the more distorted the image is, according to a

radial symmetry. In fact, at the corners, the modulus of this distortion in pixels unit

even reaches 50Px for a 1920 × 2560Px image. We set the unique parameter ω to

ω = 0.65 after a trial-and-error procedure to rectify the lines of the football pitch as

much as possible after homography was applied. The results we have obtained using

this approach are those shown in Fig. 3.25. Note that the radial distortion is now

almost absent, and the output image exhibits straighter lines. Using the code 3.1

and equation (3.37), we can find the relation between the distorted image coordinates

3.2 Preprocessing 45

(a) Difference in pixel of the distortion for a ω =
0.65 along XY axis.

(b) Modulus of the distortion in pixel for ω =
0.65

Figure 3.24: Distortion, measured in Pixel units, for a 1920×2560Px image accord-
ing to the model of equation (3.37) by [60]. The parameter ω is set to
ω = 0.65.

(a) Output undistorted image using ω = 0.65.

(b) Undistorted image combined with the ho-
mography. Despite lines are not perfectly
straight, the radial distortion has almost van-
ished.

Figure 3.25: Output images after that we have applied the correction for the ra-
dial distortion listed in code 3.1 and using the parameter ω = 0.65,
respectively, before and after applying the homography.

46 3. Experiments: MOT in sport analytics

(xd, yd) and the undistorted image coordinates (xu, yu). In other words, we obtain a

certain function f s.t.(xu, yu) → f(xu, yu) = (xd, yd). We want to explicitly populate

the target image pixel by pixel, that is, using two loops over the width W and height H,

and denoting the actual index with ii, jj, we find which pixel will be the correspondent

in the distorted image. Formally, for every ii ∈ [0, H] and for every jj ∈ [0,W] :

Undistorted Image[ii, jj] ←− Distorted Image[sx, sy] (3.38)

where (sx, sy) are found with the algorithm 3.1. In this way, we can create a Python

dictionary of such mappings where, given a certain pixel (sx, sy) of the distorted

image, we compute its correspondent in the undistorted coordinates (xu, yu). This is

done instead of inverting the function (3.37), which is not trivial.

However, we have noted that this is not a bijective relation between the two sets.

Defining a fixed pixel in the target image whose coordinates are (xu, yu), we have found

that there may be more than one pixel in the source image (xd, yd) that are mapped to

it, as well as some of the pixels (xu, yu) that do not have an image. To deal with these

problems, if a given (xd, yd) has more than one image, we take the arithmetic mean of

them to obtain a one-to-one mapping. Moreover, to deal with the eventual absence of

f(xu, yu), we drop the single-pixel discretization and iterate over ”quarters” of pixels,

namely with steps of 0.25 pixels for ii and jj indexes. Recall now that our final goal is

to relate pixels in the distorted coordinates to their correspondents in the undistorted

image. Using the two tricks above, namely taking the mean if a certain (xd, yd) has

more than one image and using the quarter-pixel resolution, one can efficiently cover

all pixels from the original distorted image. The final Python dictionary object storing

this mapping is saved as a pickle binary file.

Sensor preprocessing

Among all the data provided by the sensor (see Fig. 3.20), we are only interested

in a part of it. That is why we extract only the following columns:

• timestamp: which will be our index;

• tag id: the unique identifier of every player, we want to formulate an algorithm

that assigns the trajectories of the detection box (output of the MOT) on the

football pitch to them;

• x pos, y pos: we want to transform these coordinates in meters to the ones on

the football pitch, which will be in Pixel.

We want now to find the mapping between the players’ position in meters, namely

(xpos, ypos), and their position on the football pitch in pixel coordinates. This mapping,

recalling that the pitch has dimensions (Wm, Lm) = (105×68)[m], is obtained as follows.

3.2 Preprocessing 47

As a first step, we define the Length and Width of the pitch in the pixel coordinates

as LPx, WPx. Then, we can define the ratio between them in both directions, thus

obtaining a proportion factor Rx,y , which is dimensionally [Px/m]:

Rx =
WPx

Wm
Ry =

LPx

Lm
(3.39)

Then, the mapping between the (xpos, ypos) and their correspondent (xPx, yPx) is:

(xPx, yPx) =

(
xpos
Rx

+ TLx ,
Lm − ypos

Ry
+ TLy

)
(3.40)

where (TLx, TLy) [Px] is the top left corner of the pitch image (see Fig. 3.21a). Note

that Rx ≈ Ry ≈ 21[Px/m], therefore 1 meter in the real world is about 21 pixels in the

image of the football pitch.

We now want to filter out the data provided by the sensor in such a way as to

neglect rows referring to players that cannot be seen by the camera and, therefore,

detected by our tracker. To achieve such a result, we need to find a parameterization in

the Pixel coordinates for the field of view of the central camera. This is done visually

by comparing the two images shown in 3.26, with the result shown in the picture on

the right side.

(a) Image without the radial distortion and after
the homography.

(b) Field of view of the central camera taken into
account in our study.

Figure 3.26: For every time instant, after we have applied the homography, we can
define a field of view of the camera. When a player is inside this visibil-
ity cone, he is potentially detected and consequently tracked. We show
here a visual comparison between the undistorted image, after applying
the homography and the parametrization we have used to define such
a visibility cone.

Then, the following step is to define a mask for the player-sensor dataset, which

is true when a player is inside the field of view of the camera. Depending on their

visibility, which is a function of their actual position in the pitch, several rows are

filtered out. In this way, we obtain the final sensor dataframe that we will use for this

48 3. Experiments: MOT in sport analytics

(a) Players in the first frame of the video being
analyzed and taken from [5]. The home team,
that is the team of which we have XYZ sensor
data available, wears white jersey.

(b) Players are either denoted by a red cross or
a black square depending on their visibility.
This image refers to the first frame of video
in. The player positions are obtained through
the XYZ sensor data.

Figure 3.27: For every time instant we create a mask that denotes whether a player
is visible. Then we keep only visible players. In these images, the
players of the home team, that wear white jersey, are represented in
the pitch with a red cross when they are not visible, while with a black
square if they are inside the visibility cone. The players’ positions are
obtained through the sensors data, after applying the transformations
of equation (3.40).

research.

We want now to compute the systematic error that we introduce if we did not

consider the radial distortion, that is, how the radial distortion, if present, affects the

computation of the position when we have applied the homography. Visually, one

obtains the results shown in Fig. 3.28. We can see that, as expected by comparing

Fig. 3.25 and Fig. 3.23, the largest correction is obtained at the corners of the image,

that is, the furthest region from the center of the starting image. However, the error is

of the order of meters and is therefore comparable to that of the sensors, that is, not

negligible for our research.

Tracker output preprocessing

Let us now discuss how we obtained the tracklets, that is the trajectories of the

bounding box of players after they have been detected and subsequently tracked by our

algorithm. For the tracking part, we have used (ByteTrack [2]) Multi-Object Tracker,

in a pretrained version for the MOT20Challenge [4] competition. When its input is a

video, it returns the outputs shown in Fig. 3.29: it always consists of a text file with

the following entries (see Fig. 3.29b):

• frame: the frame number;

• id: an integer that uniquely identifies a bounding box;

3.2 Preprocessing 49

Figure 3.28: Euclidean distance, in meters, between the target pixels when we have
applied the correction to the radial distortion, and the one without
the radial distortion. The correction to the radial distortion has been
applied using Algorithm 3.1, to a 1920×2560 Px image, with parameter
ω = 0.65 according to the model in (3.37).

• x: the x coordinate [Px] of the top left corner of the bounding box;

• y: the y coordinate [Px] of the top left corner of the bounding box;

• wx: the width [Px] units of the bounding box;

• wy: the height [Px] units of the bounding box;

• confidence: the confidence of the tracker that the target is a pedestrian.

However, it is not mandatory to also have the video as output, but we decided to store it

for a visual quality assessment to find the best hyperparameters for the tracking. Note

that we have the sensor data only for the Home team, which wears white jerseys,

whereas the tracker does not distinguish between different teams of people in the image

and tries to detect anyone, including the referee and the linesmen. To assess the

goodness of our preprocessing approach, we created a video that lasts two minutes,

that is, using 20 video fragments of 3 seconds. Recalling that the camera records at a

speed of 30 fps, according to Table 3.2, the total number of frames processed will be

120 · 30 = 3600 frames.

Let us assume that we can estimate any player’s position using the coordinates of his

corresponding bounding box. That is, we compute the player position (xpl, ypl) = xpl

in the image coordinates as:

xpl = (xpl , ypl) = (x+ wx/2 , y + wy) (3.41)

50 3. Experiments: MOT in sport analytics

(a) A sample frame from the video that ByteTrack has re-
turned as output. The players that are detected are as-
signed with a colored bounding box, above which there is
a number that uniquely identifies it.

(b) A sample of the txt file out-
put of the tracker. The id
column denotes the id that
uniquely identifies a bounding
box, whereas the (x, y) are the
coordinates of the top left cor-
ners in the image pixel coordi-
nates. wx,wy are instead, re-
spectively, the width and the
height in pixel of a detection
box. Finally, the confidence is
a score between 0 and 1 of how
much the tracker is confident
about its output. The closer to
1, the more confident.

