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Abstract

This work aims to analyze and implement some recent results on

the SLAM problem, adapting them to the context of localizing a WSN

using only RSSI distance measurements from a mobile beacon. The

inherent system nonlinearities are dealt with by an Unscented Kalman

Filter; newly discovered nodes are initialized cheaply and without delay

by approximating their distribution with a Gaussian Mixture.

Furthermore, a series of static and dynamic path planning policies

are developed and compared: their aim is to achieve a complete, precise,

accurate network localization with minimum energy expenditure.





Chapter 1

Introduction

RUUMBA is a framework for WSN localization. But what is a WSN?

The acronym stands for Wireless Sensor Network: it’s a physical net-

work, composed by a multitude of wirelessly connected motes: these

small, cheap, autonomous hardware devices can perform limited computing and

data storage, are often fitted with environmental sensing capabilities. From a

topological perspective, a WSN can be compared to a graph (V,E) where the set

of nodes V represents the motes, and each directed edge ei,j ∈ E is an established

communication channel from mote i to mote j.

The fields of application are diverse: from natural disaster prevention, to mobile

assets coordination, to indoor and outdoor area monitoring. In fact, due to their

ease of installation, fault robustness and scalability WSNs are most efficient when

deployed over rough or unaccessible terrain, or generally where any prolonged

human intervention or supervision would be impractical.

Similarly, by attaching these nodes to a collection of generic objects it’s possible

to transfer these “smart” properties to it, thus considering the whole system as a

smart object network, that can monitor its own condition or provide information

about itself in a distributed manner. To provide some realistic, practical applica-

tions of this concept one can think of partially automated warehouses, where both

human and autonomous mobile robot (AMR) workers operate simultaneously to
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1. INTRODUCTION

frequently store, catalogue and retrieve smart goods; likewise, objects such as golf

carts in an large airport or specific tools in a work area can be made smart too, for

example by adding indicators for availability or maintenance.

Figure 1.1: A typical mote of a WSN.

Common to all the above examples is a need for localization, i.e. acquiring

knowledge about the spatial1 coordinates of each node: as an additional difficulty,

the nodes may possess a slow amount of mobility. Solving this requirement with

an onerous initial calibration and installation, a human-supervised update, or by

equipping each node with an expensive GPS device would obviously defeat the

very same advantages offered by a WSN. These factors motivate the definition of

a wholly automatic scheme or framework for discovering and localizing nodes,

which can be executed repeatedly over time, with minimal additional hardware and

with little to no prior knowledge about the network composition, topology and state.

A relatively recent approach pioneered by Sichitiu and Ramadurai [35] has been

that of adding a mobile node to the network, aware of its position on a global

coordinate system and capable of sensing and assisting with the localization of

the other WSN nodes. This strategy is extremely cost effective, since a single
1 In most cases, such as when the operative area spans the ground level or a single floor, planar

coordinates are sufficient.
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1.0

device can perform any amount of measurements and afterwards be redeployed

over a different operative area; furthermore, scalability is achieved by limiting the

information gathering to a local neighborhood. The data collected by this Mobile

Beacon (MB) can then be filtered by an appropriate algorithm to obtain a position

estimate for the whole network.

Figure 1.2: A typical example of a Mobile Beacon: a two-wheeled, differential drive

robot equipped with a wireless antenna.

What data to gather, though? Since by definition each WSN node has wireless

capabilities, it’s possible to exploit this communication system to take Received

Signal Strength Indicator (RSSI) measurements, which can be supported by all

transceiver chipsets with minimal calibration. As signal strength is quite obviously

correlated to the distance from the source, these range-only measurements repre-

sent a good compromise between informativeness and cost.

The algorithm choice is even more dependent on the specifics of each practical

implementation: in a general case the nodes can be added, moved and removed dur-

ing operations, so an online filter is needed. Moreover, their microcontrollers cannot

perform difficult or large computations (sometimes, not even multiplication support

5



1. INTRODUCTION

can be taken for granted), so sophisticated procedures have to be executed by a

base station with more processing and storage resources. By combining this base

station and a MB into a single autonomous robot, the WSN localization problem is

affine to the Simultaneous Localization And Mapping (SLAM) problem: the already

efficient solution of adopting an Extended Kalman Filter (EKF) can be further

improved by switching to the more recent Unscented Kalman Filter (UKF),

better suited to dealing with the inherent nonlinearities of both motion and mea-

surement models. The specific models that have been implemented for the scope of

this thesis,2 and the propagation and update filter equations are shown in Chapter 2.

During the process of exploring the whole operative area, the beacon may dis-

cover new nodes, which must then be added to the system state. This initialization

must preserve the Gaussianity assumption made by the Kalman equations, while

still describing accurately the spatial distribution implied by the measurements:

standard solutions such as multilateration and particle filters introduce a delay in

node initialization, and may be respectively inaccurate or computationally heavy.

Modeling the initial distribution as a Gaussian Mixture Model (GMM) that will

eventually converge, and evaluating all its components as independent hypotheses,

allows for an undelayed, really easy to compute initialization which as an addi-

tional advantage can prove itself quite robust to noise in the initial measurements.

To be integrated into this body of work, this technique had to be adapted to the spe-

cific case of Unscented RSSI localization: all the details are illustrated in Chapter 3.

Finally, the last step to optimize is the beacon points selection: to solve this

experiment design problem, one should try to plan the path of the MB and the

density of measurements along it in such a manner that the maximum amount of

information can be extracted while expending the minimum amount of energy. The

search for such an optimal path-planning policy, and the comparison of different

alternatives both static and dynamic, constitutes the third and largest original part

of this thesis and is treated in Chapter 4.
2 Even though the UKF is agnostic to both of them.
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1.0

All the simulations shown in Chapter 5 were coded using the Matlab language,

due to its extensive library support and familiarity to the author.

For the rest of this thesis, a certain convention will be followed when graphically

representing the localization process. The MB is depicted as a blue diamond moving

on the planar map defined by the Cartesian axes; it leaves behind it a path of the

same color, usually starting in the lower left corner. The ground truth of each WSN

node position is drawn as a black asterisk: when a communication is established

between the MB and a node and a corresponding RSSI range measurement is

obtained, it’s represented as a dashed magenta circumference having radius equal

to the estimated distance. The whole state estimate x̂ is colored red: the mean

positions of each node are triangles, while 95% confidence ellipses are drawn around

them to represent their covariances.

In some figures, additional elements may be present: the robot’s communication

range, drawn as a dotted green line, represents the maximum distance between

antennas at which a message can be expected to be received assuming a uniform

transmission channel. It could happen that, due to shadowing effects discussed in

section 2.3, a node outside this range can still be sensed by the MB.

As a visual aid for comparing localization errors, green error lines will associate

the ground truth and the mean position estimate of each node; in a similarly

unobtrusive manner, grid discretizations of the operative area will be drawn as a

Voronoi map of yellow cells and center points.

Finally, when present, a black bounding box defines the invalicable limits of

the node deployment area.
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Chapter 2

Online range-only localization

Using only distance measurements to a node, find the node’s position: to

properly tackle this problem, it must first be reframed from an estima-

tion point of view. Specifically, given a set xb1, 2, ...,M of known beacon

positions and a corresponding set zn1, 2, ...,M of measurements about a node n, the

aim is to reconstruct xn as a vector containing the node’s planar coordinates. Here,

z = h(d, ν) is some statistic of the beacon-node Euclidean distance d = ||xb−xn||2,

possibly disturbed by a noise factor ν whose Gaussianity and/or additiveness may

not be guaranteed. This estimation should be conducted for each node of the

network.

To analyze the statistics z with an online filter means to consider them one

at a time, computing the update to the current state estimation each time a new

measurement is received [32]; usually, this approach is reserved for dynamic systems

whose underlying state changes over time and therefore must be constantly matched

by the filter, or if the least number of measurements is required. In this latter case,

the filter stops whenever a sufficient degree of confidence is reached.

In contraposition, offline localization methods such as multilateration, Mul-

tiDimensional Scaling [42] or Support Vector Machines [31] [49] all assume that

every possible measurements is available at once, and perform a single computation

taking all of them into account: even though these approaches cannot output

9



2. ONLINE RANGE-ONLY LOCALIZATION

partial results, therefore introducing an inevitable delay, they are usually more

effective as noisy values can be averaged over all samples instead of a few.

The WSN localization problem is similar to SLAM: in both cases, a mobile

robot creates an incremental map of its surroundings, storing mean estimate and

covariance matrix of all the significant features in the environment, in our case the

network nodes. These findings are used to both improve the belief about the robot’s

current internal state, and to plan the next step of its path. In our particular case,

though, localization and mapping are treated as two separate processes: the AMR

is already supposed to be able to localize itself without being conditioned on the

extracted range information from the WSN, and the Maximum Likelihood estimate

of its pose will be used as the MB position when localizing the nodes.

2.1 State

Without loss of generality, the time axis won’t be assumed to be continuous but

discrete; moreover, the length of the interval between a sample t and the successive

one t+ 1 will not be constant. Time instead will be sampled nonuniformly after

both motion and measurement phase have terminated, that is whenever the MB

has moved from its previous position and all available measurements from the

current position have been performed. One can look at t both as the number of

stops made during the robot motion, and also as the incremental number of virtual

beacons deployed on the operative area.

For a generic time instant t, the overall form of both system state x(t) and its

estimate x̂(t) is formalized as follows:

x(t) =
[
xr(t) x1(t) x2(t) . . . xN(t)

]
x̂(t) =

[
x̂r(t) x̂1(t) x̂2(t) . . . x̂N ′(t)

] (2.1)

where xr(t), x̂r(t) represent the robot’s actual and estimated state, and xn(t),

x̂n(t) are the actual and estimated planar positions of the n-th node. It’s important

10



2.1 STATE

to note the distinction between N and N ′ ≤ N : the former number is the total

number of WSN nodes to be localized, while the latter is the number of discovered

nodes, that is the nodes from which at least a measurement have been received.

For the rest of this chapter, it’ll assumed that N = N ′: the initialization of a new

node into x̂(t) will be dealt in Chapter 3.

Correspondingly, the error covariance matrix P(t) associated with x̂(t) will be

a N ′ ×N ′ square block matrix with same dimension:

P(t) =



Pr Pr,1 Pr,2 . . . Pr,N ′

P1,r P1 P1,2 . . . P1,N ′

P2,r P2,1 P2 . . . P2,N ′

... ... ... . . . ...

PN ′,r PN ′,1 PN ′,2 . . . PN ′


(t) (2.2)

In fact, it’s possible to achieve a more simplified form of (2.2) by considering the

conditional independence of any two nodes’ position estimates x̂i and x̂j with respect

to the inter-node distance measure zi,j = h(di,j, ν). The Bayes Nets shown in Figg.

2.1 and 2.2 illustrate this concept (light blue nodes are known or observed variables,

arrows express dependence, while the path of the Bayes Ball algorithm [34], which

implies correlation, is colored in red): when the only measurements available are

those between the MB and some node, the corresponding node position estimate is

unrelated from all other estimates. Contrariwise, acquiring knowledge of zi,j brings

information about di,j , which being a sufficient statistic of the joint distribution of

xi and xj necessitates the introduction of the terms Pi,j and Pj,i in the expression

of P.

By choosing to disregard these measures, it’s possible to obtain a sparse block

variant of (2.2) where no covariance is present between any two nodes:

11



2. ONLINE RANGE-ONLY LOCALIZATION

P(t) =



Pr Pr,1 Pr,2 . . . Pr,N ′

P1,r P1 0 . . . 0

P2,r 0 P2 . . . 0
... ... ... . . . ...

PN ′,r 0 0 . . . PN ′


(t) (2.3)

xrxi xj

di,jdr,i dr,j

zi,jzr,i zr,j

x̂rx̂i x̂j

Figure 2.1: Path of the Bayes Ball algorithm where inter-node distance is not

measured: there is no dependence between the two nodes’ estimated positions.

2.2 Motion model

The robot state xr is a vector of 3 elements, expressing its pose as a combination

of coordinates on the Cartesian plane and an angle which represents the robot’s

current heading direction:

xr(t) =


xr

yr

θr

 (t), θr ∈ (0, 2π] (2.4)

12



2.3 MOTION MODEL

xrxi xj

di,jdr,i dr,j

zi,jzr,i zr,j

x̂rx̂i x̂j

Figure 2.2: Path of the Bayes Ball algorithm where inter-node distance is measured:

x̂i and x̂j are now correlated.

We consider our AMR to be a two-wheeled, differential drive robot (see Fig.

1.2), capable of in-place changes of direction without the need for an additional

steering motion. Thus, every polygonal path can be decomposed into a series of

consecutive rotations and translations, and the odometric inputs at each time step

t can be written as u(t) = [∆θ,∆D ](t); these values are assumed to be disturbed

by additive Gaussian noises νθ, νD with standard deviations σθ,σD.

The motion, then, is equivalent to a shift in polar coordinates centered on the

robot position. The (nonlinear) update equations are:

xr(t+ 1) = xr(t) +


(∆D(t) + νD) · cos( θr(t) + ∆θ(t) + νθ)

(∆D(t) + νD) · sin( θr(t) + ∆θ(t) + νθ)

∆θ(t) + νθ

 (2.5)

13



2. ONLINE RANGE-ONLY LOCALIZATION

y

xθr(t)

y

x

θr(t+ 1)

∆θ(t)

νθ

∆D(t)

νD

Figure 2.3: Motion model for a differential drive robot.

