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Abstract

This Master project concerns the problem of distributed controller synthesis for a special class
of interconnected systems known as "decomposable systems" in a large-scale setting. Due to
computational limitations, scalability constitutes one of the major concerns of the controller
synthesis of such large-scale systems. One possibility to deal with this limitation is to decompose
the synthesis conditions by enforcing some structure on the Lyapunov and multiplier matrices.
However, this approach in general introduces conservatism. The aim of this project is to analyze
the conservatism introduced by imposing specific structures on the matrices involved and then to
reduce the conservatism imposing less structure, however still achieving some degree of decompo-
sition. The strongest limitation in terms of performance, in the state of the art of the controller
synthesis for this kind of systems, comes from the structure imposed on the Lyapunov matrix
that is needed both for the decomposition and for the achievement of the desired distributed
controller structure. During this project a new method, based on the Full Block S-Procedure
and on the extended formulation of the Bounded Real Lemma, has been designed. It will be
shown that, with the proposed method, it is possible to impose less restrictive structures on
the Lyapunov matrix by still keeping the same degree of decomposition, and thus reduce the
conservatism.
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Chapter 1

Introduction

There is a wide variety of applications, that have been made possible by modern technologies,
that are characterised by their large scale, their distributed nature and the sparse structure of
their physical interconnections [30]. This is the case for systems such as new smart grids, the
internet, automated highways [30], satellite formation flying [17, 31], car platoons [24], unmanned
aerial vehicles [1, 23] and large telescopes [28], [36]. For this reason, in recent times, the Systems
and Control community has cultivated an increasing interest in the modelling and control of these
systems in which many agents interacting through a network are involved. Distributed systems
constitute one class of interconnected systems. When systems are physically interconnected
we refer to them as "spatially distributed systems" and this is the case of automated highway
systems [35], airplane formation flight, satellite constellations [17, 31]. We call, instead, "virtually
interconnected systems" those systems in which all the agents are not spatially interconnected,
but they share information in order to reach a common goal as it happens, for instance, when
dealing with mobile robots [33]. Groups of identical subsystems, that are connected either
physically or virtually, constitute a "homogeneous system", see [3].
When dealing with interconnected systems, three possible control strategies can be adopted,
namely centralized, distributed and decentralized control. In a centralized control model, one
component plays the role of controller and it is responsible of managing and coordinating the
tasks of all the agents in the network. In a decentralised approach, instead, each component of
the network adopts an independent controller calibrated exclusively on measured local signals.
In a distributed control strategy, finally, each agent of the network has its autonomous controller
and all the local controllers are allowed to communicate among themselves.
Very often the control of large-scale networked systems results to be a challenging problem since
a wide number of inputs and outputs can be involved. Whenever the number of interconnected
systems grows the controller synthesis becomes more complex and, in order to render it feasible,
it is fundamental to reach an adequate level of decomposition and scalability of the synthesis
equations. When the subsystems in the network are subject to communication constraints [6],
in fact, both the synthesis and the implementation of a centralised controller can be not feasi-
ble in practice and either a decentralised or a distributed control architecture may be needed
[29]. However, in applications in which a strong interaction among the subsystems is needed, a
completely decentralised architecture of the controller may not guarantee good performance [12].
This project focuses on linear time invariant homogeneous systems in a large scale setting. The
peculiarity of these systems is that they can be expressed in a state space form through system
matrices with identical diagonal blocks and non zero off-diagonal terms. Moreover we will focus
our attention on a specific class of systems known in literature as "decomposable systems" for
which a special, simplified, control synthesis procedure can be adopted. For a decomposable
system, in fact, as explained in [29], the off-diagonal terms assume a block structure whose dis-
position mirrors the interconnection topology of the network and thus they can be formalised
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through a Kronecker product in which a "pattern matrix" is involved. It must be said that
the idea of decomposing a system in order to simplify the controller synthesis has been widely
exploited in the past and has found many applications in different contexts such as symmetri-
cally interconnected systems [22, 40] and in SVD (Singular Value Decomposition) controllers [4].
From this formalisation, in fact, many interesting properties can be deduced and a controller
with a distributed architecture can be easily designed. In the context of interconnected systems,
exploiting the graph theory, each subsystem can be thought as a node of the graph, the intercon-
nections as the edges and the pattern matrix as the adjacency matrix. Many properties related
to decomposable systems will be presented and widely exploited in this work, especially when
dealing with the LMIs that incorporate the constraints to be fulfilled to meet the stability and
H∞ performance requirements for the systems. It will be shown, then, that a MIMO (Multi
Input Multi Output) system with n inputs and n outputs can be treated as n SISO (Single Input
Single Output) systems.
Goal of this project is to bring some improvements with respect to the state of the art of the
research related to the distributed controller synthesis for interconnected decomposable systems,
reducing the conservatism introduced by the decomposition of the conditions to be solved. The
constraints to be satisfied are derived from the Bounded Real Lemma and the extended Lya-
punov stability inequality exposed in [8] and will be reformulated according to the Full Block
S-Procedure presented by C. W. Schrerer in [39].
This thesis is organised as follows. Chapter 2 contains the preliminary notions and the math-
ematical tools exploited in this project, while in Chapter 3 an alternative stability condition
and the extended version of the Bounded Real Lemma are introduced. In Chapter 4 the setting
in which our problem is formulated is introduced, while Chapter 5 is the core of this work. It
explains the H∞ controller synthesis method derivation as a reformulation of the Full Block S-
Procedure [39], the extended Lyapunov inequality [8] and the Bounded Real Lemma. In Chapter
6 some numerical results are shown, while Chapter 7 concludes this work.
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Chapter 2

Preliminaries

In this chapter, the mathematical tools exploited in this Master Degree project are introduced.

2.1 Vector Norms and Matrix Norms

In this section the definitions of vector norms and matrix norms are recalled since they play a
leading role in the synthesis and design of H∞ controllers that are the core of this project. These
concepts will be widely exploited whenever we will consider the H∞ norm of transfer functions
or transfer matrices.
Let X be a vector space. A function ‖ · ‖: X → R is said to be a norm on X if it satisfies the
following properties:

(i) ‖x‖ ≥ 0 (nonnegativity);

(ii) ‖x‖ = 0 if and only if x = 0 (positive definiteness);

(iii) ‖αx‖ =|α| ‖x‖ for any scalar α (homogeneity);

(iv) ‖x+y‖ ≥ ‖x‖+ ‖y‖ for any x, y ∈ X (triangle inequality).

Let x ∈ Cn, then the vector p-norm of x is defined as

‖x‖p :=

(
n∑
i=1

|xi|p
) 1

p

, for 1≤ p <∞. (2.1)

The norms that are most commonly used in control as performance criteria are the following ones.

Vector 1-norm

‖x‖1 :=
n∑
i=1

|xi|, (2.2)

vector 2-norm

‖x‖2 :=

√√√√ n∑
i=1

|xi|2, (2.3)

vector ∞-norm
‖x‖∞ := max

1≤i≤n
|xi|. (2.4)

Let Y = [yij ] ∈ Cm×n, then the matrix norm induced by the vector p-norm is called induced
p− norm and is defined as

‖Y ‖p := sup
x 6=0

‖Y x‖p
‖x‖p

. (2.5)
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For matrix norms, in addition to the properties (i)-(iv), it holds that:

(v) ‖XY ‖ ≥ ‖X ‖‖Y ‖ for any X, Y ∈ Cm×n (Cauchy-Schwarz inequality).

From a system theory perspective, the induced norm can be interpreted as an input/output
amplification gain.

2.1.1 Signal Norms

This mathematical concept will be exploited when we will investigate the L2 gain of a system
(see Section 2.2) and when we will give a physical interpretation of the L∞ norm of a system
(Section 2.5).
Consider a multivariate signal x(t) that maps t ∈]−∞,∞[ to Cn. Signals norms fulfil the norms
properties (i)-(iv) and are defined as follows
signal p-norm

‖x(t)‖p :=

(∫ ∞
−∞

n∑
i=1

|xi(τ)|pdτ

) 1
p

. (2.6)

In the following, some signals norms of particular interest are enlisted.
Signal 1-norm

‖x(t)‖1 :=

∫ ∞
−∞

n∑
i=1

|xi(τ)|dτ =

∫ ∞
−∞
‖x(τ)‖1dτ, (2.7)

signal 2-norm

‖x(t)‖2 :=

√√√√∫ ∞
−∞

n∑
i=1

|xi(τ)|2dτ =

√∫ ∞
−∞
‖x(τ)‖2dτ, (2.8)

signal ∞-norm
‖x(t)‖∞ := max

τ

(
max
i
|xi(τ)|

)
= max

τ
(‖x(τ)‖∞). (2.9)

2.2 L2 Gain

Before introducing the Bounded Real Lemma in Section 2.5, we first need to recall the concept
of L2 gain of a system. To do so we first recall that the L2 gain of a signal z(t) : (−∞,+∞)→ C
is defined as

‖z‖2 :=
(∫ ∞
−∞
‖z(t)‖2dt

) 1
2
. (2.10)

Consider now a system of transfer function T (s) with input w and output z as shown in Figure
2.1.

Figure 2.1: Transfer function from w to z

Its L2 gain is defined as

‖T (s)‖2 := max
w 6=0

‖z‖2
‖w‖2

. (2.11)
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If we look at the signal w as a disturbance and at the signal z as a performance output, bound-
ing the L2 gain of the system T (s) amounts to bounding the effects of the disturbance on the
performance output. Let us introduce thus a Lyapunov method to bound L2 gain [25].

Theorem 2.2.1 Let us consider a generic non-linear system

ẋ = f(x,w), x(0) = 0 (2.12)
z = g(x,w) (2.13)

with x(t) ∈ Rn, w(t) ∈ Rmw and z(t) ∈ Rrz and f : Rn×mw → Rn a class C1 function. Suppose
there exists γ ≥ 0 and a differentiable Lyapunov function V : Rn → R with V̇ : Rn×mw → R
defined as

V̇ (x,w) := ∇V (x)T f(x,w) (2.14)

such that

(i)V (x) ≥ 0 for all x, V (0) = 0; (2.15)

(ii)V̇ (x,w) ≤ γ2wTw − zT z for all z, w. (2.16)

Then, the L2 gain of the system is not greater than γ.
Proof:

V (x(∞))− V (x(0)) =

∫ ∞
0

V̇ (x(t), w(t))dt ≤
∫ ∞

0
(γ2w(t)Tw(t)− z(t)T z(t))dt (2.17)

and since V (x(0)) = V (0) = 0 and V (x(∞)) ≥ 0 it holds that

0 ≤ V (x(∞))− V (x(0)) ≤
∫ ∞

0
(γ2w(t)Tw(t)− z(t)T z(t))dt (2.18)

from which ∫ ∞
0

z(t)T z(t)dt ≤ γ2

∫ ∞
0

w(t)Tw(t)dt (2.19)

that is

‖z‖22 ≤ γ2‖w‖22 (2.20)

What has just been stated holds for all z, w and therefore also for the w such that the ratio ‖z‖2‖w‖2
is maximized. This guarantees that ‖T (s)‖2 < γ and this concludes the proof. �

2.3 H∞ Space

As stated in [44], robustness to disturbances and uncertainties can be a challenging problem to
be addressed in feedback control and hence developing robust control methods is an attractive
objective for control engineers. One way to formulate performance requirements for a certain
system is in terms of the norm of specific signals of interest: it is in this scenario that H∞ robust
control techniques have to be located and this is the reason why a first introduction to the Hardy
H∞ space is presented.
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L∞(jR) Space

If X is a vector space and ‖·‖ is a norm defined on it, then X is a normed vector space.
A sequence {x}n is a Cauchy sequence if ∀ε there exists an integer number N such that for
every pair of positive integer numbers n,m > N , it holds |xn − xm| < ε.
A vector space X is called complete, if every Cauchy sequence {x}n in X converges to a point
belonging to X for n→∞.
A complete normed vector space is called Banach space.
A L∞(jR) space, or briefly L∞, is a Banach space of matrix-valued (or scalar-valued) functions
F (s) : C→ Cn×m that are bounded on jR, with norm

‖F‖∞ := sup
ω∈R

σ̄[F (jω)], (2.21)

where the symbol σ̄[F (jω)] indicates the maximum singular value of F (jω).
The rational subspace of L∞, denoted by RL∞(jR), consists of all proper and real rational
transfer matrices with no poles on the imaginary axis.

H∞ Space

H∞ is a closed1 subspace of L∞ consisting of all functions F (s) : C → Cn×m that are analytic
and bounded in the open right-half plane. The H∞ norm is defined as

‖F‖∞ := sup
Re(s)>0

σ̄[F (s)] = sup
ω∈R

σ̄[F (jω)], (2.22)

where the second equality follows from a generalisation, for matrix functions, of the following
theorem.

Maximum modulus theorem [9] Let S ⊂ C be an open set, and let f(s) : S → C be a
complex function on S analytic in its domain.2 If f(s) is continuous on a closed-bounded set
S and analytic in the interior of S, then |f(s)| can not reach its maximum in the interior of S
unless f(s) is a constant function.

The maximum modulus theorem implies that |f(s)| can only achieve its maximum on the bound-
ary of its domain (∂S) and hence

max
s∈S
|f(s)| = max

s∈∂S
|f(s)|. (2.23)

The real rational subspace of H∞ is denoted by RH∞ and consists of all proper and real rational
stable3 transfer matrices.

2.4 Hamiltonian Matrices

Hamiltonian matrices constitute a category of matrices that exhibit some interesting properties.
The Bounded Real Lemma in Section 2.5 will refer to them.

1A vector space X is said to be closed if it contains all its accumulation points.
2A function f(s) : S → C is said to be analytic at a point z0 if it is differentiable at z0 and at each point

in some neighbourhood of z0, and thus it admits a power series representation around the point z0. A function
f(s) : S → C is said to be analytic in S if it is analytic at each point of S. A matrix-valued function is said to be
analytic in S if every element of the matrix is analytic in S.

3For a continuous time system, a transfer matrix is said to be stable if all its poles lie in the open left half-plane
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Consider the square matrix J ∈ R2n×2n defined by

J =

(
0n In
−In 0n

)
, (2.24)

where the symbol 0n ∈ Rn×n indicates the zero matrix of dimension n by n, while the symbol
In ∈ Rn×n indicates the identity matrix of the same dimensions.
Definition 2.4.1 (from [42]) A matrix A ∈ R2n×2n is said to be Hamiltonian if JA is symmetric
and therefore

JA = (JA)T =⇒ ATJ + JA = 0 (2.25)

where the implication follows directly from the fact that JT = −J .
The set of 2n× 2n Hamiltonian matrices is denoted by

Hn = {A ∈ R2n×2n|ATJ + JA = 0}

Properties [9]

In the following a list of some interesting properties of Hamiltonian matrices is provided.
Given a matrix

M =

(
A B
C D

)
(2.26)

where A,B,C,D ∈Mn×n, the following properties hold:

(i) M is Hamiltonian if B and C are symmetric matrices and A+DT = 0;

(ii) the transpose of a Hamiltonian matrix is still a Hamiltonian matrix;

(iii) the trace of a Hamiltonian matrix is zero;

(iv) the eigenvalues of a Hamiltonian matrix are symmetric with respect to the imaginary axis.

2.5 L∞ Norm of a System and the Bounded Real Lemma

2.5.1 L∞ Norm of a System

The L∞ norm of a transfer function T (s) [9], is the maximum norm of the matrix T (jω) over all
possible ω and thus, it is well defined if and only if T (s) does not have poles on the imaginary
axis. For a SISO system it corresponds to the maximum value of the Bode amplitude plot of the
transfer function. For MIMO systems, instead, it corresponds to the maximum of the maximum
singular value over all possible ω. In other words, for a system with transfer function T (s) ∈ L∞
it is defined as

‖T (s)‖∞ = sup
ω
‖T (jω)‖

In case T (s) ∈ H∞, this norm can be expressed as

‖T (s)‖ = sup
Re(s)>0

‖T (s)‖.

