
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Cybersecurity

FairDrop: a Confidential Fair Exchange

Protocol for MediaWorkers

Supervisor Master Candidate
Prof. Mauro Conti Egon Galvani
University of Padova

Co-supervisor Student ID
Prof. Zekeriya Erkin 2028932
Delft University of Technology

Academic Year
2021-2022

ii

Acknowledgments

I would like to express my gratitude to Prof. Mauro Conti, the supervisor of my thesis, for his
help and support during thewriting of this dissertation. It was a pleasure tomeet a personwho
loves his work so much and shares his passion for the world of research with it. I would also
like to thank Prof. Zekeriya Erkin andDr. Oğuzhan Ersoy for all the feedback andmeetings we
had over the past fewmonths, and for the good conversations and advice you gave me in Delft.
I would like to sincerely thank my family for their support and great help. Starting with Luna,
my twin, my ge, andmy biggest supporter, always ready to helpme in difficult times and always
being able tomakeme feel proud. Asia, for her confidence and formakingme see things from a
more relaxed point of view. I want to thankmy parents, who never set limits onme and always
left me the freedom to decide what to do on my own.
Next, I have the desire to thank my friends for the 4 wonderful years we spent together and for
all the experiences, ideas, and thoughts we shared. I want to thank Aslı, for having started our
conversations on the 6th floor, for the thoughts shared in the library, and for all the toppers of
pasta unlocked together. Vitto for all the ideas and dreams we talked about over the years, for
all the failed projects and jokes that filled our time together. Massi for being the best partner in
crime during our months in Delft; I will always remember the dinners, drinks, conversations,
and rides we shared. I want to thank Tommaso, for all the years he put up with me, and for
continuing to do so, and Loris and Gian for the very long walks and nights spent together. Lu-
dovica, Francesco, and Filippo for being the best friends I could hope to find during a course
of stochastic processes. Mirko and Elton for all the lunches we survived in the canteen, for the
talking and laughing we did together. Osi, Cezza, Dema, Jack, and Valton for all the sushi we
ate together and for the time we spent in the front rows of the P200.

Having arrived at the end of this journey, I also want to say thank you to myself, for the effort
and passion I have put in over the years. And for all the decisions I have made, the results of
which I am very proud.

To all of you,
Thank you ;)

iii

Abstract

In recent years, the asymmetry between open societies and regimes that control their media
has increased, leading to the number of murdered journalists more than doubling worldwide.
Even in countries in which freedom of the press is publicly recognized, the number of jour-
nalists jailed, assaulted, or criminally charged is relevant and growing. These attacks on media
workers usually want to limit or control information regarding critical topics.
In this context, the necessity of a system that allows reporters to publish their works without
risking their own life is evident. Some systems to share information with newspapers while
keeping the source anonymous exist. An example is SecureDrop, developed and maintained
by the Freedom of the Press Foundation, and widely adopted by all major international news-
papers. What limits them from extensively using this type of system is the lack of credibility in
the information exchanged, which represents themain problem for the publisher’s reputation.
In this thesis, we present FairDrop, a system that allows the exchange of information between
two untrusted parties and proposes a tradeoff between the anonymity of the source and the
credibility of the information exchanged. Wepresent a fair exchangeprotocol basedonblockchain
that allows sharing of a digital good fairly and confidentially. We also define the guidelines for
a system based on ring signatures to measure the credibility of the exchanged information.
All ourdesigndecisions aremade taking into account the requirements of a journalist-newspaper
communication, and the guidelines for anonymous sources appliedbymajornewspapers around
the world. We test the system in a real-world blockchain testnet, considering multi-seller and
buyer situations, and introducing economic incentives for sources to use the system.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 Introduction . 1
1.2 Newspaper guidelines . 2
1.3 Relevant historical examples . 4
1.4 Contribution . 5
1.5 Organization of the document . 6

2 Preliminaries 7
2.1 Cryptographic Primitives . 7
2.2 Blockchain . 9

2.2.1 Consensus . 10
2.2.2 Fair Exchange . 13

3 Protocol 21
3.1 Assumptions . 21

3.1.1 Communication model . 22
3.2 Threat Model . 23

3.2.1 Properties . 23
3.3 FairDrop . 24

3.3.1 Initialization Phase . 25
3.3.2 Sale Phase . 28
3.3.3 Security & Privacy Analysis . 33

4 Performance Evaluation 39
4.1 Implementation . 39

4.1.1 Symmetric encryption scheme . 40
4.1.2 Asymmetric encryption scheme 41
4.1.3 Id generation . 41

vii

4.1.4 Randomness . 42
4.2 Performance . 43

4.2.1 Complexity analysis . 43
4.2.2 Execution costs . 45
4.2.3 Performance Comparison with Closely RelatedWork 47

5 Conclusion 49
5.1 Discussion . 50
5.2 Limitations . 51
5.3 Future Work . 51

Appendix A Merkle Trees Algorithms 53

Appendix B Smart Contract 55

References 61

viii

Listing of figures

2.1 Bitcoin blockchain structure . 10
2.2 FairSwap: global model . 14
2.3 Illustration of FairDex protocol. Honest and malicious executions are repre-

sented with (9a)-(9b) and (10a)-(10b). 17

3.1 FairDrop: initialization phase scheme . 27
3.2 Sale phase, optimistic case - secret verification 30
3.3 FairDrop, sale phase: optimistic case . 31
3.4 FairDrop, sale phase: pessimistic case . 33

4.1 Receiver user interface, example of buying a file 40
4.2 Sender user interface, example of buying a file 40
4.3 Probability of success of an attack against receiver fairness 47
4.4 Optimistic case: price cost for sender considering multiple exchanges 48

ix

x

Listing of tables

3.1 Notation table . 22

4.1 Initialization phase complexity analysis overview 44
4.2 Sale phase, optimistic case, complexity analysis overview 44
4.3 Sale phase, pessimistic case, complexity analysis overview 44
4.4 Initialization phase execution gas cost . 45
4.5 Sale phase method execution cost . 46
4.6 RaiseObjection method cost execution . 46
4.7 Sale phase overall execution costs . 46

A.1 Space and time complexity of Markle tree algorithms 54

xi

xii

Listing of acronyms

CPJ Committee to Protect Journalists

SPJ The Society of Professional Journalists

AP The Associated Press

NYT The New York Times

ROM RandomOracle Model

PPT Probabilistic Polynomial Time

IND-CPA Indistinguishable under Chosen Plaintext Attacks

EVM Ethereum Virtual Machine

TTP Trusted Third Party

PoM Proof OfMisbehaviour

VRF Verifiable Random Function

PoW Proof of Work

PoS Proof of Stake

xiii

xiv

1
Introduction

1.1 Introduction

In recent years, the asymmetry between open societies and despotic regimes that control their
media and online platforms has increased [1]. The World Press Freedom Index 2022 shows
that the polarization of press freedom has been subject to a two-fold increase, leading to deeper
divisions within countries, but also among countries at the international level [1]. This phe-
nomenon is closely linked to the deterioration of security conditions of reporters, who in some
cases have to risk their own lives to pass on information that has not been censored.
According to the Committee to Protect Journalists (CPJ), the number of murders of journal-
ists has more than doubled worldwide in 2020 compared to the previous year, passing from
10 in 2019 to 22 in 2020 [2]. In 2021 this number didn’t change, having 22 media workers
singled out for murder in retaliation for their reporting and registering India and Mexico as
the countries with the most media workers killed during the year [3]. Even in countries where
this number is lower, a high percentage of journalists is imprisoned: 2020 was the fifth con-
secutive year during which repressive governments imprisoned at least 250 journalists, limiting
the amount of shared information regarding critical topics. For two years in a row, China was
the first nation for the number of jailed media workers, followed by Turkey, Egypt, and Saudi
Arabia [4]. Also in democracies, this type of problem is still actual: in 2020, 452 journalists
were assaulted and 143 arrested or criminally charged [4].

1

Considering the previous data, it is evident how a system that allows journalists to publish their
work without risking their life would have a strong impact on this field: allowing them to over-
come censorship and achieve a free flow of information. A naive solution to this problem is to
allow entities to publish information anonymously: data can be shared by sources who are un-
willing or unable to reveal their identities publicly. From a practical point of view, newspapers
tend to avoid this approach [5, 6, 7] since their reputation could be affected if the published
news turns out to be false. This credibility problem also affects the audience, which can be sub-
ject to disinformation, since it can be difficult to determine whether information attributed
to an unnamed source is reliable, simple rumor or untrue [8, 9, 10, 11]. The problem of al-
lowing sources or insiders to deliver anonymous information is called anonymous sourcing or
whistleblowing [12]. The main solution currently adopted by most of the main newspapers
andmedia organizations is SecureDrop [13, 14]. It is an open-sourcewhistleblower submission
system, that allows news organizations to receive documents and exchange messages with the
source anonymously. It does not use third parties, but allows direct communication between
source and organization, minimizing the shared metadata and encrypting the communication
channel [13]. It allows each interested media company to install its instance of it, forcing the
usage of security best practices for journalists and guaranteeing compliance for high-risk envi-
ronments. Even if SecureDrop allows anonymity of the source, themedia organization usually
has still the necessity to identify it to guarantee the credibility of the exchanged information
[5, 6, 7]. The general description of the source in the final article leads to a loss of trust by the
audience [8, 15], which does not have any way to check directly the credibility of the source it-
self. Moreover, SecureDrop does not provide the source any incentive to share its information
and take this risk.

1.2 Newspaper guidelines

Over the years, the journalism literature regarding anonymous sourcing has increased, leading
to twomain schools of thought. Many scholars defend the use of anonymous sources as report-
ing method when: there is no conflict of interest by the source, the sharing is preventing either
physical or emotional harm to the source [16] or the information compels public interest [17].
In any case, most of them still require the identification of the source to determine its goal or
interest in sharing the information.
On the other side, many scholars [18, 19, 20, 21, 22] criticize an excessive usage of this report-
ing method, since it can lead the press to publish and grant anonymity too easily.

2

Starting from the literature, eachmainnewspaper and journalist society defined a code of ethics
that covers, among other things, how anonymous sources are managed by the newspaper itself.
A brief overview of some of them follows.

SPJ Code of Ethics The Society of Professional Journalists (SPJ) in its Code of Ethics [5]
contains two main statements regarding anonymous sourcing:

• identify sources whenever feasible: the public is entitled to as much information as possi-
ble on sources’ reliability;

• always question sources’ motives before promising anonymity: clarify conditions attached
to any promise made in exchange for information.

The SPJ focuses mainly on the consumer’s faith in the newspaper and the credibility of the
published information. For this reason, the guidelines refer to identifying the source as clearly
as possible without pointing a figure at the person who has been granted anonymity [5]. The
usage of anonymous sources is more tolerated when it is the only way to publish a story that
is of importance to the audience. Regarding the second statement of the code of ethics, the
identification of the source is often required to understand if the information sharing is based
on a conflict of interest. SPJ wants to avoid a source sharing information to undermine some-
one else, to even the score with a rival, to attack an opponent, or to push a personal agenda
[5]. In general, verification is required by multiple actors, and publishing without verification
is considered a dangerous practice.

TheAssociatedPress TheAssociated Press (AP), define its policy regarding anonymous
sources highlighting the importance of transparency and credibility with the public and their
subscribers. They define the usage of anonymous sources as possible only when [6]:

• the material is information and not opinion or speculation, and is vital to the report;

• the information is not available except under the conditions of anonymity imposed by
the source;

• the source is reliable, and in a position to have direct knowledge of the information.

In its guidelines [6] the AP refers to the requirements of having more than one source, with
an exception in cases in which ”the material comes from an authoritative figure who provides
information sodetailed that there is noquestionof its accuracy”. They also specify how it is nec-
essary to provide the public with a clear description of the sources, maintain their anonymity,
and describe the motivation for sharing their information.

3

NewYorkTimes TheNewYorkTimes (NYT) provides a guideline on how their reporters
manage anonymous sources, and the company guidelines about them [7]. Under their guide-
lines, this reporting tool is used only when necessary, that is when the news is newsworthy and
credible, but it is not possible to report it in any other way. They also recognize how ”many
important stories in sensitive areas like politics, national security and business could never be
reported if we banned anonymous sourcing” [7]. NYT recognizes how people in sensitive po-
sitions would just state the official line if recorded, and for this reason, they are open to the
possibility of anonymous sources, always keeping a critical and skeptical approach.

1.3 Relevant historical examples

One of the most relevant political scandals related to anonymous sourcing isWatergate, which
produced one of the most famous unnamed sources of all time, called with the name: Deep
Throat. His identity was not revealed until several years later, in 2005 [23]. Before Watergate,
confidential sources were rare, while after that the usage of anonymous sources raised, with
many reporters considering themmore appealing than having named sources [24].
BobWoodward, whowithCarl Bernstein didmuch of the reporting for theWatergate scandal,
highlighted how the Watergate coverage, that led to President Richard Nixon’s resignation in
1974, would have been impossible without unnamed attribution [24].
With the growing interest in anonymous sources, problems didn’t take long to arrive: famous
is the article “Jimmy’s World” [9] by the Washington Post reporter Janet Cooke, published
in 1980. Cooke published a story about “Jimmy”, an 8-year-old heroin addict. With the mo-
tivation of protecting its sources, Cooke convinced her editors to publish the story without
naming them at all. The story was discovered to be invented only in 1981 [9] after Cooke won
the Pulitzer Prize and reminded the media community of the credibility problems related to
anonymous sources.
Another case of an inaccurate report using anonymous sourceswas publishedby theNewsweek
newspaper in 2005 [10]. The magazine claimed that government sources had confirmed that
U.S. personnel at the Guantanamo Bay detention camp had intentionally damaged a Quaran
and led a detainee around with a collar and dog leash. The news provoked anti-US demonstra-
tions in the Islamic world, that resulted in at least 15 deaths [25].
Themagazine later retracted the article, saying that further verificationof the reportwas needed
and that the source changed its mind about what had happened [11].
In recent years, other newspaper scandals have been linked to anonymous sources: on several

4

occasions, journalists used the pretext of unnamed sources to fakemajor stories [26, 27] and to
get more engagement from the public. In summary, some of the most important stories could
never have been toldwithout relying on sources unwilling to reveal their names (e.g.,Watergate,
the Pentagon Papers, Guantánamo). However, the presence of misleading episodes leads the
audience to perceive articles with anonymous sources as less credible than reports with named
sources [28, 29].