2.3 Measurement model

When a wireless radio signal is transmitted, the power measured at the receiver

station decays exponentially with respect to the distance between the two antennas.

To represent the received signal strength, almost all IEEE 802.11 enabled devices

utilize the Received Signal Strength Indicator (RSSI), a generic power metric which

uses arbitrary units (typically defined on a 0-100 interval). More often than not,

there are no industry standards that precisely relate RSSI values to mW or dBm

power levels; also, each vendor provides its own accuracy, granularity, and range

specifications, creating the need for either a WSN composed only by the same kind

of devices, or a shared precalibration phase for heterogeneous networks.

Having measured the RSSI over k messages, and linearly converted them

into power samples P 1
rx, P

2
rx, . . . , P

k
rx, one still needs to know the model of the

transmission channel in order to estimate the distance between two devices. A

common, general radio propagation model for RSSI ranging is the log-distance

path loss model [9], which relates the power measured at the receiver station to

the logarithm of the actual distance from the signal source:

14



2.3 MEASUREMENT MODEL

Prx[dBm] = Ptx[dBm]− PL(d0)[dBm]− 10η log10

(
dtrue
d0

)
+ Ψ (2.6)

In the above expression, Prx is the received power represented as a random

variable, Ptx is the nominal transmission power of the emitting antenna, dtrue is

the Euclidean distance between communication endpoints and d0 is the Fraunhofer

minimum distance for an antenna to be in far field conditions (usually d0 is between

0.1 − 1 m). The remaining three terms are used to model the environmental

properties of the channel: PL(d0) is the path loss measured at d0, assuming a free

space propagation; η is called the path loss coefficient, and its value is 2 when the

signal travels in a vacuum, but spans ranges of 1.8 − 2.4 for indoor propagation

and 1.5 − 5 for outdoor propagation; finally, Ψ ∼ N (0, σ2
Ψ) is a Gaussian noise

factor.

The model (2.6) is an average, computed over the whole area that can be

reached by the emitter: local effects can greatly affect how the channel influences

the measure. The most common interferences are due to multipath and shadowing

phenomena: in the former case, the same signal travels not only on a straight

line to the receiver, but is also being reflected by obstacles, walls, the ground,

etc.: since the radio wave propagates along paths of different lengths, a signal can

cause destructive or constructive interference with itself. In the case of shadowing,

also known as slow fading, more local obstructions than the average do interpose

themselves between the source and the receiver: the signal is then attenuated more

strongly than predicted by the model; the inverse effect can happen when there

are less local obstructions than the whole area average.

It’s been proved experimentally [2] that by employing a multichannel trans-

mission (for example, the 16 channels specified by the IEEE 802.15.4 protocol,

spanning an interval of 2410 − 2480 MHz), one can average the different RSSI

values over the frequency space and significantly reduce the effect of multipath

interferences. In fact, the overall noise deviation σΨ, which in indoor environment

is often equal or greater than 4 − 4.8 dB, can be limited to a more conservative

15



2. ONLINE RANGE-ONLY LOCALIZATION

0

PL(d0)

log(d/d0)

P
tx
/P

r
x

Path Loss alone
Shadowing and Path Loss
Multipath, Shadowing and Path Loss

Figure 2.4: Graphical representation of the influence of environment on RSSI

localization.

2.8 dB, with a gain of approximately 2 dB. Alas, medium-scale effects such as

shadowing cannot be so easily dealt with, so Ψ remains a spatially correlated

random variable: to actually describe it as statistical noise, i.e. to validate the

assumption that its samples Ψ1,Ψ2, ...Ψk are mutually independent, it’s necessary

to move the MB by a certain minimum distance between different measurements .

Even though this depends on the scale of the operative area over which the WSN

operates, the distance d0 is usually a sensible choice.

By computing the mean received power P̄rx via RSSI frequency average, it’s

possible to invert the equation (2.6) to derive the formula for the estimated distance

distribution:

10η log10

(
dtrue
d0

)
= Ptx − Prx − PL(d0) + Ψ

d̂ = d0 · 10(Ptx−P̂rx−PL(d0))/10η (2.7)

d̂ = dtrue · 10Ψ/10η (2.8)

16



2.3 MEASUREMENT MODEL

While expression (2.7) may be more relevant for practical implementations, (2.8)

is a more readable alternative for simulations; moreover, it can also be modified to

show that d̂ is lognormally distributed:

d̂ = eln dtrue · eln 10·Ψ/10η

∼ lnN
 ln dtrue,

(
ln 10
10η σΨ

)2
 (2.9)

= lnN
(
µ, σ2

)

The mean of this estimator, though, is not unbiased. Even assuming to measure

RSSI samples on evenly spaced points along a circular trajectory with radius of

dtrue around the emitting antenna, the resulting expected value is [45]:

E[ d̂ ] = dtrue · eσ
2/2 (2.10)

This may cause problems in a realistic implementation: for example, even

assuming constant values of σ2 over all measures, the actual position of the yet

unlocalized WSN node is not guaranteed to lie within the complex hull defined by

the MB path. Since all distance estimates are longer than the ground truth, the

final node position estimate will consistently differ by a proportionate amount.

Instead, a median estimator is preferred: using as plug-in values the Maximum

Likelihood estimates of the lognormal location and scale parameters, namely

µ̂ = Ptx − PL(d0)− E[Prx] and σ̂2 = Var[Prx], a recent paper by N. Longford [26]

explicated the formula for an efficient unbiased median estimator whose general

form is d̂ = exp(µ̂+bσ̂2). In the paper, two variants were compared: the UnbiasedN

estimator, that has been specifically computed as to have a bias of exactly 0, and

the UnbiasedA estimator, which simply consists in the Taylor approximation of the

previous one.

17



2. ONLINE RANGE-ONLY LOCALIZATION

d̂uN = exp
(
µ̂+ k − 1

2σ̂2

(
1− e

σ̂2
k(k−1)

)
σ̂2
)

(2.11)

d̂uA = exp
(
µ̂− 1

2k σ̂
2
)

(2.12)

As shown in Fig. ??, there are no appreciable differences between the per-

formances of the two estimators, both in terms of relative bias and in terms of

variance: therefore, for ease of computation, the simplest one was chosen to be

implemented. The formula for its Mean Squared Error (MSE) can also be found

in [26], and is equal to:

Var[d̂uA] = e2µ

 e2σ̂2/k(
1 + 2σ̂2

k(k−1)

) (k−1)
2
− eσ̂

2/k(
1 + σ̂2

k(k−1)

)(k−1)

 (2.13)

However, as will be shown in Chapter 3, a more readable and tractable form

of (2.13) would be preferred. Fortunately, the above equation can be rewritten

at different degrees of simplification by the consecutive application of a binomial

approximation and two Taylor approximations:

Var[d̂uA] ≈
bin.

d 2
true ·

eσ̂
2/k

1 + σ̂2/k

(
eσ̂

2/k − 1
)

(2.14)

≈
Tay.

d 2
true ·

(
eσ̂

2/k − 1
)

(2.15)

≈
Tay.

d 2
true ·

σ̂2

k
(2.16)

A simulational analysis, averaged over 20000 experiments with k = 10 samples

each, has been conducted to compare the goodness of formulae (2.11 - 2.16): the

relative bias rBias = E[d̂]/dtrue − 1 and the relative variance rV ar = Var[d̂]/d 2
true

have been plotted against a realistic range of the scale parameter σ.

Even if (2.11) and (2.12) do not seem to differ from one another, they do both

exhibit a slight bias due to the small number of samples (see Fig. 2.5a). Still, it’s

well below 1 percent whenσ < 1.1, that is when σΨ < 9.5 dB assuming a path loss

factor of η = 2.
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2.4 MEASUREMENT MODEL

Regarding rV ar, from Fig. 2.5b it’s apparent that the only approximation that

introduces a sensible deviation from the original variance is the second application of

Taylor’s formula: therefore, (2.15) offers the best compromise between tractability

and exactness.
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Figure 2.5: Comparison of lognormal median estimators, for different values of σ.

Finally, the likelihood of each new distance measure d̃n(t), taken at time t

with respect to the n-th node, shall be computed too. As it will be used (see

Chapter 3) by the online algorithm when updating the confidence weights associated

with each position estimate x̂n, it should express the probability of measuring the

corresponding power value P̃rx,n(t) versus the expected distance to the same node,

d̂n(t) = E[||x̂r(t)− x̂n||2]. Dropping the time notation for ease of comprehension,

the equations are:

`(d̃n | d̂n) = Pr[ d̂ = d̃n | d̂n ]

= Pr[ Prx = P̃rx,n | d̂n ]

= Pr[ Ψ = 10η log10

 d̂n
d0

− (Ptx − P̃rx,n) + PL(d0) | d̂n ] (2.17)
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2.4 Extended Kalman Filter SLAM

In the commonly known version of the Kalman Filter, all states x are univariate or

multivariate Gaussian distributions which are propagated and observed through

linear functions described by the matrices F , G, and H, and by the inputs u and

measurements z. Those variables are disturbed by additive Gaussian noises w and

v, with zero mean and known covariances Q and R:

xt = Fxt−1 +G(ut−1 + wt−1) (2.18)

zt = Hxt + vt (2.19)

Still, in most real cases the motion and measurement functions are nonlinear,

so the Kalman Filter cannot be directly applied to predict and update the state

estimate; moreover, noise additivity may not be guaranteed. A more general

formulation, then, would be:

xt = f(xt−1,ut−1,wt−1) (2.20)

zt = h(xt,vt) (2.21)

If f and h are differentiable, it’s possible to linearize them around the current

best state estimate x̂t by calculating their Jacobian matrices:

Ft−1 = ∂f

∂x

∣∣∣∣∣
x̂t−1,ut−1,0

Gt−1 = ∂f

∂u

∣∣∣∣∣
x̂t−1,ut−1,0

Lt−1 = ∂f

∂w

∣∣∣∣∣
x̂t−1,ut−1,0

(2.22)

Ht = ∂h

∂x

∣∣∣∣∣
x̂t,0

Mt = ∂h

∂v

∣∣∣∣∣
x̂t,0

(2.23)

Translating the familiar set of Kalman equations to this linearized system, the

first-order Extended Kalman Filter (EKF) is obtained:

Predict

x̂t|t−1 = f(x̂t−1|t−1,ut−1,0) Predicted state estimate (2.24)

Pt|t−1 = Ft−1Pt−1|t−1FT
t−1 + Lt−1QLT

t−1 Predicted covariance estimate (2.25)
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2.5 EKF SLAM

Update

it = zt − h(x̂t|t−1,0) Innovation (2.26)

St = HtPt|t−1HT
t + MtRMT

t Innovation covariance (2.27)

Kt = Pt|t−1HT
t S−1

t Kalman Gain (2.28)

x̂t|t = x̂t|t−1 + Ktit Updated state estimate (2.29)

Pt|t = (I−KkHt)Pt|t−1 Updated covariance estimate (2.30)

Since the state at time t consists of 2N ′ + 3 elements (cfr. eq. (2.1) and (2.4)),

the computational complexity of EKF SLAM when predicting is O(2N ′), as only

the robot state variance Pr and the robot-node covariances Pr,n = PT
n,r have to be

modified for all nodes n = 1, 2, . . . , N ′.

However, the update step is dominated by the O(4N ′2) covariance update of

equation (2.30): repeating this computation over a map of size N drives the total

cost of the algorithm to O(N3)

motion

νD, νθ

u || · ||2 measure

T

xn Ψ

F

T

G
H

-

K

xt+1
r d

xt|tr

x̂t+1|t
r

x̂t|tr

z

ẑ

i

x̂n

System model

Extended Kalman Filter

Figure 2.6: Block model for a typical EKF-SLAM.
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2.5 Unscented Kalman Filter SLAM

Even if EKF-SLAM keeps being a widely used technique in the context of localiza-

tion, it’s still a first-order approximation of a nonlinear system,1 and as such it’s

subject to large errors when comparing the true posterior to the state estimate.

These errors tend to underestimate the covariance P and may lead to sub-optimal

performance and sometimes filter divergence [43].

Monte Carlo alternatives (i.e. particle filters) would certainly obviate the prob-

lem, but to balance their inherent randomness a large number of particles would

be required; by considering that each discovered node would have its own set of

particles, this line of reasoning quickly becomes unfeasible.

The Unscented Kalman Filter (UKF) belongs to the family of Linear Regression

Kalman Filters [23], and therefore can be thought of as performing an implicit

statistical linearization of the motion and measurement models. Instead of sampling

a lot of random points extracted from the underlying distribution, it propagates a

small set of deterministically selected sigma points that can express all the posterior

moments up to the 3rd order.

It should be noted that the state in a UKF still follows the Kalman assumption

of Gaussianity, and hence the bivariate Gaussian which represents the planar

position estimate of a generic node xn is still an approximation. Yet, as shown

by the comparison between 95% confidence ellipses in Fig. 2.7, the covariance is

correctly estimated; this is due to the direct application of the formulae (2.20 -

2.21) instead of their Jacobians (2.22 - 2.23).