Unfortunately there is not a direct way to calculate the L∞ norm of a system, but there are
some tests that allow one to establish if the L∞ norm is smaller than a certain positive value γ,
namely if ‖T (s)‖∞ < γ. This is equivalent to verify if

I − 1

γ2
T (−jω)′T (jω) > 0, ∀ω (2.27)

and the smallest γ for which this inequality is satisfied represents the L∞ norm (in the following,
simply “the infinity norm") of T (s).
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2.5.2 Physical Interpretation of the L∞ norm of a System

Let us consider a system with transfer function T (s), as in Figure 2.1, that takes as input the
signal w(t), for example an exogenous input, and gives as output the signal z(t). In this context,
in which w is the disturbance input and z the performance output, the infinity norm of a system
can be interpreted either as the worst case gain in frequency domain

‖T (s)‖∞ = max
ω

max
w(ω) 6=0

‖z(ω)‖2
‖w(ω)‖2

,

or as the worst case induced 2-norm in time domain

‖T (s)‖∞ = max
w(t) 6=0

‖z(t)‖2
‖w(t)‖2

.

The worst case input is a sinusoid with frequency ω∗ in the direction to which it corresponds as
output the highest peak of the maximum singular value of T (jω∗) [11]. More generally, we can
write

‖z‖2 ≤ ‖T‖∞‖w‖2. (2.28)

So, the H∞ norm of T (s) provides a bound on the energy throughput of the system. The
objective is to minimise the infinity norm of this system in order to keep as small as possible the
energy of the output signal with respect to the energy of the exogenous input.
Tests to compute the H∞ norm of a system follow directly from the Bounded Real Lemma to
which the following section is dedicated.

2.5.3 The Bounded Real Lemma

The Bounded Real Lemma [10] is the starting point for the derivation of a controller synthesis
method in the context of H∞ control. It will be widely exploited in Chapter 5.
Let us consider the closed-loop system

ẋ = Aclx+Bww (2.29)
z = Cclx (2.30)

with strictly proper transfer function T (s) = Ccl(sI−Acl)−1Bw, then the following are equivalent

(i)‖T‖∞ < γ;

(ii)The matrix Φ(s) := γ2I − T T (−s)T (s)satisfies Φ(jω) > 0, ∀ω ∈ R;

(iii)The Hamiltonian Matrix

Mγ :=

(
Acl

1
γ2
BwB

T
w

−CTclCcl −Acl

)
∈ R2n×2n

has no purely imaginary eigenvalues;
(iv)There exists a matrix X � 0 such that

(
ATclX +XAcl + CTclCcl XBw

BT
wX −γ2I

)
≺ 0 (2.31)

In Appendix A some comments about this theorem and its time domain interpretation are given.
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2.6 Linear Fractional Transformation

A Linear Fractional Transformation (LFT) is a useful way to standardise and make different
block diagrams comparable for robust control analysis and design. It will be exploited in Section
4.3 for the calculation of the H∞ system norm.
A mapping F : C→ C of the form:

F (s) =
a+ bs

c+ ds
(2.32)

with a, b, c and d ∈ C is called an LFT. If c 6= 0 then F (s) = α+βs(1−γs)−1 for some α, β, γ ∈ C.
Definition 2.6.1 Let M be a complex matrix block-partitioned as

M =

(
M11 M12

M21 M22

)
∈ C(p1+p2)×(q1+q2) (2.33)

and let ∆l ∈ Cp1×q1 and ∆u ∈ Cp2×q2 . A lower LFT is defined as

Fl(M, ·) : Cp2×q2 → Cp1×q1 with Fl(M,∆l) = M11 +M12∆l(I −M22∆l)
−1M21 (2.34)

provided that (I −M22∆l)
−1 exists.

An upper LFT is defined as

Fu(M, ·) : Cp1×q1 → Cp2×q2 with Fu(M,∆u) = M22 +M21∆u(I −M11∆u)−1M12 (2.35)

provided that (I −M11∆u)−1 exists.
The diagrams in figures 2.2-2.3, taken from [26], clarify the origin of the terminologies “lower and
upper LFT".

Lower LFT

Tzw1 := Fl(M,∆l)

Figure 2.2: Lower LFT

[
z1

y1

]
=

[
M11 M12

M21 M22

] [
w1

u1

]
, u1 = ∆ly1 (2.36)

u1 = ∆ly1 (2.37)
y1 = M21w1 +M22u1 (2.38)

from which

y1 = M21w1 +M22∆ly1, (2.39)
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that brings

y1 = (I −M22∆l)
−1M21w1 (2.40)

u1 = ∆l(I −M22∆l)
−1M21w1 (2.41)

and then, from (2.36),

z1 = M11w1 +M12u1 = [M11 +M12∆l(I −M22∆l)
−1M21]︸ ︷︷ ︸

Fl(M,∆l)

w1. (2.42)

Upper LFT

Tzw2 := Fu(M,∆u)

Figure 2.3: Upper LFT

2.7 Schur Complement

The Schur complement is a very powerful mathematical tool that allows to convert nonlinear
inequalities into Linear Matrix Inequalities (LMIs). This is a reformulation of what is discussed
in detail in Section 2 of [19]. This mathematical tool will come in handy in Section 5.7 for the
derivation of the extended version of the Full Block S-Procedure.
Suppose to deal with the system

Ma = b, (2.43)

with M ∈ Rn×n,

M =

(
A B
C D

)
, (2.44)

a block-partitioned matrix, where A ∈ Rp×p, D ∈ Rq×q and n = p + q. Moreover a = (x, y)T ∈
Rn, b = (c, d)T ∈ Rn. Assuming that the submatrix D is non-singular, the matrix (A−BD−1C)
is called the Schur complement of D in M, while, if A is invertible, the Schur complement of A
in M is defined as (D − CA−1B). The following explains why these matrices deserve attention.
System (2.43) can be equivalently written as

Ax+By = c (2.45)
Cx+Dy = d (2.46)

and, under the assumption that D is invertible, it follows from (2.46) that

y = D−1(d− Cx) (2.47)
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and substituting in (2.45) we get

Ax+B(D−1(d− Cx)) = c, (2.48)

that can be rewritten as
(A−BD−1C)x = c−BD−1d. (2.49)

If (A−BD−1C)−1 exists then we get the solutions

x = (A−BD−1C)−1(c−BD−1d) (2.50)

y = D−1(d− C(A−BD−1C)−1(c−BD−1d)) (2.51)

Analogously, if A is invertible, starting from (2.45), we can write x = A−1(c−By) , and plugging
it in (2.46) and repeating the same steps as above, it turns out that the Schur complement of A
in M is (D − CA−1B).
Equation(2.43) yields to (

x
y

)
= M−1

(
c
d

)
. (2.52)

While, rewriting the equations (2.50) and (2.51) as

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d (2.53)

y = D−1C(A−BD−1C)−1c+ (D−1 +D−1C(A−BD−1C)−1BD−1)d (2.54)

comparing (2.53), (2.54) with (2.52) it turns out that

M−1 =

(
A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
(2.55)

can be factorised as follows(
A B
C D

)−1

=

(
(A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

)(
I −BD−1

0 I

)
(2.56)

and then (
A B
C D

)−1

=

(
I 0

−D−1C I

)(
(A−BD−1C)−1 0

0 D−1

)(
I −BD−1

0 I

)
(2.57)

and from the property of the inverse of a product of matrices it turns out that(
A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
. (2.58)

2.7.1 Schur Complement as Check for Positive Definiteness of Symmetric
Matrices

Let us suppose now that M is symmetric, which means A = AT , D = DT and C = BT so that

M =

(
A B
BT D

)
=

(
I BD−1

0 I

)(
A−BD−1BT 0

0 D

)(
I BD−1

0 I

)T
(2.59)

This leads to the following proposition.
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Proposition 3.2.1 For any symmetric matrix M of the form

M =

(
A B
BT D

)
if D is invertible, then the following properties hold:

(i) M � 0 iff D � 0 and A−BD−1BT � 0,
(ii) If D � 0, then M � 0 iff A−BC−1BT � 0.

For the proof, see Appendix B.

2.8 Kronecker Product

The Kronecker product is a mathematical operator that is widely used when dealing with dis-
tributed and multiagent control. It has some interesting properties that will be exploited in
Chapter 4, when dealing with the properties of decomposable systems, and in Section 5.8 where
a decomposition approach for the Full Block S-Procedure will be introduced.
Given two matrices A ∈Mm×n and B ∈Mp×q, the Kronecker product of

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 and B =

= b11 . . . b1q
...

. . .
...

bp1 . . . bpq

,

denoted by the symbol A⊗B, returns a matrix C ∈Mmp×nq of the type

C = (A⊗B) :=

a11B . . . a1nB
...

. . .
...

am1B . . . amnB



2.8.1 Properties

The Kronecker product has a lot of interesting properties, some of them are listed in this section
and can be easily verified by the reader. For more specific details about the Kronecker product
the reader can refer to [21].

Bilinearity and Associativity

Given the matrices A ∈Mm×n, B ∈Mp×q and C ∈Mr×s it holds that

A⊗ (B + C) = (A⊗B) + (A⊗ C) (2.60)
(A+B)⊗ C = (A⊗ C) + (B ⊗ C) (2.61)

Mixed Product

Given the matrices A ∈Mm×n, B ∈Mp×q, C ∈Mn×r, D ∈Mq×s, it holds that

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (2.62)
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Inverse of a Kronecker Product

Given two invertible matrices A, B then (A⊗B)−1 exists and it is given by

(A⊗B)−1 = A−1 ⊗B−1 (2.63)

This property holds for the Moore-Penrose pseudoinverse as well.

2.9 Dissipativity of a System

Before introducing an extended version of the Bounded Real Lemma in Section 3.2, it is worth
to define the concept of dissipativity of a system.
Definition 2.9.1 The system {

ẋ = Ax+Bu

y = Cx+Du
(2.64)

is said to be dissipative with respect to a supply rate s(z, w) : Rrz×mw → R if there exists a
continuously differentiable storage function V (x) : Rn → R such that V (0) = 0, V (x) > 0 ∀x 6= 0
and

V̇ (x) + s(z, w) ≤ 0. (2.65)

Definition 2.9.2 System (2.64) is said to be strictly dissipative with respect to the supply rate
s(z, w) if there exists a continuously differentiable storage function V (x) such that V (0) = 0,
V (x) > 0 ∀x 6= 0 and

V̇ (x) + s(z, w) < 0. (2.66)
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Chapter 3

An Alternative Stability Condition and
the Extended Bounded Real Lemma

In this chapter an extended and less conservative stability condition with respect to the classic
Lyapunov stability inequality for continuous time systems is shown. Afterwards an extended
version of the Bounded Real Lemma, that incorporates the extended stability condition, is pre-
sented. This chapter is a reformulation of the results presented in the research works [8, 13, 14]
that, together with the Full-Block S-Procedure in [39], constitute the inspiration of this master
project.

3.1 Extended Stability Condition for Continuous-time Systems

Consider a generic continuous time system expressed in state space form:

ẋ = Ax+Bu (3.1)
y = Cx+Du

where A ∈ Rn×n, B ∈ Rn×l, C ∈ Rm×n, D ∈ Rm×l.
Definition 3.1.1 System (3.1) is asymptotically stable if all the eigenvalues of the A matrix lie
in the (open) left half of the complex plane.
If the system is asymptotically stable, there exists a positive definite matrix P such that the
Lyapunov matrix inequality

PA+ATP ≺ 0 (3.2)

holds.
Theorem 3.1.1 [8]: If there exist a positive definite matrix P ∈Mn×n1 and a matrix F ∈Mn×n

such that (i)-(ii) hold, the following conditions are equivalent :
(i) PA+ATP ≺ 0;

(ii)
(

FA+ATF P − F +ATF T

P − F T + FA −F − F T
)
≺ 0.

P roof : Referring to the system (3.1), let us define z := ẋ.
The equation

ẋ = Ax+Bu

can be rewritten as: (
I 0
0 0

)
︸ ︷︷ ︸

:=E

(
ẋ
ż

)
=

(
0 I
A −I

) (
x
z

)
+

(
0
B

)
u (3.3)

1Note that the matrices P such that (i) and (ii) are satisfied are not necessarily the same.
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and defining ξ :=

(
x
z

)
the quadratic Lyapunov function can be expressed as:

V (ξ) = xTPx = ξT
(
P 0
0 0

)
ξ. (3.4)

Let us call E the descriptor matrix of the system (3.3), namely

E =

(
I 0
0 0

)
. (3.5)

It holds that (
P 0
0 0

)
=

(
P F
0 F

)
E = ET

(
P 0
F T F T

)
, (3.6)

and thus V̇ can be expressed as:

V̇ (ξ) = ξT
(
P F
0 F

)
Eξ̇ + ξ̇TET

(
P 0
F T F T

)
ξ, (3.7)

from which the new stability condition turns out to be(
P F
0 F

)(
0 I
A −I

)
+

(
0 AT

I −I

)(
P 0
F T F T

)
≺ 0 (3.8)

that brings to (
FA+ATF P − F +ATF T

P − F T + FA −F − F T
)
≺ 0 (3.9)

and this completes the proof. �
The advantage of this extended formulation is that it eliminates the product between the matrix
A and the Lyapunov matrix P , introducing extra degrees of freedom by means of the matrix F ,
that is not restricted to be symmetric. The decoupling between the Lyapunov matrix and the
system matrices will prove to be very beneficial to obtain a less conservative controller synthesis
procedure.