1.4 Contribution

In this paper, we present FairDrop: a fair exchange protocol that allows anonymous sourcing
and introduces an approach to manage the credibility of the information shared anonymously.
The protocol considers two main parties: a source or reporter, that is willing to share his infor-
mation, and a newspaper, interested in obtaining and publishing it. As usual in fair exchange
protocols, the two parties do not trust each other, but they want to exchange a digital good,
i.e. a file. Usually, the file is exchanged by the use of a description, such as its hash, that the
two parties agree about. In our scenario, this type of description can’t be used, since it can’t be
trusted by itself. Thus, we use a form of sampling-based [30, 31, 32, 33, 34, 35] fair exchange.
The fair exchange that we propose takes most of its ideas by FairDex [30] since it allows us to
achieve low on-chain and off-chain costs using symmetric encryption and a logarithmic-size
proof of misbehavior, based on the sampling of sub-keys instead of sub-files [36, 37]. How-
ever, FairDex is missing confidentiality of the shared key, management of multiple files, and
re-selling of the same product, which avoid it to be used in practical contexts.
For the credibility aspect, we leverage ring signatures to allow each reporter to share informa-
tion and hide his identity behind a group of other members, without the necessity for them to
actively participate in the procedure. Depending on the composition of the group we propose
some ideas on how a measure of the credibility of the shared information can be derived. The
main goal of our design is to define a solution that allows finding a trade-offbetween anonymity
and credibility of the sources, guaranteeing fairness for all the involved parties.

FairDrop considers mainly two different sides:

1. Credibility: a way to allow each newspaper interested in the information to derive some
measure of the credibility of the source itself;

2. Fair Exchange: a fair exchange protocol that allows managing in a fair, confidential, and
anonymous way the exchange of the file shared by the source.

5

The relevant aspects of our protocol can be summarized as follows:

• Confidentiality of fair exchange: if bothparties behave correctly, the protocol allows only
the receiver of each exchange to learn the information,while inmanyprotocols proposed
up to now [30, 36] the key would be published in plain text inside the blockchain.

• Proof of credibility: using ring signatures the newspaper receives a signature of the file
and can share it with its customers, allowing them to verify it and check the credibility
of the ring.

• No direct communication: unlike other protocols [30], an authentic and confidential
communication channel between these two parties is not required: all the operations
that do not use the blockchain, can be executed by sharing data in a public channel, e.g.,
a website or public directory.

• Protection against grieving attacks: the protocol considers and avoids situationswhere an
adversary attempts to violate the financial fairness of the protocol by forcing the honest
party to pay expensive transaction fees [37].

• Practical implementation: a working and fully implemented version of the designed
fair exchange is available publicly. We executed the protocol on multiple testnet, i.e.,
Ethereum Ropsten and Goerli, comparing our results with the solutions proposed in
the literature.

• Low on-chain and off-chain cost: the fair exchange protocol is based on symmetric key
encryption which requires low off-chain computation and storage cost, and it requires
publication of only the master key on the blockchain.

1.5 Organization of the document

Before describing the proposedprotocol, we provide all the necessary elements to understand it,
starting from its building blocks, like blockchain, fair exchange protocols, and ring signatures,
and then considering the main related works. All these information are provided in Ch. 2.
In Chapter 3, the problem that the protocol wants to solve is formalized, and our proposed
solution formediaworkers is introduced anddescribed in detail. The protocol implementation
and performance evaluation are described in Chapter 4.
Finally, in Chapter 5 we discuss the conclusions and possible future research directions of our
work.

6

https://github.com/EgonGalvani/confidential-fair-exchange

2
Preliminaries

In this chapter, we introduce the fundamental building blocks for our work, starting from the
necessary cryptographic primitives used, for then focusing more on the blockchain and fair
exchange protocols. We present and analyze the principal aspects introduced by FairSwap [36]
and FairDex [30], which represent the main reference point for our fair exchange design.

2.1 Cryptographic Primitives

In this section, we introduce the building blocks and the main cryptographic primitives used
to design our protocol.

Hash Functions It represents the main element of the protocol. A hash function H :

X → Y,X = {0, 1}∗,Y = {0, 1}m, maps a binary string of arbitrary length to a binary string
of fixed lengthm. We consider H to be a cryptographic hash function, which means that the
following properties hold:

• Preimage resistance: given an hash value y, it is difficult to find any message x s.t. y =
H(x).

• Second pre-image resistance: given an input x1, it is difficult to find an input x2 ̸= x1, s.t.
H(x1) = H(x2).

7

• Collision Resistance: it is difficult to find any pair (x1, x2) ∈ X2, x1 ̸= x2 s.t. H(x1) =
H(x2).

For model H, we use the Random Oracle Model (ROM) [38]. It considers an oracle (i.e.,
black box), that given an input returns a random response chosen uniformly from its output
domain. If the same query is repeated, then the corresponding response doesn’t change.

Symmetric Encryption We make use of a symmetric encryption scheme consisting of
three PPT (probabilistic polynomial-time) algorithms: Sym-KeyGen, Sym-Enc, and Sym-Dec.
Assuming key spaceK, plaintext spaceM and cipher space X, then:

• Sym-KeyGen algorithm is used to generate the secret encryption key k ∈ K;

• Sym-Enc algorithm outputs a ciphertext x, given a key k and a plain messagem;

• Sym-Dec algorithm outputs the messagem for a given ciphertext c and key k.

We assume a symmetric encryption scheme to be indistinguishable under chosen-plaintext
attacks secure (IND-CPA). This means that every probabilistic polynomial time adversary has
only a negligible advantage over random guessing [38].

Asymmetric Encryption We make use of an asymmetric encryption scheme consisting
of three PPTs: Asym-KeyGen, Asym-Enc, and Asym-Dec. In this case, we consider two keys:
a public key pk and a private one sk, belonging to the corresponding public key space P and
private key space S. We consider sk ∼ U(S) and a function f : S → P s.t. pk = f(sk).
Regarding the Asym-Enc algorithm, it outputs a ciphertext x starting from a messagem and a
private key sk; while theAsym-Dec algorithmallows retrieving the plaintextmessage by starting
from the ciphertext x and the public key pk. We assume that:

• it is hard to derive the private key sk from pk, i.e., f is a one-way function;

• it is hard to derive the messagem from (pk, x);

• it is hard to derive the private key sk from (m, x).

8

Ring Signatures We consider a ring (i.e., a group) of n entities, each characterized by a
public/private key pair (sk, pk), with sk ∈ S private key space, and pk ∈ P public key space.
ConsideringM as message space, we can identify the following main PPT algorithms [39]:

• Ring-Sign: given amessagem, the list of public keys pk1, ..., pkn of themembers of the
group and the private key sks of the s-thmember of the group, i.e., the signer, it produces
a ring signature σ;

• Ring-Verify: it accepts in input a messagem and a signature σ (containing also all the
pk1, ..., pkn public keys of the ring), and outputs true or false depending on the validity
of the signature.

Unlike group signatures [40], ring signatures are set-up free: the signer does not need the
knowledge or consent of the other ring members to put them in the ring. Also, the signature
has to be signer-ambiguous: it has not leaked information about the signer [39].

MerkleTrees Considering an alphabetA = {0, 1}, and a list ofn elements x1, ..., xn ∈ A∗,
we can define a Merkle TreeM:

• as a binary tree having as leaves the values x1, ..., xn;

• considering a hash function H over alphabet A, then each non-leaf node vj ofM is ob-
tained computing the hash of the value of its two child nodes, i.e., vj = H(vlj, vrj).

For simplicity in this thesis we consider complete Merkle trees, i.e., trees in which n is an
integer power of 2. A complete description of algorithms over Merkle Trees is presented in
Appendix A.

2.2 Blockchain

A blockchain is a growing list of records, called blocks, that are securely linked together using
cryptography [41]. Each block contains some data, a timestamp, and a reference to the previ-
ous block. The form inwhich the data is represented can vary depending on the specific design
choices of the considered blockchain, however, generally, it is represented as the root of the
Merkle tree having the transactions as its leaves.
Each block contains a reference to the previous one: usually it’s a hash. In this way, each block
is connected to the previous one shaping the actual list of records. This guarantee that any

9

Figure 2.1: Bitcoin blockchain structure

block inside the blockchain can’t be altered retroactively without the alteration of all subse-
quent blocks. Consequently, given a block, the higher the number of blocks introduced after
him inside the chain, the more difficult will be for a possible attacker to modify it. An illus-
trated visualization of a typical blockchain structure is given in Fig. 2.1.
Blockchain is integrated intomultiple fields, but up to now, its main usage is as a distributed

ledger for cryptocurrencies such as Bitcoin [42]. The principal property of blockchain is avoid-
ing infinite reproducibility for a digital asset, solving the double-spending problem [43].

2.2.1 Consensus

As explained before, the blockchain can be represented as a list of records, where every sin-
gle unit is called a block, and where blocks are connected through a cryptographic link. For
this reason, the way the members of the network decide which block to introduce inside the
blockchain represent a crucial point for the whole system.
A consensus mechanism is a set of rules and incentives that allow nodes to agree on the state of
the network. In general, the consensus problem within the blockchain is closely related to the
order of transactions, i.e., participants must agree on a single history of the order in which they
were entered [42].
Typically, network participants working to introduce new nodes within the blockchain itself
are referred to asminers.

Proof of work A first approach to solve the aforementioned problem was proposed by
SantoshiNakamoto in his Bitcoin whitepaper [42]. As stated in the whitepaper, the consensus

10

problem to be solved corresponds to the design of a distributed timestamp server in a peer-to-
peer network.
The proposed consensus mechanism is called proof-of-work. It consists of looking for a value
that, when hashed, starts with a certain number of zero bits. As the number of zeros increases,
the complexity of finding the value increases exponentially [42], while the proof always consists
of a single hash. This allows the protocol to increase the difficulty of finding a correct block,
with the increase of the computational power provided by the miners. The found value is in-
troduced inside the block in a field called nonce.
The miner wishing to introduce new transactions in the chain must:

1. create a new empty block;

2. fill in the data field and hash of the previous block;

3. begins brute-forcing the value of the nonce to satisfy the condition on the number of
zeros at the beginning of the hash.

Consequently, only the block that was created and transmitted faster will be added to the
chain. If two miners broadcast different versions of the next block at the same time, or if the
broadcasting of one block is significantly slow, then different nodes could consider as valid dif-
ferent chains.
In this case, each participant in the network will continue working on the last received node,
and the tie will be broken when the next block is created. As a general rule, the chain that
is considered valid is always the longer one. This means that the transactions included inside
the shorter chains but not inserted inside the longer ones will not be contained inside the final
ledger.
Tobe sure that a transactionhasbeen executed correctly, and so introduced inside theblockchain,
is appropriate to wait for a confirmation time, that is a certain number of blocks successive to
the one to which the transaction belongs. In this way, the probability of a tie between chains
is lowered.
To convinceminers to support the network andparticipate in the solving of this computational
problem, an economic incentive is included in every new block mined. The issue of the incen-
tive allows also for solving the coin distribution problem inside the network: coins are mined
and obtained as rewards by miners, without the need for any central authority.
The incentive is not the only economic rewardminers receive, they also earn a fee on each trans-
action included inside blocksmined by them. The coinsminted at each block are progressively

11

reduced, following a process called halving, up to the point where transaction fees will repre-
sent the only reward for miners.
Every user inside the network can use its computing power to race to solve the next block. If
a user or group of users is able to control more than 50% of the computational power of the
whole network, then we talk about a 51% attack. This group can lead to an altered blockchain
which is theoretically accepted by the network since the attackers would own most of it [44].
Successful attackers can mine blocks faster than the other parties inside the network and so
gain the ability to block new transactions from being confirmed, change the ordering of new
transactions, and partially rewrite recent blockchain transactions.

Proofofstake Proof-of-stake is another typeof consensusmechanismused insideblockchains.
While in proof-of-workminers risk their computational power trying to identify the next block
of the chain, in this case, validators, i.e., miners, explicitly stake capital. This capital acts as col-
lateral since it can be lost by the validator if he behaves in the wrongway or does not participate
actively inside the network [45].
Each validator has to check that new blocks are being propagated over the network, check their
validity and occasionally create and propagate new blocks himself.
Proof-of-stake comes with several improvements to the proof-of-work system [45]:

• better energy efficiency, since the number of heavy computational operations is consid-
erably lower than on proof-of-work [46];

• lower barriers to entry, which lead to a higher number of nodes and reduced centraliza-
tion risk. Since there is no need for elite hardware to stand a chance of creating new
blocks thenmore users of the network can participate in the new consensusmechanism;

• economic penalties for misbehavior make 51% style attacks exponentially more costly
for an attacker compared to proof-of-work.

This type of consensusmechanism is already used by various blockchains, such as Ethereum
[47].

SmartContract A smart contract is a computer programor a transaction protocol that is
intended to automatically execute, control, or document legally relevant events and actions ac-
cording to the terms of a contract or an agreement [48]. Smart contracts allow the execution of
programs which state is stored inside the blockchain. They also allow to bind money transfers
to program code. Each smart contract is characterized by an internal state and a set of public

12

functions that are callable by users. Each function call is associated with a transaction, which
can also be used to send money to the smart contract itself. The economic incentive provided
by the consensus mechanism is at the base of the execution of smart contract transactions by
miners. Smart contract execution is characterized by fees proportional to the number and type
of instructions executed.
Depending on the considered blockchain, the structure and possibilities achievable by smart
contracts change. The usual point of reference for this technology is the Ethereum blockchain,
which uses an internal unit called gas for fee management, and Solidity as a scripting language.
Smart contracts are executed inside the Ethereum Virtual Machine (EVM) [47], but before
that, they are compiled to low-level EVM bytecode. Before the bytecode, the Solidity smart
contract is translated in OP_CODES, each of which refers to an instruction inside the EVM.
The number of instructions inside the EVM is limited, and each of them has a gas cost associ-
ated with it.