1 While second-order versions of the EKF exist, their increased implementation and computa-

tional complexity tend to prohibit their use.
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Figure 2.7: Comparison between particle filter, first-order EKF and UKF when

noisily converting from a polar to a cartesian coordinate system.

2.5.1 State augmentation

For what concerns the motion and measurement noises, the original UKF formu-

lation assumed additiveness: as this is not the current case, the original state

estimate and covariance should be augmented to include the Gaussian noise factors

due to odometry and shadowing:

x̂a =



x̂

0

0

0


, Pa =



P 0 0 0

0 σ2
θ 0 0

0 0 σ2
D 0

0 0 0 σ2
Ψ


(2.31)

In this way, the propagation function will depend only on the total state xa;

also, as it will be seen in the following paragraphs, by initially augmenting the

state there is no need for a second derivation of the sigma points when advancing

from the predict phase to the update phase [46].
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2.5.2 Sigma points

At the heart of the UKF is the Unscented Transformation: this operation can

capture the statistical properties of a generic random variable of size m by sampling

Θ(m) vectors from it, distributed around the mean according to some function of

its covariance matrix.
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Figure 2.8: Three different ways of choosing a set of sigma points.

Figure 2.8 exemplifies the three most common methods for selecting sigma

points: when the limits imposed on computational resources are stringent, or no

information is given about the prior distribution other that its first two moments,

the first method (Fig. 2.8a) defines a minimal simplex of m + 1 points on the

m-hypersphere centered around the mean [13]. These sigma points are placed

asymmetrically, though, and so cannot accurately reconstruct the skew (third order

moment) and kurtosis (fourth order moment) when the propagation functions are

known to exhibit some sort of symmetry.

With a slight increase in computational complexity, skewness is respected by

sampling a set of O(2m) points centered around the mean and defined as the rows

of the square root of the covariance matrix; when kurtosis is known, such as in

the case of prior Gaussian distributions, an additional point placed on the mean

completes the set and guarantees an optimal behavior [16]. Figg. 2.8b and 2.8c

show two equivalent sigma point sets that differ only in how
√

P was computed,

respectively by the (numerically stable) Cholesky factorization algorithm P = LLT

and by deriving eigenvalues and eigenvectors P = VDVT . For this thesis, Cholesky
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2.5 UKF SLAM

decomposition was preferred.

Finally, to capture more information it’s always possible to increase the number

of sigma points, e.g. to O(2m2 + 1) as [17] did. As is often the case, a balance

must be struck between accuracy and usability.

The last thing to consider is how to scale the sigma points with respect to

the covariance matrix. When large noise factors are present, the radius of the

sphere that bounds the sigma points increases as well, and non-local effects may

be sampled [14]: even though the overall information about the distribution is

captured correctly, the filter may be inefficient.

Three scaling parameters α, β, κ are then defined:

• α typically resides in the interval (0, 1], and determines the spread of the

sigma points around the distribution mean. The value commonly used in

literature [14] [13] [43], and the value used by the UKF developed in this

thesis, is 1e-3.

• β expresses information about the shape of the prior distribution: for multivari-

ate Gaussians, β = 2 gives optimal results and, in fact, a slightly conservative

estimate of the posterior distribution.

• κ is a secondary parameter, used as a second degree of freedom to fine-tune

the higher order moments. A good heuristic [15] is to set m + κ = 3, but

negative values of κ might lead to a non-positive definite posterior covariance:

common practice is, then, to set it to 0.

Referencing the augmented state 2.31 where m = 2N ′ + 6,2 the final set of

sigma vectors will be:

X0 = x̂a

Xi = x̂a + c
(√

Pa

)
i

i = 1, . . . ,m (2.32)

X−i = x̂a − c
(√

Pa

)
i

i = 1, . . . ,m

2 Two coordinates for each known node, three robot pose variables and three noise factors.
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where

c =
√
λ+m (2.33)

λ = α2(m+ κ)−m (2.34)

and
(√

Pa

)
i

= Li is the i-th row of the Cholesky factorization of the augmented

state covariance.

To each sigma point Xi of the set 2.32 are then associated two corresponding

weights W(m)
i and W(c)

i ; they are used when performing the inverse Unscented

Transformation to recompute, respectively, the posterior mean and covariance. It’s

important to note that when α is small, the weights W (m)
0 and W (c)

0 are negative:

this should not be a source of confusion, because the set of sigma points is not a

probability distribution.

W
(m)
0 = λ

λ+m
W

(m)
±i = 1

2(λ+m) (2.35)

W
(c)
0 = λ

λ+m
+ (1− α2 − β) W

(c)
±i = 1/(2pα2) (2.36)

2.5.3 Classical UKF

Prediction

Predicting how the state estimate will evolve from instant t− 1 to instant t is done

in a manner alike to how the EKF does it; that is, the sigma points derived from

the augmented prior x̂t−1|t−1
a are propagated through the nonlinear motion function

f in (2.20):

X̄ t|t−1
i = f(X̄ t−1|t−1

i ,ut−1, X̃ t−1|t−1
i ) (2.37)

where X̄i stands for the first 1 . . . 2N ′ + 3 terms of each sigma vector Xi, corre-

sponding of course to the original full state estimate, and X̃i is used to represent

the third-to-last and second-to-last entries, relative to the odometric noises νθ and
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νD. This breakdown is made possible by the a priori independence between state

and noises, i.e. by the 0 matrices appearing in the expression of the augmented

covariance (2.31).

After propagation, it’s possible to reconstruct the predicted unaugmented state

estimate and covariance x̂t|t−1 and Pt|t−1, with the same notation and meaning as

that of (2.24) and (2.25). This is achieved via the inverse Unscented Transform,

consisting in nothing more than a weighted sample mean and a weighted sample

covariance computation:

x̂t|t−1 ≈
m∑

i=−m
W(m)

i X̄
t|t−1
i (2.38)

Pt|t−1 ≈
m∑

i=−m
W(c)

i

[
X̄ t|t−1
i − x̂t|t−1

] [
X̄ t|t−1
i − x̂t|t−1

]T
(2.39)

Update

The scope of the set of 2m+ 1 propagated sigma points is not limited to prediction

alone: in fact, the measurement function (2.21) associated to the update phase can

be perfectly applied on each Xi, as with the case of motion:

Z ti = h(X̄ t|t−1
i , ˜̃X t|t−1

i ) (2.40)

where X̄i has the same meaning as before and ˜̃Xi is the last term of each sigma

point, corresponding to the univariate Gaussian measurement noise parameter Ψ.

The resulting set Z t is comprised by the same number of 2m + 1 regression

points [23], whose length p is proportional to the number of measurements performed

during the current time step t, that is the number of nodes within communication

range of the MB. Indeed, the inverse Unscented Transform can be applied to

them, taking care to maintain the original weightings (2.35) and (2.36): this

operation reconstructs the predicted measurement’s mean and variance, as well as

its covariance with each node’s position:

27
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z̄t ≈
m∑

i=−m
W(m)

i Z ti (2.41)

Pz ≈
m∑

i=−m
W(c)

i

[
Z ti − z̄t

] [
Z ti − z̄t

]T
(2.42)

Pxz ≈
m∑

i=−m
W(c)

i

[
X̄ t|t−1
i − x̂t|t−1

] [
Z ti − z̄t

]T
(2.43)

Finally, the unscented analogue to the EKF Kalman gain (2.28) can be computed;

the posterior estimate mean and covariance are updated with the same formulae

employed by the EKF, using the information contained within the innovation zt− z̄t,

where zt is the actual result of the measurement phase:

K = PxzP−1
z (2.44)

x̂t|t = x̂t|t−1 + K(zt − z̄t) (2.45)

Pt|t = Pt|t−1 −KPzKT (2.46)

It’s worth reminding that both x̂t|t and Pt|t belong to the unaugmented state

space, since the information provided by the noise terms is totally embedded in

the output of the functions (2.37) and (2.40).

2.5.4 SLAM-specific UKF

The acute reader will have already noted that in order to extract the sigma points

from the augmented state, the UT requires to compute the square root of Pa at

each temporal step of the filter algorithm: the computational cost of this operation

is cubic in the size of the state vector, and may prove to be a very dangerous

bottleneck for the relatively lightweight processor aboard the MB.

Fortunately, Huang et al. [10] derived a formulation of the UKF that’s specifically

designed around the SLAM context: starting from the observation that each motion

or measurement operation involves only a small subset of the whole state, whose

size does not depend from the state estimate size N ′, a correspondingly sized
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positive definite submatrix of P can be extracted such that the necessary sigma

points are computed within constant time.

Prediction in O(m)

During propagation, only the robot pose and the (noisy) input odometry participate

in the process model. Therefore, a reduced computational complexity is achievable

by defining a smaller augmented state:

x̂α =


x̂r
0

0

 , Pα =


Pr 0 0

0 σ2
θ 0

0 0 σ2
D

 (2.47)

Under the previous assumptions about the robot pose representation and the

odometry input size, the dimension of this state vector is 5 at any given instant:

the computational costs to obtain a set of sigma points are then constant in both

time and space, as this set is very small. Without rewriting the same equations,

we summarize the Unscented Transform of (2.32) with:

X t−1|t−1
α,i = UT (x̂t−1|t−1

α ,Pt−1|t−1
α ) i = 0,±1, . . . ,±5 (2.48)

The actual propagation through the function f is identical to its classical UKF

counterpart: when updating the whole covariance, though, particular care must be

given to elements not residing on the main block diagonal. In fact, while the new

robot covariance Pt|t−1
r is reconstructed from the covariance of the sigma points,

and while the network’s covariance Pt|t−1
i,j = Pt−1|t−1

i,j for i 6= j and i, j ∈ 1, . . . , N ′

remains unchanged, robot-node covariances Pr,n = PT
n,r must still be appropriately

corrected.

The solution resides in the inferred propagation Jacobian matrices implicitly

defined by the unscented regression of f [11]:

P̄t|t−1
r,α

(
Pt−1|t−1
α

)−1
=
[
F̆t−1
r Ğt−1

r

]
(2.49)
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where

P̄t|t−1
r,α ≈

5∑
i=−5
W(c)

i

[
X̄ t|t−1
α,i − x̂t|t−1

r

] [
X t−1|t−1
α,i − x̂t−1|t−1

α

]T
(2.50)

and as before, each X̄ t|t−1
α,i , with i = 0,±1, . . . ,±5, is a vector containing the

first three terms of the propagated sigma points f(X̄ t−1|t−1
α,i ,ut−1, X̃ t−1|t−1

α,i ). In

order to compute the cross-correlation between the predicted robot state and the

nodes, it should be noted that:

Pt|t−1
r,n = E

[
xt|t−1
r

(
xt−1|t−1
n

)T ]

= E


F̆t−1

r xt−1|t−1
r + Ğt−1

r

νt−1
θ

νt−1
D


(xt−1|t−1

n

)T
= F̆t−1

r Pt−1|t−1
r,n (2.51)

Finally, the predicted state covariance will be:

Pt|t−1 =

 Pt|t−1
r F̆t−1

r Pt−1|t−1
r,n

Pt−1|t−1
n,r

(
F̆t−1
r

)T
Pt−1|t−1
n

 (2.52)

The computational costs of this improved prediction phase are O(1) for the

direct and inverse Unscented Transformation, due to the fixed size of Pα, and

O(2N ′) for the predicted robot-node covariance computation. With the exception

of a little overhead, this is comparable to the EKF performance.

