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Alla mia nonna Lina
Ai miei genitori

« In principio Dio creò il cielo e la terra.
E la terra era informe e vuota
e le tenebre ricoprivano l’abisso.

...

E poi le stelle.
Dalla volta del cielo esse rischiarano la terra.

Dio le mise lassù per regolare
il giorno e la notte

e separare la luce dalle tenebre. »

Genesi, 1.
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Abstract

The Pulsation Timing (PT) is a fruitful method to search and characterize exoplan-
ets orbiting oscillating stars whose pulsation period, instrinsically very coherent, is
phase-shifted because a perturbing companion induces the star to orbit around the
barycenter of the system (so called Light Travel Effect or LTE). The more massive
the perturber is, and the wider the star-perturber separation is, the larger will
be the LTE signature. So far, only a handful of exoplanets have been discovered
via such method compared to the 4,424 exoplanets already detected through other
techniques.

My Master Thesis work consists in a pioneering analysis of short-cadence TESS
light curves from a sample of suitable High Amplitude Delta Scuti variables (HADS,
A0-F5) deriving, for the fundamental pulsation mode, phase shifts of the signal as
a function of time (so called “(O−C)” diagram) to investigate if an LTE from an
unseen companion can explain the behavior of the system.
For this purpose, HADS are the most appropriate pulsators to study since they
exhibit short-period oscillations (1-3 hours) and high pulsation amplitudes (tenths
of magnitudes) mostly in radial modes. In this favorable case, PT yields an high
S/N, able to detect phase shifts of a fraction of second. I selected a shortlist of
three HADS to investigate: Chang 134 (M = 1.38±0.03 M�), V393 Car (M =
1.98±0.17 M�) and Chang 349 (M = 1.78±0.16 M�) whose masses are computed
according to Moya et al., 2018 and Queiroz, Anders, Chiappini et al., 2020.
I carried out a two-level harmonic analysis exploiting the VARTOOLS Light Curve
Analysis Program (Hartman and Bakos, 2016) by implementing an initial tradi-
tional least-squares regression and later a more sophisticated Monte Carlo Markov
Chain approach to estimate error bars on phase shifts. From resulting values and
associated uncertainties, computed individually for every one-orbit segment (∼2
weeks) of the light curve, I constructed the (O − C) diagram to search for timing
departures induced by LTEs. By fitting the (O − C) diagram, I extracted the
orbital period of the companion and the semi-amplitude of the LTE, “A”. Thanks
to the third Kepler’s law, I computed the orbital semi-major axis “a” of the ex-
ternal body. Afterwards, assuming circular and edge-on orbits (e = 0, i = π/2), I
estimated the mass of the companion, knowing both A and a. Lastly, I compared
results obtained from my harmonic analysis with outcomes of the pilot study I set
up to evaluate expected LTEs as a function of a for different perturbers.
I conclude that the (O−C) diagrams I computed are consistent with the presence
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of a brown dwarf companion (M ' 49 ± 5 MJ) in orbit around Chang 134 at 0.4
AU and an M-dwarf binary (M ' 195 ± 18 MJ) orbiting V393 Car in a 3-year
orbit. On the contrary, the harmonic analysis of Chang 349 resulted to be not
conclusive because no sinusoidal trend is able to model its (O − C) diagram, and
more data and temporal coverage is needed to draw definitive conclusions.

My analysis demonstrated the crucial role of the PT technique in characterizing
orbital and intrinsic properties of companions orbiting at large separation from the
host pulsating star. Being a less explored detection method, PT can be further
developed in the near future offering significant contributions to the knowledge
of evolved systems around pulsating stars. In the short term, the main source of
photometric data will be the TESS mission which continues gathering data and
extending the temporal baseline that will be complemented with other archival
light curves or with on-purpose observations at ground-based facilities like the
Asiago Observatory. Furthermore, my pioneering work on the PT technique can
be generalized to a wider sample of pulsators, not only HADS or stars within the
instability strip, by also addressing issues on the absolute calibration of TESS
time stamps. To conclude, results obtained from the harmonic analysis I carried
out in my master thesis project are fruitful for TESS past, present and future
observations and they will turn out to be valuable and promising also for the
forthcoming PLATO mission.

TABLE OF CONTENTS 9



Sommario

Il Pulsation Timing (PT) è una tecnica utile per cercare e caratterizzare esopianeti
orbitanti attorno a stelle oscillanti il cui periodo di pulsazione, intrinsecamente
molto coerente, è sfasato perché un compagno perturbante induce la stella ad or-
bitare attorno al baricentro del sistema (cosiddetto Light Travel Effect o LTE).
Più massiccio è il perturbatore e più ampia è la distanza stella-perturbatore, mag-
giore sarà il LTE. Finora, solo una manciata di esopianeti è stata scoperta con tale
metodo rispetto ai 4,424 esopianeti già scoperti con altre tecniche.

Il mio lavoro di tesi magistrale consiste in un’analisi pionieristica di curve di luce
TESS a breve cadenza da un campione di variabili Delta Scuti a grande ampiezza
(cosiddette High Amplitude Delta Scuti, HADS, A0-F5) derivando, per il modo
fondamentale di pulsazione, sfasamenti del segnale in funzione del tempo (il co-
siddetto diagramma “(O − C)”) per indagare se un LTE causato da un corpo
secondario non visibile fotometricamente possa spiegare il comportamento fisico
del sistema. A questo scopo, le stelle HADS sono i pulsatori più appropriati da
studiare poiché mostrano oscillazioni di breve periodo (1-3 ore) e ampie ampiezze
di pulsazione (decimi di magnitudine) per lo più in modi radiali. In questo caso
favorevole, la tecnica del PT produce un S/N significativo, in grado di rilevare
sfasamenti dell’ordine di una frazione di secondo. Ho selezionato una lista di tre
HADS da studiare: Chang 134 (M = 1.38±0.03 M�), V393 Car (M = 1.98±0.17
M�) e Chang 349 (M = 1.78±0.16 M�) le cui masse sono state calcolate secondo
Moya et al., 2018 e Queiroz, Anders, Chiappini et al., 2020. Ho poi effettuato
un’analisi armonica a due livelli sfruttando il programma VARTOOLS (Hartman and
Bakos, 2016) e implementando inizialmente una regressione tradizionale dei minimi
quadrati e successivamente un approccio più sofisticato, cosiddetto Monte Carlo
Markov Chain, per stimare le barre di errore sugli sfasamenti. Dai valori risultanti
e dalle incertezze associate, calcolati individualmente per ogni segmento orbitale
(∼2 settimane) della curva di luce, ho costruito il diagramma (O−C) per cercare
derive temporali indotte da LTEs. Fittando il diagramma (O − C) ho estratto il
periodo orbitale del compagno e la semiampiezza del LTE, “A”. Grazie alla terza
legge di Keplero ho calcolato il semiasse maggiore dell’orbita del corpo esterno
“a”. Successivamente, ipotizzando orbite circolari osservate di taglio (e = 0, i =
π/2), ho stimato la massa del perturbatore, conoscendo sia A che a. Infine, ho
confrontato i risultati ottenuti dall’analisi armonica con quelli di uno studio pilota
che ho impostato per valutare il LTE atteso al variare di “a” e della la massa del
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perturbatore. Ho trovato una nana bruna (M ' 49 ± 5 MJ) in orbita attorno
a Chang 134 a 0.4 AU e una nana M (M ' 195 ± 18 MJ) orbitante attorno a
V393 Car su un’orbita di 3 anni. Al contrario, l’analisi armonica di Chang 349 è
risultata non conclusiva in quanto nessun andamento sinusoidale può modellare la
distribuzione degli sfasamenti nel diagramma (O − C).

La mia analisi ha dimostrato il ruolo cruciale della tecnica PT nel caratterizzare
le proprietà orbitali e intrinseche di compagni esterni orbitanti a grande distanza
dalla stella pulsante ospite. Essendo un metodo di ricerca esoplanetaria poco sfrut-
tato, la tecnica PT può essere sviluppata nel prossimo futuro offrendo contributi
significativi alla conoscenza di sistemi evoluti attorno a stelle pulsanti. La prin-
cipale fonte di dati fotometrici sarà la missione TESS che continua a raccogliere
dati ed estendere la baseline temporale che sarà ulteriormente integrata con altre
curve di luce d’archivio o con osservazioni mirate da terra usando telescopi come
l’Osservatorio di Asiago. Inoltre, il mio lavoro esplorativo sulla tecnica PT può
essere generalizzato a un campione più ampio di pulsatori, non solo HADS o stelle
all’interno della cosiddetta instability strip, affrontando anche questioni relative
alla calibrazione assoluta dei time stamps del satellite TESS. In conclusione, i
risultati ottenuti dall’analisi armonica che ho svolto nel mio progetto di tesi ma-
gistrale sono fruttuosi per le osservazioni passate, presenti e future di TESS e si
riveleranno preziosi e promettenti anche per la futura missione PLATO.

TABLE OF CONTENTS 11
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Chapter 1
Introduction

1.1 Extrasolar Planets
Exoplanets (planets outside our Solar System) are defined according to the Inter-
national Astronomical Union1 (IAU) as:

• Objects having true masses below the limiting mass for thermonuclear fusion
of deuterium2 that orbit stars, brown dwarfs or stellar remnants and that
have a mass ratio with the central object below the L4/L5 instability, i.e.
M/Mcentral < 0.04, are “planet” (regardless of how they formed).

• The minimum mass and size required for an extrasolar object to be con-
sidered as a planet should be the same as that used in the Solar System.

The search for planets beyond our Solar System and their characterization became
a relevant scientific object of interest since the early 1990s.
Beginner studies were published by Wolszczan and Frail, 1992, who discovered
the first planetary system, and Mayor and Queloz, 1995 who discovered the first
Jupiter-like exoplanets orbiting a Solar-type star. This discovery encouraged other
scientists in the field which rapidly turned out to be avantgarde. So far, more than
4400 exoplanets have been confirmed3 thanks to powerful technological develop-
ments in both ground-based and space-based missions.
Several techniques have been developed over the years (Perryman, 2018) for de-
tecting exoplanets following a rapid technological progress:

• Astrometry measures the transverse component of the change of position of
the host star induced by the gravitational influence of a perturbing external
body. The observable astrometric signature, α, is the angular size of the semi-
major axis of the stellar orbit about the barycenter as it appears projected

1https://www.iau.org
2Calculated to be ' 13 Jupiter masses for objects of Solar metallicity.
3https://exoplanetarchive.ipac.caltech.edu

13

https://www.iau.org
https://exoplanetarchive.ipac.caltech.edu


onto the sky-plane:
α ' Mp

M?

a, (1.1)

where a is the semi-major axis of the planetary orbit, Mp is the mass of the
perturber and M? is the stellar mass.

• Microlensing consists in variations of the observed flux of a magnified back-
ground star when a foreground star, the so called lens star, warps its wave-
front according to laws of Einstein’s general relativity. Eventually, the pres-
ence of a planetary system around the lens star is inferred by observing a
distortion of the stellar light curve with respect to the predicted model for a
single lens.

• Imaging concerns the direct observation of the planet as a resolved, point-
like source of light. This light can be originated either by the planet itself
as thermal emission or by the host star as reflected light. Since the planet-
star angular separation is very small (usually � 1”) the stellar emitted flux
blinds the telescope when using conventional techniques, hiding the possible
presence of a planet. For this reason, coronographs are the key to unveil the
planet because they mask the star by stopping the stellar light.

• Timing: this is a general class of techniques where an astrophysical signal,
which is supposed to be intrinsically periodic when no planets are present, is
searched for any departure from a strict periodicity. This can be, for instance,
the orbital period of already known planets in the same system (TTV; Transit
time variations, Holman and Murray, 2005) or the orbital period of a binary
star (ETV; eclipse timing variations). A particular scenario is the case of
planets orbiting variable pulsating stars. These exoplanets can be detected
by finding a modulation of the pulsation period that can be modeled as
a light-travel effect (LTE) due to the star oscillating around the common
barycenter of the planet-star system combined with the finite speed of light.
The pulsation timing method is the one employed in this work and for such
reason is explained in much more detail in section 2.3.

However, the most commonly used detection techniques are the radial velocity and
the transit method explained in more detail in the following subsections. Those
are also the most fruitful techniques so far, in terms of discovered exoplanets as
shown in the histogram below (Fig. 1.1).
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Figure 1.1: Histogram illustrating the number of detections per year. Colors rep-
resent detection techniques exploited. Transits (in green) and radial velocities (in
red) are the most used detection techniques since 1999. Last update: 17 June,
2021. Image credit: https://exoplanetarchive.ipac.caltech.edu.

1.1.1 Radial velocity technique
When a star is orbited by a secondary body, the gravitational interaction induces a
stellar motion around the common barycenter of the system. Consequently, the star
periodically moves along the line of sight of a distant observer and spectroscopic
observations will highlight this motion as a Doppler shift of the stellar spectral
absorption lines. By modeling this signal and measuring the stellar radial velocity
(RV) semi-amplitude (Perryman, 2018)

Kstar = (1− e2)−1/2 Mp,min

(M? +Mp,true)2/3

(
Porb

2πG

)−1/3

, (1.2)

it is possible to derive the orbital period and the minimum mass of the perturber
(Mp, min = Mp, true sin(i), where i is the inclination of the orbital plane with respect
to the sky plane, see figure 1.4). In the figure below (Fig. 1.2) is reported an
example of the typical radial velocity curve of a planet-hosting star, folded over
the orbital period of the planet.
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Figure 1.2: RV curve of the Ultra Short Period (USP) exoplanet Kepler-78b cor-
rected by the offset induced by the stellar activity as a function of the orbital
phase. Each color represents a different night of observation gathered by HARPS-
N. The red curve is the best-fit model returning an estimated planetary mass of
Mp = 1.9± 0.3 M⊕.
Image credit: Vaulato and Gandolfi, 2019.

The first convincing exoplanetary detection via RV method dates back to the
pioneering publication of Mayor and Queloz, 1995 who discovered the first hot
Jupiter, 51 Peg b, orbiting an host star similar to our Sun.