2.2.2 Fair Exchange

In fair exchange protocols, we identify two main parties: a receiver and a sender, who do not
trust each other and want to exchange a digital good, e.g., a file, for a monetary value. The
sender wants to sell the file, while the receiver wants to pay for it. The result of such a pro-
tocol is that either both parties receive their expected output or none do. It has already been
proved that fair exchange is not possiblewithout the usage of aTrustedThird Party (TTP) [49],
which can be very costly or might not be available at all. In this thesis, we consider as TTP a
blockchain, and leverage technologies like smart contracts to achieve and implement this type
of protocol.
In much fair exchange protocols [30, 36] the main idea is to let the two parties agree on infor-
mation that can subsequently be used in case ofmisbehavior by one of them. This information
is called description, and it is usually derived from the content of the file to be exchanged. De-
pending on the context of use, such a description can be not useful since the receiver has no idea
about the actual content of the file. In these cases, sampling of files can be used for description
[30, 31, 32, 33, 34, 35], more specifically the description is composed as a subset of these sub-
files. We refer to this typeof fair exchangeprotocol as sampling-based, and it usually requires the
two parties to jointly define the description together. Initially, the sender shares an encrypted
version of the file. Then, the description is jointly chosen: sender and receiver agree on a small
subset of the sub-files. Each of the items composing that description is subsequently shared in

13

S Judge Smart Contract R

(1a) sell

(1b) initialize
initialized
(2) accept

accepted
(3) reveal

revealed
(4) ok/complain

(5) finalize

sold

Figure 2.2: FairSwap: global model

clear text by the sender. During the next phase, the receiver sends the payment to the system
in exchange for the key used for the encryption of the file. If the shared key is wrong, then the
agreed description is used to identify the party that misbehaved and economically penalizes it.
We briefly treat FairSwap [36] and FairDex [30] fair exchange protocols, with a specific focus
on the misbehavior detection ideas introduced by them. Both protocols are optimistic fair ex-
changes [50], which means that the TTP, i.e., the blockchain, is heavily used only if one of the
two parties misbehaves. At the beginning of the protocol, the two parties agree on a descrip-
tion: common knowledge representing the file’s content. If one of the two parties behaves in
a malicious way, the other one can provide the TTP a proof of it, called proof of misbehavior
(PoM). Usually, this proof is cryptographically linked with the description of the file, allowing
the TTP to check its validity.

FairSwap This protocol assumes that both parties know in advance the hash of the digital
good x, which is represented as a set of units called sub-goods. As visible in Fig. 2.2, the seller
S has to initialize the exchange, by first sending the encoding z of the good to the receiver (step
1a), and then sending a commitment to the judge smart contract (step 1b).

The encoding z is composed using theAlg. 1 by the encryption of all the nodes of theMerkle
tree generated byMtree(x) by using a symmetric encryption scheme.

14

Algorithm 1 Encode
Input: x = (x1, ..., xn), k

M←MTree(x) ▷Compute all the Merkle tree nodes
formi ∈M do ▷ Encrypt all the nodes

ki ← H(k||i) ▷ Sub-key as a hash of master key and index of the node
zi ← E(ki,mi)

end for
Output: z = (z1, ..., zm)

The judge smart contract is provided with a cryptographic commitment of the master key, i.e.,
H(k), and with the description of the good, i.e., root(MTree(x)) and root(MTree(z)).
Once the buyer transfers the agreed amount of money to the smart contract (step 2), the seller
publishes the key (step 3), which integrity is checked using the previously published key com-
mitment. If both parties behaved correctly then the sender can withdraw the money and the
protocol ends. Otherwise, if the sender behaves maliciously, the receiver has a certain amount
of time to provide proof of the misbehavior and receive his money back. Passing the encoding
Z to the algorithm 2, the receiver is able to identify at least one node in the Merkle tree that is
wrong. The proof ofmisbehavior sent to the smart contract is composed of thewrong node, its
sibling, and its expected parent. The sender is also required to attach the proof that the consid-
ered node and its sibling belong to the encoding z; this is done by providing the corresponding
Merkle tree paths. The smart contract then executes the algorithm 3 to verify the provided
proof of misbehavior.

Theprotocol achieves constant on-chain complexity in theoptimistic case. In thepessimistic
case, the time complexity depends on the logarithm of n and on the size of each sub-good zi,
since the PoM requires two of them. Regarding the off-chain performances, the encoding z
adds a certain communication overhead, since other than the n encrypted sub-goods it is neces-
sary to send also the internal nodes of theMerkle tree. Even assuming the encrypted file is to be
exchanged using a private communication channel between the two parties, in the pessimistic
case at least two sub-files are sharedwith the smart contract, and so published. If the procedure
is repeated multiple times, an eavesdropper could learn a relevant portion of the file.

FairDex It is a sampling-based fair exchange protocol, which considers the file x as a set of
sub-files. Instead of using the hash of the file, a jointly agreed subset of the sub-files is used to
define the description. Its idea is similar to FairSwap [36], but with some changes that allow

15

Algorithm 2 Extract
Input: z = (z1, ..., zm), k, h = Root(Mtree(x))

for i ∈ [n] do ▷Decrypt the leaf nodes
xi ← D(ki, zi)

end for
Z←MTree(z)
for i ∈ [n+ 1, ...,m] do

xi ← H(xli, xri)
if (xi ̸= D(zi, ki)) ∨ (i = m ∧ xi ̸= h) then ▷Wrong decrypted node or root

l← index(zli) ▷ Index of left child of zi
r← index(zri) ▷ Index of right child of zi
iproof ←Mproof(Z, i) ▷ Proof that zi belongs to Merkle tree Z
lproof ←Mproof(Z, l) ▷ Proof that zl belongs to Merkle tree Z
π ← (i, l, zi, zl, zr, iproof, lproof)
Output: ((x1, ..., xn), π)

end if
end for

Output: ((x1, ..., xn),⊥)

Algorithm 3 Judge
Input: π = (i, l, zi, zl, zr, iproof, lproof)

if Mverify(i, zi, iproof,Root(Z)) ̸= 1 then
Output: false ▷Mverify of iproof returns false

end if
if (Mverify(l, zl, lproof,Root(Z)) ̸= 1) ∨ lproof[0] ̸= zr) then

Output: false ▷Mverify of lproof returns false or it does not start with zr
end if
xi ← D(zi, ki)
xl ← D(zl, kl)
xr ← D(zr, kr)

Output: xi = H(xl, xr) ▷Check if si has the right value

16

reducing the execution cost in the pessimistic case.

Figure 2.3: Illustration of FairDex protocol. Honest and malicious executions are represented with (9a)‐(9b) and (10a)‐(10b).

Even in this protocol, the file is encrypted using the Encode algorithm (Alg. 1) used in Fair-
Swap. The first part of the protocol is executed off-chain: the sender S shares with the receiver
R an encrypted version of the file (step 1). The two parties agree on the description to use, and
S shares withR the sub-keys to decrypt each sub-file contained in the description (step 2 up to
6). In this way,R can check them and decide if to continue the exchange process or not. Unlike
FairSwap, theMerkle tree commitment sharedwith the smart contract is not generated starting
from the sub-files, but from the sub-keys used for the encryption process. Considering the set
r of indexes of sub-keys representing the description, then theMerkle tree has [kr1 , r1, ..., krs , rs]
as leaves, as visible in Alg. 4. This allows to achieve lighter proofs of misbehavior, which size
does not depend on the sub-files, but only on the sub-keys.

After sharing the master key, if both parties behave correctly then the protocol stops, oth-
erwise, the pessimistic case is considered. In particular, knowing the master key, R is able to
generate all the sub-keys and decrypt the sub-files.
IfR identifies a wrong sub-key during this process, he can share the proof of misbehavior with
the smart contract. The goal of R during this phase is to prove that one of the sub-keys used
for the description can’t be generated using the shared master key k.

17

Algorithm 4DescGen
Input: k = (k1, ..., kn), r, s ▷ Set of keys k, random seed r, size of description s

r← GenIndex(r, n, s) ▷ Set of s distinct indexes in [1, n]
Ksamp ← {Kri|ri ∈ r} ▷ Set of selected sub-keys
if Verify(Ksamp) then

descx ←MTree(kr1 , r1, ..., krs , rs) ▷Merkle Tree description
end if

Output: (descx,Ksamp, r)

The proof of misbehavior is then composed of:

• the index of the wrong sub-key

• the right sub-key used for the description

• the Merkle path that proves that the sub-key belongs to the description, generated with
the Alg. 2.

The verification of the proof of misbehavior is similar to Alg. 3 but considers that the leaf
of the tree is composed of sub-keys and corresponding indexes.
This protocol allows achieving a logarithmic complexity in the pessimistic case, avoiding having
proof of misbehavior depending on the size of the sub-files and removing the communication
overhead that characterizes FairSwap. No assumption is done regarding the knowledge by the
two parties of the hash of the file.

Security Properties Themain security properties of a fair exchange protocol [30, 36, 51,
52, 37] are:

• Correctness: if both parties behave correctly, then R learns the file content, while S re-
ceives the requested amount of money p.

• Termination (orTimeliness): if at least one party is honest, then the protocol terminates
in a finite number of rounds and unlocks all the coins from the contract.

• Sender Fairness: an honest sender S is guaranteed that no information about x is shared,
if he doesn’t receive the requested amount of money.

• Receiver Fairness: an honest receiver R is guaranteed to pay the price of the file iif he is
able to learn correctly the content of the file.

18

• Security against grieving: in case of a dispute, the cheating party always compensates the
cheated party for any transaction fees paid during the dispute process.

A probabilistic definition of fairness can be introduced by defining an arbitrary lower bound
on the probability to violate fairness [53, 54, 55].

19

20

3
Protocol

Our proposal aims to allow reporters to share and sell information to newspapers, in a confi-
dential and anonymous way, providing a measure of the credibility of the shared information.
We take some ideas from existing sampling-based fair exchange protocols [36, 30], to extend
them to manage multiple users, sale operations, and confidentiality between seller and buyer.
We design the system in order to cover in a complete way the whole sharing process, not assum-
ing any private or secure direct communication channel between the two parties.
Since this work represents the starting point of a longer research, this section starts with all the
considered assumptions, and among them some definitions that we leave to better formalize in
future works. We present the considered threat models and properties that we want to achieve,
for then describing the actual protocol, followed by the corresponding security and privacy
proofs.

3.1 Assumptions

Let’s defineA as themediaworker’s space, where eacha ∈ A is characterizedby apublic/private
key pair (pka, ska) ∈ P × S. Let’s call T the set of all possible newspaper article topics. We
assume to have a mapping I : T× P→ [0, 1], defining for each topic t ∈ T and media worker
a, identified by its public key pka, the interest and expertise level of a w.r.t. t. Starting from I,
we can design a function to compute, given a set of nmedia workers, each with its public key, a
measure of its correlation with a specific topic, i.e., f : T× Pn × I→ O, withO output space.

21

The definition and design of T, I, f are out of the scope of this thesis, and we leave it as future
work.
The symbol || is used in the thesis to indicate the concatenation of the value of two variables.
Table 3.1 contains the main notations used for the protocol.

Table 3.1: Notation table

Symbol Definition
A set of media workers
B set of newspapers
T set of topics
I mapping between topic and media worker
f correlation function
x file to exchange
z encrypted file
descx description of file x
Ksamp sample of sub-keys
s number of samples to consider, i.e., |Ksamp|
Isamp indexes of the sampled sub-keys
r randomness
H hash function
Es,Ds symmetric encryption and decryption functions
Eas,Das asymmetric encryption and decryption schemes
Sign,Verify ring signature sign and verification functions
S,P private and public key spaces
Bchannel,Pchannel blockchain and public communication channels

3.1.1 Communication model

We consider a synchronous communication model [56, 57, 58], where the time unit is defined
as round and each party is aware of the current round. The protocol is executed following these
rounds, and, assuming a synchronous model, only one party can operate during each of them.
We assume the presence of a communication channel Bchannel between the blockchain and each
party, used to interact with the blockchain itself. Regarding the communication between the
reporter and newspaper, no direct, confidential, or authenticated channel is required, but we

22

assume the presence of a public channel Pchannel where each party has reading and writing priv-
ileges, e.g., a website or shared directory.

3.2 ThreatModel

In this work, we examine multiple threat scenarios, depending on the behavior of the involved
parties. Fixing a specific reporter-newspaper information exchange then we can observe the
following scenarios.

Malicious reporter, honest newspaper The reporter shares the sampling-based de-
scription of the file but then he sends the wrong encrypted file or decryption key.

Honest reporter, malicious newspaper The reporter follows the protocol providing
the correct encrypted file and decryption key to the newspaper. The newspaper behaves in a
maliciousway, trying to create awrong PoMand initiating the refund routine even after having
received the correct information.

Eavesdropper Passive attacker, which gets information by observing the protocol execu-
tion between the reporter and newspaper. The eavesdropper wants to get additional informa-
tion about the shared data or about one of the parties.

3.2.1 Properties

The proposed protocol satisfies some anonimity and fair exchange properties. We consider a
single execution of the protocol, so a single exchange between a specific reporter andnewspaper.
The fair exchange properties that we consider are the ones defined in Sec. 2.2.2, that using the
notation presented in Table 3.1, become:

• Correctness: if both parties behave honestly, then the receiver obtains a file o s.t. desco =
descx, while the sender earns the agreed amount of money.

• Probabilistic Receiver Fairness: if the receiver does not obtain the correct file, thenwe can
set an arbitrary lower bound on the probability of the sender earning the agreed amount
of money.

• Sender Fairness: if the sender does not earn the pre-agreed amount of money, then the
receiver cannot obtain any useful information about x, except for the samples related to
its description, i.e., xi s.t. ki ∈ Ksamp.

23

• Timeliness: every party that behaves honestly terminates the protocol in a finite and
capped amount of time.

• Grieving Security: in case of a dispute, the cheating party must always compensate the
cheated party for any transaction fees paid during the dispute process;

Additional properties are:

• Confidentiality: if at least the sender behaves honestly, then no information but the sam-
ples used for the description, has to be visible to an external observer;

• K-anonimity: given a group of k reporters and a specific information exchange, the prob-
ability of a specific reporter to have shared the information has to be uniform in the size
k of the group.

3.3 FairDrop

We can define FairDrop as a multi-buyer fair exchange protocol with anonymity properties.
FairDrop is a sampling-based fair exchange, and for this reason, the information tobe exchanged
is seen as a set of samples. We refer to it as a file.
A smart contract Judge is used to mediate the two parties during the process, providing func-
tionalities like escrow [59] andmisbehavior verification, allowing them to fairly resolve disputes
when they disagree. Since Judge is able tomanage sales executed bymultiple reporters and news-
papers, then we assume Judge to be already deployed on the blockchain. We do not require any
user of the service tomanage the deployment operations and costswhile executing the protocol.
Each exchange is composed of two main phases:

• initialization phase: executed by the reporter to define the description of the file he
wants to sell, and publish the required metadata.