Update in O(m2)

The same line of reasoning can be adopted when updating the state estimate: at

each time instant t, the MB can sense only a small number of nodes comprising its

local neighborhood, defined as the intersection between the operative area and the

communication radius of the robot’s antenna. By filtering one measure at a time,

the only state variables involved are the robot’s position (regardless of its heading)

and the relative n-th node position. The set of sigma points will then be drawn

from the reduced augmented state:
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x̂β =


x̂r
x̂n
0

 , Pβ =


Pr Pr,n 0

Pn,r Pn 0

0 0 σ2
Ψ

 (2.53)

Again, the size of the covariance matrix is fixed at 5 elements, so that taking

its square root is a O(1) operation. Keeping the previous notation, both UT and

RSSI measurement can be written as:

X t|t−1
β,i = UT (x̂t|t−1

β ,Pt|t−1
β ) i = 0,±1, . . . ,±5 (2.54)

and

Z ti = h
(
X̄ t|t−1
β , ˜̃X t|t−1

β

)
(2.55)

The inferred measurement Jacobian has an analogue role to (2.49) as a regression

matrix for the generic LRKF. As the distance measurement projects the augmented

state space to a single dimension, this matrix is shaped as a row vector:

Pt|t−1
zβ

(
Pt|t−1
β

)−1
=
[

H̆t
r H̆t

n H̆t
Ψ

]
(2.56)

where the submatrices on the right side correspond, respectively, to the robot

position, the node position, and the noise term. Additionally, using formula (2.41) to

derive the expected measure z̄, the covariance between observations and augmented

state is:

Pt|t−1
zβ ≈

5∑
i=−5
W(c)

i

[
Z ti − z̄t

] [
X t|t−1
β,i − x̂t|t−1

β

]T
(2.57)

The matrix constructed at (2.56) cannot be applied yet to update the posterior

state and covariance, as it relates to x̂β: discarding the entry relative to the

measurement noise and zero-padding the terms corresponding to unobserved nodes,

the full inferred Jacobian becomes:

H̆t =
[

H̆t
r 0 . . . 0 H̆t

n 0 . . . 0
]

(2.58)
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with H̆t
n assuming the same position in H̆ as the node n is indexed in the state

vector x̂. Finally, the posterior is updated via the standard Kalman equations for

a linear system:

K = Pt|t−1H̆tP−1
z (2.59)

x̂t|t = x̂t|t−1 + K(zt − z̄t) (2.60)

Pt|t = Pt|t−1 −KPzKT (2.61)

Being once again dominated by the covariance update in (2.61), the overall

complexity for each measurement update is quadratic in the number of nodes,

i.e. an order of magnitude faster than its classical counterpart. Assuming that

M known nodes are sensed in a single time step, this results in a workload of

O(MN ′2) operations; when the communication range is large enough (or close to

large enough) to cover the whole operating area, M tends to N and a cubic time

complexity may be inevitable. In such a case where no performance gain is achieved

over a standard UKF, it would still be preferable for each batch of measures z(t)

to be incorporated one at a time, as the filtering algorithm can execute in parallel

with the RSSI data collection.

motion
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Figure 2.9: Block model of an Unscented Kalman Filter for SLAM.
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2.6 Stopping criteria

The recursive formulae employed by the Kalman Filter, be it Extended or Un-

scented, strive to continuously improve the WSN nodes localization by aggregating

the information from a potentially endless stream of measurements. Of course,

taking into account WSN and MB battery consumption, eventual distance and

time requirements, and the information submodularity3 [22] property inherent to

the measurement process, there must be a set of conditions that when verified can

stop the filtering algorithm.

The first such condition is WSN coverage: the total number of nodes N deployed

over the operative area is assumed to be known a priori to the algorithm, which

will not stop until that same number of nodes has been initialized into the state

estimate x̂, that is until N = N ′.

This requirement, though, only works for networks which are fully static, both

in composition and location. To provide a counterexample, the same nodes may

change their own position within the operating area according to some stochastic

(possibly Markovian) process, as books do when moving between shelves and tables

in a library: in such as a case, the AMR may need to cyclically start a new

localization process after a certain time interval, still being subject to the same

condition on coverage. In another hypothetical scenario, the number of nodes may

not be a constant quantity, possibly due to battery failures, or node removal and

insertion: for example, smart goods which are loaded and unloaded in a warehouse.

In similar situations, area coverage and/or continuous patrolling may be better

planning choices.

The second main halting condition is, quite obviously, related to how well the

3 Intuitively, this property can be described as a law of diminishing returns: making the MB

perform a RSSI range measurement when the setM of past measurements is small brings more

overall information than whenM is larger. This monotonicity is strict when measuring a node

already discovered.
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2. ONLINE RANGE-ONLY LOCALIZATION

nodes are localized: since there is no way for the mobile robot to evaluate accuracy

without also knowing the ground truth (and thus defeating the whole purpose of

WSN localization), a measure of precision will offer the next best alternative. In

other words, the localization algorithm should stop when a certain function of the

covariance matrix s(P) crosses a given confidence threshold, which usually depends

on the specific implementation’s requirements.

Searching for such a function should be easier when considering that it does

not need to be applied to the whole covariance; instead, knowing how each WSN

node’s position is represented in the state x, one could define a reduced covariance

matrix Pn, with n = 1, . . . , N , as the 2-by-2 block residing on the main diagonal

of P and corresponding to node n. It’s simpler then to evaluate N times a smaller

function s′(Pn), and to combine the result in a logical conjunction: if any of those

nodes is not yet localized, the algorithm should continue its execution.

(a) All eigenvalues at 1

det A = 1

Tr(A) = 3

(b) One eigenvalue at 0.5

det A = 0.5

Tr(A) = 2.5

(c) One eigenvalue at 0.1

det A = 0.1

Tr(A) = 2.1

Figure 2.10: Three uncertainty ellipses for the example covariance matrix A.

The two main candidates for s′(·) are the determinant and the trace functions.

Both express some function of the eigenvalues λi of a square matrix A of size m,

one being their productory and one being their sum:4

4 Borrowing two definitions from the field of experiment design, one could also speak of

d-halting and a-halting criteria.
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2.6 STOPPING CRITERIA

det(A) =
m∏
i=1

λi (2.62)

Tr(A) =
m∑
i=1

λi (2.63)

Choosing one function over the other is often related to the problem at hand:

as Roy and Sim argued [36], each of those functionals capture a different geometric

property of the hypersphere that bounds the estimate uncertainty.

The determinant is a measure of (although not equal to) the volume of said

hypersphere, and while being invariant to the scale of the state variables it possesses

a disadvantageous property: namely, it’s possible to drive det(Pn) to 0 by reducing

a single eigenvalue to 0, making the matrix singular. A trivial way to do so is

to move the MB in such a pattern that only information about one direction is

acquired, disregarding its orthogonal: when the node position distribution would

be represented by an uncertainty ellipse, a characteristic squeezed shape would be

observed.

For a localization problem, though, the same units and scale are shared by

all the variables in the state space, with the exception of the robot heading

parameter θ which can be safely ignored: this overcomes the main limitations of

trace (scaling, physical meaning) as a confidence metric. As Fig. 2.10 exemplifies,

a geometrical interpretation of trace would be the total sum of the axes of the

confidence hyperellipses: this “average” uncertainty is considered to be more robust

and more apt to capture the overall uncertainty of the model.
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Chapter 3

Node initialization

Unless some sort of a priori knowledge is available about the initial WSN

spatial configuration, the localization filter has no idea how to assign

a starting position to each node, not even in a rough sense. Indeed, in

some of the contexts specified in the previous examples, it may not even be aware of

the presence of an unlocalized node! Since the Kalman recursive formulae are only

capable of refining an already existing state estimate, the problem of initializing

new state variables in the filter must be solved separately.

The event of discovering a new node can be easily summarized: during the whole

execution of the RUUMBA procedure, the Mobile Beacon maintains an incremental

key/value data structure (e.g. an indexed array, or a hashed dictionary) which

stores each node’s current position estimate x̂n. Each entry is indexed by an unique

identifier, characteristic to each WSN mote and included in the header of every

transmitted message: it could be a name or a network address assigned by the

MB as in [3], the physical MAC address of the device, and so on. This identifier is

used to perform the task of data association between each message’s sender and

the ordinal position of its state variables within vector x̂; when there is no match

between an incoming identifier and the list of keys, the MB updates the state

estimate by appending a new value x̂key. The exact shape and nature of this prior

distribution depend on how this initialization is performed.
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3. NODE INITIALIZATION

3.1 Naive initialization

A valid yet extremely approximate solution would be that of making no assumptions

about the node initial position other than the fact that it’s within the deployment

area: effectively, this translates into an initial bivariate uniform distribution defined

over the whole area, eventually approximable to a very wide and flat Gaussian

distribution. As a slightly more refined solution, the support could be intersected

with the area within the communication radius defined by the antenna sensitivity.

Still, this approach is insufficient: as can be seen in Fig. 3.1, neither the mean

(red triangle) nor the covariance (represented by the red square corresponding to

a 95% confidence interval) of the node location estimate depend on the distance

measurement that triggers the initialization, whose information then goes unused.
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Figure 3.1: Example of a naive initialization.

Moreover, Kalman localization is quite sensitive to initial conditions, even if

recursively improved by subsequent measures [29]: therefore, this kind of initial-

ization tries too much to minimize the risk of an initial outlier, with the result of

worsening the overall performance.
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3.2 MULTILATERATION

3.2 Multilateration

To improve the starting localization, some constraints have to be imposed. From

a purely geometrical standpoint, even in the absence of noise a single range

measurement is insufficient to identify a single point of origin for the received

transmission. Rather, a delay is introduced as communication must be attempted

by the MB from multiple vantage points, recording the robot position for each

deferred observation [1]. When m ≥ 3 RSSI range measurements d̃1, . . . , d̃m have

been collected from as many non-collinear beacon locations xr1, . . . ,xrm, a sufficient

quantity of information has been obtained and node initialization can proceed.
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Figure 3.2: Example of a multilateration initialization, with m=3.

Least squares

If observations were noiseless, finding the best node position that fits m constraints

would be simply a matter of choosing 3 random distance measurements and tri-

laterating; unfortunately, noise disturbances may cause the circumferences with

radii equal to the estimated distances to not intersect in a single point (cfr. Fig. 3.2).

One of the simplest way to get the best average position, then, is to define a
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3. NODE INITIALIZATION

least square problem consisting of m− 1 equations over the 2 planar coordinates

xn, yn of the discovered node:

An

xn
yn

 = 1
2bn (3.1)


(x̂r1 − x̂rm)T

...

(x̂rm−1 − x̂rm)T


xn
yn

 = 1
2


(d̃2
m − d̃2

1) + ||x̂r1||2 − ||x̂rm||2
...

(d̃2
m − d̃2

m−1) + ||x̂rm−1||2 − ||x̂rm||2

 (3.2)

x̂n
ŷn

 = 1
2(AT

nAn)−1AT
nbn (3.3)

The starting covariance can be the identity matrix I2, corresponding to a

circular normal distribution, appropriately scaled by the average of all the range

measurement variances [29].

Temporarily augmented state

Another approach is to exploit the already available SLAM logic, and to augment

the state vector by including the collected robot poses [1]:

x̂init =



x̂

x̂r1
...

x̂rm


(3.4)

Correspondingly, the measurements performed at each of these poses are stored

in an auxiliary list {d̃1, . . . , d̃m}; after constructing, via a batch update, the estimate

mean and covariance, these additional terms can be safely discarded and the state

returned to its original formulation.

3.3 Particle Filtering

Lateration effectiveness, though, depends heavily on the mean values of the mea-

surements used as constraints, with no regard to their variance: as a result, all

40



3.3 PARTICLE FILTERING

observations are weighted equally and the occasional outlier has to be averaged over

a large m. In truth, a simple circumference is not an adequate representation, and

should be disparaged in favor of an annulus shape, centered around the mean and

with radial distribution that is directly proportional to the range observation, i.e.

highest at the measured distance d̃ and sloping inward and outward according to

the lognormal formula (2.8). The annuli intersection distribution, which of course

is the (possibly multimodal) Bayesian combination of each annular distribution,

eventually can be approximated into a bivariate Gaussian that includes the sensed

node.

Since it’s impossible to analytically model these distributions, a Monte Carlo

particle filter is instantiated for each discovered node, as in [28]. At first, a large

number P of particles is generated randomly from the mutually independent polar

coordinates distributions centered on the MB location; successively, for ease of

computation, they are converted to their Cartesian equivalents:

rp ∼ logN
(

ln d̃,
(

ln 10
10η σΨ

)2
)

(3.5)

φp ∼ U (0, 2π) (3.6)

xp =
[
rp cosφp rp sinφp

]
(3.7)

The initial importance weight wp associated with each particle p = 1, . . . , P is

determined by its likelihood given the measure d̃. Ensuing distance estimations

modify these weights through Bayesian update and normalization:

wt+1
p =

wtp · `
(
d̃t | xp

)
∑P
p=1w

t
p · `

(
d̃t | xp

) (3.8)

A Sampling Importance Resampling (SIR) algorithm is then applied each time

a new observation is available, to avoid filter degeneracy. Simply put, when the

estimated number of effective particles Neff = 1/∑P
p=1(wp)2 is below a certain

threshold, a whole new set of P particles is extracted with replacement from the

current one, and the importance weights are reinitialized as wp = 1/P .
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(a) Multilateration
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(b) Particle filtering

Figure 3.3: Comparison between a multilateration initialization and a particle filter

initialization when noisy measurements are present.

Finally, when the particle set has converged below a certain level of spatial

sparseness, i.e. when some statistic of its covariance (such as those specified in Sec.

2.6) is under a given threshold, delayed initialization is over and the whole set can

be condensed into a Gaussian having the same first two moments.

The effectiveness of this initialization technique can be seen in Fig. 3.3: like

all Monte Carlo approximations, the closeness to the real posterior distribution is

related to the number P of particles used for each filter. Remembering that this

O(P ) complexity cost must be beared for the entire length of the delay and for

each node currently known yet unlocalized, this makes the recourse to particle

filters a potent but very resource demanding approach.

3.4 Gaussian Mixture Models

Looking back at section 2.5, it can be seen how the main reason behind the

claimed efficiency superiority of the UKF is that a small, constant quantity of

deterministically chosen points could approximate reasonably well any given pos-

terior distribution. The same basic principle of divide et impera can be applied

to the initialization problem [37]; in fact, the starting annulus distribution can be
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3.4 GAUSSIAN MIXTURE MODELS

substituted with a corresponding Gaussian Mixture Model (GMM), consisting of a

weighted sum of H bivariate normal distributions:

fannulus(x̂n) ≈
H∑
h=1

whN (x̂n,h,Pn,h) (3.9)

where the nontrivial weights 0 < wh < 1 sum up to 1.