3.2 Extended LMI for H∞ Controller Synthesis

Consider the continuous time closed-loop time-invariant linear system

ẋ = Aclx+Bww (3.10)
z = Cclx+Dww (3.11)

in which w represents the exogenous input and z the performance output. The control input u
in (3.1), has been replaced by the expression u = Kx and Acl = A+ BuK, Ccl = C + BuK. In
the following T (s) denotes the transfer function from the input w to the output z.
Lemma 3.2.1 (H∞ norm)[13] Let ‖T‖∞ denote the H∞ norm of T . Acl is stable and the H∞
norm of T is smaller than γ if and only if there exists a symmetric matrix P � 0 such thatATclP + PAcl PBw CTcl

BT
wP −γI Dw

Ccl Dw −γI

 ≺ 0. (3.12)
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Notice that this is an equivalent formulation of the Bounded Real Lemma presented in Section
2.5.3. In fact, by applying the Schur complement, and imposing Dw = 0, from (3.12) we obtain:

(i)− γI ≺ 0 (3.13)

(ii)
(
ATclP + PAcl + 1

γC
T
clCcl PBw

BT
wP −γI

)
≺ 0 (3.14)

That is equivalent to (2.31) after the substitution D = 0 up to a γ factor on the last diagonal
element and a √γ factor on the channel z → w.
Adapting the inequality (3.1) to system (3.3) it turns out that the expression (3.8) implies that

V̇ (ξ, w) =

(
ξ
w

)
T

 FAcl +ATclF
T P − F +ATclF

T FBw
P − F T + FAcl −F − F T FBw

BT
wF

T BT
wF

T 0

 (
ξ
w

)
≺ 0. (3.15)

In fact, after defining a new vector % :=

xẋ
w

 =

(
ξ
w

)
, we can rewrite the system (3.3) as

I 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

:=E′

ẋẍ
ẇ

 =

 0 I 0
Acl −I Bw
0 0 0

 xẋ
w

 (3.16)

and the Lyapunov function as

V (%) = xTPx = %T

P 0 0
0 0 0
0 0 0

 %. (3.17)

So now it holds thatP 0 0
0 0 0
0 0 0

 =

P F 0
0 F 0
0 0 0

E′ = E′T

 P 0 0
F T F T 0
0 0 0

 , (3.18)

from which

V̇ (%) = %T

P F 0
0 F 0
0 0 0

E′%̇+ %̇TE′T

 P 0 0
F T F T 0
0 0 0

 % (3.19)

and the new stability condition turns out to beP F 0
0 F 0
0 0 0

 0 I 0
Acl −I Bw
0 0 0

+

0 ATcl 0
I −I 0
0 BT

w 0

 P 0 0
F T F T 0
0 0 0

 ≺ 0, (3.20)

that leads to  FAcl +ATclF
T P − F +ATclF

T FBw
P − F T + FAcl −F − F T FBw

BT
wF

T BT
wF

T 0

 ≺ 0. (3.21)

17



Theorem 3.2.1 (Extended H∞ Norm) [13] System (3.1) is asymptotically stable and ‖T‖∞
is smaller than γ if and only if there exist a matrix P � 0 and a matrix F such that

FAcl +ATclF
T P − F +ATclF

T FBw CTcl
P − F T + FAcl −F − F T FBw 0

BT
wF

T BT
wF

T −γI DT
w

Ccl 0 Dw −γI

 ≺ 0. (3.22)

Proof: (Necessity) If the norm of ‖T‖∞ is less than γ then the system with transfer function T
is strictly dissipative with respect to the supply function

s(z, w) =

(
z
w

)
T

( 1
γ I 0

0 −γI

) (
z
w

)
=

1

γ
zT z − γwTw (3.23)

that is the same as in (2.16) except for a multiplication by a factor √γ along the performance
channel z → w, that does not invalidate what has been stated.
Recalling that

z =
(
Ccl 0

)
ξ +Dw (3.24)

it turns out that the supply function in (3.23) can be expressed as a function of the variables ξ
and w as

s(ξ, w) =

(
ξ
w

)T (
Ccl 0 Dw

0 0 I

)T ( 1
γ 0

0 −γ

) (
Ccl 0 Dw

0 0 I

)(
ξ
w

)
(3.25)

that is equal to

s(ξ, w) =

(
ξ
w

)T 
CTC
γ 0 CTclDw

0 0 0
DT

wCcl

γ 0 DT
wDw − γ

(ξ
w

)
(3.26)

and from the strict dissipativity of the system it directly follows that

V̇ (ξ) + s(ξ, w) < 0, (3.27)

that is, from (2.65) and (3.26),FAcl +ATclF
T +

CT
clCcl

γ P − F +ATclF
T FBw + CTclDw

P − F T + FAcl −F − F T FBw

BT
wF

T + DT
wCcl

γ BT
wF

T DT
wDw − γ

 ≺ 0. (3.28)

This is equivalent to (3.22) after applying the Schur complement with respect to −γI, namely FAcl +ATclF
T P − F +ATclF

T FBw
P − F T + FAcl −F − F T FBw

BT
wF

T BT
wF

T −γI

+

CTcl0
DT
w

 1

γ
I
(
Ccl 0 Dw

)
. (3.29)

(Sufficiency) Suppose there exist P � 0 and F satisfying the matrix inequality (3.22). Then
the asymptotic stability of the system follows directly from the fact that one of the diagonal
blocks of the matrix in (3.22) is the extended stability condition (3.9). For what concerns the
performance requirements, instead, by reversing the previous steps, we have FAcl +ATclF

T P − F +ATclF
T FBw

P − F T + FAcl −F − F T FBw
BT
wF

T BT
wF

T 0


︸ ︷︷ ︸

V̇ (ξ)

+


CT

clCcl

γ 0 CTclDw

0 0 0
DT

wCcl

γ 0 DT
wDw − γ


︸ ︷︷ ︸

s(ξ,w)

≺ 0, (3.30)
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or equivalently, exploiting the expression (3.23),

V̇ (ξ) +

(
z
w

)T ( 1
γ I 0

0 −γI

) (
z
w

)
< 0. (3.31)

Integrating from t = 0 to t = T ≥ 0, and assuming x(0) = 02, we get

x(T )TPx(T ) +

∫ T

0

(
z
w

)T ( 1
γ I 0

0 −γI

) (
z
w

)
dt < 0. (3.32)

And since x(T )TPx(T ) ≥ 0, this implies that∫ T

0
γwTw − 1

γ
zT z dt > 0 (3.33)

and thus it is a valid supply function for the performance requirements according to what
expressed by the Bounded Real Lemma. This concludes the proof. �

2By definition of Lyapunov function, V (0) = 0.
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Chapter 4

Decomposable Systems

This thesis focuses on the problem of designing a distributed controller for a specific class of sys-
tems called "decomposable systems". They are characterised by the fact that they are obtained
from the interconnection of identical subsystems and are such that their state space matrices
satisfy a certain structural property. This allows us to derive a procedure to design a distributed
controller whose structure mirrors the interconnections among the subsystems and to decompose
the constraints to be satisfied for stability and performance purpose, improving the scalability
of the controller that, when dealing with large-scale systems, results to be a major concern [29].

Definition 4.1 Assume that P ∈ RN×N is diagonalizable. We define ℘P,p,q as the set of all
matrices M ∈ RNp×Nq for which there exist two matrices Md,M i ∈ Rp×q such that [29]

M = IN ⊗Md + P ⊗M i. (4.1)

An interesting property of this set is given by the following lemma.

Lemma 4.1 Let P ∈ RN×N be a diagonalizable matrix and let Z ∈ CN×N be a non singular
matrix such that Λ = Z−1PZ is diagonal. If M ∈ ℘P,p,q then

M = (Z ⊗ Ip)−1M(Z ⊗ Iq) (4.2)

is block diagonal.
Proof: From (4.1) it follows that

M = (Z ⊗ Ip)−1(IN ⊗Md + P ⊗M i)(Z ⊗ Iq) (4.3)

and applying the properties of the Kronecker product, listed in Section 2.8, we can write

M = (Z ⊗ Ip)−1(IN ⊗Md + P ⊗M i)(Z ⊗ Iq) =

= (Z−1 ⊗ Ip)(IN ⊗Md + P ⊗M i)(Z ⊗ Iq) =

= [(Z−1 ⊗ Ip)(IN ⊗Md) + (Z−1 ⊗ Ip)(P ⊗M i)](Z ⊗ Iq) (4.4)

= (Z−1 ⊗ Ip)(IN ⊗Md)(Z ⊗ Iq) + (Z−1 ⊗ Ip)(P ⊗M i)(Z ⊗ Iq) =

= (Z−1IN ⊗ IpMd)(Z ⊗ Iq) + (Z−1P ⊗ IpM i)(Z ⊗ Iq) =

= (Z−1INZ ⊗ IpMdIq) + (Z−1PZ ⊗ IpM iIq) = IN ⊗Md + Λ⊗M i

and since IN and Λ are diagonal, then M is block diagonal.�
It is worth noticing that the matrix M has a special structure since in addition to being block
diagonal, each of its diagonal blocks Mi, admits the following parametrization

Mi = Md + λiM
i (4.5)

where λi is the ith eigenvalue of P .
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4.1 Interconnected Systems

Let us consider N identical subsystems, each of them of order l. Suppose they are interconnected
in accordance with a pattern matrix P . We call P a "pattern matrix" since it mirrors the inter-
connections among the subsystems, as the adjacency matrix does for the nodes of a non-oriented
graph. Exploiting the analogy between interconnected systems and graphs, in fact, we can think
of each subsystem as a node of the graph, the interconnections as the edges and the pattern
matrix P as the adjacency matrix.

Definition 4.1.1 Let us consider the Nl-th order dynamical system described by the following
equations: 

ẋ(t) = Ax(t) +Bww(t) +Buu(t)

z(t) = Czx(t) +Dzww(t) +Dzuu(t)

y(t) = Cyx(t) +Dyww(t)

(4.6)

where x ∈ RNl is the state, w ∈ RNmw is the disturbance, u ∈ RNmu is the control input,
y ∈ RNry is the measured output and z ∈ RNrz the performance output. The system is said
to be a decomposable system if there exists a state space representation as in (4.6) such that
A,Bw, Bu, Cy, Cz, Dzw, Dzu, Dyw have the same structure as in (4.1) with P diagonalisable.
If the pattern matrix P is symmetric we call the system a symmetric decomposable system.
In this case the matrix Z that diagonalizes P is real and orthonormal. The diagonal blocks of
the matrices, marked with the superscript "d", represent the internal dynamics of each subsys-
tem, while the off-diagonal, marked with the superscript "i", model the interactions among the
subsystems.
An interesting property of this kind of systems is stated by the following theorem.
Theorem 4.1.1 [29]: The decomposable system (4.6), of order Nl, is equivalent to N independent
subsystems of order l, each of which with mu inputs, mw disturbances, rz performance outputs
and ry measurement outputs.
Proof From the equation (4.2) it follows directly that every matrix M can be rewritten as

M = (Z ⊗ Ip)M(Z ⊗ Iq)−1

where M is block diagonal, and Ip, Iq of adequate dimensions. Then after the following manip-
ulations:

(Z ⊗ Il)−1ẋ(t) = (Z ⊗ Il)−1A

=INl︷ ︸︸ ︷
(Z ⊗ Il)(Z ⊗ Il)−1 x(t) + (Z ⊗ Il)−1Bw(Z ⊗ Imw)(Z ⊗ Imw)−1w(t)+

+(Z ⊗ Il)−1Bu(Z ⊗ Imu)(Z ⊗ Imu)−1u(t)

(Z ⊗ Irz)−1z(t) = (Z ⊗ Irz)−1Cz(Z ⊗ Il)(Z ⊗ Il)−1x(t)+

+(Z ⊗ Irz)−1Dzw(Z ⊗ Imw)(Z ⊗ Imw)−1w(t) + (Z ⊗ Imw)−1Dzu(Z ⊗ Imu)(Z ⊗ Imu)−1u(t)

(Z ⊗ Iry)−1y(t) = (Z ⊗ Iry)−1Cy(Z ⊗ Il)(Z ⊗ Il)−1x(t)+

+(Z ⊗ Iry)−1Dyw(Z ⊗ Imw)(Z ⊗ Imw)−1w(t)

(4.7)
and exploiting the relation (4.2) we come to

(Z ⊗ Il)−1ẋ(t) = A(Z ⊗ Il)−1x(t) + Bw(Z ⊗ Imw)−1w(t) + Bu(Z ⊗ Imu)−1u(t)

(Z ⊗ Irz)−1z(t) = Cz(Z ⊗ Il)−1x(t) + Dzw(Z ⊗ Imw)−1w(t) + Dzu(S ⊗ Imu)−1u(t)

(Z ⊗ Iry)−1y(t) = Cy(Z ⊗ Il)−1x(t) + Dyw(Z ⊗ Imw)−1w(t)

(4.8)
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with A,Bw,Bu,Cz block diagonal.
Finally, after the following change of variables

x̂ = (Z ⊗ Il)−1x,

ŵ = (Z ⊗ Imw)−1w,

ŷ = (Z ⊗ Iry)−1y, (4.9)

û = (Z ⊗ Imu)−1u,

ẑ = (Z ⊗ Irz)−1z,

the system becomes 
˙̂x(t) = Ax̂(t) + Bwŵ(t) + Buû(t)

ẑ(t) = Czx̂(t) + Dzwŵ(t) + Dzuû(t)

ŷ(t) = Cyx̂(t) + Dywŵ(t)

(4.10)

and this is equivalent to the following set of N equations, one for each subsystem:
˙̂xi(t) = Aix̂i(t) + Bw,iŵi(t) + Bu,iûi(t)

ẑi(t) = Cz,ix̂i(t) + Dzw,iŵi(t) + Dzu,iûi(t)

ŷi(t) = Cy,ix̂i(t) + Dyw,iŵi(t)

i = 1, . . . , N (4.11)

where x̂i is the i-th element of size l × 1 of x̂, ŵi is the i-th element of size mw × 1 of ŵ, ûi is
the i-th element of size mu × 1 of û, ẑi is the i-th element of size rz × 1 of ẑ and ŷi is the i-th
element of size ry × 1 of ŷ. �
Subsystems in (4.11) are called "modal subsystems". It is worth noticing that these subsystems
are not the same as the physical subsystems that compose the global plant (i.e. the diagonal
part of A). In fact, according to the result obtained in (4.4), it holds that

˙̂xi(t) = (Ad + λiA
i)x̂i(t) + (Bd

w,i + λiB
i
w,i)ŵi(t) + (Bd

u,i + λiB
i
u,i)ûi(t)

zi(t) = (Cdz,i + λiC
i
z,i)x̂i(t) + (Dd

zw,i + λiD
i
zw,i)ŵi(t) + (Dd

zu,i + λiD
d
zu,i)ûi(t)

yi(t) = (Cdy,i + λiC
i
y,i)x̂i(t) + (Dd

yw,i + λiD
i
yw,i)ŵi(t)

i = 1, . . . , N

(4.12)
with λi the ith eigenvalue of P . This property of decomposition, is what gives this kind of systems
its name. This is their main characteristic and it is what allows us to face many control design
problems decomposing them into N smaller problems independently.

4.2 Static State Feedback Controller for Decomposable Systems

Goal of this project is to design a stabilizing static state feedback distributed controller whose
structure mirrors the interconnections among the subsystems, i.e. a controller taking the form

u(t) = Kx(t), (4.13)

with
K = IN ⊗Kd + P ⊗Ki, (4.14)

To this end, techniques from robust control will be exploited. More specifically, we will exploit
the Full Block S−Procedure that provides a convex formulation for the state feedback synthesis
problem under some structural assumptions. In order to bring the system model in a form such
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that the Full Block S-Procedure is applicable, we introduce a new channel p → q in the model
that in a decomposed form becomes

ẋi(t) = Adxi(t) +B1pi(t) +B2wi(t) +Bui(t)

qi(t) = C1xi(t) +D1pi(t) +D12wi(t) + E1ui(t)

zi(t) = C2xi(t) +D21pi(t) +D2wi(t) + E2ui(t)

i = 1, . . . , N (4.15)

where xi(t) ∈ Rl is the ith state variable, wi(t) ∈ Rmw the ith exogenous input, ui(t) ∈ Rmu the
ith control input, zi(t) ∈ Rrz the ith performance output and qi(t) ∈ Rnp , pi(t) ∈ Rnp signals
such that, for the original system, it holds that

p(t) = P ⊗ Inpq(t) (4.16)

and for the decomposed system it holds that

pi(t) = λiqi(t). (4.17)

Starting from (4.16), repeating the steps of decomposition,

(Z ⊗ Inp)−1p(t) = (Z ⊗ Inp)−1(P ⊗ Inp)(Z ⊗ Inp)(Z ⊗ Inp)−1q(t), (4.18)
p̂(t) = Λ⊗ Inp q̂(t), (4.19)

it follows that
pi(t) = λiqi(t) (4.20)

The state space matrices for the new model are

Ad B1 B2 B

C1 D1 D12 E1

C2 D21 D2 E2

 =


Ad Ai Bd

u Bd
w Bd

u 0

I 0 0 0 0 0
0 0 0 0 0 I

Cdp Cip Dd
pu 0 Dd

pu 0

 (4.21)

and we will exploit the fact that the system{
ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + (IN ⊗Bu)u(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ Cdz + P ⊗ Ciz)x(t) + (IN ⊗Dzu)u(t)
(4.22)

in closed loop with
u(t) = (IN ⊗Kd + P ⊗Ki)x(t) (4.23)

is equivalent to{
ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + (IN ⊗ [Bu 0] + P ⊗ [0 Bu])ũ(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ Cdz + P ⊗ Ciz)x(t) + (IN ⊗ [Dzu 0] + P ⊗ [0 Dzu])ũ(t)

(4.24)
in closed loop with

ũ(t) = IN ⊗
[
Kd

Ki

]
x(t) (4.25)

and both of them yield{
ẋ(t) = (IN ⊗ (Ad +BuK

d) + P ⊗ (Ai +BuK
i))x(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ (Cdz +DzuK
d) + P ⊗ (Ciz +DzuK

i))x(t).
(4.26)
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For this reason we can synthesize a decentralized controller (4.25) for the system (4.27) and from
it compute the distributed controller (4.23) for the original system.
It is important to notice that this equivalence holds under the hypothesis that both Bi

u and Di
u

are equal to zero. In fact if this hypothesis is violated the original system in closed loop takes
the form{
ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + (IN ⊗Bd

u + P ⊗Bi
u)(IN ⊗Kd + P ⊗Ki)x(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ Cdz + P ⊗ Ciz)x(t) + (IN ⊗DzuP ⊗Di
zu)(IN ⊗Kd + P ⊗Ki)x(t)

that is{
ẋ(t) = ((IN ⊗ (Ad +Bd

uK
d) + P ⊗ (Ai +Bi

uK
d +Bd

uK
i) + P 2 ⊗Bi

uK
i)x(t) + (IN ⊗Bw)w(t)

z(t) = ((IN ⊗ (Cdz +Dd
zuK

d) + P ⊗ (Ciz +Di
zuK

d +Dd
zuK

i) + P 2 ⊗Di
zuK

i)x(t)
.