Figure 3.29: Output of ByteTrack after an input video has been preprocessed. In
this case, we provide as input the video from the dataset [5].

where (x, y, wx,wy) are the parameters that univocally denote a bounding box. This

assumption is reasonable since, for most of the time, a player is standing during a game.

So, his position is assumed to be basically the position of his feet (see Fig. 3.30a), which

are located in the median of the bottom side of the corresponding detection box. In

fact, using this hypothesis, we seem to avoid errors since the feet are supposed to stay

on the ground, that is, on a plane. Therefore, we are allowed to use the homography

matrix H10 we have estimated before. Finally, we can compute the player’s position

on the football pitch by applying such a change of coordinates:

x1 = H10xu (3.42)

Here x1 is the vector that denotes a player’s position on the pitch in pixel coordinates,

and xu is the output vector that we obtain after we have applied the radial distortion

correction to xpl. This allows us to obtain a dataset that is similar to the one shown

in Fig. 3.30b.

We are now able to draw players’ trajectories on the field, since we have finally

computed their position on the pitch in the pixel coordinates. Let us plot (see Fig.

3.30a), as an example, a couple of trajectories that belong to those that last the most (>

30 seconds): the referee, which starts at the beginning and interrupts after 1500frames

(∼ 50 seconds) and the player’s tracklet denoted by the detection box with id #32 which

approximately lasts 60 seconds.

3.2 Preprocessing 51

(a) A player’s
position is
computed as
the median
of its bottom
side of the
corresponding
detection box,
as in equation
(3.41). Such
a position is
denoted with a
black cross.

(b) The pre-processed output of the tracker. Using the es-
timated player’s position in image coordinates, we use
the homography to estimate his position in the pitch co-
ordinates. The first columns are those of figure 3.29b,
whereas ImageCoords refers to the estimate player’s po-
sition in image coordinates after the radial distortion has
been corrected. While, xPixel and yPixel are the coordi-
nates on the pitch after the homography has been applied.

Figure 3.30: After that a player’s position has been estimated, by taking the median
point of the lower side of the correspondent bounding box (3.41), its
coordinates are first undistorted (3.38) and finally mapped to the pitch
ones via the homography (3.42).

(a) Referee trajectory through time. His track-
let does not cover the whole video, and stops
around frame 1500.

(b) The trajectory followed by the player tracked
by the detection box id #32.

Figure 3.31: Tracklets corresponding to two different bounding boxes with different
IDs. Every tracklet is obtained in a first step, by estimating the player’s
position from its bounding box coordinates (3.41). Then, we apply the
correction to the radial distortion (3.37) and finally project its position
in image coordinates to the pitch coordinates via homography (3.42).
The color of the curves changes according to the frame they refer to:
as time passes, the color becomes brighter.

52 3. Experiments: MOT in sport analytics

Figure 3.32: The final dataset, which was the output of the tracker, after we have
performed the preprocessing.

Now we want to find the timestamp that denotes time to which a certain frame

belongs. Recall from the video specs that every second contains 30 frames. Therefore,

we can extract the starting time from the name of the first video fragment, that

is: 0056 2013-11-03 18:01:14.248366000.h264. We further round the microseconds

to its third decimal place, saving only the tens (i.e., 2013-11-03 18:01:14.250000), in

such a way that we can compare the sensor data and this dataframe, after setting the

timestamp as its index. The final dataset is shown in Fig. 3.32.

Time handling

After having computed the final dataframes for the sensor data and the tracker

output, our next step consists of comparing the two, exploiting the shared timestamp

index: using it, it is possible to merge the different information from the separate

datasets. In fact, the goal of this work is to relate the players’ position provided

by the sensor data, to their correspondent tracklet extracted from the corresponding

bounding box for the video under investigation.

As shown above, we have been able to project the position of the player on the pitch

(see Fig. 3.31) denoted with a unique detection box id. Thanks to a visual comparison

with the trajectories provided by the sensor, we can provide a match ”by hand” of a

certain bounding box with a corresponding sensor. That is, for the video in analysis,

we have been able to match the following pairs (tag id ←→ detBox id):

3.2 Preprocessing 53

Figure 3.33: Visual comparison of XY position as function of time between the tra-
jectory followed by the sensor with tag #15 and the detection box #5
in pitch coordinates.

Figure 3.34: Visual comparison of XY position as function of time between the tra-
jectory followed by the sensor with tag #5 and the detection box #6
in pitch coordinates.

• (15←→5)

• (5←→6)

These trajectories and their components on, respectively, the X and Y axes as function

of time are the ones that can be inspected in Fig. 3.33 and Fig. 3.33 for only the

first 30 seconds. In such a time interval, sometimes the bounding box does not exist,

and therefore some discontinuities are present. However, it is reasonable to assume

that, despite the fact that a player is not detected, he will continue to exist and will

move in such a way as to reach its destination according to a linear motion until the

track disappears for good. In addition, one can easily note that there exists a temporal

shift between the two curves: in fact, they are basically the same, but simply translated

by some seconds. Let us define the optimal amount of shift needed as the time that

maximizes the Kendall’s Tau τ correlation. Kendall’s Tau correlation describes how

strongly two variables are correlated, assuming that we can provide them with an

order and their relation is monotonic. Values close to 1 indicate strong agreement,

while values close to −1 indicate strong disagreement 4.

Let us denote with (x1, y1), ..., (xn, yn) the set of observations of the joint random

variables X and Y , such that all values are unique. A generic pair of observations

4in other words: if one increases, the other one should always decrease (τ = −1) or increase
(τ = +1).

54 3. Experiments: MOT in sport analytics

(a) Kendall τ for different
time shifts in range [0,6]
seconds of X and Y po-
sitions for two different
pairs of players trajec-
tories (sensor data) and
tracklets (detection boxes
data).

(b) After the time shifting, one can see that the two curves are
essentially the same one for the pair (5←→6).

Figure 3.35: Using the Kendall’s τ (3.43) as a measure for the correlation between
two variables, we want to find the optimal amount of time we must shift
our sensor trajectory timestamp to maximize its correlation with the
corresponding detection box tracklet. In fact, after the time shifting of
t∗ = 3.5s the two curves, one depicting the position estimate obtained
from the sensor, and the second one from the corresponding tracklet,
are really close to each other.

(xj , yj), (xi, yi) with i < j are said to be concordant if the sort order (xi, xj) and

(yi, yj) agrees. In other words, if either xi > xj ∧ yi > yj or xi < xj ∧ yi < yj holds.

If this does not hold, they are said to be discordant. Formally, the coefficient τ is

computed as:

τ =
number of concordant pairs− number of concordant pairs(

n
2

) (3.43)

where the binomial coefficient accounts for the number of ways to choose 2 items from n

items. If we consider the two random variables to be the {x, y}-position of the detected

player and the {x, y}-position of the associated sensor, we note that the hypotheses for

the use of the Kendall τ are satisfied. In fact, the two variables are two estimates of the

same quantity, that is, the position of the player on the ground. Therefore, we expect

the two quantities to be concordant.

To compute the optimal time shift, we try different time shifts in the range (0, 6)

seconds with steps of 0.1 seconds, since we expect that this optimal value belongs to

this interval. Obviously, we keep the X and Y values that have a common timestamp

of the two dataframes: only if this condition holds, it is meaningful for them to be

compared. The results we obtain are those of Fig. 3.35a.

The optimal shift is assumed to be the mean value of the different time shifts that

maximize such a correlation measure, which is reasonable from the Figure 3.35a: it is

clear that all the curves exhibit a maximum around a common value of the time shift.

3.3 The assignation algorithm 55

Denoting the optimal time shift as t∗, it is found that:

t∗ = 3.5s± 0.2s

Therefore, we shift back the timestamp index for the sensor dataset of 3.5s, thus

obtaining the final sensor dataframe.

However, tracklets can disappear for some time: the visible effects are essentially

the gaps in the curves of Fig. 3.35b. As mentioned above, it is reasonable to fill these

gaps by a linear interpolation. In fact, the expected behavior would be that of Figg.

3.33, 3.34. To achieve such a result for the detection dataframe, we basically performed

a resample at a 50ms frequency, which is also the frequency of the data provided by

the sensor, thus obtaining our final detection dataframe. Note that this solution is

inspired by the interpolation performed in [2] to ensure a continuity for the existence

of bounding boxes even when targets are occluded.

3.3 The assignation algorithm

Let us now discuss the algorithm we implemented, through which we can assign

the detection boxes trajectories (we will refer to them as ”tracklets”) to the sensor

trajectories. Let us start again from the final version of the two dataframes: the sensor

one, whose timestamp has been shifted back by 3.5 seconds, and the detection one,

which has been resampled at a 50ms frequency.