The ability of representing arbitrary distributions as a linear combination of

Gaussians allows for a simpler integration into the whole class of Kalman filters.

Indeed, analogously to the behavior of a sigma point, each of these Gaussian

distributions can be “propagated” by including it in the state as an independent

hypothesis about the node location: any new measurement would update both

mean and covariance of all these H hypotheses x̂n,h, according to the implemented

SLAM filter. Since this aforementioned inclusion is performed right after the first

measure, there is no time delay to be waited before the localization algorithm gets

a general idea about the node’s whereabouts.

The weighted sum of these transformed distributions, where the weights are

updated similarly to (3.8), should reconstruct a similarly transformed multimodal

posterior estimate; nonetheless, it’s generally more efficient to just discard duplicate

or unlikely hypotheses until the model converges to just one Gaussian. This last

hypothesis, then, would assume the role of node position estimate x̂n.

Following the work of [6] [30], an adaptation of this initialization method was

created for the specific case of lognormal range measurements.

3.4.1 Annulus initialization

Approximating a node’s location estimate distribution after just one distance

measure d̃ is done in a way not unlike that of particle filters; that is, by defining

a polar coordinate system around the current MB position estimate x̂r it can be

seen that the radial coordinate distribution rn,h = rn is shared by each hypothesis

and keeps the expression already derived in (3.5), while the angular coordinate
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3. NODE INITIALIZATION

distribution Φn = Φ is always a uniform distribution that can be decomposed into

a mixture model:

Φ = U(0, 2π) ≈
H∑
h=1

whΦh (3.10)

Φh = N (φh, σ2
φ,h) (3.11)

where the weights are all set to wh = 1/H. Particular care must be given to

the subtle difference between Φ and a common uniform distribution, in that the

former’s support is actually the whole space R modulo 2π.

Exploiting the angular symmetry of the annulus, it’s easy to see that the means

φh will be evenly spaced around the whole circumference:

φh = h · 2π
H
, h = 1, . . . , H (3.12)

and the standard deviations σφ,h will all be equal to a single value σφ, the

optimal value for which has been empirically calculated by [6] as:

σφ = 2π
1.5H (3.13)

To test the above expression, several simulations have been made for H ranging

from 2 to 20. The simulations showed that the model is a good approximation of

the objective uniform distribution for H ≥ 6.

The most accurate way to convert each hypothesis’s mean and covariance from

its polar coordinates representation (rh, φh) to a Cartesian coordinate system is to

apply the Unscented Transform. The sigma points are sampled from the Gaussian

distributions Ψ and Φh, then transformed by a conversion function parametrized

by the measured distance:
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3.4 GAUSSIAN MIXTURE MODELS

x̂n,h = f(d̃n,Ψ,Φh) (3.14)

= d̃n · 10Ψ/10η ·

 cos Φh

sin Φh

 (3.15)

Finally, their mean and covariance are recomputed through the inverse Un-

scented Transform formulae (2.38-2.39).
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Figure 3.4: Annulus approximation with H = 8 hypotheses.

Figure 3.4 shows a graphical example of this initialization: the hypotheses’

means are not located on the dashed magenta circumference with radius d̃, because

due to the angular variance σφ the conversion from polar coordinates tends to be

“banana-shaped” (cfr. Fig. 2.7). Moreover, as it would be reasonable to expect

from a GMM, the 95% confidence ellipsoids overlap one another.

As a side note, the optimal choice of the number of hypotheses H will be

discussed: it’s immediately evident that, whenever a new node is discovered, 2H

variables will be added to the filter state adding to the overall computational costs.

Using a very large number of hypotheses would then be overkill, yet reducing
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this number too much could lead to inconsistencies. In fact, by visualizing each

covariance Pn,h with its confidence interval, to improve the initial annulus approxi-

mation the length of each ellipse’s radial axis (i.e. the radial variance of x̂n,h with

regards to xr) should depend only by the range measurement variance. Reducing

H leads to more pronounced “banana shapes”, which shift the means inward and

add unnecessary uncertainty.

Since RSSI range variance depends on the distance from the node, it could be

possible to derive a formula to choose the optimal number of hypotheses depending

on the value of d̂n. However, experimental results showed that H = 8 is in general

a good enough choice for all practical ranges at which a node is discovered, and

will be used for the rest of this thesis.
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(a) H=6
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(b) H=12

Figure 3.5: Example of the positive effect of increasing the number of hypotheses,

for constant range estimation variance.

3.4.2 Incorporating measurements

Once the GMM has been initialized, following observations are used to update the

estimate of each hypothesis and to refine the weights wn,h associated to them: still,

a single measurement cannot be applied as it is, because that would mean exploiting

H times the information contained within its variance Var[d̂n], eventually leading

to filter divergence.
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Fortunately, as shown by [37], the estimate correction provided by a single

measure of variance R is equivalent to that of a set of H measurements with same

mean and whose variances Rh satisfy the following relation:

R−1 =
H∑
h=1

R−1
h (3.16)

This means that the original information can be partitioned into H new disjoint

virtual measurements, each applied to a different hypothesis and with a smaller

degree of informativeness.

A proper information splice should not be arbitrary, though, but should give

more weight to (i.e. have more influence over) those hypotheses that agree with the

measurement. It’s useful then to define a convex set of weights λn,h with
∑H
h=1 λn,h =

1, which are proportional to the normalized likelihoods of the measured distance

d̃n given the expected distance d̂n,h = ||x̂n,h − xr||2 between each hypothesis and

the MB [37]:

λn,h = `(d̃n | d̂n,h)∑H
h=1 `(d̃n | d̂n,h)

(3.17)

where the expression for `(d̃ | d̂) is given by (2.17).

It’s often the case that, as the measurement noise variance increases, these

likelihoods are too small to be computed without risking numerical underflow. To

prevent such conditions, it’s useful to translate the above formula to log-space:

Λn,h = lnλn,h = ln
 `(d̃n|d̂n,h)∑H

h=1 `(d̃n|d̂n,h)


= L(d̃n|d̂n,h)− ln

(
H∑
h=1

eln `(d̃n|d̂n,h)
)

= L(d̃n|d̂n,h)− ln
(

H∑
h=1

eL(d̃n|d̂n,h)
)

= L(d̃n|d̂n,h)− A− ln
(

H∑
h=1

eL(d̃n|d̂n,h)−A
)

(3.18)
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where L(d̃|d̂) represents log-likelihoods, and in the last step the log-sum-exp

trick was adopted using A = maxh L(d̃n | d̂n,h).

Remembering that the expression for RSSI range estimation variance can be

approximated by substituting the true distance dtrue in formula (2.15) with the

measurement d̃n, it’s possible to extract the new variance of each virtual observation:

Rn,h = λ−1
n,h ·Rn

= e−Λn,h ·Rn

= e−Λn,h · d̃ 2
n ·
(
eσ

2 − 1
)

(3.19)

Moreover, as seen in the previous chapter, the UKF does not draw its sigma

points from the lognormal distribution d̂, but rather from the underlying Gaussian

distribution of its noise factor Ψ: it’s therefore also useful to directly compute the

modified variance σ2
Ψ,n,h which is to be integrated into the augmented covariance

matrix Pβ of equation (2.53):

d̃ 2
n ·
(
eσ

2
n,h − 1

)
= e−Λn,h · d̃ 2

n ·
(
eσ

2 − 1
)

eσ
2
n,h = 1 + e−Λn,h ·

(
eσ

2 − 1
)

σ2
n,h = ln

(
1 + e−Λn,h ·

(
eσ

2 − 1
))

(3.20)

With the aid of two successive Taylor approximations, the above formula can

be simplified into:

σ2
n,h = ln

(
1 + e−Λn,hσ2 +O(σ4)

)
(3.21)

= e−Λn,hσ2 +O(σ4) (3.22)

≈ σ2

λn,h
(3.23)

Given that σ and σΨ differ only by a factor of ln 10
10η , the proportion (3.23) stands

for both.
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Weight update

To each hypothesis h in a GMM is associated an importance weight wn,h, that

expresses the degree of belief by which the node is best estimated by that Gaussian

distribution. As with the case of particle filtering, each distance measurement

modifies those weights according to the normalized likelihoods computed before:

wt+1
n,h = wtn,h ·

λtn,h∑H
h=1w

t
n,hλ

t
n,h

(3.24)

Again, moving to the logarithmic form of these weights should help avoiding

numerical errors:

lnwt+1
n,h = lnwtn,h + Λt

n,h − ln
(

H∑
h=1

wtn,hλ
t
n,h

)
(3.25)

= lnwtn,h + Λt
n,h − ln

(
H∑
h=1

elnwtn,h+Λtn,h

)
(3.26)

= lnwtn,h + Λt
n,h −B − ln

(
H∑
h=1

elnwtn,h+Λtn,h−B
)

(3.27)

where B = maxh(lnwtn,h + Λt
n,h).

A slightly different strategy should be adopted when a measurement is not

received from a node already included in the state vector: in that case, the

corresponding hypotheses that are closest to the MB location should see their

weight decrease, because it’s more unlikely that the message would be lost traveling

a smaller distance. A graphical example is presented at Fig. 3.6, where the two

least probable hypotheses are discarded from the system state.

The exact formula for updating the log-weights lnwn,h hinges on the probability

of receiving a message assuming the estimated distances d̂n,h, which is calculated

as the Cumulative Distribution Functions of either the Gaussian received power

with respect to a threshold on power sensitivity Pth of the beacon’s antenna, or

the lognormal distance estimate with respect to the robot’s communication radius

dcomm:
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Figure 3.6: Since no measurement is received, the closest hypotheses are down-

weighted and pruned.

Pr
[
reception | d̂n,h

]
= Pr [Prx,n ≤ Pcomm| d̂n,h] (3.28)

= Pr
[
d̂n ≤ dcomm

∣∣∣ d̂n,h] (3.29)

= Φ

 ln dth − ln d̂n,h
ln 10
10η σΨ

 (3.30)

where Φ(x) is the CDF of the standard normal distribution Z = N (0, 1). Using

this result, the new hypotheses’ weights are updated as follows:

wt+1
n,h = wtn,h ·

1− Pr[reception | d̂n,h]∑H
h=1w

t
n,h

(
1− Pr[reception | d̂n,h]

) (3.31)

and the transition to log-weights is conducted exactly as (3.25-3.27).

3.4.3 Pruning

To enforce convergence from the GMM to a single Gaussian, some rules to remove

useless hypotheses from the filter must be established. Basically, a hypothesis is

considered for pruning if it satisfies at least one of the following constraints:
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• The associated log-weight lnwn,h < 0 is below a certain threshold. This is

the main pruning rule for deleting hypotheses, as the log-weights update

processes (3.24) and (3.31) are generally quick to discern unlikely candidates

from just a few measurements, or the absence thereof. In fact, the wide shape

of the fat-tailed lognormal range distribution employed during the simulated

experiments caused some likelihoods to assume very low values, risking a

premature convergence with only two or three distance measurements. To avoid

the influence of early outliers, the threshold suggested by [37] as wth = 10−5/H

was deemed too stringent: a log-threshold of lnwth = −(15 + lnH) was found

experimentally to work well for the localization problem. The fact that the log-

weights are normalized after each update guarantees that the most probable

Gaussian has always lnwn,h = 0 and cannot be discarded even with a few

outliers.

• The Euclidean distance among two hypotheses that pertains to the same node

is smaller than a certain threshold. Since their means can change due to a

UKF update, two or more hypotheses can find themselves to be too near to

each other due to filter convergence around the true node position As there is

no need for such information redundancy, the most unlikely hypothesis (or

hypotheses) is removed to save computation time, and the remaining Gaussians

have their weights renormalized. Even if [6] suggests setting this threshold

to one meter, more often than not this resulted in the filter converging on

a bimodal distribution composed of two equally likely Gaussians. These

hypotheses would of course be located near one another, but not enough: to

discriminate between them, a lot of noisy measurements were needed. A more

appropriate choice, verified experimentally, was that of taking the 10% of the

biggest length allowed in the deployment area, typically the main diagonal of

its bounding box.

This convergence process alone does not always guarantee a correct solution. An

unfortunate combination of outliers may lead to the selection of an hypothesis that’s

far away from the real node position: this error may be exacerbated by incorrect
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Figure 3.7: Measurement update: the nearest, and thus most likely hypothesis is

also the one most influenced by the measurement

assumptions in the filter update. To deal with this kind of critical situations, a

system for completely reinitializing a node was implemented.

Quite simply, even when the GMM has collapsed to a single Gaussian for a

specific node, the range estimate likelihood is still computed for each new observa-

tion, be it failed or not. If the updated weight, renormalized every k measures to

maintain a finite memory, is found to be extremely unlikely, i.e. if after at most

k updates it would already pass the threshold lnwth defined above, the estimate

mean and covariance of the node will be removed from the filter state. Afterwards,

a new distance measurement from the same node will be treated exactly as that of

a newly discovered node, and a new annulus will be initialized.