• sale phase: handles the exchange and the possible misbehavior by one of the two parties.

The protocol considers two different behavior models by its participants: an optimistic one,
when both parties follow the protocol, and a pessimistic one, when at least one of them misbe-
haves.

24

3.3.1 Initialization Phase

For simplicity of explanation, we start fixing a reporter, or in general media worker, a ∈ A. We
assume a to hold some information x that he wants to sell for a fixed price p. We consider x as
a set of |x| sub-files, i.e., x = {xi}|x|i=1.
Since a possible buyer does not know the content of x in a detailedway, then the twoparties have
to agree on some common knowledge, called description of x. Being the protocol a sampling-
based one, then the description of the file is represented by a subset of its sub-files.
During this phase, as shown in Fig. 3.1, the reporter a interacts with the smart contract Judge
and the public communication channel Pchannel to share some information regarding the file
x and allow any interested newspaper to request to buy the file itself. Initially, a generates a
master key k, that he uses to compute a sub-key for each sub-file, each sub-key ki is defined as:

ki = H(K||i) ∀i ∈ {1, ..., n}. (3.1)

Then a encodes x by encrypting each sub-file xi with the corresponding sub-key ki and a sym-
metric encryption scheme:

zi = Es(ki, xi) ∀i ∈ {1, ..., n}. (3.2)

In this way a obtains z = [z1, ..., zn], representing the encrypted version of x.
Since each sub-key ki is computed starting from the master key k and its index i and being Es

symmetric, then a possible buyer would just need k to completely decrypt z. For this reason, k
is calledmaster key.
In a sampling-based fair exchange protocol, the description is usually derived from the actual
content of the file, and so by a subset of its sub-files. As already presented in other protocols
[30], instead of using a subset of sub-files, it is useful to use a subset of sub-keysKsamp, in order
to reduce the cost of execution in the blockchain. While usually [30] the randomness to select
the samples in Ksamp is given by the interaction between seller and buyer, in our protocol we
assume it to be generated directly from the blockchain. This allows the reporter a to execute
the initialization phase even in absence of a ready buyer. To identify the indexes of keys to be
sampled, starting from the randomness r we use the algorithm 1, which is a modified version
of Fisher and Yates’ shuffle algorithm [60]. The number of indexes to generate, i.e., |Ksamp|,
represents the portion of the file that the reporter wants to reveal for free. This value is decided
by the reporter itself during this phase.

25

Algorithm 1 GenIndexes
Input: s = |Ksamp|, n, r ▷ s: #samples to take, n: # of sub-files, r: randomness

Rand.seed(r) ▷ Init a PRNG using the obtained randomness r
indexes = [0, 1, ..., n-1] ▷Array of all possible key indexes
i = n-1, Isamp = {}
while i > n-s-1 do ▷ Fisher and Yates’ shuffle algorithm, to get a random permutation

j←Rand.nextInt(i) ▷Random integer j s.t. 0 ≤ j ≤ i
Isamp ← Isamp ∪ {indexes[j]} ▷ Save selected value
swap(indexes[i], indexes[j]) ▷ Swap indexes[j] with indexes[i] to avoid repetition
i← i− 1

end while
Output: Isamp

In thisway, inO(s) time, andO(n) space,we are able to obtain a sequenceof size s, containing
the indexes to be used for the sub-keys sampling. At this pointKsamp is defined in the following
way:

Ksamp = {ki} i ∈ Isamp. (3.3)

Each party knowingKsamp is able to obtain:

xi = Ds(ki, zi) ∀ki ∈ Ksamp. (3.4)

Starting fromKsamp, we can define the description desc of x as the root of theMerkle tree having
as leaves (ki, i) ∈ Ksamp:

desc = Root(MTree(ki1 , i1, ..., ki|Ksamp|
, i|ksamp|)). (3.5)

With the term depthwe refer to the height of thatMerkle tree. Assuming the number of leaves
to be a power of 2:

#leaves = 2 ∗ |Ksamp| = 2h, h ∈ N, (3.6)

then we can consider depth = h.

Smart contract interaction During the initialization phase, the reporter a has to in-
teract with the Judge smart contract, following the scheme shown in Fig. 3.1.

26

Reporter a Judge Smart Contract Public Channel

1. publishFile(zhash, depth, price)

1. (zhash, randomness)

2. setDescription(zhash, description)

2. (zhash, description)

3. upload z = [z1, ..., zn], sign(z), ksamp

Figure 3.1: FairDrop: initialization phase scheme

After computing z, the reporter a has to share:

• a cryptographic commitment of the encrypted file z, represented byH(z) in our case;

• the depth of the expected description Markle tree, strictly related to the |Ksamp| decided
by the reporter;

• the price the reporter wants to share its information for.

The previous information is shared with the smart contract Judge by calling the method
publishFile. During the execution of this method, the smart contract generates and pub-
lishes a random value r that can be used as input for Alg. 1 to identify the index of the sub-keys
that will composeKsamp. The description desc is then computed following Eq. 3.5, and shared
with the smart contract calling the method setDescription.
To conclude the initialization phase the reporter a has to share through the public communi-
cation channel P:

• the encoded file z;

• the sampled sub-keysKsamp with the corresponding indexes;

• a public key pk, selected by a, and different from pka;

27

• the ring signature of the encrypted file z, obtained by providing to the algorithm Sign,
the private key ska, the public keys of the other members of the group, and the encoded
file z;

• some metadata regarding x, such that a description of its content, a title, and a topic
t ∈ T associated with it.

As mentioned, among the information that the reporter publishes, there is the signature of
z. Being it a ring signature, the reporter a has to first choose a group of members from the set
A. The choice of that group, containing also a, has to be done in order to maximize the value
of fw.r.t. the group and the topic t ∈ T of x. This would incentive a possible newspaper b ∈ B
to proceed with the sale phase since the information would seemmore credible.

3.3.2 Sale Phase

Each newspaper b ∈ B, interested in buying and obtaining the file x, has to execute the sale
phase. During this phase, the newspaper checks the data shared by the reporter in the initial-
ization phase, both in the blockchain, i.e., through Bchannel and in the public one, i.e., Pchannel.
Examining this data, b actually decides if to continue with the information exchange or stop
the protocol.
If the exchange continues, then bhas to interactwith smart contract Judge, to recordhis interest
in the file, and to perform the actual exchange. During the whole phase, no direct communica-
tion involves a and b, which communicate only through the smart contract. At the end of this
phase:

• in the optimistic case, the reporter a receives the payment, while the newspaper b pays
the agreed amount of money and he has full access to x;

• in the pessimistic case, the reporter a doesn’t receive the payment while the newspaper b
receives back his money without having the possibility to learn more about x.

The sale phase represents the interactive part of the protocol since requires both parties to
execute computations and interactions with the smart contract. For this reason, we can split
the phase in rounds and define a maximum round time durationRtime. If a party doesn’t share
with the smart contract the data required for the considered round in time, i.e., beforeRtime is
reached, then we assume the party to abort the protocol. Defining in this way Rtime, allows to
achieve timeliness property in the protocol, as explained later in Sec. 3.3.3.
In the following paragraphs, we analyze in a more detailed way all the steps that compose this
phase.

28

Initial checks As introduced previously, before continuing with the actual exchange, the
newspaper b examines the data shared by the reporter during the initialization phase, to check
everything is correct. In particular, b has to:

• compute the hash of z shared in Pchannel, and verify that a corresponding randomness
value has been shared by the smart contract, as result of the publishFilemethod call;

• the newspaper b computes the Merkle tree having as leaves the element in Ksamp shared
by the reporter a in Pchannel and compares its root with the description published using
the setDescriptionmethod of the smart contract;

• verify the correctness of the ring signature shared by a, i.e, Sign(z), by using the Verify
algorithm. We assume the signature to contain the list of public keys of the members of
the group.

• use the shared sampled sub-keys, i.e., ksamp, to decrypt the corresponding sub-files and
check that they respect the expectations of b. To do so, we can assume b to consider
the shared topic t of x, and the other metadata, such as the title and description of the
file. As described in Sec. 3.3.3, the size of Ksamp influences the probabilistic receiver fair-
ness property, and for this reason, has to be considered by b before continuing with the
exchange.

If all the previous checks are successfully executed, then before proceeding b verifies the com-
position of the ring signature. By the properties of ring signatures, b cannot understand which
particular member of the ring signed the file, but he knows the composition of the ring, and in
particular the list of the public keys associated with the members of it. At this point, using f,
function introduced in 3.1, b can obtain a value representing the correlation between the topic
of the file x and the ring. This value can be used also as a measure of the credibility of the infor-
mation exchanged, and as a parameter by b to decide if to continue with the actual exchange or
not.

Optimistic case If the newspaper b decides to proceed with the exchange, he formalizes
his decision by calling the buymethod of the smart contract and paying its price. In order to
allow the reporter a to subsequently share the master key in a confidential way, b randomly
select a value secret, and provides to the buymethod:

• H(secret): the hash of the secret, which represents a cryptographic commitment of it;

• Eas(pk, secret): the ciphertext obtained by encrypting the secret using the public key pk,
shared during the initialization phase.

29

As shown in Fig. 3.2, the reporter a, using its private key ska, can decrypt the ciphertext and
obtain the secret. The reporter also checks the correct behavior of b, by comparing the received
hash of the secret, and directly computing it with the decrypted data. If one of these two steps
fails, then a aborts the protocol by letting passRtime.

Eas(pk, secret) Das secret' H

sk

?

=

H(secret')

H(secret)

Figure 3.2: Sale phase, optimistic case ‐ secret verification

Once called, the method buy publishes an id associated to the current file sale between a
and b. The id is necessary for the smart contract to manage multiple file exchanges between
different parties, and it is required to provide in each subsequent call of a method of the smart
contract. If the reporter decides to continue with the protocol, he can compute:

k̂ = k⊕ secret, (3.7)

and share it by calling themethod publishKey of the smart contract. To avoid grieving attacks
on the receiver, a has also to send a certain amount ofmoney, called collateral, while calling this
method. Since the newspaper b knows secret, he can compute the master key as:

k = k̂⊕ secret, (3.8)

and derive the sub-keys as defined in Eq. 3.1, to fully decrypt z.
Assuming the shared key to be correct, the protocol ends after a certain timeout, i.e,Rtime. After
it, the reporter calls the withdrawmethod and receives the price of x plus the collateral back.
A representation of the on-chain part of this phase is shown in Fig. 3.3. In particular, while
the call 1. is always done by the newspaper, depending on the data provided by him, i.e., hash
and encryption of the secret, two different execution flows are identified, in the figure: (2a, 3a)
and 2b.

30

Reporter a Judge Smart Contract Newspaper b

1. buy(zhash,H(secret),Eas(secret))
1. purchase id

1. purchase id
2a. publishKey(k̂, zhash, id)

2a.k̂
3a.withdraw(zhash, id)

3a. price

2b. refundToBuyer(zhash, id)

2b. price

Figure 3.3: FairDrop, sale phase: optimistic case

Pessimistic case If the reporter a shares a wrong encryptedmaster key k̂, then b can prove
it by using the previously published information. In particular to define a PoM, b has to find a
sub-key ki belonging to Ksamp that it is not possible to generate using k̂. It means that for ki it
holds:

ki ̸= H((k̂⊕ secret) || i), ki ∈ Ksamp. (3.9)

Fixing such ki, a valid PoMwould be composed by:

• the index i of the sub-key to consider;

• πi = Mproof(Mtree(ksamp), i): used to prove that the sub-key belongs toKsamp, and that
it was used to compute the description desc;

• the secret previously chosen by b, in cleartext.

Once created the PoM, the newspaper b can publish it by calling the raiseObjection
method of the Judge smart contract. The raiseObjection logic is shown in Alg. 2: if the
PoM is valid, then b receives back his money plus the collateral, in order to refund b for the fee
costs paid to call the raiseObjectionmethod.

31

Algorithm 2 raiseObjection

Smart Contract State: secreth, desc, k̂ ▷ secreth: hash of secret, k̂: k⊕ secret
Input: i, ki, πi, secret ▷ i: index, ki: sub-key, πi: Merkle path of ki inKsamp

if H(secret) ̸= then ▷Check secret commitment
Output: ⊥

end if
k← secret⊕ k̂ ▷ Extract the master key
if H(k||i) ̸= ki then ▷Verify that the supplied ki does not derive from k

if Mverify(i, ki, πi, desc) then ▷Verify the correctness of πi
send(price + collateral, address) ▷Refund the newspaper (price + collateral)

else
Output: ⊥ ▷ ki does not belong toMTree(Ksamp), and so the PoM is not valid

end if
else

Output: ⊥ ▷ ki is derivable from k, and so the PoM is not valid
end if

Output: ⊤

To sum up, a representation of the on-chain interaction during this part of the protocol is
shown inFig. 3.4. Inside the diagram twodifferent paths are reporteddependingon the validity
of the submitted PoM:

• (3a): in the case the PoM is evaluated as correct by the Judge smart contract, a refund is
sent to the newspaper b, that receives both the price and the collateral, used to cover the
expenses needed for the raiseObjection call.

• (4b): if no correct PoM is submitted, after Rtime, the reporter a can call the withdraw
method and receives back the collateral plus the price payed by b for the file x.

32

Reporter a Judge Smart Contract Newspaper b

2. publishKey(k̂, zhash, id)

2. k̂

3. raiseObjection(zhash, id, secret, PoM)

3a. price + collateral
4b. withdraw(zhash, id)

4b. price + collateral

Figure 3.4: FairDrop, sale phase: pessimistic case

3.3.3 Security & Privacy Analysis

In this section, we provide the proofs for both security and privacy properties mentioned in
Sec. 3.2.1.

Correctness Protocol correctness implies that if both parties behave correctly, and so only
the optimistic case is executed, i.e., no PoM is considered, then both of them will receive what
they expect: the reporter a obtains the payment, while the newspaper b obtains x.