The natural cost one can use for assignation can be the Euclidean distance

between two positions at the same time. Let us define the position of the player

estimated by the sensor at a given time instant t as (x
(t)
sen, y

(t)
sen), while the position

estimated using the bounding box at the same instant (x
(t)
det, y

(t)
det). The Euclidean

distance d between x
(t)
det and x

(t)
sen at a given time instant t is:

d(t) =

√
(x

(t)
det − x

(t)
sen)2 + (y

(t)
sen − y

(t)
det)

2 (3.44)

It is reasonable to assume that if a matching between a tracklet of a given player

and its sensor is carried out successfully, then the Euclidean distance between the two

trajectories will be, on average, lower with respect to the detection boxes corresponding

to other players.

As a first step, we neglect all tracklets whose lifespan is less than a fixed short-

tracklets threshold Mshort. We have decided to exclude short tracklets from the com-

putation in order to reduce the computational effort. Then, for every detection box,

and for every timestamp, we compute the Euclidean distance between its position in

the field and the position returned by the sensor in the visible field. Finally, we take

56 3. Experiments: MOT in sport analytics

Figure 3.36: The matrix showing the assignment cost, that is the average Euclidean
distance between the position of a tracklet (Detection Box ID) and the
the position of the sensor (Sensor ID), over the lifespan of a tracklet.
The darker the color, the higher the assignation cost. If an entry is not
present, then it means that a player is not inside the visibility cone of
the camera when a tracklet exists.

the average, thus obtaining a final cost. Defining the average euclidean distance of

a tracklet i for its entire lifespan t = 1, ..., tn, with respect to the position of the player

denoted with the tag id j, we compute it as:

d̄(i.j) =
1

n

n∑
t=1

√
(x

(t)
i, det − x

(t)
j, sen)

2 + (y
(t)
i, det − y

(t)
j, sen)

2 (3.45)

All these terms just obtained can be interpreted as the entries of a certain matrix

D(j, i), whose rows refer to the tag id player, while the column denotes the detection

box id. The matrix is represented in Fig. 3.36, and each entry is in Pixel unit: it

can be converted to meters by dividing by the factor of Rx,y, which we recall to be

∼ 21[Px/m]. This entry is NaN if a given detection box does not share any index with

the data provided by a sensor: in reality, what happens is that the player is not visible

for the entire lifespan of the detection box.

Let us now define the assignation rule for tracklets. For every column, that is

every detection box, we assign the sensor which exhibits the minimum cost d̄(i, j) and

is less than a fixed threshold. For our case, this simply means we keep the minimum

value of every column, finally obtaining what is shown in Fig. 3.37. If we inspect

such a matrix by rows, the only null values are the detection boxes that are valuable

candidates for the assignment. As one can see, the pairs (tag id ←→ detBox id) we

have mentioned in Section 3.2 pag. 52 after a simple visual inspection are present.

3.3 The assignation algorithm 57

Figure 3.37: The final dataframe only with the minimum cost of every column. The
rows refer to players’ sensors id (Sensor ID), while the columns refer
to the id uniquely identifying a detection box (Detection Box ID).

In fact, the row with index 15 has candidate detection boxes 5, 7, 10. We are pretty

confident that the correct assignment would be with detection box #5: in fact, it is

the minimal of the three values proposed. Such an average distance, in meters, would

be ∼ 2m which, if compared to ∼ 12m and ∼ 8m, obviously is a much better value.

It is also comparable to the uncertainty of the sensor: defining the error on the x

and y-direction with, respectively, σx = 1m and σy = 1m the error introduced when

computing the Euclidean distance can be computed as:

σr =
√

σ2
x + σ2

y ∼ 1.4m ∼ 30Px (3.46)

assuming that, ideally, there is no error on the detection box position. Using this

approach, if we consider the player with the sensor #5, a close call in this matching is

the detection box #6, although the box #4 is also a candidate.

Formally, we want to assign to every sensor i the detection box j that minimizes

the average distance d̄(i, j) and is less than a fixed threshold Md, thus obtaining the

set of detection boxes Bi that tracks a given sensor:

Bi = { j | argmin
j

d̄(i, j) ∧ d̄(i, j) < Md} (3.47)

However, this method leads to some problems that we need to further handle. In fact,

after the assignation, the set Bi of detection boxes associated with a certain sensor i

could contain simultaneous tracklets. To address this issue, we need to add another

constraint. We know that the tracker detects a person only once, so it should not be

58 3. Experiments: MOT in sport analytics

Figure 3.38: The trajectory reconstructed for the player with tag id #5. The thicker
curve is the ground truth (i.e., the sensor), while the thinner curves are
the trajectories of the bounding boxes assigned to that sensor. Stars
denote their id, and fragmented thicker trajectories are non-visible or
missing data sensor.

possible for players to have two detection boxes assigned at the same time and for more

than a given time. The condition for which two tracklets are considered simultaneous

is that they exist for a longer time than a fixed time interval Mt. If two of them,

belonging to the same set Bi, are simultaneous, then the definitive assignment would

be the one with the least cost. In this way, the final sets Di of the bounding boxes

assigned to a given sensor i is obtained. This algorithm is first tested in the first 2

minutes of the video to evaluate its performance. We can see, as an example, that we

are able to track a good part of the trajectory of the player wearing sensor with tag id

#5. (see Fig. 3.38). The Euclidean error between the sensor with tag id #5 and the

tracklets assigned to it, as a function of X and Y position, looks as in Fig. 3.39. We

can see that, when the assignation is correct, the order of such an error is of the order

of couple of meters, that is, comparable with respect to the one of the sensor. Finally,

the pseudocode for the aforementioned algorithm takes the form listed in 2.

3.3 The assignation algorithm 59

Figure 3.39: Euclidean error between the sensor #5 position and the corresponding
boxes for every time instants, in function of X and Y .

Algorithm 2 Tracklet - Sensor assignment

Input: tracklets B, trajectories T, short-track Mshort, distance Md. simultanenous Mt thresholds
Output: Tracklets assigned to a sensor D
1: Blong ← Length(B) > Mshort

2:

3: /* Average Euclidean Distance */
4: for DetBox j in B do
5: for sensor i in T do
6: d̄(i, j) ← AverageEuclideanDistance(i,j)
7: CostMatrix(i,j) ← d̄(i, j)
8: end for
9: end for

10:

11: MinimaCostMatrix ← KeepColumnsMinimum(CostMatrix)
12:

13: /* Assign DetBoxes to sensors */
14: for sensor i in T do
15: Di ← Assignation(MinimaCostMatrix) ∧d̄(i, j) < Md

16: end for
17:

18: /* Remove simultaneous tracklets */
19: for sensor i in T do
20: for DetBox Bj , Bk,j ̸= k in Di do
21: CommonIndexes(Bj , Bk) ← Indexes(Bj) ∧ Indexes(Bk)
22: if Length(CommonIndexes(Bj , Bk)) > Mt then
23: if d̄(i, j) < d̄(i, k) then
24: Di ← Di/{Bk}
25: else
26: Di ← Di/{Bj}
27: end if
28: end if
29: end for
30: end for

60 3. Experiments: MOT in sport analytics

(a) Frame 673. (b) Frame 601. (c) Frame 750.

Figure 3.40: The processed video is obtained as output of ByteTrack for the video of
our dataset. The bounding boxes, which surround detected players, are
uniquely identified by a number which is their ID. In particular, in this
sequence of images, the IDs 22 and 31 are switched, this phaenomenon
is known as ID switch and it is a well-known problem in MOT-task.

3.4 ByteTrack with re-identification head

Sometimes it happens that two detection boxes swap their identities, thus decreas-

ing the performance of the tracking: ID Switch is a common and well-known problem

in MOT task (see Fig. 3.40). However, when dealing with team sport image sequences,

players wear jerseys of different colors according to the team they belong to; moreover,

the two colors chosen by the regulation must be contrastive. Consequently, we think

that if our tracker could also employ visual features, in the form of some embeddings

returned by the detector, we could relieve this problem and improve the ID accuracy.

We propose here an approach inspired by [64] where, together with the usual

YOLOX [14] detector head that addresses the tasks of bounding box regression and

target classification, we add the head used in FairMOT [3] (see Fig. 2.16) to extract

the feature embedding. The head architecture of this new “hybrid” detector will be

essentially the same as in FairMOT, with the exception that the detection-based tasks

are carried out by YOLOX, which theoretically should guarantee better performances.

Training is done on the dataset provided by MOT17Challenge [15], using two-

thirds of the training set provided by the authors. On the contrary, the evaluation

is performed on the remaining third. In other words: two-thirds of each of the video

sequences contained in the training set are devoted to training the algorithm, while the

last one-third helps to provide an estimation according to some metrics (ClearMOT,

IDF1), thus allowing a fair comparison between the two methods.

There are basically two approaches for training such a ”hybrid” network, where

separate branches fulfill different tasks. In the first one, we take the pre-trained (or,

alternatively, train ourselves) network for a specific task, and in a second step we train

the other branch, which is devoted to the second task, without modifying the weights

of the already trained one. This would act as a sort of transfer learning. In contrast,

the second approach is inspired by FairMOT [3], where both branches are trained at

the same time with the aim of minimizing a general loss with contributions from both

tasks.