During simulation, inherent computational limitations of the Matlab platform

caused some distance measurement likelihoods to be equal to 0, and their corre-

sponding logarithms equal to −∞. Such measures would always cause a node

reinitialization.
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Chapter 4

Motion policies

Mobility, though, can be a double-edged sword. While the advantages

of an autonomous MB over static beacon placement has been already

discussed, what with its reusable hardware and arbitrary number of

measurements, an additional complexity factor is introduced when considering the

influence of motion on the robot’s battery life. In fact, the AMR’s overall energy

expenditure during the entire localization process is dominated by the variable cost

of moving from a virtual beacon site xr(t) to the next xr(t+ 1), sometimes even

eclipsing the fixed measurement and computational costs that occurs each time

interval.

A legitimate question is then raised: is there, and is it possible to find, a MB

path over the operative area that can maximize WSN localization accuracy under

arbitrary constraints on total time, path length or battery life? Sichitiu [35] first

applied the mobile beacon to node localization, and presented the conclusion that

the beacon trajectory must cover the entire area in such a way that each node

receives at least three non-collinear beacon messages: however, he did not give a

specific mobile beacon path. The available literature is still quite scarce on this

topic, and can be summarily divided in two main branches: static path planning

strategies focus primarily on area coverage, disregarding any information acquired

by the filter about the actual WSN configuration; whereas dynamic path planning

strategies make no assumptions about the shape of the operative area, and generally
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4. MOTION POLICIES

maximize localization by moving the MB as close to the nodes as possible.

Developing a motion policy for RUUMBA can benefit from some of the assump-

tions made back in Chapter 2. First of all, it should be noted that both time and

energy level metrics depend heavily on the total path length of the MB, which can

therefore be chosen as the single constraint to impose on the optimization. Then,

the undesirable spatial correlation of the shadowing noise Ψ limits the consistency

of measurements taken too close to one another: to maintain unbiased and inde-

pendent observations, a certain minimum decorrelation distance between virtual

beacons should be respected. This constraint can also be seen as the minimum

length traveled by the MB between discrete time instants: for a typically cluttered

indoor environment, its value can be set as low as ddecorr = 1 m [33].

As a result of that, the operative area lends itself well to a natural grid discretiza-

tion: starting from the location of the first measure, which usually is the starting

position of the MB, a square or hexagonal area tesselation can produce a finite

number of virtual beacon candidate points from which to observe the WSN. Each of

these points would be at least at ddecorr from its adjacent neighbors, guaranteeing

independence between the respective shadow fadings; moreover, the real advantage

would be that of avoiding to evaluate any generic path planning policy on the

whole continuous plane. Instead, performance metrics and/or decision criteria

would be applied only on the smaller set of candidate points, greatly decreasing

computational costs and implementation difficulties.

Even if hexagonal cell shapes would offer a more tight tesselation and an overall

increased number of candidate points from which to choose, square tiles were

selected for their ease of implementation: when the need for a thorough localization

will necessitate a finer grid interval, a practical solution might be to use tex cells [48].
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4.1 FORMAL DEFINITION

4.1 Formal definition

Formally, a path planning policy is denoted by:

π
∆= 〈π0(x0), π1(x0:1), . . . , πt(x0:t)〉 (4.1)

where at each step πt : x0:t → xr(t+ 1) the entire state history x0:t (or better

yet, the estimated state history x̂0:t) is mapped to the next target location for the

mobile beacon. Since RUUMBA localization is performed with an online Kalman

filter, i.e. in an incremental manner, a powerful assumption for this planning

problem is that of Markovianity. In other words, the hidden Markov model inherent

to Kalman assumptions affirms that the current state estimate at time t contains

all of the necessary information to plan the optimal trajectory according to π:

πt(x̂0:t) = πt(x̂t) (4.2)

This memoryless property finds its usefulness when computing space and time

complexities associated with the policy: while computational time still depends on

how the path planning strategy constructs its solution, the O(N ′) memory storage

requirements are already satisfied by the current filter state and no additional RAM

or disk space is needed.

As a complement to the path planning policy π, an input generating function

τ : xr(t+ 1), x̂(t)→ ∆θ(t),∆D(t) can be specifically designed around the motion

model to traduce the planar destination selected by π into a series of commands

that are understandable by the robot actuators. An additional layer of complexity

to the AMR motion, which was not included in the scope of this thesis, can be

represented by how the robot navigates when obstacles or non-straight paths are

imposed by the environment: in this case, a local pathfinding subalgorithm (for

example, A* and its derivatives) may be needed to move between virtual beacon

locations.
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From an energetic point of view, the expected cost at each time step can be

defined in general terms as:

Ct = EM ( τ(xr(t+ 1), x̂r(t)) ) + ÊS (4.3)

where EM is the robot actuators’ energy consumption for in-place rotations and

translations, and ÊS is the expected energy consumption to collect all available

observations at each step. Without loss of generality, the operative area A will be

assumed to be free of obstacles, enabling the robot to always move in a straight

line towards its next location. The cost estimate, then, can be approximated by a

functional of the Euclidean distance:

Ct ≈ E ′M(||xr(t+ 1)− x̂r(t)||2) + ÊS (4.4)

Expected sensing costs depends mainly on the expected number of nodes within

communication range: without loss of generality, the assumed isotropy of the robot’s

antenna simplifies the expression of the MB’s local neighborhood into that of a

circle with radius dcomm. Also, where no prior information is available, the WSN

is supposed to be uniformly distributed over A, with each of N nodes’ position

independent from one another. If ĒS,r is the mean energy depleted by the robot

for a single RSSI distance measurement, the expected sensing cost for each time

step can be estimated as:

ÊS = Ω
(
ĒS,r ·

N

A
I
)

(4.5)

where I = A∩πd2
comm is the area of the intersection between the operative area

and the sensing circle: depending on the context, a conservative approximation of it

can be I = min(A, πd2
comm). The big omega notation, instead, is because different

implementations of the channel access method cannot always be resolved in linear

time, as transmission attempts collide more frequently according to local node

density: a possible solution is presented in [27]. If it would be desirable to model

the whole system’s energy consumption, accounting also for the nodes’ battery
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depletion, expression (4.5) can be simply modified to add the mean node energy

cost:

ÊS = Ω
(

(ĒS,r + ĒS,n) · N
A
I
)

(4.6)

Summing (4.4) along the whole MB trajectory, an incremental expression for

the cost function is finally reached:

C0:T = EM

(
T∑
t=0
||xr(t+ 1)− x̂r(t)||2

)
+ (T + 1)ÊS (4.7)

This expression alone does not constitute a good performance metric for a

localization policy, though: it should be combined with the estimate deviation from

the ground truth, evaluated by average error:

ME(x̂) = 1
N

N∑
n=1
||xn − x̂n||2 (4.8)

or, if a larger outlier influence should be desirable, by Root Mean Square Error

(RMSE):

RMSE(x̂) =

√√√√ 1
N

N∑
n=1

(||xn − x̂n||2)2 (4.9)

In both expressions, it’s implicitly assumed that the MB has discovered all of

the N nodes in the network, and indeed it is one of the stopping conditions of

the filter (see sec. 2.6). However, it could happen that some GMM has not yet

reached convergence when the error is computed, leaving more that one Gaussian

hypothesis in the state estimate vector x̂, that now is bigger than the real state x!

In such a case where N ′ > N , a modified metric should be used: to extract the

maximum possible amount of information from the GMM, the error for each node

is the result of a weighted average between its hypotheses:

ME(x̂) = 1
N ′

N ′∑
n=1

H∑
h=1

wn,h||xn − x̂n,h||2 (4.10)
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RMSE(x̂) =

√√√√ 1
N ′

N ′∑
n=1

H∑
h=1

wn,h (||xn − x̂n,h||2)2 (4.11)

Formulas (4.10-4.11) and (??) can alternately be used as constraint and opti-

mization factors; one can try to obtain the best localization within limited battery

life, or spend the least amount of energy to achieve a set confidence about the

ground truth.

4.2 Static path planning

The simplest and easiest movement policy is also the most straightforward:

πP :

 t→ xp(t+ 1) t = 1, . . . , TP
t→ ∅ t > TP

(4.12)

where the ordered set of virtual beacon locations xp(1, . . . , t+ 1) ∈ P belongs

to an predetermined path P composed by TP planar coordinates. The robot,

therefore, follows the given path until no more points are available, whereupon it

stops all activities and outputs its current state estimation: this is done regardless

of whether the halting conditions of sec. 2.6 are met or not, as it is supposed that

all useful observations have already been made. If, however, the metrics on covari-

ance P suggest that a good enough localization has already been accomplished,

there is no need to complete the whole path P and the localization process can stop.

These kind of paths favor structure over adaptability: while they’re only gen-

erally defined for rectangular areas with no obstructions to impede the robot

movement, their shape is specifically aimed to optimize geometrical properties like

disk coverage of the whole operative area, and collinearities avoidance along the

trajectory. Remembering that the lognormal measurement deviation scales with

the respective antenna-to-antenna distance, an upper bound on the variance of

RSSI ranging can be established by discarding power measures under a certain

threshold, thus artificially setting a lower communication radius. Any static path

planning policy is then capable to adjust P such that coverage is still guaranteed,
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4.2 STATIC PATH PLANNING

usually at the cost of longer path length.

Some of the most common static paths employed in literature (Scan, Hilbert,

k-coverage, random walk) are hereby presented, along with two proposed variants

(Squares, Spyral) that find their justification from existing literature.

4.2.1 SCAN, HILBERT

Introduced by Koutsonikolas [21] as a solution to the maximum coverage problem,

they are one of the first explicitly defined paths and the de facto standard over

which to compare eventual alternatives. Scan consists in a simple area traversal

along one dimension, as illustrated by Fig. 4.1a: when the pattern followed by

the mobile beacon is characterized by a fine enough resolution, the localization

error is the lowest among all the alternatives presented in the paper. However,

a lot of measurements are taken from points that lie on the same long, straight

lines typical of this path: such collinearities can often delay or even impede the res-

olution of flip ambiguities and, more generally, GMM collapse on a single hypothesis.
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(a) Scan path
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(b) Hilbert path

Figure 4.1

To greatly reduce the number of collinear measurements, the Hilbert space-

filling curve was proposed: this pattern creates a linear ordering of points in a
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higher-dimensional space that can preserve their physical adjacency. A generic n-th

order curve divides the bidimensional space into 4n square cells and connects the

centers of those cells using 4n line segments, each with equal length. The reasoning

behind the choice of this path is that even though it’s longer than Scan and other

area coverage patterns, it contains a greater number of turns. Frequent changes of

direction localized in a small area lead to precise, noncollinear measurements for

the nodes in proximity.

Due to its intuitiveness, SCAN has been one of the most used paths when

studying MB-assisted localization: for example, in addition to being already

employed in a range-only context [50], it’s been also used for range-free algorithms

like Arrival and Departure Overlap (ADO) [47] and for hybrid algorithms like the

Mobile-assisted RSS and Connectivity (MRC) localization [41].

4.2.2 k-coverage

Assuming uniform node distribution, Fu et al. [8] chose to approach the prob-

lem of optimizing 3-coverage (i.e. aiming to include each point into 3 different

communication areas) by partitioning the operative area into hexagonal cell tiles

with length proportional to the communicating radius, and to solve a Traveling

Salesman Problem among the hexagons’ centers. The computation phase is done

offline via the Ant Colony Algorithm (ACA), which outputs an angular path rich

of noncollinearities.

4.2.3 Random walk

When the beacon’s antenna can transmit and receive signals from the whole network,

that is when the maximum dimension of the operative area is still lesser than

the MB communicating radius, Srinath [38] proposed to let the AMR perform a

random walk. To avoid the aforementioned shadowing spatial correlation, this

should then translate in a random selection between equally-spaced virtual beacon

candidate points: this randomized ordering can then be fully performed offline,
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Figure 4.2: k-coverage path

and this policy be equated to a generic static path planning. Relaxing the coverage

requirement, this approach works well even when A is included for the most part,

but not totally, in the sensing radius.

4.2.4 SQUARES

It’s common knowledge that good localization results can be obtained when the

node is within the convex hull of its neighboring anchors: indeed, centroid [4] and

baricentric coordinates [18] methods operate under this assumption. A perimetral

disposition of the virtual beacons with respect to the operative area, therefore,

seems like a good initial choice: even if the measurements are collinear and the

GMMs collapse into a bimodal distribution, one of those two Gaussian hypotheses

always falls outside of the operative area and can be immediately discarded.

Of course, innermost nodes still have to reach an acceptable degree of accuracy:

this problem can be fixed by moving the MB towards the center, but it’s not

immediately clear which pattern it should follow. Taking inspiration from the work

of Chen et al. [7] about the optimal disposition of a limited number of beacon

nodes, it can be seen that the most effective structures are formed by simple shapes

enclosed in one another. A concentric square/rectangular structure then emerges:
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proceeding along the side of an inner shape, newly discovered nodes should again

collapse to two Gaussians on either side of the path. The inward progression,

though, allows for a quick deletion of the hypotheses closer to the edges of A; in

fact, if a node would had really resided in the “ring” between the last traversed

square and the current, it should have already been sensed in the previous iteration,

given that the distance between concentric shapes is bounded by the communicating

radius.