Proof Sketch. First, the reporter a executes the initialization phase, without any interaction
with the other party b. During this phase, the reporter samples the sub-keys to share and gen-
erates a Merkle tree having them as leaves. In this way, the description of x, i.e., the root of
the tree, is identified. The reporter then shares some information with both the smart contract
Judge and the public channel Pchannel. Among these a public key pk,Ksamp, and the description
desc. During the sale phase, the newspaper b uses pk to share a secret with the reporter, which
commitment, i.e. H(secret), is stored inside the smart contract. Assuming both the reporter
a and the newspaper b to behave in a correct way: a shares the k̂ = k ⊕ secret, b successfully
recovers k, derives all the sub-keys and fully decrypt z.
Since the sharedmaster key is correct, the newspaper b doesn’t provide the smart contract with

33

any PoM, and after a time Rtime, the reporter a can call the withdraw method and receive its
payment.

Lemma 3.3.1. FairDrop satisfies the correctness property.

Timeliness Protocol timeliness implies that each party that behaves honestly terminates the
protocol in a finite and capped amount of time.

Proof Sketch. Considering the communication model used in the protocol, we assume each
round to have a maximum duration of Rtime. We analyze and prove the timeliness property
only on the sale phase since it is the only one that requires actions by both parties. We split the
discussion considering separately an honest reporter a and an honest newspaper b.
Starting with the honest sender a, we can identify the following scenarios:

• b behaves in a malicious way, calling the buymethod of the smart contract and sharing
an encrypted secret that does not correspond to the shared hash. In this case, the reporter
a can just wait until the end of the round without taking any action, this would abort
the protocol for both parties.

• b does not provides a PoM after the reporter a shared the master key. In this case, the
reporter can just wait the end of the round, i.e. Rtime, and call the withdraw function,
receiving the payment and ending the protocol.

On the other side, considering an honest receiver b, then:

• if the reporter a does not proceedwith the sharing of themaster key after the request of b
to buy the file, then b can just wait forRtime and then call the refundToBuyer function,
to receive back his money and terminate the protocol;

• if the reporter a shares a wrong key, then b can just provide a valid PoM to the smart
contract, in maximumRtime time, and terminate the protocol.

Lemma 3.3.2. FairDrop satisfies the timeliness property.

34

Probabilistic Receiver Fairness Protocol probabilistic receiver fairness implies that if
the receiver b does not obtain the correct file, then we can set an arbitrary lower bound on the
probability of the sender a earning the agreed amount of money.

Proof Sketch. The sender, i.e. reporter a, can behave in amaliciousway and try to break receiver
fairness by:

1. during the initialization phase, providing a value zhash to the smart contract, and upload
in Pchannel an encrypted file z, with different hash;

2. during the initialization phase, providing a description desc to the smart contract, and
upload in Pchannel a setKsamp that leads to a different value;

3. during the sale phase, share a wrong master key.

Considering first the intialization phase, scenarios 1. and 2. can be avoided by the receiver
b, by executing the initial checks, explained in Sec. 3.3.2. In particular, the sharing of informa-
tion in thePchannel requires the reporter a to already have interactedwith the smart contract and
committed to it the value of the hash and the description. For scenario 1., b can easily compute
the hash of the shared file z and compare it to the one saved in the smart contract. While for
scenario 2., since Alg. 1 returns always the same set of indexes, given the same value of random-
ness, b can first check the indexes of the shared Ksamp, and then compute the description and
compare it to the one saved in the smart contract.
Considering only scenarios 1. and2., we are able to achieve deterministic receiver fairness, while
for scenario 3. we need the introduction of ameasure of probability. In the case of the reporter
sharing awrongmaster key, bhas to identify a key inKsamp that is not possible to derive from the
sharedmaster key. A probabilistic attack by the reporter awould be to consider x = [x1, ..., xn],
and so K = [k1, ..., kn], with the probability of a sub-key ki to be wrong equal to p. Since Alg.
1 identifies a set of size s = |Ksamp| fromK, then the probability of success by the attacker corre-
sponds to select s correct elements out of a set composed by p ·nwrong elements, and (1− p)n
correct ones. The probability of success is:(

(1−p)n
s

)(n
s

) =
s−1∏
i=0

(1− p)n− i
n− i

=
n(1− p)(1− p− 1

n)...(1− p− s−1
n)

n(n− 1)...(n− s+ 1)

<
(1− p)s

(n− 1)...(n− s+ 1)
≪ (1− p)s

(3.10)

35

Lemma 3.3.3. In FairDrop, no adversarial sender a can violate the receiver fairness property
with a probability more than (1− p)s where p is the probability of a not following the protocol for
a sub-key.

Sender Fairness Protocol sender fairness implies that if the sender does not earn the pre-
agreed amount of money, then the receiver cannot obtain any useful information about x, ex-
cept for the samples related to its description, i.e., xi s.t. ki ∈ Ksamp.

Proof Sketch. For this property, we analyze the amount of information obtainable by the re-
ceiver b both during the initialization and sale phases.
Starting from the initialization phase, each receiver b can derive xi s.t. ki ∈ Ksamp, the sender
fairness in this case is guaranteed by:

• the one-way property of the used hash function, i.e., from ki = H(k||i), it is computa-
tionally infeasible to derive k;

• theusageof a symmetric encryption scheme that is indistinguishableunder chosen-plaintext,
that guarantees that {(xi, zi), i ∈ Isamp} does not leak any additional information about
z.

Regarding the sale phase, considering the pessimistic scenario, no additional information is
shared by the sender a or by the Judge smart contract, during the verification of the PoM.

Lemma 3.3.4. FairDrop satisfies the sender fairness property.

GrievingSecurity Protocol grieving security implies that in case of a dispute, the cheating
partymust always compensate the cheatedparty for any transaction fees paidduring thedispute
process (fee fairness).

Proof Sketch. Without grieving security, amalicious reportera, coulddeliberately share awrong
key, forcing the receiver b to execute the PoM verification, and so to pay the corresponding
transaction fees. To avoid this scenario the protocol requires the sender of the exchange to
provide a collateral. This amount of money is sent to b if he is able to provide a correct PoM,
otherwise it is refunded to the reporter a. Since correctness and sender fairness properties hold
(Lemma 3.3.1 and 3.3.4), then the described mechanism leads to grieving security.

Lemma 3.3.5. FairDrop satisfies the fee-fairness (grieving security) property.

36

Confidentiality Protocol confidentiality implies that if at least the sender behaves hon-
estly, then no information but the samples used for the description, i.e., xi s.t. ki ∈ Ksamp, has
to be visible to an external observer.

Proof Sketch. By sender fairness, Lemma3.3.4, if the senderdoesnot earn thepre-agreed amount
of money, then the receiver cannot obtain any useful information about x, except for the sam-
ples related to its description, i.e., xi s.t. ki ∈ Ksamp. We can consider confidentiality as a
relaxation of sender fairness, where each external user is a receiver that does not complete or
provides a payment to the sender. For confidentiality, we have only to prove that only the re-
ceiver that actually completes a correct payment can recover the master key.
This is guaranteed by the secrecy of secret value that is shared by the receiver during the sale
phase. In particular, for an external user is computationally difficult to identify the secret, since:

• by the usage of a way-one hash function: it is not computationally feasible to identify
the value of secret, just knowingH(secret);

• by the asymmetric encryption scheme properties, we assume it is hard to derive the secret,
only knowing Eas(secret, pk).

Lemma 3.3.6. FairDrop satisfies the confidentiality property.

K-anonymity By k-anonymity, we ensure that an external observer of the system has no sig-
nificant advantage of guessing the reporter’s identity than random guessing over the members
of the ring.

Proof Sketch. Considering a single file exchange, the observable information for an external
attacker are:

• the metadata regarding the file to be exchanged;

• the wallet associated with the reporter;

• the encrypted file signature done by the reporter.

We assume the reporter to take appropriate measures to secure his wallet, and we focus
mainly on the other shared data. While the file metadata is not linked in any way with the
reporter, the encrypted file signature is. By the assumptions on the ring signature scheme, it

37

provides unconditional protection of the signer identity [39]. That leads the attacker to don’t
have any non-negligible advantage in guessing the identity of the signer, w.r.t. random guess-
ing.

Lemma 3.3.7. FairDrop satisfies the k-anonymity property, with k being the number ofmembers
in the considered ring.

38

4
Performance Evaluation

In this section, we analyze the implementation and performance of the proposed protocol. We
first consider the optimistic case, where both participants behave correctly, and then focus on
the pessimistic one, characterized by the misbehavior of the sender, the reporter a, and the rise
of an objection by the receiver, the newspaper b. We discuss and motivate the obtained results,
comparing themwith the proposed fair exchange protocol, to identify in which situations our
protocol proves to be more effective.

4.1 Implementation

The implementation of the protocol has covered mainly the fair exchange part since the com-
putation of a credibilitymeasure starting from the ring signature still needs some researchwork
to do. The implemented system consists of three components:

• the Judge smart contract deployed on the blockchain;

• a client to allow the reporter a to interact with the system, i.e., the blockchain and the
smart contract Judge, as shown in Fig. 4.2;

• a client to allow the newspaper b to easily proceed with the execution of the protocol by
interacting with the smart contract, as shown in Fig. 4.1.

The client scripts are written in Python, using the Web3.py [61] library. They provide an
easyway for the reporter and newspaper to interactwith the system and so execute the protocol.

39

The usage of a very intuitive and easy user interface, as visible in Fig. 4.1 and 4.2, reduces the
knowledge entry barriers required for a possible user to actively operate through our platform.

Figure 4.1: Receiver user interface, example of buying a file Figure 4.2: Sender user interface, example of buying a file

The smart contract is implemented in Solidity and runs on Ethereum [47]. For test purposes,
we considered the Ropsten network, a PoW testnet of Ethereum. Later, following the changes
in the consensus mechanism of Ethereum [62], we moved to the Goerli network, a PoS test-
net of Ethereum. Inside the smart contract, we use the following Solidity functions as crypto-
graphic primitives:

• the keccak256 solidity interface for hashing: it receives in input an arbitrary long bytes
value, and outputs hashes of 32 bytes;

• the encodePacked solidity method: it allows to provide an arbitrary number of param-
eters and outputs their concatenation;

Since Solidity does not provide built-in cryptographic primitives, except for the one previously
mentioned, in the following paragraphswe treat in detail howwe achieved on-chain operations,
like encryption and randomness generation.

4.1.1 Symmetric encryption scheme

A symmetric encryption scheme is vital for the correct execution of the protocol since both
the encoding of the file and the PoMmechanism are based on it. Due to the currently limited
capabilities of the Solidity scripting language, we implemented the encryption asXORbetween
each plaintext xi and sub-key ki as:

zi = E(ki, xi) = xi ⊕ ki = xi ⊕H(k||i). (4.1)

This allows us to implement the decryption by easily computing:

xi = D(ki, zi) = zi ⊕ ki = zi ⊕H(k||i). (4.2)

40

This approach is currently used in most of the other blockchain-based fair exchange proto-
cols [36, 37, 30] since it allows to perform and verify symmetric encryption and decryption
on-chain. From our protocol perspective, since the keccak256 hash function has a 32 bytes
output space, then each sub-file xi has to be of that size to allow efficient encryption and de-
cryption. For the same reason, also the considered sub-keys and the secret used in the sale phase,
are 32 bytes long.

4.1.2 Asymmetric encryption scheme

An asymmetric encryption scheme is necessary during the sale phase since it is at the base of
the confidential exchange of the secret between the two parties. This requirement could be re-
moved by assuming a confidential and secure communication channel between the two parties,
as done in other paper [30, 37], but it does not apply to our application scenario.
Since the ciphertext is just shared through the smart contract, and no computation or verifica-
tion is directly done on-chain, then there is no limitation related to the Solidity language to be
considered. For our specific implementation, we used NaCl box, but since no strong constraint
is identified, other asymmetric encryption schemes could be considered in other implementa-
tions.

4.1.3 Id generation

During the sale phase, to manage multiple exchanges, each of them is associated with a unique
id. To generate them on-chainwe use an id generation strategy. In our specific implementation
we considered:

id ← bytes32(keccak256(abi.encodePacked(msg.sender, fileHash))),

that is the hash of the concatenation of the sender address, i.e.,msg.sender, and the hash of the
exchanged file, i.e. fileHash.
Using this id generation strategy, we can fix an id to a specific pair of file x and newspaper b.
This allows a newspaper to execute the sale phase for a specific file only one time. We took this
decision considering that:

• in the optimistic case, if the newspaper b successfully buys the file x, it is a viable option
to assume he will not buy it again;

41

• in the pessimistic case, if the newspaper b is forced to provide a correct PoM, it is com-
mon sense to assume he will not try to buy the same file again from the same sender
a.

Depending on the specific requirements of the system, the considered id generation strat-
egy could change, and since the proposed protocol does not heavily rely on it, this is entirely
achievable.

4.1.4 Randomness

During the initializationphase, before executing the sub-key sampling, the smart contractmust
publish a randomness value. Since this value heavily influences the sampling, and so the whole
information exchange, the way it is generated is critical for the protocol.
In our implementation, we rely on information related to the current block, which is:

• block.difficulty: that is a measure of how difficult it is to mine the current block,
i.e., to find a hash below a set target;

• block.timestamp: the time at which the block is generated.

More specifically we use the following formula to obtain the randomness value:

randomness ← uint(keccak256(abi.encodePacked(block.difficulty,
block.timestamp)))

In this way we can obtain a value for randomness that is not enforceable by the reporter a, en-
suring that he is not able to actively decide which sub-keys to publicly share.
A possible security flow using this approach appears if we don’t consider miners as trusted
parties. In particular, the block information can be directly manipulated by the block miner,
forcing a specific value for the randomness. For our implementation, we assumed miners as
trusted parties so this scenario is not considered a valid attacking one.
For implementations that do not trust miners, Verifiable Random Function (VRF) [63] can
be used. As the name suggests, they are functions that generate an entirely unpredictable (uni-
formly distributed) value and proof that demonstrates its validity. From the implementation
point of view, Chainlink VRF [64], represents the standard and most used solution, in partic-
ular, it allows:

• Unpredictability: no one can predict the randomness since the used block data is un-
known at the time the request is done;

42

• Fairness: the random number is drawn from a uniform distribution, meaning that all
numbers in the considered range have the same probability of being extracted;

• Randomness: the randomness computation relies on block-hashes that are unknown
ahead of time, and on a seed that is not publicly known;

• Tamper-proof : neither the oracle nor external entities can force the value to be drawn.