The RV method is often applied in combination with other detection techniques
(such as the transit method) as part of the so called “follow-up” analysis for the
confirmation and better characterization of the planetary system. Furthermore,
RV curve might be warped by the so called Rossiter-McLaughlin (RM, Rossiter,
1924 and McLaughlin, 1924) effect which occurs in eclipsing systems when the
companion crosses in front of a rotating star (i.e. transits) thus creating a distor-
tion in the shape of the stellar RV curve. Modeling the RM effect, astronomers
are able to estimate the sky-projected spin-orbit angle between the planet’s orbital
plane and the host star equatorial plane.

1.1.2 Transit detection method
A transit is an event occurring when the inclination “i” of the orbital plane of a
planet with respect to the line of sight of the observer is close to 90 degrees (see
Fig. 1.4). Indeed, when the planet transits in front of the star, the stellar light
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curve exhibits a temporary dimming which lasts until the secondary body does not
overlap its host star anymore. Such a dimming can be detected by gathering high-
precision photometric time series of the host star (“light curve”) and by modeling
its shape we can measure the radius, orbital inclination and orbital period of the
transiting planet.
In first approximation, the transit depth is given by:

∆F '
(
Rp

R?

)2
, (1.3)

where Rp and R? are the planetary and stellar radius, respectively.
The figure below (Fig. 1.3) shows a typical stellar light curve affected by a transit
feature.

Orbital phase

Figure 1.3: Transit signature of HAT-P-12b. The normalized stellar flux (TESS
data) is plotted as a function of the orbital phase and is fitted by the transit model
(red line; own work).

The first exoplanet detected through the transit technique (Henry et al., 2000)
was a gas giant orbiting the star HD 209458 (HD 209458 b), previously discovered
by RVs.
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Figure 1.4: Geometry of an elliptical orbit in three dimensions where the reference
plane is tangent to the celestial sphere.
Image credit: Perryman, 2018.

As ultimate goal, from the combination of RV and transit detection methods, as-
tronomers are able to measure or at least constrain the planetary bulk properties,
i.e. true mass, radius and density. If the planetary mass and radius are known, the
chemical composition, mean density and inner structure of the planet are outlined
by constructing the so called mass-radius diagram (e.g. Fig. 1.5). The reported
graph shows curves of composition, so called iso-chemical composition curves, con-
sidering elements like water, silicates and iron. These curves trace the potential
chemical structure of the planet depending on its radius and mass. Indeed, in the
central region of the diagram astronomers expect to find dense terrestrial plan-
ets (i.e. Earth twins and/or Super-Earths), composed mainly by rocks, metals,
silicates and a thin captured gaseous atmosphere. Quite the opposite, for higher
masses and radii (e.g. Jupiter radius R ' 11.2 R⊕ and mass M ' 317.8 M⊕)
astronomers find gas giant planets, mostly made of hydrogen and helium (∼ 90 %
of the total mass) with a core of silicates and iron.
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Figure 1.5: Mass-Radius diagram in Earth units. The blue, red and yellow solid
curves indicate a composition made of water, iron and bridgmanite, respectively.
The dashed curves indicate hybrid chemical compositions. Gray dots with uncer-
tainties represent a general distribution of exoplanets whereas the red dots with
respective error bars are four Earth-like exoplanets; from left to right: Kepler-78b,
K2-141b, CoRoT-7b and K2-131b.
Image credit: Vaulato and Gandolfi, 2019.
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Chapter 2
Pulsating stars

2.1 Physical mechanism
Asteroseismology is a powerful method for investigating the inner structure of
stars by studying their modes of oscillation. A particular class of stars for which
pulsations are easy to detect are the so called “Delta Scuti” (δSct, from the name
of its prototype) on which this thesis is focused. The classical mechanism which
drives the pulsation is the so called “heat-engine” mechanism, for the first time
proposed by Eddington, 1917 for Cepheid variables. It strictly depends on the
change of the stellar opacity, K. The K-variation is caused by the heating of a
He-rich stellar atmospheric layer which expands, becomes more ionized and, as
a consequence, more opaque. The transparency drop of such atmospheric layer
partially blocks the outgoing stellar flux which appears dimmer to the observer.
The trapped radiation will heat up more the helium layer that continues to expand
and ionize. While the layer is expanding, the temperature starts decreasing and
the helium layer becomes less opaque, such that the stellar flux is able to “escape”
that atmospheric level reaching the observer. The escaped light does not heat
up the atmosphere anymore and the helium component cools down, contracting.
δSct, together with other pulsators like RR Lyrae variables and rapidly oscillating
Ap stars (roAp), are typical A stars driven by the Eddington mechanism.
For completeness, as presented by Guzik et al., 2000, I mention that there is an-
other process responsible of stellar pulsations for those kind of stars: the convective-
flux modulation mechanism operating in particular in the case of γ Doradus vari-
ables if they have sufficiently deep envelope convection zones.
Pulsators are described by pulsation modes which refers to three main quantum
numbers:

• n : overtone or radial order, it expresses the amount of radial nodes;

• l : degree, it indicates the number of surface nodes;

• m : azimuthal order, its absolute value specifies the number of surface nodes
which are lines of longitude. If |m| < 0 the modes are prograde and fre-
quencies higher in the observer’s reference frame, viceversa the modes are
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retrograde.

Gravity and pressure are the two main restoring forces for stellar oscillations that
act bringing the star back to its equilibrium state. Therefore, exist pressure modes
(p) having n > 0 and gravity modes (g) having n < 0 and l ≥ 1, since they are
non-radial modes. In the case of radial motion, the gravitational force increases
during compression and gravity accelerates the oscillations instead of restoring
them hence, in this configuration, the pressure acts as a restoring force. On the
contrary, in case of transverse motion, gravity restores the motion via buoyancy
(Handler, 2013).

2.2 Delta Scuti stars and the Instability Strip
The Instability Strip is a portion of the Hertzsprung–Russell diagram enclosing
the vast majority of known pulsating stars. It is interest of this work to focus on
δSct variables.
δSct, as described by Kurtz, 2000, pulsate in both radial and non-radial modes,
have H-core-burning and may be both post- and pre- main sequence stars, ranging
between spectral types A2V to F0V and A3III to F5III. Referring to the review of
S. Murphy, 2015, their observational instability strip can be “vertically” split in
two regions:

1. δSct nearby the Zero Age Main Sequence (ZAMS) have effective temper-
atures in the range 7380 < Teff < 8600 K, a roughly surface gravity of
log(g) ≈ 4.30 in cgs units and masses between 1.2 < M < 2 M�;

2. δSct at the top of the instability strip (further from the ZAMS) have 6300 <
Teff < 7530 K and log(g) = 3.25.

The δSct instability strip is delimited by the red and blue edges which are the-
oretically extimated for non-radial pulsating δSct by Dupret et al., 2004 through
the Time-Dependent Convection (TDC) approach based on the work of Gabriel
et al., 1975. TDC models are computed for several values of the free mixing-length
parameter (α) that expresses the efficiency of the convection acting in combination
with the pressure scale height in the stellar interior (Canuto, 1990). Graphically,
the results are summarized in Fig. 2.1.
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Figure 2.1: δSct distribution in logarithmic scale within the instability strip,
mostly above the ZAMS. Blue and red edges are theoretically derived for α = 1.8,
best-fit value for ground-based observations. Curves are the evolutionary tracks,
i.e. isochrones, computed for different stellar masses: from the Chandraseckhar
mass, 1.4 M�, to 2.2 M�, in steps of 0.2 M�. Image credit: Dupret et al., 2004.

The diagram above (Fig. 2.1) is sensitive to the metallicity parameter, Z. Indeed,
lower values of Z will shift the evolutionary tracks to higher Teff and higher log(g).
According to the Stefan-Boltzmann law (L ∝ R2T 4), metal-poor stars having same
age and mass are more luminous; this assumption will affect the stellar lifetime
along the main sequence since the core hydrogen will exhaust more quickly with
respect to metal-rich stars. Therefore, evolutionary tracks change according to the
stellar metal abundance. On the other hand, Z does not influence the position of
the edges limiting the instability strip because for δSct the HeII driving zone is
only partially ionised (Balona, 2014).

2.2.1 Observational history of Delta Scuti stars
Before the advent of space-based telescopes such as Kepler mission (Borucki et
al., 2010), CoRoT (Moutou et al., 2013) and, later on, TESS (Ricker et al., 2014),
ground-based observations were mostly limited to a photometric precision of about
1 mmag (thousandth of magnitude). Astronomers believed that, by improving the
photometric precision and lowering the detection limits, the frequency spectra of
δSct would have resulted much more complex than what was previously thought.
The first Kepler observations were able to reach detection limits down to 1-10
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µmag, confirming the already predicted spectral complexity of variable stars.
Before the advent of space-based photometry, the best known δSct were the so
called High Amplitude Delta Scuti (HADS), now estimated to be merely the ∼
0.24% of the stars in the instability strip (Lee et al., 2008). Indeed, there was no
need of high precision photometry in order to detect such targets. HADS were
associated to slow-rotating pulsators (rotational speed nowadays extimated to be
' 160 Km·s−1, S. Murphy, 2015) favoured in radial oscillating modes and located
in the centre of the instability strip.
Thanks to the pioneering space-based observations, HADS are defined as a small
subgroup of δSct stars whose peak-to-peak light variation is greater than 0.3 mag
(S. Murphy, 2015). HADS have the highest amplitudes making them the best
suitable targets for investigating the evolution of frequency and period modulation
when a long baseline of observations is available. They are a few because the
vast majority of the δSct population is composed by low-amplitudes (∼ 1 mmag,
achievable thanks to innovative space-based photometry) and non-radial modes.

Below (Fig. 2.2 and 2.3), I reported two examples (from TESS short-cadence pho-
tometry) of typical light curves of one “classical” δSct pulsator, GW Dra (top
panel) and of one HADS, Chang 349 (bottom panel).
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Figure 2.2: Normalized light curve (TESS sector 1) of δSct pulsator GW Dra.
Flux in electrons per second as a function of the barycentric time.
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Figure 2.3: Normalized light curve (TESS sector 1) of the HADS pulsator Chang
349. Flux in electrons per second as a function of the barycentric time.

2.3 The Pulsation Timing technique
Pulsation timing (PT, Hermes, 2018) is a kinematical technique for the detection
of exoplanets orbiting periodically variable stars. Indeed, variables such as δSct or
pulsars1 are highly regular pulsators and can be thought as precise astrophysical
clocks. When orbited by an external (or more than one) body(ies), the primary
star oscillates around the barycenter of the system. Since the speed of light is fi-
nite, the component of the orbital motion along the line of sight breaks the strong
periodicity of the stellar pulsations because of what is known as light-travel effect
(LTE). Therefore, any time delay affecting the incoming stellar signal could be seen
as a hint of the presence of one or more additional bodies gravitationally bound to
the variable star. If the measurement errors are small enough, the LTE technique
could be in principle sensitive to perturbers down to the planetary regime. To be
sure that the observed time delay is actually due to an LTE effect, the different
pulsation modes can be individually investigated, since a purely kinematic effect
is supposed to be coherent in time and to identically affect all the pulsation modes
of the signal.
The semi-amplitude of the LTE, considering a perturber on a circular orbit (that

1Pulsars (Perryman, 2018, chapter 4) are highly spinning, magnetized and rapidly rotating
neutron stars, resulting from the collapse of massive stars (typically ranging between ∼8 to
40 M�). Millisecond pulsars are a peculiar subgroup since are low-magnetized and extremely
regular pulsators with period variations at a rate of ∼ 10−19 (Bailes, 1996).
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is having a null eccentricity, e = 0) around the host star, is:

A ' a sin(i)
c

mp

M?

, (2.1)

where c is the speed of light, a is the orbital semi-major axis, i is the inclination
of the orbital plane with respect to the sky plane, mp is the mass of the perturber
and M? is the stellar mass under the simplifying assumption that M? � mp.
Observationally, the LTE translates in a phase shift of the oscillations which is in
principle detectable through Fourier analysis.
The scenario described above is the simplest one. For a more complete description a
Fourier harmonic analysis is needed. Following this approach, the light-travel-time
delays can be analytically translated into a Fourier series of sinusoidal functions
(Hermes, 2018):

τ(t) =
N∑
k=1

Ak sin
(

2πkt
Porb

+ φk

)
, (2.2)

where Ak is the semi-amplitude of the signal, Porb is the orbital period and φk is
the phase referred to a zero-time point.
Equation (2.2) is the base for the construction of the so called “periodogram”
(Zechmeister and Kürster, 2018) from which the most prominent peak, corres-
ponding to the dominant period, is extracted.
A common tool in this search is the so called “(O−C)” diagram, where the observed
phase of a given pulsation mode (O, “observed”) is compared to the theoretically
computed values (C, “calculated”) for a coherent pulsation period corresponding
to the dominant peak of the average periodogram. Searching exoplanetary signa-
tures, it is necessary to investigate the (O − C) diagram for as many pulsation
modes as possible since, if the perturber were a planet, it is supposed to alter
equally the arrival times of all pulsation modes .
Residuals can be mathematically written as (Hermes, 2018, taking the cue from
Kepler et al., 1991):

O − C = t0 + ∆PE + 1
2PṖE

2 + A1 sin
(

2πE
Porb,1

+ φ1

)
, (2.3)

where t0 is the reference phase, ∆P is the uncertainty in the pulsation period, Ṗ is
the period change in time, φ1 is the phase-variation phase and A1 is the amplitude
of the phase variations due to an external body perturbing the system. E is the
number of epochs calculated as the integer ratio E = t/P , observed times t divided
by the pulsation period P .
Graphically, the (O−C) diagram for a circular orbit is similar to its radial velocity
curve, having a sinusoidal shape as shown in Fig. 2.4, extrapolated from the work
of Mullally et al., 2009.
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Figure 2.4: Example of the expected (O − C) diagram in the pulsation timing
analysis. The figure extracted from Mullally et al., 2009 represents the residuals
in pulse arrival time of the white dwarf GD 66 perturbed by a 2 MJ exoplanet in
a 4.5 year orbit.

In the more general case of eccentric orbits, according to the work of Irwin, 1952,
the shape of the LTE curve is similar to a RV curve having half the eccentricity
and ω decreased by 90 degrees, where ω is the angle indicated in Fig. 2.5. This
approximation is accurate only for small eccentricities.