3.5 Programming tools 61

The difference in the code with regard to the ”vanilla” ByteTrack5 YOLOX-based

tracker mainly consists in also providing the network the total number of IDs contained

in the training set. This information can be retrieved from the ground-truth files,

computing the number of different IDs labels for every training sequence. In addition,

the original ByteTrack loss has been changed: it now includes a contribution coming

from the re-identification task Let us define the uncertainty loss, that balances the

different contributions from ReID and detection tasks, according to that of [59]:

Ltotal =
1

2

(
Ldete

−w1 + λReID LReIDe
−w2 + (w1 + w2)

)
(3.48)

where we introduced a regularization term λReID between the two losses. The contri-

bution of the detection loss is that of ByteTrack:

Ldet = Lcls
ij + λLreg

ij (3.49)

While the ReID loss is taken from FairMOT:

LReID = −
N∑
i=1

K∑
k=1

Li(k) log(p(k)) (3.50)

Another approach, instead, is simply to sum the two contributions: in this way we are

not taking into account the uncertainty. As done in (3.48), we introduce a regularization

term λReID:

Ltotal = Ldet + λReIDLreID (3.51)

The final score used to assign the detection boxes to tracklets is the same as that of

ByteTrack for IoU . Regarding the information provided by the feature embeddings,

we instead calculate cosine similarity between the embedding of the last frame of

every track and the proposed detection box. The two costs cReID, cIoU are then simply

combined using a weighted sum according to a parameter α that by default is set to

α = 0.9:

Ctot = αcIoU + (1− α)cReID (3.52)

The final assignment is performed by the Hungarian algorithm using this combined

cost.

3.5 Programming tools

For such a work, we have used the Python v.3.8.10 [65] programming language. In

particular, we take advantage of the versatility of the Jupyter Notebook [66] to better

interact and handle the data. The libraries we have mostly used are pandas [67] and

5we refer to a network as ”vanilla”, when we have not applied any change to it.

62 3. Experiments: MOT in sport analytics

NumPy [68] for data management, the PyTorch [69] implementations of the YOLOX

detector and FairMOT, ByteTrack for the MOT task. To extract and modify images,

the OpenCV2 [61] Python library was used, while data visualization was performed

with Matplotlib [70] and Plotly [71].

For the training we exploit two NVIDIA Tesla T4 GPUs, while the inference is per-

formed using only one of them.

Results and Discussion

In this chapter, we present the results that we have obtained. In particular, we

discuss the performance of the MOT tracking algorithm that we have implemented.

Taking inspiration from the ByteTrack algorithm, which uses YOLOX for object de-

tection, we added a reidentification (ReID) head in such a way that it would also exploit

visual cues. This head is taken from another MOT algorithm, namely FairMOT. Train-

ing is carried out on the MOT17 dataset with two different losses: the uncertainty one,

which naturally offers a balance between two separate tasks [59], and the one that

simply sums the contributions coming from the two tasks. The final performance is

evaluated for the original ByteTrack and for the different loss choice, with the result

that the original (vanilla) ByteTrack performs better in terms of MOTA and IDF1, but

worse in terms of MOTP.

We then show that using input videos at higher resolution has a better impact on

the quality of detections, though the throughput is slightly decreased. Finally, we see

that our implemented algorithm is able to properly assign tracklets to detection boxes

for most of the time, meaning that we can successfully track players’ movements on

the pitch when they are inside the visible to the camera recording the event. This is

done first for the two minutes of the match, to assess the goodness of our algorithm,

and finally for half of the first half of the game, which is around 20 minutes of video.

4.1 ByteTrack with re-identification head

Let us now discuss the results we have obtained with the additional head devoted

to reidentification (abbr. ReID) tasks, using MOT17 for training and evaluating. We

start from ByteTrack, where object detection is performed by the YOLOX one-stage

detector, and modify it by adding the head that the FairMOT algorithm uses for ReID

tasks. Our goal is to track multiple objects not only exploiting motion information, as

in the original ByteTrack, but also combining it with visual cues, which are extracted

in the same way as FairMOT does.

To perform such an analysis, we take the small YOLOX network (i.e., yolox-s) [14]

63

64 4. Results and Discussion

in its pretrained version on the MS-COCO dataset and train it on the MOT17Challenge

[15]. We split the training data, that is, the only dataset for which we have ground-

truth annotations, into the actual training set and the evaluation set with proportions,

respectively, of two-thirds and one-third. The tracking algorithm has been implemented

in three flavors:

1. Vanilla: it is essentially the ByteTrack network, which does not have any re-

identification (ReID) added to YOLOX and does not exploit any visual cues,

thus relying only on motion information;

2. Sum: it is ByteTrack that exploits also visual information. The YOLOX detector

is modified by adding a reidentification head, and is trained in order to minimize

the loss (3.51), that is the simply the sum of detection and reidentification loss.

3. Uncertainty: it is ByteTrack that exploits also visual information. The YOLOX

detector is modified by adding a reidentification head, but this time the total loss

to minimize (3.48) balances the two losses related to the detection and reidenti-

fication.

We set the array that encodes visual features x⃗vis ∈ ℜ128, and perform the training using

different weights for the ReID regularization term λReID ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}.
The training has taken approximately ∼ 4.5 hours in total on 2 NVIDIA Tesla T4

GPUs. Our results obtained in the evaluation set are those of Table 4.4.

Let us now recall the CLEAR−MOT metrics (MOTA, MOTP) which are defined,

respectively, in (1.11) and (1.12) and are a metric for the accuracy and the precision

of a MOT algorithm. The plot shows how MOTA and MOTP change in function of

λReID, which is a regularization term for the reidentification loss, and the different

way of combining the two losses contributions, either summing (3.51), or using the

uncertainty loss (3.48). The results are those shown in Fig. 4.41. They are compared

with the vanilla model, that is, the usual small YOLOX model used by ByteTrack

authors and trained with the same procedure. Since the vanilla model is independent

of the ReID loss weight (i.e., λReID), it is represented as a straight dashed line. From

the results shown in Table 4.4, together with the Fig. 4.41, one can clearly see that the

highest MOTA is reached when using the vanilla network. However, it is interesting

to note that using the uncertainty loss leads to better results in terms of MOTP.

Contrary to what one might expect, metrics related to trajectories and reidentification

(i.e., IDF1, ID SWwitches) are lower in the networks with the ReID head. This might

be due to some hyperparameters that need to be tuned in a more appropriate way to

efficiently combine the two costs, or, also, to the fact that using an additional head

enlarges the number of parameters of the model, which, in turn, would need more data

to be properly trained. It is clear that when an additional head is used, inference takes

more time: this is why the vanilla model performs the fastest among all in terms of

4.1 ByteTrack with re-identification head 65

TYPE λReID MOTA (⇑) [%] MOTP (⇓) IDF1 (⇑) [%] ID SW. (⇓) FPS (⇑)
VAN — 73.0 0.177 77.9 139 24.5

SUM 0.0 71.1 0.172 61.0 767 15.9

SUM 0.5 71.1 0.179 67.2 425 15.8

SUM 1.0 70.4 0.179 68.0 409 16.1

SUM 1.5 70.6 0.173 67.7 387 16.7

SUM 2.0 71.3 0.172 68.8 377 16.5

SUM 2.5 69.6 0.191 68.1 440 16.5

UNC 0.0 70.3 0.171 61.8 902 16.5

UNC 0.5 72.5 0.172 68.6 417 16.5

UNC 1.0 72.8 0.171 71.6 387 16.7

UNC 1.5 71.5 0.171 70.8 390 16.7

UNC 2.0 70.4 0.176 70.1 409 16.5

UNC 2.5 70.9 0.169 69.7 413 17.0

.

Table 4.4: The results we have obtained splitting the MOT17 dataset into the train-
ing set, two-thirds of the total samples, and the evaluation set, one-third
of the total samples. The metrics we have considered are the MOTA
(1.11), MOTP (1.12), IDF1 (1.15), ID SW (number of ID SWitches, see
section 1.2.1), and FPS (frames per second, that is, the throughput) for
different values of the regularization term λReID, and choice of losses
{SUM, UNC}, which are, respectively, equations (3.51) and (3.48). The
model without reidentification head is denoted as VANILLA. The sym-
bol (⇑)/(⇓) refers to a quantity such that the higher/lower, the better
the model. Training is performed only using public detections FRCNN
to avoid overfitting, while the batch size is set to 16. For models using
uncertainty loss, the parameters w1 and w2 are set, respectively, to -1.85
and -1.05, as they are the ones originally set in the FairMOT code [3].

(a) MOTA vs Identity Loss
weight. The higher the
MOTA, the better the
model.

(b) MOTP vs Identity Loss
weight. The lower the
MOTP, the better the
model.