While, for the transformed system, it holds
ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + (IN ⊗ [Bu 0] + P ⊗ [0 Bu])IN ⊗

[
Kd

Ki

]
x(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ Cdz + P ⊗ Ciz)x(t) + (IN ⊗ [Dzu 0] + P ⊗ [0 Dzu])IN ⊗

[
Kd

Ki

]
x(t))

(4.27)
and the presence of the terms depending on P 2, when Bi

u and Di
u are different from zero, in the

first equations, would prevent the two formulations to be equivalent.
Another important assumption is the constraint that the matrix P is symmetric. In fact, if we
denote by T̂wz the transfer function from w to z of the transformed system it holds:

σ(Z)

σ̄(Z)
‖T̂wz‖∞ ≤ ‖Twz‖∞ ≤

σ̄(Z)

σ(Z)
‖T̂wz‖∞ (4.28)

where Z ∈ Rn×n is the matrix that diagonalizes P , and σ̄ and σ indicate the maximum and
minimum eigenvalues of Z, respectively. Since P is symmetric, Z is orthonormal, and this
guarantees that σ(Z) = σ̄(Z) = 1 and thus that ‖T̂wz‖∞ = ‖Twz‖∞. This means that dealing
with the transformed system does not lead to a loss of information about the norm of the real
system. Another advantage of dealing with symmetric pattern matrices lies in the fact that they
have real eigenvalues and this makes the decomposed system and the decomposition approach,
that will be treated later, more manageable.

4.3 H∞ Norm of Decomposable Systems

The H∞ norm of the system is calculated by applying a linear fractional transformation to the
decomposed system. More explicitly, let us define for the system in its decomposed form the
state space matrices as followsA B1 B2 B

C1 D1 D12 E1

C2 D21 D2 E2

 :=

IN ⊗Ad IN ⊗B1 IN ⊗B2 IN ⊗B
IN ⊗ C1 IN ⊗D1 IN ⊗D12 IN ⊗ E1

IN ⊗ C2 IN ⊗D21 IN ⊗D2 IN ⊗ E2

 (4.29)

that, in closed-loop, become ẋq
z

 =

A+ BK B1 B2

C1 + E1K D1 D12

C2 + E2K D21 D2

xp
w

 (4.30)
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and after a reordering of the variablesẋz
q

 =

A+ BK B2 B1

C2 + E2K D2 D21

C1 + E1K D12 D1

xw
p

 =

G11 G12

G21 G22

xw
p

 . (4.31)

By exploiting the relation
p = P ⊗ Inp︸ ︷︷ ︸

∆

q (4.32)

and referring to the lower LFT as shown in Figure 4.1,

Figure 4.1: Lower LFT for decomposable systems.

we have [
ẋ
z

]
= Fl(G,∆)

[
x
w

]
with p = ∆q. (4.33)

From (4.31) it follows 
p = ∆q

q = G21

[
x

w

]
+G22∆q

(4.34)

from which

p = ∆(I −G22∆)−1G21

[
x
w

]
(4.35)

and thus [
ẋ
z

]
= G11

[
x
w

]
+G12p = (G11 +G12∆(I −G22∆−1G21))︸ ︷︷ ︸

Fl(G,∆)

[
x
w

]
(4.36)

From Fl(G,∆) in (4.36), we can extract the closed-loop matrices from which we calculate the
H∞ norm of the system through the Matlab function
norm(ss(A_cl,B_cl,C_cl,D_cl), Inf) with A_cl,B_cl,C_cl,D_cl, extracted from the rela-
tion (4.33) block-partitioning Fl(G,∆) according to the dimensions of the vectors x,w.
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Chapter 5

Full Block S-Procedure

In this chapter a sub-optimal approach for the design of distributed controllers for decomposable
systems is presented. This technique is based on a robust control synthesis procedure called "Full
Block S-Procedure" [39].

5.1 Introduction

The Full Block S-Procedure is a powerful mathematical tool that applies to more general problems
with respect to that one addressed in this work. The main objective for which it was conceived
is the construction of controllers that take into account online measurements of time-varying
parameters that influence the system dynamics. Linear Parameter Varying (LPV) systems are
systems described by the equations

ẋ(t) = Â(δ(t))x(t) + B̂1(δ(t))w(t) + B̂2(δ(t))u(t)

z(t) = Ĉ1(δ(t))x(t) + D̂1(δ(t))w(t) + D̂12(δ(t))u(t)

y(t) = Ĉ2(δ(t))x(t) + D̂21(δ(t))w(t)

(5.1)

where x(t) ∈ Rn, w(t) ∈ Rmw , u(t) ∈ Rmu , y(t) ∈ Rry , z(t) ∈ Rrz are the state, the disturbance,
the control input, the measured output and the performance output, respectively, while δ(t) ∈ Rk
is the time-varying parameter. They are the object of considerable attention since they are well-
suited to model and synthesize problems related to robust control and non linear control. In
LPV control it is assumed that the time-varying parameter δ(t) belongs to an a priori given set
δ, whereas the actual parameter curve is not known a priori but can be measured on-line. The
objective is to design an LPV controller of the type{

ẋc(t) = Âc(δ(t))x(t) + B̂c(δ(t))y(t)

u(t) = Ĉc(δ(t))xc(t) + D̂c(δ(t))y(t),
(5.2)

that takes on-line decisions based on the measured input y(t) and the time-varying parameter
δ(t) according to which it generates the control input u(t).
The closed loop system then, takes the form{

ξ̇(t) = Â (δ(t))ξ(t) + B̂(δ(t))w(t)

u(t) = Ĉ (δ(t))ξ(t) + D̂(δ(t))w(t)
. (5.3)

The design goal is to stabilise the controlled system (5.3) and to satisfy the performance require-
ments on the channel w → z generalized by the expressions (5.4)-(5.6). From a general point of
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view, in fact, the closed-loop system is required to satisfy∫ T

0

(
z
w

)T (
Qp Sp
STp Rp

) (
z
w

)
≤ 0 (5.4)

for all T ≥ 0 and all δ(t) ∈ δ if ξ(0) = 0.
If the objective is to bound the H∞ gain of the channel w → z, a possible choice in (5.4) is(

Qp Sp
STp Rp

)
=

(
−γ2I 0

0 I

)
. (5.5)

Performance requirements together with stability can be guaranteed by the existence of a matrix
X > 0 such that the following (infinite) family of LMIs is feasible

I 0

Â (δ(t)) B̂(δ(t))

0 I

Ĉ (δ(t)) D̂(δ(t))


T 

0 X 0 0
X 0 0 0

0 0 Qp Sp
0 0 STp Rp




I 0

Â (δ(t)) B̂(δ(t))

0 I

Ĉ (δ(t)) D̂(δ(t))

 < 0 (5.6)

for all δ ∈ δ.
It is immediate to see how these LMIs can be interpreted as a generalisation of the Bounded
Real Lemma. In fact, developing the calulations in (5.6) for the time invariant case, we obtain(

ATX +XA+ CTRpC XB + CTSTp + CTRpD

BTX + SpC +DTRpC Qp +DTSTp + S +DTRpD

)
< 0. (5.7)

Plugging the (5.5) in (5.6) in order to guarantee the satisfying of the performance requirements
and D = 0 in accordance with (2.30) it immediately follows that (5.7) is nothing but (2.31).

5.2 Full Block S-Procedure

The Full Block S-Procedure represents a general result on families of quadratic forms which
allows to rewrite (5.6) into one LMI in which X and the so called multipliers are the decision
variables.

Let B be a closed subspace of Rn, let U ∈ Rp×n and V ∈ Rq×n, let Q ∈ Rp×p be symmet-
ric, and let S (∆) ⊂ Rq be the subspace that depends continuously on the parameter ∆ which
varies in the compact path-connected set ∆. Moreover define

B(∆) := {x ∈ B|V x ∈ S (∆)}. (5.8)

Theorem 5.2.1 (from [39])
(a) The performance specification

UTQU < 0 on B(∆) for all ∆ ∈∆ (5.9)

holds if and only if there exists a symmetric multiplier P with

P > 0 on S (∆) for all ∆ ∈∆ (5.10)

which satisfies
UTQU + V TPV < 0 on B; (5.11)
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(b) suppose there exists a subspace B0 ⊂ B on which UTQU is positive semi-definite, and whose
dimension is large enough to satisfy

dim(VB0) + dim(S (∆)) ≥ q. (5.12)

Then (5.10) and (5.11) imply that VB0 and S (∆) are in direct sum (symbol ⊕), namely

VB0 ⊕S (∆) = Rq for all ∆ in ∆. (5.13)

Proof. (a) The proof of "if" in (a) is trivial. In fact, if we choose any x ∈ B(∆) with x 6= 0,
since x ∈ B, it follows directly from (5.11) that

xTUTQUx < −xTV TPV x (5.14)

Since x ∈ B(∆) it holds that V x ∈ S (∆) and therefore from (5.10) we deduce that

xTV TPV x ≥ 0 (5.15)

in which the equality holds when V x = 0. Condition (5.14) yields xTUTQUx < 0, that is (5.9),
and this concludes the proof.
The proof of "only if" in (a) consists of six steps.

Step 1

Let us denote by S(∆) the orthogonal projector onto S (∆). Since S (∆) depends continuously
on ∆, also S(∆) does. Moreover

S (∆) = ker(I − S(∆)). (5.16)

To see that this relation is always satisfied it is worth noticing that this is equivalent to saying
that

S (∆) = {x ∈ Rq|(I − S(∆))x = 0} = {x ∈ Rq|Ix = S(∆)x} (5.17)

that means that S (∆) is the vectorial space generated by all the vectors x ∈ Rq whose orthogonal
projection is the vector x itself, that is a redundant way to say that x ∈ S (∆).
From (5.16) we obtain an alternative description for B(∆):

B(∆) = B ∩ ker([I − S(∆)]V ). (5.18)

In fact, similarly to what has been done before, this is equivalent to

B(∆) = {x ∈ B|V x = S(∆)V x}, (5.19)

i.e. x ∈ B and V x ∈ S (∆).

Step 2

We claim that there exists δ0 > 0 such that

UTQU + δ0I < 0 on B(∆) for all ∆ ∈∆. (5.20)

If not true, there exists for any j = 1, 2, . . . a ∆j ∈ ∆ and a vector xj ∈ B(∆j), xj 6= 0 such
that

xTj [UTQU + j−1I]xj ≥ 0. (5.21)
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By the compactness of ∆, there exists a subsequence jv such that ∆jv → ∆0 ∈∆ and xjv → x0

with x0 6= 0 for v →∞. Moreover, since xj ∈ B(∆j), we infer that

[I − S(∆jv)]V xjv = 0 (5.22)

which implies that, since S (∆) depends continuously on ∆, for v →∞

[I − S(∆0)]V x0 = 0 (5.23)

Since B is closed, we also infer that x0 ∈ B which, together with (5.23), yields x0 ∈ B(∆0).
Moreover the inequality (5.21) for v →∞ becomes xT0 UTQUx0 ≥ 0. Thus we have found a non
zero vector x0 ∈ B(∆0) such that hypothesis (5.9) is contradicted.

Step 3

Let B1 be a basis matrix of ker(V ) ∩ B and B2 an extension to a basis B of B, so that
B = (B1B2). This means that V B1 = 0 and, since B1 is a basis for ker(V ) ∩B and B2 is a set
of generators for B, that V B2 has full column rank. By definition of B(∆) and of vector space
in general, it also holds that

ker(V ) ∩B ⊂ B(∆) (5.24)

that, together with (5.20), yields

BT
1 [UTQU + δ0I]B1 < 0. (5.25)

Therefore there exists a symmetric matrix M such that

ξT2 Mξ2 = max
ξ1

(
ξ1

ξ2

)T
BT [UTQU + δ0I]B

(
ξ1

ξ2

)
(5.26)

Let us define
P̂ := −[(V B2)†]TM(V B2)†, 1 (5.27)

from which
M = −(V B2)T P̂ (V B2). (5.28)

Due to (V B2)†(V B2) = I we deduce that, for all ξ = (ξT1 , ξ
T
2 )T ,

ξTBTV T P̂ V Bξ = ξT (B1B2)TV T P̂ V (B1B2)ξ = ξT2 (V B2)T P̂ (V B2)︸ ︷︷ ︸
−M

ξ2 = −ξT2 Mξ2, (5.29)

where the fact that V B1 = 0 has been exploited. Finally, combining (5.29) with (5.26), we come
to the conclusion that

ξTBTV T P̂ V Bξ︸ ︷︷ ︸
−ξT2 Mξ2

≤ −ξTBT [UTQU + δ0I]Bξ (5.30)

where the equality holds if ξ1 is the argmax in (5.26). The (5.30) can be equivalently expressed
as

ξTBT [UTQU + V T P̂ V ]Bξ ≤ − δ0︸︷︷︸
>0

ξT BTB︸ ︷︷ ︸
�0

ξ, (5.31)

which implies
BT [UTQU + V P̂V ]B < 0 (5.32)

1The symbol †indicates the Moore-Penrose inverse.

30



Step 4

In this step we prove that

P̂ > 0 on S (∆) ∩ VB for all ∆ ∈∆. (5.33)

Indeed, for any vector z 6= 0 such that z ∈ S (∆)∩VB there exists ξ2 6= 0 for which z = V B2ξ2.
Let us take the corresponding maximising vector ξ1 in (5.26) and define ξ := (ξT1 ξ

T
2 )T . Since

V B1 = 0 we have that V Bξ = V B2ξ2 = z from which, due to (5.29),

zT P̂ z = ξTBTV T P̂ V Bξ = −ξT2 Mξ2 = −ξTBT [UTQU + δ0I]Bξ. (5.34)

where the last equality holds since ξ1 is the argmax in (5.26). Moreover, since V Bξ = z ∈
S (∆)\{0}, we deduce, by definition of B(∆), that Bξ ∈ B(∆)\{0} which implies by (5.20)
that

ξTBT [UTQU + V T P̂ V ]Bξ < 0. (5.35)

Thus from (5.34) we obtain zT P̂ z > 0 that confirms the thesis (5.33).