Based on what I described in the previous sections, in order to optimally exploit
the PT technique to search for planetary-mass objects orbiting δSct stars, I need:

• A photometric time series (“light curve”) spanning a temporal baseline long
enough to sample the orbital period of the perturber. The wider the ob-
servational baseline is, the greater will be the sensitivity of PT to larger
semi-major axes and therefore to smaller planetary masses (according to
equation 2.1);

• A signal-to-noise ratio (S/N) high enough to constrain the phase shift of
the oscillations to a level comparable with the LTE amplitude computed by
equation 2.1. For a given instrument and target magnitude, this is more
easily achieved by observing targets showing short-period, high-amplitude
and single-mode pulsations (for example HADS, analyzed in this work).

Firstly the Kepler mission (Borucki et al., 2010) and afterwards the TESS mis-
sion (Ricker et al., 2014) proved to be excellent instruments for providing a large
number of high-precision light curves over a very wide field of view. The present
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thesis work made use of a small subset of TESS light curves; the general design
and observing strategy of TESS will be presented in Chapter 3.

Figure 2.5: In this model E is the orbital position of the secondary component
of an eclipsing binary system, as investigated by John B. Irwin in its review.
The segment dCa is the intersection between the orbital plane and the tangent
plane passing through the center of mass. In this frame the inclination angle, i, is
assumed to be 90 degrees. Adapted from: Irwin, 1952.

2.3.1 Some results
Compared to transits or radial velocities, the PT is a niche method to detect exo-
planets because only high-mass perturbers are detectable with the current techno-
logy with a sufficient degree of accuracy. Indeed, the majority of LTE perturbers
discovered orbiting pulsating stars are in fact stellar-mass companions. During the
Kepler mission (Borucki et al., 2010) many stellar binaries have been discovered
orbiting δSct stars, later on confirmed by spectroscopic radial velocities follow-up
(S. J. Murphy, Shibahashi and Bedding, 2016, a).
So far, only a handful of exoplanets orbiting δSct have been discovered. One of
the most relevant result was achieved by S. J. Murphy, Bedding and Shibahashi,
2016 (b) who investigated a Kepler photometric time series. Thanks to the PT
technique, they detected for the first time a Jupiter-mass exoplanet orbiting a
main sequence A star in or near the habitable zone. The host star, KIC 7917485,
is a metal-poor δSct with mass M? ' 1.63 M� typical of the instability strip kind
of objects. The time delays affecting the most prominent frequency-peaks result
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in a phase modulation of 7.1 ± 0.5 s, consistent with a planet having minimum
mass ' 11.8 MJ (close to the brown dwarf-planet boundary) and orbital period
' 840 days.
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Figure 2.6: Planetary minimummass vs Orbital Period of all confirmed exoplanets.
In black all exoplanets discovered for which orbital period and minimum mass are
known. In red and gray exoplanets discovered through transit method and radial
velocity technique, respectively. The blue and pink squares show the only two
exoplanets discovered via PT technique. In particular, KIC 7917485 b is the
first exoplanet discovered via PT method in orbit around a δSct star. As it is
clearly evident, planets discovered through PT are just a tiny subgroup, especially
compared with exoplanets detected thanks to radial velocity and transit methods.
Data credit: https://exoplanetarchive.ipac.caltech.edu.

V0391 Peg b (Silvotti et al., 2007) is a giant exoplanet in orbit around the hot
subdwarf B star V0391 Peg having short-period and p-mode pulsations. Planetary
properties are derived thanks to multiple observations carried out by several ob-
servatories. Its minimum mass and orbital period are ' 3.2 MJ and ' 1170 days,
respectively. Obtained planet’s properties are compatible with a phase modulation
of 5.3 ± 0.6 s. Both KIC 7917485 b and V0391 Peg b are massive exoplanets or-
biting at a wide separation from their host star. The more massive the perturber
is and the broader the star-perturber separation is, the larger will be the LTE
signature. Indeed, the challenge behind PT technique is to discover smaller exo-
planets (optimistically down to Earth size and mass) in orbit nearby their stars,
since they would induce low-amplitude LTEs. For this purpose, a key to improve
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the sensitivity of the PT method is to avoid TESS systematic errors by calibrating
accurately its timestamps (details discussed in section 7.2).
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Chapter 3
TESS

In this chapter I review the technical and scientific characteristics of the Transiting
Exoplanet Survey Satellite (TESS), whose light curves have been analyzed in this
work.

3.1 The TESS mission
The Transiting Exoplanet Survey Satellite (TESS, Ricker et al., 2014) is a NASA
mission launched on April 18th, 2018 aboard a SpaceX Falcon 9 rocket. The highly-
elliptical stable orbit of TESS around the Earth has an orbital period of approx-
imately 13.7 days, kept in a 2:1 resonance with the Moon; in such a way, the
gravitational perturbations due to our satellite are negligible because the Moon is
always beforehand or delayed of 90 degrees at apogee with respect to TESS.
TESS is devised for searching Super Earth- and Neptune- like exoplanets transiting
bright and nearby main-sequence dwarfs having spectral type F5 to M5. Thanks
to the TESS detector band pass, very extended in the “red” tail (up to 1 µm), K
and M dwarfs are particularly suited as targets. As a consequence of the much
wider field of view (encompassing nearly the whole sky at the end of the nominal
mission) stars targeted by TESS are much more brighter on average with respect
to those observed by the Kepler mission (Borucki et al., 2010). This is of course
a great advantage especially when it comes to the follow-up of candidate planets,
since spectrographs require a large number of photons to carry out ultra-precise
observations.

3.1.1 Optical design
TESS is equipped with four identical cameras supplied with four f/1.4 lenses hav-
ing a lens hood each to mitigate the impact from light scattered by the Earth and
the Moon. Each camera covers a wide field of view (FOV) of 24◦ x 24◦ and has
an effective diameter size D ∼ 10 cm, optimized for high-precision photometry
needed in order to detect transits by small planets. To the same aim, fast tem-
poral cadence is required: light curves are gathered for a selected sample of stars
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at a 2-minute cadence (2 sec-exposure images summed up into consecutive groups
of 60), whereas Full Frame Images (FFIs) are produced and downloaded on Earth
every 30 minutes of exposure time.
The focal plane of each camera is made of an array of four back-illuminated
MIT/Lincoln Lab CCID-80 devices with 4096 x 4096 pixels covering a region of 62
x 62 mm2. Each CCID-80 forms an imaging area of 2048 x 2048 pixels. In order
to reduce the impact of the dark current noise, the CCD assembly must operate
at a temperature of -75 Celsius degrees.
TESS detector band pass spans a broad red-optical wavelength range from 600 nm
to 1000 nm, chosen to reduce photon-counting noise and to increase the sensitivity
of the cameras for the detection of small transiting exoplanets in orbit around red
and cool dwarf stars, especially K and M dwarfs. The blue cutoff at 400 nm is due
to practical optical design reasons.

Figure 3.1: TESS wide FOV CCD Camera: 105 mm aperture and 24◦ x 24◦ FOV.
Image credit:https://heasarc.gsfc.nasa.gov/docs/tess/

3.1.2 Observational strategy
The TESS observational strategy is based on so called “sectors”, four-week point-
ings staring at the anti-solar direction, eventually mapping a whole ecliptic hemi-
sphere in one year, after 13 sectors. The southern and northern ecliptic hemi-
spheres were mapped during Year 1 and Year 2 of the mission1, respectively, just
avoiding only a small 12-degree strip across the Ecliptic. During the Year 3 of the
mission, from July 2020 until July 2021, the southern hemisphere is being observed
again. During the future Year 4 of the mission (July 2021-September 2022) the
northern ecliptic hemisphere will be partially re-observed, together with 240◦ of

1Year 1 from July 2018 to July 2019, Year 2 from July 2019 to July 2020.
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the ecliptic never spanned before.
Each of the 36 sectors already covered by TESS is observed for at least 27 days,
corresponding to two orbits of the satellite around the Earth. The maximum cov-
erage of a sector can be 351 days close to the ecliptic poles down to a minimum
of 27 days at low ecliptic latitudes. The forthcoming James Webb Space Tele-
scope (JWST, Gardner et al., 2006) will scan in greater details that area, labeled
JWST continuous viewing zone (CVZ), for a better characterization of the targets
in those sectors, providing much more informations useful for a follow-up spectro-
scopic investigation. During the observation epoch, the only interruption happens
when data are downloaded after each orbit.

Figure 3.2: Left: Combined FOV of four TESS cameras. Middle: Sector-based
coverage of TESS from the ecliptic plane to the ecliptic pole onto the celestial
sphere. Right: Schematic illustration of the time coverage of different regions of
the sky surveyed by TESS onto the celestial sphere. The dashed circle is the area
which will be ontinuously observed by the forthcoming JWST.
Image credit: Ricker et al., 2014.

3.1.3 TESS Input Catalog and Candidate Target List
The TESS Input Catalog (TIC, Stassun et al., 2019) is a list of suitable targets
which can be observed by the mission aiming to look for transit signatures in their
flux light curve. These sources have to be carefully selected not only according to
their stellar parameters, but also minimizing the presence of background and/or
foreground contaminating sources that may lie within the same photometric aper-
ture mask. This is a crucial issue with TESS since the sky-area projected onto a
pixel covers about 21 x 21 arcsec2 and the Point Spread Function (PSF) is exten-
ded for about 1-2 pixels.
In this work I used the TIC-8 version based on Gaia Data Release 2 (Gaia DR2)
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photometric catalog, including roughly 1.5 billion stars. According to Stassun et
al., 2019, in order to preserve the continuity with the previous TIC version (TIC-7)
which used the 2MASS photometric catalog as a base point-source, the obsolete
TIC-7 sources are translated into the new TIC-8 catalog thanks to associations
between 2MASS and Gaia DR2 already provided by Gaia DR2. The TIC can be
found in the Mikulsky Archive for Space Telescopes (MAST)2.
A subset of TIC is the Candidate Target List (CTL). The CTL contains all those
high-priority targets which are the most promising hosts of transiting exoplanets.
It includes all TIC targets brighter than 13 TESS magnitudes, with radius smal-
ler than 5 R� and all stars in the Cool Dwarf Catalog (CDC). CTL counts ∼9.5
million stars. From the CTL, which is a prioritized list, the actual targets to be
observed in short-cadence mode are chosen on a sector-by-sector basis.

3.1.4 Target Pixel File and Light curves
The Target Pixel Files (TPFs) are cut-out images (in FITS file format) of an
observed source coming from pixels limited within a set up photometric aperture
mask. These pixels provide data that build the target light curve, namely stellar
flux time series produced in short-cadence (every 2 minutes) using Simple Aperture
Photometry (SAP). In this work, I preferred to use Pre-Search Data Conditioning
Simple Aperture Photometry (PDCSAP) because stellar light curves are cleaner
with respect to SAP series since systematic long term trends are removed.

Figure 3.3: TESS photometric data products. Image credit: https://heasarc.
gsfc.nasa.gov/docs/tess/data-products.html

2https://archive.stsci.edu/tess/
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Chapter 4
Target selection

For this thesis work at first I selected an initial input list of suitable stellar targets
whose extracted TESS light curves have been investigated. δSct stars are the
objects of interest for this thesis: the reference catalog chosen as starting point
is that published by Chang et al., 2013, consisting in a list of 1,578 δSct. In the
following sections I will describe the details and the criteria of the target selection
process.

4.1 The Chang et al. (2013) catalog
Seo-Won Chang and collaborators (Chang et al., 2013) identified an ensemble of
1,578 δSct, both nearby field stars and cluster members in the Milky Way galaxy.
The catalog is publicly available at https://vizier.u-strasbg.fr/viz-bin/
VizieR-3?-source=J/AJ/145/132/table3.
The target list compiled by Chang et al., 2013 includes 718 targets from Rodriguez,
Lopez-Gonzalez and Lopez de Coca, 2000 (46%) and 860 stars from other published
literature (54%). The survey catalogs from which stars are extracted are: Hyppar-
cos1, the MAssive Compact Halo Object2 (MACHO), the Optical Gravitational
Lensing Experiment3 (OGLE), the Robotic Optical Transient Search Experiment4
(ROTSE), the All-Sky Automated Survey5 (ASAS), the Taiwan-American Oc-
cultation Survey (TAOS) and the General Catalog of the Variable Stars6 (GCVS).
Neither TESS (Ricker et al., 2014) nor K2 (Kepler follow-up, Howell et al., 2014)
missions have been cited because in 2013 the two satellites were not operative yet,
indeed, K2 mission started in 2014 and TESS was launched in 2018.

1http://tdc-www.harvard.edu/catalogs/hipparcos.html
2http://wwwmacho.anu.edu.au
3http://ogle.astrouw.edu.pl
4http://www.rotse.net
5http://www.astrouw.edu.pl/~gp/asas/
6http://www.sai.msu.su/gcvs/index.htm
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The catalog is organized in columns and the most relevant for my purposes are:

• Right ascension (RA) and Declination (Dec) for each target referred to epoch
J2000.0. Right ascensions are specified in hours, minutes and seconds (h:m:s)
while declinations in days, minutes and seconds (d:m:s).

• Apparent magnitudes in the Johnson’s B and V bands for all objects except
for 17 δSct for which V magnitude is not provided (see Fig. 4.1a).

• Periods (see Fig. 4.1b) and amplitudes of pulsation corresponding to the
dominant primary periodicity discarding the multiperiodic δSct stars7. When
available amplitudes are computed as the full width of periodic variations
in V band (∆V ), if not they are computed as the difference between the
maximum and minimum V magnitude.

• Spectral type organized according to the catalog outlined by Skiff, 2009. The
modern Morgan-Keenan classification is adopted. Chang and collaborators
apply the S flag for spectroscopic spectral type and the P flag for photometric
spectral type.

• Binarity8 labeled as “1” if the δSct star is found in a binary stellar system,
“0” if no companions are known. Of 1,578 catalogued δSct stars, 141 are
found in binary systems.

• Membership describing the stellar population to which the target is belong-
ing: Milky Way Field (MWF), Open Cluster (OC) or Globular Cluster mem-
ber (GC), see Fig. 4.1a.

I plotted the figures cited and reported below using the Tool for OPerations on
Catalogues And Tables (TOPCAT9, Taylor, 2017). The two histograms have the
purpose of summarizing some relevant properties of the catalog (Fig. 4.1a and
4.1b).

7Many δSct exhibit multiperiodicity due to simultaneous oscillations in both radial and non-
radial modes.