(c) MOTP vs MOTA for differ-
ent models with reidentifica-
tion. The higher the MOTA,
the lower the MOTP, the
better the model

Figure 4.41: Comparison, in terms of MOTA (1.11) and MOTP (1.12), of the
different models trained for different weights of the reidentification
Loss λReID. The training is performed only using public detections
FRCNN to avoid overfitting. In particular, the MOT17 dataset is
split into the training and evaluation sets, which have, respectively,
two-thirds and one-third of the total annotated samples. The batch
size is set to 16. For models using uncertainty loss, the parameters w1

and w2 are set, respectively, to -1.85 and -1.05, as they are the ones
originally set in the FairMOT code [3].

66 4. Results and Discussion

Network Pretrained Weights Match Thr. Track Thr. Track Buffer

yolox x mot20 0.90 0.60 90

Table 4.5: The parameters and thresholds used for the tracking of players in the
short (∼ 2 minutes) and in the long videos (∼ 22 minutes). The algorithm
we have used for tracking is ByteTrack [2], and is listed in 1.

velocity.

Finally, it should be noted that the approach proposed by Kendall, that is, using

the uncertainty loss rather than simply summing the two contributions for detection

and reidentification, generally leads to better results. Having said this, if we take into

account both MOTA and MOTP, the best model with the ReID head is the one that

uses uncertainty loss and λReID = 1.0.

4.2 Tracking and assignation algorithm

Let us now show what we obtain when we analyze the detector performance as a

function of the input video specifications, that is, how and whether it is affected by the

resolution of the input video. Later, we test our algorithm to assign players tracked to

the XYZ sensor data on the very first part of the match we are considering, namely,

on the first two minutes of video. This has been done to provide information on the

performance of the algorithm. Then, after we have found that most of the players have

been successfully tracked, we run our algorithm on a longer video, that is, the very first

∼ 22 minutes of the football match.

Effects of video resolution

Following the instructions provided by the authors of the dataset in the related

paper [5], we merge the video fragments at two different resolutions for a total of ∼ 22

minutes of video: the one of the camera (i.e., 1280 × 960), and an upsampled one

by a factor 2 (2560 × 1920). For these two resolutions, we perform the tracking with

ByteTrack using the two videos as input, choosing the set of parameters shown in the

Table 4.5. We run the tracking in such a way that it would also return the “tracked”

videos as output, that is, the videos showing the detection boxes. Although an obvious

effect is to slow down the inference speed, we also need some visual information to

assess the goodness of the detector, that is, how many people are visible in the image

(Ground Truth), how many are detected (True Positive), how many are missed (False

Negative), how many are counted twice (False Positive). Without visual information,

as the one shown in Fig. 4.42, this benchmark would not be possible. We randomly

extract 50 frames from the complete video and, by hand, notate the aforementioned

quantities, finally averaging them over the total number of frames. The metrics are

4.2 Tracking and assignation algorithm 67

(a) Low resolution video. (b) High resolution video.

Figure 4.42: The same frame, chosen randomly from the video we are analyzing [5],
with different resolutions: the one used by the camera (1280 × 960),
and the upsampled (2560 × 1920). The colored boxes, which surround
players, are the bounding boxes returned as output by the detector,
while the number associated is returned by the MOT algorithm that, for
this case, is ByteTrack. In the top left corner it is visible the number of
frame, the number of objects detected and the throughput (i.e., frames
per second) of the algorithm.

computed as follows:

Accuracy =
people detected

people visible
(4.53)

Precision =
people detected

people visible + # people not detected + # double detections
(4.54)

The results returned by this analysis are those shown in the Table 4.6.

Resolution Av. Accuracy (⇑) Av. Precision (⇑) Av. FPS (⇑)
1280 × 960 76.5% 75.7% 12.98

2560 × 1920 78.7% 78.2% 11.92

Table 4.6: Detection results for videos at different resolutions. The average accuracy
and precision are computed as in eq. (4.53) and eq. (4.54) over 50 frames,
randomly selected from the ∼ 22 minutes of video. For every frame, we
annotate by hand the number of visible players, how many of them have
been detected, missed, and detected more than once. The average FPS
is computed as the average, over 50 frames, of the number of frames
processed per second by ByteTrack (this number is visible in the top left
corner of the output, see Fig. 4.42). The symbol (⇑) denotes a quantity
that the higher, the better.

Short video

We can proceed to perform the tracking of the players using the video at a higher

resolution, since we are more interested in having better performances rather than a

real-time inference. We will now discuss the output of our assignation algorithm for

68 4. Results and Discussion

the first 2 minutes of video: we want, in first place, to evaluate the algorithm before

applying it to the complete one (∼ 22 minutes).

The histogram with the distribution of the length of tracklets for this first short

video fragment is the one drawn in Fig. 4.43a. Using the assignation rule we have

introduced, instead, leads to the following average cost distribution (see Fig. 4.43b),

when using the set of thresholds listed in Table 4.7. The bar graph with the ratio

Short Track Thr. Av. Distance Thr. Simultaneous Thr.

0.5s 120Px 3s

Table 4.7: The different thresholds used in our algorithm for assignation of the
bounding box to the sensors (see Algorithm 2). The short track threshold
denotes the amount of seconds for which a tracklet is considered short
and, therefore, should be discarded. The average distance threshold, in-
stead, denotes the maximum average distance in Pixel between a tracklet
and the trajectory of a sensor, according to which an assignation is con-
sidered valid. The last threshold denotes the amount of seconds that two
tracklets must coexist to consider them as simultaneous.

(a) Tracklet duration occurrence distribution. (b) Average assignation cost density distri-
bution. The mean value is 2.2± 0.9.

Figure 4.43: Histograms, for the first two minutes of video, showing the tracklet
duration counts and the average cost distribution for successful assign-
ments of tracklets to sensor trajectories. Tracklets are found using
ByteTrack, while the assignations are performed via the Algorithm 2.

of how long a player is tracked over the total time when inside the visibility cone is

that of Fig. 4.44. It turns out that a player is, on average, tracked 80 ± 16% of the

time when he is visible in the first two minutes of the match. We present here, besides

the successful assignment we have already shown in Fig. 3.38, another result of the

assignation algorithm, namely, the one corresponding to the player with the sensor #2

(see Fig. 4.45). The stacked plots of the positions for every player missed (i.e., not

detected) or unassigned are those in Fig. 4.46 and Fig. 4.47

4.2 Tracking and assignation algorithm 69

Figure 4.44: Bar chart showing the percentage of time a player, marked by the sensor
ID (which is another name for the tag id), has an assigned tracklet
compared to the total time he is within the camera field of view. The
graph refers to the first two minutes of the video, the tracklets are found
using ByteTrack and the assignment is done through the Algorithm 2.
On average, we obtain that a visible player is tracked 80± 16% of the
time he is visible.

Long video

Since the results we have obtained on the two-minute video are satisfactory to us,

we can now perform the tracking through ByteTrack, and the assignation of tracklets

to sensor trajectories via the Algorithm 2 we have implemented. The parameters used

are the same as before, namely the ones listed in 4.7, and for the creation of the long

video, we take 450 fragments of 3 seconds, which roughly corresponds to half duration

of a half-time in the soccer game.

The histogram showing the count distribution of the duration of the tracklets is

the one in Fig. 4.48a, while the density distribution of the average costs for successful

assignations is represented in Fig. 4.48. If a player is visible, that is, inside the visibility

cone, we find that its trajectory is tracked for 59 ± 11% of the time. We then show

the missed/non-assigned count histogram of the positions for every player in Fig. 4.50

and Fig. 4.51. Finally, we produce the density plot of these positions when a miss

occurs, over the total times that a player is located at a certain position in the pitch

coordinates (see Fig. 4.52). According to our findings, we note that video resolution

could have an impact on the performance of our algorithm, especially in the detection

part, which is fundamental for the subsequent tracking task: clearly, if a target is not

detected, it cannot be tracked. It is interesting, however, that even though the camera

has a given resolution we were able to perform the upsampling of a factor 2×. In doing

so, the algorithm run with the same parameters returned different results, which are

slightly better on the video with a larger resolution: both average accuracy and average

precision increase by a couple of percentage points. On the other hand, this comes with

a price, namely a slower inference time of ∼ 1fps. Given that we are more interested in

70 4. Results and Discussion

Figure 4.45: Tracklets assigned to player with tag id #2 in first 2 minutes of video.
Note the ”jump” in the curve, which can be interpreted in the following
way: a certain player has been detected and tracked at the beginning
(the trajectory above), but some instants later his bounding box is
transferred to the player wearing the sensor #2, who has just been
detected. The thicker curve is the sensor data, while the thinner shows
the tracklets from the assigned detection boxes. The color of the curves
changes according to the timestamp: the darker the color, the earlier
the time instant. The fragmentation for the thicker curve denotes that
the sensor data are not available.

4.2 Tracking and assignation algorithm 71

Figure 4.46: Histogram representing all positions along the X-axis of the sensors of
players that either have not been detected by ByteTrack, or have no
tracklet assigned, for the first two minutes of the video under investi-
gation. Different colors refer to positions of different players, which are
uniquely identified by their sensor ID (tag id).