Step 5

Let L be a full row rank matrix such that ker(L) = VB. We claim that there exist some r0 > 0
such that

P = P̂ + r0L
TL > 0 on S (∆) for all ∆ ∈∆. (5.36)

The proof follows by contradiction. In fact, if the claim was false, we could find for each
j = 1, 2, . . . a ∆j ∈∆ some zj ∈ S (∆), zj 6= 0 such that

zTj [P̂ + jLTL]zj ≤ 0 (5.37)

Take a subsequence jv such that ∆jv and zjv , converge to ∆0 ∈∆ and z0 6= 0 respectively. Since
zjv ∈ S (∆jv)

[I − S(∆jv)]zjv = 0 (5.38)

and, since S (∆) depends continuously on ∆, for v →∞ we obtain

[I − S(∆0)]z0 = 0 (5.39)

and hence z0 ∈ S (∆0). Notice that (5.37) allows to write

zTjv [j−1
v P̂ + LTL]zjv ≤ 0 (5.40)

from which we conclude, for v →∞
zT0 L

TL︸︷︷︸
�0

z0 ≤ 0 (5.41)

which implies Lz0 = 0 and hence z0 belongs to ker(L) or alternatively z0 ∈ VB. Since we also
have

zTjv P̂ zjv ≤ −jvz
T
jvL

TLzjv ≤ 0 (5.42)

we infer zT0 P̂ z0 ≤ 0. Therefore we have z0 6= 0, z0 ∈ S (∆0) ∪ VB for which zT0 P̂ z0 and this
contradicts (5.33).
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Step 6

In (5.36) we have constructed a multiplier in accordance with (5.10). Due to

(V B)TPV B = (V B)T [P̂ + r0L
TL]V B = (V B)T P̂ V B (5.43)

we can rewrite (5.32) as
BT [UTQU + V PV ]B < 0 (5.44)

which is an equivalent formulation of (5.11), and this concludes the proof. �

Proof. (b) Let z 6= 0 be a vector in VB0 ∩S (∆), and let x be a non-zero vector, x ∈ B0, such
that z = V x. Since x ∈ B we infer from (5.11) that

xTUTQUx < −xTV TPV x = −zTPz < 0 (5.45)

where the last inequality holds due to (5.10). Thus we end up with

xTUTQUx < 0 on B0 (5.46)

That contradicts the hypothesis that xTUTQUx ≥ 0 on the same set. Therefore VB0∩S (∆) =
{0} and so VB0 and S (∆) are in direct sum, that means

dim(VB0 + S (∆)) = dim(VB0) + dim(S (∆)) = q, (5.47)

and thus they generate Rq. �

The previous result allows to replace the family of (infinite) constraints (5.6), with the following
LMIs:

X � 0 (5.48)

2
[
Q S
ST R

]
� 0 on S (∆) for all ∆ ∈∆ (5.49)

JTHJ ≺ 0. (5.50)

With

3H =



0 X 0 0 0 0
X 0 0 0 0 0

0 0 Q S 0 0
0 0 ST R 0 0

0 0 0 0 −γ2I 0
0 0 0 0 0 I

 (5.51)

and

J =



0 0 0
A B1 B2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2

 (5.52)

with A,B1, B2, C1, D1, D12, C2, D21, D2 expressed as in (5.1) and
(
w(t)
z(t)

)
∈ S (∆(t)) ⊂ Rmw+rz .

The main advantage of (5.48)-(5.50) over (5.6) is that the Full Block S-Procedure provides a
standard linear matrix inequality in the unknowns Q,R, S,X and that the uncertainties come
into play only on the multipliers (5.49). This separation brought an important contribution to
the theory of robust control.

2This is the P matrix in the Full Block S-Procedure theorem.
3This is the UTQU + V TPV matrix in the Full Block S-Procedure theorem.
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5.3 Dualisation

When the state matrices belong to a closed loop system with state feedback control, the state
matrix A in (5.7) will be replaced by A+BK. This means that, when developing the calculation,
we will end up with terms of the following kind

X(A+BK), (A+BK)TX (5.53)

in the unknowns X and K. This is undesirable because it makes the problem non-convex in the
unknowns X,K and thus not solvable via convex optimisation tools. For this reason the dual
system needs to be considered. Moreover a trick will be applied. It exploits the fact that the
Lyapunov stability inequality that appears in (5.7)

X(A+BK) + (A+BK)TX ≺ 0, (5.54)

can be factorised as

X(AX−1 +BKX−1 +X−1AT +X−1KTBT )X ≺ 0 (5.55)

and upon defining Y = X−1 and introducing the auxiliary variable M = KY , we can equiva-
lently rewrite the Lyapunov inequality as

AY +BM + Y AT +MTBT ≺ 0 (5.56)

that is affine in the variables Y,M and thus convex. After computing the optimisation variables
Y,M , we can obtain the controller K through the relation K = MY −1.

5.3.1 Dual Bounded Real Lemma

Lemma 5.3.1.1 Let us consider the dual closed-loop system{
ẋ = ATclx+ CTclw

z = BT
wx

(5.57)

with strictly proper transfer function T (s) = BT
w(sI−ATcl)−1CTcl , then the following are equivalent:

(i)‖T‖∞ < γ;

(ii)Given Φ(s) := γ2I − T T (−s)T (s) then Φ(jω) > 0 ∀ω ∈ R;

(iii)The Hamiltonian Matrix

Mγ :=

(
AT 1

γ2
HTH

−GGT −AT

)
∈ R2n×2n

has no purely imaginary eigenvalues;
(iv)There exists a matrix Y � 0 such that

(
Y ATcl +AclY +BwB

T
w Y CTcl

CclY −γ2I

)
≺ 0. (5.58)
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In order to formalise the dual Full Block S-Procedure, we first need to introduce the follow-
ing lemma.

Dualization Lemma (from [38]) Let P be a non-singular symmetric matrix in Rn×n and let U
and V be two complementary 4 subspaces of Rn. Then

xTPx < 0 ∀ x ∈ U \{0} and xTPx ≥ 0 ∀ x ∈ V (5.59)

is equivalent to
xTP−1x > 0 ∀ x ∈ U ⊥\{0} and xTP−1x ≤ 0 ∀ x ∈ V ⊥ (5.60)

Proof Since U ⊕ V = Rn is equivalent to U ⊥ ⊕ V ⊥ = Rn, we only need to prove that (5.59)
implies (5.60). The converse follows by symmetry.
(5.59) ⇒ (5.60)
Let us assume that U and V have dimensions k and l, respectively. From (5.59) it follows that
P has at least k negative eigenvalues and at least l non-negative eigenvalues. Since U and V are
in direct sum, k+ l = n and P is non-singular, we infer that P has exactly k negative eigenvalues
and l positive eigenvalues. Let us prove now that P−1 is positive definite on U ⊥, by proceeding
by contradiction. Assume that there exists a vector y ∈ U ⊥\{0} such that yTP−1y ≤ 0. Upon
defining the vector z := P−1y, we deduce from (5.59) that z does not belong to U . In fact, if z
belonged to U , it would have followed that zTPz < 0 and z⊥y = Pz. Since z is in U and y in
U ⊥ that would have implied

〈z, y〉 = 〈z, Pz〉 = 0 = zTPz (5.61)

thus contradicting the fact that P is non singular. Therefore the vector subspace Uz = span(z)+
U has dimension k + 1. Moreover, for any x ∈ U we have

(z+x)TP (z+x) = (P−1y+x)TP (P−1y+x) = yTP−1y+yTx︸︷︷︸
⊥

+ xT y︸︷︷︸
⊥

+xTPx = yTP−1y︸ ︷︷ ︸
≤0

+xTPx︸ ︷︷ ︸
≤0

5

(5.62)
that implies

(z + x)TP (z + x) ≤ 0. (5.63)

This implies that P has at least k + 1 non-positive eigenvalues, which contradicts what has
already been established, namely that P has exactly k negative eigenvalues and that P has not
zero eigenvalues.
Let us prove now that P−1 is negative definite on V ⊥. Note that

xT (P + Iε)x < 0 ∀ x ∈ U \{0} and xT (P + εI)x > 0 ∀ x ∈ V \{0} (5.64)

for ε > 0 small. Moreover due to what has already been proved and by symmetry, this implies

xT (P + Iε)−1x > 0 ∀ x ∈ U ⊥\{0} and xT (P + εI)−1x < 0 ∀ x ∈ V ⊥\{0} (5.65)

for all small ε > 0. Then we exploit the fact that

(P + εI)−1 → P−1 for ε→ 0 (5.66)

since P is non singular. Therefore, after taking the limit, we get from (5.65)

xTP−1x ≥ 0 ∀ x ∈ U ⊥\{0} and xTP−1x ≤ 0 ∀x ∈ V ⊥\{0} (5.67)

where we already know that the first inequality is strict. �

The dual Full Block S-Procedure is structured as follows.
4The therm complementary means that the subspaces are in direct sum.
5The equality holds if x = 0.
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5.3.2 Dual Full Block S-Procedure

Conditions (5.48)-(5.50) are equivalent to

Y � 0 (5.68)[
Q̃ S̃

S̃T R̃

]
6 ≺ 0 on S ⊥(∆) for all ∆ ∈∆ (5.69)

J̃T H̃J̃ � 0 (5.70)

with

H̃ =



0 I 0 0 0 0
I 0 0 0 0 0

0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0

0 0 0 0 − 1
γ2
I 0

0 0 0 0 0 I


(5.71)

and

J̃ =



−Y AT −Y CT1 −Y CT2
I 0 0

−BT
1 −DT

1 −DT
21

0 I 0

−BT
2 −DT

21 −DT
2

0 0 I

 (5.72)

where in (5.68) Y = X−1, while (5.69) is a direct consequence of the dualization lemma applied
to (5.49). As regards (5.70), it can be derived as it has been done for (5.50) starting from the
dual Bounded Real Lemma and exploiting the relations (5.55)-(5.56).

5.4 Dual Full Block S-Procedure for Infinity Norm Minimisation
of LTI Decomposable Systems

As already mentioned in Chapter 4, in order to apply the Full Block S-Procedure, we need to
equivalently rewrite the system (4.6) by introducing an interconnection channel q → p so that
the new mathematical model for the interconnected system in a decomposed form becomes

ẋi(t) = Adxi(t) +B1pi(t) +B2wi(t) +Bui(t)

qi(t) = C1xi(t) +D1pi(t) +D12wi(t) + E1ui(t)

zi(t) = C2xi(t) +D21pi(t) +D2wi(t) + E2ui(t)

i = 1, . . . , N (5.73)

where xi(t) is the ith state variable, wi(t) the ith disturbance, ui(t) the ith control input, zi(t)
theith performance output, and qi(t), pi(t) are such that

qi(t) = λipi(t). (5.74)

P is the pattern matrix and it is assumed to be symmetric.
In the following we recall the nomenclature for the state space matrices of the decomposed
system: Ad B1 B2 B

C1 D1 D12 E1

C2 D21 D2 E2

 :=


Ad Ai Bd

u Bd
w Bd

u 0

I 0 0 0 0 0
0 0 0 0 0 I

Cdp Cip Dd
pu 0 Dd

pu 0

 (5.75)

6This is the inverse of the P matrix in the Full Block S Procedure theorem.
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A B1 B2 B
C1 D1 D12 E1

C2 D21 D2 E2

 :=

IN ⊗Ad IN ⊗B1 IN ⊗B2 IN ⊗B
IN ⊗ C1 IN ⊗D1 IN ⊗D12 IN ⊗ E1

IN ⊗ C2 IN ⊗D21 IN ⊗D2 IN ⊗ E2

 (5.76)

The objective of the distributed control problem, that we investigate in this work, is to minimise
theH∞ norm of the transfer function Twz between the exogenous input w(t) and the performance
output z(t), thus guaranteeing robust stability. As claimed in [28], the feasibility of the LMIs
(5.77)-(5.79) is a sufficient condition for the existence of a controller that solves the afore men-
tioned problem. In the following the matrix constraints for the synthesis of the desired controller
are listed.

Y � 0 (5.77)[
I

P ⊗ I

]T [
Q̃ S̃

S̃T R̃

] [
I

P ⊗ I

]
≺ 0 (5.78)

J̃T H̃J̃ � 0 (5.79)

with

H̃ =



0 I 0 0 0 0
I 0 0 0 0 0

0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0

0 0 0 0 − 1
γ2
I 0

0 0 0 0 0 I


, (5.80)

Q̃ = IN ⊗ Q̃i, R̃ = IN ⊗ R̃i, S̃ = IN ⊗ S̃i i = 1, . . . , N (5.81)

and

J̃ =



−(AY + BM)T −(C1Y + E1M)T −(C2Y + E2M)T

I 0 0

−BT1 −DT1 −DT21

0 I 0

−BT2 −DT12 −DT2
0 0 I

 (5.82)

Anyway it is worth noticing that the use of this procedure, as soon as some structure is imposed
on the decision variables, brings some conservatism and therefore the solvability of the LMIs
(5.77)-(5.79) is just a sufficient condition for the fulfilling of the performance requirements.
Exploiting the Full Block S-Procedure it is possible to obtain a static state feedback controller
of the form

u(t) = (IN ⊗Kd + P ⊗Ki)x(t) (5.83)

by extracting the controller parameters from the relation[
Kd

Ki

]
= MiY

−1
i (5.84)

in which both the optimization variablesM and Y are imposed to be blockdiagonal. A controller
as the one in (5.83) is called "distributed controller". In this case, the control action on each
subsystem depends on both the subsystem itself and all those ones with which it communicates
and with which the controller can interact. Under the additional constraint Ki = 0, that can
be enforced by imposing that the lower part of each diagonal block in M is equal to zero, the
controller is instead called "decentralized controller". In this case the controller interacts only
with the single agent and therefore the control decisions are taken only on the basis of the local
outputs.
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5.5 Decentralised Controller Synthesis

In this section we face the problem of synthesising a decentralised controller for decomposable
systems through the Full Block S-Procedure. The objective of this controller is still to guarantee
the stability of the system, meanwhile minimising the H∞ norm of Twz.
Theorem 5.5.1 (from [28]) Let us consider the continuous time decomposable system described
by the equations{

ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + IN ⊗Bd
uu(t) + IN ⊗Bd

ww(t)

z(t) = (IN ⊗ Cd + P ⊗ Ci)x(t) + IN ⊗Ddu(t)
(5.85)

here x(t) is the state variable, w(t) the disturbance, u(t) the control input, z(t) the performance
output. There exists a sub-optimal controller of the form

u(t) = (IN ⊗K)x(t) (5.86)

with ‖Twz‖ < γ if there exist some matrices Y = Y T ,M, R̃ = R̃T , S̃, Q̃ = Q̃T such that the
LMIs (5.87)-(5.90) are feasible. The controller gain K is obtained as K = MY −1.