8The majority of δSct stars in binary systems are found as eclising binaries.
9http://www.star.bris.ac.uk/~mbt/topcat/
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(a) Histogram of δSct from Chang et al., 2013 catalog as a function of their V magnitude.
The black solid line marks the total amount of δSct for which the V magnitude is
available. The blue, red and green shaded regions represent the count of subgroups
MWF, GC and OC respectively.
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(b) Histogram of δSct from the Chang et al., 2013 catalog as a function of the period
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subgroups MWF, GC and OC respectively. It is clear that most targets have a period
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4.2 Match with other catalogues
I skimmed the catalog by Chang and collaborators in order to select only the
targets most suited for this work. Since I am interested in retrieving TESS light
curves, I cross-matched the Chang catalog with the TESS CTL list (sectors 1-34)
to identify only known δSct stars also observed by TESS at a high photometric
cadence (2 min). For all the cross-matched stars, the following additional columns
are then available:

• The target TIC name;

• TESS magnitude labeled as Tmag;

• The number of TESS sectors where the star is observed (Nsec).

I imposed further conditions on this subgroup of δSct:

• Exclusion of known binary stars (those with binarity column index = 1);

• Tmag < 11 (bright stars for TESS);

• Long TESS observational baseline10 translated in stars observed in more than
one TESS sector, Nsec > 1.

10As previously explained, a long observational baseline is required for an efficient application
of the PT technique.
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Figure 4.2: Preliminary δSct sample selection shown in Aitoff projection. The
purple shaded area is the cumulative TESS coverage between sectors 1 to 34. The
overplotted 123 black crosses are the selected bright, non-binary δSct stars having
Tmag < 11 and Nsec > 1. The red solid line indicates the celestial equator.

Finally, I matched the resulting δSct list together with the table containing the
TESS light curves to be downloaded.
In this context, I imposed an additional condition: only those δSct stars observed
in seven or more TESS sectors are considered, given that a long observational
baseline is strictly required for applying the PT technique (see section 2.3). As
a result, I obtained a suitable list of 13 candidate stars whose TESS extracted
light curves have been looked at in order to select only δSct with coherent and
large-amplitude oscillation modes, e.g. HADS. Moreover, one of the 13 selected
stars (TIC 141770299) is found to be catalogued as an eclipsing binary, therefore I
immediately excluded it from the list because this work is interested only on single
targets. Under these conditions, the list is reduced to just five δSct.

4.2.1 The final sample
Afterwards, I manually joined two additional targets to the provided list of δSct:
Chang 134 (TIC 431589510) and Chang 349 (TIC 260654645). Both targets are
included within the Chang catalog but they have a TESS magnitude slightly higher
than the imposed magnitude threshold at Tmag < 11, hence, initially, they were
excluded from the selection. Even though this pair of δSct is quite faint in terms of
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TESS magnitude, they both show pulsation amplitudes high enough to be classified
as HADS (Antoci et al., 2019) and they are observed in many TESS sectors,
resulting in a long observational baseline. These properties make them objects of
interest for this work. In conclusion, it is worth it to include them in the final
shortlist of seven suitable δSct stars summarized in Table 4.1.
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Table 4.1: List of 7 suitable selected δSct stars
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Notes − a: Properties available on SIMBAD (http://simbad.u-strasbg.fr/
simbad/).
b: Properties extrapolated from the crossmatch between the catalogue of Chang
& collaborators (2013) and the TESS CTL.
c: Dec, RA and effective temperature provided by Gaia Data Release 2 (DR2)
archive available at https://gea.esac.esa.int/archive/.
d: The first three δSct stars are classified as “HADS” by Antoci et al., 2019 whereas
the “envelope” property is derived from TESS light curves.
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Chapter 5
Astrophysical parameters

Having selected a suitable list of δSct stars (see Table 4.1), it is necessary for the
subsequent modeling to add some missing astrophysical parameters about those
targets such as effective temperature, luminosity and mass.

5.1 Empirical relations for the estimation of stel-
lar masses

δSct variables typically have masses in the range 1.2 - 2 M� (S. Murphy, 2015).
After the outline of a list of 7 suitable δSct, I estimated their masses accord-
ing to the relation derived by Moya et al., 2018. Moya and collaborators took
into account an amount of 934 stars (most of them being at the main-sequence
evolutionary stage) whose parameters are well defined thanks to asteroseismology,
interferometry and studies about eclipsing binaries.
Asteroseismology gives accurate characterization of stellar inner structures via the
study of stellar pulsations. Of great relevance for the review of Moya and collabor-
ators, were the CoRoT (Moutou et al., 2013) and Kepler missions which delivered
ultra-high-accuracy photometry and therefore very accurate measurements of fre-
quencies of pulsations, especially for Solar-type stars.
Interferometry is based on the concept that to resolve accurately the angular dia-
meter of stars the solution lies in combining signals from an array of optical tele-
scopes (better spatial resolution) resulting in a unique signal coming from one
telescope having an aperture diameter equal to the full extension of the array.
Finally, eclipsing binary systems can be characterized by means of spectroscopic
and photometric data: from the first the mass ratio is derived thanks to radial ve-
locity measurements, from the latter the radius ratio is inferred from photometric
light curves; from the combination of the two techniques, radii and masses can be
derived in physical units, along with the eccentricity and the orbital inclination of
the system. Moreover, if the effective temperatures are known, the luminosities
of both stars can be measured. Therefore, having good estimates of those stellar
parameters, they derived empirical relations to evaluate stellar masses as a func-

46



tion of other quantities. In particular, in this work I used the following equation
to estimate the masses of the provided δSct:

log10(M) = −a+ b Teff + c log10(L), (5.1)

where M , Teff and L are the stellar mass, effective temperature and luminosity, re-
spectively. This relation is valid within the range of temperatures 4780 K ≤ T eff ≤
10990 K. The coefficients a, b and c are tabulated by Moya et al., 2018 together
with their errors. Values have been chosen according to the relation function as-
sumed for this work, that is log10(M) = f(Teff + log10(L)).

Table 5.1: Coefficients and respective errors computed by Moya et al., 2018 using
the GLSME (Generalized Least Squares with Measurement Error) algorithm.

Coefficient Value σ

a −0.119 0.003
b 2.14×10−5 5×10−7

c 0.1837 0.0011

In conclusion, stellar masses (in Solar mass unit) are computed as:

M = 10∧(−0.119 + 2.14× 10−5Teff + 0.1837 log10(L)). (5.2)

I propagated the uncertainties on the masses as the quadratic sum of the par-
tial derivatives considering errors on coefficients, temperatures and luminosities.
Moreover, I added in quadrature a relative error of 8.55%, according to the total
relative accuracy estimated by the authors for the function used.

5.1.1 Chang 349, UZRet, V393 Car, V435 Car, HD 173844,
GW Dra

The aforementioned equation (Eq. 5.1) obtained by Moya et al., 2018 depends on
both the effective temperature and luminosity of each target. I used it in order
to compute the mass of Chang 349, UZRet, V393 Car, V435 Car, HD 173844 and
GW Dra, for which accurate spectroscopic measurements are lacking. Teff and L
with uncertainties are tabulated in the Gaia Data Release 2 (Gaia DR2)1 archive.

1Gaia is an ESA sky-survey mission operative since 2013 providing high quality photometry
(passband ∼ 330-1050 nm) and high resolution spectroscopy (∼ 845-872 nm). Gaia DR2 was
published in 2018 after 22 months of observation.
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Table 5.2: Effective temperature and luminosity with errors archived in Gaia DR2
for each target selected.

Star Teff [K] σTeff [K ] L [L�] σL [L�]
V393 Car 7040 280 27.44 0.32
Chang 349 7232 367 14.61 0.96
V435 Car 7766 292 8.09 0.02
HD 173844 7303 149 8.29 0.07
GW Dra 6770 131 21.34 0.38
UZRet 6653 248 18.98 0.29

I computed the uncertainties on Teff and L as the semidifference between the upper
(84th) and lower (16th) percentiles reported in Gaia DR2 archive: σ = (84th − 16th)/2.

5.1.2 Chang 134
In the case of Chang 134 the relation derived by Moya et al., 2018 cannot be
used to determine the target mass, since only the effective temperature is avail-
able on Gaia DR2 archive. Therefore, the mass I assumed for Chang 134 is the
one computed by Queiroz, Anders, Chiappini et al., 2020. The authors catalogued
extinction, distances and the main spectroscopic parameters of a list of 388,815
stars derived combining APOGEE-2 survey DR162 high-spectroscopic measure-
ments with broad-band photometric data taken by different sources. Finally, stel-
lar parameters are derived as the posterior distribution returned by the Bayesian
isochrone-fitting code StarHorse (Queiroz, Anders, Santiago et al., 2018). Hence,
the accepted mass for Chang 134 is reported on VizieR3 as the 50th percentile of
the StarHorse stellar mass probability distribution function and I estimated the
uncertainty as the semidifference between upper and lower percentiles, the 84th

and the 16th of the mass probability distribution, respectively.

2https://www.sdss.org/surveys/apogee-2/
3https://vizier.u-strasbg.fr/viz-bin/VizieR
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In conclusion, the derived stellar masses with corresponding uncertainties are re-
ported in the following Table 5.3.

Table 5.3: Masses of the 7 selected δSct

Star M ± σM [M�]
V393 Car 1.98 ± 0.17
Chang 349 1.78 ± 0.16
Chang 134 1.38 ± 0.03
V435 Car 1.64 ± 0.14
HD 173844 1.60 ± 0.14
GW Dra 1.86 ± 0.16
UZRet 1.81 ± 0.16

How it is expected for δSct in the bottom of the instability strip, all values are
within the range of mass typical of δSct variables which is 1.2 - 2 M� (S. Murphy,
2015).
Except for Chang 134, luminosities, temperatures and respective uncertainties have
been derived for all targets. Therefore for these δSct, I plotted the mass-luminosity
relation with proper computed error bars on varying of the effective temperature
(Fig. 5.1).
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Figure 5.1: Mass-luminosity relation for 6 targets on varying of Teff . Chang 134
is missing because its luminosity is not reported by Gaia DR2.
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Since Chang 134, Chang 349, UZRet, V393 Car, V435 Car, HD 173844 and GW
Dra were all observed by Gaia DR2 mission at the reference epoch J2015.5, I
plotted a superposition of Gaia DR2 J2015.5 catalog and of my targets of interest in
a color-magnitude diagram (CMD, see Fig. 5.2) without correcting for differential
reddening which typically affects every CMD. The green squares are the 7 δSct
located in the low region of the instability strip, nearby the ZAMS. Their computed
masses are consistent with the expected values for main sequence δSct (1.2 - 2 M�),
see properties in section 2.2.
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Figure 5.2: CMD of Gaia DR2 J2015.5 survey considering Gaia photometric pass-
band (G ∼ 330-1050 nm) and color crossmatched with TESS CTL (sectors 1-34).
No differential reddening correction is applied to the diagram. Highlighted in
green the 7 δSct of interest for this work. The targets are clearly located in the
low instability strip, nearby the ZAMS.
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Chapter 6
Harmonic analysis

In this chapter I describe the harmonic analysis carried out for the three selec-
ted Milky Way field HADS (Chang 134, V393 Car, Chang 349) from our sample.
Those were chosen as the initial targets of our pilot study because they are the
most favorable pulsators to be studied, since they exhibit short-period oscillations
(typically 1-3 hours) and high pulsation amplitudes i.e. peak-to-peak flux variation
exceeding 0.3 magnitudes (see Chapter 2). In this case, the PT technique yields a
very high signal-to-noise ratio, theoretically able to detect phase shifts of the order
of fraction of seconds. However, I keep the other four selected δSct of our sample
as objects of interest for future applications of the PT technique, looking for a
more generalized study involving other types of pulsators (see subsection 7.3.1).
The entire harmonic analysis was carried out exploiting the VARTOOLS Light Curve
Analysis Program1 by Hartman and Bakos, 2016. VARTOOLS 1.39 (released Oc-
tober 30, 2020) is a command line tool for filtering, modelling and manipulating
astronomical time-series data.

6.1 Common algorithm

6.1.1 Light curve pre-conditioning and filtering
As a first step to pre-condition the light curves for the subsequent analysis, I filtered
and sorted the original TESS light curves extracted from each observing sector
and sampled every ∼2 minutes according to the short-cadence strategy. I chose
to extract the measured PDCSAP flux since it results in cleaner light curves by
removing long term trends (see subsection 3.1.4); afterwards, I converted the flux
and its error to magnitudes, using the standard Pogson formula. Moreover, I cut
the light curves according to an iterative clipping factor of 15 σ, chosen arbitrarily,
to discard unreasonable points. By default the sigma-clipping is performed with
respect to the mean. At last, I removed from the light curve all defective points
having quality factor q 6= 0.
Every ∼13.7 days (approximately two weeks) the TESS spacecraft is at the perigee

1https://www.astro.princeton.edu/~jhartman/vartools.html
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(∼17 R⊕) of its elliptical orbit around the Earth (see Fig. 6.1). At this location
the satellite stops its science mission and orients to point the Ka-band high-gain
antenna towards one of the three NASA Deep Space Network (DSN) stations for
data downlink lasting about 3 hours. After data download is completed, TESS
re-orients back to the science mission resuming the sky-survey for other two weeks.
The entire operation takes about 1 day which is consistent with the observed gap
in the time-series (Fig. 6.2).

Figure 6.1: Schematic view of the mission orbit insertion. At first TESS was put
in an initial parking orbit around the Earth at an altitude of about 600 Km. As a
second step, the solid rocket motor pushed the satellite in an higher first phasing
orbit having the nominal apogee at 250,000 Km (green orbit). At the perigee of
the first phasing orbit TESS speed up to increase the apogee until a final apogee of
400,000 Km. At that point, TESS exploited the lunar gravity to perform a lunar
fly-by for an orbital transferring into the so called PLE (Post-Lunar-Encouter)
transfer orbit (purple line). At PLEP (Post-Lunar-Encouter-Perigee, ∼ 17 R⊕)
TESS spacecraft performed the period adjustment to reduce the mission orbital
period to be ∼ 13.7 days at 2:1 resonance with the Moon’s orbit (final mission
orbit, blue ellipse).
Image credit: https://tess.mit.edu/science/

I took advantage of this existing gap to split each sector into two so called “orbits”
of ∼14 days. The two orbits together cover about 27 days of observation which
is the standard period of observation per every TESS sector. I report below an
example of one light curve of Chang 134 extracted from the first TESS sector in
2018 to show the gap due to downlinks (Fig. 6.2) and the total light curve of
Chang 134 considering every TESS sector where the star is observed (Fig. 6.3).
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Figure 6.2: Light curve of Chang 134 from sector 1. In red and green the first
and second 2-weeks orbit, respectively. In the middle of the time-series is clearly
visible the ∼1-day gap as a consequence of the remote operation of data download.