(a) Patterns for optimal landmark deploy-

ment
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(b) Squares path

Figure 4.3

4.2.5 SPYRAL

Originally developed as an octagonal variant of Squares, this pattern bears also

some resemblance to the Circles configuration proposed by Huang in [12], and

can be seen as a hybrid between the two that occupies a middle point between

the respective advantages and disadvantages. In fact, the octagons perform better

when considering corner coverage, one of the weak points of a circular shape, and

their overall path length is slightly shorter than square trajectories, because corners
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are literally cut. As a last point, approximating curvilinear paths with straight

lines should be seen as desirable when recalling the robot motion model (2.5):

the long-term influence of rotational noise νθ on the actual robot path cannot be

discounted, and hence the least amount of in-place turns should be planned.

A similar pattern was used as MB trajectory by Sun in [40]; in that paper, the

only analysis performed about the path influence on localization was to vary the

curvature degree of the helix shape, showing a steep rise of RMSE on a range from

κ = 1 to κ = 2.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

Figure 4.4: Spyral path

4.3 Dynamic path planning

It’s not always the case that a realistic setting can provide enough map information

about the operative area, though. Considering the example of indoor localization,

most static paths cannot be applied to complex floorplans without first dividing

them into adjacent convex shapes: in other cases, node distribution may not be

uniform over A and instead the WSN may have higher density around a small

area of interest. It might be more practical, then, to define a movement policy

capable of adapting the AMR’s path to the specific context over which it’s deployed:
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with almost no exception, this idea translates into using the filter state estimate

x̂ and/or the observations zt (usually acquired in a short time interval) to move

towards the location with least expected measurement variance.

These kind of policies are not without shortcomings: the main one being that

they must necessarily be computed online, because the optimal path could change

whenever new data is acquired. Remembering that these recurrent computational

costs are imposed on the limited hardware resources of the MB, there’s a very

high risk that path planning can bottleneck the overall localization execution time:

particular care, then, has to be given when evaluating the efficiency and complexity

of each policy.

Because of that, most strategies avoid the general case of planning a complete

most informative path for the whole network, spanning the continuous spaces of

state and action; instead they assume relaxed constraints such as the already

mentioned grid and time discretizations, accurate knowledge of the robot location,

and the adoption of myopic planning.

This latter assumption, which can be interpreted as imposing an upper bound

on the number of steps to plan in advance, is crucial: indeed, each dynamic

π(t) contains some sort of optimization of the predicted evolution x̂(t+ 1) of the

high-dimensional state vector x(t), which itself is a function of the robot motion

decided by π(t− 1). The overall complexity for a planning horizon composed by T

steps is hence exponential in T : moreover, the high state variability due to both

node discovery and localization refinement greatly devalues the optimality of any

path based on information that is more than a few steps old, forcing its periodic

recomputation.

For these reasons, to the knowledge of the author no practical planning strate-

gies have been proposed with a planning horizon greater than T = 3 steps; to avoid

exponential terms altogether, many policies instead make recourse to sub-optimal

greedy schemes and plan only the next step at each iteration.
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Some of the most relevant dynamic path planning policies present in literature

(MBAL, DREAMS, PCRB minimization) are hereby presented and summarily

described; in addition to that, a collection of four greedy policies are proposed.

Two of them (Greedy-loc, Greedy-gmm-loc) consist in a very simple ranking

that can be done in linear time, while the third (Greedy-P) finds the maximum

of a multimodal Gaussian; the last proposal (SIGH) takes inspiration from the field

of information theory and provides a heuristic for maximizing the information gain

of a measure.

4.3.1 MBAL

The Mobile Beacon-Assisted Localization algorithm was created by Kim and Lee [20]

for 2-D localization and successively adapted for the tridimensional case with an

aerial mobile beacon [19]. It begins by moving to the middle of the operative area

and performing a reference movement with triangular shape; the nodes within the

triangle hull can trilaterate then themselves, and serve as additional beacons to

assist their neighborhoods.

If the network possesses certain topological properties (3-connectivity, clique

rigidity) that are often related to node density, then this process can be recursively

repeated by the fringe nodes. At each iteration, unlocalized nodes that receive

three noncollinear beacon signals can compute their respective position and change

their status as beacons for the next step, until a complete multi-hop network

self-localization is achieved. Unfortunately, nodes situated at the frontier of the

operational area or over sparse areas often suffer from low connectivity: they then

turn themselves into Request Nodes, and broadcast their neighborhood size by

transmitting their status as “Two-RN”, “One-RN” or “Zero-RN” along with their

partial location information.

When the MB receives their message, it can deduct the optimal area where a

measurement would improve upon the geometrical constraints: for Two-RN it’s
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(a) Two-RN node: MB elects to move to position

C or D

(b) One-RN node: MB selects two extremes of

a chord with minimum length λ

Figure 4.5: Handling of unsufficiently constrained nodes by MBAL.

the area intersection between the two symmetrical hypotheses, while for One-RN

it’s two point on a long enough chord around the only neighboring beacon. Due to

their large candidate area, Zero-RN nodes are not handled until the propagation

effect described above localizes one of their neighbors, turning them into One-RN.

Finally, the path is selected greedily: at each time step, the MB moves towards the

closest candidate area.

4.3.2 DREAMS

The acronym stands for DeteRministic bEAcon Mobility Scheduling: while assuming

no knowledge about the operative area boundaries, this algorithm by Li et al. [24]is

deterministic in the sense that sensors’ visiting order is fixed provided that the MB

starts from the same position.

Exploiting trigonometric computations, the devised pattern can unambiguously

discover the direction of a nearby node even when local noise distorts the commu-

nicating area: after the MB has moved arbitrarily close to the node, localization is

achieved using the AMR’s position. The robot then proceeds to the next target,

performing a Depth-First traversal of the whole network graph; this path can be

further shortened by eliminating nodes already localized via previous measurements,

and by constructing Local Minimum Spanning Trees that can approximately solve
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Euclidean Traveling Salesman sub-problems.

Fig. ?? shows the mobile beacon, originally in position p, while trying to get

close to node S: intermediary positions q1,...,4 represent a complete (albeit failed)

iteration of the algorithm, that starts by moving randomly to q1 but ultimately

is forced to default to the starting position as no progress is made on steps 2 to

4. By contrast, measurements performed on positions q5,6,7 notice a RSSI increase

and move accordingly.

Figure 4.6: DREAMS exploratory pattern for noisy measurements.

4.3.3 PCRB minimization

The scheme proposed by Martinez [?] does not actually plan a specific path, as

much as it builds a reinforcement learning strategy to find that movement policy:

the additional assumption of a rough starting initialization can be met trough

network self-localization. Representing the policy with a parametrized form π(Θ),

a Bayesian regression constructed via Gaussian Processes can map the parameters

Θ to the cost function; sampling only the parameter values that correspond to

a high GP variance or to a low expected cost corresponds to choosing between
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exploration and exploitation behaviors. To choose the sampling locations, the

concept of infill functions is borrowed from the geostatistics literature.

Such a general solution, quite honestly, feels excessively cumbersome when

applied to the restricted application of WSN localization. Still, some of the accom-

panying results are remarkable, first of all the choice of approximating the cost

function with the expected Posterior Cramèr-Rao Bound (PCRB) for nonlinear

systems: this alternative is certainly cheaper than predicting the posterior state

estimate for every choice of xr(t + 1), and is moreover agnostic to the type of

localization filter. It is defined as the inverse of the Fisher information matrix J

and serves as an upper bound on the maximum information that can be extracted

from the system with a given measurement model.

Unluckily, the computation of this bound is complicated by the nonadditiveness

of the noise factors: in the same publication, a comparison between two different

methods for approximating the true PCRB is made. A tight bound on the cost

can be assessed by employing jump Markov linear models, but at the price of

very high computational costs; alternatively, forcing the use of an additive noise

representation, a single Riccati-like recursive equation can be cheaply solved to

obtain a much looser bound.

Looking back at the case of WSN localization, its inherent discretizations

(especially if limiting the space of actions to move only through adjacent cells)

could cut back on the computational costs, rendering this metric usable in real-time

applications; otherwise, the ordering induced by a loose bound between candidate

points could still be used as an approximation of the true ranking. Due to time

constraints, these claims could not be further investigated.
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4.3.4 Greedy

These new proposed methods all share some common properties that makes them

alike: they are all based only on the state estimate x̂ and covariance P, they all

count only those nodes and/or hypotheses that are not yet localized according

to the formulas in section 2.6, and they all default to a random selection among

candidate points whenever the state vector does not contain any unlocalized node.

Being greedy, all these policies have a receding horizon length of 1, that is they

plan only the next step: their simplicity makes them lightweight enough to be

computed in linear time, with O(N ′) operations.

Greedy-loc

This strategy continuously moves toward the most precise node position estimate,

selected from those whose eigenvalues are still above the set threshold for filter

stopping. Effectively, it tries to quickly localize one node at a time to remove it

from the vector and proceed to the next: by focusing on those nodes that are

closer to completion, the MB can meanwhile collect more observations on the others.

Given a discretization D(A) = x1
d, x2

d, . . . of the operative area A, the point

selected as next beacon location will be the closest to the “best” state position

estimate, measured according to a ranking between covariances:

πloc : D, x̂,P→ arg min
xi
d
∈D
||xid − x̂[n̄]||2 (4.13)

with

n̄ = arg max
n=1...N ′

1
det P[n] (4.14)

and x̂[i] and P[i] indicating the estimate and 2× 2 square covariance matrix

that pertain to the i-th node. Due to logarithm monotonicity, this formulation is

equivalent to a ranking on the self-information I = log(1/P) of each estimate:
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arg max
n=1...N ′

1
det P[n] = arg max

n=1...N ′
I(n) = arg min

n=1...N ′
log (det P[n]) (4.15)

Greedy-GMM-loc

Seeing that a high number of hypotheses in the state estimate is undesirable, as

it needlessly slows down computation, the above policy can be easily modified to

improve upon the speed of GMM convergence. When the filter contains uncollapsed

nodes, a good way of rapidly alter the weight of any single Gaussian h is to perform

as little as a single measurement while being close to its mean: if the node is nearby,

the associated weight will greatly increase at the expense of every other hypotheses;

otherwise, that estimate is flatly wrong and wn,h will greatly decrease, eventually

triggering a removal from the state vector.

To remove the most number of hypotheses in a short amount of time, it suffices

to recall their starting annular configuration: specifically, Gaussians that are close,

with respect to the angular coordinate φ, to an incorrect hypothesis are more

probable to be incorrect too, and consequently to have similar weights. This policy,

then, makes the MB always move towards the least precise but most probable

hypothesis of a GMM, reasoning that any measurements performed in that area will

either improve localization or lead to a quick pruning. In this way, the contribution

of each observation is not “wasted” by focusing on refining an already precise node

position or on deleting an already improbable hypothesis.

Translating these concepts into formulas, they correspond again to selecting

the candidate point xid which is closest to the desired location:

πGMMloc : D, x̂,P→ arg min
xi
d
∈D
||xid − x̂[n̄]||2 (4.16)

where the target is now found by ranking on both the weight within a GMM

and the hypothesis’ covariance:
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n̄ =


arg max

n=1...N ′
wn,h det P[n, h] if ∃ GMM ∈ x̂

arg max
n=1...N ′

1
det P[n] if @ GMM ∈ x̂

(4.17)

By process of elimination, all that will eventually be left is a state vector

containing only the best hypotheses: in that case, the policy will default to

Greedy-loc, trying to improve each node’s precision until localization is complete.

Overshooting

While testing the previous two policies, simulations highlighted a counterintuitive

result: namely, that performing multiple measurements while moving from a target

location to the next would often worsen the overall WSN localization accuracy

and speed, despite collecting more data about the nodes’ true position. For the

specific cases of Greedy-loc and Greedy-gmm-loc, it happened more than a

few times that the mean estimate of the most valuable Gaussian would be “chased”

by the MB, constantly moving away from it until colliding with the operative area

bounds.

This phenomenon can be explained by looking at the one-dimensional case

of Fig. 4.7: if, for some unspecified reason, the (blue) mobile beacon finds itself

between its target (red) state estimate and the associated (grey) true node position,

according to its policy it will try to move toward the former. If, along this path, it

makes a stop to collect a new measurement, a longer distance will be perceived: the

online filter, then, will update the red hypothesis along the direction of minimum

effort, that is directly away from the MB. This event is then repeated as long as

that position estimate is the one targeted by the robot.

The obvious solution would be to defer any measurement up until the target

location is reached: still, it should be recalled that the robot does not move to

the precise mean of its intended Gaussian, but to the closest point in the area

discretization. If that point is between node and hypothesis, the problem can
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reappear: to guarantee that this doesn’t happen, the concept of overshooting is

introduced. Simply put, when τ would plan the control inputs to move the robot,

an additional fixed term would be added to ∆D: this quantity should be greater or

equal than the distance between candidate points, so that both node and estimate

stay on the same side of the MB.

All the previous reasoning is still valid when considering planar configurations:

in fact, to know if and how much this problem would present itself, it’s sufficient to

project the robot’s position on the line connecting a node with its mean estimate,

and afterwards interpret it as the 1-D case.

(a) The MB plans its movement

(b) With intermediate measurements

(c) With overshooting

Figure 4.7: Chasing and overshooting effects for one-dimensional localization.