Y � 0, (5.87)[
I

P ⊗ I

]T [
Q̃ S̃

S̃T R̃

] [
I

P ⊗ I

]
≺ 0 (5.88)

G̃T H̃G̃ � 0 (5.89)

with

H̃ =



0 I 0 0 0 0
I 0 0 0 0 0

0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0

0 0 0 0 − 1
γ2
I 0

0 0 0 0 0 I


, (5.90)

Q̃ = IN ⊗ Q̃i, R̃ = IN ⊗ R̃i, S̃ = IN ⊗ S̃i i = 1, . . . , N (5.91)

and

G̃ =



−(AdY +Bd
uM)T −(AiY )T −(CdY +DdM)T

I 0 0

−I 0 −CiT
0 I 0

−BdT
w 0 0

0 0 I

 (5.92)

5.6 Distributed Controller Synthesis

To make the synthesis of a distributed controller for decomposable systems

u(t) = (IN ⊗Kd + P ⊗Ki)x(t),

compatible with the Full Block S-Procedure, we will exploit the fact, already showed at the end
of Chapter 4, that, the following system{

ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + (IN ⊗Bu)u(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ Cdz + P ⊗ Ciz)x(t) + (IN ⊗Dzu)u(t)
, (5.93)
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in closed loop with
u(t) = (IN ⊗Kd + P ⊗Ki)x(t) (5.94)

is equivalent to{
ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + (IN ⊗ [Bu 0] + P ⊗ [0 Bu])ũ(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ Cdz + P ⊗ Ciz)x(t) + (IN ⊗ [Dzu 0] + P ⊗ [0 Dzu])ũ(t)
,

(5.95)
in closed loop with

ũ(t) = IN ⊗
[
Kd

Ki

]
x(t) (5.96)

and both of them yield{
ẋ(t) = (IN ⊗ (Ad +BuK

d) + P ⊗ (Ai +BuK
i))x(t) + (IN ⊗Bw)w(t)

z(t) = (IN ⊗ (Cdz +DzuK
d) + P ⊗ (Ciz +DzuK

i))x(t)
. (5.97)

The previous reasoning ensures that we can design a controller of the form (5.96) for the decom-
posed system (5.95) and from that one go back to a distributed controller as in (5.94) for the
system of interest (5.93). This is summarised by the following theorem.
Theorem 5.6.1 (from [28]) Let us consider the continuous time symmetric decomposable system{

ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + IN ⊗Buu(t) + IN ⊗Bww(t)

z(t) = (IN ⊗Ad + P ⊗Ai)x(t) + IN ⊗Dzuu(t)
(5.98)

where x(t) is the state variable, w(t) the disturbance, u(t) the control input, z(t) the performance
output. There exists a distributed controller with the following structure

u(t) = (IN ⊗Kd + P ⊗Ki)x(t) (5.99)

such that ‖Twz‖∞ < γ if there exist some matrices Y = Y T ,M, R̃ = R̃T , S̃, Q̃ = Q̃T such that
the LMIs (5.100)-(5.102) are feasible.

Y � 0, (5.100)[
I

P ⊗ I

]T [
Q̃ S̃

S̃T R̃

] [
I

P ⊗ I

]
≺ 0 (5.101)

L̃T H̃L̃ � 0 (5.102)

with

H̃ =



0 I 0 0 0 0
I 0 0 0 0 0

0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0

0 0 0 0 − 1
γ2
I 0

0 0 0 0 0 I


, (5.103)

Q̃ = IN ⊗ Q̃i, R̃ = IN ⊗ R̃i, S̃ = IN ⊗ S̃i i = 1, . . . , N (5.104)

and

L̃ =



−(AY + BM)T −(C1Y + E1M
T ) −(C2Y + E2M)T

I 0 0

−BT1 −DT1 −DT21

0 I 0

−BT2 −DT12 −DT2
0 0 I

 (5.105)
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in which A B1 B2 B
C1 D1 D12 E1

C2 D21 D2 E2

 =

IN ⊗Ad IN ⊗B1 IN ⊗B2 IN ⊗B
IN ⊗ C1 IN ⊗D1 IN ⊗D12 IN ⊗ E1

IN ⊗ C2 IN ⊗D21 IN ⊗D2 IN ⊗ E2

 (5.106)

The controller parameters Kd,Ki are extracted from the relation[
Kd

Ki

]
= MiY

−1
i (5.107)

For the sake of clarity we recall that the LMI (5.100) impose the Lyapunov matrix to be positive
definite, the LMIs (5.101), (5.102) come directly from the Full Block S-Procedure and the Dual-
ization Lemma and take the role of the LMIs (5.49),(5.50) respectively in the primal version of
the Full Block S-Procedure.
Proof Consider the decomposed system described as in (5.73), where λi is the ith eigenvalue of
P: {

ẋi(t) = (Ad + λiA
i)xi(t) + ([Bu 0] + λi[0 Bu])ũi(t) +Bwwi(t)

zi(t) = (Cdz + λiC
i
z)xi(t) + ([Dzu 0] + λi[0 Dzu])ũi(t)

(5.108)

with ũi = [ũdTi ũiTi ]T . Let us define the signal qi as follows

qi(t) = [xTi ũiTi ]T (5.109)

and the signal pi as
pi(t) = λiqi(t) (5.110)

then the system (5.108) is equivalently written as
ẋi(t) = Adxi(t) + [Ai Bu]pi(t) + [Bu 0]ũi(t) +Bwwi(t)

qi(t) =

[
I

0

]
xi(t) +

[
0 0

0 I

]
ũi(t)

zi(t) = Cdzxi(t) + [Ciz Dzu]pi(t) + [Dzu 0]ũi(t),

pi = λiqi (5.111)

or, in a more compact form:

ẋiqi
zi

 =


Ad Ai Bd

u Bd
w Bd

u 0

I 0 0 0 0 0
0 0 0 0 0 I

Cdp Cip Dd
pu 0 Dd

pu 0



xi
pi
wi
ũi

 (5.112)

in accordance with (5.75) and this concludes the proof. �
It is worth recalling that, as already mentioned in Section 4.2, considering the decomposed
system, since P is symmetrical, does not lead to a loss of information about the norm of the real
system.

5.7 Extended Full Block S-Procedure

In order to derive the extended version of the Full Block S-Procedure we follow the steps explained
in [39] and summarized in Sections 5.1-5.2, relying on the extended version of the dual Bounded
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Real Lemma presented in Section 3.2. As demonstrated in [14], the LMI in the dual Bounded
Real Lemma (3.22) can be equivalently rewritten as7

−AclF − F TATcl −Y + F − F TATcl −Bw −F TCTcl
−Y + F T −AclF F + F T −Bw 0

−BT
w −BT

w γ2I −DT
w

−CclF 0 −Dw I

 � 0 (5.113)

By applying a similarity transformation that permutes the last two columns and rows
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



−AclF − F TATcl −Y + F − F TATcl −Bw −F TCTcl
−Y + F T −AclF F + F T Bw 0

−BT
w −BT

w γ2I −DT
w

−CclF 0 −Dw I




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(5.114)

=


−AclF − F TATcl −Y + F − F TATcl −F TCTcl −Bw
−Y + F T −AclF F + F T 0 −Bw

−CclF 0 I −Dw

−BT
w −BT

w −DT
w γ2I


and taking the Schur complement with respect to the last diagonal entry −AclF − F TATcl −Y + F − F TATcl −F TCTcl

−Y + F T −AclF F + F T 0
−CclF 0 I

−
−Bw−Bw
−Dw

 1

γ2

(
−BT

w −BT
w −DT

w

)
we obtain

−F TATcl −AclF −
BwBT

w
γ2

−F TATcl + F − Y − BwBT
w

γ2
−F TCcl − BwDT

w
γ2

−AF + F T − Y − BwBT
w

γ2
F + F T − BwBT

w
γ2

−BwDT
w

γ2

−CclF − DwBT
w

γ2
−DwBT

w
γ2

−DwDT
w

γ2
+ I

 . (5.115)

Referring to the linear time invariant case, the matrix (5.115) rewritten in the same form as
(5.6), becomes

?



0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 F − Y 0 0
0 I F T − Y F + F T 0 0

0 0 0 0 − I
γ2

0

0 0 0 0 0 I





−F TAT −F TAT −F TCT
0 0 0
I 0 0
0 I 0

−BT −BT −DT

0 0 I

 , (5.116)

from which, introducing the multipliers, as done in [39], the new constraints to be fulfilled become

Y � 0 (5.117)[
I

−P ⊗ I

]T [
Q̃ S̃

S̃T R̃

] [
I

−P ⊗ I

]
≺ 0 (5.118)

ÑT L̃Ñ � 0 (5.119)

7Here the Lyapunov matrix is called Y and not P , as was done in Section 3, in order not to create ambiguity
with the pattern matrix.
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with

L̃ =



0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
I 0 0 F − Y 0 0 0 0
0 I F T − Y F + F T 0 0 0 0

0 0 0 0 Q̃ S̃ 0 0

0 0 0 0 S̃T R̃ 0 0

0 0 0 0 0 0 − 1
γ2
I 0

0 0 0 0 0 0 0 I


(5.120)

and

Ñ =



−(AF + BM)T −(AF +BM)T −(C1F + E1M)T −(C2F + E2M)T

0 0 0 0
I 0 0 0
0 I 0 0

−BT1 −BT1 −DT1 −DT21

0 0 I 0

−BT2 −BT2 −DT12 −DT2
0 0 0 I


(5.121)

We can now introduce the following statement.
Let us consider the continuous time symmetric decomposable system{

ẋ(t) = (IN ⊗Ad + P ⊗Ai)x(t) + IN ⊗Buu(t) + IN ⊗Bww(t)

z(t) = (IN ⊗Ad + P ⊗Ai)x(t) + IN ⊗Dzuu(t)
(5.122)

where x(t) is the state variable, w(t) the disturbance, u(t) the control input, z(t) the performance
output. There exists a distributed controller with the following structure

u(t) = (IN ⊗Kd + P ⊗Ki)x(t) (5.123)

such that ‖Twz‖∞ < γ if there exist some matrices Q = QT , R = RT , S,M,F, Y = Y T such that
the LMIs (5.117)-(5.119) are feasible.

Comments

It is worth noticing that as soon as some structure is imposed on the optimization variables
F, Y,Q,R, S,M, the satisfaction of the constraints (5.117)-(5.119) is just a sufficient condition
for the existence of a controller described as in (5.123) that allows to satisfy the stability and
performances requirements. The imposition of the block diagonal structure on the optimization
variables F,M is necessary in order to be able to go back to the controller parameters Kd,Ki

that in the Extended Full Block S-Procedure are extracted from the relation[
Kd

Ki

]
= MiF

−1
i (5.124)

where Mi and Fi are the ith diagonal blocks of the matrices M and F , respectively. At the
same time, restricting the optimization variables to assume some particular structures, even if
this can bring to some loss in terms of controller performance, is advantageous to reduce the
computational burden of the controller synthesis that is a major concern when dealing with large
scale systems. This new formulation has some benefits with respect to the standard formulation of
the Full Block S-Procedure. In this case, in fact, thanks to the introduction of a slack variable F ,
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the Lyapunov matrix appears decoupled from any other optimization variable and this allows us
to impose a less restrictive structure on it. In the standard version of the Full Block S-Procedure,
in fact, in order to be able to extract the parameters Kd,Ki of the distributed controller it was
necessary to restrict the Lyapunov matrix to be block diagonal and, as it will be shown in Section
6.1, this is a significant source of conservatism in the controller synthesis. In this formulation,
instead, to extract the controller parameters, the matrixM and the slack variables F are involved
and the variable F is not restricted to be symmetric. In this way, by keeping the same level of
scalability, the degree of conservatism is reduced by adding more degrees of freedom.
Anyway the extended method showed in this section, in the context of decomposable and ho-
mogeneous systems, can be interpreted as a more general result applicable to LPV systems in a
formulation analogous to the one in [39]. Moreover, when dealing with interconnected system,
this approach is still valid even when the pattern matrix P depends continuously on a parameter
∆ that varies in a compact set.

5.8 Decomposition

The decomposition approach presented in this section is a method that allows to impose less
restrictive structures on the optimization variables by still reaching the same level of scalability
as in the case when all the optimization variables are restricted to assume a block diagonal
structure.
Let us call Z a matrix such that

Λ = Z−1PZ = diag{λ1, . . . , λN} (5.125)

and let us suppose that the eigenvalues of the pattern matrix P are ordered as follows

λ1 ≤ · · · ≤ λN . (5.126)

Multiplier Condition

Let us apply a similarity transformation by means of the matrix Z ⊗ Inp to the multiplier
condition. And let us assume that the multipliers Q,R, S get the structure M = IN ⊗Md +P ⊗
M i. The multiplier condition in the Full Block S-Procedure takes the form:

Z−1⊗ Inp

[
IN ⊗ Inp

−P ⊗ Inp

]T [
IN ⊗ Q̃d + P ⊗ Q̃i IN ⊗ S̃d + P ⊗ S̃i
IN ⊗ S̃dT + P ⊗ S̃iT IN ⊗ R̃d + P ⊗ R̃i

] [
IN ⊗ Inp

−P ⊗ Inp

]
Z ⊗ Inp ≺ 0

(5.127)
and exploiting the properties of bilinearity and associativity of the Kronecker product,[

Z−1 ⊗ Inp

−Z−1P ⊗ Inp

]T [
IN ⊗ Q̃d + P ⊗ Q̃i IN ⊗ S̃d + P ⊗ S̃i
IN ⊗ S̃dT + P ⊗ S̃iT IN ⊗ R̃d + P ⊗ R̃i

] [
Z ⊗ Inp

−PZ ⊗ Inp

]
=

= IN ⊗Qd + Λ⊗Qi − Λ⊗ SdT − Λ2SiT − Λ⊗ Sd − Λ2 ⊗ Si + Λ2 ⊗Rd + Λ3 ⊗Ri,

we end up with a block diagonal matrix of the form

diag{Qd + λi(Q
i − SdT − Sd) + λ2

i (−SiT − Si +Rd) + λ3
iR

i}i=1,...,N ≺ 0 (5.128)

where in the writing above, "diag" indicates a block-diagonal matrix in which all the diagonal
blocks assume the same structure, as the one written in brackets, depending on λi. The constraint
in the expression (5.128) is not convex in the variable λi due to the presence of the cubic term
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λ3
iR

i and the quadratic term λ2
i (−SiT−Si+Rd) whose definiteness is a priori not defined. At the

price of introducing some conservatism, it is possible to make this constraint convex by imposing

Ri = 0 (5.129)

(−ST i − Si +Rd) � 0. (5.130)

This brings the advantage that, the fulfilment of this new constraint

diag{Qd + λi(Q
i − SdT − Sd) + λ2

i (−SiT − Si +Rd)}i=1,...,N ≺ 0 (5.131)

is equivalent to the fullfillment of the same constraint only for the vertices of the convex set
{λ1, . . . , λN} on which the constraint is defined. This means that we can take into account only
these two LMIs:

diag{Qd + λ1(Qi − SdT − Sd) + λ2
1(−SiT − Si +Rd)} ≺ 0 (5.132)

diag{Qd + λN (Qi − SdT − Sd) + λ2
N (−SiT − Si +Rd)} ≺ 0 (5.133)

It has been found empirically that, adding the constraints (5.129), (5.130) to the optimization
problem, does not induce much conservatism. For example, for a bound γ of the order 10−1, the
loss in terms of performance brought by adding these constraints is of the order of 10−3 even
when dealing with strongly coupled networked systems (i.e. P matrix quite dense).