Figure 6.3: Total light curve of Chang 134 considering every TESS observing
sector.

6.1.2 The Lomb-Scargle Periodogram
The Lomb-Scargle (LS) periodogram (VanderPlas, 2018) is a widespread tool for
searching and characterizing periodicity in time series. In particular, in this thesis
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work, I made use of the Generalized Lomb-Scargle (GLS, Zechmeister and Kürster,
2018) periodogram, since it is the LS version implemented in VARTOOLS program.
Compared to LS, GLS provides much more accurate frequencies, is less sensitive
to aliasing and returns a better spectral intensity determination.
To fully understand the LS periodogram approach it is necessary to introduce
the Fourier analysis. Given a continuous time-signal g(t), its Fourier transform is
defined as:

F(g) ≡ ĝ(f) =
∫ +∞

−∞
g(t)e−2πiftdt, (6.1)

where i ≡
√
−1 is the imaginary unit. Some relevant properties are:

• The Fourier transform is a linear operation.
Given a constant A and functions f(t), g(t), is true that:

F{f(t) + g(t)} = F{f(t)}+ F{g(t)}, (6.2)

F{Af(t)} = AF{f(t)}. (6.3)

• The Fourier transform of a sinusoid with frequency f0 is a sum of delta
functions at ±f0.

F{e2πf0t} = δ(f − f0), (6.4)
where δ(f) ≡

∫+∞
−∞ e−2πifxdf is the Dirac delta function.

• A time shift imparts a phase in the Fourier transform.

F{g(t− t0)} = F{g(t)}e2πift0 . (6.5)

These properties make Fourier transform an optimal approach to study periodicity
in a measured signal.
What is useful by constructing a periodogram is to compute the power of the
Fourier transform of a given time signal g(t). The power spectral density (PSD)
or power spectrum quantifies the contribution of each single frequency to the global
signal and it is defined as:

Pg ≡ |F{g(t)}|2. (6.6)

Once I derived the GLS power spectrum as a function of the frequency of pulsation,
I extracted the dominant pulsation period (or frequency) which corresponds to the
peak showing the highest power within the periodogram. Since the LS periodogram
is used to identify the frequency pattern of a pulsator (i.e. how many frequency
series, pulsation modes and harmonics belong to the pulsator), the most prominent
peak coincides with the fundamental frequency of the dominant stellar pulsation
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mode and the consecutive equally spaced peaks are the respective harmonics of
the fundamental frequency belonging to the same pulsation mode.

Figure 6.4: GLS Periodogram of δSct UZRet (TIC 38515566). The vertical blue
line highlights the most prominent peak corresponding to the dominant series of
frequencies of one pulsation mode.

6.1.3 Harmonic fit: least-square approach
At first, I fitted a series of harmonic functions to the TESS light curve, by fixing
their frequency at the dominant peak found by the GLS periodogram and its
harmonics. In this context, the periodogram is whitened at each peak namely it is
recomputed before searching the next period peak. This initial fit was carried out
through a traditional least-squares approach performed according to the VARTOOLS
command -Killharm that whitens the light curve over one or more periods by
fitting and subtracting a function of the form:

K(t) =
NPER∑
i=1

{NHARM,i∑
k=0

[aik · sin(2π(k + 1) · fi · t) + bik · cos(2π(k + 1) · fi · t)] +

+
NSUBHARM,i∑

k=0

[
cik · sin

(
2π · fi · t
k + 1

)
+ dik · cos

(
2π · fi · t
k + 1

)]}
,

(6.7)

whereNPER is the number of periods of pulsation, NHARM are the higher-harmonics
corresponding to integer multiples of each dominant period/frequency (frequencies
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of 2∗fi, 3∗fi, ..., (NHARM+1)∗fi) and NSUBHARM are the respective sub-harmonics
(frequencies of fi/2, fi/3, ..., fi/(NSUBHARM +1)). I took into account only the first
10 harmonics of the fundamental frequency, neglecting the sub-harmonics whose
flag is set to zero. aik, bik, cik and dik are the coefficients of the trigonometric
functions whose values, together with the period and the mean magnitude of the
light curve, are returned as default outputs of the fit. In addition, I setup VARTOOLS
to return also amplitudes and phases of the pulsation, e.g. in the form Ak =√
a2
k + b2

k and φk = arctan2(−bk, ak)/2π)2, respectively.

From the best-fit pulsation parameters computed for each one-orbit (two-weeks)
segment of the TESS light curve by the linear model, I constructed the (O − C)
phase-shift diagram to search for timing drifts induced by LTEs. The (O − C)
diagram reports residuals in seconds by converting phase shifts in times as:

O − C = (φ0 − φ0, mean) · Pdominant · 86, 400
N

, (6.8)

where φ0 is the fundamental phase returned by the least-squares fit, φ0, mean is
the mean fundamental phase computed over all TESS light curves, Pdominant is the
dominant pulsation period obtained from the GLS periodogram, N is an integer
number assumed to be equal to unity for the fundamental phase (N = 2 for the
first harmonic, N = 3 for the second harmonic, etc.) and 86,400 is the conversion
factor from days to seconds.

6.1.4 Harmonic fit: refined MCMC model
As a first step, to perform a more accurate harmonic analysis, I “cleaned” the
TESS light curves by discarding parts affected by systematic errors. At the far
ends of almost each orbit, there are departures with respect to the expected trend
of the series given by the settling of the satellite during the remote operation of
data download. To get rid of such drifts, I manually selected the time intervals
affected by such problems and I removed them from the light curve. I report below
(Fig. 6.5) a representative example of the cleaning (the final selection is plotted
with black points) performed on a segment of the light curve of Chang 134 where
drifts are pretty evident (red dots).

2Taken two non-null arguments x and y, the function arctan2(x, y) or atan2(x, y) defines the
angle in the Euclidean plane between the x-axis and the vector from the origin to the point of
coordinates (x, y) 6= (0, 0).
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Figure 6.5: Zoom-in of the light curve of Chang 134. In red the original light curve
whose departures at the beginning and at the end of the orbits are evident. In
black the cleaned light curve where drifts are manually removed.

In order to get a more accurate model with respect to our preliminary least-square
fit, I implemented a model function where the usual combination of harmonic
functions (with amplitude and phase as free parameters for each frequency probed)
is summed to a quadratic baseline, i.e. a parabola with three more free parameters.
I added a quadratic baseline to take into account systematic uncertainties on longer
timescales, i.e. days-weeks, due to drifts of the satellite while pointing a target
and/or to thermal effects. This enhanced model is fitted with a more sophisticated
algorithm: a differential evolution Monte Carlo Markov Chain (MCMC, Speagle,
2019) code to sample the posterior distribution of the best-fit pulsation parameters
to obtain uncertainties of the phase shifts.
The non-linear model I adopted, as a function of time t as the only independent
variable, is therefore a combination of one parabola and N sine waves. In the
specific case where I fit the fundamental mode and its first two harmonics, the
model can be explicitly written as:
NL(t) = b0 + b1 · (t− tmedian) + b2 · (t− tmedian)2 + A0 · cos

( 2πt
Pdominant

+ 2πφ0

)
+

+A1 · cos
( 2πt

2 · Pdominant
+ 2πφ1

)
A2 · cos

( 2πt
3 · Pdominant

+ 2πφ2

)
,

(6.9)

where b0, b1 and b2 are the coefficients of the parabola; A0, A1 and A2 are the amp-
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litude of the fundamental frequency and of its harmonics, respectively; φ0, φ1 and
φ2 are the phase of the fundamental frequency and of its harmonics, respectively;
Pdominant is the dominant period of pulsation extracted from the GLS periodogram
as described previously in section 6.1.2.

According to the Bayesian approach, the parameters I am fitting are not usually
completely unknown before the fit, but rather they are distributed across a distri-
bution of values according to the so called “prior probability distribution”. Priors
I assumed for phases and amplitudes are uniform and centered on initial guesses
which are the computed mean of values returned by the previous least-squares fit I
performed according to the -Killharm routine. The assigned initial guesses are the
starting point for the chains to perform the fit. MCMC generates random samples
according to the priors I gave initially, then creates a chain of correlated parameter
values over N iterations to compute the posterior probability distribution function
defined by the Bayes’ theorem:

P (x|D) = P (D|x)P (x)
P (D) , (6.10)

where P (x|D) is the posterior conditional probability of the model parameters
given the data, P (D|x) is the likelihood i.e. the conditional probability of observing
the data given the model parameters, P (x) is the prior probability and P (D) is
the data probability.

Figure 6.6: Illustration of the Bayes’ theorem extracted from Speagle, 2019.

From the resulting values and their associated uncertainties, computed individually
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for each one-orbit (two-week) segment of the TESS light curve, I constructed, for
the fundamental phase, the (O−C) phase-shift diagram to search for timing drifts
induced by LTEs. The (O−C) diagram reports residuals in seconds by converting
phase shifts in times as:

O − C = (φ0 − φ0, mean) · Pdominant · 86 400
N

, (6.11)

where φ0 is the fundamental phase returned by the MCMC fit, φ0, mean is the
mean fundamental phase computed over all TESS light curves, Pdominant is the
dominant pulsation period obtained from the GLS periodogram, N is an integer
number assumed to be equal to unity for the fundamental phase (N = 2 for the
first harmonic, N = 3 for the second harmonic, etc.) and 86,400 is the conversion
factor from days to seconds.

In conclusion, the improved model (which includes a quadratic baseline) com-
bined with an MCMC analysis is favoured because it returns properly-estimated
error bars and correlations between the resulting best-fit pulsation parameters.
Moreover, it is consistent with the least-squares model, therefore a more accurate
approach is preferred in my science case (see results in section 6.2).

6.2 Algorithm applied to the three HADS
I applied the previously illustrated algorithm to each of the three HADS stars
selected in Chapter 4: Chang 134, V393 Car and Chang 349.
I show the results in increasing order of complexity of the observed pulsation
pattern.

6.2.1 Chang 134
Chang 134 (TIC 431589510) is an HADS having an estimated mass of 1.38 ± 0.03
M�

3. Its TESS magnitude is 11.89 (therefore lying on the faint side of our sample)
and it was observed in 8 non-consecutive TESS sectors (1, 2, 3, 6, 13, 27, 28, and
29) from 2018 until 26 August-22 September 2020 (Year 1, 2 and partially Year
3 of the mission). Chang 134 was re-observed again in sector 33 (17 December
2020 to 13 January 2021) and in sector 36 (7 March 2021 to 2 April 2021) but I
did not included the latter two sector in my analysis since those light curves were
not available for download when I started the harmonic analysis. Looking at the
forthcoming sectors (up to sector 55, 5 August 2022 to 1 September 2022), Chang

3See Chapter 5.
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134 could be re-observed4.
From the spectral frequency pattern, Chang 134 is the simplest possible δSct
pulsator since it exhibits one radial mode resulting in a single dominant frequency
series (fundamental and the corresponding equally-spaced harmonics) as can be
seen in the extracted GLS periodogram (Fig. 6.7).

Figure 6.7: GLS Periodogram of Chang 134. The blue vertical line highlights the
strongest frequency peaks within the diagram and the following coloured vertical
lines indicates first three equally-spaced harmonics.

The strongest peak in the GLS periodogram corresponds to a dominant pulsation
period of ' 0.129 days ' 3.1 hours or equivalently to a frequency of ' 7.7265
cycles/day. A pulsation period resulting in a few hours is fully consistent with os-
cillating properties of HADS stars. The harmonics of the dominant series (colored
vertical lines in the periodogram) are integer multiples of the estimated funda-
mental pulsation frequency.
As described in details in section 6.1, after computing the GLS periodogram, I
fixed the estimated fundamental frequency to perform a least-squares regression
of the photometric TESS light curve (see subsection 6.1.3). Furthermore, I carried
out an MCMC analysis as described in subsection 6.1.4 to refine the fitting with
respect to the traditional least-squares method. The resulting (O − C) diagrams
showing the phase shifts obtained by both models are combined in the following
graph (Fig. 6.8).

4Informations about the scheduled observations available at https://heasarc.gsfc.nasa.
gov/cgi-bin/tess/webtess/wtv.py?Entry=TIC+431589510
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Figure 6.8: Resulting (O − C) diagram of Chang 134. Red squares are returned
by simple least-square regression as described in subsection 6.1.3, black dots with
errorbars are the result of the MCMC fits as described in subsection 6.1.4.

The (O−C) diagram illustrates phase shifts (in seconds) as the difference between
observed fundamental phases, derived from the harmonic analysis I carried out on
TESS light curves of Chang 134, and the expected phases, corresponding to the
mean computed values, as a function of time in BTJD. In the figure above (Fig.
6.8) are shown 16 data points corresponding to two points for each TESS light
curve, i.e. two points every observing sector (8 in case of Chang 134), one point
for orbital segment (∼two weeks). The distribution of phase shifts within the
residuals diagram suggests a sinusoidal periodic trend namely LTEs induced by a
secondary body perturbing Chang 134. I will discuss the origin of the LTEs and
the nature of the perturber in Chapter 7.

6.2.2 V393 Car
V393 Car (TIC 364399376) is an HADS having an estimated mass of 1.98 ±
0.17 M�5. Its TESS magnitude is 7.16 and it was observed in 9 non-consecutive
TESS sectors (1, 4, 7, 8, 10, 11, 27, 28 and 31) from 2018 until 2020 (Year 1, 2
and partially Year 3 of the mission). V393 Car was re-observed in sector 34 (13
January 2021 to 9 February 2021), 35 (9 February 2021 to 7 March 2021), 36 (7
March 2021 to 2 April 2021), 37 (2 April 2021 to 28 April 2021) and in sector 38
(28 April 2021 to 26 May 2021). I did not included the latter five sectors in my

5See Chapter 5.
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analysis since those light curves were not available for download when I started the
harmonic analysis. Looking at the forthcoming sectors (up to sector 55, 5 August
2022 to 1 September 2022), V393 Car could be re-observed6.
The frequency pattern shows one dominant radial pulsation mode and also some
other much weaker peaks corresponding to separate or mixed modes.