Summing up, the usage ofVRF solutions, likeChainlinkVRF, leads to higher randomness and
then security for the whole protocol, at the cost of more complex implementation and higher
usage fees for the final users.

4.2 Performance

In this section, we provide the measurement and performances related to FairDrop. We first
provide a theoretical analysis, focused on the complexity of the algorithm used and on the se-
curity measures achieved, and then a more practical examination, reporting on-chain and off-
chain execution costs.

4.2.1 Complexity analysis

Fixing a reportera and afile x, during the initializationphase the reporter has to call thepublishFile
and publishDescriptionmethods, that are necessary to share correspondingly the hash and
the description of the considered file. Both the methods execute only data transfers and mem-
ory assignments, and for this reason, their complexity is constant, i.e.,O(1) both in time and
memory. The initialization phase also requires some off-chain computation by the reporter a,
who has to use the randomness obtained by calling the publishFilemethod to sample from
all the sub-keys. The proposed sampling mechanism has a O(n) space complexity, and O(s)
time complexity, with s being the number of sampled elements, and n the size of the initial file.
After that, a uses the sampled sub-keys to generate the description of the file, this process has
O(s) space and time complexity. All the previous complexity data is summarized in Table 4.1,
where SKE refers to the complexity of symmetric key encryption.

43

Table 4.1: Initialization phase complexity analysis overview

On-chain Off-chain

publishFile publishDescription Encoding Sampling Description

Time O(1) O(1) O(n · SKE) O(s) O(s)
Memory O(1) O(1) O(x) O(n) O(s)

If we fix a newspaper b, then we can analyze the computational complexity of the sale phase.
More in particular, during this phase, b has first to use the shared sub-keys by the reporter a to
decrypt the corresponding sub-files, which can be done inO(s · SKE) time. After that, if he
decides to proceed with the protocol, he has to call the buy method, which does not execute
any particular computation and has a O(1) time and space complexity. If the reporter a de-
cides to continue with the protocol, he shares the key calling the publishKeymethod of the
smart contract, which also has constant space and time complexity. Considering the optimistic
case, the protocol ends at this moment. A summary of the previously mentioned complexity
measures is available in Table 4.2.

Table 4.2: Sale phase, optimistic case, complexity analysis overview

On-chain Off-chain

buy publishKey withdraw refundToBuyer Decoding

Time O(1) O(1) O(1) O(1) O(s · SKE)
Memory O(1) O(1) O(1) O(1) O(s)

If we consider the pessimistic case, then the newspaper b has to: first, compute off-chain a
PoM, and then share it with the smart contract invoking the raiseObjectionmethod. The
time and space complexity of this procedure is shown in Table 4.3.

Table 4.3: Sale phase, pessimistic case, complexity analysis overview

On-chain Off-chain

raiseObjection PoMGeneration

Time O(log s) O(s)
Memory O(1) O(s)

44

4.2.2 Execution costs

As for the implementation, also the performances are focused on the fair exchange part of the
protocol. We first describe the metrics we use for the performance evaluations and then exam-
ine in detail each phase of the protocol, comparing it with the closely related works. During
this discussion, we make use of the results to make explicit if the design choices that we took
led to the expected results or not.

Metrics The cost of running a protocol in the blockchain is expressed as the amount of
gas [65] used. The gas represents a unit of measure for the fees to pay for the execution of
operations in the blockchain. Some examples of operations executed by our protocol are byte
manipulations, hash of strings, and event emission. Other elements that lead to gas usage are
memory storage inside the contract and the size and the number of each method parameters.
As mentioned before, the benchmarks are executed in the Ethereum blockchain, specifically in
the Ethereum Ropsten and Goerli Testnet. Starting with the deployment of the contract, it
requires 1936780 units of gas to be completed.

Initialization Phase As explained before, this phase is composed of two rounds, that
correspond to two smart contract method calls: publishFile and publishDescription,
both executed by the sender a. The on-chain execution cost of this phase is reported in Table
4.4.

Table 4.4: Initialization phase execution gas cost

Method publishFile publishDescription Total
Gas 93728 48890 142618

Being part of the initialization phase, the sender a has to cope with these costs only one time
for each file, independent of the number of successive sales.

Sale Phase Since the smart contract is designed to manage multiple buyers and senders,
each call of a method during the sale phase is characterized by a certain overhead, related to
all the checks that are necessary to provide this feature. In particular, the checks introduce an
execution cost equal to:

CH + 3 · CEQ,

45

where CH represents the cost for the computation of a hash, while CEQ is the cost for the com-
parison of two values.
The on-chain execution costs of this phase are reported in Table 4.5.

Table 4.5: Sale phase method execution cost

Method buy publishKey refundToBuyer withdraw
Gas 107645 80015 59660 44601

The method buy request the caller to provide the ciphertext of the secret he has to share.
The size of the ciphertext can change depending on the asymmetric encryption scheme used.
In any case, the plaintext, i.e., the secret to share, is always 32 bytes long. So assuming to fix the
encryption scheme, also the ciphertext size would be constant.
The execution cost of the raiseObjectionmethod depends on the size of the provided PoM,
and so on the logarithm of s. In the table 4.6 we show how the price the newspaper b has to pay
to execute this method changes at the variation of the number of sampled sub-keys s.

Table 4.6: RaiseObjection method cost execution

Sub-keys 26 27 28 29 210 211 212 213 214

Gas 64605 66125 67657 69140 70684 72204 73712 75244 76776

Tohave abetter idea of the costs associatedwith the sale phase, we consider fixing thenumber
of sampled sub-keys s to 210, and show inTable 4.7 the overall costs of this phase, distinguishing
between the sender and the receiver.

Table 4.7: Sale phase overall execution costs

Optimistic case Pessimistic case

Sender Receiver Sender Receiver

Gas 124616 107645 80015 178329

As visible in Table 4.7, the execution in the pessimistic case for the sender is cheaper than
the one in the optimistic case. This is because in the pessimistic case the sender doesn’t have
to call the withdraw method. At the same time, even if the execution is cheaper, the sender
will result in a greater economic loss in the pessimistic case, since he would not earn anything

46

with the exchange, and he will lose the collateral sent to the smart contract, due to probabilistic
receiver fairness property. As proven in Sec. 3.3.3, the probability by a malicious reporter to
break this property is upper bounded by (1− p)s, with p being the probability of a sub-key ki
to be wrong, and s the number of sub-keys to sample for the description. In Fig. 4.3, we show
how this upper bound changes for different values of s and p. The probability of a successful
attack decreases very fast: with a low number of sub-keys sampled, e.g., 25, and a probability p
quite low, e.g., 10%, the attack will succeed only the 0.3% of times.

Figure 4.3: Probability of success of an attack against receiver fairness

4.2.3 Performance Comparisonwith Closely RelatedWork

We designed this protocol to provide features that state-of-the-art fair exchange protocols were
not considering, trying to improve their performances when multiple exchanges have to be
executed. As the core of our protocol, we used the idea proposed by FairDex [30], i.e., the
creation of a Merkle tree over the sub-keys, and not over the sub-files, as done in other works
[36, 37]. As visible in Fig. 4.4 the price that the sender of the file has to pay is considerably lower
than the one required by FairDex. FairDrop achieves this by moving the duty of deployment
of the smart contract from the sender to the initial provider of the system, e.g., a non-profit

47

Figure 4.4: Optimistic case: price cost for sender considering multiple exchanges

organization or a journalist company. The deployer of the system doesn’t gain any specific
right on the smart contract, but it allows any other reporter and newspaper to use it, removing
the initial deployment cost from them. Once deployed, the system can be used an unlimited
number of times, while the other currently proposed solutions [36, 30, 37] require the sender
to deploy a new smart contract for every exchange.

Regarding FairSwap [36] and OptiSwap [37], both FairDex [30] and our protocol result in
a lower cost in the pessimistic case, due to the usage of theMerkle tree based on sub-keys. Con-
sidering the optimistic case, all the protocols are characterized by a constant time complexity,
which difference is only related to the specific operations executed on the blockchain.
Comparing directly FairDex and FairDrop, and considering a single data exchange, in the op-
timistic case our protocol results in an execution that is 17.75%more expensive for the news-
paper and 32.58% for the reporter. While in the pessimistic case, 26.98%more expensive for
the newspaper and between 35% and 40% for the reporter, depending on the size of the descrip-
tion. This overhead is related to the computation FairDrop has to do to manage the features
it introduces, but as visible in Fig. 4.4 for the reporter, our protocol is cheaper if when don’t
focus just on the single exchange, but if we consider the overall costs.

48

5
Conclusion

The exchange of information in a confidential and anonymous way represents in its general
version the main topic of the current historical period. If we focus on the media world, then
we can notice how many of the most relevant and significant articles have been written and
published thanks to reporters and sources who, in exchange for anonymity, decided to share
some information. Many times sources are limited in what they can report and witness by the
policies and decisions taken by the company they work for or the country they live in. To help
reporters and sources and to allow an easier and more free flow of information we introduced
FairDrop.
FairDrop is a system designed considering the state-of-the-art of fair exchange protocols, and
keeping in mind the importance of the protection and anonymity of all the involved parties.
For FairDropwe focusedmainly on themedia world, basingmost of the design choices on how
real communications between reporters and news organizations actually work. To achieve this
goal, during the research work of this thesis we collaborated also with the Oskam Foundation
a non-profit organization with the purpose to protect the digital rights of journalists.
We presented a system to allow the confidential exchange of information between a reporter
and a newspaper, maintaining the anonymity of the former one. We prioritized the definition
of a solution that could actually follow the real necessities of both the considered parties. We
finally introduced the formalization and the basic ideas for the design of amore complex system
to obtain a numerical measure of the credibility of the information shared.

49

5.1 Discussion

In this section, we highlight what we consider the most important aspects and features intro-
duced by our protocol, and the results we were able to achieve through the proof of concept
that we developed.

Multi-buyer and seller fair exchange FairDrop is able tomaintain all the properties
provided by already existing fair exchange protocols based on blockchain [36, 37, 30], while
adding, among the others, the confidentiality of the shared key, multi-buyer, and multi-seller
possibilities. These features that we introduced allow the system to be used in real scenarios,
like the media workers one.

Runtime performance An overhead in the runtime performance is added w.r.t. other
protocols by the features FairDrop introduces. Fixing a specific piece of information shared by
a reporter, and considering a multiple-buyer scenario, for which FairDrop has explicitly been
designed, we obtain better performances than other existing protocols, even introducing prop-
erty, like confidentiality, that they don’t provide. Also, FairDrop has to be deployed only one
time, and then any user can actively utilize it without the necessity to deploy it on his own. This
allows the system to become cheaper than the other proposed solutions, which require a new
smart contract deployment for each exchange.

No direct communication Inside the protocol, no assumption regarding the presence
of a direct and secure communication channel between the two parties that participate in the
exchange is done. The usage of such a channel would probably reduce the cost and complexity,
in thenumber of rounds, of theprotocol, butwould alsobe a strong assumption todo. We then
preferred to consider a more realistic scenario, eliminating any direct communication between
the involved parties.

Shared proof-of-credibility The published ring signature can be verified by anyone,
independently of his participation in the system. The signature can be then attached to a final
article by the newspaper, to provide a verifiable proof of the credibility of the sources.

50

5.2 Limitations

During the design and subsequent implementation of the proposed solution, we did some as-
sumptions and simplifications, which we discuss in this section.

Identificationbypublickeys During thewholeprotocol, the identificationof reporters
is based on their public key, which availability in a normal scenario is by no means taken for
granted. In the future, we could assume this possibility to bemore concrete in limited scenarios,
like themedia and journalismworld. The protocol seems for this reason applicable to reporters,
but a generalization to any source, such as company insiders, would require an availability of
public keys that, at least at the moment, is not realistic to consider.

Credibility We defined from a general point of view the next steps in the definition of a
credibility measure starting from the usage of a ring signature, but an actual implementation
of it has yet to be done.

5.3 FutureWork

Improvement for the specific use case Focusing on the reporter and newspaper sce-
nario possible specific improvements can be done. For example, by paying a higher amount of
money, the newspaper could request exclusive rights on the piece of information, and limit or
block the number of exchanges of it.

Credibility implementation The definition of a minimum set of information that al-
lows explaining the level of expertise of a reporter without revealing its identity has yet to be
defined. Also, the design of a function that uses that data and a ring signature to define a mea-
sure of the credibility of the ring and of the shared information remains a future researchwork.
Considering the ring signature, and the problem of the availability of public keys, the composi-
tion and the size of the ring represent a necessary research direction to consider since it directly
affects the credibility of the information.

Perfect randomness As treated in Sec. 4.1 the strategy we used for randomness genera-
tion depends on parameters that could be directly influenced by a malicious blockchain miner.
To avoid this problem, the usage of a blockchain-based verifiable randomness functionhas been

51

proposed. We leave as future work the actual implementation and test of it, and the discussion
about the trade-off between the security achieved in this way and the increase in user cost for
using the system.

Existing systems integration In our work we just introduced the existing systems al-
ready used by newspapers to accept information and communicate with anonymous sources.
Further research could determine if the integration of our protocol with the existing solutions
can be feasible. This would allow the introduction of all the features that FairDrop provides
to strongly adopted systems.

Secret sharing During the sale phase the secret sharing mechanism requires the usage of
an asymmetric encryption scheme and the publication through the blockchain of the corre-
sponding ciphertext. Further research could determine if this information can be shared with-
out the usage of the blockchain, leading to less gas usage by the involved parties.

52

A
Merkle Trees Algorithms

As already stated in Chapter 2, a Merkle Tree of elements x1, ..., xn in {0, 1}∗ is a binary tree
M = MTree(x1, ..., xn), with MTree defined as Alg. 1. For simplicity, we consider a complete
binary tree, i.e., n = 2m, for somem.
We can define a Merkle Tree in a recursive way: each non-leaf nodeVj is defined as the hash of
its right and left childrenVl

j andVr
j , i.e.,Vj = H(Vl

j,Vr
j).

We refer toVl
j andVr

j as siblings, whileVJ as their parent.