Nominal Condition

The decomposition approach can be applied to the nominal condition as well and, also in this
case, exploiting the diagonalizability of the pattern matrix, we can obtain the same level of
decomposition and scalability as if all the optimization matrices were block diagonal. Let us
consider a matrix V of the form

V =



Z ⊗ IV1

Z ⊗ IV2

Z ⊗ IV3

 , (5.134)

and a matrix U of the form

U =



Z ⊗ IU1

Z ⊗ IU2

Z ⊗ IU3

 , (5.135)

where the dimensions of the identity matrices IVi and IUi , i = 1, 2, 3, are such that the diagonal
blocks match the dimensions of the blocks in the matrices L̃ and H̃.
Applying a similarity transformation by means of the matrix V and multiplying on the left and
on the right the matrix H̃ by the identity written in the form UU−1 we can equivalently rewrite
the nominal condition as follows

V −1L̃TU︸ ︷︷ ︸
L̂T

U−1H̃U︸ ︷︷ ︸
Ĥ

U−1L̃V︸ ︷︷ ︸
L̂

� 0 (5.136)
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and recalling that

L̃ =



−IN ⊗ (AdYi +BMi)
T −IN ⊗ (C1Yi + E1Mi)

T −IN ⊗ (C2Yi + E2Mi)
T

I 0 0

−IN ⊗BT
1 −IN ⊗DT

1 −IN ⊗DT
21

0 I 0

−IN ⊗BT
2 −IN ⊗DT

12 −IN ⊗DT
2

0 0 I

 , (5.137)

H̃ =



0 I 0 0 0 0
I 0 0 0 0 0

0 0 IN ⊗Qd + P ⊗Qi IN ⊗ Sd + P ⊗ Si 0 0
0 0 IN ⊗ SdT + P ⊗ SiT IN ⊗Rd + P ⊗Ri 0 0

0 0 0 0 − 1
γ2
I 0

0 0 0 0 0 I


, (5.138)

it turns out that

Ĥ =



Z−1 ⊗ IU1

Z−1 ⊗ IU2

Z−1 ⊗ IU3





0 I 0 0 0 0
I 0 0 0 0 0

0 0 IN ⊗Qd + P ⊗Qi IN ⊗ Sd + P ⊗ Si 0 0

0 0 IN ⊗ SdT + P ⊗ SiT IN ⊗ Rd + P ⊗ Ri 0 0

0 0 0 0 − 1
γ2

I 0

0 0 0 0 0 I





Z ⊗ IU1

Z ⊗ IU2

Z ⊗ IU3

 ,

Ĥ =



0 IN ⊗ I 0 0 0 0
IN ⊗ I 0 0 0 0 0

0 0 IN ⊗Qd + Λ⊗Qi IN ⊗ Sd + Λ⊗ Si 0 0
0 0 IN ⊗ SdT + Λ⊗ SiT IN ⊗Rd + Λ⊗Ri 0 0

0 0 0 0 IN ⊗− 1
γ2
I 0

0 0 0 0 0 IN ⊗ I


,

L̂ =



−IN ⊗ (AdYi +BMi)
T −IN ⊗ (C1Yi + E1Mi)

T −IN ⊗ (C2Yi + E2Mi)
T

I 0 0

−IN ⊗BT
1 −IN ⊗DT

1 −IN ⊗DT
21

0 I 0

−IN ⊗BT
2 −IN ⊗DT

12 −IN ⊗DT
2

0 0 I

 ,

and in this way the product L̂T ĤL̂ takes the following structure

J = L̂T ĤL̂ =

IN ⊗ Jd11 + Λ⊗ J i11 IN ⊗ Jd12 + Λ⊗ J i12 IN ⊗ Jd13 + Λ⊗ J i13

IN ⊗ Jd21 + Λ⊗ J i21 IN ⊗ Jd22 + Λ⊗ J i22 IN ⊗ Jd32 + Λ⊗ J i32

IN ⊗ Jd31 + Λ⊗ J i31 IN ⊗ Jd32 + Λ⊗ J i32 IN ⊗ Jd33 + Λ⊗ J i33

 =

=

diag{Jd11 + λiJ
i
11}i=1,...,N diag{Jd12 + λiJ

i
12}i=1,...,N diag{Jd13 + λiJ

i
13}i=1,...,N

diag{Jd21 + λiJ
i
21}i=1,...,N diag{Jd22 + λiJ

i
22}i=1,...,N diag{Jd23 + λiJ

i
23}i=1,...,N

diag{Jd31 + λiJ
i
31}i=1,...,N diag{Jd32 + λiJ

i
32}i=1,...,N diag{Jd33 + λiJ

i
33}i=1,...,N

 ,
(5.139)
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with

Jd11 = −(AdYi +BMi)− (AdYi +BMi)
T +B1Q

dBT
1 −

1

γ2
B2B

T
2 , J i11 = B1Q

iBT
1 ,

Jd21 = −(C1Yi + E1Mi) +D1Q
dBT

1 − SdBT
1 −

1

γ2
D12B

T
2 , J i21 = D1Q

iBT
1 − SiTBT

1 ,

Jd31 = −(C2Yi + E2Mi) +D21Q
dBT

1 −
1

γ2
D2B

T
2 , J i31 = D21Q

iBT
1 ,

Jd12 = −(C1Yi + E1Mi)
T +B1Q

dDT
1 −B1S

d − 1

γ2
B2D

T
12, J i12 = B1Q

iDT
1 −B1S

i,

Jd22 = D1Q
dDT

1 −D1S
d − SdTDT

1 +Rd − 1

γ2
D12D

T
12, J i22 = D1Q

iDT
1 −D1S

iT − SiTDT
1 +Ri,

Jd23 = +D21Q
dDT

1 −D21S
d − 1

γ2
D2D

T
12, J i23 = D12Q

iDT
1 −D21S

i,

Jd13 = −(C2Yi + E2Mi)
T +B1Q

dDT
21 −

1

γ2
B2D

T
2 , J i13 = B1Q

iDT
21,

Jd23 = +D1Q
dDT

21 − SdDT
21 −

1

γ2
D12D

T
2 , J i23 = D1Q

iDT
21 − SiDT

21,

Jd33 = D21Q
dDT

21 −
1

γ2
D2D

T
2 + I, J i12 = D21Q

iDT
21.

The constraints in (5.139) turn out to be affine in the variable λi and thus convex. For this
reason in order to be sure that the nominal condition is fulfilled for each λi it is necessary and
sufficient to check if it is satisfied just for λ1 and λN .
The decomposition approach, here introduced for the standard version of the Full Block S-
Procedure, is still applicable when considering its extended version.
Moreover, it is possible to extend the decomposition approach to matrices that have an even less
restrictive structure. For this purpose we first recall the following definition and theorem.

Definition 5.8.1 A set of matrices P is said to be simultaneously diagonalizable if there ex-
ists an invertible matrix Z such that, for every P ∈ P, Z−1PZ is diagonal.

Theorem 5.8.1 [20] Two diagonalizable matrices A, B are simultaneously diagonalizable if
and only if AB = BA.

In light of what it has just been mentioned, it is evident that, whenever the optimization variables
take the following structures

M = I ⊗Md, M = I ⊗Md + P ⊗M i, M = I ⊗Md + P1 ⊗M i
1 + P2 ⊗M i

2,

M = I ⊗Md + P1 ⊗M i
1 + · · ·+ Pz ⊗M i

z

with P1, P2, . . . , Pz simultaneously diagonalizable matrices, the decomposition approach is
still applicable and, generally, including non-null simultaneously diagonalizable matrices in the
structure of the variables can bring improvements in the performance since more degrees of
freedom are included.
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Chapter 6

Numerical Results

In this chapter some numerical results are shown. The Matlab parser Yalmip that relies on the
external solver SDPT3 has been exploited.

6.1 Numerical Analysis for the Sources of Conservatism in the
Standard Full Block S-Procedure

The following results refer to a homogeneous system composed of N = 6 interconnected subsys-
tems of third order. The numerical example we are going to refer to is taken from [2]. In the
following the state space realization has been reported

Ad =

 0.1 −0.2 0.7
−0.9 −0.6 −0.4
−0.9 0.6 −0.5

 , Ai =

 0.1 0.1 −0.1
−0.3 −0.1 −0.1
−0.2 −0.1 0

 ,

Bd
z =

0.1
0.1
0.1

 , Bi
z =

0
0
0

 , Bd
u =

0.7
0

0.5

 , Bi
u =

0
0
0

 ,

Cdz =

[
0.9 0.2 0.3
0 0 0

]
, Ciz =

[
0.5 0.3 0.5
0 0 0

]
,

Dd
zw =

[
0
0

]
, Di

zw =

[
0
0

]
, Dd

zu =

[
0
1

]
, Di

zu =

[
0
0

]
.

All the subsystems are interconnected according to the following interconnection matrix

P =



0 0 0 1 0 1
0 0 0 0 0 1
0 0 0 1 0 0
1 0 1 0 1 0
0 0 0 1 0 1
1 1 0 0 1 0

 (6.1)

to which the interconnection graph in Figure 6.1 corresponds.
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Figure 6.1: Interconnection graph among the subsystems.

In the following tables the symbol M⊗P stands for M = IN ⊗Md + P ⊗M i.

Y full

Multipliers full Multipliers ⊗P Multipliers blockdiag
γ 0.1888 0.2175 0.2779
H∞ 0.1888 0.2107 0.2624

Table 6.1: Distributed Controller from Standard Dual FBSP without structure on the Lyapunov
matrix

Y ⊗P
Multipliers full Multipliers ⊗P Multipliers blockdiag

γ 0.2126 0.2175 0.2779
H∞ 0.2062 0.2107 0.2624

Table 6.2: Distributed Controller from Standard Dual FBSP with Y = IN ⊗ Y d + P ⊗ Y i

Y blockdiag

Multipliers full Multipliers ⊗P Multipliers blockdiag
γ 0.2779 0.2779 0.2779
H∞ 0.2624 0.2624 0.2624

Table 6.3: Decentralized Controller from Standard Dual FBSP with block diagonal Lyapunov
Matrix

The results above show that whenever either the Lyapunov matrix Y or the multipliers Q,R, S
are restricted to assume a block diagonal structure, the value of the bound γ assumes the highest
value among all possible combinations of structures imposed in the standard version of the
Full Block S-Procedure. Moreover it is worth noticing that, in order to be able to extract the
parameters Kd,Ki of the distributed controller from this method, it is necessary, to the best
of our knowledge, to impose a block diagonal structure on the Lyapunov matrix. This justifies
the need to adopt a strategy that allows to bypass what can be considered as a limit of the
standard Full Block S-Procedure when applied to homogeneous interconnected decomposable
systems. This is what has led us to reinvent this method based on the extended version of the
Bounded Real Lemma. In this way we could exploit the advantage of decoupling the Lyapunov
matrix from all the variables involved, by the introduction of a new slack variable that is not
restricted to be symmetric.
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6.2 Numerical Comparison between Standard and Extended Full
Block S-Procedure

The following results refer to a homogeneous system composed of N = 6 interconnected sub-
systems of third order. The state space matrix elements have been randomly generated from a
uniform aleatory variable defined on an an interval of amplitude 0.2 centered around the example
taken from [2]. We will consider a strictly proper system (Dd

zw = Di
zw = 0) and we recall that

Bi
u and Di

zu need to be imposed equal to zero in order to render the Full Block S-Procedure
applicable. Without loss of generality, the matrices Bi

z and Ciz have been imposed to be zero
since this choice led to more explicative results. The realisation we are going to refer to is:

Ad =

 0.1903 −0.1159 0.6105
−0.8524 −0.6462 −0.4154
−0.8904 0.5115 −0.5165

 , Ai =

 0.1966 0.0603 −0.1402
−0.2667 −0.1078 −0.1396
−0.1667 −0.0356 0

 ,

Bd
z =

0.5
0.5
0.5

 , Bi
z =

0
0
0

 , Bd
u =

 0.2976
−0.8983
0.3289

 , Bi
u =

0
0
0

 ,
Cdz =

[
0.8008 0.2844 0.3115
−0.0787 0.0924 −0.0991

]
, Ciz =

[
0 0 0
0 0 0

]
,

Dd
zw =

[
0
0

]
, Di

zw =

[
0
0

]
, Dd

zu =

[
0.0550
0.9365

]
, Di

zu =

[
0
0

]
.

All the subsystems are interconnected according to the adjacency matrix

P =



0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 1 0 0 1
0 1 0 0 0 0
1 0 0 1 0 0

 (6.2)

corresponding to the interconnection graph in Figure 6.2.

Figure 6.2: Interconnection graph among the subsystems.

In this example, two simultaneously diagonalizable matrices are involved, namely P1(= P ) and
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P2 and they assume the following structures

P1 =



0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 1 0 0 1
0 1 0 0 0 0
1 0 0 1 0 0

 , P2 =



0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

 .

P2 = [pij ]i,j=1,...N has been found by solving the optimization problem

max
s.t.

P2=PT
2

P1P2=P2P1
pii=0

pij(1−pij)=0

∑
i<j

pij . (6.3)

Tables 6.4, 6.5, 6.6, 6.7 refer to the standard version of the Full Block S-Procedure while the
results in Tables 6.8, 6.9, 6.10, 6.11 refer to the extended Full Block S-Procedure.
In the following the symbol M⊗P1,P2 stands for M = IN ⊗Md + P1 ⊗M i

1 + P2 ⊗M i
2.

Y full

Multipliers full Multipliers ⊗P Multipliers blockdiag
γ 1.5816 2.2280 2.7440
H∞ 1.5816 2.0986 2.5787

Table 6.4: Distributed Controller from Standard Dual FBSP without structure on the Lyapunov
matrix

Y ⊗P
Multipliers full Multipliers ⊗P Multipliers blockdiag

γ 2.1802 2.2280 2.7440
H∞ 2.0723 2.0986 2.5787

Table 6.5: Distributed Controller from Standard Dual FBSP with Y = IN ⊗ Y d + P ⊗ Y i

Y ⊗P1,P2

Multipliers full Multipliers ⊗P1,P2 Multipliers blockdiag
γ 2.1802 2.2228 2.7440
H∞ 2.0723 2.0960 2.5787

Table 6.6: Distributed Controller from Standard Dual FBSP with Y = IN⊗Y d+P1⊗Y i
1 +P2⊗Y i

2

Y blockdiag

Multipliers full Multipliers ⊗P Multipliers blockdiag
γ 2.7440 2.7440 2.7440
H∞ 2.5787 2.5787 2.5787

Table 6.7: Decentralized Controller from Standard Dual FBSP with block diagonal Lyapunov
Matrix
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F full
Multipliers full Multipliers ⊗P Multipliers blockdiag

Y full Y ⊗P Y blockdiag Y full Y ⊗P Y blockdiag Y full Y ⊗P Y blockdiag
γ 1.5816 1.7774 1.8270 2.2379 2.2379 2.2482 2.8053 2.8053 2.8053
H∞1.5816 1.6787 1.6994 2.0940 2.0940 2.1196 2.5823 2.5823 2.5823

Table 6.8: Distributed Controller from Extended Dual FBSP without structure on the slack
variable F

F ⊗P

Multipliers full Multipliers ⊗P Multipliers blockdiag
Y full Y ⊗P Y blockdiag Y full Y ⊗P Y blockdiag Y full Y ⊗P Y blockdiag

γ 1.9828 2.0683 2.1012 2.2428 2.2428 2.2549 2.8053 2.8053 2.8053
H∞1.8704 1.9309 1.9900 2.1062 2.1062 2.1129 2.5823 2.5823 2.5823

Table 6.9: Distributed Controller from Extended Dual FBSP with slack variable F = IN ⊗F d +
P ⊗ F i

F ⊗P1,P2

Multipliers full Multipliers ⊗P1,P2
Multipliers blockdiag

Y full Y ⊗P1,P2 Y blockdiag Y full Y ⊗P1,P2 Y blockdiag Y full Y ⊗P1,P2 Y blockdiag
γ 1.9417 2.0654 2.1013 2.2428 2.2428 2.2549 2.8053 2.8053 2.8053
H∞1.8302 1.9234 1.9899 2.1062 2.1062 2.1129 2.5823 2.5823 2.5823

Table 6.10: Distributed Controller from Extended Dual FBSP with slack variable F = IN⊗F d+
P1 ⊗ F i1 + P2 ⊗ F i2