Figure 6.9: GLS Periodogram of V393 Car. The blue vertical line highlights the
strongest frequency peaks within the diagram and the following coloured vertical
lines indicates first three equally-spaced harmonics.

The strongest peak in the GLS periodogram corresponds to a dominant pulsation
period of ' 0.14 days ' 3.4 hours or equivalently to a frequency of ' 7 cycles/day.
A pulsation period resulting in a few hours is fully consistent with oscillating prop-
erties of HADS stars. The harmonics of the dominant series (colored vertical lines
in the periodogram) are integer multiples of the estimated fundamental pulsation
frequency.
According to the harmonic analysis described in details in section 6.1, the resulting
(O−C) diagrams showing the phase shifts obtained by both the traditional least-
squares regression (see subsection 6.1.3) and the MCMC analysis, as described in
subsection 6.1.4, are combined in the following graph (Fig. 6.10).

6Informations about the scheduled observations available at https://heasarc.gsfc.nasa.
gov/cgi-bin/tess/webtess/wtv.py?Entry=TIC+364399376
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Figure 6.10: Resulting (O − C) diagram of V393 Car. Red squares are returned
by simple least-square regression as described in subsection 6.1.3, black dots with
errorbars are the result of the MCMC fits as described in subsection 6.1.4.

The (O − C) diagram shows phase shifts (in seconds) as the difference between
observed fundamental phases, derived from the harmonic analysis I carried out
on TESS light curves of V393 Car, and the expected phases, corresponding to
the mean computed values, as a function of time in BTJD. The computed error
bars are pretty small, namely of the order of ∼ 1/10 second, reason why are not
clearly visible within the diagram. In the figure above (Fig. 6.10) are shown 18
data points corresponding to two points for each TESS light curve, i.e. two points
every observing sector (9 in case of V393 Car), one point for orbital segment (∼two
weeks). The distribution of phase shifts within the residuals diagram suggests the
presence of a sinusoidal periodic signal together with a linear trend. Therefore,
this could be an hint of LTEs induced by a secondary body perturbing V393 Car.
I will discuss the origin of the LTEs and the nature of the perturber in Chapter 7.

6.2.3 Chang 349
Chang 349 (TIC 260654645) is an HADS having an estimated mass of 1.78 ±
0.16 M�7. Its TESS magnitude is 12.44 (therefore lying on the faint side of our
sample) and it was observed in 17 partially consecutive TESS sectors (1-13, 28-31)
from 2018 until 2020 (Year 1, 2 and partially Year 3 of the mission). Chang 349
was re-observed in sectors 32 (19 November 2020 to 17 December 2020), 33 (17

7See Chapter 5.
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December 2020 to 13 January 2021), 34 (13 January 2021 to 9 February 2021),
35 (9 February 2021 to 7 March 2021), 36 (7 March 2021 to 2 April 2021), 37 (2
April 2021 to 28 April 2021), 38 (28 April 2021 to 26 May 2021) and in sector 39
(26 May 2021 to 24 June 2021). I did not included the latter eight sectors in my
analysis since those light curves were not available for download when I started the
harmonic analysis. Looking at the forthcoming sectors (up to sector 55, 5 August
2022 to 1 September 2022), Chang 349 could be re-observed8.
The frequency pattern shows one dominant series of frequencies and three other
frequencies “combs” whose harmonics are not visible within the spectrum. The
other peaks are aliases, i.e. false frequencies contaminating the periodogram typ-
ically caused by temporal gaps in observations.

Figure 6.11: GLS Periodogram of Chang 349. The blue vertical line highlights the
most dominant frequency within the diagram and the following coloured vertical
lines indicates first three equally-spaced harmonics.

The strongest peak in the GLS periodogram corresponds to a dominant pulsation
period of ' 0.09104 days ' 2.2 hours or equivalently to a frequency of ' 11
cycles/day. Also in this last case, a pulsation period resulting in a few hours is
fully consistent with oscillating properties of HADS stars. The harmonics of the
dominant series (colored vertical lines in the periodogram) are integer multiples
of the estimated fundamental pulsation frequency. Other peaks do not constitute
frequency series but they are only aliases with the dominant period, indeed they

8Informations about the scheduled observations available at https://heasarc.gsfc.nasa.
gov/cgi-bin/tess/webtess/wtv.py?Entry=TIC+260654645
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are equally-spaced.
In the case of Chang 349 I report the resulting (O − C) diagram showing only
phase shifts obtained by the MCMC analysis (see subsection 6.1.4) because, by
analyzing Chang 134 and V393 Car, it resulted to be preferable compared to a
simpler least-squares regression (see subsection 6.1.3).
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Figure 6.12: Resulting (O−C) diagram of Chang 349. Black dots with error bars
are the result of the MCMC fits as described in subsection 6.1.4.

The (O−C) diagram, where phase shifts have been converted to seconds, shows the
difference between observed phases derived from the harmonic analysis I carried
out on TESS light curves of Chang 349, and the expected phases, corresponding
to the mean computed values, as a function of time in BTJD. In the figure above
(Fig. 6.12) are shown 34 data points corresponding to two points for each TESS
light curve, i.e. two points every observing sector (17 in case of Chang 349), one
point for orbital segment (∼two weeks). The two clusters of data show different
slopes but any periodic sinusoidal trend is appreciable from the distribution of
phase shifts within the (O − C) diagram. This condition implies that I need
more observations to clarify the question. The slopes in the diagram have not any
physical meaning, they depend only on assumptions on the mean pulsation period.
Therefore, observed phase shifts could be an hint of LTEs induced by a secondary
body perturbing Chang 349. I will discuss the origin of the LTEs and the nature
of the possible perturber in Chapter 7.
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6.3 Computation of the expected LTE signal
Before performing the final regression of the (O − C) diagrams, I computed, for
each of the three HADS targets selected for my pilot study, the expected semi-
amplitude of the LTE as a function of the orbital period and semi-major axis of
the external body for different types of perturbers, i.e. from stellar to planetary
companions. This preliminary study would give an idea of which portion of the
parameter space I am able to investigate exploiting the PT technique just as I
implemented it, once known the precision thanks to which I measure the phase
shifts. Especially, this pilot investigation would reveal which range of masses (i.e.
from stellar companions down to planetary masses), orbital period and semi-major
axis is consistent with measured LTEs.

As a first step, I assumed a range of masses for each companion according to Table
2 published by Stevens and Gaudi, 2013. Afterwards, I assumed as mass of the
hypotetical perturber in our calculation the mean value computed within each
bin.
The table below (Table 6.1) shows mass intervals based on Stevens and Gaudi,
2013 (second column) and the mean computed masses of the perturbers reported
in Earth masses unit (third column).

Table 6.1: Assumed masses of the perturbers

Perturber Mass Range Mean Mass [M⊕]
Earth-like 0.1 M⊕ − 2 M⊕ 1.0

Super Earth-like 2 M⊕ − 10 M⊕ 6.0
Neptune-like 10 M⊕ − 100 M⊕ 55.0
Jupiter-like 100 M⊕ − 103 M⊕ 550.0

Brown Dwarf-like 13 MJ − 0.07 M� 13722.45
Solar-like 1 M� 333030.0

As a second step, I considered equation 2.19 and, by fixing the inclination of the
orbital plane, i, at π/2 such that sin(i = π/2) = 1, I used the aforementioned
equation to compute the semi-amplitude of the expected LTE signal, A, expressed
in seconds, as a function of the semi-major axis, a, in the interval from zero to 10
AU, chosen according to the difficulty of sampling efficiently longer orbital periods
using present-day techniques. I calculated the respective orbital periods in days
according to the third Kepler’s law:

9In the case of circular orbits: A ' a sin(i)
c

mp

M?
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Porb = 2πa ·
√

a

GM?

, (6.12)

where G = 8.88 · 10−10AU3/M⊕days2 is the gravitational constant reported in
appropriate units, a is the semi-major axis changing at steps of 0.1 AU in the
given range andM? is the stellar mass in Earth masses. The masses of Chang 134,
V393 Car and Chang 349 I assumed are the ones I computed according to Moya
et al., 2018 and Queiroz, Anders, Chiappini et al., 2020. Details about empirical
estimation of the mass of the three HADS can be found in Chapter 5.

In the following subsections I report results obtained for the three HADS: Chang
134, V393 Car and Chang 349.
The third column of tables 6.2 , 6.3 and 6.4 shows the computed semi-amplitude
of the LTE multiplied by the semi-major axis in the case of different perturbers
whose assumed masses are equal to the means computed in Table 6.1. For example,
assuming a semi-major axis equal to 2 AU, a Neptune-like exoplanet orbiting
Chang 134 would induce an LTE with a semi-amplitude of 0.0598 · 2 ' 0.12 s and
a corresponding orbital period of ' 880.3 days.
The graphics shown represent A as a function of orbital semi-major axis (Fig. 6.13,
6.15 and 6.17) and period (Fig. 6.14, 6.16 and 6.18) of each companion orbiting
the three HADS.

6.3.1 Chang 134

Table 6.2: Chang 134, A(a) with a ranging between 0 and 10 AU.

Perturber M [M⊕] A(a) [AU·s]
Earth-like 1.0 0.00109·a

Super Earth-like 6.0 0.00652·a
Neptune-like 55.0 0.05977·a
Jupiter-like 550.0 0.59765·a

Brown Dwarf-like 13722.5 14.9114·a
Solar-like 333030.0 361.885·a
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Figure 6.13: Semi-amplitude of the LTE as a function of the orbital semi-major
axis varying in the interval 0-10 AU, both axis are in logarithmic scales. Each
color refers to a different companion orbiting Chang 134.
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Figure 6.14: Semi-amplitude of the LTE as a function of the orbital period assum-
ing a semi-major axis varying in the interval 0-10 AU, both axis are in logarithmic
scales. Each color refers to a different companion orbiting Chang 134.
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6.3.2 V393 Car

Table 6.3: V393 Car, A(a) with a ranging between 0 and 10 AU.

Perturber M [M⊕] A(a) [AU·s]
Earth-like 1.0 0.00076·a

Super Earth-like 6.0 0.00455·a
Neptune-like 55.0 0.04167·a
Jupiter-like 550.0 0.41665·a

Brown Dwarf-like 13722.5 10.3955·a
Solar-like 333030.0 252.288·a
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Figure 6.15: Semi-amplitude of the LTE as a function of the orbital semi-major
axis varying in the interval 0-10 AU, both axis are in logarithmic scales. Each
color refers to a different companion orbiting V393 Car.
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Figure 6.16: Semi-amplitude of the LTE as a function of the orbital period assum-
ing a semi-major axis varying in the interval 0-10 AU, both axis are in logarithmic
scales. Each color refers to a different companion orbiting V393 Car.

6.3.3 Chang 349

Table 6.4: Chang 349, A(a) with a ranging between 0 and 10 AU.

Perturber M [M⊕] A(a) [AU·s]
Earth-like 1.0 0.00084·a

Super Earth-like 6.0 0.00506·a
Neptune-like 55.0 0.04634·a
Jupiter-like 550.0 0.46344·a

Brown Dwarf-like 13722.5 11.5628·a
Solar-like 333030.0 280.617·a
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Figure 6.17: Semi-amplitude of the LTE as a function of the orbital semi-major
axis varying in the interval 0-10 AU, both axis are in logarithmic scales. Each
color refers to a different companion orbiting Chang 349.
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Figure 6.18: Semi-amplitude of the LTE as a function of the orbital period assum-
ing a semi-major axis varying in the interval 0-10 AU, both axis are in logarithmic
scales. Each color refers to a different companion orbiting Chang 349.
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6.3.4 General discussion
As theoretically predicted by equation 2.1 for simple circular orbits, the more
massive the perturber is, and the wider the star-perturber separation is (i.e. large
orbital period and semi-major axis), the larger will be the LTE signature. In this
context, the challenge of the PT technique is double:

• Even though the method is more sensitive to companions orbiting further
from the star, the complete sampling of long orbital periods10, i.e. long ob-
servational baselines, could not be easy from a photometric point of view
because it might require observations of the order of tens of years; (for com-
parison, in the case of perturber-star11 separations ∼ 5 AU the required
baseline is ∼ 10 yr).

• Moreover, the less massive the perturber is, the smaller the LTE signature
is. Therefore, in case of planets having smaller masses such as rocky Earth-
and Super-Earth-like exoplanets, the semi-amplitude of the LTE could reach
fractions of second at best. For example, a Super-Earth (mass of the order
of few Earth masses) orbiting V393 Car at 1 AU induces an LTE with a
semi-amplitude of ' 0.0046 s. For this reason, the signal could be unfeasible
to detect because it might be hindered or distorted by systematic errors or
issues with the absolute time calibration discussed in section 7.2.

One of the advantages that makes the PT an important technique for searching
and characterizing exoplanets is the capability of revealing perturbers at a large
separation from the host star. As described in Chapter 1, RV and transit detection
methods are not optimized for discovering exoplanets orbiting at wide distances
from their hosting star. Therefore, since the PT technique is more sensitive for
detecting distant planets, it results in being a unique method to detect exoplanets
in larger orbits as well as astrometry.

10I need to sample the entire orbital period to infer both the phase and the amplitude.
11Considering δSct stars having a mass in the range 1-2 M�.
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Chapter 7
Conclusions

In this final chapter, I present and discuss my attempts at fitting an LTE model to
my (O−C) diagrams, in order to infer or constrain the mass and semi-major axis
of the perturber for each of the analyzed systems. Furthermore, I discuss issues
on TESS timing accuracy, final comments and future developments.

7.1 LTE fit of the (O-C) diagrams
Before performing the actual fit of an LTE model to the (O − C) diagram, I
computed a GLS periodogram (see subsection 6.1.2 for details) to search for any
significant periodicity in it. I chose this approach because the MCMC optimization
I used needs a starting point to converge to a reliable solution, and visually guessing
the period does not always lead to the best-fitting solution.
Once a candidate period is found, I run the same MCMC algorithm described in
subsection 6.1.4 to fit the simplest possible LTE model (that is, with a circular
orbit e = 0 corresponding to a sinusoidal function1) to my (O − C) diagrams.
Lastly, I used the period, the amplitude and corresponding errors returned by the
fit to compute both the orbital semi-major axis2 (in AU) and the mass (in Earth
masses) of the perturber according to the following equations:

a =
(
P 2
orb ·G ·M?