Figure 4.47: Histogram representing all positions along the Y-axis of the sensors of
players that either have not been detected by ByteTrack, or have no
tracklet assigned, for the first two minutes of the video under investi-
gation. Different colors refer to positions of different players, which are
uniquely identified by their sensor ID (tag id).

72 4. Results and Discussion

(a) Tracklet duration density distribution.
The exponent of the power law is γ =
−0.043± 0.002

(b) Average assignation density cost distri-
bution. The mean value is 3.1± 1.1 m.

Figure 4.48: Histograms, for the the complete video (∼ 22 minutes), showing the
tracklet duration density distribution and the average cost density dis-
tribution for successful assignments of tracklets to sensor trajectories.
Tracklets are found using ByteTrack, while the assignations are per-
formed via the Algorithm 2.

Figure 4.49: Bar chart showing the percentage of time a player, marked by the sen-
sor ID (which is another name for the tag id), has an assigned tracklet
compared to the total time he is within the camera field of view. The
graph refers to the complete video, which lasts ∼ 22 minutes, the track-
lets are found using ByteTrack and the assignment is done through the
Algorithm 2. On average, we obtain that a visible player is tracked
59± 11% of his trajectory.

4.2 Tracking and assignation algorithm 73

Figure 4.50: Histogram representing all positions along the X-axis of the sensors of
players that either have not been detected by ByteTrack, or have no
tracklet assigned, for the complete video (∼ 22 minutes) under investi-
gation. Different colors refer to positions of different players, which are
uniquely identified by their sensor ID (tag id).

Figure 4.51: Histogram representing all positions along the Y-axis of the sensors of
players that either have not been detected by ByteTrack, or have no
tracklet assigned, for the complete video (∼ 22 minutes) under investi-
gation. Different colors refer to positions of different players, which are
uniquely identified by their sensor ID (tag id).

74 4. Results and Discussion

Figure 4.52: Density plot of the positions of misses, normalized to all the players
position for the Home team. A “miss” is defined when a player, that
is inside the visibility cone, has not been neither seen nor assigned a
tracklet. This graph refers to the complete video, which lasts ∼ 20
minutes, the tracklets are found via ByteTrack, while the assignation
of tracklets to sensors trajectories is performed using Algorithm 2.

4.2 Tracking and assignation algorithm 75

the performances in terms of accuracy/precision rather than inference speed, we have

chosen to continue with the video at higher resolution, according to Table 4.6.

With regards to the short video of 2 minutes, we see that most of the tracklets

are very short, that is, less than 10 seconds (see Fig. 4.43a). However, there exist even

tracklets that are greater than 40 seconds in length. Using the duration of such a short

video as a reference, the lifespan of the tracklets can reach even the 50% of the overall

duration, which is a very good result. However, we must take into account that the

field of visibility sets a constraint on tracklets: if a player traverses the pitch very fast

from one side to the other side, his tracklet will last a few seconds, even if he has been

tracked for the entire path. Therefore, short tracklets do not necessarily imply that the

results are not good, but long tracklets can be considered a signal of good results.

The average distance distribution for a successful assignment of Fig. 4.43b shows

that most assignments are made when the average distance is less than 2.2±0.9, which

is comparable to sensor error. Furthermore, inspecting the visual comparisons we have

presented in Fig. 3.38 and Fig. 4.45, we see that generally the assigned tracklets

correspond to their target and the algorithm satisfactorily performs the task. However,

in the latter image, it is to be noted that an ID swap occurs: at the beginning of the

tracklet there is a straight line. Indeed, in the output video, the assigned bounding box

initially is tracking a player, while some instants later is transferred to another one.

However, the subsequent tracklet almost perfectly resembles the target sensor.

Despite this problem, the proposed algorithm assigns a bounding box 80± 16% of

the time (see Fig. 4.44) to players inside the visibility cone: some of them even are

tracked almost all the time. According to the metrics we have introduced in Section

1.2.3, we can state that 4 players have been partially tracked, while the remaining 6

have been mostly tracked, out of a total of 10 players of which we have the sensor

position available. This is comparable to the detection performance of Table 4.6, al-

though we must remember that the latter results refer to all players, without any team

distinction.

The histogram with the sensor positions of missed/unassigned tracklets counts,

instead, shows that our algorithm encounters some difficulties in the middle field po-

sition, but this can be explained by stating that most of the time the game develops

exactly there. In fact, in the middle of the pitch we expect to observe the highest

density of players for both teams. Hence, for a detector, it might be more difficult to

work when the density of people is higher, whereas we may expect ID swap between

two different players that are moving towards the same direction, or they make con-

trasts to fight for the ball or keep positions. Also: it is clear that when the density of

players is higher, the number of misses will tend to be higher. Another interesting point

is that, with reference to Fig. 4.47, we have the fewest misses closer to the camera.

76 4. Results and Discussion

Furthermore, many of them occur at the left boundary of the field of view: this can

be explained first by saying that this statistics only refers to the first two minutes of

the video, in which the game almost totally developed on the left side, and even one or

two missed trajectories might bias the result. For a more significant result, we need to

consider the data coming from the longer video.

Let us now discuss the final results of the 20 minutes video, to assess the quality

of our tracking algorithm. According to Fig. 4.48a, the distribution density of the

duration of the tracklets appears to follow a power law with an exponent γ = −0.043±
0.002. The average distance for the successful assignments (see Fig. 4.48b) does not

seem to follow any particular distribution and has mean and standard deviations equal

to 3.1± 1.1 meters. Such a mean value is slightly larger than the previous one, but is

still acceptable and comparable, though twice larger, than the sensor error. Although

the overall result (see Fig. 4.49) is worse than the previous one, it is satisfactory: a

generic player is tracked on average ∼ 60% of the time, that is, more than half of its

trajectory when visible. According to the metrics we have introduced in Section 1.2.3,

all 10 players are partially tracked.

Our algorithm seems to fail the most in the middle of the field according to Fig.

4.50 and Fig. 4.51, that is, where we expect the players to be the most of the time.

However, these graphs do not help much if we do not integrate this information with

the density plot in Fig. 4.52, which we recall to be the total number of misses over

the total number of events. Comparing them with the latter one, we can see that the

players in the middle of the field are almost always tracked: therefore, the large values

at the center of the count histograms follow from the fact that there we expect a larger

density of players. Moreover, we note that at boundaries of the visibility cone there are

the most misses. This may be due to some reasons. First, the parametrization of the

boundaries of such a cone might not be very precise: some players might be considered

visible, although they are actually outside the visibility field and cannot be detected. In

second place, when a player runs into this cone, it may happen that he is not detected

at the very first frames, but might take a while. Another important result is that it

seems that the further we go with respect to the camera, the more difficult it is for

the algorithm to detect/track the player. In fact, many misses occur in the corners of

the pitch, which are opposite to the camera. It is also visible in Fig. 4.51, where we

see a significant tail on the left side, and the part of the graph that lies on the left

side is generally higher than its correspondent on the left. Besides the aforementioned

difficulty in the detection, this can be explained by the fact that this quantity has not

been normalized: the event counting depends on the surface of the pitch visible, which

clearly tends to be larger when we go further from the camera.

Conclusions and Future Work

In this work, we presented the Multi-Object-Tracking problem, providing some for-

malism of it and the metrics used to compare different algorithms. Then, we discussed

ByteTrack and FairMOT algorithms, in particular their architecture, how they work

and are trained, also presenting the dataset we used for training: MOT17. Afterwards,

we proceeded to describe our dataset, which consists of a video of a football match

we use as input of our tracker, so to reconstruct players’ trajectories thanks to this

visual information. The dataset, besides such a video, also makes available the data of

a XYZ sensor throughout the duration of the entire match. Then, we state the goal

of this work, that is, implementing an algorithm to perform the assignation between

the information obtained by the bounding boxes and the trajectories provided by the

sensor, only after we have proceeded to do some preprocessing. In addition, to increase

the quality of the ByteTrack tracker, we attached an additional re-identification head

that also exploits visual cues.

We have found that this hybrid detector, under the same training conditions and

with two different loss options, performs generally worse than the original ByteTrack.

However, for a certain choice of regularization term λReID = 1.0 the results are compa-

rable. There might be two possible reasons for this: the first is that the reidentification

head whose task is to create an embedding vector might increase the need for training

data for the network. This can be solved by using the whole MOT17 dataset for train-

ing or by mixing different datasets, as ByteTrack does for competition networks. The

second is simply an unfortunate choice of the hyperparameters (i.e., w1, w2) present

in the uncertainty loss (2.33), whose role is to balance the contribution of the losses

related to two different tasks, or in the definition of the assignation cost Ctot in (3.52),

that is, try different values for the parameter α. This issue could be solved by having

more time to perform training with different sets of hyperparameters.

We have been able to assign a detection box for ∼ 60± 10% of players’ trajectories

inside the visibility cone. This means that we are generally able to partially track

players. Clearly, the upper bound for this metric is fixed by the goodness of the detector,

which we experimentally found to be ∼ 78%, when using a resolution higher than the

77

78 5. Conclusions and Future Work

native of the camera. Adding one more parameter to perform the assignation and fusing

this information with the position one could increase the algorithm performance. In

fact, one might also want to take advantage of some of the remaining information

provided by the sensor. For example, a immediate quantity that can be estimated

using tracklets is the velocity. Speaking of the detector, we are pretty confident that the

network would perform even better if provided with additional training data, specifically

related to the domain of soccer and sports. However, this would need a non-negligible

effort that is typical of producing labeled data.