F blockdiag
Multipliers full Multipliers ⊗P Multipliers blockdiag

Y full Y ⊗P Y blockdiag Y full Y ⊗P Y blockdiag Y full Y ⊗P Y blockdiag
γ 2.2135 2.2135 2.7739 2.3550 2.3550 2.7757 2.8053 2.8053 2.8053
H∞2.1695 2.1694 2.5812 2.3186 2.3186 2.1196 2.5823 2.5823 2.5823

Table 6.11: Decentralized Controller from Extended Dual FBSP with block diagonal slack vari-
able

Comments

The numerical results show that the more restrictive the structure imposed on the optimisation
variables the lower the performance. In fact, it is evident that the optimal value is reached
from both the procedures when all the optimisation variables are not restricted to assume any
particular structure while the performance gets much worse when imposing the block diagonal
structure on all the optimisation variables. Moreover Tables 6.2, 6.4 and Tables 6.6, 6.7 show that
involving the Kronecker product with simultaneously diagonalisable matrices in the structure of
the optimisation variables can bring improvements. However the improvement brought in this
case are not so consistent since the matrix P2 is very sparse and thus not so many degrees of
freedom are introduced. More consistent improvement could have been reached for other P1, P2

in which P2 is a less sparse matrix with respect to the one involved in this numerical example.
Another fact that deserves attention is that, in the standard Full Block S-Procedure, whenever
one of the matrices is set to assume a block diagonal structure, the performance bound γ assumes
the highest value among all the γ obtained in the same procedure while this does not happen in
the extended Full Block S-Procedure and this is a considerable advantage. This is a considerable
improvement with respect to the classical approach since the block diagonal structure is always
needed at least on one of the optimization variables (Y in the standard case, F in the extended
case) in order to be able to extract the controller parameters.
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The structure involving the simultaneously diagonalisable matrices on the slack variable F and
on the Lyapunov matrix in the extended and standard Full Block S-Procedures respectively is
the less restrictive structure that allows to decompose the controller synthesis inequalities. In
that case the distributed controller parameters would assume the form

Kd = Md(F d + λiF
i)−1, Ki = M i(F d + λiF

i)−1. (6.4)

In this case better performances with respect to the case in which the variable F (or Y for the
standard Full Block S-Procedure) are constrained to be block diagonal can be achieved. However,
since in this case the controller parameters depend on λi, it generally happens that Kd

i 6= Kd
j

∀i 6= j and Ki
i 6= Ki

j ∀i 6= j. A still open question is if in this case it would be still possible to
design a distributed controller for the untransformed system and, if yes, it would be interesting
to understand how to arrange the different Ki corresponding to the non-zero elements of the
pattern matrix and the different Kd on the diagonal entries. The fact that different controller
parameters Kd

i , K
i
i , for different subsystems, allow to reach a lower bound for the H∞ norm

with respect to the case in which the controller parameters are all equal, even when dealing
with homogeneous systems, is not surprising. In the physical plant, in fact, each subsystem
can be connected to a different number of other subsystems and therefore dealing with different
controllers in the plant would allow to reach better performances.
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Chapter 7

Conclusions and Future Works

During this master project two approaches for the synthesis of distributed controller for homoge-
neous decomposable systems have been developed. An extended version of the already existing
Full Block S-Procedure has been presented and a decomposition approach in order to improve
the computational efficiency has been proposed.
The Extended Full Block S-Procedure has been derived from the extended version of the Bounded
Real Lemma and it has the advantage of reducing the conservatism with respect to the standard
version by introducing a slack variable that renders the Lyapunov matrix decoupled from any
other optimization variable. In this way we overcame the limit of the standard Full Block S-
Procedure in which the Lyapunov matrix was constrained to assume a block diagonal form in
order to let us extract the distributed controller parameters. In this way the extended Full Block
S-Procedure bypasses one of the main sources of conservatism in the state of the art of distributed
controller synthesis for this class of interconnected systems.
The decomposition approach can be applied to both the versions of the Full Block S-Procedure.
With this method we exploit the diagonalizability of the pattern matrix so that, by applying a
similarity transformation, we can impose less restrictive structures on the optimization variables
by still reaching the same level of scalability with respect to the case in which all the optimization
variables were block diagonal. Both the proposed methods show the advantage of reducing the
conservatism with equal level of scalability with respect to the state of the art. Anyway it is
worth remembering that the Full Block S-Procedure is a powerful robust control method that, in
general, can be applied to linear parameter varying systems depending on uncertain parameters
in a compact domain which means that, when it is applied to the restrictive case of deterministic
linear time invariant systems, some more conservatism is induced, as said in [28].
A possible extension to this project could be to consider the more general case of α − β
heterogeneous systems in which α different types of systems and β different kinds of inter-
connections are involved. In a more general context, in fact, different system variables could be
interconnected according to different pattern matrices and β different interconnection channels
would be introduced. Moreover it could happen that the controller interacts with the system
according to a different pattern matrix with respect to the one that mirrors the physical inter-
connections among the subsystems. In a large scale setting, it is more likely, for the controller
patter matrix, to involve less communication links. Anyway, whenever the β (or a subset of
them) interconnection matrices are simultaneously diagonalizable, the decomposition approach
is still a valid approach.
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Appendix A

Considerations About the Bounded
Real Lemma and its Time Domain
Interpretation

A.0.1 The Bounded Real Lemma

Let us consider the closed-loop system

ẋ = Aclx+Bww (A.1)
z = Cclx (A.2)

with strictly proper transfer function T (s) = Ccl(sI−Acl)−1Bw, then the following are equivalent

(i)‖T‖∞ < γ;

(ii)Given Φ(s) := γ2I − T T (−s)T (s) then Φ(jω) > 0 ∀ω ∈ R;

(iii)The Hamiltonian Matrix

Mγ :=

(
Acl

1
γ2
BwB

T
w

−CTclCcl −Acl

)
∈ R2n×2n

has no purely imaginary eigenvalues;
(iv)There exists a matrix X � 0 such that

(
ATclX +XAcl + CTclCcl XBw

BT
wX −γ2I

)
≺ 0 (A.3)

Considerations

If γ > 0 then Mγ has a clear division of eigenvalues, in the sense that they respect a certain
symmetry on the complex plan. To make it more evident, we apply a similarity transformation
that, as known, does not change the eigenvalues of the matrix. Let us consider the matrix

J =

(
0 I
−I 0

)
(A.4)

Notice that the J matrix is such that it is equal to the negative inverse, in fact

J2 =

(
0 I
−I 0

)(
0 I
−I 0

)
=

(
−I 0
0 −I

)
(A.5)
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and, since J2 = −I, multiplying both the terms in (A.5) by J−1, it is evident that J = −J−1.
Therefore it holds that

J−1MγJ = −JMγJ = −MT
γ (A.6)

where the last equality holds because a multiplication, both on the left and on the right, by J
corresponds to permute rows and columns of the matrix. Therefore

det(sI −Mγ) = det(sI +MT
γ ) = det(sI +Mγ), (A.7)

where the last relation is due to the fact that, since Mγ is a square matrix, its eigenvalues
coincide with those of its transpose. SinceMγ is hamiltonian, its eigenvalues are symmetric with
respect to the imaginary axes and thus we have a clear separation among stable and unstable
eigenvalues showed in the following.
Let us consider the following similarity transformation

(
Vs Vu

)−1
Mγ

(
Vs Vu

)
=

(
Λs 0
0 Λu

)
(A.8)

where Vs indicates the eigenspaces associated with the stable eigenvalues, Vu the eigenspace
associated with the unstable eigenvalues, Λs a block diagonal matrix, where all the diagonal
blocks are upper triangular matrices with stable eigenvalues on the diagonal and Λu has the
same structure as Λs but with unstable eigenvalues on the diagonal.
Equivalently, multiplying on the left both the expressions in (A.8) by

(
Vs Vu

)
it results that

Mγ

(
Vs Vu

)
=
(
Vs Vu

)(Λs 0
0 Λu

)
. (A.9)

Partitioning the eigenvectors of Mγ as follows

(
Vs Vu

)
=

(
Vs1 Vu1

Vs2 Vu2

)
∈ R2n×2n (A.10)

in which each block has dimension 2n, we assume also Vs1 to be non singular and define

P := Vs2V
−1
s1 (A.11)

From (A.9) it follows
MγVs = VsΛs (A.12)

and multiplying on the right by V −1
s1 we get

Mγ

(
Vs1
Vs2

)
V −1
s1 =

(
Vs1
Vs2

)
V −1
s1 Vs1ΛsV

−1
s1︸ ︷︷ ︸

:=Ac

. (A.13)

(A.13) together with (A.11) yield to

Mγ

(
I
P

)
=

(
I
P

)
Ac (A.14)

and thus
(
I
P

)
is another basis for the eigenspace associated with the stable eigenvalues. Ex-

pressing the above relation in an extended form(
Acl

1
γ2
BwB

T
w

−CTclCcl −ATcl

) (
I
P

)
=

(
I
P

)
Ac (A.15)
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we can derive the following two equations

Acl +
1

γ2
BwB

T
wP = Ac (A.16)

− CTclCcl −ATclP = PAc (A.17)

and plugging the first equation into the second one we get the following Algebraic Riccati
Equation (ARE)

ATclP + PAcl +
1

γ2
PBwB

T
wP + CTclCcl = 0 (A.18)

It is worth noticing the similarity between the ARE (A.18) and the Lyapunov equation

ATclP + PAcl + CTclCcl︸ ︷︷ ︸
:=Q�0

= 0 (A.19)

to which the extra term 1
γ2
PBwB

T
wP , quadratic in P , has been added and which is known to

be solved by the observability Gramian

P =

∫ ∞
0

eA
T
clτCTclCcle

Aclτdτ (A.20)

The ARE (A.18) admits just one solution that is a stabilizing solution, namely a solution P
such that there exists a control matrix depending on P , Kd(P ), that makes Acl+BwKd Hurwitz
and it results to be

Kd =
1

γ2
BT
wP. (A.21)

Recalling equation (A.16), we have that

Acl +
1

γ2
BwB

T
wP = Acl +BwKd = Ac (A.22)

where Ac is known to be stable since it has as eigenvalues all the stable eigenvalues of Mγ .
In order to ensure the stability of the sytstem from the ARE (A.18) we come to the Quadratic
Matrix Inequality (QMI) in P

ATclP + PAcl +
1

γ2
PBwB

T
wP + CTclCcl ≺ 0 (A.23)

that is equivalent to the LMI(
ATclP + PAcl + CTclCcl PBw

BT
wP −γ2I

)
≺ 0 (A.24)

in fact, the Schur complement of −γ2 in (A.24) brings to the constraints

(i)− γ2I ≺ 0 (A.25)

(ii)ATclP + PAcl + CTclCcl − PBw(−γ2I)−1BT
wP ≺ 0 (A.26)

where the first constraint is trivial, while the second one is equivalent to the QMI (A.23). What
afore mentioned ensures that the P that solves the (A.23) is a stabilizing solution.
As regards the second statement of the Bounded Real Lemma, instead, we will exploit the
equivalence

ATclP + PAcl ± jωP = −(−jωI −Acl)TP − P (jω −Acl) (A.27)
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and the LMI

0 �
(
BT
w(−jωI −Acl)−T I

) (ATclP + PAcl + CTclCcl PBw
BT
wP −γ2I

)
︸ ︷︷ ︸

≺0

(
(jω −Acl)−1Bw

I

)
(A.28)

that is equal to

BT
w(−jωI −Acl)−TCTcl Ccl(jω −Acl)−1Bw︸ ︷︷ ︸

T (jω)

−γ2I = T ∗(jω)T (jω)− γ2I. (A.29)

Condition (A.28) holds since the matrix in the center is the same as the one that appears in the
statement of the Bounded Real Lemma, while the matrices that multiply it are one the transpose
conjugate of the other. The equivalence between the (A.28) and (A.29), instead, comes from the
relation (A.27). In fact, developing the calculations in (A.28), we obtain

(
BT
w(−jωI −Acl)−T I

) (ATclP + PAcl + CTclCcl PBw
BT
wP −γ2I

)
︸ ︷︷ ︸

≺0

(
(jω −Acl)−1Bw

I

)
=

= BT
w(−jωI −Acl)−TATclP (jωI −Acl)−1Bw +BT

w(−jωI −Acl)−TPAcl(jωI −Acl)−1Bw+

+GT (−jωI−Acl)−TCTclCcl(jωI−Acl)−1Bw+BT
wP (jω−Acl)−1Bw+BT

w(−jωI−Acl)−TPBw−γ2I

in which

BT
w(−jωI −Acl)−TATclP (jωI −Acl)−1G+GT (−jωI −Acl)−TPAcl(jωI −Acl)−1G+

+GTP (jωI −Acl)−1G−GT (−jωI −Acl)−TPG = 0 (A.30)

To see that, we rewrite this expression in a more compact way as

BT
w(−jωI −Acl)−T

[
ATclP + PAcl + (−jωI −Acl)TP + P (jωI −Acl)

]︸ ︷︷ ︸
=0

(jωI −Acl)−1Bw (A.31)

and exploiting the equivalence (A.27) it is immediate to see that the expression in between square
brackets is equal to zero. Therefore from (A.28) and (A.29) it follows that(

ATclP + PAcl + CTclCcl PBw
BT
wP −γ2I

)
≺ 0 (A.32)

if and only if ∀ω ∈ R Φ(jω) = γ2I − T ∗(jω)T (jω) � 0

The Time Domain Interpretation

Let us consider the system (A.1)-(A.2) and the differentiable quadratic Lyapunov function
V (x) = xTPx, where P is the stabilising solution for the ARE (A.18). In order to bound
the L2 gain of the system, according to what expressed in (2.16), we impose that

V̇ (x,w) ≤ γ2wTw − zT z (A.33)

that is

V̇ (x,w) = ẋTPx+xTPẋ = (Aclx+Bww)TPx+xTP (Aclx+Bww) ≤ γ2wTw−xTCTclCclx (A.34)
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that can be rewritten as

xTATclPx+ wTBT
wPx+ xTPAclx+ xTPBww − γ2wTw + xTCTclCclx ≤ 0 (A.35)

or equivalently (
xT wT

) (ATclP + PAcl + CTclCcl PBw
BT
wP −γ2I

) (
x
w

)
� 0 (A.36)

and the inequality is strict as soon as x,w are both different from zero. This relation provides
an upper bound on the L2 gain of a system.
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Appendix B

Schur Complement as Check for
Positive Definiteness of Symmentrc
Matrices

Proposition 3.2.1 For any symmetric matrix, M, of the form

M =

(
A B
BT D

)
(B.1)

if D is invertible then the following properties hold:

(i) M � 0 iff D � 0 and A−BD−1BT � 0.
(ii) If D � 0, then M � 0 iff A−BC−1BT � 0.

Proof (i) We recall that (B.1) can be equivalently rewritten as

M =

(
A B
BT D

)
=

(
I BD−1

0 I

)(
A−BD−1BT 0

0 D

)(
I BD−1

0 I

)T
(B.2)

From equation (B.2) it directly follows that proving the positive definiteness of M is equivalent
to prove the positive definiteness of

G :=

(
A−BD−1BT 0

0 D

)
In fact, xTMx > 0 ∀ x 6= 0 if and only if yTGy > 0 ∀ y 6= 0 where

y =

(
I BD−1

0 I

)T
x

And since G is block diagonal, it holds that G is positive definite if and only if each diagonal
block is such, which concludes the proof.
(ii) Similarly to what has been proven above, proving that M � 0 is equivalent to prove that
G � 0 and since D � 0 by hypothesis, it has to hold that A−BD−1BT � 0. �
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