4π2

)1/3

, (7.1)

where G = 8.88 · 10−10AU3/M⊕ days2 is the gravitational constant in appropriate
units, Porb is the orbital period in days andM? is the stellar mass in Earth masses;
and:

Mp = c · M? · A
a

, (7.2)

where c is the speed of light in AU/s, M? is the stellar mass in Earth masses, a
is the orbital semi-major axis estimated by equation 7.1 and A is the amplitude

1See equations 2.1 and 2.3.
2From the third Kepler’s law.
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computed by the model regression. Since I assumed the orbital inclination angle3
i = π/2, the estimated mass coincides with the true mass of the external body.
I propagated the uncertainties on both semi-major axis and mass as the quadratic
sum of the partial derivatives considering errors on orbital period and amplitude
returned by the fit.

Below I show results obtained for the three HADS: Chang 134, V393 Car and
Chang 349.

7.1.1 Chang 134
As described in the introduction of section 7.1, as a first step I derived a GLS
periodogram to search for a periodicity in the (O − C) diagram of Chang 134
resulting from the harmonic analysis illustrated in Chapter 6 (Fig. 6.8). The
period returned by the GLS suggests an orbital period of the external body of
81.75 days (Fig. 7.1).

Figure 7.1: GLS Periodogram carried out onto the (O−C) diagram of Chang 134
(Fig. 6.8). The blue vertical line highlights the peak having the highest power
corresponding to an orbital period of ' 82 days found within the (O−C) diagram
of Chang 134.

Afterwards, I performed an MCMC fit to model the (O−C) diagram of Chang 134
(Fig. 6.8). The function adopted as potential best-fit model is the combination of
a sinusoidal and a parabolic trend having six free parameters in the fit:

3sin(i)=1
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NL(t) = b0 + b1 · (t− tmedian) + b2 · (t− tmedian)2 + A0 · cos
( 2πt
Porb

+ 2πφ0

)
, (7.3)

where b0, b1 and b2 are the coefficients of the parabola; A0 is the amplitude of
LTE considering the fundamental frequency; φ0 is the phase and Porb is the orbital
period left free to vary starting from the period extracted from the GLS periodo-
gram performed on the (O − C) diagram. After checking the convergence of the
MCMC chains, in the following table (Tab. 7.1) are listed the best-fit values with
their corresponding uncertainties returned by the final regression of the (O − C)
diagram of Chang 134.

Parameter Best-fit value ± σ

b0 −0.26 ± 1.91
b1 −0.003 ± 0.006
b2 (1.17 ± 1.89)·10−5

Porb 81.76 ± 0.28 days
φ0 0.16 ± 0.07
A0 6.87 ± 0.69 s

Table 7.1: Best-fit parameters returned by the final regression of the (O − C)
diagram of Chang 134.

The resulting chi-squared is χ2 = 34.83 and the respective reduced chi-squared is
χ2
red = χ2/DOF ' 3.5, where DOF = 16 − 6 = 10 are the degrees of freedom of

the system, i.e. the number of points of the (O−C) diagram minus the number of
free parameters. As a conclusion, the proposed function (Eq. 7.3) is appropriate
to model the (O − C) diagram, hence I explained the χ2

red > 1 as a consequence
of uncertainties underestimated by a factor

√
χ2 ' 1.9, supposing random, inde-

pendent errors and the model linear in its parameters.
It is to be noticed that the orbital period derived by the best-fit model is fully
consistent with the value computed by the GLS periodogram.

Below, I report the resulting (O−C) plot fitted according to the model in equation
7.3 (Fig. 7.2).
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Figure 7.2: Best-fit of the (O − C) diagram of Chang 134. The green model is
the resulting best-fit one described by equation 7.3. The blue curve illustrates
the parabolic baseline included in the best-fit function. Black dots with error
bars are returned by the MCMC approach adopted for the harmonic analysis (see
subsection 6.1.4).

Having obtained the best-fit parameters, especially the amplitude and the period,
I estimated the orbital semi-major axis and the mass of the perturber according
to equations 7.1 and 7.2. As a result I obtained: a = 0.4101 ± 0.0032 AU and
Mp = 15400± 1600 M⊕ ' 49± 5 MJ.
According to the pilot study I made on the expected LTEs induced by different
perturbers on varying of mass, orbital period and semi-major axis (described in
details in section 6.3), my analysis of Chang 134 are consistent with a brown dwarf
companion on a 2.7-months orbit.

7.1.2 V393 Car
At first, I searched for a periodicity in the (O−C) diagram of V393 Car resulting
from the harmonic analysis illustrated in Chapter 6 by exploiting the GLS peri-
odogram. Unlike Chang 134, in the case of V393 Car the GLS periodogram did
not find a dominant and evident periodicity in the O-C diagram. Hence, the GLS
analysis is not conclusive.
Afterwards, I performed an MCMC algorithm to model the (O − C) diagram of
V393 Car (Fig. 6.10). The best-fit function I assumed consists in a linear trend
added to a sinusoidal one for a total of five free parameters in the fit:
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NL(t) = b0 + b1 · (t− tmedian) + A0 · cos
( 2πt
Porb

+ 2πφ0

)
, (7.4)

where b0 and b1 are the coefficients of the straight line, namely the vertical offset
and the angular coefficient; A0 is the amplitude of LTE considering the funda-
mental frequency; φ0 is the phase and Porb is the orbital period. Since the orbital
period of the perturber cannot be extracted from the periodogram, I derived it by
imposing it as a free parameter returned by the regression.
After checking the convergence of the MCMC chains, in the following table (Tab. 7.2)
are listed the best-fit values with their uncertainties returned by the final regression
of the (O − C) diagram of V393 Car.

Parameter Best-fit value ± σ

b0 −44.6 ± 0.3
b1 0.270 ± 0.004
Porb 1150.1 ± 5.5 days
φ0 0.849 ± 0.007
A0 126.3 ± 1.2 s

Table 7.2: Best-fit parameters returned by the final regression of the (O − C)
diagram of V393 Car.

The resulting chi-squared is χ2 = 9830.8 and the respective reduced chi-squared is
χ2
red = χ2/DOF ' 756.2, where DOF = 18− 5 = 13 are the degrees of freedom of

the system, i.e. the number of points of the (O − C) diagram minus the number
of free parameters. As a conclusion, the proposed function (Eq. 7.4) is clearly
appropriate to model the (O − C) diagram, hence I explained the χ2

red � 1 as a
consequence of uncertainties underestimated by a factor

√
χ2 ' 99.2, supposing

random, independent errors and the model linear in its parameters. Indeed, the
computed error bars on phase shifts are of the order of 0.1 s.

Below, I report the resulting (O−C) plot fitted according to the model in equation
7.4 (Fig. 7.3).
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Figure 7.3: Best-fit of the (O − C) diagram of V393 Car. The green model is the
resulting best-fit one described by equation 7.4. Black dots with error bars are
returned by the MCMC approach adopted for the harmonic analysis (see subsec-
tion 6.1.4).

Having obtained the best-fit parameters, especially the amplitude and the period,
I estimated the orbital semi-major axis and the mass of the perturber accord-
ing to equations 7.1 and 7.2. As a result I obtained: a = 2.70 ± 0.08 AU and
Mp = 61900± 5700 M⊕ ' 195± 18 MJ.
According to the pilot study I made on expected LTEs induced by different per-
turbers on varying of orbital period and semi-major axis (described in details in
section 6.3), my analysis of V393 Car are consistent with an M-dwarf companion
on a 3.2-years orbit.

7.1.3 Chang 349
As a first step, I searched for a periodicity in the (O − C) diagram of Chang 349
resulting from the harmonic analysis illustrated in Chapter 6 by exploiting the GLS
periodogram. Unlike Chang 134, in the case of Chang 349 the GLS periodogram
did not find a dominant and evident periodicity in the distribution of the phase
shifts within the (O − C) diagram (Fig. 6.12). Hence, the GLS is not conclusive
because it returned three potential orbital periods but none of them provided a
reasonable solution (see Fig. 7.4).
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Figure 7.4: GLS Periodogram carried out onto the (O−C) diagram of Chang 349
(Fig. 6.12). The blue vertical lines highlight the peaks having the highest power
corresponding to three possible orbital periods inferred by the (O−C) diagram of
Chang 349.

The (O−C) diagram of Chang 349 resulting from the harmonic analysis illustrated
previously exhibits two clusters of data both following a linear trend but showing
two different slopes. It is appreciable a significant variation of phases as the time
varies, however, by subtracting the linear trends, the data distribution cannot be
modelled by a sinusoidal shape and the three periods obtained from the GLS did
not provide a convincing solution.

Below, I report the (O−C) diagram of Chang 349 once I removed the linear trends
(Fig. 7.5).
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Figure 7.5: (O − C) diagram Chang 349 after I removed the linear trends. Black
dots with error bars are returned by the MCMC approach adopted for the harmonic
analysis (see subsection 6.1.4).

Therefore, I conclude that the analysis carried out for Chang 349 is not conclusive
because, by fitting the (O − C) diagram, no sinusoidal trend is able to explain
the behavior of the system. Since I did not infer any sinusoidal shape, neither
the semi-amplitude nor the orbital period could be derived; as a consequence, I
cannot speculate on which type of unseen companion might perturb Chang 349, it
remains an open question and I need more data, i.e. observations, to obtain more
hints about the nature of the system.

7.2 TESS timing accuracy
During my work, I encountered some limiting factors preventing me to achieve the
theoretical sub-second sensitivity for the LTE detection. One of the most crucial
issues is the uncertainty on the absolute calibration of the TESS time stamps,
which are known to show drifts up to a few seconds with a different behavior
on different sectors, as documented by the TESS Science Processing Operations
Center (SPOC) in official data release notes (DRN)4.

Aforementioned issues might be due to constant drifts of the internal clock on-
board TESS which is accurate in its own time but with respect to the universal
coordinated time (UTC) it shows drifts and offsets possibly caused by additional

4https://archive.stsci.edu/tess/tess_drn.html
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readout offsets of TESS cameras, hardware limitations, electronics and data down-
links. Unless these systematics are not properly modeled and corrected to recalib-
rate TESS time stamps, it is possible for a genuine planetary LTE to be hindered
or distorted by them, compromising the goal of discovering exoplanets especially
those having smaller masses.

Before TESS became operative in 2018, Hans Kjeldsen, Jørgen Christensen-Dalsga-
ard and Bill Chaplin in 2013/2014 published a document summarizing the TESS
timing requirements for asteroseismology (SAC/TESS/0002)5. TESS timing re-
quirements are fundamental in the case of high-amplitude coherent oscillators like
RR-Lyrae and δSct stars, especially HADS which are the primary targets of my
master thesis project.
According to the study carried out by Montgomery and Odonoghue, 1999, Kjeldsen
and collaborators computed the accuracy of the pulsation phase as:

σ(φ) =
√

2
N
· σ(m)

A
, (7.5)

where N is the total number of data, σ(m) is the relative scatter per measurement
i.e. the mean error associated to theN measurements and A is the amplitude of the
oscillation. The corresponding accuracy of the internal clock of TESS spacecraft
to obtain a stable phase is:

σ(time) =
√

2
N
· σ(m)

A
· Pdominant

2π , (7.6)

where Pdominant is the dominant pulsation period. This corresponds also, neglecting
systematic errors, to the timing precision expected while observing a sinusoidal
pulsator with these characteristics.

I estimated both quantities for the three pilot targets: Chang 134, V393 Car and
Chang 349. Results are summarized in the table below (Tab. 7.3).

5https://tasoc.dk/info/docs.php
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Table 7.3: Accuracy of the pulsation phase and accuracy of the on-board clock
computed for the three HADS stars according to results of the harmonic analysis
(see Chapter 6) and to equations 7.5 and 7.6.

HADS Pdom. [days] N σ(m) A [s] σ(φ) σ(time) [s]
Chang 134 0.1294 7997.75 4.22·10−3 0.09 7.56·10−4 1.35
V393 Car 0.1413 7767.39 2.65·10−4 0.06 6.96·10−5 0.14
Chang 349 0.0910 7878.97 6.68·10−3 0.11 9.89·10−4 1.24

Pdominant is the dominant pulsation period derived by the GLS periodogram. For
A I assumed the mean amplitude derived by the non-linear model fitting the light
curve. N is the number of points within each orbit of the light curve and it is
given by the ratio between the total number of rows of the output file containing
all orbital segments of the filtered light curve divided by the number of orbits (i.e.
two times the number of observing TESS sectors). σ(m) is the mean photometric
error.
The estimated σ(time) for each HADS is the uncertainty with which I am able
to reconstruct the arrival time of the stellar signal. The computed values are
consistent with error bars on phase shifts in (O−C) diagram derived by the MCMC
model (see subsection 6.1.4). Both Chang 134 and Chang 349 have uncertainties
of the order of ∼ 1 second, promising for future perspectives. Quite the opposite,
error bars computed for phase shifts of V393 Car are of the order of ∼1/10 of
second that could imply difficulties in reaching a sub-second sensitivity without
calibrating accurately the satellite.

The main tasks required for TESS timing datasets listed in the document by
Kjeldsen and collegues are:

1. (RS-TASC-01) To reach the highest possible TESS photometric quality from
2-min short cadence and to reach the photon noise limit for the brightest
stars, the absolute photometry needs to be accurate better than 5 msec,
which corresponds to a clock stability of about 0.5 ppm.

2. (RS-TASC-02) Furthermore, to reach the theoretical accuracy of high-amplitude
coherent oscillations it is necessary an accurate exposure time better than 5
msec (corresponding to a clock accuracy of 0.002 ppm) over the period of an
observing sector which is at least 27 days.

3. (RS-TASC-03) Moreover, always considering coherent pulsation modes, the
transformation from the local on-board time to the Heliocentric Julian date
(HJD) or barycentric Julian date (BJD) needs to be very accurate with an
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accuracy better than 5 msec and this requires to know the telemetry of the
spacecraft, i.e. the 3D-position of the satellite at any given time better than
1500 km relative to the Sun. The barycentric correction of the spacecraft is
strictly necessary because the barycenter of the Solar System is an inertial
reference frame while the Earth is not. Therefore, the motion of the Earth
around the Sun induces shifts in the incoming stellar signals which could be
moved up or delayed as a consequence, hence, I need to correct it.