Note that since we only have data from the sensor worn by the home team, which

wears a jersey of a very distinct color with respect to the opponent team, it would

be possible to perform the classification of detections according to the team to which

players belong. This would result in an algorithm better tuned to track specifically and

create statistics of only a certain team, while not considering the other one.

Finally, one might also want to use the other camera views of the same event. In

other words, we may want to stitch the images from different views and perform the

same preprocessing we have done; which consists of correcting the radial distortion and

then applying homography. With the output, we could either use the tracking algorithm

on the stitched panorama, or as an alternative, on the three different videos separately

and then re-identify players in the different views. In this way, the entire field will be

visible in its entirety, although we would expect some difficulties in detecting players

that are far from the camera, as we have found. We could also use another dataset,

made available by the same authors [5] of the one used for this work. It consists of

a video recorded with a fish eye lens that, despite being really distorted, frames the

whole pitch during a different match. Ideally, this would also allow us to neglect the

sensor information, although the radial distortion should be treated with much more

care.

In this work, we have presented an algorithm through which it is possible to track

players using a football match video as input, and then draw their trajectories on

the pitch. In this way, simply mounting a pole with a camera on top of it, if in a

good position, would also allow a team with a low budget to obtain the statistics of

its players by tracking them, their position, thus creating more elaborate analysis like

sprint analysis, position heatmap, distance covered throughout the game, etc. We hope

that this project will be a starting point for these types of applications.

References

[1] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “MOTChallenge 2015:

Towards a benchmark for multi-target tracking,” arXiv:1504.01942 [cs], Apr.

2015, arXiv: 1504.01942. [Online]. Available: http://arxiv.org/abs/1504.01942

[2] Y. Zhang, P. Sun, Y. Jiang, D. Yu, Z. Yuan, P. Luo, W. Liu, and X. Wang, “Byte-

track: Multi-object tracking by associating every detection box,” arXiv preprint

arXiv:2110.06864, 2021.

[3] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “Fairmot: On the fairness of

detection and re-identification in multiple object tracking,” International Journal

of Computer Vision, vol. 129, pp. 3069–3087, 2021.

[4] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,

K. Schindler, and L. Leal-Taixé, “Mot20: A benchmark for multi object tracking

in crowded scenes,” arXiv:2003.09003[cs], Mar. 2020, arXiv: 2003.09003. [Online].

Available: http://arxiv.org/abs/1906.04567

[5] S. A. Pettersen, P. Halvorsen, D. Johansen, H. Johansen, V. Berg-Johansen, V. R.

Gaddam, A. Mortensen, R. Langseth, C. Griwodz, and H. K. Stensland, “Soccer

video and player position dataset,” in Proceedings of the 5th ACM Multimedia

Systems Conference on - MMSys '14. ACM Press, 2014. [Online]. Available:

https://doi.org/10.1145/2557642.2563677

[6] Y. Deng, P. Coen, M. Sun, and J. W. Shaevitz, “Efficient multiple object tracking

using mutually repulsive active membranes,” PLoS ONE, vol. 8, no. 6, p. e65769,

Jun. 2013. [Online]. Available: https://doi.org/10.1371/journal.pone.0065769

[7] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

kitti vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and

Pattern Recognition, 2012, pp. 3354–3361.

[8] [Online]. Available: https://www.sportperformanceanalysis.com/article/

artificial-intelligence-ai-in-sports

79

http://arxiv.org/abs/1504.01942
http://arxiv.org/abs/1906.04567
https://doi.org/10.1145/2557642.2563677
https://doi.org/10.1371/journal.pone.0065769
https://www.sportperformanceanalysis.com/article/artificial-intelligence-ai-in-sports
https://www.sportperformanceanalysis.com/article/artificial-intelligence-ai-in-sports

80 REFERENCES

[9] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, “Multiple object

tracking: A literature review,” Artificial Intelligence, vol. 293, p. 103448, Apr.

2021. [Online]. Available: https://doi.org/10.1016/j.artint.2020.103448

[10] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, and B. Leibe,

“Hota: A higher order metric for evaluating multi-object tracking,” International

Journal of Computer Vision, vol. 129, no. 2, p. 548–578, Oct 2020. [Online].

Available: http://dx.doi.org/10.1007/s11263-020-01375-2

[11] P. Jaccard, “THE DISTRIBUTION OF THE FLORA IN THE ALPINE

ZONE.1,” New Phytologist, vol. 11, no. 2, pp. 37–50, Feb. 1912. [Online].

Available: https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

[12] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”

Physical Review E, vol. 51, no. 5, pp. 4282–4286, May 1995. [Online]. Available:

https://doi.org/10.1103/physreve.51.4282

[13] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015. [Online].

Available: http://arxiv.org/abs/1506.02640

[14] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,”

arXiv preprint arXiv:2107.08430, 2021.

[15] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A

benchmark for multi-object tracking,” arXiv:1603.00831 [cs], Mar. 2016, arXiv:

1603.00831. [Online]. Available: http://arxiv.org/abs/1603.00831

[16] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no.

1/2, p. 81, Jun. 1938. [Online]. Available: https://doi.org/10.2307/2332226

[17] E. Itskovits, A. Levine, E. Cohen, and A. Zaslaver, “A multi-animal tracker for

studying complex behaviors,” BMC Biology, vol. 15, no. 1, Apr. 2017. [Online].

Available: https://doi.org/10.1186/s12915-017-0363-9

[18] W.-L. Lu, J.-A. Ting, J. J. Little, and K. P. Murphy, “Learning to track and

identify players from broadcast sports videos,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1704–1716, Jul. 2013.

[Online]. Available: https://doi.org/10.1109/tpami.2012.242

[19] M. Manafifard, H. Ebadi, and H. A. Moghaddam, “A survey on player tracking in

soccer videos,” Computer Vision and Image Understanding, vol. 159, pp. 19–46,

Jun. 2017. [Online]. Available: https://doi.org/10.1016/j.cviu.2017.02.002

[20] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking

performance: The CLEAR MOT metrics,” EURASIP Journal on Image and

https://doi.org/10.1016/j.artint.2020.103448
http://dx.doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1103/physreve.51.4282
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1603.00831
https://doi.org/10.2307/2332226
https://doi.org/10.1186/s12915-017-0363-9
https://doi.org/10.1109/tpami.2012.242
https://doi.org/10.1016/j.cviu.2017.02.002

REFERENCES 81

Video Processing, vol. 2008, pp. 1–10, 2008. [Online]. Available: https:

//doi.org/10.1155/2008/246309

[21] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance

measures and a data set for multi-target, multi-camera tracking,” in Lecture

Notes in Computer Science. Springer International Publishing, 2016, pp. 17–35.

[Online]. Available: https://doi.org/10.1007/978-3-319-48881-3 2

[22] F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prattichizzo,

“Walking ahead: The headed social force model,” PLOS ONE, vol. 12, no. 1, p.

e0169734, Jan. 2017. [Online]. Available: https://doi.org/10.1371/journal.pone.

0169734

[23] S. K. Pal, A. Pramanik, J. Maiti, and P. Mitra, “Deep learning in

multi-object detection and tracking: state of the art,” Applied Intelligence,

vol. 51, no. 9, pp. 6400–6429, Apr. 2021. [Online]. Available: https:

//doi.org/10.1007/s10489-021-02293-7

[24] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, Mar. 1955. [Online].

Available: https://doi.org/10.1002/nav.3800020109

[25] J. Munkres, “Algorithms for the assignment and transportation problems,”

Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp.

32–38, 1957. [Online]. Available: https://doi.org/10.1137/0105003

[26] M. Jaward, L. Mihaylova, N. Canagarajah, and D. Bull, “Multiple object tracking

using particle filters,” in 2006 IEEE Aerospace Conference. IEEE, 2006. [Online].

Available: https://doi.org/10.1109/aero.2006.1655926

[27] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A survey of deep

learning-based object detection,” IEEE Access, vol. 7, pp. 128 837–128 868, 2019.

[Online]. Available: https://doi.org/10.1109/access.2019.2939201

[28] “Visual tracking: An experimental survey,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1442–1468, Jul. 2014.

[Online]. Available: https://doi.org/10.1109/tpami.2013.230

[29] R. Szeliski, Computer Vision. Springer International Publishing, 2022. [Online].