Algorithm 1Merkle tree hashMtree
Input: (x1, ..., xn)

setV ▷Vwill be the root node
if N = 1 then ▷ Base Case: the input is a single value

label(V)← x1
else

vl0 ←MTree(x1, ..., x⌈n/2⌉) ▷Call the function on the left subtree
vr0 ←MTree(x⌈n/2⌉+1, ..., xn) ▷Call the function on the right subtree
label(V)← H(root(vl0)||root(vr0)) ▷Compute the label for the current root

end if
Output: Merkle treeMwith root V

To prove that a leaf node is part of the tree, we use the output of the Alg. 2. The algorithm
returns a vector of size log2(n), containing all the siblings of elements on a path from the con-
sidered node to the root of the tree.

53

Algorithm 2Merkle tree proofMproof
Input: Merkle treeM, index i

V = M[i] ▷ let V be the i-th leaf node of M
for j ∈ [log2(n)] do

lj ← label(sibling of v)
v← parent of v

end for
Output: Merkle Proof p = (l1, ..., ld)

Toverify the proof obtained inAlg. 2, we canuse theMverify algorithm. Inparticular, given
aMerkle TreeM, its root root(M), a leaf node xi and a proof ρ obtained by usingMproof(M, i),
we define the algorithmMverify that returns true if xi belongs to M, and false otherwise.

Algorithm 3Merkle tree proof verificationMverify
Input: i ∈ [n], x ∈ {0, 1}∗, ρ = (l1, ..., ld), h ∈ {0, 1}μ

for lj ∈ ρ do ▷Wewalk across the provided path.
x← H(x||lj) ▷Compute x as the parent, up to the root of the tree.

end for
Output: x = h ▷The proof is correct, if at the end x corresponds with the root.

The time and space complexity of the previously described algorithms is reported in Table
A.1. The logarithmic complexity ofMproof andMverify is related to the fact that they execute
an operation for each level of the tree. Since we consider the binary tree to be balanced, then
the complexity isO(log n), while in amore generic case we could consider as complexityO(h),
with h being the height of the tree. The Mtree algorithm is O(n) instead, since it needs to
compute the value for each node of the tree.

Table A.1: Space and time complexity of Markle tree algorithms

Mtree Mproof Mverify
Time O(n) O(log n) O(log n)

Memory O(n) O(log n) O(1)

Considering the space complexity, forMtree, it is necessary to create and store thewhole tree,
that isO(n). RegardingMproof, it creates a vector of log n elements to prove that the selected
one belongs to the tree. Finally,Mverify, takes in input a proof and a tree, and using constant
memory, i.e.,O(1) space, verifies the validity of the proof.

54

B
Smart Contract

The code of the smart contract that we designed is provided in this appendix.

1 contract ConfidentialFairExchange {
2
3 uint constant public MAX_INTERVAL = 2 minutes; // 2 mins timemax inteval

between operations
4 uint constant public COLLATERAL = 100 wei;
5
6 /******** INIT PHASE *******/
7 event FileRandomness(bytes32 indexed fileHash, uint randomness);
8 event FilePublished(bytes32 indexed fileHash, bytes32 description);
9
10 // struct containing info about the file to sell
11 struct FileInfo {
12 address seller;
13 uint depth; // description depth
14 uint price;
15 bytes32 description;
16 }
17
18 // mapping associating to each hash the corrisponding FileInfo struct
19 mapping(bytes32 => FileInfo) public fileInfos;
20
21 function publishFile(bytes32 _fileHash, uint _depth, uint _price) public {

55

22 require(fileInfos[_fileHash].seller == address(0), "The file has already
been published");

23
24 fileInfos[_fileHash] = FileInfo(msg.sender, _depth, _price, 0);
25 emit FileRandomness(_fileHash, uint(keccak256(abi.encodePacked(block.

difficulty, block.timestamp))));
26 }
27
28 function publishDescription(bytes32 _fileHash, bytes32 _description) public {
29 require(fileInfos[_fileHash].seller == msg.sender, "Only the seller can set

the description");
30 require(fileInfos[_fileHash].description == 0, "The description has already

been set");
31
32 fileInfos[_fileHash].description = _description;
33 emit FilePublished(_fileHash, _description);
34 }
35
36 /**** BUYING PHASE *****/
37 event PurchaseRequested(bytes32 indexed fileHash, bytes32 indexed purchaseID,

bytes32 secretHash, bytes encryptedSecret);
38 event EncryptedKeyPublished(bytes32 indexed purchaseID, bytes32 encryptedKey);
39
40 enum State { Requested, EncryptedKeyShared, Completed, Invalid, Timeout}
41 struct Purchase {
42 address buyer;
43 uint lastOperationTime;
44 State state;
45 bytes32 encryptedKey;
46 bytes32 secretHash;
47 }
48
49 mapping(bytes32 => Purchase) purchases;
50 function buy(bytes32 _fileHash, bytes32 _secretHash, bytes calldata

_encryptedSecret)
51 public payable {
52
53 require(fileInfos[_fileHash].seller != address(0), "No file with requested

hash is present inside the system");
54 require(fileInfos[_fileHash].description != 0, "The considered file has not

description set yet");

56

55 require(msg.value == fileInfos[_fileHash].price, "The sent amount of money
is lower than the file price");

56
57 bytes32 purchaseID = bytes32(keccak256(abi.encodePacked(msg.sender,

_fileHash)));
58 require(purchases[purchaseID].state == State.Requested, "Purchase already

started");
59 purchases[purchaseID] = Purchase(msg.sender, block.timestamp, State.

Requested, 0, _secretHash);
60
61 emit PurchaseRequested(_fileHash, purchaseID, _secretHash, _encryptedSecret)
62 }
63
64 /* buyer calls the buy function -> seller checks H(D(_encryptedSecret)) ==

_secretHash:
65 - if false: wait MAX_INTERVAL and call withdraw
66 - if true: call publishKey (with collateral)
67 */
68 function publishKey(bytes32 _encryptedKey, bytes32 _fileHash, bytes32

_purchaseID)
69 Only(_fileHash, _purchaseID, State.Requested, fileInfos[_fileHash].seller)
70 InTime(_purchaseID)
71 public payable {
72
73 purchases[_purchaseID].encryptedKey = _encryptedKey;
74 purchases[_purchaseID].state = State.EncryptedKeyShared;
75 purchases[_purchaseID].lastOperationTime = block.timestamp;
76 emit EncryptedKeyPublished(_purchaseID, _encryptedKey);
77 }
78
79 // Complain about the goods by proving that:
80 // 1. a committed subkey is different from the subkey derived from the master

key; and
81 // 2. and this committed subkey is part of the description.
82 struct POM {
83 uint _committed_ri;
84 bytes32 _committedSubKey;
85 bytes32[] _merkleTreePath;
86 }
87 function raiseObjection(bytes32 _fileHash, bytes32 _purchaseID, bytes32 _secret,
88 POM memory pom)

57

89 Only(_fileHash, _purchaseID, State.EncryptedKeyShared, purchases[_purchaseID
].buyer)

90 InTime(_purchaseID)
91 public
92 payable
93 {
94 require(keccak256(abi.encodePacked(_secret)) == purchases[_purchaseID].

secretHash, "Provided secret is wrong");
95 bytes32 key = purchases[_purchaseID].encryptedKey ^ _secret;
96
97 bytes32 computedSubkey = keccak256(abi.encodePacked(key, pom._committed_ri))

;
98 // Check if the subkey supplied by buyer is different from the subkey

derived from masterKey.
99 if (computedSubkey != pom._committedSubKey) {
100 bytes32 committedNode = keccak256(abi.encodePacked(pom._committedSubKey,

pom._committed_ri));
101
102 // When the loop exits, committedNode will hold the root of Merkle Tree.
103 for (uint i = 0; i < fileInfos[_fileHash].depth; i++)
104 committedNode = keccak256(abi.encodePacked(committedNode, pom.

_merkleTreePath[i]));
105
106 // Check if the root equals description.
107 if (committedNode == fileInfos[_fileHash].description) {
108 // If so, the buyer is right and gets the deposit + collateral back.
109 purchases[_purchaseID].state = State.Invalid;
110 payable(msg.sender).transfer(COLLATERAL + fileInfos[_fileHash].price

);
111 }
112 }
113 }
114
115 // Refund to buyer if seller does not publish master key in time.
116 function refundToBuyer(bytes32 _fileHash, bytes32 _purchaseID)
117 Only(_fileHash, _purchaseID, State.Requested, purchases[_purchaseID].buyer)
118 public payable {
119
120 require(purchases[_purchaseID].lastOperationTime + MAX_INTERVAL < block.

timestamp, "The seller has still time to share the encrypted key");
121 purchases[_purchaseID].state = State.Timeout;

58

122 payable(msg.sender).transfer(fileInfos[_fileHash].price);
123 }
124
125 function withdraw(bytes32 _fileHash, bytes32 _purchaseID)
126 Only(_fileHash, _purchaseID, State.EncryptedKeyShared, fileInfos[_fileHash].

seller)
127 public payable
128 {
129 require(purchases[_purchaseID].lastOperationTime + MAX_INTERVAL < block.

timestamp, "The buyer has still time to share a POM");
130 purchases[_purchaseID].state = State.Completed;
131 payable(msg.sender).transfer(fileInfos[_fileHash].price + COLLATERAL);
132 }
133
134 modifier InTime(bytes32 _purchaseID) {
135 require(block.timestamp <= purchases[_purchaseID].lastOperationTime +

MAX_INTERVAL, "Max timeout reached");
136 _;
137 }
138
139 modifier Only(bytes32 _fileHash, bytes32 _purchaseID, State _state, address

caller) {
140 require(bytes32(keccak256(abi.encodePacked(purchases[_purchaseID].buyer,

_fileHash))) == _purchaseID, "Wrong purchase ID");
141 require(purchases[_purchaseID].state == _state, "Purchase in the wrong state

");
142 require(msg.sender == caller, "Wrong function caller");
143 _;
144 }
145 }

59

60

References

[1] “World press freedom index - 2022,” 2022. [Online]. Available: https://rsf.org/en/
rsfs-2022-world-press-freedom-index-new-era-polarisation

[2] (2020) Murders of journalists more than double worldwide. [Online]. Available:
https://cpj.org/reports/2020/12/murders-journalists-more-than-doubled-killed/

[3] (2022) Attacks on the press: The deadliest countries in 2021. [Online]. Available: https:
//cpj.org/reports/2022/01/attacks-on-the-press-the-deadliest-countries-in-2021/

[4] (2020) Record number of journalists jailed worldwide. [Online]. Available: https:
//cpj.org/reports/2020/12/record-number-journalists-jailed-imprisoned/

[5] Spj ethics committee position papers, anonymous sources. [Online]. Available:
https://www.spj.org/ethics-papers-anonymity.asp

[6] Anonymous sources. [Online]. Available: https : / /www. ap . org / about /
news-values-and-principles/telling-the-story/anonymous-sources

[7] Understanding the times, how the times uses anonymous sources.
[Online]. Available: https ://www.nytimes .com/2018/06/14/reader-center/
how-the-times-uses-anonymous-sources.html

[8] D. Ohlmeyer. (2010) Root of all evil? [Online]. Available: http://sports.espn.go.com/
espn/columns/story?columnist=ohlmeyer_don&id=5220492

[9] (1980) Jimmy’s world, janet cooke. [Online]. Available: https :
/ / www . washingtonpost . com / archive / politics / 1980 / 09 / 28 / jimmys-world /
605f237a-7330-4a69-8433-b6da4c519120/

[10] J. Barry. (2005) Gitmo: Southcom showdown. [Online]. Available: https://www.
newsweek.com/gitmo-southcom-showdown-119001

[11] (2005) Newsweek retracts quran story. [Online]. Available: https://edition.cnn.com/
2005/WORLD/asiapcf/05/16/newsweek.quran/

61

https://rsf.org/en/rsfs-2022-world-press-freedom-index-new-era-polarisation
https://rsf.org/en/rsfs-2022-world-press-freedom-index-new-era-polarisation
https://cpj.org/reports/2020/12/murders-journalists-more-than-doubled-killed/
https://cpj.org/reports/2022/01/attacks-on-the-press-the-deadliest-countries-in-2021/
https://cpj.org/reports/2022/01/attacks-on-the-press-the-deadliest-countries-in-2021/
https://cpj.org/reports/2020/12/record-number-journalists-jailed-imprisoned/
https://cpj.org/reports/2020/12/record-number-journalists-jailed-imprisoned/
https://www.spj.org/ethics-papers-anonymity.asp
https://www.ap.org/about/news-values-and-principles/telling-the-story/anonymous-sources
https://www.ap.org/about/news-values-and-principles/telling-the-story/anonymous-sources
https://www.nytimes.com/2018/06/14/reader-center/how-the-times-uses-anonymous-sources.html
https://www.nytimes.com/2018/06/14/reader-center/how-the-times-uses-anonymous-sources.html
http://sports.espn.go.com/espn/columns/story?columnist=ohlmeyer_don&id=5220492
http://sports.espn.go.com/espn/columns/story?columnist=ohlmeyer_don&id=5220492
https://www.washingtonpost.com/archive/politics/1980/09/28/jimmys-world/605f237a-7330-4a69-8433-b6da4c519120/
https://www.washingtonpost.com/archive/politics/1980/09/28/jimmys-world/605f237a-7330-4a69-8433-b6da4c519120/
https://www.washingtonpost.com/archive/politics/1980/09/28/jimmys-world/605f237a-7330-4a69-8433-b6da4c519120/
https://www.newsweek.com/gitmo-southcom-showdown-119001
https://www.newsweek.com/gitmo-southcom-showdown-119001
https://edition.cnn.com/2005/WORLD/asiapcf/05/16/newsweek.quran/
https://edition.cnn.com/2005/WORLD/asiapcf/05/16/newsweek.quran/

[12] S. Dasgupta and A. Kesharwani, “Whistleblowing: A survey of literature,” pp. 57–70,
2011.

[13] P. Di Salvo, “Securing Whistleblowing in the Digital Age: SecureDrop and the
Changing Journalistic Practices for Source Protection,” Digital Journalism, vol. 9,
no. 4, pp. 443–460, Apr. 2021. [Online]. Available: https://www.tandfonline.com/
doi/full/10.1080/21670811.2021.1889384

[14] Securedrop: secure communication between journalists and sources. [Online].
Available: https://securedrop.org/overview/

[15] J. M. Shepard, Anonymous Sources and Source Confidentiality. John Wiley & Sons,
Ltd, 2019, pp. 1–5. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781118841570.iejs0258

[16] L. Wilkins, “Anonymous sources,” Journalism Ethics, p. 117–122, 1997.