4. (RS-TASC-04) Furthermore, in order to compare TESS photometric data
together with ground-based photometry, I need to estimate the absolute time
of a given photometric data point with respect to a reference point which
could be the central time of a given observation; in the case of coherent
oscillations, the absolute time in HJD/BJD should be known to better than
0.5 sec. Whereas, in the case of solar-like oscillations, the time should be
accurate better than one second over a period of 10 days corresponding to
clock accuracy of 1 ppm (RS-TASC-05).

Studying the semi-amplitude of LTEs induced by different types of perturbers
(such as planets and/or stellar companions) on varying of the orbital semi-major
axis and period of the secondary body (see section 6.3), I observed that, in the
case of δSct stars with masses in the range 1.2-2 M�, only LTEs caused by massive
perturbers can be feasibly detected, i.e. Jupiter-like exoplanets and/or stellar com-
panions. Since our ambitious aim is the capability of revealing smaller exoplanets
on orbits having more narrow star-planet separations, systematic issues must be
corrected to reach the theoretical sub-second sensitivity of the PT in case of per-
turbers of small mass. For this purpose, the solution I propose is to exploit the
global timing properties of an ensemble of bright6 eclipsing binaries (EBs) to calib-
rate TESS time stamps by modelling and subtracting systematic drifts and errors,
trying to respect timing requirements listed in SAC/TESS/0002. A single EB can-
not be considered as a precise astronomical clock because it might show intrinsic
LTEs but considering a group of EBs, LTEs should average to zero globally, since
they are independent systems whose LTEs (if present) are not correlated. The
challenge of this approach is that I need to know ahead of schedule the mean eph-
emerides of each EB system. Therefore, I have to accurately select a list of targets
observed frequently in the last years such that ephemerides are well known. TESS
continuos viewing zone (CVZ) objects are preferred. To carry out this selection it
is necessary to match observations and results from published literature together
with catalogued properties. Two possible starting point catalogues I suggest could
be:

6E.g. T < 10 mag, since TESS is optimized to observe bright stars.
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• TIming DAtabase at Krakow (TIDAK7) which gathers together (O − C)
diagrams and updated linear elements of EB. The database is described in
details by Kreiner, 2004.

• The catalogue of the physical properties of well-studied detached eclipsing
binaries (DEBCat8) based on the list given by Andersen, 1991. The database
is described in details by Southworth, 2014.

Once chosen the sample of suitable EBs, two types of calibration of TESS timestamps
can be performed:

• A relative calibration, i.e. TESS self-calibration approach, is driven by com-
paring TESS photometric observations taken in different epochs of the group
of EBs carefully chosen. Thanks to this comparison, systematic issues of the
satellite could be modelled and subtracted from the observations.

• An absolute calibration described in details in the following subsection 7.2.1.

7.2.1 TESS absolute calibration
To perform an absolute calibration, measurements taken independently from TESS
must be borne in mind. In this context, ground-based observations9, which are
reliable from a timing point of view and work as a zero reference point for TESS
data sets, are optimal. The analysis carried out in this scenario consists in a cross-
correlation between ground- and space-based time series gathered by simultaneous
observations of the shortlist of EBs both by TESS and ground-based facilities. In
principle, what is done is an (O − C) diagram to compare ground and space data
to quantify and model the systematic errors of the satellite.

Robotic and low-cost ground-based telescopes are preferred in this science case. Po-
tential ground-based facilities to take into account for the absolute calibration are:

• The Asiago Schmidt 67/92 cm telescope10 in Asiago (VI), Italy

• The Rapid Eye Mount 60 cm telescope11 (REM) located at La Silla obser-
vatory in Chile, optimized for visible/infrared observations.

• The two 1.2 m STELLar Activity telescopes12 (STELLA) located at Tenerife
in Spain to monitor activity of cool stars.

7https://www.as.up.krakow.pl/ephem/
8https://www.astro.keele.ac.uk/jkt/debcat/
9The advantage of observing from ground is that the barycentric correction is well known.

10https://www.oapd.inaf.it/asiago
11http://www.rem.inaf.it
12https://www.aip.de/en/research/projects/stella/
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• The Stellar Observations Network Group13 (SONG) made up of a global-
spanning ensemble of small telescopes to characterize stellar properties (i.e.
asteroseismology) and planetary systems orbiting those stars.

To carry out the absolute calibration of TESS time stamps, one favorable and
exemplifying target having very accurate timing from ground-based observations
is HW Virginis (HW Vir, Marang and Kilkenny, 1989). HW Vir is an Algol-type,
detached EB, made up of a B-type sub-dwarf primary star and an M-dwarf com-
panion (∼ 0.25 M�, ∼ 26000 K and ∼ 0.12 M�, ∼ 4700 K, respectively) exhibiting
almost total, very deep and V-shaped eclipses lasting ∼ 20 minutes and a short
orbital period of a few hours (∼ 3 hours). Short duration times and orbital periods
allow to detect complete eclipses.
In a recent study published by Esmer et al., 2021, authors estimated an error
on mid-eclipse times obtained from ground-based observations (Table A.1) of the
order of 10−4 − 10−5 days, i.e. from a few seconds down to ' 0.864 seconds.
Eclipses of HW Vir were observed also with the Asiago ground-based facility by
Brown-Sevilla et al., 2021, who combined new eclipse timings with historical pho-
tometric observations gathered between 1983 and 2012. The Asiago research group
obtained a precision of the order of ' 0.3 seconds over a single measured primary
eclipse timing T0 (Table 3 of the work).
Therefore, on suitable EBs carefully selected with deep eclipses, possibly V-shaped,
short orbital periods and short eclipse duration times (e.g. HW Vir) is demon-
strated that it is possible to reach a precision in measurements of the absolute
time of mid-eclipses of the order of one tenth of a second.

In 2020, Carolina Von Essen and collaborators (Essen et al., 2020) published a
paper focused on TESS timing verification according to requirements reported by
the aforementioned official document (SAC/TESS/0002). In particular, authors
worked on solving TESS absolute calibration issues exploiting simultaneous obser-
vation of a group of EBs almost of Algol-type, showing deep and short eclipses.
They performed a cross-correlated analysis between ground-based observations
gathered by the 2.15 m Jorge Sahade telescope (CASLEO-2.15) and TESS space-
based observations obtaining a time offset equal to ' 5.8 seconds consistent with
TESS measuring the barycentric time ahead of real time. Furthermore, authors
evaluated mid-eclipse times of 26 EBs observed exclusively by TESS to search for
systematic drifts and to realize a relative calibration. They estimated a timing
drift of ' 0.009 sec/day.
For their work, Carolina Von Essen and collaborators assumed global system-
atic errors of the satellite neglecting drifts and offsets between sectors as well as
between cameras. To refine the calibration considering the mentioned additional

13https://phys.au.dk/song/k

Conclusions 87

https://phys.au.dk/song/k


drifts/offsets with a different behavior on different sectors and cameras, I suggest
to observe at least four different EBs (one for each TESS camera within an ob-
serving sector) every month because a sector is covered for ∼ 27 days. Since this
improvement requires a more complex process of suitable targets selection, a pro-
spective pilot study may consider well-known EBs observed by the fourth camera
which points the ecliptic poles towards the CVZ, sky-region with greater obser-
vational coverage (see Fig. 7.6). In this manner, it should be necessary one EB
observed in the north ecliptic hemisphere for 13 consecutive sectors and another
EB in the south ecliptic hemisphere pointed for other 13 consecutive sectors. The
advantage of this approach is that one carefully selected system for each hemi-
sphere in enough because such EB is continuously observed for 13 TESS sectors
and astronomers do not have to choose several EBs on different sectors. The chal-
lenge is that it might be difficult to find known EBs observed uninterruptedly in
many sectors by the satellite.

Figure 7.6: Four TESS cameras mapping four different sky-regions. As in-
dicated, camera 1 observes nearby the ecliptic plane whereas camera 4 points
the ecliptic pole. Image credit: https://heasarc.gsfc.nasa.gov/docs/tess/
primary.html

The previously described empirical approach to calibrate TESS time stamps can
be suggested to solve possible calibration issues of the forthcoming M-class ESA
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PLATO mission14 (PLAnetary Transits and Oscillations of stars, Rauer et al.,
2014), scheduled to be operative starting from 2026 having as primary science
goal the discovery of terrestrial exoplanets (i.e. rocky Earth twins and Super-
Earth-like planets) orbiting in the habitable zone of bright15 Solar-type stars16.
Indeed, differently from the TESS mission, the PLATO mission is optimized also
for carrying out asteroseismological observations, where accurate timing observa-
tions are strictly required to construct models describing the internal structure
of stars and their age in order to better understand the stellar evolutionary path
which influences the planetary formation and evolution.

7.3 Final discussion
The purpose of this thesis is to exploit the PT method to search and characterize
exoplanets in orbit around oscillating stars whose pulsation period, intrinsically
very coherent, is phase-shifted when a perturbing external body induces the star
to orbit around the common barycenter of the system. The resulting effect is
called Light Travel Effect or LTE. As theoretically predicted, the more massive
the perturber is, and the wider the semi-major axis is, the larger will be the LTE
signature by assuming the simple case of circular orbits (null eccentricity).

My work consists in a pioneering analysis of 2-minutes TESS extracted light curves
from a sample of suitable HADS carefully selected by cross-matching the catalog
published by Chang et al., 2013 together with the CTL of TESS. I shortlisted
three HADS stars to apply the PT technique: Chang 134 (M = 1.38±0.03 M�),
V393 Car (M = 1.98±0.17 M�) and Chang 349 (M = 1.78±0.16 M�). I derived,
for the fundamental pulsation mode, the phase shifts of the stellar signal as a
function of time, so called “(O − C)” diagram, to search for an LTE caused by
an unseen companion able to explain the behavior of the system. I made use
of VARTOOLS Light Curve Analysis Program to carry out a two-level harmonic
analysis by implementing at first a simple least-squares regression and later a
more sophisticated Monte Carlo Markov Chain (MCMC) approach to sample the
posterior distribution of the best-fit pulsation parameters to estimate uncertainties
on (O − C) phases. Afterwards, I retrieved the single-planet, circular LTE model
which best fits the (O−C) diagram of each HADS. This latter regression returned
the orbital period of the secondary body and the semi-amplitude of the LTE which
is directly proportional to the minimum mass of the perturber, to its orbital semi-
major axis and inversely proportional to the stellar mass. Having computed the

14https://sci.esa.int/web/plato/
15V < 11.
16F-, G-, K-type stars and bright M-dwarf stars.
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stellar masses quoted above according to the works by Moya et al., 2018 and
Queiroz, Anders, Chiappini et al., 2020, I calculated the semi-major axis (from the
best-fit orbital period) and the mass of the perturber. Lastly, I compared them
with my predictions on the expected LTE amplitude as a function of the semi-
major axis for different types of companions. From the outcome of my harmonic
analysis, and by assuming circular orbits (e = 0) and edge-on orbits (i = π/2)
for the LTE modeling, I conclude that the observed (O − C) diagrams could be
explained by the presence of a brown dwarf companion ofMp = 15400±1600 M⊕ '
49 ± 5 MJ in orbit around Chang 134 at ' 0.4 AU and an M-dwarf companion
having Mp = 61900 ± 5700 M⊕ ' 195 ± 18 MJ in a ∼ 3-year orbit around V393
Car. Quite the opposite, the harmonic analysis carried out for Chang 349 turned
out to be not conclusive because no sinusoidal trend is able to model its (O − C)
diagram. Therefore, unlike the other two HADS stars, I cannot speculate on a
potential unseen companion perturbing the system. It remains an open question
and more observations are needed to unveil the nature of the system.

From results obtained thanks to the described exploratory harmonic analysis, I
conclude that the PT technique is fruitful in detecting secondary massive com-
panions, i.e. especially stellar masses, in larger orbits. Therefore, PT detection
method plays a crucial role when the most employed techniques, as well as trans-
its and radial velocities, fail in characterizing orbital and intrinsic properties of
further external bodies.

7.3.1 Outlooks
Since the PT is one of the less explored techniques in exoplanetary astrophys-
ics, it has a large margin for improvement. To this purpose, in the near future,
the PT method can be exploited to search for companions in a wider sample of
pulsating stars having different spectral types, not necessarily δSct or variables
located within instability strip, namely RR-Lyrae and Cepheid variables. Such
targets could also be reasonably included within the sample of PLATO objects
of interest, increasing both the observational baseline and the photometric pre-
cision. Furthermore, during my thesis work I encountered pulsators exhibiting
more complex frequency spectra resulting in entwined patterns of pulsation modes
(i.e. not pure pulsators such as Chang 134) and/or spectral features like aliases
and rotational splitting multiplets. Therefore, starting from my pilot work focused
on the simple case of HADS stars for which the PT yields a high S/N, the PT
technique can be generalized to new scenarios considering other types of pulsators
showing more complex patterns of pulsations, by also addressing issues regarding
the aforementioned absolute time calibration of TESS satellite (details in section
7.2). Moreover, the PT model to be fitted can also be generalized by allowing ec-
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centric systems, i.e. by searching for secondary external bodies in eccentric orbits
(e 6= 0), extending my research project to non-standard scenarios.
In the short term, the main source of photometric data will be the TESS mission
which continues gathering data and extending the temporal baseline of the obser-
vations which is crucial in my science case because moving to LTE signals with
larger periods means to improve the sensitivity of the technique to perturbers with
smaller masses. For the same goal, TESS data can be complemented with other
archival light curves (when available) or with on-purpose observations at ground-
based facilities such as the Asiago Observatory.
In conclusion, when the PLATO mission will start releasing data, the synergy
between TESS and PLATO will boost the opportunity given by the PT technique
by combining gathered observations and by better calibrating mission time stamps.
The analysis of high-precision photometric time series of pulsating stars could also
lead to the serendipitous discovery of transiting planets around them. A very small
number of planets belonging to this class are so far known and well-characterized,
and therefore could be potential follow-up targets for the forthcoming medium class
ESA ARIEL mission17 (Atmospheric Remote-sensing Infrared Exoplanet Large-
survey, Pascale et al., 2018) whose launch is planned for 2029. Indeed, ARIEL
science objective will be the direct observation of about 1000 hot/warm exoplan-
ets (temperature > 600 K) orbiting M-,F-type stars. The main goal of the mission
will be the characterization of the atmosphere of already known planets by ex-
ploiting visible/infrared photometry and infrared spectroscopy.

17https://arielmission.space
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