Greedy-P

The basic intuition behind this last movement policy is that it’s not really important

choosing which node is localized, as long as the whole network is. By combining all

the unimodal Gaussian estimates/hypotheses into a multimodal mixture distribution
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f defined over the whole operative area and evaluated on the discretization D, it’s

possible to build a Maximum Likelihood estimator for the virtual beacon candidate

with least expected distance to any one node.

πP : D, x̂,P→ arg max
xi
d
∈D
f(xid) (4.18)

f(x) =
N ′∑
n=1

H∑
h=1

wn,h · N (x̂n,h,P[n, h]) (4.19)

It could happen that for particular symmetric configurations of the wireless

network, the measurement performed at the coordinates selected by πP do not carry

enough information to sensibly influence the maximum of f : this could happen

when no significative localization improvement, node completion or hypothesis

removal is possible. The policy would then be stuck, always selecting the same

point from the discretization: this eventuality is avoided by selecting without

replacement.

4.3.5 SIGH minimization

To reduce the number of measurements, and hence indirectly the length of the

mobile beacon path, one should aim to maximize the significance of each RSSI

range observation. This concept can be represented by information gain,1 a way of

measuring the potential contribution to overall localization.

In Bayesian statistics and information theory, this quantity is defined as the

expected decrease of Shannon differential entropy from a prior to a posterior

distribution; within the limited scope of localizing a single node n, active sensing

policies [39] [30] [5] try to find the maximal expected information gain for each

possible robot location xr:

Gn(xr) = E [I(x̂n, z|xr)] = H(x̂n)− Ezt+1 [H(x̂n|zt+1,xr)] (4.20)

1 Also known as Kullback-Leibler divergence, or mutual information.
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where the expectation is defined over all possible measurements. This computa-

tion is often quite onerous: even with good knowledge about both measurement

model and channel parameters, analytical solutions are infeasible, and discretized

approximations have cubic complexity. Moreover, the chasing phenomena discussed

above prevent the use of a commonly implemented simplification, namely that of

constraining the selection of xr to move only trough adjacent cells; finding the best

MB position among K points in the discretized area, then, is O(Km3).

An alternative approach was theorized, and successively validated by existing

literature [44] [25]: given that mutual information I(x̂n, z) is symmetric, a way

to reduce the dimensionality of equation (4.20) is to rewrite it by switching the

conditioned variables. The formula now becomes:

Gn(xr) = Ex̂n [H(zt+1|xr)]−H(zt+1|x̂n,xr) (4.21)

which can be interpreted as the difference between total measurement un-

certainty and the specific contribution due to modelization/noise. This change

alone does not help with complexity, as p(z|xr) must still be computed for every

configuration on the state space. It should be noted, though, that z is a noisy

lognormal observation of the sufficient statistic v = ||x̂− xr||2, i.e. the projection

of a two-dimensional2 location parameter on a one-dimensional sensor observation

perspective. Specifically, this view distribution models the distance between xr and

the node position estimate itself:

p(z|xr) =
∫
v
p(z|v)p(v|xr)dv (4.22)

p(v|xr)dv =
∫
v≤||xr−x̂n||2≤v+dv

p(x̂n)dx̂n (4.23)

The whole distribution can be computed in quadratic time with an m-binned

histogram approximation of the integral in 4.23; that, in turn, is obtained by

sampling the Gaussian distribution x̂n with a grid of m×m points.

2 Four-dimensional, if the robot’s position is uncertain too.
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Wang and Yao [44] suggested that, under the assumption that there exist some

potential location xr where the measurements are sensibly more informative than

the average, the ranking induced by Gn does not significantly differ from the one

based on the following entropy difference:

Gn(xr) = Ev [H(zt+1)]−H(zt+1|vn) (4.24)

≈ H(vn)−H(zt+1|v̂n) (4.25)

The two terms in the last equation are the view entropy, which can be regarded

as a noise-free measurement entropy where p(z|v) is assumed to be deterministic

without uncertainty; and the sensing entropy, computed using the Maximum

Likelihood estimate for the node position:

H(zt+1|v̂n) = 1
2 + 1

2 ln(2πσ2) + ln ||x̂n − xr||2 (4.26)

It’s now possible to define the information gain with respect to the whole

network, including the weighted contribution of uncollapsed GMMs:

G(xr) =
N ′∑
n=1

H∑
h=1

wn,hGn,h(xr) (4.27)

To find the optimal candidate point xr over which to move the robot, both its

associated information gain and the expected distance needed to reach it it are

needed: as they have to be compared to each other they are normalized on the

interval [0, 1]:

G(xr) = G(xr)−minxr G(xr)
maxxr G(xr)

D(xr) = D(xr)−minxr D(xr)
maxxr D(xr)

(4.28)

The final policy for maximizing this Simple Information Gain Heuristic (SIGH)

metric will use a tradeoff parameter α to fine-tune the cost function:

πSIGH : D, x̂, α→ arg max
xr∈D

α ·G(xr) + (1− α) ·D(xr) (4.29)
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Chapter 5

Simulation

Before choosing one movement policy above the others, a standardized

comparison should be done, either by means of a computer simulation or

by physical experimentation on a real test case. Regrettably, available

literature cannot agree on a single WSN configuration over which to analyze the

respective performances: without the time to adapt each and every policy to a

single framework, the schemes proposed in this thesis will be measured against

only to static paths. To compare them to other dynamic policies, the author refers

to the cited sources and trusts the reader’s discernment.

A foremost difference between RUUMBA and most MB-assisted localization

techniques is that the memoryless property is fully enforced: past measurements

are not stored until completion, ready to be computed all at once, but instead

they are integrated in the state vector at each time step. Usually this should not

be a cause of problem, as Kalman filters are particularly efficient for handling

streams of observations. Still, geometrical constraints for localizability suggest

that optimal measurements should be performed according to certain structures:

without keeping track of the full AMR’s path, no assessment of clique rigidity or

noncollinearity can be done. The value of these assertions is even greater in the

presence of measurement noise, as the feedback introduced by outliers on policies’

choices can cause filter divergence before being averaged out.
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All simulations were conducted using Matlab R2010a on a MacBook with

2.4 GHz dual core processor: the simulating software has been written to be as

modular as possible, allowing future implementations to build upon it. Motion and

measurement models, node initialization and movement policies can be substituted

to the proposed algorithms to perform comparisons that are as standardized as

possible. All code has been fully commented and documented.

5.1 Layout

Because of computational reasons, the test network was restricted to only 6 nodes,

randomly deployed on a rectangular operative area having sides 20 m and 15

m long. To provide consistency with the static paths, the starting point of the

mobile beacon trajectory has been fixed at the lowest left corner; the area has

been discretized into 350 400 hexagonal cells, each with distance of 1 m from its

neighbors, and their centers were set to be the candidate points for virtual beacon

deployment.

Environmental and noise parameters were set trying to adhere to realistic con-

ditions that can be found in a typical office space: specifically, path loss exponent

was set to η = 2 and shadowing noise deviation was chosen to be σΨ = 3. This

latter value assumes multichannel averaging, though, and may be considerably

higher whenever this condition is not satisfied.

Static policies perform their measurements every 2 m or whenever the path

does a turn; random and dynamic policies only do so when arriving at their desired

locations. The SIGH movement policy, finally, has additionally been tested with

differing proportions of how information and distance influence the decision of a

target position. Values of α = 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5 have been experimented

upon, always favoring informativeness to proximity.

Node initialization consists in H = 8 hypotheses, which are pruned if their
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log-weights fall below e−15/H or if they are closer than 2.5 m from each other.

A procedure was added, such that every hypothesis that would exit the area

is scaled back into it, keeping its variance but shifting the mean to the intersec-

tion point between the boundary and the line going from robot to the position mean.

The whole simulation consisted in 300 consecutive runs under the same condi-

tions: metrics foe computation time, accuracy, precision, number of observations

and path length were averaged and compared.

5.2 Results

Static paths, simply put, outperform dynamic policies. Some of the motivations

have already been discussed: summarizing them, the focus on area coverage and

non-collinearity shared by most static policies imparts a structuralness property

to the process of data acquisition that a dynamic path cannot provide. Since the

cost of measurements is low, there is no need to immediately move to the most

informative point, wasting energy on long paths and doing a lot of observations in

a tight cluster. Instead, the coverage constraint causes the measurements to be

better spread and diversified over the whole area.

The intuition behind Squares and Spyral proved to be a good one, as they

outperform classic Scan patterns with just a little more traveled distance: enclosing

a node within concentric convex hulls significantly helps with its localization. The

octagonal shape performs slightly better, probably in virtue of its higher number

of noncollinearities: moreover, it’s the most consistent path as it has the lowest

error deviation.

Between the dynamic paths, Greedy-P and Greedy-loc score similarly

poorly, maintaining a low path length but missing the nodes’ true position by

almost 3 m: contrariwise, the accurate localization obtained by random selection

among candidate points is opposed by huge motion costs. The best alternative
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seems to use Greedy-gmm-loc, as the paths linking the least localized hypotheses

are often more spatially spread and offer more coverage. Finally, overshooting is

proven to be a favorable option, even if it adds to the overall traveled distance.

Information-based policies are average at best, even ignoring motion costs:

moreover, electing to move along shorter paths uniformly worsens the final local-

ization error. If the robot’s behavior while using the SIGH minimization policy is

observed, inefficient decisions can be noted: the foremost of them is the constant

back-and-forth that occurs when a GMM is reduced to two specular hypotheses

with similar weight. In that case, the MB tries to resolve the ambiguity by moving

towards one Gaussian, which lowers its weight and increases the other’s; this

change now makes the algorithm be attracted to the opposite hypothesis, and the

cycle repeats. Eventually, there are no more candidate points around the two still

uncollapsed terms of the GMM, and the metric decides that the best course of

action is to observe them from afar to slowly reach convergence.

Accompanying mediocre results, the computational time to execute these poli-

cies is an order of magnitude greater than their greedy and static competitors: to

fully localize 6 nodes in a small area from start to stop, more than 30 s are needed.

It’s the author’s conclusion, then, that this kind of policy is not cost-effective in

any sense, and shouldn’t be pursued.

The following figures plot the evolution, for each policy, of RMSE (blue line)

and trace of covariance (red line) as functions of total path length. A confidence

interval of one standard deviation is drawn around each plot; where present,

a vertical dashed line and a vertical dot-dashed line represent respectively the

mean and median completion time for the localization procedure. All plots have

been scaled to a single reference frame, as to facilitate comparisons between policies.

For some of these policies, the trace does not monotonically decrease but

presents little bumps: they are the result of a re-initialization of some node, which

happens when some estimate is grossly off target and the associated measurement
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likelihoods are abysmaly low.

Policy ME RMSE Path length # obs.

Scan 1.26 m 1.68 m 93.32 m 39.3

Hilbert 1.62 m 2.42 m 127.16 m 53.1

Squares 0.96 m 1.22 m 107.15 m 50.2

Spyral 0.89 m 1.08 m 106.72 m 47.9

Random walk 1.04 m 1.50 m 366.75 m 62.1

Greedy-loc 2.91 m 4.26 m 113.81 m 41.2

Greedy-loc-o 2.16 m 3.28 m 144.55 m 41.8

Greedy-gmm-loc 1.72 m 2.51 m 125.16 m 31.8

Greedy-gmm-loc-o 1.24 m 1.76 m 157.80 m 35.6

Greedy-P 2.96 m 4.42 m 128.69 m 35.7

SIGH, α = 1 1.71 m 2.55 m 194.64 m 36.7

SIGH, α = 0.9 1.79 m 2.65 m 175.75 m 38.0

SIGH, α = 0.8 1.89 m 2.83 m 151.24 m 38.1

SIGH, α = 0.7 1.92 m 2.88 m 134.83 m 38.6

SIGH, α = 0.6 2.19 m 3.37 m 113.50 m 38.6

SIGH, α = 0.5 2.42 m 3.78 m 98.56 m 41.3

Table 5.1: Comparison between static and dynamic policies.
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5.2.1 Static policies
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5.2.2 Greedy policies
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5.2.3 Random policy

0 20 40 60 80 100 120 1400

5

10

15

Traveled distance [m]

RM
SE

[m
]

Random policy, 6 nodes, 300 runs

0 20 40 60 80 100 120 1400

100

200

300

400

Traveled distance [m]

av
g.

Tr
ac
eo

fP

Median path length = 350 m Mean path length = 367 m

86



5.2 RESULTS

5.2.4 SIGH policy
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Chapter 6

Conclusion

A complete solution for localizing a WSN with a mobile beacon was pre-

sented and implemented. It makes use of RSSI range measurements, an

Unscented Kalman Filter, a mixture distribution for undelayed initial-

ization and any one of the many proposed static and dynamic movement policies.

Each and every one of those solutions tries to achieve low complexity in time and

space, without sacrificing localization accuracy.

When choosing the best path to localize a random network, structure should

be preferred to adaptability: the geometrical constraints enforced by static policies

outperformed the erraticity of dynamic greedy algorithms. This resulted in shorter,

more accurate, and more consistent paths.

Future research on the topic might highlight new movement strategies: extending

the planning horizon to more than one time interval, or storing past measurements

into a finite memory for delayed updates, could help introducing sound geometrical

properties otherwise impossible to obtain for a dynamic memoryless policy.
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