[17] A. Quinn, “271Respecting Sources’ Confidentiality: Critical but Not Absolute,”
in Journalism Ethics: A Philosophical Approach. Oxford University Press, 02 2010.
[Online]. Available: https://doi.org/10.1093/acprof:oso/9780195370805.003.0018

[18] D. E. Boeyink, “Anonymous Sources in News Stories: Justifying Exceptions
and Limiting Abuses,” Journal of Mass Media Ethics, vol. 5, no. 4, pp. 233–246,
Dec. 1990. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1207/
s15327728jmme0504_2

[19] F. Brown, “Anonymity hurts reporters and politicians.” p. 38–39, 2003.

[20] B. M. Gassaway, “Are Secret Sources in the News Media Really Necessary?”
Newspaper Research Journal, vol. 9, no. 3, pp. 69–77, Mar. 1988. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/073953298800900307

[21] T. Son, “Leaks: How Do Codes of Ethics Address Them?” Journal of Mass
Media Ethics, vol. 17, no. 2, pp. 155–173, Jun. 2002. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1207/S15327728JMME1702_05

[22] J. Strupp, “Losing confidence,” vol. 138, pp. 32–39, 07 2005.

62

https://www.tandfonline.com/doi/full/10.1080/21670811.2021.1889384
https://www.tandfonline.com/doi/full/10.1080/21670811.2021.1889384
https://securedrop.org/overview/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118841570.iejs0258
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118841570.iejs0258
https://doi.org/10.1093/acprof:oso/9780195370805.003.0018
http://www.tandfonline.com/doi/abs/10.1207/s15327728jmme0504_2
http://www.tandfonline.com/doi/abs/10.1207/s15327728jmme0504_2
http://journals.sagepub.com/doi/10.1177/073953298800900307
http://www.tandfonline.com/doi/abs/10.1207/S15327728JMME1702_05
http://www.tandfonline.com/doi/abs/10.1207/S15327728JMME1702_05

[23] (2005) I’m the guy they called deep throat. [Online]. Available: https://www.vanityfair.
com/news/politics/2005/07/deepthroat200507

[24] A. Shepard. (1994) Anonymous sources. american journalism review. [Online].
Available: https://ajrarchive.org/Article.asp?id=1596

[25] (2005) Karzai condemns anti-us protests. [Online]. Available: http://news.bbc.co.uk/
2/hi/south_asia/4547413.stm

[26] (2003) Times reporter who resigned leaves long trail of de-
ception. [Online]. Available: https : / /www .nytimes . com/2003 /05 / 11 /
us/correcting-the-record-times-reporter-who-resigned-leaves-long-trail-of-deception .
html

[27] (2004) Ex-usa today reporter faked major stories. [Online]. Available: https://
usatoday30.usatoday.com/news/2004-03-18-2004-03-18_kelleymain_x.htm

[28] R. F. Smith, “Impact of Unnamed Sources on Credibility Not Certain,” Newspaper
Research Journal, vol. 28, no. 3, pp. 8–19, Jun. 2007. [Online]. Available: http:
//journals.sagepub.com/doi/10.1177/073953290702800302

[29] M. M. Sternadori and E. Thorson, “Anonymous Sources Harm Credibility of All
Stories,” Newspaper Research Journal, vol. 30, no. 4, pp. 54–66, Sep. 2009. [Online].
Available: http://journals.sagepub.com/doi/10.1177/073953290903000405

[30] O. Ersoy, Z. A. Genc, Z. Erkin, and M. Conti, “Practical Exchange for Unique
Digital Goods,” in 2021 IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPS). United Kingdom: IEEE, Aug. 2021, pp. 49–58.
[Online]. Available: https://ieeexplore.ieee.org/document/9566170/

[31] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-Joancomartí,
“A fair protocol for data trading based on Bitcoin transactions,” Future Generation
Computer Systems, vol. 107, pp. 832–840, Jun. 2020. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0167739X17318344

[32] J.Gao, T.Wu, andX.Li, “Secure, fair and instant data trading schemebased onbitcoin,”
Journal of Information Security and Applications, vol. 53, p. 102511, Aug. 2020. [On-
line]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2214212619309688

63

https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://ajrarchive.org/Article.asp?id=1596
http://news.bbc.co.uk/2/hi/south_asia/4547413.stm
http://news.bbc.co.uk/2/hi/south_asia/4547413.stm
https://www.nytimes.com/2003/05/11/us/correcting-the-record-times-reporter-who-resigned-leaves-long-trail-of-deception.html
https://www.nytimes.com/2003/05/11/us/correcting-the-record-times-reporter-who-resigned-leaves-long-trail-of-deception.html
https://www.nytimes.com/2003/05/11/us/correcting-the-record-times-reporter-who-resigned-leaves-long-trail-of-deception.html
https://usatoday30.usatoday.com/news/2004-03-18-2004-03-18_kelleymain_x.htm
https://usatoday30.usatoday.com/news/2004-03-18-2004-03-18_kelleymain_x.htm
http://journals.sagepub.com/doi/10.1177/073953290702800302
http://journals.sagepub.com/doi/10.1177/073953290702800302
http://journals.sagepub.com/doi/10.1177/073953290903000405
https://ieeexplore.ieee.org/document/9566170/
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17318344
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17318344
https://linkinghub.elsevier.com/retrieve/pii/S2214212619309688

[33] Y. Chen, J. Guo, C. Li, and W. Ren, “FaDe: A Blockchain-Based Fair Data Exchange
Scheme for Big Data Sharing,” Future Internet, vol. 11, no. 11, p. 225, Oct. 2019.
[Online]. Available: https://www.mdpi.com/1999-5903/11/11/225

[34] H. Yu, J. Gao, T. Wu, and X. Li, “A novel fair and verifiable data trading scheme,” in
Frontiers in Cyber Security, B. Shen, B. Wang, J. Han, and Y. Yu, Eds. Singapore:
Springer Singapore, 2019, pp. 308–326.

[35] Y. Zhao, Y. Yu, Y. Li, G. Han, and X. Du, “Machine learning based privacy-
preserving fair data trading in big data market,” Information Sciences, vol. 478, pp.
449–460, Apr. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0020025518309174

[36] S. Dziembowski, L. Eckey, and S. Faust, “FairSwap: How To Fairly Exchange
Digital Goods,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. TorontoCanada: ACM,Oct. 2018, pp. 967–984. [Online].
Available: https://dl.acm.org/doi/10.1145/3243734.3243857

[37] L. Eckey, S. Faust, and B. Schlosser, “OptiSwap: Fast Optimistic Fair Exchange,”
in Proceedings of the 15th ACM Asia Conference on Computer and Communications
Security. Taipei Taiwan: ACM, Oct. 2020, pp. 543–557. [Online]. Available:
https://dl.acm.org/doi/10.1145/3320269.3384749

[38] D. R. Stinson and M. B. Paterson, Cryptography: theory and practice, fourth edition ed.
Boca Raton: CRC Press, Taylor & Francis Group, 2019.

[39] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” inAdvances in Cryptol-
ogy — ASIACRYPT 2001, C. Boyd, Ed. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2001, pp. 552–565.

[40] D. Chaum and E. v. Heyst, “Group signatures,” inWorkshop on the Theory and Appli-
cation of of Cryptographic Techniques. Springer, 1991, pp. 257–265.

[41] A. Narayanan, Bitcoin and cryptocurrency technologies: a comprehensive introduction.
Princeton: Princeton University Press, 2016.

[42] C. S. Wright, “Bitcoin: A Peer-to-Peer Electronic Cash System,” SSRN Electronic
Journal, 2008. [Online]. Available: https://www.ssrn.com/abstract=3440802

64

https://www.mdpi.com/1999-5903/11/11/225
https://linkinghub.elsevier.com/retrieve/pii/S0020025518309174
https://linkinghub.elsevier.com/retrieve/pii/S0020025518309174
https://dl.acm.org/doi/10.1145/3243734.3243857
https://dl.acm.org/doi/10.1145/3320269.3384749
https://www.ssrn.com/abstract=3440802

[43] U. W. Chohan, “The Double Spending Problem and Cryptocurrencies,” SSRN
Electronic Journal, 2017. [Online]. Available: https://www.ssrn.com/abstract=
3090174

[44] A.M. Antonopoulos,Mastering Bitcoin: programming the open blockchain, second edi-
tion ed. Sebastopol, CA: O’Reilly, 2017, oCLC: ocn953432201.

[45] C. Nguyen, H. Dinh Thai, D. Nguyen, D. Niyato, H. Nguyen, and E. Dutkiewicz,
“Proof-of-stake consensus mechanisms for future blockchain networks: Fundamentals,
applications and opportunities,” IEEE Access, vol. PP, pp. 1–1, 06 2019.

[46] M. Platt, J. Sedlmeir, D. Platt, J. Xu, P. Tasca, N. Vadgama, and J. I. Ibanez, “The
Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work,” in
2021 IEEE 21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C). Hainan, China: IEEE, Dec. 2021, pp. 1135–1144. [Online].
Available: https://ieeexplore.ieee.org/document/9741872/

[47] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[48] W. Li, M. He, and S. Haiquan, “An overview of blockchain technology: Applications,
challenges and future trends,” pp. 31–39, 2021.

[49] H. Pagnia and F. C. G. Darmstadt, “On the impossibility of fair exchange without a
trusted third party,” 1999.

[50] N. Asokan, M. Schunter, and M. Waidner, “Optimistic protocols for fair exchange,”
in Proceedings of the 4th ACM conference on Computer and communications security -
CCS ’97. Zurich, Switzerland: ACM Press, 1997, pp. 7–17. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=266420.266426

[51] N. Asokan, V. Shoup, and M. Waidner, “Asynchronous protocols for optimistic
fair exchange,” in Proceedings. 1998 IEEE Symposium on Security and Privacy (Cat.
No.98CB36186). Oakland, CA, USA: IEEE Comput. Soc, 1998, pp. 86–99.
[Online]. Available: http://ieeexplore.ieee.org/document/674826/

[52] G. Avoine, F. Gärtner, R. Guerraoui, and M. Vukolić, “Gracefully degrading fair ex-
change with security modules,” in Dependable Computing - EDCC 5, M. Dal Cin,

65

https://www.ssrn.com/abstract=3090174
https://www.ssrn.com/abstract=3090174
https://ieeexplore.ieee.org/document/9741872/
http://portal.acm.org/citation.cfm?doid=266420.266426
http://ieeexplore.ieee.org/document/674826/

M. Kaâniche, and A. Pataricza, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 55–71.

[53] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest, “A fair protocol for signing
contracts,” IEEE Transactions on Information Theory, vol. 36, no. 1, pp. 40–46, Jan.
1990. [Online]. Available: http://ieeexplore.ieee.org/document/50372/

[54] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,”
Communications of the ACM, vol. 28, no. 6, pp. 637–647, Jun. 1985. [Online].
Available: https://dl.acm.org/doi/10.1145/3812.3818

[55] M. O. Rabin, “Transaction protection by beacons,” Journal of Computer and System
Sciences, vol. 27, no. 2, pp. 256–267, Oct. 1983. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/0022000083900429

[56] C. Badertscher, U. M. amd Daniel Tschudi, and V. Zikas, “Bitcoin as a transaction
ledger: A composable treatment,” in Advances in Cryptology – CRYPTO 2017, ser.
LNCS, vol. 10401 (Proceedings Part I). Springer, 8 2017, pp. 324–356.

[57] J. Katz, U. Maurer, B. Tackmann, and V. Zikas, “Universally composable synchronous
computation,” in Theory of Cryptography Conference. Springer, 2013, pp. 477–498.

[58] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party computation using a
global transaction ledger,” inAdvances inCryptology –EUROCRYPT2016,M. Fischlin
and J.-S. Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 705–
734.

[59] A. Küpçü and A. Lysyanskaya, “Usable optimistic fair exchange,” Computer Networks,
vol. 56, no. 1, pp. 50–63, Jan. 2012. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S138912861100301X

[60] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural, and medical re-
search, 6th ed. New York: Hafner Pub. Co, 1963, oCLC: 550706.

[61] (2021) web3.py. [Online]. Available: https://github.com/ethereum/web3.py

[62] E. Kapengut and B. Mizrach, “An event study of the ethereum transition to
proof-of-stake,” 2022. [Online]. Available: https://arxiv.org/abs/2210.13655

66

http://ieeexplore.ieee.org/document/50372/
https://dl.acm.org/doi/10.1145/3812.3818
https://linkinghub.elsevier.com/retrieve/pii/0022000083900429
https://linkinghub.elsevier.com/retrieve/pii/0022000083900429
https://linkinghub.elsevier.com/retrieve/pii/S138912861100301X
https://linkinghub.elsevier.com/retrieve/pii/S138912861100301X
https://github.com/ethereum/web3.py
https://arxiv.org/abs/2210.13655

[63] Chainlink. (2022) Verifiable random function (vrf). [Online]. Available: https:
//blog.chain.link/verifiable-random-function-vrf/

[64] L. Breidenbach, C. Chacin, B. Chan, A. Coventry, S. Ellis, A. Juels, F. Koushanfar,
A.Miller, B.Magauran, D.Moroz, S. Nazarov, A. Topliceanu, F. Tramèr, and F. Zhang.
(2021) Chainlink 2.0. the next steps in the evolution of decentralized oracle networks.
[Online]. Available: https://research.chain.link/whitepaper-v2.pdf

[65] Ethereum gas and fees. [Online]. Available: https://ethereum.org/en/developers/docs/
gas/

67

https://blog.chain.link/verifiable-random-function-vrf/
https://blog.chain.link/verifiable-random-function-vrf/
https://research.chain.link/whitepaper-v2.pdf
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Introduction
	Newspaper guidelines
	Relevant historical examples
	Contribution
	Organization of the document

	Preliminaries
	Cryptographic Primitives
	Blockchain
	Consensus
	Fair Exchange

	Protocol
	Assumptions
	Communication model

	Threat Model
	Properties

	FairDrop
	Initialization Phase
	Sale Phase
	Security & Privacy Analysis

	Performance Evaluation
	Implementation
	Symmetric encryption scheme
	Asymmetric encryption scheme
	Id generation
	Randomness

	Performance
	Complexity analysis
	Execution costs
	Performance Comparison with Closely Related Work

	Conclusion
	Discussion
	Limitations
	Future Work

	Appendix Merkle Trees Algorithms
	Appendix Smart Contract
	References