Available: https://doi.org/10.1007/978-3-030-34372-9

[30] A. Bhattacharyya, “On a measure of divergence between two statistical popula-

tions defined by their probability distributions,” 1943.

https://doi.org/10.1155/2008/246309
https://doi.org/10.1155/2008/246309
https://doi.org/10.1007/978-3-319-48881-3_2
https://doi.org/10.1371/journal.pone.0169734
https://doi.org/10.1371/journal.pone.0169734
https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1137/0105003
https://doi.org/10.1109/aero.2006.1655926
https://doi.org/10.1109/access.2019.2939201
https://doi.org/10.1109/tpami.2013.230
https://doi.org/10.1007/978-3-030-34372-9

82 REFERENCES

[31] J. Han, M. Kamber, and J. Pei, “Getting to know your data,” in Data

Mining. Elsevier, 2012, pp. 39–82. [Online]. Available: https://doi.org/10.1016/

b978-0-12-381479-1.00002-2

[32] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[33] R. R. L. Jr, “Kalman and bayesian filters in python,” https://github.com/rlabbe/

Kalman-and-Bayesian-Filters-in-Python, 2020.

[34] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear

systems,” in SPIE Proceedings, I. Kadar, Ed. SPIE, Jul. 1997. [Online].

Available: https://doi.org/10.1117/12.280797

[35] P. S. Maybeck, Stochastic models: V. 1, ser. Mathematics in Science and Engi-

neering. San Diego, CA: Academic Press, Sep. 1979.

[36] A. Rosebrock, “Intersection over union as a similarity measure for

object detection on images - an important task in computer vision.” cC

BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718561.

[Online]. Available: https://pyimagesearch.com/2016/11/07/

intersection-over-union-iou-for-object-detection/

[37] C. Heindl, “py-motmetrics,” https://github.com/cheind/py-motmetrics, 2022.

[38] L. Henderson, “On the fluid mechanics of human crowd motion,” Transportation

Research, vol. 8, no. 6, pp. 509–515, Dec. 1974. [Online]. Available:

https://doi.org/10.1016/0041-1647(74)90027-6

[39] S. Okazaki, “A study of simulation model for pedestrian movement with evacuation

and queuing,” 1993, original article in Japanese, 1979.

[40] O. Biham, A. A. Middleton, and D. Levine, “Self-organization and a dynamical

transition in traffic-flow models,” Physical Review A, vol. 46, no. 10, pp. R6124–

R6127, Nov. 1992. [Online]. Available: https://doi.org/10.1103/physreva.46.r6124

[41] D. Helbing, “Boltzmann-like and boltzmann-fokker-planck equations as a

foundation of behavioral models,” Physica A: Statistical Mechanics and its

Applications, vol. 196, no. 4, pp. 546–573, Jul. 1993. [Online]. Available:

https://doi.org/10.1016/0378-4371(93)90034-2

[42] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR, vol.

abs/1612.08242, 2016. [Online]. Available: http://arxiv.org/abs/1612.08242

[43] ——, “Yolov3: An incremental improvement,” CoRR, vol. abs/1804.02767, 2018.

[Online]. Available: http://arxiv.org/abs/1804.02767

https://doi.org/10.1016/b978-0-12-381479-1.00002-2
https://doi.org/10.1016/b978-0-12-381479-1.00002-2
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://doi.org/10.1117/12.280797
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://github.com/cheind/py-motmetrics
https://doi.org/10.1016/0041-1647(74)90027-6
https://doi.org/10.1103/physreva.46.r6124
https://doi.org/10.1016/0378-4371(93)90034-2
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767

REFERENCES 83

[44] X. Long, K. Deng, G. Wang, Y. Zhang, Q. Dang, Y. Gao, H. Shen,

J. Ren, S. Han, E. Ding, and S. Wen, “PP-YOLO: an effective and efficient

implementation of object detector,” CoRR, vol. abs/2007.12099, 2020. [Online].

Available: https://arxiv.org/abs/2007.12099

[45] P. Sun, J. Cao, Y. Jiang, R. Zhang, E. Xie, Z. Yuan, C. Wang, and

P. Luo, “Transtrack: Multiple object tracking with transformer,” 2020. [Online].

Available: https://arxiv.org/abs/2012.15460

[46] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,

P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:

common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online]. Available:

http://arxiv.org/abs/1405.0312

[47] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,”

2014. [Online]. Available: https://arxiv.org/abs/1404.5997

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[49] G. Jocher, “Yolov5,” https://github.com/ultralytics/yolov5, 2020.

[50] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” 2015. [Online]. Available:

https://arxiv.org/abs/1506.01497

[51] F. Altenberger and C. Lenz, “A non-technical survey on deep convolutional neural

network architectures,” 03 2018.

[52] A. Mounsif, “Football and computer vision can computer vision improve football?”

https://web.unibas.it/bloisi/corsi/progettivep/soccer-player-detection.html.

[53] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy

of object detection,” CoRR, vol. abs/2004.10934, 2020. [Online]. Available:

https://arxiv.org/abs/2004.10934

[54] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox,” https://github.com/

Megvii-BaseDetection/YOLOX, 2021.

[55] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy

of object detection,” CoRR, vol. abs/2004.10934, 2020. [Online]. Available:

https://arxiv.org/abs/2004.10934

[56] H. S. Lee, “Bag of tricks for image classification with convo-

lutional neural networks review,” https://hoya012.github.io/blog/

Bag-of-Tricks-for-Image-Classification-with-Convolutional-Neural-Networks-Review/,

2019.

https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2012.15460
http://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1512.03385
https://github.com/ultralytics/yolov5
https://arxiv.org/abs/1506.01497
https://web.unibas.it/bloisi/corsi/progettivep/soccer-player-detection.html
https://arxiv.org/abs/2004.10934
https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/Megvii-BaseDetection/YOLOX
https://arxiv.org/abs/2004.10934
https://hoya012.github.io/blog/Bag-of-Tricks-for-Image-Classification-with-Convolutional-Neural-Networks-Review/
https://hoya012.github.io/blog/Bag-of-Tricks-for-Image-Classification-with-Convolutional-Neural-Networks-Review/

84 REFERENCES

[57] A. Anka, “Yolo v4: Optimal speed & accuracy

for object detection,” https://towardsdatascience.com/

yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed47b50, 2020.

[58] J. Ferryman and A. Ellis, “PETS2010: Dataset and challenge,” in 2010 7th

IEEE International Conference on Advanced Video and Signal Based Surveillance.

IEEE, Aug. 2010. [Online]. Available: https://doi.org/10.1109/avss.2010.90

[59] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty

to weigh losses for scene geometry and semantics,” 2017. [Online]. Available:

https://arxiv.org/abs/1705.07115

[60] F. Devernay and O. Faugeras, “Straight lines have to be straight,” Machine

Vision and Applications, vol. 13, no. 1, pp. 14–24, Aug. 2001. [Online]. Available:

https://doi.org/10.1007/pl00013269

[61] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[62] A. R. Channel. Roma v lazio, 2018-19 — full match. Youtube. [Online]. Available:

https://www.youtube.com/watch?v=QdDrugBVuEA&ab channel=ASRoma

[63] correcting fisheye distortion programmatically. Stack Over-

flow. [Online]. Available: https://stackoverflow.com/questions/2477774/

correcting-fisheye-distortion-programmatically

[64] H. GuangXin and A. Nicolai, “Bytetrack reid,” https://github.com/andrybicio/

ByteTrack ReID, 2022.

[65] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor Wiskunde en

Informatica Amsterdam, The Netherlands, 1995.

[66] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,

K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and

C. Willing, “Jupyter notebooks – a publishing format for reproducible compu-

tational workflows,” in Positioning and Power in Academic Publishing: Players,

Agents and Agendas, F. Loizides and B. Schmidt, Eds. IOS Press, 2016, pp. 87

– 90.

[67] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020. [Online].

Available: https://doi.org/10.5281/zenodo.3509134

[68] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del

Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming

https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed47b50
https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed47b50
https://doi.org/10.1109/avss.2010.90
https://arxiv.org/abs/1705.07115
https://doi.org/10.1007/pl00013269
https://www.youtube.com/watch?v=QdDrugBVuEA&ab_channel=ASRoma
https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
https://github.com/andrybicio/ByteTrack_ReID
https://github.com/andrybicio/ByteTrack_ReID
https://doi.org/10.5281/zenodo.3509134

REFERENCES 85

with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online].

Available: https://doi.org/10.1038/s41586-020-2649-2

[69] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“Pytorch: An imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates,

Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[70] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science &

Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[71] P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online]. Available:

https://plot.ly

https://doi.org/10.1038/s41586-020-2649-2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://plot.ly

	Introduction
	The Multiple-Object Tracking problematic
	Formalization of the problem
	Object detection
	Object tracking

	Model performance metrics
	CLEAR MOT
	IDF1
	Mostly Tracked, Partially Tracked, Mostly Lost

	Physics-based applications
	Social Force models

	Methodology: detectors, benchmarks and MOT algorithms
	Detectors
	YOLO detectors family

	YOLOX
	The MOT challenges
	ByteTrack
	FairMOT

	Experiments: MOT in sport analytics
	Dataset description
	Sensor data
	Video data

	Preprocessing
	The assignation algorithm
	ByteTrack with re-identification head
	Programming tools

	Results and Discussion
	ByteTrack with re-identification head
	Tracking and assignation algorithm

	Conclusions and Future Work

